

Antibacterial activity of isolated phenolic compounds from cranberry (*Vaccinium macrocarpon*) against *Escherichia coli*

Celia Rodríguez-Pérez ^{a,b}, Rosa Quirantes-Piné ^b, José Uberos ^c, Cecilia Jiménez-Sánchez ^{a,b}
Alejandro Peña ^d and Antonio Segura-Carretero ^{a,b}.

^a Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain

^b Research and Development Functional Food Center (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, Edificio BioRegión, 18016 Granada, Spain

^c Unit of Clinical Pediatrics, San Cecilio University Hospital, 18012 Granada, Spain

^d Microbiology Department, San Cecilio University Hospital, Instituto Biosanitario de Investigación (IBIG), Granada, Spain

Corresponding author: Dr. R. Quirantes Piné, Research and Development Functional Food Center (CIDAQ), Health Science Technological Park, Avenida del Conocimiento 37, Edificio BioRegión, 18016 Granada, Spain

E-mail: rquirantes@ugr.es

Fax: +34 958 637083

26 **Abstract**

27 Phenolic compounds from a cranberry extract were isolated in order to assess their contribution
28 to the antibacterial activity against uropatogenic strains of *Escherichia coli* (UPEC). With this
29 purpose, a total of 25 fractions from a cranberry extract were isolated using semipreparative
30 high performance liquid chromatography (HPLC) and characterized based on the results
31 obtained by reversed-phase HPLC coupled to mass spectrometry detection. Then, the effect on
32 UPEC surface hydrophobicity and biofilm formation of the cranberry extract as well as the
33 purest fractions (a total of 13) was tested. As expected, the whole extract presented a powerful
34 antibacterial activity against UPEC while the selected fractions presented different behavior.
35 Myricetin and quercitrin significantly decreased ($p < 0.05$) *E. coli* biofilm formation compared
36 with the control, while dihydroferulic acid glucuronide, procyanidin A dimer, quercetin
37 glucoside, myricetin and prodelphinidin B led to a significant decrease on the surface
38 hydrophobicity compared with the control. The results suggest that apart from procyanidins,
39 other compounds, mainly flavonoids, can act against *E. coli* biofilm formation and also modify
40 UPEC surface hydrophobicity *in vitro*, one of the first steps of adhesion.

41

42

43 **Keywords:** cranberry, semipreparative-HPLC, phenolic compounds, adherence, biofilm,
44 surface hydrophobicity, *Escherichia coli*.

45

46

47

48

49

INTRODUCTION

51 Cranberries (*Vaccinium macrocarpon*) are popularly consumed as part of the human
52 diet both fresh and processed forms. Additionally, their derived extracts are also used, mainly as
53 part of some botanical dietary supplements forms due to their renowned human health benefits¹.
54 Cranberry has proved to be an excellent source of bioactive compounds such as flavonoids
55 (procyanidins, flavonols), and phenolic acids derivatives². Thanks to these health-promoting
56 compounds, cranberry and cranberry-based products consumption has been correlated with
57 recurrent urinary tract infections (UTIs) prophylaxis^{3,4}. UTI has been defined as the presence of
58 significant number of pathogenic bacteria or organisms in the urinary system and it is
59 considered the most common type of infection in the body, which affects women in a greater
60 extent than men⁵ (katouli, M. 2010). *Escherichia coli* (*E. coli*) is the main responsible bacterial
61 species for the appearance of this infection, and causes more than 80 percent of all acquired
62 UTIs in the community⁶. Concretely, the ability of uropatogenic *Escherichia coli* (UPEC) to
63 form biofilm has been strongly associated with recurrent UTIs (Tapiainen, T. et al. 2012;
64 Flores-Mireles, A.L. et al. 2015) and there have been proven that surface hydrophobicity is
65 conductive to adhesion to surfaces and to penetration of host tissues (Krasowska, A. & Sigler,
66 K. 2014) since bacteria have developed many different ways to use hydrophobic effect in order
67 to adhere to substrata, such as previously described by Doyle *et al.*²⁵. The importance of
68 biofilms in public health is related to the decreased susceptibility to antimicrobial agents that
69 biofilm-associated microorganisms exhibit. This is the case of *E. coli* which has shown to be
70 increasingly resistant to some of the antibiotics currently used in the treatment of UTIs^{8,9}. In
71 addition, the public interest in herbal medicines and natural products is still growing. For this
72 reason, researchers have concluded the re-evaluation of first and second-line therapies for the
73 treatment of UTIs becomes to be pivotal¹⁰. Consequently, the antimicrobial effect of cranberry
74 products and their phenolic compounds have been widely studied, especially to develop new
75 healthy food ingredients, functional foods, nutraceuticals, and pharmaceuticals⁷. The most
76 accepted theory about the mechanism of action of cranberry compounds for the promotion of

77 urinary tract health is based on the effects of fructose and PACs in inhibiting the adherence of
78 type 1 and P fimbriae of *E. coli* to the uroepithelial cell receptors^{11,12}. Without adhesion, the
79 bacteria cannot infect the mucosal surface. Despite a large number of studies highlighted that
80 there are synergisms between different compounds present in cranberry extracts,¹⁴⁻¹⁶ other
81 authors such as Hisano *et al.* concluded that the use of the whole cranberry for UTIs prevention
82 was not scientifically supported, and for that reason, it is pointed out the necessity of research
83 focused on bioactive compounds from cranberry instead of the entire fruit³. However, the
84 isolation of simultaneous compounds from cranberry extracts is an arduous task due to its
85 complexity. Reversed-phase semipreparative high performance liquid chromatography
86 (semipreparative-HPLC) has been increasingly used once possesses an interesting target
87 separation ability, great efficiency and high recovery¹⁷, and therefore can be a valuable tool to
88 solve the aforementioned difficulty.

89 In this sense, the aims of the present research were to fractionate phenolic compounds
90 from a cranberry extract by semipreparative-HPLC and to give new insights into their
91 contribution to the antibacterial effect by testing the *in vitro* effect of the entire extract and the
92 isolated fractions against *E. coli* surface hydrophobicity and biofilm formation.

93 **RESULTS AND DISCUSSION**

94 **Isolation of phenolic compounds from cranberry extracts by semipreparative- 95 HPLC and characterization of fractions by HPLC-ESI-MS.**

96 Natural extracts usually consist of hundreds of compounds, and the isolation of
97 particular components presents unique problems because the methods used to isolate them are
98 based mainly on their polarity. The similarity of some polyphenolic structures makes that
99 compounds elute at similar retention times, making difficult their separation. For that reason,
100 only few studies have focused on the chromatographic methods for the isolation of multiple
101 compounds simultaneously. In this regard, semipreparative-HPLC is a robust, versatile, and
102 usually rapid technique by which compounds can be purified from complex mixtures¹⁸.

103 In the current research, the analytical HPLC method previously developed for the
104 characterization of phenolic compounds from cranberry extracts¹⁶ was scaled-up to
105 semipreparative-HPLC scale. Different gradients were tested to enhance the separation of the
106 compounds (data not shown), selecting as optimum the method described in “experimental”
107 section. Figure 1 shows the UV chromatogram of the cranberry extract under study acquired
108 with the proposed method, where the fractions collected are indicated according to their elution
109 order.

110 The isolated fractions were subsequently analyzed by HPLC-ESI-QTOF-MS in negative
111 ionization mode. Characterization strategy was carried out by generation of the candidate
112 molecular formula with a mass accuracy limit of 5 ppm, considering their MS spectra
113 determined by quadrupole time-of-flight mass spectrometer (QTOF-MS), and also comparing
114 with those of authentic standards whenever available and data from the literature. Databases
115 such as SciFinder Scholar (<http://scifinder.cas.org>), MassBank (<http://massbank.jp>), and
116 METLIN Metabolite Database (<http://metlin.scripps.edu>) were consulted in order to acquire
117 chemical structure information.

118 Despite the scarcity of literature on the fractionation of cranberry using
119 semipreparative-HPLC makes difficult to contrast our optimized method with others, and the
120 results could not be comparable, the optimized method allowed obtaining 25 fractions from the
121 cranberry extract (Table 1), which were composed predominantly by procyandins (PACs) and
122 flavonols. Even though the difficulty in separating and purifying PACs has been previously
123 highlighted¹⁹, the current method allowed isolating some of them, including A-type procyandin
124 dimers, an A-type procyandin trimer (cinnamtannin B1) and a galloycatechin dimer
125 (prodelphinidin). PACs are the most typical compounds characterized in cranberry, noteworthy
126 for their antioxidant activity, although they may also present other pharmacological and
127 medicinal properties such as anti-carcinogenic, anti-inflammatory, and vasodilator (Rodríguez-
128 Pérez et al. 2015). Isolated cranberry flavonols included quercetin derivatives which have been
129 previously demonstrated to have both *in vivo* and *in vitro* antioxidant, anti-inflammatory,

130 anticancer, and antidiabetic activities (Kawabata, K. et al. 2015). In addition, four myricetin
131 derivatives were characterized. These compounds are also common dietary flavonoids which
132 have demonstrated antioxidant, cytoprotective, antiviral, antimicrobial, anticancer and
133 antiplatelet activities (Davi, K.P. et al. 2015). Apart from these compounds, one
134 hydroxicinnamic acid derivative (dihydroferulic acid glucuronide) was isolated.

135 Among these 25 eluted fractions, 13 were chosen in order to test their antibacterial
136 activity against *E. coli*, namely F: 6, 8, 9, 11, 13–16, 18, 19, 21, 23, and 25. These fractions
137 were selected on the basis of their purity, due to they showed a purer composition than the rest,
138 presenting up to two target phenolic compounds. HPLC-ESI-QTOF-MS chromatograms from
139 these nearly pure fractions are displayed in Figure 2. Semipreparative-HPLC allowed getting
140 1.1 mg of F6, F8, and F18; 0.9 mg of F9 and F15; 1.7 mg of F11; 1.5 mg of F13; 1 mg of F14;
141 0.7 mg of F16 and F21; 0.6 mg of F19 and F25; and 0.5 mg of F23. Different concentrations
142 tested are depicted in Table S2 (supplementary information). The use of different concentrations
143 of each fraction was established in order to simulate their contribution in the whole extract.

144 **Antibacterial activity**

145 Although some authors reported that cranberry does not have any effect against Gram-
146 negative bacteria pathogens such as *E. coli*¹³, most of the research converges on the fact that
147 berries, and especially cranberry and cranberry-based products, have both *in vitro* and *in vivo*
148 antibacterial activity^{7,12,16,19,20,21}. As aforementioned, the most accepted mechanism of action of
149 cranberry focuses primarily on its ability to prevent bacterial binding to host cell surface
150 membrane (Jepson, R. et al. 2013), one of the initial steps in the infection process. This process
151 is initially mediated by the electrostatic charge (characterized by determining its zeta potential)
152 and consequently surface hydrophobicity of microorganisms followed by other factors such as
153 formation of fimbriae and specific adhesins (Otto, K. et al. 2001). Thus, surface
154 physicochemical parameters such as electrostatic charge are then fundamentally important with
155 regard to influencing overall polarity in order to maintain the degree of bacterial surface

156 hydrophobicity necessary for the bacterial adhesion. Subsequently, adhesion of bacteria to host
157 surfaces is finally a key element in the formation of biofilms that constitutes a protected mode
158 of growth that allows bacteria to survive in hostile environment (Ribet, D. & Cossart, D. 2015).
159 For that reason, the effect of the previously isolated fractions as well as the whole extract on
160 biofilm formation and surface hydrophobicity of fourteen UPECs has been tested as a way to
161 evaluate the individual contribution of every compound to the antibacterial activity.

162 Figures 3 and 4 show the mean and standard deviation (SD) of biofilm formation and
163 surface hydrophobicity for *E. coli* after incubation with each isolated fraction and with the
164 cranberry extract, respectively, at two different assayed concentrations. Table S1
165 (supplementary data) summarizes the Wilcoxon matched-pairs signed-ranks analysis for the
166 biofilm formation and surface hydrophobicity of the isolated fractions and the whole extract.

167 ~~Concretely, Schmidt et al. found a significant positive correlation between PAC content~~
168 ~~of different fractions from blueberry and biological activity in anti adhesion assays¹⁹~~ After
169 testing the selected fractions, two concentrations of F9 made up of procyanidin type-A dimer,
170 showed a statistically significant increase in biofilm formation compared with the control (Fig.
171 3). Other research has also described an increase of biofilm formation in four of the 20 *E. coli*
172 strains tested after consuming cranberry juice (Tapiainen, T. et al. 2012) and a reduction of
173 biofilm formation only in one of them. However, F9 did not significantly change surface
174 hydrophobicity. On the other hand, F13 (made up of other isomer of procyanidin type-A dimer)
175 at the highest concentration (dilution A) caused an increase in biofilm formation while both
176 concentrations tested significantly decreased surface hydrophobicity. In any case, it should be
177 pointed out that the hydrophobicity of bacteria can vary even within the same strain depending
178 on the mode and stage of growth (Goulter, et al. 2009). Despite the study of PACs in *E. coli* has
179 been widely described, controversial results are still reported in literature. Foo et al. also found
180 a weak activity of procyanidin A2 against the inhibition of adherence of *E. coli*²⁷. In another
181 study, PACs as a group of compounds inhibited the growth of *E. coli* CM 871, with no
182 inhibition of *E. coli* 50¹⁴. Foo et al also proved the anti-adherent effect of procyanidin trimers.

183 However, no statistical differences were found between F14 (made up of cinnamtannin B1 and
184 quercetin arabinoside) and the control in both assays tested. Prodelphinidin B (F23) also
185 influenced the antibacterial effect against *E. coli* by decreasing the bacteria surface
186 hydrophobicity. Prodelphinidins with pyrogallol groups, which have similar structures to
187 procyanidins except for their hydroxyphenyl group, have reported to have stronger antibacterial
188 activity than procyanidins with the catechol groups (Taguri, T. et al. 2006). However, the
189 different results obtained from different isolated PACs, reinforce the theory proposed by
190 Schmidt *et al.* who concluded that it was likely that a mixture of several high molecular weight
191 PACs were responsible for the anti-proliferation and anti-adhesion activity.

192 ~~Microorganisms act in different ways to adhere due to influence by the substrata, nutrients, ionic strength, pH values, and temperatures, and also by their phenotype and genotype. Thus, the ability of microorganisms to attach to surfaces is crucial for the beginning of colonization²³. Adhesion is influenced by hydrophobicity and surface charge, among others factors. This means that when the surface hydrophobicity of a bacterial cell is increased, the charge on the cell surface (zeta potential) is reduced²⁴. At the same time, bacteria have developed many different ways to use hydrophobic effect in order to adhere to substrata, such as previously described by Doyle *et al.*²⁵.~~

200 Regarding isolated flavonols, fraction formed by myricetin and quercitrin (F21) was the
201 most active fraction against the *E. coli* biofilm formation and also influenced the decrease in *E.*
202 *coli* surface hydrophobicity. Bacterial hydrophobicity has been proved to be largely influenced
203 by the residues and structures on the surface of the cell (Goulter, R.M. et al. 2009). In this way,
204 recent research has pointed out that phytochemicals such as flavonoids can modify bacterial
205 membrane surface hydrophobicity²³ probably based on their ability to complex with
206 extracellular and soluble proteins as well as with bacterial cell walls. Concretely, three
207 mechanisms of action of flavonoids have been proposed: inhibition of nucleic acid synthesis,
208 cytoplasmic membrane damage and inhibition of energy metabolism (Cushnie, T.P. & Lamb,
209 A.J. 2011). Although the anti-adherent effect of myricetin remains controversial, some authors

210 have found that 0.5 mg mL⁻¹ of myricetin strongly inhibited the growth of *E. coli*¹⁴. Only few
211 studies have been carried out in order to assess the flavonoids structure-antibacterial activity
212 relationship. In this sense, some authors concluded that the hydroxylation at position 5 on the A
213 ring and at position 3 on the C ring improves the antibacterial activity of flavones decreasing
214 membrane fluidity (Smejkal, K. et al. 2008; Li, H.Q. et al. 2009; Wu Ting et al. 2013). These
215 previous results could explain the antibacterial effects that the combination of quercitrin and
216 myricetin (F21) showed in both assays. Cowan *et al.* reported that more lipophilic flavonoids
217 may disrupt microbial membranes¹³. Furthermore, Wojnicz, *et al.* affirmed that flavonoids such
218 as quercetin, reduced biofilm synthesis because they can suppress autoinducer-2 activity, which
219 is responsible for cell-to-cell communication²⁸. In particular other authors have described the
220 existence of antibacterial activity of quercetin against *E. coli*⁶. Contrary to these previous
221 findings, F25, formed by pure quercetin, a molecule that has a lipophilic character despite the
222 presence of five hydroxyl groups in its structure, not only did not show statistical differences in
223 UPEC biofilm formation at two tested concentrations, but also significantly increased the UPEC
224 surface hydrophobicity compared with control at the highest concentration tested (dilution A).
225 Some authors affirmed, in base of their results, that the degree of hydroxylation might affect the
226 antimicrobial activity of phenolic compounds, indicating that the more polar flavonoids, the
227 more antibacterial effect¹⁴. In the current study, this theory could be applicable when comparing
228 F25 (quercetin) and F21 (quercitrin and myricetin). The addition of one more hydroxyl group on
229 the aromatic ring of myricetin compared with quercetin may be responsible for its antimicrobial
230 activity. Other research attributes its antimicrobial mechanism against Gram-negative to a
231 reaction with DNA or inhibition of protein synthesis bacteria^{29,30}. An early theory based on that
232 hydrophobic effect may be the primary driving force for the adhesion of most pathogens was
233 also proposed³¹. However, taking into account the abovementioned case of quercetin, no relation
234 was observed between *E. coli* surface hydrophobicity and biofilm formation rates.

235 Despite the great general interest in glycosylated flavonoids due to their diverse
236 bioactivity (Xiao, J. 2014), research focused on their antibacterial properties is still at the

developmental stage. None of the tested concentrations of F6 (myricetin glucoside) showed any activity against biofilm formation nor modifying surface hydrophobicity. Some authors have pointed out that the glycosylation of flavonoids leads to a loss of activity against some Gram-negative bacteria (Xu, Hong-Xi & Lee, Song F. 2001). In addition, early studies concluded that quercetin monosaccharide derivatives showed weak activity against *E. coli* (Bernard, F.X. et al. 1997). Following with these compounds, other plant extracts such as white garlic extract, which contains a high concentration of quercetin-4-O-glucoside and quercetin-3,4-O-diglucoside, had a large inhibiting activity on the growth of *E. coli*, among other Gram-negative bacteria⁶. The current results show that quercetin derivatives do not always produce the same antibacterial effect. On one hand, fractions 18 and 19, made up of quercitrin isomer and quercitrin (quercetin-3- rhamnoside) respectively, showed different antibacterial activity. While incubation with F18 caused a statistically significant increment of UPEC biofilm formation compared with the control and did not present significant differences on surface hydrophobicity, F19 (quercitrin) did not show statistical differences in biofilm formation rates but produced a significant reduction on surface hydrophobicity. Taking into account that F19 was tested at lower concentrations than F18, as depicted in table S2 (supplementary information), this fact suggests that the position of sugar moieties influences the antibacterial activity of flavonoids. Previous studies reported that among quercetin glycosides tested, quercetin-3-rhamnoside exhibited the strongest antibacterial activity against Gram-negative bacteria whereas other quercetin glycosides showed weak or no activity against the same Gram-negative bacteria (K. Waage, S. et al. 1985). On the other hand, F15 and F16, made up of quercetin arabinoside isomers, showed similar trends in significant surface hydrophobicity reduction even testing different concentrations (Table S1, supplementary information) while only F16 at 300 µg mL⁻¹ (dilution A) significantly increased the biofilm formation rate.

In addition, both tested concentrations of fraction F8, made up of mainly dihydroferulic acid glucuronide, also showed a reduction in the hydrophobicity of *E. coli*. In this regard, Borges *et al.* found that ferulic acid had antimicrobial activity against *E. coli* by irreversible

264 changes in membrane properties through hydrophobicity changes that caused local rupture or
265 pore formation in the cell membranes causing the loss of essential intracellular constituents³².
266 ~~Panizzi et al. also described antimicrobial activity from ferulic acid isolated from *Rubus*~~
267 ~~ulmifolius~~³³. Despite Borges et al. also concluded in other study that ferulic acid reduced mass
268 of biofilm formed by Gram-negative bacteria (Borges et al. 2012), dihydroferulic acid
269 glucuronide did not show statistically differences compared with the control.

270 If we look at the whole extract, ~~Figure 4 shows the mean and standard deviation (SD) of~~
271 ~~biofilm formation and hydrophobicity for UPEC strains after the incubation. Regarding the~~
272 ~~activity of the extract,~~ the data revealed statistical differences with respect to control in both,
273 biofilm formation and surface hydrophobicity, after incubating UPEC strains with the cranberry
274 extract independent of the concentrations tested (Figure 4). This finding suggests that even at
275 low dosage, cranberry extract presents antibacterial activity *in vitro*. As pointed out along the
276 text, the hydrophobic properties of microbial surfaces are conducive to adhesion and, thus, to
277 penetration of host tissues. Taking into account the capacity of UPEC to form biofilms, it could
278 be expected a positive relationship between hydrophobicity and biofilm formation. However,
279 the nonparametric Kendall's rank correlation disclosed that there was no trend between surface
280 hydrophobicity and adherence ($W=0.236$; $p=0.019$) of UPEC tested after the incubation with
281 cranberry extract. These results could be attributed to the different behavior of each strain. In
282 fact, despite most of UPEC strains are *in vitro* positive for biofilm production (Maheswari, U.B.
283 et al. 2013), it has been previously reported that even the same strain can respond very
284 differently to biofilm formation depending on the environmental factors, among others (Reisner,
285 A. et al. 2006). Thus, the fact that complete extracts showed stronger inhibitions in surface
286 hydrophobicity and biofilm formation compared with isolated fractions reinforces the theory
287 that the antimicrobial activity of cranberry extracts is a synergistic effect of various phenolic
288 compounds, many of which are probably still unidentified.

289 **CONCLUSIONS**

290 In conclusion, the present work showed that semipreparative-HPLC proved to be a
291 powerful tool for the fractionation of phenolic compounds from complex matrices like cranberry
292 extracts. The results suggested that apart from PACs, other compounds, mainly flavonoids, can
293 act against uropathogenic *E. coli* biofilm formation and also modifying UPEC surface
294 hydrophobicity *in vitro*, one of the first steps of adhesion. Additionally, a synergism between
295 compounds could affect the antibacterial effects of the studied extracts. However, further studies
296 *in vivo* are necessary to confirm their antibacterial activity.

297 **EXPERIMENTAL**

298 **General Experimental Procedures**

299 Formic acid and acetonitrile used for preparing mobile phases were from Sigma-Aldrich
300 (Steinheim, Germany) and Fisher Scientific (Loughborough, Leics, UK), respectively.
301 Ultrapure water with a resistivity value of 18.2 MΩ was obtained from Milli-Q system
302 (Millipore, Bedford, MA, USA). HPLC grade methanol (99.9%) was purchased from Fisher
303 Scientific (Loughborough, Leics, UK). For microbiological determinations, tryptic soy broth
304 (TSB) (Fluka), phosphate buffered saline pH-7.4 (PBS), ammonium phosphate; acetic acid,
305 methanol, and Hucker's cristal violet were supplied from Sigma-Aldrich (Steinheim, Germany).

306 **Sample preparation**

307 A commercial extract in capsules of American cranberry consisted on concentrated
308 cranberry juice was used to carry out this study (Urell® Pharmatoka, Rueil Malmaison, France).
309 The content of five capsules (200 mg each) was mixed and 5 mg of the cranberry extract were
310 weighted and dissolved in 5 ml of a (50:50, v/v) methanol/water mixture to obtain a final
311 concentration of 1 mg ml⁻¹. Then, the solutions were vortexed for 2 min, sonicated for 10 min,
312 and centrifuged at 984 × g. Finally, the supernatants were filtered through 0.2 µm regenerated
313 cellulose syringe filters. The extraction procedure was carried out in triplicate.

314 For isolation of phenolic compounds from cranberry extract, solution stock at 50 mg ml⁻¹
315 ¹ was prepared by dissolving the appropriate amount of cranberry extract in (50:50, v/v)
316 methanol/water mixture, and the aforementioned procedure was followed.

317 To develop the antimicrobial assays, two solutions of the extract were prepared at 1 mg
318 ml⁻¹ (dilution A) and 0.5 mg ml⁻¹ (dilution B) in phosphate buffered saline (PBS), pH 7.4.

319 **Isolation of compounds by semipreparative-HPLC**

320 Fractionation was conducted at room temperature using a Gilson semipreparative HPLC
321 system (Gilson Inc., Middleton, WI, USA) equipped with a binary pump (model 331/332),
322 automated liquid handling solutions (model GX-271), and UV-Vis detector (model UV-Vis
323 156). To separate the target compounds, an Ascentis C18 column (10 µm, 250 × 212 mm) was
324 used. The mobile phases consisted of 1% formic acid in water-acetonitrile (90:10, v/v) (phase
325 A) and acetonitrile (phase B). The following optimized multi-step linear gradient was
326 developed: 0 min, 5% B; 10 min, 9.5% B; 35 min, 17.5% B; 50 min, 25% B; 55 min, 100% B;
327 57 min, 5% B; 62 min, 0% B. The initial conditions were held for 10 min. The injection volume
328 was 1 mL. The flow rate used was 15 mL min⁻¹. The separated compounds were monitored with
329 UV-Vis (220–280 nm). The fraction-collection step consisted of UV-based purification,
330 determining the elution time window for collecting each fraction. Finally, a total of 25 fractions
331 were collected, and the solvent was evaporated under vacuum. The residue of each fraction was
332 weighted and dissolved a) in methanol to obtain a final concentration of 100 ppm to analyze
333 them by HPLC-ESI-MS, and b) in 2 ml of PBS to carry out the antibacterial assays.

334 **Characterization of the fractions by HPLC-ESI-MS**

335 Analyses were carried out by an Agilent 1200 series rapid resolution (Santa Clara, CA,
336 USA) equipped with a binary pump, a vacuum degasser, an autosampler, a thermostated column
337 compartment, and a diode array detector (DAD). Compounds were separated at room
338 temperature using a Zorbax Eclipse Plus C18 column (1.8 µm, 150 × 4.6 mm) (Agilent
339 Technologies, Palo Alto, CA, USA) according to the method proposed by Iswaldi *et al.*¹⁶.

340 The compounds detection was carried out using a QTOF mass spectrometer (Agilent
341 6540) equipped with Jet Stream dual electrospray ionization (ESI) interface operating in
342 negative ionization mode. To maintain mass accuracy during the run time, continuous infusion
343 of a reference mass solution containing ions m/z 112.985587 (trifluoroacetate anion) and
344 1033.988109 (trifluoroacetic adduct of hexakis (1H, 1H, 3H-tetrafluoropropoxy)phosphazine or
345 HP-921) was used. Data acquisition in profile mode was governed *via* MassHunter Workstation
346 Software (Agilent Technologies). Data analysis was performed on MassHunter Qualitative
347 Analysis Version B.06.00 (Agilent Technologies).

348 **Bacteria and cultures**

349 A mixture of fourteen strains of uropathogenic *E. coli* (UPEC) were used, ten obtained
350 from patients with acute pyelonephritis (471, 787, 753, 472, 595, 760, 695, 697, 629, and 795),
351 together with four strains obtained from the Spanish Type Culture Collection (CECT): CECT
352 424 (F- thr- leu- lacY mtl- thi- ara gal ton 2 malA xyl, resistant to phages T1, T2, and T6.),
353 CECT 4076 (Serovar. O157:H7, originally isolated from haemorrhagic colitis), CECT 417
354 (SupE44 (am). mutant tRNA), and CECT 743 (Serovar. O142 K86B:H6, isolated from children
355 with diarrhea).

356 **Biofilm formation and surface hydrophobicity**

357 To determine the adherence and subsequent biofilm formation of tested mixture of
358 UPEC, a tube test proposed by Stepanovic *et al.*³⁴ was performed. Briefly, the mixture of
359 uropathogenic strains were subcultured at 37°C for 24 h in glass tubes with 2.5 mL of tryptic
360 soy broth (TSB). Then, 0.5 mL of the aforementioned culture and 50 µL of the cranberry extract
361 and each selected fraction at two different concentrations displayed in Table S2 (supplementary
362 information) were placed into Eppendorf tubes. An Eppendorf tube without inoculums
363 containing the same amount of TSB was used as a negative control, while 0.5 mL of the
364 bacterial suspension in an Eppendorf tube together with 50 µL of phosphate buffer saline (PBS)
365 was used as a positive control. After incubating for 24 h, the content of each tube was aspirated
366 carefully and washed three times with 1 mL of PBS. Tubes were air dried and 200 µL of 99%

367 methanol were added as a fixative. After 15 min, the excess of methanol was removed and the
368 tubes were air dried. Then, 200 μ L of the colorant Hucker's cristal violet solution (2% dye
369 content) were added, and after 5 min the tubes were submerged in distillate water to take out the
370 surplus. After air drying, biofilm was dissolved in each tube with 1 mL 33% acetic acid. Once
371 the absorbance was measured at 570 nm using Boehringer–Mannheim photometer-4010 model
372 (Boehringer GmbH, Mannheim, Germany), results were calculated according to Eq. (1), where
373 OD is the optical density of the strains incubated with the cranberry extract or with each
374 phenolic fraction and ODc is the optical density from the strains after incubating with the same
375 volume of PBS. A scheme describing the assay is displayed in Figure S1 (supplementary
376 information).

377
$$(1) \Delta \text{biofilm} = \text{OD}/\text{ODc}$$

378 In order to determine the surface hydrophobicity, the ammonium sulphate aggregation
379 test, described by Lindahl *et al.*³⁵, was carried out. In brief, a mixture of strains was performed
380 in 2 mL of TSB medium. The culture was washed three times with PBS and centrifuged at 562
381 $\times g$ for 10 minutes. Bacteria were resuspended into 0.002 mol L⁻¹ sodium phosphate (OD1 at
382 540 nm). Then, 10 μ L of the cranberry extract and each selected fraction at two different
383 concentrations displayed in Table S2 (supplementary information) were incubated at room
384 temperature for 30 min in a rotary shaker (Heidolph Reax, ConThermo GmH & Co. KG,
385 Germany) with 100 μ L of the bacterial suspension of the selected strains, in PBS. Several
386 solutions of ammonium sulphate at osmolarities ranged from 0.2 to 4 mol L⁻¹ in sodium
387 phosphate 0.002 mol L⁻¹ were prepared. Then, 10 μ L of bacterial suspension with the same
388 volume of ammonium sulphate were added on a slide. The lowest concentration of ammonium
389 sulphate which produced visible aggregation after 30 seconds gentle manual rotation at room
390 temperature was written down. Aggregation with 4 mol L⁻¹ solution was interpreted as 0%
391 hydrophobicity, while aggregation with 0.2 mol L⁻¹ was interpreted as 95% hydrophobicity. The
392 results obtained, expressed as % hydrophobicity, were calculated according to Eq. (2) where ΔH
393 is the ratio of the hydrophobicity of the strains incubated with the whole extract or with each

394 phenolic fraction and ΔH_c are the hydrophobicity of the strains after incubation with an equal
395 volume of PBS. A scheme describing the assay is displayed in Figure S2 (supplementary
396 information).

397 (2) % hydrophobicity = $\Delta H / \Delta H_c * 100$

398 **Statistical analysis**

399 Data of bioactivity are expressed as mean \pm standard deviation. Significant differences
400 in the adherence and surface hydrophobicity of *E. coli* pre and post- incubated with the extract
401 or phenolic fractions were determined using the Wilcoxon matched pairs signed rank test by
402 IBM SPSS Statistics (Chicago, IL, USA). Differences between means were considered to be
403 significant when the p value was below 0.05. In addition, Kendall's correlation coefficients of
404 inter-variable concordance were calculated.

405 **Conflicts of interest**

406 The authors declare no competing financial interest.

407 **Acknowledgements**

408 This work was supported by the projects AGL2011-29857-C03-02, P09-CTS-4564,
409 P10-FQM-6563, and P11-CTS-7625 (Andalusian Regional Government Council of Innovation
410 and Science) and PI070274 (Carlos III Institute of Health for Clinical Research, Madrid, Spain).

411 The authors are grateful to the Spanish Ministry of Economy and Competitiveness (MINECO)
412 for a FPU fellowship AP2010-1551 (Spanish Ministry of Science and Innovation) (C.
413 Rodríguez-Pérez), and a grant "Personal técnico de apoyo" PTA2012-6956-E (R. Quirantes-
414 Piné).

415

416

417 **References**

418 1 N.P. Seeram, L.S. Adams, Y. Zhang, R. Lee, D. Sand, H.S. Scheuller, and D. Heber, *J Agric
419 Food Chem*, 2006, **54**, 9329-9339.

420 2 E. Pappas and K.M. Schaich, *Crit Rev Food Sci Nutr*, 2009, **49**, 741-781.

421 3 M. Hisano, H. Bruschini, A.C. Nicodemo and M. Srouri, *Clinics*, 2012, **67**, 661-667.

422 4 K.L. Kaspar, A.B. Howell and C. Khoo, *Food Funct*, 2015, **6**, 1212-1217.

423 5 B. Foxman, *Am J Med*, 2002, **113**, 5-13.

424 6 E. Coppo and A. Marchese, *Curr Pharm Biotechnol*, 2014, **15**, 380-390.

425 7 R. Puupponen-Pimiä R, L. Nohynek, H. Alakomi and K. Oksman-Caldentey, *Appl Microbiol
426 Biotechnol*, 2005, **67**, 8-18.

427 8 M.E.T. McMurdo, I. Argo, G. Phillips, F. Daly and P. Davey, *J Antimicrob Chemother*, 2009,
428 **63**, 389-395.

429 9 J. Uberos, M. Nogueras-Ocana, V. Fernandez-Puentes, R. Rodriguez-Belmonte, E. Narbona-
430 López, A. Molina-Carballo and A. Muñoz-Hoyos, *Open Access J Clin Trials*, 2012, **4**, 31-38.

431 10 G.G. Zhanel, T.L. Hisanaga, N.M. Laing, M.R. DeCorby, K.A. Nichol, L.P. Palatnik, J,
432 Johnson, A. Noreddin, G.K. Harding, L.E. Nicolle and D.J. Hoban, *Int J Antimicrob Agents*,
433 2006, **27**, 468-475.

434 11 I. Ofek, D.L. Hasty and N. Sharon, *FEMS Immunol Med Microbiol*, 2003, **38**, 181-191.

435 12 A.B. Howell, H. Botto, C. Combescure, A. Blanc-Potard, L. Gausa, T. Matsumoto T, P.
436 Tenke, A. Sotto and J.P. Lavigne, *BMC Infect Dis*, 2010, **10**, 94-105.

437 13 M.M. Cowan, *Clin Microbiol Rev*, 1999, **12**, 564-582.

438 14 R. Puupponen-Pimiä, L. Nohynek, C. Meier, M. Kähkönen, M. Heinonen, A. Hopia and
439 K.M. Oksman-Caldentey, *J Appl Microbiol*, 2001, **90**, 494-507.

440 15 K.L. Laplante, S.A. Sarkisian, S. Woodmansee, D.C. Rowley and N.P. Seeram,
441 *Phytotherapy Research*, 2012, **26**, 1371-1374.

442 16 I. Iswaldi, A.M. Gómez-Caravaca, D. Arráez-Román, J. Uberos, M. Lardón, A. Segura-
443 Carretero and A. Fernández-Gutiérrez, *J Pharm Biomed Anal*, 2012, **58**, 34-41.

444 17 T. Chen, Y. Liu, D. Zou, C. Chen , J. You, G. Zhou, J. Sun and Y. Li, *J Sep Sci*, 2014, **37**,
445 165-170.

446 18 Z. Latif and S.D. Sarker, *Methods Mol Biol*, 2012, **864**, 255-274.

447 19 B.M. Schmidt, A.B. Howell, B. McEniry, C.T. Knight, D. Seigler, J.W. Erdman Jr. and M.A.
448 Lila, *J Agric Food Chem*, 2004, **52**, 6433-6442.

449 20 J. Lavigne, G. Bourg, C. Combescure, H. Botto and A. Sotto, *Clin Microbiol Infect*, 2008, **14**,
450 350-355.

451 21 J. Uberos, R. Rodríguez-Belmonte, C. Rodríguez-Pérez, M. Molina-Oya, E. Blanca-Jover, E.
452 Narbona-López and A. Muñoz-Hoyos, *J Funct Foods*, **18**, 608-616.

453 22 D. Ren, R. Zuo, A.F.G. Barrios, L.A. Bedzyk, G.R. Eldridge, M.E. Pasmore and T.K. Wood,
454 *Appl Environ Microbiol*, 2005, **71**, 4022-4034.

455 23 J. Monte, A. Abreu, A. Borges, L. Chaves Simões and M. Simões, *Pathogens*, 2014, **3**, 473-
456 498.

457 24 D.A. Burke and A.T.R. Axon, *Gut*, 1988, **29**, 41-43.

458 25 R.J. Doyle, *Microb Infect*, 2000, **2**, 391-400.

459 26 R. Nowack, *Wien Med Wochenschr*, 2007, **157**, 325-330.

460 27 L.Y. Foo, Y. Lu, A.B. Howell and N. Vorsa, *J Nat Prod*, 2000, **63**, 1225-1228.

461 28 D. Wojnicz, Z. Sycz, S. Walkowski, J. Gabrielska, W. Aleksandra, K. Alicja, S.L. Anna and
462 A.B. Hendrich, *Phytomedicine*, 2012, **19**, 506-514.

463 29 E. Czinner , A. Kéry, K. Hagymási, A. Blázovics, A. Lugasi, E. Szőke and E.
464 Lemberkovics, *Eur J Drug Metab Pharmacokinet*, 1999, **24**, 309-313.

465 30 R. Lin, Y. Chin and M. Lee, *Phytother Res*, 2005, **19**, 612-617.

466 31 W.C. Duncan-Hewitt, In: Doyle, R.J. & Rosenberg M., editor. *Microbial Cell Surface*
467 *Hydrophobicity* Washington, D.C.: ASM Publications; 1990. pp 39-73.

468 32 A. Borges, C. Ferreira, M.J. Saavedra and M. Simões, *Microbial Drug Resistance*, 2013, **19**,
469 256-265.

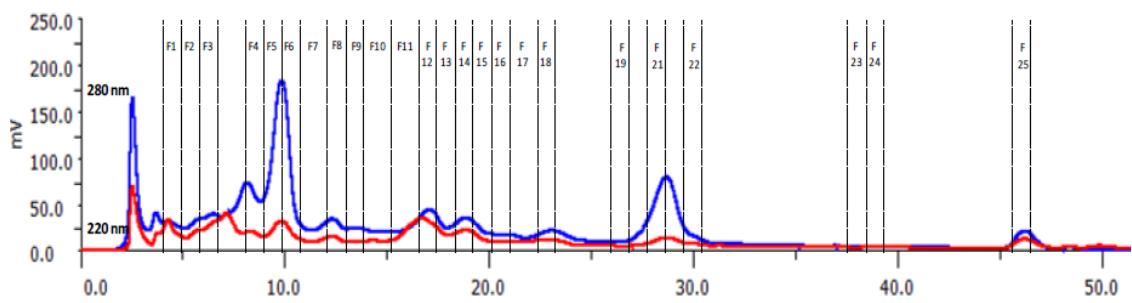
470 33 L. Panizzi, C. Caponi, S. Catalano, P.L. Cioni and I. Morelli, *J Ethnopharmacol*, 2002, **79**,
471 165-168.

472 34 S. Stepanovic, D. Vukovic, I. Dakic, B. Savic and M. Švabic-Vlahovic, *J Microbiol*
473 *Methods*, 2000, **40**, 175-179.

474 35 M. Lindahl, A. Faris , T. Wadström and S. Hjertén, *BBA - General Subjects* 1981, **677**, 471-
475 476.

476

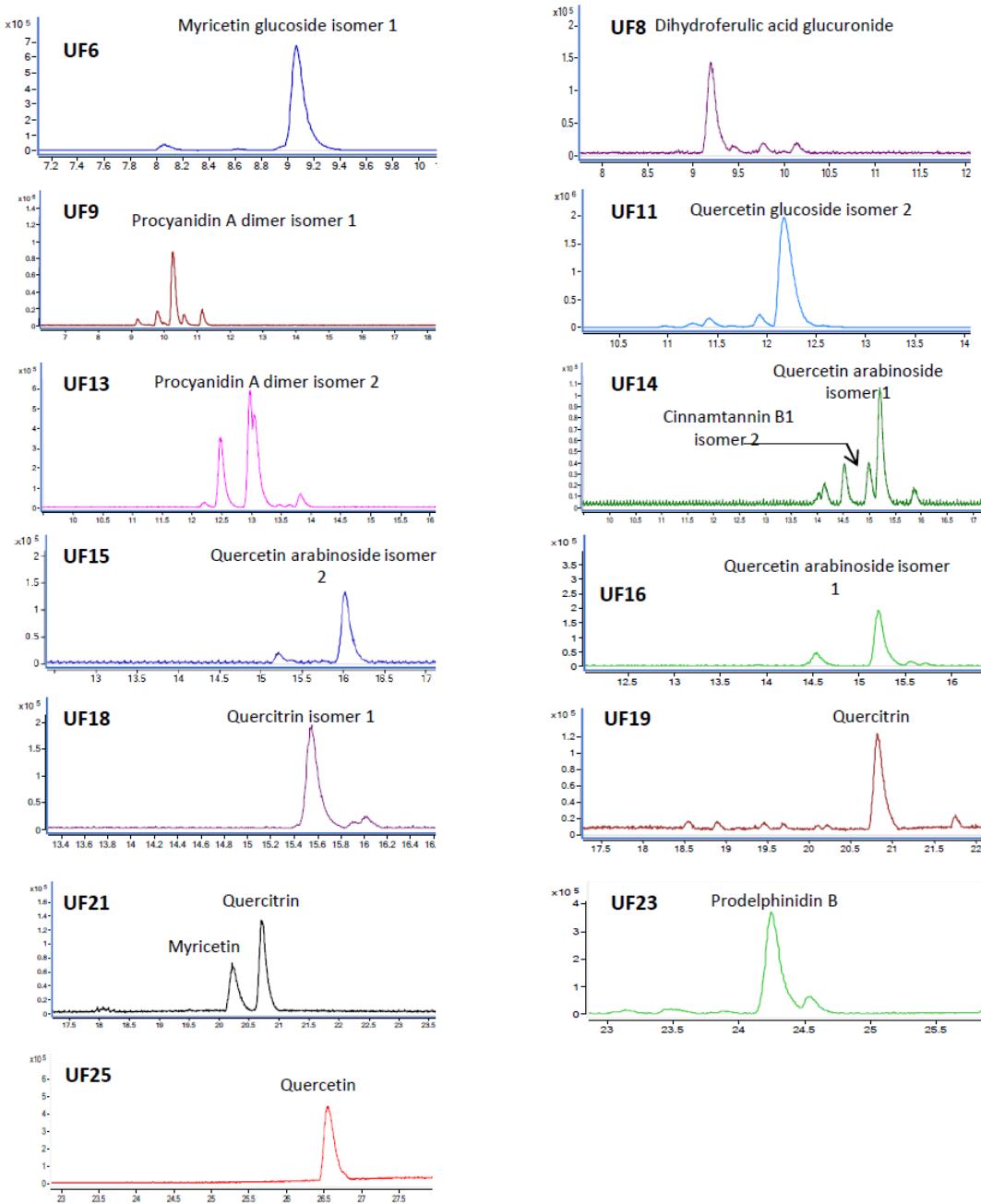
477


478

479

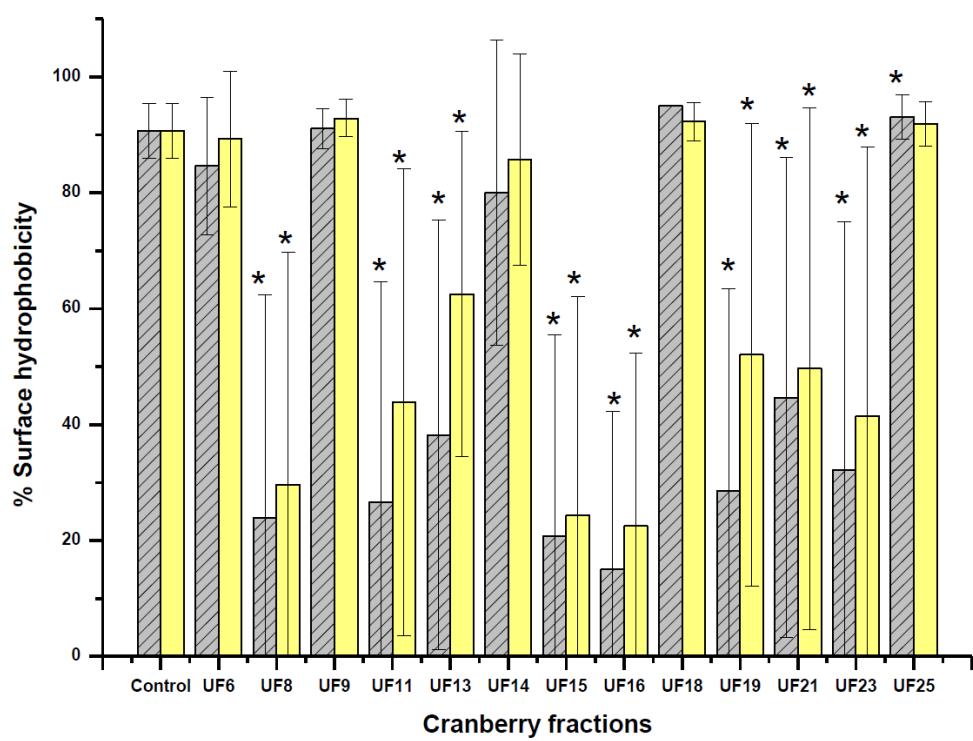
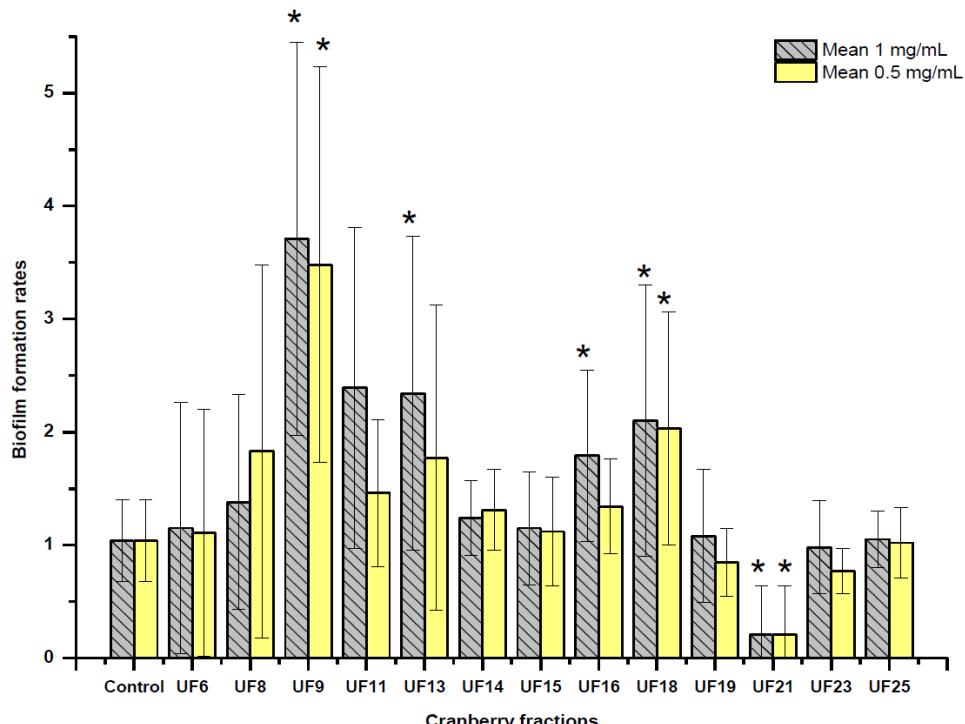
480

Table 1. Retention time and mass spectral data of the compounds characterized in the fractions from cranberry extract by HPLC-ESI-MS in negative mode. *Compounds identified with standard.

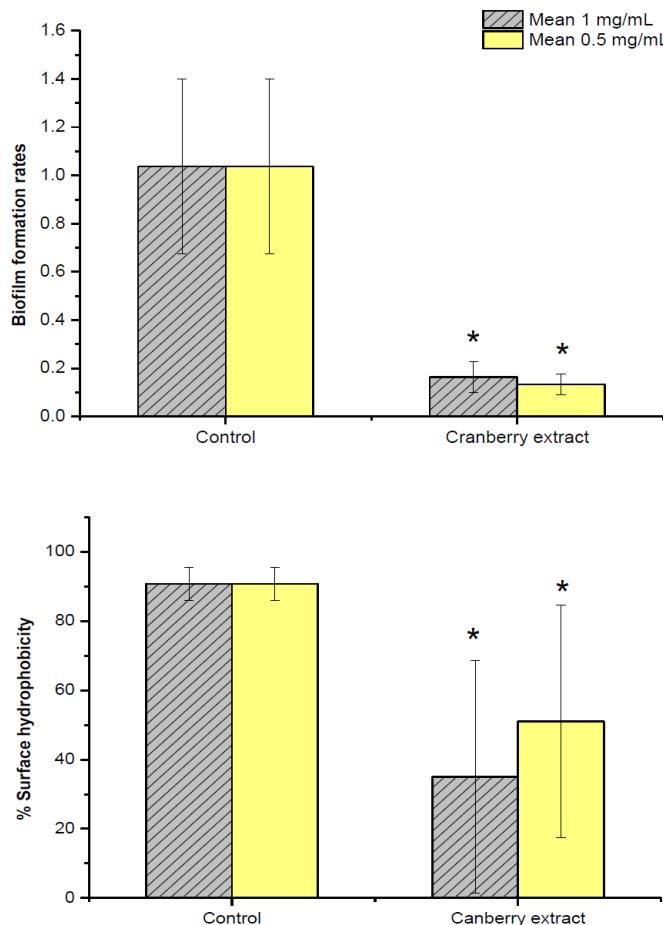

Proposed compound	Retention time (min)	Molecular Formula	Calculated m/z ([M-H] ⁻)	Fractions
Quinic acid	5.212	C ₇ H ₁₂ O ₆	191.0561	1,2
Kaempferol arabinoside	5.527	C ₂₀ H ₁₈ O ₁₀	417.0827	1
Procyanidin B	5.736	C ₃₀ H ₂₆ O ₁₂	577.1351	3
Caffeic acid glucoside	6.588	C ₁₅ H ₁₈ O ₉	341.0878	1
Cinnamtannin B1 isomer 1	7.130	C ₄₅ H ₃₆ O ₁₈	863.1829	1,4
Myricetin arabinoside	7.421	C ₂₀ H ₁₈ O ₁₂	449.0725	5
Catechin *	7.765	C ₁₅ H ₁₄ O ₆	289.0718	4
Procyanidin C1	9.689	C ₄₅ H ₃₈ O ₁₈	865.1985	4
Myricetin glucoside isomer 1	9.065	C ₂₁ H ₂₀ O ₁₃	479.0831	6
Myricetin glucoside isomer 2	9.123	C ₂₁ H ₂₀ O ₁₃	479.0831	7
Dihydroferulic acid glucuronide	9.183	C ₁₆ H ₂₀ O ₁₀	371.0984	4,8
Procyanidin A dimer isomer 1	10.611	C ₃₀ H ₂₄ O ₁₂	575.1195	9
Quercetin glucoside isomer 1	12.155	C ₂₁ H ₂₀ O ₁₂	463.0882	12
Quercetin glucoside isomer 2	12.191	C ₂₁ H ₂₀ O ₁₂	463.0882	11
Procyanidin A dimer isomer 2	12.973	C ₃₀ H ₂₄ O ₁₂	575.1195	12,13
Quercetin-3-O-glucoside *	14.775	C ₂₁ H ₂₀ O ₁₂	463.0882	10
Cinnamtannin B1 isomer 2	15.019	C ₄₅ H ₃₆ O ₁₈	863.1829	14
Quercetin glucoside isomer 3	15.095	C ₂₁ H ₂₀ O ₁₂	463.0882	10
Quercetin arabinoside isomer 1	15.202	C ₂₀ H ₁₈ O ₁₁	433.0776	14, 16
Quercitrin isomer 1	15.663	C ₂₁ H ₂₀ O ₁₁	447.0933	17,18
Quercetin arabinoside isomer 2	16.013	C ₂₀ H ₁₈ O ₁₁	433.0776	15
Myricetin *	20.229	C ₁₅ H ₁₀ O ₈	317.0303	21
Quercitrin *	20.847	C ₂₁ H ₂₀ O ₁₁	447.0933	19,20,21
Quercitrin isomer 2	21.668	C ₂₁ H ₂₀ O ₁₁	447.0933	22
Prodelphinidin B	24.246	C ₃₀ H ₂₆ O ₁₄	609.1250	23,24
Quercetin	26.560	C ₁₅ H ₁₀ O ₇	301.0354	25

482

483 **Figure 1.** Semipreparative-HPLC-UV chromatograms of cranberry extract indicating the
484 collected fractions.



485

486


487 **Figure 2.** HPLC-MS chromatograms of the isolated fractions from cranberry extract.

488

489

490 **Figure 3.** (a) Mean and standard deviation in biofilm formation after incubating *E. coli* strains
491 with each selected fraction; (b) Mean and standard deviations of surface hydrophobicity after
492 incubating *E. coli* strains with each selected fraction. *Significant differences between control
493 group and tested fraction ($p < 0.05$).

494

495 **Figure 4.** (a) Mean and standard deviation in biofilm formation after incubating *E. coli* strains
496 with cranberry extract; (b) Mean and standard deviations of surface hydrophobicity after
497 incubating *E. coli* strains with cranberry extract. *Significant differences between control group
498 and tested extract ($p < 0.05$).

499

500 **Table S1.** Surface hydrophobicity and biofilm formation rates after incubating *E. coli* with each
 501 cranberry fraction compared with control. Dil A, dilution at 1 mg mL⁻¹; Dil B, dilution at 0.5
 502 mg mL⁻¹. *Significant differences between control group and tested extract ($p < 0.05$).

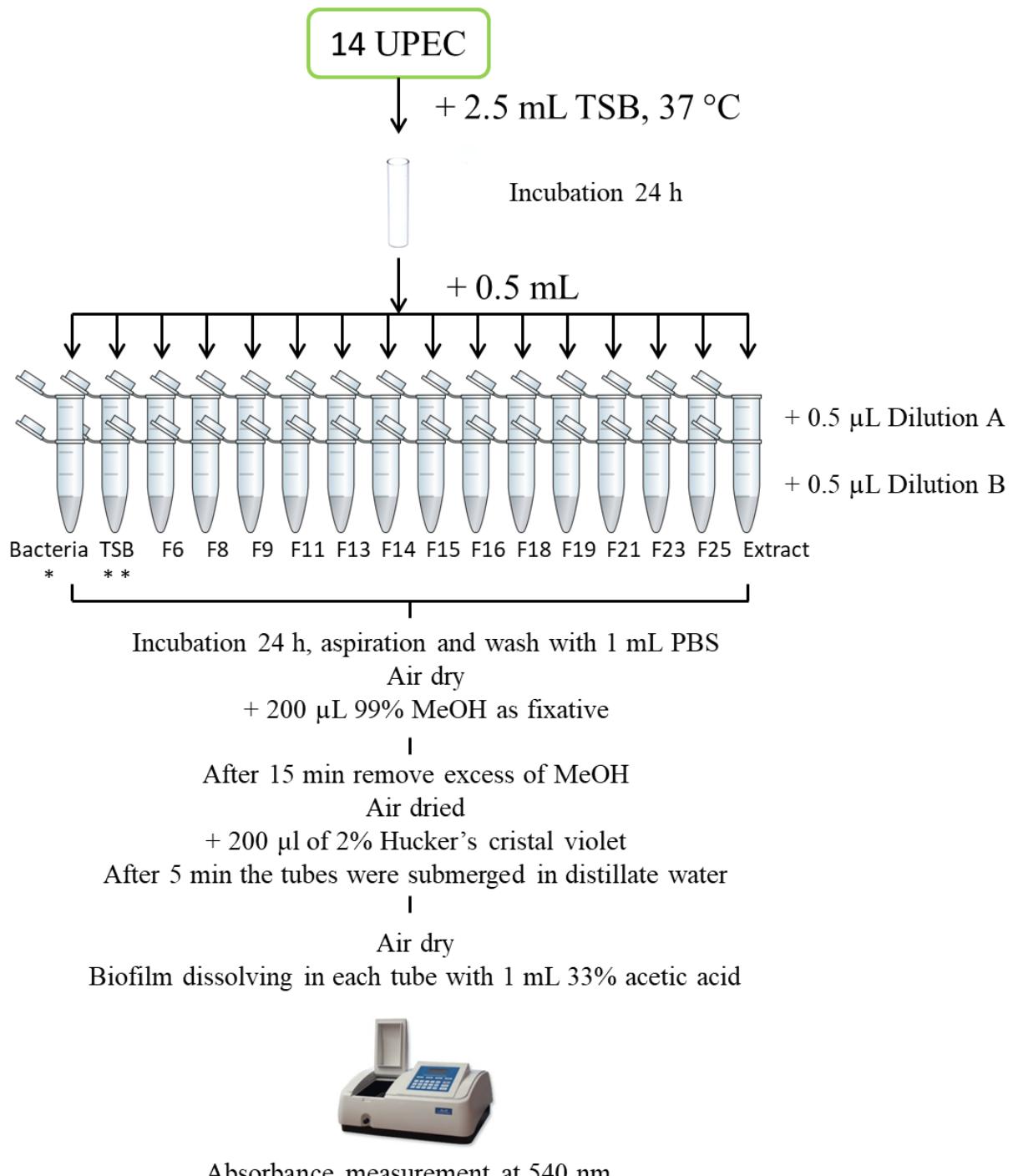
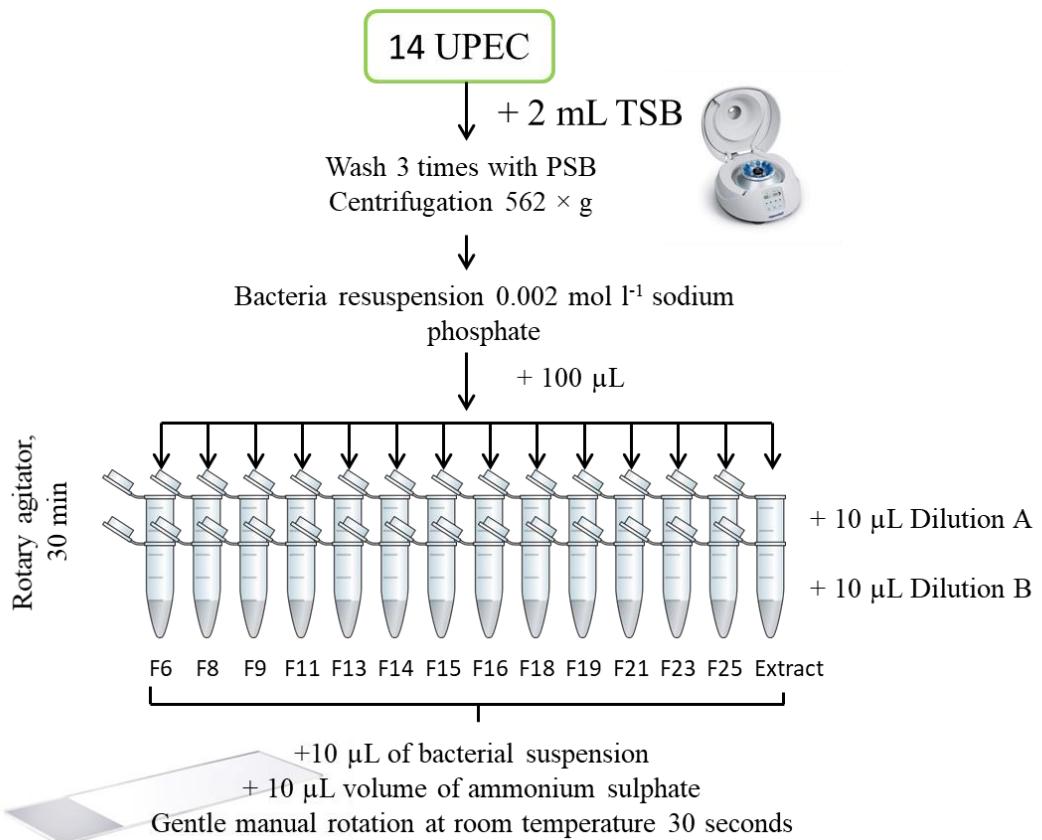

Hydrophobicity	z	Asymptotic significance	Biofilm formation	z	Asymptotic significance
Extract Dil A	-3.063	0.002*	Extract Dil A	-3.296	0.001*
Extract Dil B	-3.065	0.002*	Extract Dil B	-3.296	0.001*
F6 Dil A	-1.913	0.056	F6 Dil A	-0.795	0.427
F6 Dil B	-0.577	0.564	F6 Dil B	-0.852	0.394
F8 Dil A	-3.083	0.002*	F8 Dil A	-0.795	0.427
F8 Dil B	-3.081	0.002*	F8 Dil B	-1.931	0.053
F9 Dil A	-0.122	0.903	F9 Dil A	-3.408	0.001*
F9 Dil B	-1.294	0.196	F9 Dil B	-3.296	0.001*
F11 Dil A	-3.117	0.002*	F11 Dil A	-0.659	0.510
F11 Dil B	-2.988	0.003*	F11 Dil B	-0.471	0.638
F13 Dil A	-3.113	0.002*	F13 Dil A	-3.124	0.002*
F13 Dil B	-2.671	0.008*	F13 Dil B	-1.704	0.088
F14 Dil A	-1.256	0.209	F14 Dil A	-1.590	0.112
F14 Dil B	-0.723	0.470	F14 Dil B	-1.533	0.125
F15 Dil A	-3.074	0.002*	F15 Dil A	-0.738	0.460
F15 Dil B	-3.074	0.002*	F15 Dil B	-0.454	0.650
F16 Dil A	-3.315	0.001*	F16 Dil A	-2.556	0.011*
F16 Dil B	-3.188	0.001*	F16 Dil B	-1.533	0.125
F18 Dil A	-2.456	0.014*	F18 Dil A	-2.668	0.008*
F18 Dil B	-0.586	0.558	F18 Dil B	-2.731	0.006*
F19 Dil A	-3.237	0.001*	F19 Dil A	-0.284	0.776
F19 Dil B	-2.989	0.003*	F19 Dil B	-0.966	0.334
F21 Dil A	-2.849	0.004*	F21 Dil A	-2.840	0.005*
F21 Dil B	-2.673	0.008*	F21 Dil B	-3.067	0.002*
F23 Dil A	-2.833	0.005*	F23 Dil A	0.00	1.00
F23 Dil B	-2.631	0.009*	F23 Dil B	-1.420	0.156
F25 Dil A	-2.449	0.014*	F25 Dil A	-0.454	0.650
F25 Dil B	-0.791	0.429	F25 Dil B	-0.284	0.776

Table S2. Concentration tested in bioactivity assays

Fractions tested	Dilution A (µg mL⁻¹)	Dilution B (µg mL⁻¹)
F6	550	275
F8	550	275
F9	450	225
F11	850	425
F13	750	375
F14	500	250
F15	450	225
F16	350	175
F18	550	275
F19	300	150
F21	350	175
F23	250	125
F25	300	150

504


505

506

507 **Figure S1.** Scheme describing the adherence and subsequent biofilm formation assay.

508

509

510 **Figure S2.** Scheme describing the surface hydrophobicity assay based on the ammonium
 511 sulphate aggregation test.

512

513