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Chapter 1

Introduction

This work focuses on the use of Langevin equations applied to nonequilibrium
systems and, more specifically, phase transitions. These equations exemplify
the usefulness of effective descriptions in Physics. We present an introduction
of the type of problems we are concerned with and explanation of the reasons
why work remains to do on Langevin equations.

In experiments on a fluid, water for instance, the mechanical properties
of fluid are well explained by the macroscopic, continuous, Navier-Stokes
equations. However, we know that fluids are composed of discontinuous
molecules, if we are working with very large lengthscales, water appears to
be continuous, but, as the lengthscale of observation diminishes to the size
of the molecules, we start to see effects of the discretness. The molecules are
polarized and interact with each other like dipoles. Many experiments can
only be understood taking, the discretness of the composition of fluids, into
account. This is one reason why effective descriptions, adapted and restricted
to a particular lengthscale of observation work so well.

The laws governing the interactions between the typically 10 molecules
of a macroscopic quantity of water are known. On the other side, Newton’s
equations of motions allows one to predict the motion of the molecules under
some external force. This makes the problem of predicting the behavior of
water in theory predictable. In practice, it is virutally impossible to follow the
motion of each molecule of water, and to store the position of each molecule.
This facts are due to the smallness, of atoms, and molecules, compared to
us. This is a reason why effective description like Navier-Stokes equations
are an inevitable tool to understand the behavior of fluid matter in general.

At last, another more epistemological and historical reason for the ubiq-
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uity of effective descriptions in science is their simplicity. It would be wrong
to believe that, fluid dynamics equations were derived because they were
more adapted than a molecular description taking into account Quantum
Mechanics and the now more established fundamental nature of matter, they
were derived because they describe well the phenomena studied in the nine-
teenth century they constitute an advance in understanding the phenomena
we observed. Deriving Navier-Stokes equation from the microscopic scale is
a highly non-trivial problem and no one doubts that waiting for deriving
Navier-Stokes equations them exactly before using them is not a good idea.
The way we access to knowledge, and the habit in Science to apply Occam’s
razor principle, explain the tendency to favor the solution that assumes less
suppositions and that is based on less beliefs. Sometimes, depending on the
point of view, this is also the simplest solution to the problems.

From what was explained before, it looks obvious that defining effec-
tive theories following the criteria of simplicity sometimes called, parsimony,
just because they describe well a macroscpic phenomena is, a common, and
a useful habit, of science. It is also obvious that macroscopic phenomena
are caused by the subjacent microscopic. The problem of relating, the mi-
croscopic world, to the macroscopic one, is the main object of Statistical
Mechanics, and of this thesis. The very high number of particles comprising
matter make the use of statistical tools very efficient.

An interesting puzzle solved by statistical mechanics is that eventhough,
the laws governing the microscopic of Physics are reversible, irreversible pro-
cesses are ubiquitous in nature. For instance, an ideal gas is constituted of
particles whose interactions and dynamics is reversible. If the particles of
a gas are confined, by a wall, in the half of a recicipient, when removing
the wall, the particles will invade the whole recipient. This process is highly
irreversible because the new macroscopic configuration is statistically over-
whelmingly more probable than the configuration in which all paticles are
in only half of the recipient. This is naturally solved by the application of
statistical ideas. Formally, this is the second principle of Thermodynamics
stating that the entropy of isolated systems increases. Therefore, this allows
one to chronologically order events in time.

Irreversibility is an exemple of a property that arises from the number
of particles and not only from the behavior of individual particles. More
generally, it is common that the behavior of particles in big assemblies is
different from their behavior when isolated. Systems exhibiting this property
are referred to as complex systems. Many definitions of complex system can



be found, one is, a “system of many strongly-coupled degrees of freedom”.
This is very general concept and appears in many real systems, in particular,
next to a critical point.

Magnetic materials and fluids give good examples of critical points. In a
ferromagnetic material, at low enough temperature a spontaneous magneti-
zation appears, when increasing temperature, at a given critical temperature,
T., or Curie temperature, the spontaneous magnetization disapears.

In the following chapters, we will give many examples of such phenom-
ena. Indeed, order-disorder transitions are very ubiquitous in nature. This is
related with universality concepts and reflected by the fact that very many
theoretical models have been shown to exhibit phase transitions.
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Chapter 2

Phase Transitions with Two
Competing Absorbing States

2.1 Motivation

The recent interest of physicists in quantitative problems in social sciences
gave rise to important research on “opinion models”. One of the simplest
opinion models is called the voter model (VM). This model is an archetypal
model of opinion dynamics in which each element/spin is on a lattice and
interacts only with its four nearest neighbors. The state of a spin can be
modified to the state of another connected spin. Spins behave as individual
that can change opinion to the opinion of a friend or someone they talk to.
In VM, opinion is limited to 2 values (e.g. 1 or 0) and the interaction takes
place on a substrate network that can be a periodic lattice or a disordered
network. The dynamics of the model can be described in a few words: a
site is selected at random, and its opinion is changed to the opinion of a
randomly chosen neighbor. This constitutes an elementary time-step, to be
iterated. Following this dynamics, we easily see that if all the individuals
adopt value 1 or 0 i.e. they all have the same opinion, the dynamics stops
and no individual is anymore able to change opinion. Such states are called
absorbing states of the model. One fundamental property of the VM is to
have 2 symmetric absorbing states.

The presence and nature of absorbing states are relevant ingredients to
determine criticality in phase transition. In the following we will address
the question of the relevance of these 2 absorbing states giving first an in-
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troduction through examples present in literature and then analyzing the
consequences of our results.

2.1.1 Generic Absorbing Phase Transition: Directed
Percolation

Many natural phenomena like forest fires [3], surface catalysis or propaga-
tion of epidemics [4] show similar features. If the presence in one area of
the system of, a fire, a started catalytic reaction, or a contagious illnes, is
called activity, in all these physical situation we have an activity field that
propagates in the system. The activity in one area can propagate to all areas
in contact (whatever contact means here) and an inactive area that is not in
contact we activity will never become active. In order to understand better
those general phenomena, models of spreading processes have been studied.
Such models involve an activity field ¢(z), site x is active when ¢(x) > 0 and
in the absorbing when ¢(z) = 0. As was said above, absorbing states are
characterized by the absence of fluctuactions, when the system finds itself
in such a state, it can not escape from it. When the transition probability
to access the absorbing state is not zero, this is an extreme case of irre-
versibility, since the probability to escape from it is zero. Therefore, detail
balance condition is violated. Usually, detail balance is prescribed to ensure
the existence of a stationary state, a system with a dynamics obeying detail
balance can have as a stationary state the state that obey the detail balance
condition. In our cases of interest, there is however a stationary state, which
we will study and characterize. We are interested in the situation in which
those models are diffusion limited, in low enough dimension, their proper-
ties are interesting since the interplay between reaction and diffusion keep
them in a situation with important fluctuations and spatial structures. A
paradigmatic model exhibiting this kind of phase transition is the Directed
Percolation (DP). In DP each site of the lattice is either active (infected)
or inactive (healthy). Infected sites can infect neighboring healthy sites and
can heal, according to the balance of infection recovery, the stationary state
of the system is either partially infected or completely healthy (active or
absorbing phase). When completely healthy it cannot get infected anymore
since spontaneous outburst of infection are not possible. One realization of
the DP universality class is given by the directed bond percolation which
microscopic details are described in [2]. A typical time-evolution of directed
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bond percolation is shown in (Fig. 2.1), the first row shows a system initially
fully occupied, for three different percolation rates. The time-evolution ex-
periment from a fully occupied lattice to the stationary state of the system is
called a ’decay experiment’. The second row shows a time-evolution following
an initially completely absorbing configuration with a single seed of activity
in the middle of the system. In the first column, the rate of infection is small
and the system invariably reaches, in a finite time, a state from which it can-
not escape. The quantity defined as the density of active sites, p = % Zf n;,
where L is the system size and n; is a variable taking value 1 when site ¢ is
occupied and 0 when it is empty, is a convenient order parameter, for this
phase transition, measuring it in experiments like the first row of (Fig. 2.1),
we see that there is a particular value of p = p. for which it decays as a power
law p(t) = t~%. In (Fig. 2.7), we illustrate that for another system belonging
to the universality class of DP, in 2 space dimension and time, noted 241, a
log-log plot gives as expected a straight line of slope -0.45. In the beginning of
this thesis, we recall that all models belonging to the same universality class,
in this case DP, are described the same critical exponents that depend on the
dimension of the system. In this chapter, we will present results that illus-
trate some subtleties on this point. The particular model we consider here,
the generalized voter (GV), has the interesting particularity to coincide with
a different model, in D = 1 (one space dimension and time, sometime noted
1+ 1), namely branching-annihilating random walk with parity conservation.
However those universality classes coincide in D = 1, they are different in
higher dimensions. In the case of (Fig. 2.1), dimension is 1, so the decay
exponent is around -0.16 As said before, those exponents are important in
Nonequilibrium Phase Transition (NEPT) because they are supposed to be
reminiscent of a universality class. In this work we apply universality class
concepts, very well established for equilibrium systems, to NEPT, all models
belonging to the same universality class should have the same exponents.
So studying critical behavior and exponents like 6 should allow to classify
NEPT into universality classes. Under that is the idea that systems pre-
senting different microscopic properties might show the same macroscopic
behavior close to their critical point. Another characteristic behavior can
be seen, for p > p.. p(t) saturates to a finite value p** = (p — p.)?. The
system is characterized by two different correlation lengths, the spatial cor-
relation length scale £, and temporal correlation length scale £ that behave
respectively as 1 = [p — p.| "+ and & = [p — p.|™" when p is close to p.
The divergence of length scales can be seen as the reason for the appear-
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ance of power laws. Indeed, if there is no more finite length scale in the
system, the laws describing the system must be so that they do not have any
characteristic length scale and this is one of the properties of power laws.

The nature of phase transitions is governed by very simple ingredients as
symmetries, dimensionality of the system and the symmetry breaking of the
order parameter. The most generic absorbing phase transition is DP, it is
known to be very robust. To obtain a different universality class, it is enough
to include some new symmetry not present in DP. So a priori a system with
several symmetric absorbing states, should belong to a different universality
class. The competition between different absorbing states might alter the
critical behavior. There are many models with two symmetric absorbing
states, like some cellular automata [12, 13] or nonequilibrium Ising models
[14, 15]. They belong to the same universality class called DP2. Reaction-
diffusion models of particles with parity-conserving symmetry also belong to
DP2 in one spatial dimension but differ in higher dimension.

These are defined by the following reaction-diffusion scheme:

A>@m+1)A, 2450, (2.1)

with n = 2,4,6, ... For a review this see [2].

2.1.2 Generalized voter

In previous work [5], number of microscopic models have been shown to
belong to the same universality class named “generalized voter” (GV). They
are characterized by different common features.

1. No surface tension. Coarsening caused by interfacial noise instead of
surface tension.

2. No bulk noise. Existence of two dynamically symmetric absorbing
states.

3. Logarithmic ordering instead of common power law induced by surface
tension.

This findings lead the authors of [5] to define a universality class encom-
passing the VM.
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position i

timet

P<Pc

Figure 2.1: Directed bond percolation in 141 dimensions starting from random
initial conditions (top) and from a single active seed (bottom). Each horizontal
row of pixels represents four updates.(taken from [2]).

Figure 2.2: Voter coarsening experiments in which we see the absence of surface
tension and bulk noise (taken from [5]).

Splitting of voter criticality 2D results

In a work by Droz et al. [6], the authors define a microscopic model with
interesting properties. They study two dimensional phase transitions and
observed that varying a small ingredient in the dynamics, the neighborhood
considered, the model undergoes either a single phase transition apparently
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belonging to GV or two transitions. When the neighborhood is small, a spin
interacts only with its four nearest neighbor, they observe a GV transition.
When the neighborhood is big enough, at least 12 neighbors, including third
nearest neighbors, they observe two transitions. Let us precisely describe the
dynamics :

Spin at site i, o;, can access only two states, +1 and —1. Sequentially
update each site, if all spins in the neighborhood of a given site are in the
same state as spin i, then spin i cannot be changed (resulting inactive phase
or absorbing phase if all site are in this state), if one of the neighboring sites
is not in the same state as i, then site i is updated with a Metropolis rate.
To use a Metropolis rate, define an energy for the system as :

E==) 650, (2.2)
(i.4)

where (i, 7) refers to, all sites j in the neighborhood N (7) of i. To accept or
reject a spin flip, one looks at the energy difference AF between the final and
initial configuration and accept the move with probability min{1,e~2#/T},
where T is temperature. Summarizing, this results in a modified Metropolis
rate with two symmetric absobring states. If all sites are in state 41, the
dynamics stops.

According to the neighborhood N (i) considered, the model has a different
phase diagram. Here are the two possible scenarios illustrated in (Fig. 2.3) :

e (A) with nearest-neighbor, the system undergoes a single phase transi-
tion belonging to the generalized voter universality class.

e (B) with third-nearest-neighbors, 12 neighbors, the system undergoes
two phase transitions. First an Ising transition and after a Directed
Percolation (DP) phase transition.

So it appears sensible to say that the generalized voter transition is equiv-
alent to the simultaneous breaking of Ising and DP symmetries. The splitting
depends on the neighborhood considered it can be clearly finite or apparently
equal to zero. This is somehow pathological and can lead to the question :
“Is the generalized voter genuinely a new transition or is it only two close
well studied transition?”. Another explanation for the above situation is that
one of the necessary conditions to observe GV transition is broken. Let us
considered the problematic situation: with third nearest-neighbors, in the
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Figure 2.3: The density of active sites p (+), the inverse of the variance of mag-
netization s (x) and magnetization m () as a function of temperature. Left,
DP and Ising transitions appear to be splitted (scenario B). Right, DP and Ising
transition are simultaneous giving rise to a generalized voter transition (scenario
(A) taken from [6]).

dynamics, there is two transition. A fundamental condition to observe GV is
the absence of bulk noise. In the viscinity of an interface of a model belong-
ing to GV, fluctuations only occur very close to the interface, is is obvious
that including third-nearest-neighbors, fluctuations can penetrate in the bulk
from the interface, and propagate.

To improve this “hand-waving” answer, we sought for some different de-
scription or theoretical framework of the ordering transition. A good step
in this direction could be to find a Langevin equation describing this phe-
nomenology. Then this equation can be studied numerically or through the
renormalization group tools in order to clarify the above picture. Here, we
propose a Langevin equation we numerically proved to encompass these sce-
narios. This alternative description allows us to understand when the Ising
and DP transitions are simultaneous and when they are splitted. It has the
advantage of demonstrating that in some case there is no splitting at all and
both transition are simultaneous resulting in a different transition namely
generalized voter.
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2.2 From microscopic to Langevin equation:
two symmetric absorbing states

2.2.1 The form of the Langevin equation

In order to find a Langevin equation describing the above picture, we can
either heuristically define a Langevin equation. We had different constraints
on the noise and the deterministic term. All these constraints lead us to a
non uniquely defined Langevin equation which we numerically study in order
to check or not it has the good phenomenology.

Noise term

In order to have an absorbing state, the noise term needs to have some
particular features. Go to 0 at the absorbing barriers. And in order to be
sure to find a DP transtition, we use a noise proportional to (15% close to
the barriers. We arbitrarily placed the barriers in -1 and 1 so the choice
of correlator we made was the following < n(r,t)n(r',t") >= (1 — ¢?)6(t —
")8(r — '). This locally makes the job, indeed it behaves like ¢2 in the
vicinity of -1 and 1.

Potential

What form to choose for the deterministic part. We can get intuition from
the potential and also from the strength (minus the derivative of the poten-
tial). Again, the absorbing barriers create some constraints on the choice.
We need a strength that goes to 0 in -1 and 1, so it will be proportional to
(1 — ¢*). In order to get first a symmetry breaking and after an absorbing
phase transition we need a strength expression that vanishes at some inter-
mediate value between 0 and one. This can be done taking a strength also
proportional to ag — b@3. It corresponds to the strength of the ¢* potential,
so it will easily generate an Ising transition. The resulting expression for our
strength is (1 — ¢?)(a¢ — bp*) The potential giving rise to this strength is the
following (Figs. 2.4 and 2.5).

a a—+b

V(g) = —50" +

b
S6%+ gt = 2 (23
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Figure 2.4: (i)In this serie, b=1, this gives scenario (B). This graph is illustrative
of the 2 phase transitions. Green a=1 Ising disordered phase. Black a=1/2 Ising
ordered and DP active phase. Red, a=0 DP absorbing phase.
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Figure 2.5: (j) b=0 gives scenario (A). Green, a=1 disordered phase. Black, a=0
Voter transition. Red, a=-1 ordered phase. (k) b=-1 gives scenario (A). Green,
a=1 disordered phase. Black, a=1/2 close to Voter transition. Red, a=-1 ordered
phase.

Our guess

Just putting together the above information and adding the necesary diffus-
ing term, we end up with the following langevin equation

WL _ (g~ b6")(1 — 6?) + DV?6(r.1) + /(T — 0D (24)

2.3 Results for Langevin equation with two
symmetric absorbing states

We present results, obtained with different tools, in order to obtain a good
understanding of the phenomenology presented by Eq. (2.4). The first tool
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we apply to this problem is a mean-field calculation of the phase diagram:
in 2.3.1 we explain the meaning of our mean-field approximations, describe
our results and their expected limitations. Mean-field results are exact from
the upper critical dimension to infinite dimension. Interested in physical
dimension, we go down in dimension, and subsequently study numerically
Eq. (2.4) in dimension 2, and 1. The numerical scheme we followed is
detailed in 2.3.2, results for D = 2, are in 2.3.3, results for D =1 in 2.3.4

2.3.1 Mean-field

Self-consistent results

To use a self-consistent approach we first discretize Eq. (2.4) giving Eq. (2.5)
and study the case of global coupling (see Eq. (2.6)).

0y = (adi — b8?) (1 — 67) + DV?¢; + 04/ (1 = 67)n (2.5)
1
\Y ¢z - N _1 j%éi (¢J ¢z) - Mz d)z- (26)

Assuming M; = M, we are left with only one associated FP equation for
Eq. (2.5) in Ito sense:

0P = —0,{[(ad — bd*)(1 — ¢2) + D(M — ¢)|P} + %252[(1 —¢")P] (2.7)

A stationary solution is:

2 af® V' L+ diomge (g

P[¢; M] = (1 _ ¢21)1—D/02 61’p[§(7 N T)](l )

The self-consistent solution is obtained when:

_ [ 6Plgs M)
[ Pl¢; M]

This can be solved by numerical approximation of both integrals.

M = (M) (2.9)
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Limitations

Eventhough it is interesting, mean-field analysis is limited by the fact that
we do not know how to make a mean-field analisys of the Reggeon field
theory itself. The standard method of approximating the laplacian term by
a magnetization term in the Langevin equation and solving the associated
FP equation does not give satisfactory results. In the particular case of the
Reggeon field theory, the constant term M and the noise term o+/¢, control
the result. If M = 0 then we always get and absorbing phase and if M is finite
then we always get an active phase. We need an intermediate approximation
possibly including more than nearest neighbors. This is an interesting work
left to do.

0.4

Figure 2.6: Result given by (Eq. 2.9) with 0 =1, D = 1. It captures the general
picture given above (Fig. 2.7(a)) even if we cannot obtain the DP transition line
by means of this approximation.
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2.3.2 Algorithms for Langevin equations

This is quite a tricky problem that has been solved by two manners. It has
long been known that some Langevin equation representing systems with
absorbing states are difficult to simulate if the noise amplitude power is less
than one. This is precisely the case we are interested in. Using a standard
Euler method will produce value of the field that cross the barriers and this
is physically unacceptable for our problem.

For this kind of problems there are 2 known solutions. The first one has
been introduced by Dickman [11]. It consists in discretizing the Langevin
equation in a way that the field does not cross the barrier. We first started
with this one and had some preliminary results and intuition on the problem
but this numerical trick appears somehow unnatural and shows long tran-
sients. On the other hand, the method introduced in [8, 9] is much more
efficient and has shorter transients so we decided to use it.

The second method, is in itself more elaborated and consists in finding
a way of generating a random number following a distribution obtained by
analitically iterating the solution of the Fokker-Planck(FP) equation equiva-
lent to our Langevin equation. We then use the new value of the field as the
initial solution of the FP equation and iterate again. Since we don’t know
how to efficiently generate a random number from the solution of the FP,
we split the Langevin equation in two parts. We put all the terms we can
iterate in one part and iterate the rest with a simple Euler algorithm.

e Noise part for which we know the solution of the FP equation. So we
use the following formula. P(¢,t+ dt) = P{¢(t + dt) = ¢|d(t) = do}

e Deterministic part we iterate using a simple Euler method.
o(t + dt) = dt(V?¢ + F[¢))

It can be shown [10] that the splitting step method has an order of conver-
gence O(dt) when the second step is integrated exactly. There are different
ways of separating the equation in two parts (including more or less determin-
istic terms in the exact iteration of the noise term), they give the same result
but the efficiency of the algorithm depends on how difficult it is to generate
a random number with the resulting distribution. This kind of problems are
treated in a reference book [7].

It is possible to solve the FP equation associated to % =o0+/(1 — ¢2(r,t))n.
But it is more efficient to use two independent noise. Invoking universality
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arguments, the universality class in which belong the transitions should not
depend on the details of the noise term we study. So we use a gaussian noise
of amplitude proportional to /¢ —1 if ¢ > 0 and /o + 1 if ¢ < 0. This
square root noise is generated as explained in [8]. Here is a short explanation
of the numerical algorithm used. The FP equation associated to a gaussian
square root noise 9y = o+/¢ is O; P(d,t) = %zai[ng(qb, t)].

If the initial condition is P(¢,0) = 6(¢o) then at time t we can show [9]
that, P(¢,dt) will be given by Eq. (2.10)

2(¢g+4)
2¢9 T 24t 4
P(,dt) = 5(¢)e 7% + 260—27&’ / %11 ( ;;2‘?) . (2.10)

The first term is a delta function in the absorbing state showing that
there is a finite probability of reaching the absorbing state in time dt. The
second term is a smooth probability density distribution. I; is a modified
Bessel function of the first kind of first order. To generate this distribution
we use the same method as in [8],

¢* = Gamma[Poisson[Ago]]/A, (2.11)
where A = —Z-, modifying so that Gammal[0] = 6(x). Given that,
Prob.{Poisson[%] =0} = e~ 2%, We see that Eq. (2.11) generate exactly

Eq. (2.10), the delta function term and the smooth term.

2.3.3 Numerical results in D =2

We obtain a rich phase diagram, presenting a set of 3 universality classes.

Observing the potentials depicted in Fig. 2.4 and 2.4, we expect that
fixing ”b” and varying "a” as a control parameter, according to the value
of ”b”, we will obtain scenarios A and B. For b > 0, we expect to see 2
phase transitions (Fig. 2.3 left, scenario B), first an Ising transition and after
a Directed Percolation (DP) transition (Fig. 2.7(d)). On the other hand,
when b < 0, a single transition (Figs. 2.3 right, and 2.7(b), scenario A)
corresponding to what Droz et al. described in their article [6] (Fig. 2.7(a)).

This reasoning is mean-field like, it does not take into account fluctua-
tions. In real simulations, one has to expect to see fluctuations effects. In
practice, because of fluctuations, we observe that there is a value of b, # 0
separating scenarios A and B.
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For b < b., we identify a unique transition as being of generalized voter
kind, this universality has been described in detail in Dornic et al. [5]
(Fig. 2.7(a,c)). To best observe this, we initialize the whole system in state
é(z,t = 0) = 0 and evolve it with Eq. 2.4 thanks to algorithm adapting
Eq. 2.11. The observables we are interested in are the magnetization and
the density of kinks, or presence of interfaces. Magnetization is conserved
in time as is to expect for GV transition. Kinks can be defined in different
ways. The easiest formula to is :

P=> boioy)- (2.12)

The density of kinks is close to the density of interfaces. Following the
time evolution of the system we see an ordering transition with logarithms.

1
o0 ~ log(t). (2.13)

The expected behavior for GV being [17, 18] :
2nD 1
nlt) = (1= m) T2 10 ()] (214)

Int E

We were also able to realize experiments similar to the one showed in
(Fig. 2.2), illustrating the absence of surface tension.

2.3.4 Numerics in D = 1: Compact directed percola-
tion, Partity conserving

Numerical results given by Eq. (2.4) in one spatial dimension seem to show
that it is a correct Langevin description of parity-conserving, directed ising,
DP2 or GV which coincide in one spatial dimension. This is understandable
via a mapping Fig. 2.8 of interfaces or kinks separating absorbing (activity
of the system) to particles following the reaction scheme 2.1. The transition
in GV separates an ordered phase in which all the system is in the same
state (+1 or -1) and a disordered state in which kinks separate domains of
opposite signs. Domains of opposite signs are separated by an odd number
of kinks while domains of identical signs are separated by an even number of
kinks. This topological constraint is the conservation law that gives rise to
the GV, parity-conserving identity in one spatial dimension. From what is
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Figure 2.7: Results in two space dimensions. (a) Phase diagram of Eq. (2.4) in
the (a,b) plane. For b < b* we observe a GV transition line. (b) Steady-state
magnetization (circles) and density of interfaces (squares) for various values of a
withb=1. (c) 1/p vs Int at b = —0.2 for various values of @ around agy ~ —0.115
(middle curve); the dashed line is a linar fit. (d) Time-decay of 1 —|m| for a values
around app =~ 1.6551 (b = 3); at criticality, 1 — |m| ~ ¢ with @ ~ fpp ~ 0.45
(dashed line).

said above, the ordering dynamic of creation and annihilation of kinks, can
only follow: A—3A 2A—0.

The mapping with annihilating random walker presented in [5] makes
clear the fact that in the absorbing phase, the system asymptotically behaves
with a power law in —% (see Fig. 2.9(b)).

In spreading experiments, we found 6 = 0.29 (Fig. 2.10), which is compatible
with the known relation for this transition § + 6 = 0.286 [2].
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time

Figure 2.8: The mapping responsible for coincidence of parity-conserving and
DP2 in one dimension.

| | |
10° 10" 't 10

Figure 2.9: Density of kinks multiplied by time to a given power. Left, the power
is 0.286 which is the expected value for criticality of system with 2 absorbing states.
Right, the power is 0.5, to put in evidence the decay in the absorbing phase.

2.4 Symmetry breaking in Generalized Voter

The results presented so fra can be summarized as the following :

e Our effective description for critical phenomena in presence of two sym-
metric absorbing states improves the understanding of critical phenom-
ena and of the relevance of symmetries in determining universality out
of equilibrium.
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Figure 2.10: Spreading experiment. Two measurments of the density of kinks:
green, N — (¢pg¢z41); red, (1 —O[¢pydz11]). The black straight line has a slope 0.29.
We see that both definition of the density of kinks present the same asymptotic
scaling (0 = 0.29).

e We also clarified the fact that, in two spatial dimensions, so long as
there is no bulk noise, there is only one transition, belonging to the
GV universality class.

e In effective descriptions, with two absorbing states, bulk noise can be
introduced, dynamically preventing the system to access the absorb-
ing state when symmetry breaks and inducing two splitted transitions,
Ising and DP.

Since the study of microscopic models showed that asymmetry and non-
integrability are not incompatibel with logarithmic coarsening, it might be
useful to investigate whether or not coarse-graining procedures conserve asym-
metry or non-integrability. One way to approach an answer to this question
may be to find a coarse-grained description that breaks the same symme-
tries as microscopic models do, exhibiting logarithmic coarsening. In the
remainder of this chapter, we follow this idea. Firstly, we heuristically de-
fine a Langevin equation breaking a given symmetry. Secondly, we study it
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numerically and to finish, we give perturbative diagrammatic arguments to
consolidate our guess.

2.4.1 Relevant ingredients: coarsening without surface
tension

It has been shown that two-dimensional models, where bulk noise is absent
and where coarsening is induced only via interfacial noise, all obey voter-
like critical coarsening; thus, they form a universality class, referred to as
generalized voter (GV). Noisy interfaces and hindered bulk noise are naturally
present in systems with competing absorbing states. All models belonging
to the generalized voter universality class present, explicitly or after suitable
mapping, two absorbing states. The presence of asymmetry is believed to
lead generically to the Directed percolation universality class, however some
7Z? asymmetric models, undergo a generalized voter transition. This fact
underlies that the fundamental property of the generalized voter class is the
absence of bulk noise. For these reasons, we seek for an asymmetric Langevin
equation with two absorbing states undergoing a non-DP transition. Our first
task is to find an asymmetric but irrelevant contribution to the theory.

A second interesting result obtained from microscopic models is that
some symmetric rules lead to logarithmic coarsening characteristic of GV
but, without conservation of the magnetization, more precisely any non-zero
magnetization is weakly attracted towards vanishing magnetization.

2.4.2 Microscopic non-integrable model

Here, we investigate another subset of the GV. This consists in a modification
of the voter model which is defined by four parameters. A spin flips with
probability rs5, s = +£1 is the value of the spin and h is its local field
h={-4,-2,0,2,4}. We enforce ry;, =1 _,_; for Z? symmetry and are left
with 4 parameters. For the voter model those are, r; ) = % —h r14 = 0 to

8
conserve the absorbing state and r, o = % arbitrarily. We are now left with
three free parameters, 71, _4, 71,2, 71 2, the condition 71 o = 71 _4/4, leaves only
two. In the plane 7y _9, 71 4, this rule exhibits a line of ordering transitions

exhibiting logarithmic coarsening and non-conserved magnetization.
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Figure 2.11: Left straight line, ordering transition line for the model described in
text. Right, Mean-field results of Eq. (2.15).

Mean-field and simulations

At a mean-field level, assuming that spins are uncorrelated, we can easily
derive the simple relation,

%—TZ - 1—36m(7“_2 Frafd—1). (2.15)
From Eq. (2.15), we see that according to the sign of the term multiplying
m in the left-hand-side, the zero magnetization is either stable or instable.
This allows us to draw a line in the plane r_s, r_4, separating phase space in
which disordered systems have a growing, or a decreasing magnetization(see
Fig. 2.11). We see that the transition line obtained in simulation is situated in
the phase space where magnetization is expected to be decreasing in absolute
value.

In simulations, time evolutions of infinite temperature systems to a finite
temperature, with an initial magnetization different from 0, show that the
magnetization decreases, logarithmically to 0. This is the reflect of the loga-
rithmically time growing correlation length. We see that this is very similar
to voter dynamics, the change is that individual 4+ (respect.—) spins in a sea
of — (respect.+) spins have a longer persistence time.

Langevin equation for symmetric non-integrable model: heuristic
arguments

In the Langevin equation we conjecture that this is equivalent to replacing
D — (D+¢D;V?@®). The term D;V*¢ is of the same sign as ¢ and increases
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persistence time. This perturbatively modificates the propagator and there-
fore the critical point location for Eq. (2.16) has to be re-located, for b = 0
it was found around a = 0.0018 as shown in Figs. 2.12 and 2.13.

0

W D+ DV + (06— b1~ ) VT (210
Equation (2.16) appear to be a satisfactory phenomenological proposal for
the present subset of rule undergoing GV ordering transion without m con-
servation.

Numerical results

Without surprises, we can apply the method employed to study Langevin
Eq. (2.4), to Eq. (2.16). The results obtained are depicted in Fig. 2.12. In
order to observe a GV transition we initialize a two dimensional system in a
uniform state ¢(t = 0,7) = 0, and evolve the system measuring the average
density of kinks and the average magnetization. For b = 0, ¢ = 0, and D,
small, we are in a disordered, phase. Showing both that the introduction of
D, is a relevant perturbation. In order to locate a critical point, we study
the a — b phase diagram. For b = 0 and a > 0, two situation are observed.
If a > a, for a given a, the system orders completely, the density of kinks
vanishing and the magnetization taking value £1 depending on fluctuations.
If a < a., the system remains asymptotically disordered. Just at a = a., we
observe a GV behavior, namely a logarithmic decay of the density of kinks
(see Fig. 2.12) with initial vanishing magnetization conserved in time (Fig.
2.13).

As a complementary result, we observe that a non initial magnetization
logarithmically decays to vanishing magnetization.

Perturbative diagrammatic arguments

In order to gain understanding in our problems, we write down the terms we
proposed in terms of diagrams. The diagrams representing the terms present
in the original theory are depicted in Fig. 2.15.

We see that the new term we introduced, when combined with the noise
term generate a mass coefficient. This gives an explanation of why the critical
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Figure 2.12: Coarsening experiment for system size 1024x1024 in D = 2, initial
condition completely disordered. We cleanly observe a logarithmic time evolution
of the density of kinks, for ¢ = 0.018. This is characteristic of GV type of ordering.

04
02 i

S O%W i
o,zl ’
045000 10000 15000 20000 25000 30000

time

Figure 2.13: Same experiment as Fig. 2.12, we show only result for the critical
point, a = 0.018, we depict the time evolution of the magnetization. Initial zero
magnetization is conserved in time. As expected for GV and from mean-field
calculation(Eq. (2.11))

point location is modified by the introduction of hindered diffusion. More-
over, we know that no new divergences are introduced so that the critical
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point nature is not modified.

5 %

Figure 2.14: The three vertices of the theory. From left to right, we see the noise
diagram, the mass, and the saturating term.
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Figure 2.15: The symmetric term together with the noise term generate a mass
term. This explains why the critical point location is modified in numerical results.

2.4.3 Asymmetric generalized voter

For microscopic models, the subset of m-conserving Z2 asymmetric rules
was studied using pair-update with an update probability p,+ ,- = 1/n* (for
inhomogeneous pairs; n*,n~ are the number of neighboring spins + and -).
This rule is m-conserving if, with probability 1/2 the updated pair ends in
state ++ or ——. The described rule suggests that we should rescale time
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for each site by a factor proportional to the local mean-field felt by this
site. Applying this without deterministic asymmetry we are directly lead to
Egs. (2.17) and (2.18). Here the dynamic is defined for sites and not for pairs
so we have no way of enforcing m conservation(Fig. 2.16(right)).

Langevin equation for asymmetric model: heuristic arguments
A) Field asymmetry

The simplest possibility of asymmetry in the stochastic part is to include a
field dependent amplitude to the noise. There are several ways to do it, we
have explored the following,

20 = DV oy T— /1T a0, (2:17)

B) Laplacian asymmetry

Another possibility of introducing terms linear in the field is a laplacian
leading to Eq. (2.18),

% = DV’¢ +ony/1— ¢2\/1 +aV2¢. (2.18)

Numerical results

Numerical simulation of Eq. (2.17) gives results consistent with GV. As it is
to expect, (ordering time) vs. (size) is a growing function. Logarithmic coars-
ening is recovered in a time-regime depending on system-size (Fig. 2.16(left)),
during which m = 0 is conserved (Fig. 2.16(right)). This appears to be a
good proposal for an asymmetric equation exhibiting GV behavior.

Here again, monitoring (ordering time) vs. (size) is a growing function
(Fig. 2.17). Logarithmic coarsening is recovered in a time-regime depending
on system-size, during which m = 0 is conserved. This is a good proposal
for an asymmetric equation exhibiting GV behavior.

Perturbative diagrammatic arguments

Contrarily to the preceding case, here, the critical point ¢ = b = 0, is main-
tained and no mass term is introduced.
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Figure 2.16: Coarsening experiments for different system sizes. Left: inverse
number of kinks versus log(time) this shows that asymptotically Eq. (2.17) exhibits
GV behavior. Right: m = 0 is conserved (same runs).
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Figure 2.17: Ordering time defined as the average time at which magnetization
reaches the value 0.9. For Eq. (2.18), it grows with system size.
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2.4.4 Non-integrable and asymmetric Langevin

From micrsocopic models we know that putting together contribution of the
hindered diffusion term and the asymmetry do not lead to a GV transition.
This can be explained by writing together the diagrammatic contribution
of the hindered diffusion term, and of the asymmetric noise, term. They
result in an asymmetric deterministic contribution leading to DP universality
class. In simulations of this case, we see no GV transition needing for an
explanation. This means that the symmetry is broken and a DP transition
arises.

2.5 Counter-example

Trying to determine which are the relevant ingredients that dictate the nature
of a phase transition out-of-equilibirum is a main issue in this thesis. To this
aim, we can play at will with our models and study the consequences of
our “recipes”. In this section we will explain how parity conservation is
not the relevant ingredient in order to have a GV transition, even in one
spatial dimension. GV transition occur in one and two spatial dimension.
In two dimensions, the GV transition is a transition between two absorbing
states, without surface tension, which implies that interfaces between this two
absorbed domains govern the coalescence dynamics of the system. There is
no activity inside the domains. On the other hand, if we have particles that
diffuse in a two-dimensional space and react upon encounter, the dynamics
is only present where particles are located, there are no interfaces, and there
are no domains without activity. So that the symmetries and the dynamics
of the system are completely different and no mapping can possibly connect
one to the other (see [2] (p.94) for a nice explanation).

It is also important to notice that parity conservation is not enough to
have a GV transition in one dimension. Such an assertion can only be proved
by giving a counter-example. For instance, consider the following reaction-
diffusion system in one dimension:

3A 5% 5A , 2A -0, (2.19)
These reactions conserve the number of particles modulo 2 so this might be
in the universality class of the Parity-conserving equivalent to the GV in
1D. A mapping, to two absorbing state, equivalent to the one performed for
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the reaction-diffusion given by 2.1 can be done, but the interface dynamics
should be different since, three interfaces should encounter in order to create
offsprings. However, numerical simulation show that this is not the case,
indeed, the transition observed belongs to the DP universality class (due to
the different dynamics). An explanation for this small puzzle can be given.
The deterministic part of the Langevin equation one would write at hand to
describe reaction-diffusion processes 2.19 writes,

0, = ad® — bg?, (2.20)

the first term on the right-hand-side is the contribution of the creation pro-
cess and the second term is the annihilation. Actually, this is not as easy
since, rigorously deriving Langevin equation invloving 3 or more particles,
encounter upon technical problems, it needs for calculating integrals that
are not gaussians. At mean-field level, the transition is expected to occur
when a = 0 and ¢ = b/a is the solution. This implies the transition to be
first-order, from b/a 00 to 0. However, there exist reasons to believe that

first-order transitions of system with absorbing state do not occur [19], so
can be expected to be DP like.

As shown, very briefly here, the technical problems encountered upon de-
riving systematically a Langevin equation or a field theory from a microscopic
model, and the information we can obtain from a heuristic proposal are two
good motivations to use physically intuitive continuous effective descriptions.

2.6 Conclusion

The Langevin equation we proposed Eq. (2.4) seems to be a good description
of phase transitions with two symmetric absorbing states. It describes the
rich phenomenology of order-disorder transitions of microscopic models with
two symmetric absorbing states [2, 5, 6, 12, 13, 14, 15].

It shows that, in two space dimensions, systems involving two symmetric
absorbing states either undergo a GV transition or a symmetry breaking,
Ising, transition followed by an absorbing phase transition into the favored
absorbing state belonging to DP universality classe. Which scenario appears
depends on, whether or not the potential term allows for bulk noise. If
we impose a ¢* shaped potential, we observe an Ising transition, since the
absorbing states are unstable against perturbations, they are dynamically
unreachable by an infinite system.
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In one space dimension, we obtain evidence that what matters in captur-
ing the critical behavior is the presence of two symmetric absorbing states.
Here, contrarily to the two dimensional case, general theorems imply that no
potential can possibly induce a symmetry breaking transition. The transition
we observe is shown to belong to a universality class known from microscopic
models of reaction diffusion particles with reactions conserving parity and in-
volving only one particle for creation. In the absorbing phase of such model,
the system asymptotically behaves as pure annihilation. Consequently, we
also obtained a way of generating the annihilation process 2A—@, without
the need of imaginary noise which is very difficult (see [20] and chapter 6).
Since studying and interpreting imaginary noise Langevin equations is diffi-
cult, this is promising for future work on reaction-diffusion systems.

The mean-field study we presented comforts our numerical results and
our phase-diagram. This work clarified some points that remained obscure
from the interpretation of microscopic models into two absorbing states and
opened the possibility for further analytical work [21].

In the second part of this chapter, we have shown what are the limitation
of the GV universality class. Magnetization conservation is not necessary
but only asymptotic magnetization conservation.
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Chapter 3

Nonequilibrium wetting
phenomena

3.1 Introduction and motivation

Historically, the study of wetting transitions began thanks to previous re-
search on contact angles. For example, a liquid droplet in contact with a
solid surface and, at coexistence with a vapor phase (see Fig. 3.1) involves
three interfaces, and therefore three surface tensions need to be considered.
This problem was solved in the nineteenth century by the innovative Young
who found the now well-known relation,

Owy = Owl + Ocos(h), (3.1)

called the Young-Dupré law. Here, 6 is the contact angle of the wall-liquid
interface with the vapor-liquid interface. o is the surface tension - that is
the energy per unit surface of the interface between two different phases -
where subindices w, v and 1 stand for wall, vapor and liquid, respectively.
Therefore, o, is the surface tension associated to the wall-liquid interface.
Knowing the 3 surface tensions, one can predict the contact angle, 6. It
was only in 1977 that, in a seminal paper, Cahn realized such systems must
undergo a wetting phase transition [22]. In one phase, the contact angle is
very small, the solid is wet by the liquid (wet phase) and in the other phase
the contact angle is almost 180 the solid is said to be dry (dry phase).
Changing from one situation to the other consists in a wetting phase
transition. Cahn’s argument is very simple and only uses the Young-Dupré
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relationship and the knowledge of some "bulk’ critical exponents of fluids. We
know that,
Owy — Oyl S Oly, (32)

where, in general, both sides approach 0 close to the critical point. The
liquid /vapor surface tension behaves as

O ~ | T, = T = |T, = T|"?, (3.3)

where p (or v?) is the critical exponent of the bulk correlation length in a
three-dimensional space. The left hand side of Eq. (3.2) is governed by a
different smaller exponent, which implies the occurence of a transition. Cahn
argued that the surface tension difference behaves as the density difference,

Owy — Owl ™~ P — Py ~ |TC - T|ﬂ = |TC - T|0.8’ (34)

with 3 the surface critical exponent (this is a standard notation for equilib-
rium wetting and should not be confused with. This assumption has been
proved to present exceptions but critical points usually appear for T' — T,
so we follow this reasoning here. Since § < 2u, as the critical point is ap-
proached, inequality (3.4) becomes an equality and the wall is completely
covered by the liquid : this is called complete wetting. Subsequently in the
80’s, experimental and theoretical work on wetting, lead to a good under-
standing of this field. It was only in the middle of the 90’s, when their
nonequilibrium counterpart was studied. In this chapter, we will try to clar-
ify what is a nonequilibrium interface. As often, it is more easy to define
the rules that an equilibrium system has to follow and, to break one of these
rules, to obtain a nonequilibrium system.

contact angle
vapor (v) liquid (1)

S

Figure 3.1: Droplet in contact with a wall. The angle between the interfaces, wall-
vapor, wall-liquid and liquid-vapor depends on the respective surface-tensions.

Wetting phenomena are important in nature, they can occur in different
real situations involving a lubricant, a paint or an ink. A porous media
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absorbs a liquid because its surface tends to be wet by the liquid. In an
experimental setup, the situation of interest occurs when a fluid presents two
phases separated by an interface, one phase being favoured by the presence
of a wall. The interface can be described by defining, the bulk dynamics
and, the interaction with the substrate of the two phases. Another way to
study the interface is to define a suitable effective interface dynamics. This
interface dynamics is sometime derivable from the bulk dynamics but we will
not linger much on this point. Thanks to universality concepts, we need not,
worry too much about the difficult task of deriving exactly (eventhough it
would be very interesting) our effective interfacial description.

Studies of wetting problems at equilibrium, started more than 20 years
ago, experiments (see [23], for a recent review) and theory (for a pedagogical
review, see [24], [51]) show two complementary facets. The knowledge of
theoretical results at equilibrium is a fundamental basis in order to tackle
nonequilibrium problems. The study of nonequilibrium wetting (sometime
called depinning, since it is the transition from a pinned state of the in-
terface to a depinned phase) is richer than the equilibrium case and was
undertaken for the first time only some 10 years ago [25]. Nonequilibrium
situations encompass richer phenomenology, since there are fewer constraints
on the system, in particular on the rules of the microscopic dynamics. How-
ever, a large gap persists in this research field, consisting of the absence
of experimental evidence. Nonequilibrium interfaces have been observed and
quantitative measurements have been perfomed, allowing to compare harmo-
niously experiments with theory. On the reverse, the theoretical situation of
a nonequilbrium interface depinning from a substrate has not yet been experi-
mentally quantified. This remains as a very important task to be undertaken.
This is not the only case of important theoretical studies about nonequilib-
rium phase transitions lacking of experimental evidences, another prominent
one is the well established (at least theoretically) Directed Percolation [2, 26].
One of the reasons why the experimental study of depinning processes could
be very important is that they could be related to the experimentally elusive
DP (see chapter 4).

This facts lead people to study more realistic models in the field of de-
pinning transitions, as the work of [27] which includes details of the diffusion
process and show that the nature of the transition is not altered by such
details. As expected, and necessary for experimental successes, adding some
details to the models do not alter universality class. Part of this work (chap-
ter 4) is focused on this same point, in the sense that it shows the generatlity,
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and robustness of the studied transition with respect to the interaction po-
tential. As a side point, this suggests a way to measure DP exponents. In
this case, we show that the system also present some insensibility to a certain
type and strength of spatial quenched noise. Other models exhibiting DP
transition, in particular, the most paradigmatic model one, the Contact pro-
cess are known to exhibit a strong dependence on the presence of quenched
noise [28, 29]XXX +Janssen XXX. As Hooyberghs et al. [28] showed with
analytical tools and Vojta et al. [29] confirmed by Monte-Carlo simulations,
the presence of quenched noise leads to a strong disorder fixed point. The
presence of noise is likely to be one of the reasons why it has been so difficult
to observe the DP transition in experimental systems. We stress that there
are possibilities to believe that depinning under nonequilibrium conditions
could lead to observe DP for the first time. Even if this does not work, it
would be an interesting experiment. Another interesting point is that in this
work we show two different universality classes, named '"MN1" and '"MN2’,
that are irrelevant to quenched noise is irrelevant (under some restriction to
precise later) and as said before, fluctuations in the potential intensity do
not destroy the absorbing state. We hope that experimental work will soon
confirm these experimental predictions.

In this chapter, we start with microscopic models describing free inter-
faces, both equilbrium and nonequilibrium like. Afterwards, we turn to the
equivalent interfacial continuous descriptions, Edwards-Wilkinson(EW) [30]
and Kardar-Parisi-Zhang(KPZ) [63] of free interfaces. Eventhough this semi-
nal piece is by now twenty years old, the complete elucidation of the behavior
of the KPZ equation is still a debated subject : (i) the existence of strong
coupling fixed point invalid perturbative approaches, (ii) the upper critical
dimension, above which mean-field results are valid, is not determined.

Once concepts necessary are settled, we give an introduction to equilib-
rium wetting and to nonequilibrium depinning, showing the features they
have in common and their differences. Our focus is on models undergoing
these transitions, on how equilibrium models are designed and on how to
define their extension to the nonequilibrium case. For microscopic models a
simple way is to break detailed balance [34], while in a continuous description,
we need to introduce the KPZ non-linearity. Such a continuous description
is difficult to study due to the instabilities present in the KPZ equation and
has not been thoroughly investigated. We present known results for nonequi-
librium wetting transitions and explain how they are partially incomplete.
Our work is aimed at filling this gap. The particular case on which we have
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focused deals with an interface with positive nonlinearity and a “lower wall”
suppressing negative values of the interface. We are able to perform mean-
field calculations predicting the phase diagram and show numerical results in
agreement with previous results known for microscopic models. The detailed
study we performed of continuous descriptions of nonequilibrium depinning
transition improves understanding of the problem and open new gates to
tackle theoretically this problem.

3.2 Free interface: microscopic description

Since the celebrated Ising model has been solved, it is a widespread belief
that lattice models are useful in understanding critical phenomena [?]. This
is the reason why we start by presenting microscopic models which indeed
were very useful in understanding interface growth at and out of equilibrium

[34].

3.2.1 Equilibrium

We refer here to the simplest case of interface, separating two bulk phases co-
existing at equilibrium. At equilibrium means that one phase is not growing
at the expense of the other. This situation can be encountered in mag-
netic systems: an experimental situation would consist in a magnetic system
with two different magnetizations imposed at the opposite boundaries of the
system. Below the Curie temperature, there is a well-defined interface sepa-
rating the opposite boundaries. An equivalent theoretical example could be
an Ising model, with a non-conserved dynamics, and opposite magnetization
at two opposite open boundary conditions. Below the critical temperature,
a well defined interface between + and — spins takes form. This interface is
well described by the Edwards-Wilkinson theory. Turning on a small external
magnetic field sets the interface in motion and conduct to a nonequilibrium
situation. This is described in the next section and the useful theory here
is KPZ. In this case, care needs to be taken in order to avoid effects of
nucleation in the unstable phase. In the time scale where no nucleation is
present, the behavior of the interface is well described by a KPZ equation
(an alternative is to turn on the field only in the viscinity of the interface).
Alternatively, two inmiscible fluids would also have an equilibrium interface
separating them.
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Random deposition with surface relaxation

The first model we describe in a few words is the random model. Particles
fall vertically, and sequentially at a random position. A particle sticks on
top of the substrate or of the first particle on the column under it. So that
the heights of the different columns are not correlated. A column near a
very high or a very low column has the same probability of being high or
low. This means that the height in one column do not influence the height
in a neighboring one. To modify this particular trait and, introduce corre-
lations, surface relaxation is a sufficient mechanism. Including relaxation in
the model modify very much the shape of the interface. In random depo-
sition with surface relaxation, a particle deposited on top of a column do
not stick directly but look first if a neighboring column is lower, in which
case, it relax to this column. Compared to the previous case, a column next
to a very high column has a higher growth rate since particle falling on the
very high column relax onto the lower neighbors. In other words, the rate
of growth somehow depends on the height of the neighboring columns. This
mechanism obviously creates spatial correlations that develop as the system
evolves in time. If the system is small as in numerical simulation runned
long enough, it will reach a point when correlation extend over the entire
system and, measured quantities saturate. This phenomena is what allows
to measure x, the exponent governing the saturation of the roughness due to
system size. The height and the roughness of an interface can be defined as,

h(t) = % > i), (3.5)

w(L, ) = %Z[h(z’, 1) = h(H)]2. (3.6)

The random deposition with surface relaxation illustrated in Fig. 3.2 can
be studied numerically. The interface asymptotic properties can be charac-
terized by a few parameters, the dynamic roughness exponent [y, defined
by w(L,t) = t"" and the stationary roughness exponent given by the rela-
tion, w(L,t) = LX. Simulations in one dimension of the model sketched in
Fig. 3.2 showed that the exponents have values compatible with gy = 1/4
and, x = 1/2 [35]. These are the values predicted by the theory associated
to this growth process. In order to find a good theory, the guide to follow
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Figure 3.2: Random deposition with surface relaxation. Before sticking defini-
tively, deposited particles can relax to a nearest neighbor if this has a lower height.

is, to consider simmetry principles and to write the simplest possible theory
compatible with the symmetries of the problem. It is one of the central point
of this thesis to illustrate that this is a method is very often succesful. At
equilibrium, fluctuation-dissipation relation makes it is often easy.

Nonequilibrium

Out-of-equilibrium, fluctuation-dissipation relations are generically absent
(KPZ equation is a rather exceptional case) and correlations are more difficult
to guess, they sometime can be computed, but it is usually very hard. In
avoiding this very hard step, eventhough the problem under study do not
accept fluctuation-dissipation relations, phenomenologically inspired guesses
can be of good help. This is a reason why, it becomes a more difficult task.
In order to test prediction, numerical methods, especially when they are fast,
are very useful to descriminate between possible candidates. As presented
in [36], it is easy to modify this model to obtain different universality classe.
For instance if we suppress surface relaxation we obtain a different model
without correlations so the roughness does not saturate and Sy = 1/2, each
site performs a random walk about the average height and, x = oo, due to
the absence of saturation. If instead, we suppress surface relaxation, and
make falling particle to stick to the first nearest neighbor they find in their
fall, we obtain Sy = 1/3, x = 1/2. This last case is characteristic of the
well-known Kardar-Parisi-Zhang nonequilibrium interface. In the rest of this
chapter and, in the following one, we review different models designed as
growth processes of this type of interfaces. And try to clarify what governs
their growth dynamic.
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3.3 Bounded interface microscopic description

Microscopic interface description were the first attempts at treating the prob-
lem of nonequilibrium wetting. Numerical studies as well as analytic ap-
proaches based on those models have improved the understanding of de-
pinning transitions. Effective continuous descriptions were also able to de-
scribe these transitions properly. In general, continuous descriptions are more
amenable to analytic approaches. In reference [34], a restricted solid-on-solid
(RSOS) model is studied. The term solid-on-solid means that overhangs are
not allowed, i.e., the surface is perfectly single valued. The model is defined
on a one-dimensional with N sites and periodic boundary conditions. To
each site of the lattice is associated an integer value h; being the height of
the interface at site i. h; is restricted to positive values. The term restricted
implies the condition |h;+; — h;| < 1, this introduces an effective surface
tension. Four processes are the basic ingredients of this model:

1. Deposition on the substrate h; = 0 — h; = 1, with rate qg.

2. Deposition on the interface(on top of already deposited atoms) h; —

3. Evaporation of an atom at the edge of a terrace. This is often imple-
mented by applying the rule h; — min(h; 1, h;, h;11) with rate 1.

4. Evaporation of an atom in a plateau, h; — h;—1ifh; 1 = h; = h;11 > 1
with rate p.

i
% q %

A 1\%?) ¢
D

Figure 3.3: This shows how the rate are implemented on a closed cycle and provide
a simple representation of the detailed balance requirement. As explained in [34],
detailed balance is fulfilled if and only if, p = 1. Clockwise and anti-clockwise
cycles both have the same probability(in a given time dt, it is ¢* dt* and pg® dt*)
to occur. Reversibility is only achieved if p =1 (taken from [34]).

N
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3.3.1 Equilibrium p=1

We briefly describe the phenomenology of equilibrium wetting phase transi-
tions. The discrete model we just described with p = 1 (between others),
and the continuous Edwards Wilkinson equation [30] with short-ranged in-
teractions (to be presented in the next section) both show an equilibrium
wetting phase transition. These are two very different models, one is contin-
uous and the other is discrete, both belonging to the same universality class
(presenting the same phase transition, characterized by the same exponents).
Langevin descriptions have other very interesting particularities. They are
in principle derivable from all equivalent discrete models. It is a very diffi-
cult task in general in general and only a few derivation exist. In this sense,
all those models can be thought as equivalent and the most representative
one is the Langevin representation, equivalent to a field theory. After the
field theory has been established, the possibility to use the machinery of field
theory to obtain analytic predictions on the behavior of the system is very
useful. Another particularity making Langevin representations an interest-
ing object in studying universality issues is, the fact that the symmetries of
the problem in Langevin descriptions are usually more transparent than in
discrete models. This allows one to classify transitions into classes with the
general criterion of symmetries that apply so well at equilibrium.

Hard-core repulsion : ¢ = g

The substrate has no interactions with the wetting layer, it is neither repul-
sive, neither attractive. This problem is exactly soluble in the case p = 1
(see Fig. 3.3). Detailed balance is verified, we are in an equilibrium situation
in which we can apply an hamiltonian distribution and work out the Gibbs
distribution describing the system. This corresponds to a critical wetting
transition, path (3) in Fig. 3.4.

Repulsive wall : ¢ < ¢

In experiments of wetting, usually, the contact energy of the two fluid phases
with the wall are inequal, resulting in an attraction or a repulsion of the
interface and the wall. This can be seen as an interaction term between the
interface and the substrate. The interaction is usually short-ranged though
not always. In the RSOS model presented here, to model short-ranged in-
teractions between the substrate and the interface we can simply modify the
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value of ¢q. If g > ¢, the substrate is repulsive and if ¢y < ¢, the substrate is
attractive. As long as p = 1, we obtain an equilibrium wetting transition as
q is changed, as a control parameter. For ¢ > ¢. = 1 (not always critical), we
obtain a moving phase and for ¢ < ¢g. = 1, a bounded phase. When ¢ < ¢,
the interface is repulsive, this corresponds, in Fig. 3.4, to a complete wet-
ting transition, path (1). Along path (1), when getting closer to the moving
phase, the average distance between the interface and the substrate diverges
with the correlation lengths.

Attractive wall : ¢ > ¢

If ¢ > qp, the interface is attractive, this corresponds, in Fig. 3.4, to a
discontinuous transition, path (2). For this last case, in the bound phase, the
interface is at a typical distance from the substrate, the small corresponding
correlation length and jump discontinuously to co when the moving phase is
reached.

1—»
Dry Wet
phase 31! phase
b H
L.?
a

Figure 3.4: Phase diagram for the equilibrium wetting transition. Horizontal axis
is the chemical potential difference, vertical axis describes the character attractive
or repulsive of the substrate. The bigger b the more repulsive, and the smaller,
the more attractive. For b > 0 the interface is purely repulsive and for b < 0 it
is attractive. In a = 0 is the transition point between a dry and a wet phase. In
a = b = 0 is the critical wetting point. Path (1) is the complete wetting transition,
(2) is a first order transition and (3) is the critical wetting.(to compare to the
nonequilibrium diagram)
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3.3.2 Nonequilibrium p # 1

In this case, it was pointed out in [34], that this model does not obey detailed
balance and therefore, can not be at equilibrium, the correct Langevin de-
scription is forcefully nonequilibrium like. Here, as before, when ¢ > ¢. # 1,
for a given ¢, the interface starts to move to infinity and, as ¢ < ¢, it remains
bounded.

As it is the case for the equilibrium models, many different microscopic
models show the same transition. The equivalent effective Langevin descrip-
tion is given by the Kardar-Parisi-Zhang (KPZ) equation presented below.
Someone used to this kind of models can guess that when p < 1, (g. < 1) the
interface forms cusps pointing down so the KPZ nonlinearity of the interface
is positive (equivalently a tilted interface grows faster). On the other hand,
when p > 1, (¢. > 1) the interface forms cusps pointing up so that the KPZ
nonlinearity is negative (tilted interfaces grow slower).

e a.p>1and g, >q

In this case, the phase diagram is very interesting. For the repulsive
case, the transition is continuous (as for the equilibrium case). It is to
remark that g. > 1 to equilibrate for p > 1.

eb. p>1andgq,<q

For a strong enough attraction, it becomes a finite discontinuous jump
(pre-wetting line) followed by another continuous transition showed to
belong to the DP universality class. These value of parameter also allow
for phase coexistence to be observed, for a wide range of parameters, a
typically nonequilibrium feature [54].

ec.p<landgqg,>q

In the same way as in (a), the transition is continuous, with different
critical exponents.
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ed. p<landgq,>q

This last case is different, for the transition is simply dicontinuous.
There is no mechanism to make it continuous.

3.4 Free interface Langevin description

In the two following short sections, we make a short review of known results
for the Langevin descriptions of equilibrium and non-equilibrium interfaces.
For the equilibrium case, we focus on the Edwards-Wilkinson theory given
by Eq. (3.9), for the nonequilibrium case, they are several possible theories
describing interfaces, either with conservation law, or without any. We also
describe the simplest extension of the Edwards-Wilkinson to nonequilibrium
which is the Kardar-Parisi-Zhang.

3.4.1 Equilibrium: Edwards-Wilkinson

There are several approaches to study the interface between two different
phases. One is to write a full description of a two-phase system, including
bulk and interfaces of the system. Another possibility is to consider the in-
terface dynamics alone, this dynamics depends on the nature of the forces
between particles in the two phases. Typically, in an equilibrium system,
there is an hamiltonian describing these interactions and, a different hamil-
tonian describing the interface dynamics. Such an hamiltonian describing
the interface dynamics is described below. Deriving the interface hamilto-
nian from the bulk hamiltonian is often a very hard task [32]. The other
possibility is to make a phenomenological description of the interface. In
order to do that, it is necessary to consider the symmetries at play in the
problem, and find the simplest possible theory compatible with these sym-
metries. This allows for a number of simplifications at the expense of having
parameters which values are not related to measurable bulk properties of the
homogeneous system. However, as is generally the case, the effective model
usually allows one to experimentally access measurable quantities and to ad-
just the parameters of this effective description according to the measurable
quantitites. In any case, the universal quantities that interest us in this work
are not sensitive to the particular values we take for the parameters.
Equilibrium interface description can be derived from a potential. The
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important ingredients to take into account are, the differences of chemical
potential, the surface tension and an additive noise taking into account fluc-
tuations. The resulting potential including these effects is then given by,

V(h) = / o h(r,t) + V2 h(r1). (3.7)

The prototypic equilibrium reasoning is that if a configuration of A(r,t) is
close to a minimum of the potential, its rate of variation is small. The bigger
is the functional derivative, the faster is the evolution of the system in the
direction of the closest minimum. Therefore, the functional derivative of
V(h) has to be proportional to —2%. However, even for a local minimum,
the system undergoes fluctuations able to make it evolve towards a more
stable minimum. This fluctuation effect is taken into account introducing an
additive (additive means that the noise amplitude is independent of the state
of the system) noise term. This gives the Edwards-Wilkinson (EW) equation
[30]5
oh(r,t) oV (h)
ot 0Oh
% =a+ V?h(r,t) + on(r,t). (3.9)
This equation is linear, passing to Fourrier space, one can easily obtain the
exponents governing this kind of growth processes [59]. It gives, a dynamic
roughness exponent [y, governing the time evolution of the spatial interface
variance \/((h(r,t) — (h(r,t)))2), = tP7=% (where (), stands for spatial
average). As will be seen later, in order to describe the wetting transition
of an equilibrium interface we only need to add a potential term V(h) =
9 e Ph + . € ~th short-ranged or V(h) = pzp + ia» long-ranged. In the
followmg, b < 0 is called attractive because it contributes in an attractive
component and b > 0 is called repulsive or purely repulsive, (p < ¢, always,
to account for strong hard-core repulsion).

+ on(r,t) (3.8)

3.4.2 Nonequilibrium: Kardar-Parisi-Zhang

Surface growth processes observed in solids are genuinely irreversible pro-
cesses so it would be interesting to modify the previous description adding
some irreversible ingredient. An easy way to have a nonequilibrium model
is to include a new term which breaks the up-down symmetry in the previ-
ously presented (EW) [63]. Often, as was explained for DP in chapter 2 ,
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the equivalence of the different spatial directions is a necessary condition in
order to be in equilibrium. Isotropic percolation is an equilibrium problem,
but if the percolation process is directed, one direction is favoured compared
to the others and the system is then out-of-equilibrium. A series of terms
modifying the behavior of the (EW) equation are possible, the lowest order
one, not deriving from a potential is (Vh(r,t))?. This term can also be seen
as the first order contribution of a local velocity perpendicular to the surface
(FIG) (as if one phase was set on fire and the other one was being consumed).
In this sense also, we are again supposing a given phase is favored compared
to the other and this is indeed a nonequilibrium situation. The celebrated
KPZ equation writes,

on =vV2h + é(Vh)2 + on. (3.10)
ot 2

The first term on the right-hand side is a relaxation term coming from
a surface tension v. In an experiment, this takes into account evapora-
tion/absorbtion phenomena of the vapor phase surrounding the solid. The
seond term is the lowest-order nonlinear term that can be included in the
growth of an interface. In the case of a growth in a direction locally normal
to the interface, this is the first-order of the projection along the h axis of
this growth. Higher order terms could be included but no new effects are
expected. The last term is a gaussian white noise reflecting the stochastic
beahvior of effective descriptions.

In this case, the equation is no longer linear and cannot be solved through
the same methods as for the EW equation. The nonlinearity couples differ-
ent modes and renders the problem intractable analitically. However, in one
spatial dimension, the lucky existence of a fluctuation dissipation theorem
(unexpected for nonequilibrium systems) allows one to find exactly the ex-
ponents. For KPZ in one dimension, By = % The new term increases the
roughness of the interface compared to EW, and goes against the smoothing
effect of the diffusion term. This interface is not symmetric under up-down
reversal so that the introduction of an impenetrable wall above the interface
or below it lead to two different physical pictures (ref MA-Grinstein).

As said in the introduction of this chapter, the interesting KPZ descrip-
tion is not fully understood. This constitutes a motivation to study related
problems and hopefully to gain intuition on it. The problem of a KPZ inter-
face with a wall is presented in the following sections.
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KPZ: a mapping to Multiplicative noise

The problem of a KPZ interface, Eq. (3.10), can be mapped onto a Mul-
tiplicative noise (MN) equation, Eq. (3.11), changing of variable h(z,t) =
(2v/A) In(n(z,t)) in Eq. (3.10) we are left with,

Oom = V?n + non. (3.11)

v is always taken positive but A can be either positive or negative. Even-
though it appears innocuous here, it is important to note that in this con-
densed way of writing the mapping, is hidden that the change of variable
is quite different according to the sign of A. To follow the rest of the work
presented here, it is important to notice that as soon as a wall is present, the
change of variable we choose makes a big difference. Equation 3.11 describes
the problem of Directed polymer in random media.
Another interesting change of variable is ¢(x,t) = Vh(z,t), this gives,

dé =019 + ¢V o, (3.12)
dt
this is the Noisy Burgers equation of turbulence.

For additive noises, the smaller the noise amplitude the more ordered
systems are. This appears very natural but actually it is not always the
case. For multiplicative (the correlator involves the square of the field) and
RFT (the correlator involves the field only) noises, when noise amplitudes
increases the system becomes more ordered. This is somehow surprising and
can lead to new interesting phenomena.

3.5 Langevin description of nonequilibrium
interface depinning

After having introduced the problem we focus on and related important
results, we turn to the description of the work we have realized and of the
obtained results. In Sec. 3.3, we describe a microscopic model giving a useful
description of nonequilibrium depinning. As said in [34] and above in 3.3.2,
the results obtained for the microscopic model, for p > 1 and p < 1, is
equivalent to a KPZ interface interacting with a wall and different signs of
nonlinearity. Here we present what??
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3.5.1 Multiplicative Noise 1

In this section, we review the case of a KPZ interface with a lower wall and a
negative non-linearity (A in the following). This has already been profusely
studied [38, 42, 43, 44, 45].A convenient introduction of the known results
allows to understand better the results obtained in the case of a lower wall
and a positive \. The KPZ equation has been shortly introduced in Sec.
3.4.2. ' We now modify it in order to include terms accounting for the wall-
interface interaction. The interaction we choose derives from the potential,

V(h) = —ah + g exp(—ph) + g exp(—qh), (3.13)

shown in Fig. 3.5. Parameters are, ¢ > p, c is always kept positive for
stability purposes. It is a strongly repulsive lower wall at very short distances.
If b is negative, the potential is attractive at intermediate distances, and
purely repulsive if b is positive.

b>0 b<0

V(h)-ah

Figure 3.5: Effective potentials derived from Eq. (3.13) in the pinned (a < 0)
and the depinned (a > 0) phases, and at coexistence (a = 0). (a) repulsive walls
(b,c > 0); (b) attractive walls (b < 0, ¢ > 0).

The modified KPZ equation with short-ranged interaction is written be-
low,

Oth = V?h+ A(Vh)? +a + b exp(—ph) + ¢ exp(—gh) + on. (3.14)
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According to the value of a, the interface average distance from the wall,
(h), remains finite or grows indefinitely. Separating this two regimes, the
equation has a critical point, for which power-law are observed. We can
argue that when h goes to infinity, the wall is not felt by the interface, taking
spatial averages on both sides of (h) Performing in Eq. 4.8 a Cole-Hopf

tansformation, n(z,t) = exp(—h), one obtains, if A = —1(without lost of
generality),
t

8né7;, ) = V2n(r,t) + an(r,t) — bn(r,t)" T + on(r, t)n(r, t), (3.15)

it bears the name of Multiplicative Noise 1.

3.5.2 Multiplicative Noise 2

As said before, in the KPZ equation, the up/down symmetry is broken,
therefore inversing the sign of A\ and keeping a lower wall, lead to probe a
different side of the interface on the wall, naturally leading to a different
critical phenomena.

If contrarily to the case presented above A = +1, after the mapping
m(z,t) = exp(—h), the MN equation resulting is:

am('f', t) — V2m _ 2 (vm)2

ot m

—am — bm'~? + omn(r, t). (3.16)

So in the presence of a “lower wall” and a positive nonlinearity, a more
convenient change of variable is, n = exp(h), leading to,

on(r,t)
ot

= DV’n+an + bn'~? + ann(r, t), (3.17)

now the order parameter we are interested in is not anymore the average
of the stochastic variable but <%> This is the new variable that tells us the
number of contact points between the interface and the wall. The main result
of this chapter is to show that this equation constitutes a sound description
of the depinning transition, and that all the relevant information is included
in it [39]. From now on, Eq. (4.10) is referred to as MN2 equation.
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vapor
vapor

A<0 A>0
Repulsive N Repulsive N
(MN1) solid (MN2)
solid

substrate substrate

Figure 3.6: Representative sketches of the “solid-vapor” interface for repulsive
interaction and a lower wall. Left: in the case of MN1 (A < 0) and MN2 (A >
0) universality classes. Flat pieces of the interface are subjected to an effective
repulsion (attraction) from the substrate in the case of MN1 (MN2). Here we see
the definition of h and n variables. h is the interface-substrate wall distance and
n is a variable which is 1 when the interface is in contact with the substrate and
0 otherwise

Tails or tales

A different way to see that positive and negative nonlinearity give rise to
different transitions is the following. We present an argument similar to
the one presented in [46] even if we do not have a way of computing the
probability distribution of h. We only suppose that the interface follows the
Family-Vicsek scaling [47], and particularize it to a stretched exponential as

standard KPZ tails. ) .
P(h,t) ~t 7 f (%) (3.18)

Y

The order parameter we have defined is the number of pinned sites. Suppos-
ing we know P(h,t), this can be evaluated integrating from the barrier to an
arbitrary small hg.

ho
pr = dh P(h,t) (3.19)
0
We perform the change of variables z = h;(h), dz = ‘ti—f we are left with,
o hg
Y Y
pr = / w dz f(z). (3.20)
—

Now suppose we have %) — C and f(—C) # 0, then in the asymptotic
limit we obtain,

pr = F(=C)hot™. (3.21)
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It is well known that MN1 and MN2 have different tails [46] and that the
scaling functions must approach 0 in different ways since 0,381 # Oprine # 7.
So, if scaling holds asymptotically, we would expect the approach to be with
a power respectively bigger and smaller than one.

Instead, if %) — 00, then

h _
pr = f(_<t—7>)h0t v, (3.22)
which is expected to be very different from a power-law beahavior. Indeed
in the case of a KPZ, the tails are stretched exponential.

P(h,t) ~ t™" exp[—p(lh — (h)|/17)"] (3.23)

Supposing this still holds we expect a stretched exponential corrected by a
power-law.

Py = exp[—,u(%))”]hotﬂ (3.24)

at criticality, <th—7> is expected to be a power of .

In numerical experiments, we qualitatively observe this two different be-
haviors. For p > 1, p; exhibits a power-law behavior and we expect (h) = t1/3
to hold asymptotically. For p < 1 we see a clear stretched exponential. We

have checked that for p < 1, (h) = ¢t'/P*2 >> 773 which is all consistent.

Short discussion on quasi-absorbing states

The difference between the “quasi-absorbing” state of MN and the “true”
(RFT) absorbing state is sometimes presented as coming from the integrabil-
ity of the stationary distribution. For the RFT case it presents a singularity
at ¢ = 0, (independent of the phase and of the potential chosen, as long as
no constant term is present). On the other hand, for MN the distribution
remains integrable in the active phase with no singularity at ¢ = 0. Here, we
present a simple explanation of this fact, constituting in itself an explanation
of the fundamental differences between noises ¢® for a = 0.5 or @ = 1.
Starting from a typical condition (¢ # 0), in the case of a = 0.5, it is
known that after a finite time dt¢, the probability of reaching the absorbing
state is non vanishing, let say p; ((1 — p1) is the probability of ¢ to to be
different from 0). The normalized probability density distribution is consti-
tuted by a delta pic multiplied by p; and a continuous function of integral
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1 — p;. The probability of going out from the absorbing state is always 0
by definition. So after n steps, writing p; the probability of reaching the
absorbing state in the i"* step, the probability to have ¢ # 0 is given by,
(1 —po)...(1 = p;)...(1 — pp). One is easily convinced that this tends to 0.
Since the stationary state is defined by averaving the system evolution from
a typical initial condition over a time window going to infinity. This is a sim-
ple way to explain how the non-integrability arises. On the other hand for
MN type of noise, « = 1, in the active phase, the probability of reaching the
absorbing state in any finite time is 0 and the above presented scenario do
not appear. However, as was shown in [41], a multiplicative noise equation
with an appropriate potential, can undergo a transition in the directed per-
colation universality class. The main reason for this is that for multiplicative
noise, typically, the absorbing state is never reached so that the noise can
create new activity. The authors of [41] used a potential such that, even if
some small activity still exists, a small well ensures that the system does not
return to full activity.

3.5.3 Mean-field results

In order to get intuition on the behavior of the solutions of Eq. (4.10) we
apply mean-field tools to it. The crudest mean-field approach would be to
remove the noise term and the laplacian. This turns out to be a very simple
approximation and does not allow to get much insight into the problem. In
this section, we apply a more elaborate mean-field approximation already
applied in chapter 2 to a different Langevin equation. The features of the
approximation presented here are very much the same as in chapter 2. It
consists in transforming the very complicated system of N-coupled variables
into a more simple system of only one variable. To do this, we suppose
all sites to be equivalent, this cancels out spatial fluctuations. The trick
consists in replacing in the Langevin Eq. (4.10) the laplacian term V?n =
1/2d Y7, (n; — n;) coupling sites to its neighbors by Vn = 1/2d Y (7 — n).
In this way, we take into account the effects of the noise and only neglect
some of the spatial information. Since this is very important, we expect
to loose some information. However, we can hope to obtain a good phase
diagram and the order of the transition to be predicted successfully. The
starting point of our mean-field calculation is to write the self-consistency of
the probability density in the stationary state:
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J5" dn n P(n,n)
[ dn P(n,n)

n =

(3.25)

The stationary probability density can be obtained from the Fokker-
Planck equation equivalent to our Langevin Eq. (4.10) with the true laplacian

replaced by the above mentioned approximation,

on(r,t)
ot
The Fokker-Planck equivalent is then,

= D(n—n)+an+bn'"?+ onn(r,t).

2
0,P(n,t) = —0,((a — D)n 4+ bn~ 7" + Dn) — %n@n (nP).

Imposing stationarity, we have,

2
8,P(n,t) = 0 = —0,((a — D)n + bn~"*"' + Df) — %n@n (nP),

which admits for solution,

dz)],

1 2 [™(a— D)x+bx~ 91 + Dn
Pyo(n) = - exp|( / ( )
0

2(a—D) 2b 2Dn
Pl o5 {220
o“qni o“n

o? 2

I,(m) :/o dnn® Py, (n),

where , n = 22,
o°“x

With y = 2¢5P),

2D p+Y poo pry .
I,(m) = o i dx x exp(—mzx — cz?),

qo?

: _ 2 2\4
with ¢ = =5 (20_D> .
With I, we can compute the moments we are interested in.

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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3.5.4 Numerics for MN2

In order to integrate equation (4.10) as efficiently as possible we have em-
ployed a recently introduced split-step scheme for the integration of Langevin
equations with non-additive noise. In this, the Langevin equation under con-
sideration is studied on a lattice and separated in two parts: the first one
includes only deterministic terms and is integrated at each time-step using
any standard integration scheme: Euler, Runge-Kutta, etc [75] (we choose
here a simple Euler algorithm). The output of this step is used as the input
to integrate (in the same discrete time interval) the second part which con-
tains the remaining linear deterministic terms and the noise. This is done
by sampling in an exact way the probability distribution function associated
to this part of the equation. In the case under study (noise proportional to
the field) the second step corresponds to sampling a log-normal distribution
solution of Oyn = an + onn ([8]).
This is in details, the way it was done:

dn; = angdt + on,dW;, (3.33)

where dW is a Wiener process. Since this is interpreted in the Stratonovich
sense, we can safely perform the change of variables Y; = Inn; and obtain

dY, = adt + ocdW;. (3.34)
This is a drifted Brownian motion equation whose solution is:
Prob(Yiia = y|Y; = vo) = N(yo + adt, a”dt). (3.35)
Inverting the previous change of variable, we are left with
nlt + dt|n(t) = ng] = no exp(adt + oVdtN(0,1)). (3.36)
Therefore the two-step algorithm is finally given by:
ni1 =n(i,t) + (b n(i, )9+ DVn(i,t)) dt (3.37)
where V2n(i,t) = n(i + 1,t) + n(i — 1,¢) — 2n(s,t) and,

n(i,t + dt) = ny exp (adt + o Vdt N(0, 1)) (3.38)
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where N(0,1) is a Normal distribution with zero-mean and unit variance.
Note that the linear part can be included in either the first or the second
step, or partially incorporated in both of them.

We have considered one-dimensional lattices, and fixed ¢ = 1, b = 1,
D = 0.1, space-mesh is dz = 1 and time-mesh is d¢t = 0.1. As an initial
condition we take n(r,t = 0) = 3. We took ¢ = 4 for all simulations except
for results presented in Fig. 3.8(a) where we show that asymptotic results
do not depend on the value of ¢ (as long as it is positive). We then iterate
by employing the previous two-step integration algorithm, consisting in first
(3.37) and then (3.38), at each site i, in parallel.

First, to accurately determine the critical point, we perform decay exper-
iments and average over many independent runs in a system of size L = 2'7.
At criticality, a. = —0.143668(3), the average density, m = (1/n) decays
as a power-law, with an associated exponent 6 = 0.229(5) (see Fig. 3.7).
This is to be compared with the previous estimates § &~ —0.215(15) [69] and
6 =~ 0.228(5) [48]. On the other hand, for smaller sizes, we observe satura-
tion at this value of a., and the scaling of the saturation values for different
system sizes (inset Fig. 3.7(a)) gives §/v ~ 0.335(5) (to be compared with

0.34(2) in [69)).

00 | 500 2000
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Figure 3.7: Left: Log-log plot of the time decay of the average order-parameter at
the critical point, a, = —0.143668, for system sizes 26, 27, 28 29 210 9211 and 217
respectively. In the inset, the average saturation values of the previous curves are
plotted as a function of the system size, L, in a log-log plot. Right: Log-log plot
of the time growth of the value of h = —log(n) for the same value of a and same
system sizes as before. In the inset, the average saturation values of the previous
curves are plotted as a function of the system size, L, in a log-log plot.
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Figure 3.8: Results for L = 2!7. Left: Averaged decay experiment for equation
(4.10) with ¢ = 0.5,1, 2, 4(from top to bottom) and. For any g > 0 we observe the
same decay exponent and the critical point location remains unchanged. Right:
Log-log plot of the saturation values of m for different values of a nearby the
critical point. From the slope we estimate 5 = 0.332(5).

3.5.5 Quenched noise for MN1 and MN2

The effect of quenched noise and of inevitable fluctuations is what is believed
to avoid any experimental realization of the theoretically predicted nonequi-
librium transitions. In this section, we investigate on the effect of quenched
noise on the two absorbing phase transitions presented above, MN1 and MN2.

3.6 Experimental realizations

After the Cole-Hopf mapping of the h variable, n = exp (—h), we are left with
a variable noted n. The stochastic differential equation for n was shown to
be relevant in synchronisation phenomena. All our results, either mean-field
calculation or numerical work were obtained in terms of the n variable. This
naturally lead to think that an experimental realization of our results could
be obtained in synchronisation phenomena. Working on such an experiment,
the measurement of n would directly allows one to distinguish from MN1
and MN2 behavior. It will then be probably feasable to observe DP critical
exponents. It is often quoted that Grassberger, a few years ago, placed
the experimental realization of DP as one of his first priorities.However, the
ubiquitous presence of fluctuations in natural systems allow to escape from
the ’absorbing state’.

The phenomena we investigate in this chapter is close to the phenomena



3.7 Conclusion 57

of equilibrium wetting phase transition. For the equilibrium case, theoretical
results have been obtained which later were experimentally confirmed. This
gives a playground to develop both theoretical and experimental knowledge
and tools. This valuable achievement might bring even more new information
if it were carried out in the equivalent nonequilibrium situation.

Theoretical work showed that in any non isotropic media, the nonlinear
term of the KPZ theory is perturbatively generated[50]. So in principle any
non isotropic crystal growth could do. However, the nonequilibrium KPZ-
like growth has been observed in experimental situations, it appears difficult
to observe due long-ranged mediated interaction generating transients(cite
Cuerno, others and other mechanism). Even if it is not easy to observe, so one
can argue about the relevance of this growth mechanism, it was succesfully
observed.

3.7 Conclusion

In this chapter, we have presented an introduction supposed to help readers
to understand the problem addressed and the presented results. We have
studied the dynamics of KPZ-like interfaces bounded by a lower wall. The
results and phenomenology differ from that of “upper wall”. By performing
a Cole-Hopf or logarithmic transformation, we have observed that the result-
ing order-parameter Langevin equation, equation (3.16) is singular and no
sound result can be derived from it. Instead, the main result of this paper, a
sound Langevin equation can be written in terms of a non-order-parameter,
diverging-at-the-transition field, equation (4.10). For such an equation we
have performed (i) a mean-field analysis, using a self-consistent approach,
leading to the result 5 = 1/g, and quite strangely, there is no trace of
any strong-coupling regime (noise-dependent 3 exponent value), contrarily to
what happens for the case of “upper wall”. This is also expected because the
KPZ equation presents a strong-coupling fixed-point. (ii) Extensive numeri-
cal integrations of the stochastic equation, performed employing the recently
introduced very-efficient split-step scheme. The obtained exponent values are
in good agreement with previously known ones obtained from simulations of
discrete models, and improve the level of accuracy and precision. This gives
a consistent representation for bounded KPZ in terms of multiplicative noise
equations and allow for further studies using this effective description.
We have shown that an apparently ill-behaved non-order-parameter Langevin
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equation constitutes a sound continuous representation of the pinning-depinning
transition experienced by interfaces in the Kardar-Parisi-Zhang class under
the presence of a lower bounding wall. Performing further analytical anal-
yses, renormalization group, possibly non-perturbatively in order to inves-
tigate the strong-coupling fixed point (cite Leonie KPZ), of the presented
description remains as a challenging task.

Going much further ahead the aim of this work, it is to point out that(to
the best of my knowledge), no experiments attempted to reproduce the depin-
ning of KPZ interfaces. The phase diagram, obtained from complementary
past works, has a very rich phenomenology, first-order transition, DP transi-
tion [41] (never cleanly confirmed experimentally), generic phase coezistence
only possible out-of-equilibrium , tricritical transition point. Taking all that
into account, it would be extremely interesting to have a working experiment
on nonequilbirum depinning. This lead theoretical work to explore more re-
alistic variants of the presented model, to have convincing evidences that
an experiment would not be very to dependent of the precise model we use.
Since the precise shape of the interaction potential is not necessarily expo-
nential. It can be rather power-law and slowly decaying, like van der Walls.
Changing from exponential to power-law in equilibrium wetting problem is
known to produce different results so it is to expect that the same might
happen for the nonequilbrium problem. This is the question we will answer
in the next chapter.



Chapter 4

Long ranged nonequilibrium
wetting

4.1 Motivation

This chapter does not need an introduction since it is a development of
the precedent chapter and the necessary introducing information have been
presented in the previous chapter. However, a few important points are to
notice here :

1. the generic form of interaction between particles is the van der Waals
potential which decays as a power law and not as an exponential. This
is interesting since experimental realizations of nonequilibrium depin-
ning might involve effective interactions modified by many factors as
screening effects and therefore, the precise form of the potential cannot
be known beforehand.

2. precising the understanding of this point would open the gate to pos-
sible ways of measuring Directed Percolation exponents as well as Mul-
tiplicative Noise absorbing transitions. Here the problem of defects, or
small fluctuations, inducing activity in the middle of inactive regions
is probably naturally inexistent since a point of the interface far away
from the substrate needs a big fluctuation to become pinned to the
substrate(however in DP, when close from the critical point, only a
very small fluctutation is able to create activity in inactive regions and
destroy the absorbing state).
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4.2 Introduction

Spatial constraints in systems where two (or more) bulk phases coexist may
lead to wetting transitions. This is the case, for example, of confined fluids
where one of two coexisting equilibrium phases (the liquid, say) is in contact
with a substrate with an interface separating it from the second phase (the
gas) at infinity. The liquid does not wet the substrate if the thickness of the
liquid film is finite (there is a microscopic quantity of liquid). On the other
hand, the substrate is wet if there is a macroscopically thick liquid film on
it. A wetting transition is said to occur when the substrate changes from not
being wet by the liquid to being wet. Typically, two types of wetting transi-
tions can be considered: by increasing the temperature at bulk coexistence
one may find either critical wetting or a discontinuous transition; by vary-
ing the chemical potential while the temperature is fixed above the wetting
transition temperature one finds a complete wetting transition, at bulk co-
existence. Under equilibrium conditions, a completely analogous transition
(often called drying) may occur when the substrate preferentially adsorbs the
gas phase [51].

Effective interfacial potentials are useful coarse-grained models that have
played a key role in understanding a large variety of equilibrium wetting
problems [52, 51]. These potentials, V' (h), are functionals of the interfacial
height (measured from the substrate), h(x). In this framework, wetting
transitions are described as the unbinding of the (say liquid-vapor) interface
from the substrate, with the effective binding potential determined by the
microscopic forces between the constituents of the substrate and those of the
bulk phases. Typically, exponentials and power-law decaying potentials V' (h)
have been considered for systems dominated by short-ranged and long-ranged
forces, respectively.

There exist a large amount of phenomena describable in terms of equi-
librium wetting, either under short-range or under long-ranged interactions,
while it has only recently been recognized that non-equilibrium effects, such
as anisotropies in the interface growing rules, may play a crucial role in de-
scribing some experimental situations. Within this perspective, short-ranged
non-equilibrium wetting has been studied [53, 54|, and some interesting novel
phenomenology has been elucidated (see [55] for recent reviews). In particu-
lar, liquid-crystals [56], molecular-beam epitaxial systems, as GaAS [57], or
materials exhibiting Stranski-Krastanov instabilities [58], appear to be good
candidates to require a non-equilibrium wetting description. However, some
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of these systems, as well as many others not enumerated, might include ef-
fective long-range substrate-interface effects as also occurs in the equilibrium
case.

In this chapter, we fill this gap by providing a general and systematic
theory of non-equilibrium wetting under the presence of effective long-ranged
interactions. First, we briefly review the equilibrium situation to set up
the theoretical framework and, afterwards, generalize it to embrace non-
equilibrium situations.

In equilibrium, two types of analytical approaches are available: static
studies based on the ensemble theory [51] and dynamical, stochastic ap-
proaches that allow investigating relaxational aspects. The second approach
is amenable to non-equilibrium extensions and is the one we employ. Thus,
consider the simple Edwards-Wilkinson dynamics [59] subject to a bounding
force (i.e. the derivative of the bounding potential) [60]:

Oih(x,t) = V*h+a — a‘gii(lh) + on(x,t). (4.1)
This includes (i) the usual diffusion term, computed as minus the derivative
of a standard surface-tension term, (ii) the driving force, a, related to the
chemical potential difference between the two phases, (iii) the Gaussian white
noise, 7(x,t), and (iv) the bounding force, which may derive from a short-
ranged potential

b c
V(h) == e Pt 4 e~ 4.2
(h) =~ p (4.2)
or from a long-ranged one
b c
h)=—+ — 4.3

where, b, ¢ > 0, and p < ¢ are parameters. This last form, Eq.(4.3),
is known to be the correct functional form for systems where the molecules
interact through van der Waals forces [61].

By varying the chemical-potential, a, one controls the average interfacial
distance from the wall: small for a < a. (non-wet phase), large for a = a,
and increasing steadily with time for a > a, (wet phase), i.e. the system
exhibits an unbinding transition at a = a.. The interface potentials V'(h)
are, in all cases, harshly repulsive at small A to model the impenetrability
of the substrate. The parameter b vanishes linearly with the temperature,



62 Long ranged nonequilibrium wetting

V(h)-ah

Figure 4.1: Effective potentials as derived from Eq. (4.3) in the pinned (a < 0)
and the depinned (a > 0) phases, and at coexistence (a = 0). (a) repulsive walls
(b,c > 0); (b) attractive walls (b < 0, ¢ > 0).

at the (mean-field) critical wetting temperature, and represents the affinity
or preference of the substrate for one of the bulk phases (usually the liquid).
We consider three distinct situations (see Fig. 6.4):

1. Repulsive potential: complete wetting. If b > 0 the potential describes the
presence of a bounding substrate alone. In this case, the broken symmetry
induced by the substrate leads to the divergence of the average position of
the interface, at coexistence, a. = 0: i.e. the system undergoes a complete
wetting transition.

The latter is described by Eq. (4.1) with the potential taken from Eq.
(4.2). Two different regimes depending on the value of p have been re-
ported: for p < 2 mean-field scaling holds and (h) ~ t'/®+2) while if p > 2
fluctuations take over and the velocity is controlled by the intrinsic rough-
ness of a free Edwards-Wilkinson, leading to a fluctuation-dominated regime
characterized by (h) ~ t'/* (0, or logarithmic growth for two-dimensional
interfaces). These results are derived in a formal way and extended in the
appendix.

2. Attractive potential: first order unbinding. For b < 0, by contrast to the
complete wetting case, the surface does not promote the growth of the liquid
phase and consequently there is no wetting phase even at bulk coexistence,
a = 0. V(h) exhibits a local minimum near the substrate, that binds the
interface in the presence of thermal fluctuations, and the width of the wetting
layer is finite (microscopic) at @ = 0. We may, however, observe a first-order
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unbinding transition that occurs as a changes from positive (stable bulk
liquid) to negative (stable bulk gas) values.

3. Critical wetting. At a particular value of b = b, (b, = 0 in mean-field but
more generally b. is small and negative) critical wetting may be observed,
with a characteristic non-trivial phenomenology. This situation requires the
fine tuning of two independent parameters (b = by, a = a.). This critical
transition is more difficult to treat theoretically and less likely to be found
in real systems and will not be discussed here.

The best way to extend equilibrium approaches to more general, non-
equilibrium, situations is to consider the simplest and widely studied non-
equilibrium extension of the Edwards-Wilkinson equation, i.e. the Kardar-
Parisi-Zhang (KPZ) [63, 59] interfacial dynamics [64], in the presence of effec-
tive bounding potentials, as the ones we have described before. This strategy
has been followed in a series of recent papers for systems with short-ranged
(attractive and purely repulsive) potentials [55] and will be extended in the
present work to the case of long-ranged potentials. We will discuss the phase
diagrams for both purely repulsive and attractive potentials, paying special
attention to criticality and to the comparison with equilibrium wetting and
non-equilibrium short-ranged unbinding. We will focus on one-dimensional
interfaces (separating two-dimensional bulk phases), and mention briefly two-
dimensional interfaces in the conclusions.

The chapter is organized as follows. In section 2 we introduce the non-
equilibrium unbinding model. In section 3, we review known results for
non-equilibrium short-ranged unbinding. Section 4 contains the main results
of the chapter, including both analytical and numerical results for purely re-
pulsive and attractive potentials. Finally, the main conclusions are presented
together with a discussion of our results.

4.3 Non-equilibrium long-ranged unbinding:
the model

Our model consists in a KPZ non-equilibrium interface [63, 59] in the presence
of a long-ranged, bounding potential Eq. (4.3),

(&
+

Oh=V?h+A(Vh) +at o+ oo

+ on(x,t), (4.4)
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where A # 0 is the coefficient of the non-linear KPZ term, the only new
ingredient added to the equilibrium wetting Langevin Eq. (4.1).

Note that in equilibrium the time-dependent probability distribution P(h, t)
is symmetric for the free interface and therefore it does not make any dif-
ference which side faces the substrate. By contrast, under non-equilibrium
conditions, owing to the h — —h asymmetry of the KPZ-equation, it depends
on the sign of A that the substrate probes either one tail or the other of a
KPZ probability distribution that is no longer symmetric. Thus, for a given
bounding potential two different situations must be considered. Therefore,
we will investigate systems with positive and negative values of A (without
loss of generality we take A = +1), and with both attractive (b < 0) and
repulsive (b > 0) potentials, i.e. we consider four distinct cases. The focus is
mainly on one-dimensional interfaces.

For analytical studies we employ simple power-counting arguments to
establish the relevance or irrelevance of the new terms at the equilibrium
renormalization group fixed points. These will be combined with heuristic
and scaling arguments, to relate the emerging critical behavior to equilibrium
wetting and short-ranged non-equilibrium unbinding.

For numerical studies, we consider one-dimensional discretizations of Eq.
(4.4). As direct integrations of KPZ-like equations are known to be plagued
with numerical instabilities [65], we resort to the exponential or Cole-Hopf
transformation, n = exp(+£h), that leads to well-behaved, numerically tractable,
Langevin equations with multiplicative noise [55, 66]. In order to integrate
these equations we employ a recently proposed efficient numerical scheme
[8], specifically designed to deal with stochastic equations with non-additive
noise. More than just a useful technical trick, this transformation has an
interesting physical motivation, as we discuss next. For negative values of
a — a., the average interfacial height (h) (thickness of the liquid film) may
be large but finite, and the interface fluctuates around its average position,
occasionally touching the substrate. As the interface moves to infinity when
a — ae, its average height grows (i.e. the liquid film completely wets the
substrate) thereby suppressing contact (dry) sites. An appropriate order-
parameter (OP) for the unbinding transition is the number of contact (dry)
sites [53, 67], or equivalently the surface order parameter [68]. This OP is
finite and positive when the interface is bound, and vanishes at the unbind-
ing transition. The variable, (n) = (exp(—h)), that vanishes exponentially
far from the wall, is an adequate mathematical representation of such an OP
(though not the only one).



4.4 Brief review of equilibrium wetting 65

The main goal of our study is the description of the scaling behavior of
the OP. (n), is expected to obey simple scaling near the critical point, for
sufficiently large times, ¢, and large system-sizes L. Denoting da = |a — a.|,

(n(ba,t, L)) = L7Por/V(n(L"6a, L7%1)), (4.5)

while right at the transition (n(da = 0,t)) ~ t=Por/v# ~ t=90P and there-
fore (n(da,t = 00)) ~ daPoP, where the critical exponents were introduced
following standard nomenclature. Analogously, for the interfacial height we
can define (h) ~ da=? and (h(da = 0,t)) ~ t#»/¥* ~ % although in terms
of h a single universality class, with exponents related to the free KPZ [66],
is observed for both signs of A. Determining all of these critical exponents by
the aforementioned techniques will allow us to assign the emerging critical
behavior to specific universality classes, providing a comprehensive classifica-
tion of non-equilibrium unbinding transitions in the presence of long-ranged
forces.

Before proceeding to the presentation of our results, we notice that it is
expected that the behavior for short-ranged interactions is recovered in the
large-p limit of the long-ranged ones. Next, a brief review of the former is
provided.

4.4 Brief review of equilibrium wetting

The action associated with Eq. (4.1) [107, 82] (setting ¢ = 0) is
S(h, ) = / dzdt {iﬂ — h[0h — V2h —a — bhP!] } . (4.6)

where h denotes, as usual, the response field [107, 82]. If one assumes first
that the interaction term is the dominant one, from naive dimensional anal-
ysis, imposing b to be dimensionless at the upper critical dimension, and
equating the dimensions of the time-derivative and the potential terms, one
obtains [h]yr = L¥+?) and consequently, within mean-field, 8, = 1/(p+2)
since time scales naively as L?. The exponent values 3, = 1/(p + 1) and
v = (p+2)/(2p + 2) are then obtained by matching [a] = [h];7~" and by
identifying L with the characteristic correlation length, respectively.

On the other hand, when fluctuations (i.e. the noise term) dominate,
we require the noise amplitude to be dimensionless at the upper critical
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dimension, which leads to [h]p;, = L?+9/2 and therefore [hh] = L9, [h]pr =
LZ=9/2_ From this, proceeding as before, 8, = (2 —d)/4,v = 2/(d + 2), and
Br = (2—d)/(d+2). These results (which may be obtained using a number
of different procedures [52, 83, 85, 84, 60, 51]) are exact as long as h and A do
not have anomalous dimensions, which has been shown to be the case [83].

The upper critical dimension is defined by [h|yr = [h]Fz, Which yields
d.(p) = 2p/(2+p). Note that for d > d.(p) the critical exponents depend on
the details of the interaction (i.e. on p) whilst for d < d.(p), they depend only
on d. In particular, in one dimensional systems, p = 2 marks the transition
between a mean-field regime and a fluctuation regime:

i) If p < 2 mean field theory is valid, and consequently 6, = 1/(p + 2),
Bn=1/(p+1), z=2,and v = 1/2.

ii) For p > 2, the substrate interaction decays fast enough for the fluc-
tuations to take over and the exponents become p-independent: 6, = 1/4,
Br=1/3,z=2, and v = 2/3.

Note that at the limiting value p = 2 the exponents change continuously
from the mean field to the fluctuation regime. It is also remarkable that the
fluctuation regime exponents coincide with those of short-ranged equilibrium
wetting (characterized by exponential bounding potentials [51]).

Until now we have considered the scaling properties of (h), but as was
mentioned earlier the number of dry sites or contact points between the
interface and the substrate, measured by (exp(—h)), is known to exhibit
interesting scaling behavior in wetting problems [68].

i) For p < 2 simple mean field scaling holds, and the h-distribution is a
Gaussian detaching from the wall at a speed controlled by its mean value.
As the interface is well described by its average position, it is expected that

(&™) ~ e (h) ~ g AR/TTY (4.7)

yielding a stretched exponential decay.

ii) For p > 2, (a+bexp(—h)) = 0 holds in the stationary state, and there-
fore (n) o a; using simple scaling, [exp(—h)] = [a] = [0;h] ~ t'/*!, giving
{exp(—h)) ~ t~3/*. This result can be derived in a number of ways, includ-
ing explicit calculations for discrete models in this class [86], and remains
valid for long-ranged potentials in the fluctuation regime. Note the differ-
ence between this fluctuation-induced power-law behavior and the previously
reported stretched exponential behavior in the mean-field regime.

For attractive walls, b < 0, a positive value of ¢ is required to ensure
the impenetrability of the substrate (see Fig. 6.4). In this case it is easy
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to argue that the interface jumps discontinuously from a bound state (for
a < 0), localized at the minimum of V(h), to an unbound state (for a > 0)
through a first-order phase transition. Clearly, in terms of the contact points,
(exp(—h)), the transition is also discontinuous.

4.5 Brief review of non-equilibrium short-ranged
unbinding

The KPZ equation with exponential bounding potentials is
Oih = V2h+ A(Vh)> +a+be ™ +ce ™+ o, (4.8)

with ¢ > p > 0. The results for the four possible physical situations are:

Repulsive wall and A < 0

If A <0 (we set A = —1) the change of variables n = exp(—h) transforms
(4.8) (with ¢ = 0) into

om =V?*n—an—bn'?+non. (4.9)

This describes complete wetting transitions (along path 1 in Fig. 6.3(a))
characterized by (see [55]) a dynamic exponent z = 3/2, identical to KPZ,
v =1/(2z—2) =1, and non-trivial exponents Sop and fpp that were deter-
mined by simulations. The exponents for h have been measured also and the
transition was shown to be in the multiplicative noise 1 (MN1) universality
class: Bop ~ 1.78, pop ~ 1.18, 0, ~ 0.33 and B, ~ 1/2in d =1 [55].

Repulsive wall and A > 0

As for the A < 0 case, it is more convenient [39] to use the transformation,
n = exp(+h) leading to

om = V>n + an + bn'~? 4+ non. (4.10)

This equation describes the transition along the path 1 in Fig. 6.3(b). Nu-
merical estimates for the associated universality class have been recently
obtained from this (non-order-parameter) Langevin equation [39]. By mea-
suring the order parameter m = (1/n) (that vanishes at the transition), the
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following set of exponents was obtained: Opp = 0.22, Sop ~ 0.32, different
from MN1 and 6, ~ 0.33, 8, ~ 0.5, z = 3/2 and ¥ = 1 in line with the
corresponding exponents of the MN1 class [39, 69, 53]. This universality
class is known as multiplicative noise 2 (MN2). A detailed discussion of the
differences between the MN2 and MNT1 universality classes, may be found in
[55].

Note that, apart from the signs, the difference between Eq. (4.9) and Eq.
(4.10) is in the leading power of n. It is possible, however, to summarize
these two Langevin equations in

om=V*n+aan+abn’+non, (4.11)

with @« = A/|A\] and v = 1 — ap. Then @ > 1 and a < 1 correspond,
respectively, to the MN1 and MN2 universality classes. In the first case the
leading power for large values of n is the non-linear term while this role is
taken by the linear term in the second case. The transition at the boundary
v =1 (p = 0) is obviously discontinuous, as both terms are linear and there
is no saturating term.

In MNT1 the order parameter is n, while in the MN2 case, it is m = 1/n.
In both cases a is the control parameter.

Attractive wall and \ < 0

For attractive walls, b < 0, a positive value of ¢ is required for stability,
for any value of A. In systems with A\ < 0 (see Fig. 1(a)), a new phe-
nomenology including a broad coexistence region, and a directed-percolation
unbinding transition emerges [70, 55, 71, 53]. In the broad-coexistence re-
gion the stationary solution is either bound or unbound depending on the
initial conditions [55, 54]. Such a region is delimited on the right (where the
bound phase loses stability) by a directed percolation transition, where the
scaling properties are controlled by the effective dynamics of the particle-like
interface-surface contact points (i.e. points trapped in the potential well). Its
leftmost border corresponds to the abrupt (discontinuous) binding of initially
unbound interfaces. Again we refer the reader to [55] for a detailed discus-
sion and to [71] for a review on generic phase-coexistence in non-equilibrium
systems.
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Figure 4.2: Phase diagrams for A < 0 (a), A > 0 (b). Paths labeled 1 correspond
to non-equilibrium complete wetting transitions; 2, critical or first-order unbinding
transitions (not studied); 3, first-order unbinding transitions; 4, unbinding transi-
tion in the directed percolation universality class. For A < 0 and b < b,, (attractive
substrates) , two-phase coexistence is observed in the area delimited by the two
lines.

Attractive wall and A > 0

For A > 0 (see Fig. 1(b)) a first-order transition separates bound from un-
bound phases (akin to the equilibrium discontinuous transition for attractive
walls). No broad coexistence region, nor directed percolation transition, exist
in this case.

4.6 Non-equilibrium long-ranged unbinding:
results

We are now set to discuss the long-ranged non-equilibrium problem described
by Eq. (4.4). There is a singularity at A~ = 0 and thus only positive values of
h are allowed (mimicking the impenetrability of the substrate). As before,
if b > 0 we take ¢ = 0 for simplicity. Proceeding as in the short-ranged
non-equilibrium case, we perform the change of variables n = exp(ah), with
a = A/|A|, in equation (4.4), obtaining

n
atn = V2n + aan + abW + nom, (412)

where a term +acn/|alog(n)|'™? has to be added when b < 0. As before,
for positive A (o = 1), the order-parameter is m = 1/n, while for A < 0 the
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Figure 4.3: Effective potentials in terms of n obtained from the numerical inte-
gration of the interaction part of eq. (4.12). Left and right panels correspond to,
respectively, repulsive (b = 1) and attractive (b = —1) interactions. For both b we
show results for negative and positive A, and different values of a corresponding to
the bound and unbound phases, as well as at coexistence. Note that for A < 0(> 0)
the unbound phase corresponds to a minimum of n at 0 (co). Transitions for at-
tractive walls can be either first-order or continuous (directed-percolation).

order-parameter is n itself. Note also that as there is a singularity at n = 1
(inherited from the singularity at A = 0 in Eq. (4.4)), for A > 0, where n
diverges at the transition, the initial condition is fixed at n(z) > 1 Vz, while
for A < 0, where n vanishes at the transition, 0 < n(z) < 1 Vz, is taken.
The deterministic one-site terms of Eq. (4.12) may be written as minus the
derivative of a potential, U(n), that is depicted in Fig. 4.3.

It is instructive to compare this model with the two universality classes
reported for non-equilibrium short-ranged wetting, i.e. MN1 and MN2. In
fact, it is expected that, in the limit of sufficiently large p, the power-law
force yields the same dynamics as short-ranged (exponential) forces. Thus,
for A < 0 and large p we anticipate MN1 behavior while MN2 scaling should
obtain when A > 0, in the same limit.

4.6.1 Analytic results

In an early work the KPZ non-linearity was argued to be irrelevant above the
(mean-field) wetting temperature b = b,, = 0, and an equilibrium (complete)
wetting transition was predicted to occur as a — a., at constant b > b,,, for
any A [72] (transitions along path 1 in Fig. 6.3). In the following we show
that such a prediction is untenable and that the non-equilibrium term leads
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to new physics.

Let us start by employing naive power counting arguments, based on
equilibrium scaling, to decide whether X is a relevant or an irrelevant per-
turbation, at the mean-field fixed point and at the fluctuation one. In order
to do that, we first fix A = 0 in equation (4.4). If b > 0, then the up-
per critical dimension depends only on the repulsive part of the potential
and is d.(p) = 2p/(2 + p) [73, 107], as shown in the appendix. Now, from
dimensional analysis [\] = L~'*%2. Upon evaluating it at d.(p) one finds
[A] = L~?/C*P) which, in terms of momenta, has a positive dimension for any
value of p. Therefore, the KPZ non-linearity is relevant at the mean-field
equilibrium wetting transition.

Relevancy at the fluctuating regime fixed-point is proved using the known
one-dimensional scaling dimension of the field [h] ~ t'/* ~ LY? at the
fluctuation-dominated fixed point (see appendix). Then, it follows, [A] =
L=+ implying that ) is strongly relevant in any space-dimension. To be
rigorous we would need to include perturbative corrections generated by the
new non-linear term proportional to A, but even without computing these,
one can say that it is very unlikely that such corrections reverse the strong
lowest-order relevancy of A. The relevancy of ), is strongly supported by the
results of numerical simulations of the corresponding Langevin equation as
we will show next.

As in one-dimensional equilibrium interfaces, where p = 2 separates the
mean-field and the fluctuation-dominated regimes, it is easy to argue that in
non-equilibrium the two regimes are separated by p = 1. From Eq. (4.4) in
the absence of noise, the mean-field velocity exponent at the critical point,
given by A((Vh)?) + a. = 0, is obtained by integrating d;h ~ h ?~! and
found to be 6, = 1/(p + 2). On the other hand, when noise (fluctuations)
is included, the (one-dimensional) free KPZ equation has a roughening ex-
ponent of 1/3 and, therefore, a velocity proportional to ¢/ [59]. Which of
these contributions dominates? Clearly, if p < 1 the wall-induced velocity
is larger and fluctuations give only a higher order correction (i.e. they are
irrelevant). By contrast, if p > 1 the effective repulsion generated by the
wall (through suppression of the intrinsic interfacial roughness) controls the
scaling. Thus, in non-equilibrium long-ranged wetting, p = 1 separates the
mean-field from the fluctuation-dominated regimes.

Transient effects, that are significant before the non-equilibrium inter-
face develops its full (asymptotic) time-dependent roughness, may prevent
the KPZ exponent # = 1/3 from being observed, leading to an effective ex-
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ponent, 6.5y < 1/3. Furthermore, at short times, the interface is expected
to grow with an Edwards-Wilkinson exponent, # = 1/4, and therefore 6./,
increases progressively from 1/4 to its asymptotic KPZ value, 1/3, in the
long time regime. Comparing these values with the wall induced velocity
exponent 1/(p + 2), we anticipate that for potentials with 1 < p < 2 se-
vere transient effects will occur before the fluctuation-dominated scaling sets
in. By contrast, for p > 2 fluctuations dominate from the early stages of
interfacial growth.

4.6.2 Numerical Results

In order to avoid numerical instabilities, typical of KPZ direct numerical in-
tegration schemes [65], we chose to study the associated multiplicative noise
Eq. (4.12) obtained after performing a Cole-Hopf transformation. To solve
Eq. (4.12) efficiently we have used a recently proposed split-step scheme
for the integration of Langevin equations with non-additive noise [8]. In this
scheme, the equation under consideration is discretized in space and time and
separated into two contributions: (i) the first includes deterministic terms
only and is integrated at each time-step using a standard integration scheme:
Euler, Runge Kutta, etc [75] (here we have chosen a simple Euler algorithm)
(ii) the output of the first step is used as input to integrate (along the same
discrete time-step) the second part which includes the noise and, option-
ally, linear deterministic terms. This is done by sampling the probability-
distribution, i.e. the solution of the Fokker-Planck equation associated with
this part of the dynamics. In the case under study (noise proportional to
the field), the second step can be carried out exactly. At each site, one has
to sample a log-normal distribution, i.e., the solution of the Fokker-Planck
equation associated with d;n = aan+ onn (for more details see [76] and [8]).
The two-step algorithm for Eq. (4.12) is then implemented as follows. At
each site n = n(z,t), we compute

abn 9

ni(z,t) = n+dt 7 + Vaisen(2,1) (4.13)
(alog(n))

where the discretized Laplacian is defined by

n(z + Az, t) + n(z — Az, t) — 2n(z, t)
Ax?

V2in(z,t) =

discr

(4.14)
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with Az the space-mesh, and
n(z,t + At) = ny(z,t) exp (aaAt +on vAt) (4.15)

where 7 is a random variable extracted from a Normal distribution with
zero-mean and unit variance. Note that the linear deterministic term can be
included in either the first or the second step, or partially incorporated in
both of them. For systems with b < 0, the stabilizing term, proportional to
¢ has be to included.

We set 0 = 1, Az = 1/4/0.1, and the time-mesh At = 0.1 (note that in
this scheme At can be taken larger than in the usual integration algorithms
[8]). In some simulations we used different values of b, which by default was
set to b = 1. We take as initial condition n(z,t = 0) = 3 if A > 0 (recall
that n €]1,00[) and n = 0.5 if A < 0 (n € [0,1[). Then, the dynamics is
iterated by employing the two-step integration algorithm at each site and
using parallel updating.

The numerical procedure is as follows. In order to determine the critical
point for any set of parameters we take the system-size as large as possible
and look for the separatrix between upward-bending and downward-bending
curves in the order-parameter (either n or m = 1/n depending on the case)
versus ¢ in a double-logarithmic plot. The asymptotic value of this slope gives
an estimation of fpp. Also, for the same parameters, (h) grows as a power-
law with an exponent 6, (bending downward and upward in the bound and
the unbound phases, respectively). Generally the order parameter is more
sensitive to control-parameter variations, providing the most reliable way of
determining the critical point. For completeness, and in order to check the
validity of analytical approximations, we measure the global interface width,
W, at the transition, which is expected to grow with the KPZ exponent
Bw = 1/3, in the regime where it is asymptotically free.

Once the critical point is determined accurately we compute Sop and Sy
by measuring the stationary values of the order parameter and of (h) at dif-
ferent distances from it. A complementary approach is based on finite-size
scaling analysis: the values of the order parameter and of (h), at saturation,
are measured for a fixed value of a as a function of system-size. At the criti-
cal point these values scale with exponents Sop/v and S /v, respectively. In
addition, the scaling of the saturation times for different system-sizes allows
to determine the dynamical exponent z. This standard finite-size scaling
analysis is not always possible (see below), and in such cases z is measured
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through spreading-like experiments. Finally, an alternative to spreading con-
sists in measuring the distribution of gaps between contact points at a given
time. For small gaps this function decays with an exponent z0pp giving yet
another estimate of z [77].

The correlation length critical exponent v is obtained by measuring the
location of the effective critical point, i.e. the value of a for which the order-
parameter falls below a fixed threshold, say 1072, as a function of system-
size: acepp(L) ~ L7Y/7. This exponent may also be determined indirectly
by employing scaling relations and using the value of Sop/v from finite-size
scaling analysis and the value of Spp obtained from direct measurements.
The results of these measurements, in conjunction with the scaling laws,
provide an over-complete estimation of the set of critical exponents, that
was also used to verify scaling relations.

Before discussing the differences between the various universality classes
and regimes (i.e. different values of A, p and b) we first give an overview of
the common features of all simulations.

1. Once the KPZ equation parameters (D, A, o) are fixed, the location
of the critical point is universal, meaning that it does not depend on
the details of the substrate, i.e. on the values of b,c, and p. The
critical point is determined by the value of a where the free-KPZ
interface changes the sign of its velocity, from positive, i.e. diverg-
ing to an unbound state, to negative, becoming bound at the wall:
a. + AM((Vh)?) = 0. As we consider two different values of A, +1 and
—1, there are two critical points: a.(A = +1) ~ F0.143668(3).

2. At the critical point, the asymptotically unbound interface is a free KPZ
one, and thus z = 3/2 and By = 1/3. These values were consistently
checked in all simulations (see Fig. 4.4(a),(b)).

3. A simple argument, originally given in [66], predicts v = 1 for all
bounded KPZ interfaces. This prediction was confirmed in all of our
cases (see inset of Fig. 4.4(a)).

Repulsive walls and A\ > 0.

We have to distinguish two regimes, depending on the range of the attractive
substrate, i.e. the value of p.
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Figure 4.4: Features common to all simulations. (a) Roughness vs ¢ gives Sy =
0.33(1); (inset) —ac(L) vs 103L~" falls on a straight-line that yields v ~ 1 (data
for A\ = —1 and p = 2). (b) Saturation time vs system-size leads to z = 1.48(4)
(data for A =1 and p = 2).

Mean-field regime. The theoretical discussion indicates that for p < 1, and
any sign of )\, a mean-field regime controlled by the exponents 6, = 1/(p+2)
and B, = 3/(2p + 4) is obtained. By changing variables in a naive way a
stretched exponential behavior for the order-parameter is predicted. Figures
4.5 and 4.10 illustrate the confirmation of these predictions (both for positive
and negative \).
Fluctuation regime: Multiplicative Noise 2. A strong-fluctuation regime is
predicted for systems with p > 1 but, as argued above, severe transient
effects are expected for 2 > p > 1. We start with the analysis of the, a priori,
simpler p > 2 sub-regime and offer simulation results for p = 2,2.5,3,4,7.
In all cases the order-parameter was found to decay at criticality with an
exponent fpp & 0.229 while the average height diverges with ), ~ 1/3 (see
Fig. 4.6, data shown for p = 2). A standard finite-size scaling analysis can
be performed (see Fig. 4.6), yielding Sop/v = 0.34(2) and G, /v = 0.46(2).

These results, together with the previously reported general ones, unam-
biguously place the fluctuation regime for repulsive walls with positive A into
the MN2 universality class.

For systems with 1 < p < 2, where strong transients are expected, after
fixing b = 1 and running simulations up to ¢ = 10°, continuously varying
power-law exponents are found (see Fig. 4.7). We note, however, that these
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Figure 4.5: Log-log plot of the time evolution at a. of (h) (upper, red curves),
—In{nop) (middle, green curves), and the width w (lower, black curves), in the
mean-field regime p = 0.5, for A < 0 (main) and A > 0 (inset). Irrespective
of the sign of A, (h) and the roughness may be fitted to a power-law with the
predicted exponents 6, = 1/(p+2) and Sy = 1/3, respectively. — In{npp) falls on
a straight-line in a double logarithmic plot, confirming the stretched-exponential
behavior of the order parameter.
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Figure 4.6: Log-log plot of the time evolution at a. of (h) (dashed, black curve),
and —log(nop) (solid, red curve), in the fluctuation regime (p = 2) and for
A > 0. From the slopes of the straight-line fits one finds 6, = 0.32(2)(upper-
curve) and Opp = 0.228(6) (lower-curve). Upper-inset: finite-size scaling of (h)
yielding /v = 0.46(2). From the lower-inset one obtains Sop/v = 0.34(2). These
exponents agree with those of the MN2 universality class.

fits give effective rather than asymptotic exponents. In fact, the change in
the effective exponents from mean-field (wall-controlled) to the fluctuation
(intrinsic-interface) regime is expected to occur at shorter times when the
effect of the substrate is less pronounced, implying that reducing the value
of b decreases the crossover time. This was confirmed by simulating systems
with b = 0.1 and b = 0.05 and observing a monotonic decrease of the effective
exponents that converge to the expected asymptotic value fpp =~ 0.228,
0, ~ 1/3 (see inset (a) of Fig. 4.7) in line with the hypothesis that the
transition belongs to the MN2 universality class.

In order to check that p = 2 is the boundary between the strong and weak
transient sub-regimes, we have plotted in Fig. 4.7, inset (b), the average
order-parameter for systems with the same initial condition, at time ¢t = 108,
and different values of p. This is a non-stationary value of the OP that is
strongly affected by transients. It is clear from the figure that the behavior of
the order parameter changes qualitatively at p = 2 corroborating the result
that this value of p marks the boundary between the sub-regimes with and
without severe transients.
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Figure 4.7: Main: Order-parameter multiplied by the expected power-law 9228,

For systems with b = 1, long transients that depend on p are observed for systems
with 1 < p < 2. Inset (a): The crossover times are reduced as b decreases; compare
the upper, red curve for b = 0.05 with the lower, black one for b = 1 (p = 2). Inset
(b): Order-parameter at t = 10% vs p (b = 1). p = 2 marks the boundary of the
strong transient region as illustrated by the different behaviors observed above and
below p = 2.

Repulsive walls and ) < 0.

Mean-field regime. In parallel with the positive A\ case, the results of Figs.
4.5 and 4.10 show that the theoretically predicted mean-field regime is clearly
observed for systems with p < 1.

Fluctuation regime: Multiplicative Noise 1. Again we have to distinguish two
sub-regimes, with and without severe transients, depending on whether p is
larger than or smaller than 2. Simulations in the weak transient regime were
performed for p = 2 and 3. In both of these systems the order-parameter
decays at criticality with an exponent 0pp = 1.19(1) while the average height
diverges with 6, = 0.33(1) (see Fig. 4.8(a),(b) data shown for p = 2). As
was first pointed out in [77], finite-size scaling measurements are non trivial
in this case due to the presence of two different characteristic times. Namely,
the correlation length reaches the size of the system at times ~ L?, whilst
the interface typically detaches from the wall at times ~ LY%». As the
latter grows with a larger exponent for MN1, the interface detaches from
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the wall before it reaches the saturation regime for finite samples, rendering
the evaluation of Bpp/v and z through standard finite-size scaling methods
problematic. An estimation of Spp is possible by taking a large system-size,
L = 2'7 and measuring the order-parameter stationary-state value upon
approaching a.. We find Sop = 1.76(3) and S, = 0.51(3)(see Fig. 4.8(c)).
z is accessible through spreading experiments from an initial condition with
only one active (pinned) site. The measurement of the mean-square deviation
from the origin R?(t) ~ t?/%, gives z = 1.52(5) (not shown). Alternatively,
one can investigate the gap distribution function of the distances between
neighboring contact points at a given time or, equivalently, the average size
of inactive islands in the n-language [77]. For small gaps this function decays
with an exponent z0pp, and we find z0pp = 1.75(10) which leads to a value
of z compatible with 3/2(see Fig. 4.8(d)).

1F 10
<n>

<h>
107}
) 110
107
10° @ (b
> 7 > 7
1 10 10°t 1 10 10" t
<n> r r r
L™ - 11P(L)
2x10° 1 ,
- 110
_5- ]
10 | ] 10-4
- (9 , (d)
sx10' laa] oxig® 1 10 L

Figure 4.8: Results for A < 0 and p = 2. (a) Log-log plot of the time decay
of the order-parameter. The straight-line is a guide to the eye, and has a slope
Oop = 1.19(1). (b) Log-log plot of the average distance from the wall vs time,
leading to 6, = 0.33(1). (c) The scaling of the saturation value of the order-
parameter yields Sop = 1.76(3). (d) Log-log plot of the gap (between contact
points) distribution function at ¢+ = 219, The initial slope gives z00p ~ 1.75(10).

These results, together with the general ones, place unambiguously this
fluctuation regime for repulsive walls with negative A into the MN1 univer-
sality class.

Again, for systems with 1 < p < 2, different effective exponents are ob-
tained at a fixed maximum time for different values of b (unity and smaller),
confirming the existence of strong transients. Upon decreasing b, the influ-



80 Long ranged nonequilibrium wetting

ence of the wall is reduced and a behavior compatible with the MNT1 class
is observed: Opp ~ 1.19, 0, ~ 1/3, fop =~ 1.76 and B, =~ 0.5 (figure not
shown).

Attractive wall and )\ < 0.

The phase-diagram, depicted on the left panel of Fig. 6.3, is similar to that
found for short-ranged interactions [55]. For a fixed b, by varying a one of two
transitions may occur depending upon the initial interfacial state. Initially
unbound interfaces experience an unbinding-binding transition at a. where
the free-interface velocity inverts its sign (in full analogy with the previous
case; see path 3 in Fig. 6.3). On the other hand, initially bound interfaces
unbind at a different non-trivial value of a, noted a* > a., inside the free-
interface unbound phase (path 4 in Fig. 6.3(a)). This transition is analogous
to the one observed for short-ranged forces, and is expected to be controlled
by the unbinding of interface-sites trapped in the potential minimum. Bound
sites (located around the potential minimum) are identified with particles;
unbound sites are described by holes. The effective particle dynamics is very
similar to that of the contact-process [2] (a well-studied model known to
be in the directed percolation class): an occupied site can become empty
when a point is detached, and can induce also the binding of a neighboring
site. Furthermore, empty sites cannot become spontaneously occupied in
the absence of occupied (bound) neighboring sites. Indeed, as soon as the
interface is locally out of the potential well, it is pulled away from it. This
corresponds to the absorbing state characteristic of the directed percolation
class. Note that the statistics of the average number of such pseudo-particles
is completely analogous to that of {(exp(—h)).

Before the depinning transition, typical triangular structures are observed,
consisting of pinned sites (lying in the potential well), and depinned sites
being pulled from the substrate. This triangular shapes (pyramidal in two-
dimensions) are similar to those in the analogous short-range case, and are
reminiscent of pyramidal mounds obtained in the non-equilibrium growing
of some interfaces, as for instance, in the so called Stranski-Krastanov effect
[58].

Our numerical results show that this transition is controlled, as in the
short-ranged case, by directed percolation critical exponents (see Fig. 4.9).
In particular, we have determined Sop/v = 0.26(2) and fpp = 0.161(2), in
excellent agreement with the one-dimensional directed percolation values.
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Figure 4.9: Time decay of the order-parameter at the critical point a = 0.38448.
From the slope in the log-log plot we find 8 = 0.161(2). Inset: finite size scaling of
the order parameter. From the slope in the log-log plot we estimate /v = 0.26(2),
in agreement with directed percolation values.

Let us remark that, as the bound sites remain inside the potential well,
and the dynamics controlling their final “escape” is likely to be insensitive
to the exponential or power-law tails of the potential at large values of h,
the parallel between this behavior and the directed-percolation transition for
short-ranged forces is to be expected. Interestingly, Ginelli et al. investigated
a lattice model of a generalized contact process with long-ranged interactions
between the edges of low-density segments and found a transition in the di-
rected percolation universality class for forces that decay sufficiently slowly,
and a first-order transition otherwise [78]. Clearly, in terms of h this trans-
lates into a long-ranged interaction between the vertices forming the triangle
bases, and it is reasonable to assume that, in turn, an effective long-ranged
attraction between the substrate and the interface must be obtained. In
the light of these results it is reasonable to assume, that both short- and
long-ranged interactions in similar models will be characterized by the same
behavior below b,,.

In the region between a, and a* one observes generic (broad) phase co-
existence: the stationary solution is either bound or unbound depending on
the initial condition. Within this region, the bound phase is characterized by
some bound sites trapped in the potential minimum, and pseudo-unbound
regions separating them [55]. In full analogy with short-ranged forces, close
to the unbinding transition a < a* initially bound interfaces are stable owing
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to a mechanism that eliminates local fluctuations into the unbound phase:
once formed, islands of the unbound phase rapidly transform into triangular
mounds of fixed slope, which subsequently shrink from the edges.

Attractive wall and )\ > 0.

When A > 0, the situation is rather similar to the one for equilibrium and for
non-equilibrium (A > 0) short-ranged systems. At the critical value a, where
the free interface inverts its velocity sign, there is a discontinuous unbinding-
binding transition (path 3 in Fig. 6.3). This value does not depend on the
value of p nor on b or ¢ [79].

The multicritical point. Finally, for either sign of A, path 2 in Fig. 6.3
corresponds to a multi-critical point analog to an equilibrium critical wetting
transition when the critical point is approached at coexistence. Most likely,
its location will not coincide with its mean-field value b = 0, but exhibits
some renormalization shift. The analysis of this multi-critical point will be
considered elsewhere.

4.6.3 Discrete Model

As a final check of universality issues, we simulated a discrete interfacial
model, known to belong to the KPZ class, in the presence of a long-ranged
substrate. The model is the same as that studied in the context of short-
ranged wetting in [69]. Even if plagued with long transient effects (much
larger than in the short-ranged case) all of the previously reported phase
diagrams and universality classes seem to be confirmed for the different types
of walls (i.e. values of b and p) and signs of the non-linearity. Generally,
the discrete model provides slightly better results for the height variable as
compared with the continuum model, and worse for the order-parameter.

Figure 4.10 displays the time growth of the mean separation (h) in the
mean-field like regime (p < 1), for both positive and negative A. Additionally,
the ratio fop/v = 0.251(2) and fpp = 0.156(2) were obtained for the directed
percolation transition, which compares favorably with the accepted estimates
0.25208(5) and 0.1595 [80].
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Figure 4.10: Time growth exponents ) in the mean-field like regime for (h) at
the critical point, as results from the discrete interfacial model. Blue circles(red
squares) stand for A > 0(< 0) data points, and the solid line is the predicted curve
1/(p+2).

4.7 Discussion and Conclusions

We have studied the unbinding of KPZ interfaces in the presence of limit-
ing substrates, interacting via long-ranged potentials. This is the simplest
model for interfacial effective descriptions of wetting and in general, unbind-
ing transitions, of systems interacting through van der Waals forces under
non-equilibrium conditions.

We have presented the results of systematic analytical and numerical
studies of one-dimensional KPZ-like interfaces in the presence of long-ranged
forces Eq. (4.4), supporting the following conclusions:

i) Repulsive interactions drive a non-equilibrium complete wetting tran-
sition for either sign of A\. This transition belongs to different universality
classes depending on the strength of the repulsion, i.e. on the value of p in Eq.
(4.4) and on the sign of A. For p < 1 a mean-field like regime is observed in
both cases, while for p > 1 the fluctuation regime obtains and the transition
is in the multiplicative noise 1 (MN1) class for A < 0 and in the multiplica-
tive noise 2 (MN2) for A > 0. Systems in the fluctuation regime, exhibit
severe crossover effects for bounding potentials with 1 < p < 2. This should
be contrasted with the behavior of equilibrium systems where the value of
p that separates the mean field from the fluctuation regimes was found to
be p = 2. More importantly, in non-equilibrium systems the symmetry of



84 Long ranged nonequilibrium wetting

Exponent A<0 A>0
p<l1 ‘ p>1 ‘p:oo[S] p<l1 ‘ p>1 ‘pzoo[?()]
Oop, (n) ~t=%P ] stretched exp. | 1.19(1) 1.18 stretched exp. | 0.228(6) | 0.229(5)
Bop. (n) ~ daPor n.a. 1.76(3) 1.78 n.a. 0.34(2)* 0.335(5)
O, (t) ~ t0n 1/(p+2) 0.34(1) 0.33 1/(p+2) 0.32(2) | 0.323(10)
Bh, (h) ~ da=Pn 3/2(p+2)* | 0.51(3) 0.5 3/2(p+2)* 0.46(2)* 0.48(3)
2, €~ tY/2 3/2f 1.52(5) 3/2 3/2f 1.48(4) 1.46(5)
Bw, W ~ tPW 1/3F 0.33(1) - 1/37 1/3F -
Vg, &~ da V" 1 1 1 17 17 0.99(3)

Table 4.1: Summary of the critical exponents in the mean-field (p < 1) and the
fluctuation (p > 1) regimes for non-equilibrium, complete wetting transitions with
long-ranged forces. To facilitate the comparison, the exponents for the MN1 and
MN2 universality classes are also included (p = 00). *, exponent from finite-size
analysis or scaling relations; f, estimated value from short simulations; n.a., not
applicable.

the equilibrium wetting and drying transitions is broken and the fluctuation
regime of the corresponding equilibrium wetting transitions is split into two
different non-equilibrium universality classes, MN1 and MN2 respectively.
Our results are collected in table 4.1.

ii) For attractive walls, i.e. below the critical wetting temperature, phase-
diagrams analogous to those of systems with short-ranged forces have been
found: generic phase-coexistence over a finite area limited by directed per-
colation and first-order boundary lines for A < 0, and a first-order phase
transition from an unbound to a bound interface for A > 0. This transition
should not be called “wetting” as the interface detaches below the wetting
transition temperature.

The unbinding transition at the critical wetting point (which in the lan-
guage of this chapter corresponds to a multicritical point) requires a higher
degree of fine-tuning and is therefore expected to be more difficult to observe
in experimental situations. Its study is also more laborious and is deferred
to future work.

For more realistic two-dimensional interfaces, corresponding to three-
dimensional bulk systems, the situation is expected to be very similar: all
universality classes (mean-field, multiplicative noise 1, multiplicative noise
2, and directed percolation) are expected to be substituted by their two-
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dimensional counterparts, with analogous phase diagrams and overall phe-
nomenology.

We hope that the results described here will help to motivate an exper-
imental study of wetting and unbinding transitions under non-equilibrium
situations. In these systems one expects to find the rich phenomenology
described here, and they can be used to test some of our quantitative pre-
dictions, concerning the values of the exponents and the existence of various
universality classes. Liquid-crystals [56], molecular-beam epitaxial systems,
as GaAS [57] claimed to grow following KPZ scaling, or materials exhibiting
Stranski-Krastanov instabilities [58], appear to be good candidates that are
at least worth investigating in this context. Indeed, it is rather exciting to
think that non-equilibrium complete wetting exponents are measurable. This
would be a way of measuring the multiplicative noise critical exponents, and
brings new hope of measuring directed percolation exponents in real systems
[81].
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Chapter 5

Disordered substrates:
Stochastic DN A models

In this chapter we will present results of work under progress.

5.1 Introduction

In life reproduction and normal living functions, DNA has a great impor-
tance. It is the vector of information in most known living forms. It is
difficult to know the part of the information contained in the sequence and
the part which is due to physical processes taking place in growing processes.
In the same way, recently it was argued that the nonlinear dynamics of DNA
itself could play an important role in the process of transcription, therefore
in the expression of the information contained in the sequence. The tran-
scription process takes place when RNA polymerase breaks its way into the
double helix. It is believable that RNA polymerase will most easily enter in-
side the double helix in regions where they are more distant. Following this
argumentation line, we find it useful to have a model that could describe the
dynamics of the double helix. This model could be use to find and explain
transcription start site location and mutation effects outside genes location.
Some mutations are known to inhibit gene expressions and can cause severe
illness(ref).
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5.2 Continuous Langevin equation with dis-
ordered substrate

As a first case of interest, even if this stands a bit away from DNA mod-
els, we present here a numerical study of the Reggeon-Field-Theory with
quenched disorder. The main result is that its behavior is equivalent to the
well studied Contact process(CP) with disorder [29, 28]. We first explain how
to implement the model and, shorlty after present our results.

5.2.1 Quenched disorder for Reggeon-Field-Theory

The CP is a very well known model and simple modifications of it allowed [29]
to investigate the properties of the strong noise fixed point. The only needed
ingredient to add is a spatially dependent rate of creation A(x). To implement
the RFT with quenched disorder, we apply a very similar pattern. Since
the creation rate of the microscopic model is equivalent to a mass in the
RFT we use a spatially dependent mass term or control parameter which is
an almost straightforward modification of the RFT. After seeing the effects
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Figure 5.1: Left: Evidence of active dynamics also observed in disordered CP.
Right: Stretched exponential behavior instead of exponential in the absorbing
phase, at the “clean” (refers to the critical point without defects) critical point.

of disordered on the paradigmatic class of absorbing phase transition, one
naturally wonders what would be the effect of this disorder on other known
universality classes. Harris criterion is useful to predict relevance of quenched
disorder. This is why we investigated this for MN1 and MNZ2.
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5.2.2 Quenched disorder for Multiplicative noise Langevin
equation

In the same way as presented above, we can easily generalized the study of
RFT with quenched disorder to the study of multiplicative noise equation
with disorder. The implementation is otherwise identical to the method ex-
plained in chapters 3 and 4. The main results of this section is that quenched
disorder is irrelevant for this phase transition. One of the reasons for the
impossibility of observing DP exponents in natural systems is the presence
unstability to noise of the RFT. If contrarily, MN1 and MN2 transitions are
stable under the introduction of quenched noise, this leads one to think that
they could more easily be observed in natural experiments. It was suggested
in recent papers studying these transitions(chapter 4 shows that the nature
of the potential either Van der Waals or short-ranged is also irrelevant) but
has unfortunately never been tackled by experimentalists.

5.3 Peyrard-Bishop-Dauxois: a Langevin equa-
tion

The first version of this model was introduced by Peyrard an bishop in [87].
Compared to older DNA models in uses a continuum description allowing for
inclusion of nonlinear effects, microscopic models would exclude. The choice
of the dimensionality of the model, 1+1D allows to study dynamics effects.
The model describes the distance between pairs of bases and interactions
are taken through an Hamiltonian including a Morse potential, equation 5.3.
The shape of the potential is very important but as long as it includes a
wall and a finite well before a flat part extending to infinity, this particular
choice is not expected to be critical for the behavior of the system(it is a
clever choice that allows one to obtain analytic resluts via standard Transfer
Integral methods). The rigidity of the chain makes clear that an interaction
term between subsequent pairs is important W (hy,, h,_1). Different choices
of W have been used, the first one is a simple harmonic term. This lead
the authors of [87] to see a very smooth transition, however denaturation
curves from experiments have a rather steep shape. This was succesfully
accounted for in a modified version including stacking terms of subsequent
bases in [88]. Bases are consituted of cycles so that subsequent bases of a
given chains interact together, not only through the backbone(justifying a
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harmonic term) but also via hydrophobic interactions and overlaping of =
electrons. Those interactions are taken into account by the ’stacking term’,
5.4.

Denaturation processes observed by cryomicroscopy is undergone in the
same way as in our model(see figures).

5.3.1 An equilibrium model

Since the model under study is characterized by an Hamiltonian, it is an equi-
librium model, i.e., the whole information about stationary states is stored
in the Gibbs distribution. Therefore in evaluating the partition function, the
kinetics terms coming from the mass and the potential terms decouple. The
kinetic part only contribute in a prefactor (v/2mmk,T)V. In studying the
stationary state, the intertial terms can be neglected, so that a dynamical
model including only first-order time derivative(no acceleration or mass ef-
fects) would be sufficient. In this sense, we will define a Langevin equation we
can study and compare to problems treated in previous sections. Following
the above-mentioned analogy, we write:

Oha(r,t) OV (hy)

;= 1
at ahn + ‘777(7"a t)a (5 )
with
V(hn) = Wmorse(hn) + VVinteraction (hn) (52)
Wmorse(hn) = Dn(eianhn - 1)2 (53)

k
VVinteraction(hn) = 5(1 + peiﬁ(hn+1+h"))(hn+1 — hn)2 =+ symmetric. (54)

In the following sections we use 5.1 as a starting point to study properties
of DNA. We focus on establishing the nature of the 'melting transition’.
Afterwards, in 5.5 we will discuss the locality of the effects of mutations.

5.4 Melting: critical wetting

DNA double stranded structure is be stable at low temperature. However,
when temperature increases, it is expected that entropy effects will be more
important than energical consideration and the strand are expected to sepa-
rate. Since the absorbance of U.V. light is much greater for individual bases
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than for matched G-C or A-T pairs, it is possible to find experimentally the
proportion of matched and individual bases. This was done on homopoly-
mers artificially synthesized and a sharp transition was observed. Instead,
for natural sequences, the unbinding followed a multistep fashion depending
on the sequence. This can also be observed in numerical simulation of small
disordered systems. As the system size tends to be bigger, much bigger than
individual structures of the disorder, the transition is expected to become
smooth.

5.4.1 Numerical study of the transition

In what follows we will show that the model 5.1 also gives a very sharp phase
transition. The protocol we followed is very simple we initiated a series of
system at different temperatures in a completely ordered state, all bases at
the same distance 2 and let the system evolve. We study the simplest, homo-
geneous case of only G-C bases. The correct parameters for this simulations
are taken from reference [90] in which the authors compared the model to
real experiments in order to find out the correct parameter values to use.
We then monitor several quantities of interest,

e the average distance between bases, (h)
e the number of bases at distance less than 2, (n)
e the average value of (exp(—h)).

From intuition and ideas developed in the two previous chapters those quanti-
ties are expected to carry relevant information to determine the nature of the
transition. At least if this transition coincides with a transition presented in
the previous two chapters, it should be evident by this measurements. Look-
ing for a possible analogy, can be done supposing the interbases distance (h)
might behave in the same way as the average distance between an interface
and the substrate on which it grows. In the previous chapters the studied
transitions were of complete wetting, i.e. we would vary the shape of the
potential to induce a pinned or depinned phase, here instead, the potential
is fixed and we change the temperature.
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Figure 5.2: Results for Egs. (5.1) and (5.4), with p = 1. For the PBD model, with
stacking term, there is an apparently discontinuous phase transition or melting
transition when temperature is increased above a given T,. This is traduced by a
divergence of the average distance between bases. The black line is a power law
with exponent i, in agreement with equilibrium critical wetting.

5.5 Localized effect of mutation : bubbles
statistics

The DNA chain stores all the information in the sequence of the bases. Some
parts of the sequence are known to code for proteins. Others are not ex-
pressed in amino-acids and proteins. Understanding what their function is
remains as an open question. Some are identificable as archaic genes but
other are just repetitions of a pattern not including much information. Re-
cently, the hypothesis has been made that these unexpressed parts might
play a relevant role in the dynamics of DNA. Since the expression of genes
is a mechanical /biochemical process, it is natural to think that transcription
of DNA into RNA is influenced by the dynamics of DNA. In this sense, it is
natural to expect that the sequence and particularly the part that are not
expressed might also play a relevant role in the dynamics and expression of
DNA.



5.6 Conclusion 93

<h>
10°

10 10 10° 10
Time

Figure 5.3: Results for Eqs. (5.1) and (5.4), with p = 0. For the PB model,
there is an apparently continuous phase transition or melting transition when
temperature is increased above a given 7. This is traduced by a divergence of the
average distance between bases. The black line is a power law with exponent %,
in agreement with equilibrium critical wetting.

5.5.1 DNA tanscription start site

Mutations can occur anywhere in DNA chains, if they occur in the coding
part of a gene, this gene might be modified, possibly resulting in a genetic
illness. It has been observed by biologists that mutations occuring in non-
coding parts could result in the non-expression of a closeby gene. A possible
explanation for this events can be that the transcription of DNA into RNA
helped by RNA polymerase could be hindered by the mutation. There is a
so-called transcription start site where RNA polymerase fixes on DNA and
starts the transcription process.

5.6 Conclusion

In this chapter, we have shown that our methodology allows to study Langevin
equation with quenched disorder using as a benchmark the known absorbing
phase transitions of DP including quenched disorder. The following tasks
we have performed is to reproduce part of the known results obtained for
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the PB and the PBD models with the same methodology. This allows one
to easily study bubbles statistics and dynamics. This could be biologically
relevant quantities in understanding effects of mutations. Our conclusion is
that mutations can modify the statistics of bubbles in a non-local way. Due
to the spatial inhomogeneities, and to the possible displacement of bubbles,
non-local interaction effects are to expect. Considering a given A-T region,
surrounded by G-C pairs. It opens less often than a A-T region surrounded
by more A-T bases. In this way, if a mutation modifies the surrounding of the
A-T region we are considering, it will alter the behavior of this A-T region.
Some mutations might hinder the opening of transcription start sites and
alter normal patterns of gene expression. The models we have studied are
harsh simplificationS of the complex reality and already allow for qualitative
understanding of many phenomena. A subsequent complication of the model
would allow to study more complicated phenomena.



Chapter 6

Non-accessible aborbing state
in reaction-diffusion systems

6.1 Introduction

We analyze from the renormalization group perspective a universality class of
reaction-diffusion systems with absorbing states. It describes models where
the vacuum state is not accessible, as the set of reactions 24 — A together
with creation processes of the form A — nA with n > 2. This class includes
the (exactly solvable in one-dimension) reversible model 24 <+ A as a partic-
ular example, as well as many other non-reversible sets of reactions, proving
that reversibility is not the main feature of this class as previously thought.
By using field theoretical techniques we show that the critical point appears
at zero creation-rate (in accordance with known results for the reversible
case) and it is controlled by the well known pair-coagulation renormalization
group fixed point, with non-trivial exactly computable critical exponents in
any dimension. Finally, we report on Monte-Carlo simulations, confirming
the field theoretical predictions in one and two dimensions for various re-
versible and non-reversible sets of reactions.

In a recent paper Elgart and Kamenev [91] have proposed a classification
of absorbing state phase transitions, a subject that has been one of the central
pillars of non-equilibrium statistical mechanics over the last decade [1, 2, 92].
The strategy they follow is elegant and powerful. The main idea is to (i) write
down using standard techniques the generating functional (or, equivalently,
the effective Hamiltonian) for a given reaction-diffusion system; (ii) inspect



96 Non-accessible aborbing state in reaction-diffusion systems

the phase space in saddle-point approximation paying special attention to
the “zero-energy” manifolds which determine the topological properties; (iii)
detect possible structural changes in the phase portrait: the birthmark of
phase transitions, and (iv) classify them according to basic topological prop-
erties. This procedure is a natural extension to non-equilibrium problems of
the rearrangement of thermodynamic-potential minima occurring at equilib-
rium phase transitions. Hence, it allows for a categorization of universality
classes attending to symmetry principles, conservation laws, and few other
relevant ingredients, which determine the phase-space topology and its possi-
ble structural changes. Establishing the limits of validity of the saddle-point
approximation within this context and developing systematic improvements
to it remain as fundamental open problems.

Using this strategy, Elgart and Kamenev report on 5 non-trivial universal-
ity classes with absorbing states, occurring in one-dimensional systems with
just one type of particle [93, 94]. The first 4 ones are: (i) directed percolation
(DP) characterizing generic systems with an absorbing phase transition and
without extra symmetries, conservation laws, quenched disorder, nor long-
range interactions [92, 95], (ii) the usually called parity conserved (PC) [96]
also known as DP2 or generalized voter class [16] which includes two symmet-
ric absorbing states, (iii) the very elusive pair-contact-process-with diffusion
(PCPD) class in which all reactions involve pairs of particles [98, 99], and (iv)
the triplet-contact-process-with diffusion (TCPD) in which reactions involve
triplets of particles [100].

In this paper we focus on the fifth class in [91]. It describes the reversible
reactions A — 2A and 2A — A occurring at rates p and o respectively.
This model was solved exactly in one dimension more than twenty years
ago in a seminal paper by Burschka, Doering, and ben-Avraham [101] by
employing the empty interval method [102]. Finite-size properties, scaling
functions, and critical exponents have also been exactly computed for this
reversible model and for variations of it [101] in one dimension. Note that
except for the absence of one-particle spontaneous annihilation, A — 0, this
set of reactions coincides with the contact process [1] a well-known model in
the robust DP class [92]. It is, therefore, interesting to elucidate which is the
main relevant difference in the renormalization group sense, giving rise to a
non-trivial non-DP type of scaling. From considerations in [91] it seems that
the fact that the reactions are reversible plays such a relevant role, but as we
will illustrate, reversibility is a sufficient, but not a necessary, condition.

From the field theoretical point of view, Cardy and Tauber had obtained



6.1 Introduction 97

in their seminal article [103] a one-loop calculation of critical exponents for
the closely related set of reactions 2A < 0, while in a recent paper Jack,
Mayer, and Sollich have shown that such one-loop results are also valid for
2A < A and have to be exact owing to the existence of detailed balance for
reversible reactions [104]. Therefore, two or more loop corrections should can-
cel out, even if this is not explicitely shown in [104]. In any case, the main
results are that the critical point is located at p, = 0 (any non-vanishing
branching rate leads to sustained activity) and the order-parameter critical
exponent is f = 1. The long-time long-distance properties turn out to be con-
trolled by the well-known “pure” pair-coagulation (24 — A) RG fixed point
[105, 103, 106, 104] and all exponents can be computed in any dimension.

In this paper, we perform a full diagrammatic expansion of various reaction-
diffusion models extending previous analyses to all orders in perturbation the-
ory. First, we recover the previously known results for the reversible model
2A < A. Afterward, using the intuition developed from the previous full
diagrammatic analysis we construct different sets of non-reversible reactions,
and argue that they belong to this same universality class. Its key ingredient
turns out to be the absence of an accessible vacuum state, i.e. there is no
reaction mA — 0 but just pair-coagulation, combined with creation reac-
tions of the form A — nA. The reversible reaction, n = 2 discussed in [91]
and [104] is just a representative of this broader class: reversibility (which
tantamount to the detailed-balance condition in [104]) is a sufficient but not
a necessary requirement.

Let us remark that reactions as 2A <> 0 and its non-reversible extensions
2A — 0,0 — 3A, 4A, ... can also be argued to belong to this same class. In
these cases, the vacuum state is accessible, but it is not stable, so they are
not genuine absorbing state models.

To verify the field-theoretical predictions we perform Monte-Carlo sim-
ulations for various non-reversible sets of reactions, implemented with and
without hard-core exclusion (“fermionic” or “bosonic”, respectively) in one
and two dimensions. All critical exponents, are in perfect agreement with
the RG predictions, confirming the existence of a robust universality class,
broader than thought before.

Before proceeding, we should underline that while many of the results
contained in this paper are already known (some from exact solutions of the
reversible model in one dimension [101] and some from similar perturbative
calculations combined with symmetry arguments [91, 105, 103, 106, 104]),
a systematic presentation of them, focusing the attention on universality
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aspects is, to the best of our knowledge, lacking in the literature. This paper
aims at filling this empty space and at providing a comprehensive picture
of this universality class, extending it to non-reversible reactions without an
accessible vacuum state.

6.2 Field theory analysis of A <> 2A

The techniques employed in this section are standard and we refer the reader
to [107, 82] and more specifically to [105, 103, 106] for more detailed calcu-
lations and/or pedagogical presentations.

Let us apply the Doi-Peliti formalism [107, 103, 106] (see also [108, 109])
to the reversible set of reactions A — 24 and 24 — A occurring at rates
i and o respectively. They can be cast into a generating functional whose
associated (bosonic) action is

S[p, 7] = / dt / d?z[m(0,¢ — DV*¢) — H[p,7]], with
Hlp, ] = (7° —7)(up —0¢?), (6.1)

where ¢(x,t) and 7(x,t) are the density and the response fields respectively
(some spatial and time dependences have been omitted for simplicity). For
a general process kA — jA with £ and j integer numbers, the associated
effective Hamiltonian in this formalism includes a factor [r7 — 7%]¢*, which
is proportional to [ — w| if and only if the absorbing state is not accessible,
i.e. j >0 and k> 0.

For readers with more intuition in terms of stochastic equations, an as-
sociated Langevin equation can be easily derived:

0ip(x,t) = DV?¢ + pp — 0¢* + \/ 11 — 5 ¢*1(x, 1) (6.2)

where 7(x,t) is a Gaussian white noise. Let us emphasize the similarity
between Eq.(6.2) and the Langevin equation for the DP class [95, 92]. Despite
of this alikeness, Eq.(6.2) is not free from interpretation difficulties as the
density field is not a real-valued one, but develops an imaginary part [109].
For this reason we avoid using it and center the forthcoming discussion on
Eq.(6.1).

Owing to the fact that the effective Hamiltonian in Eq.(6.1), H[¢, 7], is

proportional to (7 — ), 7 = 0 and m = 1 are zero-energy manifolds. The
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existence of these two constant-m solutions is, according to [91], at the basis
of the non-DP behavior of this model. Indeed, the four zero-energy solutions:
m=0,7m=1, ¢ =0, and ¢ = pu/o, define a rectangular geometry in the
phase portrait (see Fig. 1b and [91]), which should be compared with the
standard, triangular, DP topology, for which only one constant-7 solution
exists (see Fig. la and [91]) as we illustrate now.

It is worth noticing that the common factor (72 — ) in Eq.(6.1), arising
from the fact that the absorbing state is not accessible, can be interpreted as
a subtle symmetry between all the coefficients of (noise) terms proportional to
72 and their corresponding (deterministic) ones proportional to —7. Indeed,
it is closely related to the detailed-balance symmetry discussed in [104]. If
an additional reaction A — 0 occurring at rate A is switched on, a term
Ap(1 — ) has to be added to the Hamiltonian. In such a case, (72 — 7)
is not a common factor, the subtle symmetry is broken and 7 = 0 is not
a zero-energy solution anymore. This leads to the triangular topology for
zero-energy manifolds in the phase space (Fig 1a) and, hence, to DP-scaling.
Something similar occurs by switching on any other reaction as mA — 0,
with m > 2, converting the vacuum into an accessible state.

Let us present a different argument leading to the same conclusion. From
standard naive power counting and relevance arguments one could be tempted
to conclude that this problem is in the DP class, and that the critical dimen-
sion is d. = 4. Indeed, as said before, the leading (lowest order) terms in
both the deterministic part and the noise are identical to their analogous
ones in the DP field theory [95, 92], for which d. = 4. The only way out
of this naive (and wrong) conclusion is that, at the critical point where the
linear-deterministic term coefficient vanishes, the coefficient of the leading
DP-like noise term m2¢ also vanishes owing to the abovementioned subtle
symmetry. This opens the door for higher order noise terms to control the
(non-DP) scaling. Indeed, a proper power counting analysis reveals that, as
the interaction Hamiltonian is proportional to (7% — 7), 7 has to be dimen-
sionless, which leads to [¢] = A? (where A has dimensions of momentum) to
ensure a dimensionless action, and consequently to [u] = A? and [o] = A%~
Therefore, the theory upper critical dimension is d. = 2 [103, 104, 91].

The existence of the common factor (72 — 7) in Eq.(6.1) implies that the
p~-dependent non-trivial manifold and the trivial one, ¢ = 0, merge at the
critical point rather than intersecting in just a point as in DP. This is the key
reason for the models without an accessible vacuum to exhibit a different type
of scaling. To substantiate this assertion we need to prove that the previous
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Figure 6.1: Schematic zero-energy manifolds (bold lines) for different reactions.
The line marked in red (non-trivial manifold, depending on the control parameter
1) moves downward upon approaching the critical point in all cases: a = p/o.
While directed percolation is characterized by a triangular structure as in (a),
models without an accessible vacuum state have a different form, being rectangular
(b), trapezoidal (c), or more complicated geometries (d), for different reactions.
For reversible models with an unstable vacuum, ¢ = 0 is not a zero-energy manifold
(e). The structures in (c) and (d) are not robust under RG flow, but evolve to
non-closed topologies as the one in figure (f).
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bare-action symmetry, or associated topological structure, survives to the
inclusion of fluctuations (i.e. it remains valid beyond mean-field [110]).

The basic elements for a complete perturbative expansion at a diagram-
matic level are: the usual DP-noise vertex (72¢) [95, 103, 106], the pair-
coagulation ones (7¢? and 72¢?), as well as the propagator (—iw + Dx? + p)~
[105, 103, 106]. Diagrammatically, we represent response fields by wavy lines

and the density fields by straight ones. For instance, the pair-coagulation

noise vertex is depicted as o2 >;;ii and analogous figures, with different

1

numbers of straight and/or wavy lines are employed for the other vertices
and the propagator.

In order to perform a sound perturbative expansion to all orders in per-
turbation theory, we choose to write separately diagrams with and without
corrections proportional to p. The second group includes only diagrams
with vertices proportional to o (i.e. expansions of Z-functions in powers of
o). Simple inspection reveals that such diagrammatic corrections are those of
the pair-coagulation process, a theory well-known to be super-renormalizable,
i.e., all these diagrams can be computed and resummed to all orders. Indeed,
the only possible diagrammatic corrections to the pair-coagulation vertices,
proportional to o, have the typical “bubble” structure, leading to a geometric

D
_ 2 >;:i>ji
+ o >ii>$i>:i +...
°
1+o i

where o is the renormalized (or “dressed”) coagulation coefficient. Omitting
external legs in Eq.(6.3), or = %7 = o(1 — o%) with ¥ = L= where
I denotes the one-loop diagram evaluated at zero external frequency and

arbitrary momentum scale A [107, 82, 103]:

1 1 A€
I=——— [d%d
(27)(d+1) / T T DR? —iw+ D2 e

(6.3)
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with € = 2 — d. Similar expressions are obtained for all the renormalized
coefficients by just changing the leftmost and/or the rightmost vertex of the
series in Eq.(6.3). If these were the only corrections, (i.e. if the RG fixed
point was at u. = 0 so that diagrams including corrections proportional
to p would not give any non-vanishing contribution) then the renormalized
parameters would be:

pr = Zup = p(l —o¥)
or = 2,0 =0(l —oX). (6.4)

for the two coefficients proportional to ;4 and the two proportional to o respec-
tively, showing that the subtle symmetry is not broken. The corresponding
flow equations would be

Opr = (2 — 00)X)
O,0r = 0(e — o0)Y) (6.5)

where 0, stands for the logarithmic derivative with respect to the momentum
scale at which integral are evaluated [107, 103, 82, 106]. For e < 0, i.e. d > 2,
the trivial (mean field) solution o = p = 0 is infrared stable, while for € > 0,
the only infrared stable fixed point is o = €/(0,2) with p = 0. Plugging this
into the first equation in (6.5), we obtain the anomalous scaling dimension
of ur, [ur] = 2 — € = d, which coincides with the one-loop result obtained in
[103, 91] (see also [104]).

The change in the scaling dimension of the “mass” term, from its naive
value [p] = 2 to the renormalized exact one, [ugr| = d, induces a change in all
critical exponents corresponding to magnitudes measured away from the crit-
ical point with respect to their corresponding mean field values. Moreover,
as happens in pair-coagulation, there is no further renormalization required
for the fields nor the diffusion constant [105, 103, 111] and therefore all expo-
nents can be exactly computed at any dimension. For instance, the scaling
dimension of the field is A? and, hence, scales as ug, implying 8 = 1 in any
dimension. Using the same logic one obtains v = 2, v; = 1 for the correla-
tion time and correlation length exponents, while right at the critical point
z = 2. Using standard scaling relations, the density of particles as a function
of time decays in one dimension with an exponent § = 1/2, while in d = 2
a similar calculation leads to logarithmic corrections and, in particular, to a
decay In(t)/t, while S remains equal to 1 [103].
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In order to prove that the fixed point with p, = 0 is not just a solution
but also the only one one should consider all the possible diagrams (even if
this can be done only in a symbolic form [112]), write down the 4 Z-functions,
analogous to eq.(6.4) for the 4 vertex functions (2 proportional to p and 2
to o in their bare form). Doing this, it is straightforward to check that 3
different and independent flow equations are obtained. The fourth one is
not independent owing to the usual duality symmetry [95] but this is not
important for the argumentation here. As there are only 2 independent bare
parameters, there is no way to find a fixed point for this set of 3 independent
equations except for the trivial one p. = 0, which simultaneously satisfies in a
trivial way the first 2 equations, and leads back to the preceeding calculation,
to the symmetry preserving Eq.(6.4), and to the same set of exponents.

Note that in models in the DP class, where the naive power counting is
different, with d. = 4, only 2 independent parameters in the flow equations
need to be fine tuned to zero. The third one (corresponding to the highest
order noise coefficient) is irrelevant (flows to zero) already at mean field level
and, therefore, does not require fine tuning to vanish asymptotically. Hence,
contrarily to the previous case, a non-trivial solution, p. # 0 exists leading
to a DP fixed point.

As pointed out in [104], the reversible reaction studied here and 24 < 0
share the same type of critical behavior. Indeed, the Hamiltonian in this
latter case is (7% — 1)(u — 0¢?) where, as before, u and o are the creation
and annihilation rate respectively. The zero-energy manifolds are: 7 = 41
and ¢ = ++/pu/o (fig. le). They define a quadrangular structure, as the
one described above, but in this case ¢ = 0 is not an invariant manifold:
the vacuum state is accessible but it is not stable, so it is not properly an
absorbing state phase transition. A perturbative analysis analogous to the
one above can be done for the present case (indeed this is the model studied in
[103, 104]) and leads to the same set of critical exponents; here the common
factor 72 — 1 plays the role of the subtle symmetry above.

Finally, for reversible coagulation reactions involving t¢riplets instead of
pairs, A <+ 3A, we obtain similar results: vanishing critical point and exactly
computable exponents, but the critical dimension is d. < 1 in this case [91].
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6.3 Extension to non-reversible reactions

A careful but simple inspection of the arguments in the preceeding section
leads to the conclusion that none of the reported results depends on the fact
that the creation reaction is of the form A — 2A. As will be argued in
this section, most of them apply to more general non-reversible processes
with creation reactions as A — nA. For these, the creation part of the
Hamiltonian is p(7™ — )@, which together with the pair-coagulation terms
o(m? —m)¢? guarantees that (72 — ) can be extracted as a common factor for
non-reversible bare Hamiltonians, and hence 7 is dimensionless and 7 = 0
and m = 1 are zero-energy solutions as in the n = 2 case. For example for
n=3 H=upnr*—m)¢p—o(m*—m)¢?> = (7 —7)[u(r + 1)¢ — 0¢?]. The
existence of such a common factor in the bare Hamiltonian is, as explained
before, guaranteed if and only if the vacuum state is not accessible.

For the family of non-reversible models with n > 2, the geometry of
the zero-energy manifolds of the bare Hamiltonian is not a rectangular one
as occurs for the reversible set of reactions with n = 2 [91]. For instance,
for n = 3 one obtains a trapezoidal geometry (zero-energy solutions: 7 = 0,
m=1,¢=0and ¢ = (n+1)u/o, (see figure 1c), but the overall topology is not
changed. Indeed, as the critical point is approached the difference between
the rectangle and the trapezium becomes negligible, and at criticality this
manifold merges with the ¢ = 0 one. Analogously, for n = 4 one obtains
a quadrangle with 3 straight lines and a curved one (¢ = (72 + 7 + 1)u/0)
(see fig. 1d), which also becomes closer and closer to the horizontal line
upon approaching the critical point. In all cases, the non-trivial y-dependent
manifold merges with the absorbing-state one ¢ = 0 at the critical point, and
this constitutes the main trait of this class as will be illustrated here: in DP
they intersect at criticality at a single point, in PC they intersect in one
point in the active phase and merge at criticality [91], while in the class
under scrutiny, they do not intersect in the active phase and merge at the
critical point.

Note that, as 7 is dimensionless, all the different processes for different
values of n are equally relevant at mean-field level (they just differ in powers
of ). As a consequence, the naive scaling dimensions for any n > 2 are as in
the preceeding section, leading to d. = 2. It is also important to realize that
higher-order processes generate effectively lower-order ones (in particular,
A — 2A is always generated) and all of them share the same degree of
naive relevancy. The generation of lower-order processes induces changes in
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the zero-energy manifolds, and leads to combinations of the previous “pure”
topologies obtained for creation processes involving only one value of n. In
order to render the theory renormalizable, lower order terms have to be
included in the bare Hamiltonian, with coefficients proportional to u (as they
have to vanish as y — 0) that we call u,. Indeed, from now on we study
physical processes where various types of creation events with different values
of n are simultaneously present (in particular n = 2 is always generated).

At a perturbative level, one can proceed as before, and separate correc-
tions proportional and not proportional to u. The first notorious difference
with the reversible case is that upon renormalizing, the shape of some zero-
energy manifolds is deformed if terms with n > 3 are present. Indeed, owing
to the fact that the coefficients of 7", with n > 3, in these generalized pro-
cesses renormalize as

Hin, R = Hn (1 - w@) (6.6)

up to one loop [113] while the corresponding “mass” coefficient renormalizes
as in Eq.(6.4), different corrections are generated for these two coefficients
equal at a bare level (therefore, the need to use different names, N%,R and
Un,r = [g, for the two of them, as a generalization of the single equation
for pgr in Eq.(6.4)). Eq.(6.6) shows that the scaling dimensions of the non-
linear term coefficients, i, p varies with n: the lower the value of n, the more
relevant the corresponding non-linear term.

Proceeding as before, it is straightforward to see by performing a per-
turbative expansion around d. = 2 that the only way to find a solution of
the RG flow equations at any arbitrary order in perturbation theory is by
fixing 4 = 0. For instance, considering creation reactions with n = 2 and
n = 3, one has 3 independent parameters: o, ps and ps and 5 independent
flow equations. Hence, at criticality all creation rates have to vanish, and one
recovers the fixed point and exponents in the previous section, so the uni-
versality class is preserved under the introduction of non-reversible reactions.
Note that, in order to extend the calculation in the preceeding section, it has
been enough to impose that all creation terms are proportional to u. This
ensures that all of them vanish at the critical point and generate no extra
diagrammatic correction, but they do not need to be all equal as happens in
the reversible case.

We should also emphasize that, as said before, the mass-like terms asso-
ciated to each n-creation process are all equally relevant and they all renor-
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malize as o, while the p) renormalize differently for n > 3 (see Eq.(6.6))
and hence, 72 — 7 is not a common factor of the renormalized Hamiltonian,
except at the critical point 4 = 0 where such a subtle symmetry is restored.
The common factor or subtle symmetry invoked all along the calculation in
the previous section, equivalent to the existence of reversibility or detailed
balance, is not a necessary condition. As a consequence, the zero-energy
manifold structure is affected: the topology shown in figures 1c and 1d is
not stable under the RG flow, 7 = 1 is not a zero-energy manifold of the
renormalized Hamiltonian, and the phase portrait structure becomes more
complicated (see Fig. 1f).

Despite of this, we observe that from the phase-portrait point of view, a
key ingredient, not altered upon introducing non-reversible reactions, is the
fact that the non-trivial p-dependent manifold and the trivial one ¢ = 0 do
not intersect in the active phase and merge into a degenerate manifold at the
critical point. Therefore, the main ingredient of this universality class is not
the reversibility nor the existence of a common factor in the renormalized
Hamiltonian but the way in which the non-trivial manifold and the trivial
one merge [114]. In summary, reversibility is a sufficient but not a necessary
requirement.

For completeness’ sake let us comment on another family of reactions
without an accessible vacuum, including higher-order creation reactions as
kA — (k+n)A with & > 2 which exhibit a different type of scaling behavior.
These have to be complemented with higher order annihilation reactions as
jA — [A with j > k and 7 > [ > 1 in order to ensure the existence of
a bounded stationary state. For instance, taking 24 — 3A (with rate pu)
as a creation reaction together with 24 — A (rate o), we need another
annihilation reaction, as 34 — 2A (with rate A > p) to have a well defined
stationary state. For this case, even if 7 = 0 and 7 = 1 are constant energy
solutions (at least at a bare level) the manifold ¢ = 0 is degenerated, and the
non-trivial zero-energy solution, ¢ = u/\ — o/(Ar), intersects the line ¢ = 0
at o/p and becomes singular at 7 = 0, originating a very different topology
from the one above. This topology corresponds to the PCPD class [91, 98].
Therefore, creation from pairs in systems without an accessible vacuum leads
to a different universality class.

Finally, for non-reversible coagulation reactions involving triplets (34 —
A and A — nA) we obtain again that the universality class remains un-
changed with respect to the corresponding reversible reaction (see last para-
graph of the previous section).
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Figure 6.2: (Color online) Results of Monte-Carlo simulations for 24 — A and
A — 3A implemented in a bosonic way in one dimension. The decay of the order
parameter at criticality (u. = 0) is given by ¢+7°% (main plot). This result is
well known as at g = 0 this model coincides with pair-coagulation. The order-
parameter critical exponent is perfectly fitted by S = 1.00 (inset). Very similar
results are obtained for the reversible case, n = 2, as well as for higher-order
non-reversible cases, as n =4 and n = 5.

6.4 Monte-Carlo simulations

In order to verify the above field theoretical predictions we have performed
Monte-Carlo simulations of the reversible reactions (reproducing some ex-
isting results [101]) and, more relevantly, non-reversible set of reactions:
2A — A together with A — nA with n = 3, 4, 5. We have considered
two different implementations: a bosonic one in which the number of parti-
cles at every site in a lattice is unrestricted (which is the one directly related
to the bosonic field theory presented here), and a fermionic one with num-
ber occupancy restricted to be 0 or 1. For both of them the same type
of numerical experiments have been performed. Figure 2 shows our main
results for n = 3 in the bosonic implementation. In the main body, we
plot the time evolution of the order-parameter as a function of time for a
one-dimensional lattice of size 22°. A clean power-law decay is observed at
pe = 0 with slope # = 0.500(1) in a log-log plot. This is not surprising as at
i = 0 this model coincides with pair-coagulation. Direct measurements of
the order-parameter as a function of the distance to the critical point (up-
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Figure 6.3: (Color online) Results of Monte-Carlo simulations for 24 — A and
A — 3A implemented in a bosonic way in two dimensions. The decay of the order
parameter at criticality (4. = 0) is proportional to In(¢)/¢ (main plot). At its
critical point g = 0, this model coincides with pair-coagulation, for which this is
a well known results. The order-parameter critical exponent is perfectly fitted by
B = 1.00 (inset).

per inset) lead to § = 1.00(1). Also, from measures of the mean-squared
distance associated with two point correlation functions [104] one can easily
measure z = 2 in all the cases under consideration. All the remaining expo-
nents can be derived using standard scaling laws, providing a full check of
the theoretical predictions for the bosonic model. For the fermionic model we
obtain identical conclusions. In d = 2 mean-field exponents with logarithmic
corrections have been measured confirming that d. = 2 (see figure 3). In
d = 3, Jack et al. [104] showed by means of Monte-Carlo simulations that
the scaling is Gaussian as expected.

We have also verified that for the sets of non-reversible reactions with
n =4 and with 5 one obtains the same set of critical exponents, supporting
again the theoretical conclusions.

6.5 Conclusion
We have shown using field theoretical arguments and verified by means of

Monte-Carlo simulations that all reaction-diffusion processes including pair
coagulation 2A — A and creation in the form A — nA belong to the
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same universality class, regardless of whether the reactions are reversible
or not. The critical point is located at zero creation rate, and all critical
exponents are controlled by the well-known pair-coagulation renormalization
group fixed point and can be exactly computed. These conclusions are in
agreement with exactly known results for the reversible model in one dimen-
sion [101]. The main ingredient of this class of absorbing-state transitions is
that the vacuum state is not accessible and creation occurs from individual
particles. If creation occurs only from pairs then scaling is as in the PCPD
class while, as soon as a reaction making the vacuum accessible, as, for exam-
ple, 2A — 0 is switched-on, the system recovers standard DP scaling. There
are also models in this universality class as 2A <> 0 where the vacuum state
is accessible but in these cases it is not stable: 0 — 2A, 3A, ..., so they are
not properly absorbing-state transitions.

We have shown that the topology of the zero-energy manifolds is very
important to unveil universality classes, but there could be many subtleties
leading to surprises. We hope that this work fosters new studies to clarify
some of the still-standing problems on universality in non-equilibrium critical
phenomena.
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Chapter 7

Resumen

7.1 Introduccion

Este trabajo de tesis constituye un trabajo original desarrollado con el fin
de aplicar las ecuaciones de Langevin a transiciones de fase de no-equilibrio.
En primer lugar y a modo de comienzo, se presenta la motivacién fisica y se
introducen las técnicas y conceptos usados.

Muchos sistemas fisicos pueden estar en varias fases: liquida, gaseosa
o sélida. En cada una de estas fases, el sistema que estudiamos posee
propiedades que varian en el espacio y en el tiempo. Tipicamente, estas
variaciones estdn caracterizadas por longitudes de correlaciones, tanto es-
paciales como temporales, cortas. Suelen decaer de forma exponencial, asi
que existe una distancia caracteristica que aparece en la exponencial notada
A. De este modo, dos puntos del sistema espaciados por una distancia mas
grande que A sufren fluctuaciones independientes. El promedio de fluctua-
ciones independientes es facil de tratar y no crea dificultades.

La situacion que nos atane es bastante distinta. Nos concentraremos
en transiciones de estado continuas, llamadas fenémenos criticos. En la cer-
cania de un punto critico, la longitud de correlacién diverge como una ley
de potencia y dos puntos a cualquier distancia el uno del otro, siempre aca-
ban apareciendo correlacionados, suficientemente cerca del punto critico. En
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esta situacion, las fluctuaciones estan correlacionadas y resultan mucho mas
importantes para entender el comportamiento del sistema pero también son
mas dificiles de tratar.

Aprovechando el crecimiento de la longitud de correlaciéon, podemos em-
plear descripciones efectivas que promedian espacialmente el parametro de
orden, variable que describe el estado sistema, y asi obtener una descripcién
continua del sistema. Estas descripciones se llaman, ecuaciones de Langevin.
Estas tienen como ventajas i) que se pueden tratar mas facilmente de forma
analitica por medio de herramientas de teoria de campos, usando la equiv-
alencia con el formalismo del funcional generador; ii) en este formalismo,
las simetrias del sistema aparecen de forma trasparente, permitiendo usar la
intuicién fisica de forma facil; iii) este formalismo, aunque delicado, puede
ser estudiado por herramientas numéricas eficientes y de tal manera, compro-
bar o inferir las intuiciones, sirviendo de guia; iv) este formalismo puede ser
obtenido desde los modelos microscopicos a los cuales es equivalente, siendo
asi es un representante especial y elegante de las clases de universalidad, y v)
como punto final es equivalente a una ecuacién de Fokker-Planck y permite
asi hacer calculos de campo medio de forma autoconsistente estandar. Todas
estas caracteristicas, constituyen el nodo central, subyacente a la mayoria de
los razonamientos presentados en esta tesis.



7.2 Capitulo 2: Transiciones con dos Estados Absorbentes que
compiten 113

7.2 Capitulo 2: Transiciones con dos Estados
Absorbentes que compiten

El trabajo presentado en el capitulo 2 fue realizado en colaboracién con
Hugues Chaté, Ivan Dornic y Miguel Angel Muiioz [16].

La forma en la que se divide este capitulo es la siguiente:

2.1, es una introduccién a la problematica.

2.2, presenta la descripcién del modelo que vamos a estudiar y la
metodologia numérica que hemos empleado.

2.3, presenta los resultados que hemos obtenido en campo medio, en
dos y una dimensiones.

- 2.4, presenta resultados de un modelo generalizado de los precedentes,
investigando cudles son las simetrias imprescindibles para la clase de
universalidad del Votante Generalizado (GV).

2.5, presenta una discusién de las limitaciones de nuestros resultados,
sugeriendo posibles nuevos estudios.

- 2.6, es la conclusién de este capitulo.

El campo de investigacion de los cambios de fase fuera del equilibrio ha
sido muy activo durante las ultimas décadas. Un caso particular de cambio
de fase fuera del equilibrio es el de los cambios de fase a uno o varios estados
absorbentes. Un estado absorbente es uno tal que el sistema no pueda salir
de él. Asi, es una manera drastica de imponer irreversibilidad y de forzar el
sistema a encontrarse fuera del equilibrio. Este es un tema de mucho interés
y para un estudio detallado se pueden ver [1, 2]. Las transiciones de fase
a dos estados absorbentes se han estudiado empleando modelos reticulares.
Algunos modelos dieron resultados que pueden parecer discrepar [5, 6] en
dimensién dos. Los autores de [5] sugieren que la presencia de dos estados
absorbentes simétricos lleva a una transicién de fase que caracterizan con
precisién y llaman votante generalizado (GV) mientras que los autores de [6]
demuestran que en algunos casos se pueden ver dos transiciones: Ising y Per-
colacién Dirigida (DP). En este trabajo queremos estudiar estas transiciones
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con una descripcién continua, proponemos una ecuacion de Langevin,

O001) (a6~ b6") (1~ 6%) + DV?0(r.0) + 0T~ & Dn, (1)

con dos estados absorbentes simétricos. Las ecuaciones de Langevin sue-
len tener como ventaja sobre los modelos reticulares que permiten ver mas
facilmente las simetrias y ademds, permiten un tratamiento analitico [21].
Estudiando (7.1) numéricamente, vemos que conseguimos reproducir los es-
cenarios presentados en [5] y [6]. Con una metodologia ya establecida [1, 2]
podemos caracterizar los cambios de fase. En el caso de que se den dos transi-
ciones, se ve que una es del tipo Ising, por lo que se rompe la simetria, aparece
una magnetizacion; la otra transicién es de tipo DP (2.7.b y d). En el caso de
que haya sélo una transicion, esta transicion presenta simultdneamente una
ruptura de simetria y una transicion absorbente y pertenece a la clase del
GV (2.7.c). Bajo el punto de vista que aportamos, quedan claros y naturales
los resultados presentados por [5, 6] y recordados en 2.1.2.

Es bien sabido que el comportamiento critico de un modelo depende
de la dimensién en la que se estudia. A medida que la dimensién del sis-
tema estudiado baja, este se aleja del posible campo medio en dimensién
alta, y las fluctuaciones en el sistema aumentan, haciendo que su compor-
tamiento sea generalmente mas interesante. Las propiedades de (7.1) también
resultan ser interesantes en una dimensién. Tanto en este caso como en di-
mensién dos, se han estudiado muchos modelos reticulares con dos estados
absorbentes simétricos que comparten las mismas propiedades criticas que
nuestra ecuacién y por lo tanto parecen definir una clase de universalidad,
DP2, Parity-conserving (2.1), Votante o Ising cinético. En una dimensién,
Ec. (7.1) presenta un comportamiento critico comiin al de DP2 o Parity-
conserving y permite ilustrar claramente la equivalencia de estas dos clases
de universalidad en una dimension. Esta equivalencia reside en la dindmica
que lleva a la transicién del GV. La transicion del GV separa dos fases: una
ordenada en la que todo el sistema se encuentra en el mismo estado (+1 0-1),
y otra desordenada en la que hay interfaces que separan dominios de signos
opuestos. En el GV no hay ruido de ‘bulk’ y sélo interesa la dindmica de las
interfaces. Un numero impar de interfaces separa siempre dos dominios de
signos opuestos y un numero par separa dos dominios del mismo signo. Esto
da lugar a una ley de conservacién 'geométrica’ o 'topoldgica’ que se expresa
de la siguiente manera: ’Se pueden crear interfaces o se pueden aniquilar,
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pero se conserva la paridad del nimero de interfaces.”. Asi tenemos una
descripcion en la que asociando a cada interfaz una particula, se ve muy
facilmente la analogia entre DP2 y Parity-conserving en una dimensiéon. En
la parte 2.5, damos una explicacién de esto; también se puede ver [2] (p.94).
Esto explica por qué estas dos clases de universalidad coinciden sélo en una
dimensioén.
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7.3 Capitulo 3 : Fenémenos de mojado fuera
del equilibrio

En este capitulo, se describe nuestra aportacién al entendimiento de los
fenémenos de mojado fuera del equilibrio. El modelo que hemos considerado
es una interfaz de tipo Kardar-Parisi-Zhang (KPZ) en interaccién, de corto
alcance, con una pared. Segin su posicion, la pared limita las fluctuaciones
de la interfaz a valores inferiores o superiores de un determinado valor. La
ecuacion de KPZ describe una interfaz univaluada, con una no-linealidad,
que hace que las caras superiores y inferiores de las interfaces sean distin-
guibles. Un parametro de control permite controlar la distancia media entre
la interfaz y la pared. Para paredes repulsivas, existe un valor del parametro
de control para el que la velocidad de una interfaz a una distancia infinita
de la pared se anula. Para este valor del parametro de control, se observa
una transicion de segundo orden para parametros de orden como la distan-
cia media entre interfaz y pared o el niimero de puntos de contactos entre
interfaz y pared. Segun el signo de la no-linealidad de la KPZ, el cambio de
estado es distinto. Nos hemos centrado en el caso de una pared inferior y de
una no-linealidad positiva. Para este caso hemos demostrado que un cambio
de variable apropriado tipo “Cole-Hopt”, permitia conseguir una ecuacién de
Langevin, para la variable inversa del parametro de orden,

on(r,1)
ot

Esta ecuaciéon da resultados completamente compatibles con los modelos
microscopicos.

= DV?n +an + bn*" 9 + onn(r,t). (7.2)

La forma en la que se divide este capitulo es la siguiente:
- 3.1, es una introduccion a la problemética.

- 3.2, descripcion de modelos microscépicos describiendo una interfaz
libre.

- 3.3, descripcion de modelos microscépicos describiendo una interfaz
limitada por una pared de corto alcance.

- 3.4, se recuerdan la teorias Edwards-Wilkinson y Kardar-Parisi-Zhang
para interfaces libres, de equilibrio tanto como de no-equilibrio.
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- 3.5, se presenta el formalismo estudiado y los resultados obtenidos.

- 3.6, discutimos posibles realizaciones experimentales de nuestros resul-
tados teoricos.

- 3.7, es la conclusién de este capitulo.

Detallamos el contenido de este capitulo, se propone un recordatorio de
modelos de interfaces, tanto de equilibrio como de no-equilibrio. Se describen
los modelos microscépicos como los modelos continuos mas relevantes para
entender nuestro trabajo. El modelo microscépico de equilibrio descrito es:
la deposicién aleatoria con relajacién en la superficie (ver Fig. 3.2). Modi-
ficando este modelo de manera que las particulas que caen sobre la interfaz
se peguen a la primera particula que se encuentran en contacto, nos lleva a
una interfaz fuera del equilibrio. Este modelo modificado en una dimension,
pertenece a la clase de universalidad de KPZ. La situacién fisica que nos
interesa es la del mojado en la que la interfaz interacciona con una pared.
Describiendo esto en una situacién de equilibrio presentamos un modelo estu-
diado en la referencia [34] en detalle. Este modelo tiene el interés de ser muy
ilustrativo, cambiar el valor de un parametro permite modificarle de forma
a que describa la situacion de no-equilibrio, o la situacién de equilibrio. Per-
mite también modificar la pared, dandole un caracter atractivo o repulsivo,
siempre de corto alcance en la forma presentada.

Nuestros resultados mas relevantes son las estimaciones de los exponentes
criticos via calculo de campo medio y simulaciones numéricas. El calculo de
campo medio se lleva a cabo buscando soluciones atuoconsistentes del for-
malismo de Fokker-Planck asociado a nuestra ecuaciéon de Langevin. Esto
habia sido hecho en el caso de una ecuaciéon KPZ con no-linealidad negativa
y pared inferior referido como ruido multiplicativo 1 (MN1) en el que da
lugar a dos regimenes llamado respectivamente de ruido débil y ruido fuerte.
En nuestro caso llamado MN2 solo permite obtener un régimen de ruido
débil, aunque un régimen de ruido fuerte también es de esperar en el sistema
real. Las simulaciones numéricas de la ecuacién (4.10) dan resultados com-
pletamente compatible con resultado obtenidos con modelos microscépicos,
mejorando su precisién. Hemos demostrado que una ecuacién de Langevin
puede describir con fidelidad este problema permitiendo usar este formalismo
para otros estudios tanto numéricos como analiticos.
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7.4 Capitulo 4 : Fenémenos de Mojado con
potenciales de largo alcance

El trabajo contenido en este capitulo es fruto de una colaboracién con F. de
los Santos, M. A. Mufioz y M. M. Telo da Gama.

Estudiamos la transicién de fase que presenta una interfaz de tipo KPZ
en interaccién con una pared rigida impenetrable de largo alcance. Preceden-
temente, se habia considerado paredes de corto alcance. Las interacciones
féicas entre la pared y la interfaz son de tipo electromagnético, que en el vacio
decaen como una ley de potencia. En un medio con cargas méviles, se espera
un efecto pantalla debido a la movilidad de las cargas, pudiendo hacer que el
potencial resultante decaiga de forma exponencial. Con lo cual, tiene sentido
considerar tanto potenciales con forma funcional exponencial como leyes de
potencia. Este capitulo tiene como objetivo evaluar las consecuencias, que se
producen a cambiar de un potencial de corto alcance a otro de largo alcance.
El formalismo que usamos es el de las ecuaciones de Langevin. Nos permite
obtener resultados intuitivos a través de aproximaciones de campo medio
y resultados numéricos. Para verificar nuestros resultados también hemos
realizado el estudio de un modelo microscépico.

La forma en la que se divide este capitulo es la siguiente:
- -, se hace una breve introduccién al trabajo presentado
- 4.3, presenta el modelo que estudiaremos.

- 4.4, es un repaso de los resultados conocidos para el problema del mo-
jado en equilibrio.

- 4.5, presenta los resultados conocidos para el wetting de no-equilibrio
con fuerzas de corto alcance.

- 4.6, presenta nuestros resultados.

4.7, presenta las conclusiones de este capitulo.

Para poder explicarnos con claridad, detallaremos el problema que hemos
tratado. La forma funcional del potencial de interaccién entre pared e interfaz
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que hemos considerado es la siguiente:

b c

V(h) = — + —
(h) P

(7.3)

donde, b, ¢ > 0, y p < ¢ son los parametros que haremos variar. Quer-
emos una interfaz que describa un sistema fuera del equilibrio, con lo cual,
juntamos una ecuacion de tipo KPZ con el potencial 7.3. Nuestra ecuacién
se puede escribir de la siguiente forma,

c
hp+1 + hatl

Los detalles de esta ecuacién aparecen descritos en la tesis. Solo dire-
mos que para poder estudiarla numéricamente de forma eficiente, hicimos un
cambio de variable dependiente del signo de A (ver capitulo 3). Esto lleva a
una ecuaciéon para el pardmetro de orden o para la variable inversa. Segun
el valor que tome a, la media de h, es finita (para a < a. con a. el punto
de transicién) o tiende al infinito (para @ > a.). Justo en a = a,, tenemos
una transicion que puede ser tanto continua, o discontinua. Separamos el
problema en dos casos: el de una pared repulsiva, b > 0, y el de una pared
atractiva, b < 0.

Oh = V?h+ A(Vh)> +a+ + on(x,1). (7.4)

Podemos separar dos contribuciones al desplazamiento de la interfaz: la
del término KPZ que da lugar a un crecimiento de la rugosidad en h o t'/3,
y la del potencial determinista que implica A o ¢t'/®+2)_ El punto p = 1
aparece naturalmente como el punto limite que separa dos regimenes. En
el caso que p > 1, la transicién es idéntica a la del caso con interacciones
de corto alcance. Cuando A > 0, tenemos una transicién del tipo MN2. Si
A < 0, la transiciéon es del tipo MN1. Para el largo alcance con p > 1, todos
los exponentes coinciden con el corto alcance. Significa que estos dos casos
pertenecen a la misma clase de universalidad. En cambio, cuando p < 1, la
transicién es distinta. Los exponentes nu y z siguen siendo los de KPZ, re-
spectivamente 2/3 y 2 pero los demds exponentes se modifican de forma que
el problema se parezca a un campo medio. Las fluctuaciones de la variable h,
son pequefias implicando que, {(h — h)2?) << h%, con lo cual, los exponentes
se obtienen directamente a partir de argumentos sencillos de campo medio
y predecimos h o< t/(P*2) . Esto significa que el potencial decae lo suficien-
temente rapido cuando p > 1 para que la interfaz tenga interacciones casi
inexistentes con la pared cuando h tiende al infinito. En cambio, cuando
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p < 1, el potencial determina el valor medio de h. Este razonamiento es
valido tanto para A > 0 como para A < 0. Esto se compara interesantemente
con el caso del problema del mojado de equilibrio. En el caso del equilibrio,
el exponente de la rugosidad que se compara con el exponente 1/(p + 2) es
1/4 asi el punto de transicién entre un régimen de fluctuaciones fuertes con
un régimen de fluctuaciones débiles es p = 2.

En el caso de una pared atractiva, nuestros resultados coinciden con el
problema del corto alcance. Si A > 0, tenemos una transicién discontinua.
Para lambda < 0, se observan dos transiciones: una de primer orden y otra
de tipo Percolacion Dirigida. Entre las dos lineas de transicién, una parte
extendida del diagrama presentando coexistencia de fase genérica. Este he-
cho es posible s6lo en equilibrio. Esta fenomenologia es insensible al valor de

p.

En el caso de un sistema bi-dimensional, se espera que toda la fenomenologia
descrita arriba se conserve reemplazando las clases de universalidades por las
correspondientes en dimensién dos. Nuestro trabajo tiene también como ob-
jetivo motivar a experimentalistas a intentar reproducir toda esta fenomenologia.
Hemos demostrado que cualquier fuerza de interaccién fisica, que decae a cero
en infinito y cuya energia correspondiente es finita, sin presencia de ruido
quench en el potencial, debe de permitir observar resultados apasionantes.
Se espera ser posible observar las transiciones MN1, MN2 y DP. Estos exper-
imentos, si fuesen conclusivos, serian verdaderamente un acontecimiento de
gran importancia para la mecanica estadistica de no-equilibrio. Asi, espere-
mos que este trabajo pueda motivar experimentalistas a seguir este camino
de investigacion.
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7.5 Capitulo 5 : Substratos desordenados y
modelos de ADN estocasticos

Los resultados presentados en este capitulo se obtuvieron en una colaboracion
con F. de los Santos, M. A. Mufioz. El punto de partida del trabajo es el
estudio de un modelo introducido en varios trabajos por Peyrard, Bishop
y Dauxois (PBD) [87, 88]. Este modelo describe de manera continua la
distancia entre bases del ADN. De esta forma constituye un refinamiento
de modelos estudiado antes como el de Poland-Sheraga [89] que considera
variable discretas. La naturaleza continua de la descripcién permite incluir
mecanismos no-lineales variados. Nuestro objetivo es describir la transicion
de desnaturalizacion, apertura de la molécula, que padece la molécula de
ADN cuando se aumenta la temperatura del medio. Recientemente, estudios
experimentales se concentrarén en el estudio de la desnaturalizacién causada
por esfuerzo mecanico sobre la molécula.

La forma en la que se divide este capitulo es la siguiente:
- 5.1, se hace una introduccién al trabajo presentado

- 5.2, resultados obtenidos para la Teorfa de campos Reggeon (RFT) con
ruido quenched.

- 5.3, ecuacién de Langevin para el modelo de Peyrard-Bishop-Dauxois.

- 5.4, resultados del estudio de la transiciéon de desnaturalizacion del
ADN.

- 5.5.1, las conclusiénes del trabajo

El modelo de PBD considerado se escribe de la siguiente forma,

Ohn(r,t) OV (ha)
ot Oh,,

con el potencial incluyendo los siguientes terminos,

+ on(r,t), (7.5)

V(hy) = Dyp(e " —1)* + g(l + pe Plhnrtha)y(p 0 — hp)? + symmetric.
(7.6)
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El primer término de la derecha es un potencial de Morse que se eligio
originalmente en los trabajos [87, 88] porque facilitaba los calculos analiticos.
El segundo término acopla las distancias entre distintas bases para describir
las interacciénes que hay entre ellas. El origen de estas interacciones y su
forma exacta no son conocida. Lo que se sabe es que la intensidad de esta
interaccién es mayor cuando las bases estdn cerca. Cuando se alejan las
bases, el volumen disponible para su desplazamiento es muy grande. La
dependencia de la intensidad de la interacciéon en funcién de la distancia
aparece como un efecto de entrépico. Cuando p = 0, la transicién de fase
es continua y se hace discontinua cuando p > 0. Hemos verificado que
nuestro formalismo es capaz de reproducir estos resultados. Después, nos
centramos en el caso mas realista de p > 0 y estudiamos el cardcter local del
efecto de las mutaciones. Estudios tedricos recientes predicen que el efecto
de las mutaciones es local. Nuestros resultados, obtenidos para el caso de
un desorden estructurado, demuestran que también se pueden ver efectos no-
locales. Esto conduce a pensar que en el caso de una cadena real se pueden
llegar a observar efectos no-locales. Nuestros resultados pueden aportar una
interpretacion de las causas de ciertas enfermedades genéticas.
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7.6 Capitulo 6 : Sistemas de reaccién-difusion
y ecuaciones de Langevin

Este capitulo presenta un trabajo realizado en colaboracién con J. A. Bonachela
y M. A. Munoz. Hemos realizado un estudio de sistemas de reaccién-difusion.
Usando métodos de teoria de perturbaciones estandar y simulaciones Monte-
Carlo, hemos estudiado un modelo ya resuelto exactamente, 2A <+ A. Hemos
generalizado nuestros resultados a otros modelos no resueltos, como la reaccién
de coagulacién, 2A — A acoplada a procesos de creaciéon A — nA con
n > 2, demostrando que poseian un punto critico con las mismas propiedades.
Hemos determinado las restricciones y los ingredientes relevantes, para que
un modelo exhiba estas propiedades criticas. Asi, demostramos la existencia
de una nueva clase de universalidad que hemos caracterizada.

La forma en la que se divide este capitulo es la siguiente:
- 6.1, se hace una introduccion al trabajo presentado
- 6.2, se estudia la teoria de campos para el proceso A <+ 2A.

- 6.3, se extiende el estudio al caso no-eversible de coagulacion acoplada
con A —nA

- 6.4, resultados de simulaciones Monte-Carlo de los modelos de reaccién-
difusién considerados

- 6.5, las conclusiénes del trabajo

Usando el formalismo de Doi-Peliti, la ecuacién de Langevin correspon-
diente al modelo reversible es,

0ip(x,t) = DV?¢ + pgp — 0¢” + /¢ — 5 6*1(x, 1). (7.7)

Esta ecuacion no es facil de estudiar. Permanecen problemas a la hora de
interpretarla porque desarrolla una parte imaginaria por lo cual seguiremos
usando modelos microscopicos y el funcional generador equivalente a esta
ecuacion,

Slg.n] = / dt / 02 [r(8,$ — DV$) — H[g, ],
Higr] = (2 —m)(ud — od?), (7.8)
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donde ¢(x,t) and 7(x,t) son los campos de densidad y de respuestas. De
estas ecuaciones, se obtienen los resultados analiticos via teoria de perturba-

ciones.
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7.7 Conclusiones

Las transiciones de fase son muy ubicuas en la naturaleza y la mayor parte
de aquellos sistemas se encuentran fuera del equilibrio. Al contrario de lo
que pasa en el caso del equilibrio, no existe ningin formalismo que permita
describir los sistemas fuera del equilibrio. Esto implica que haya que estudiar
los problemas uno a uno con herramientas adaptadas. Este trabajo se empea
en determinar las posibilidades y las limitaciones del formalismo de las ecua-
ciones de Langevin aplicandolo a algunos ejemplos practicos. De esta forma,
constituye un avance en el entendimiento de transiciones de fases fuera del
equilibrio. Gracias a la metodologia usada, las ecuaciones de Langevin y las
herramientas asociadas al formalismo de Langevin, hemos resueltos proble-
mas sin resolver. Aportando también al entendimiento de descripcion efectiva
de un problema fisico.
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