

1
2
3 EXOGENOUS LEPTIN REINFORCES INTESTINAL BARRIER FUNCTION AND PROTECTS FROM
4
5 COLITIS
6

7 Belén Rivero-Gutiérrez^a, Carlos J. Aranda^b, Borja Ocón^a, María Arredondo^a, Olga Martínez-Augustín^b,
8
9 Fermín Sánchez de Medina^a
10
11
12

13 ^aDepartment of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas
14 y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria Ibs. GRANADA.
15 University of Granada, Granada, Spain
16
17

18 ^bDepartment of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de
19 Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación
20 Biosanitaria Ibs. GRANADA. University of Granada, Granada, Spain
21
22
23
24
25
26

27 **Corresponding autor:**
28
29

30 Olga Martínez-Augustín
31

32 Address: Department of Biochemistry and Molecular Biology II. School of Pharmacy. Campus de
33 Cartuja, s/n. 18071. Granada. Spain. Phone: + 34 958 241747. Fax: +34 958 248964. E-mail address:
34 omartine@ugr.es
35
36
37

38 **Author's contact details (e-mail):**
39

40 Belén Rivero-Gutiérrez: briverog@gmail.com
41

Borja Ocón: borjaoconel@gmail.com

42 Carlos J. Aranda: cjarandaclemente@gmail.com
43

María Arredondo: mariaarredondo@ugr.es

44 Fermín Sánchez de Medina: fsanchez@ugr.es
45
46
47

48 **Running title:** Leptin, colitis and epithelial damage
49
50

51 **ABSTRACT**
52
53
54
55
56

57
58
59
60
61 Besides its function controlling energy expenditure and food intake, leptin is an important modulator
62 of inflammatory responses. The role of leptin in intestinal inflammation remains controversial, since
63 both pro-inflammatory and anti-inflammatory effects have been reported. This study was carried out
64 to further understand leptin contribution in the inflamed intestinal mucosa. Exogenous PEG-leptin or
65 saline solution was given to C57BL/6 mice for two weeks. After 1 week, acute colitis was induced to
66 C57BL/6 mice using dextran sulfate sodium (DSS) in drinking water. The severity of colitis,
67 inflammatory parameters and mucosal barrier function were evaluated. Overall our results indicate
68 that colitis was less severe in mice receiving leptin, as shown by a decrease in rectal bleeding, epithelial
69 damage and colon inflammatory markers, and improved diarrhea. Leptin-treated mice displayed an
70 increase in the expression of tight junction proteins and proliferative expression markers in colon,
71 indicating a reinforcement in the mucosal barrier function induced by leptin administration. PEG-
72 leptin treatment conferred protection to mice in the DSS model of colitis by reinforcing mucosal barrier
73 function.
74
75
76
77
78
79
80
81
82
83
84
85

86
87
88 **Keywords:** leptin, barrier function, experimental colitis
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

113
114
115 **1. Introduction**
116
117
118

119 Leptin was discovered in 1994 as a metabolic hormone produced by adipose tissue, the first of the later
120 called adipokines [1]. Circulating leptin levels are correlated with adipose mass [2] and are modulated
121 by food intake [3,4]. Until the last decade, its main role was considered to be to the control of food
122 intake and energy expenditure, since leptin is secreted in response to food stimuli and activates satiety
123 in the CNS. Beside energy homeostasis, leptin exerts pleiotropic actions all over the organism,
124 including neuroendocrine and immune functions, and glucose, lipid and bone metabolism [5]. Leptin
125 affects both innate and adaptive immunity, where it can modulate the activity and function of
126 neutrophils and macrophages, increase the cytotoxic ability of NK cells, modulate the maturation and
127 survival of thymic T cells by reducing their apoptosis, or promote the switch towards Th1 and Th17 of
128 memory T cells [6]. The leptin receptor, LEPRb, is expressed in numerous cell types, including neurons,
129 intestinal epithelial cells (IECs), and immune cells, such as macrophages, T cells, natural killer cells and
130 polymorphonuclear cells [7].
131
132

133 Although adipose tissue constitutes the main source of the hormone, leptin can be secreted by muscle,
134 stomach and placenta [8]. It has been described that plasma leptin levels are augmented during
135 intestinal colitis in individuals [9] irrespective of body mass index, and also in mice [8], where colonic
136 epithelial cells were identified as a cellular source of leptin, suggesting the importance of leptin effects
137 in the inflamed intestinal mucosa.
138
139

140 Different and opposite roles have been attributed to leptin in the gastrointestinal tract, where it has
141 been linked to both harmful and protective effects depending on the biological context. Thus, Duggal *et*
142 *al* found an increased susceptibility to intestinal infection by *Entamoeba histolytica* in children
143 associated with an amino acid substitution of the LEPR [10]. Further, intestinal epithelium-specific
144 deletion resulted in heightened susceptibility to infection and subsequent mucosal injury, indicating
145

169
170
171 the importance of leptin intestinal actions [11]. Similarly, leptin has a protective role in the intestinal
172 mucosa in the *Clostridium difficile* model of colitis [12]. Of note, leptin can act from the luminal site, as
173 mucus secretion can be induced by luminal perfusion in the rat [13,14]. Likewise, leptin could prevent
174 gastric ulcer and promote its healing by increasing COX and NO activity, as well as mucus secretion
175 and angiogenesis [15,16]. Thus several studies support the role of leptin as an intestinal anti-
176 inflammatory agent.
177
178

183
184
185 Nevertheless, leptin is also considered a pro-inflammatory cytokine. Thus it has been shown that leptin
186 deficient ob/ob mice are resistant to intestinal inflammation induced by DSS or trinitrobenzene
187 sulfonic acid (TNBS) administration, associated with reduced cytokine secretion [17]. Mice receiving T
188 cells from leptin resistant db/db mouse donor display a delay in the onset of T cell transfer model of
189 colitis [18], as opposed to no difference with leptin deficient ob/ob mice donor cells [19], indicating
190 that leptin signaling in T cells, but not its production, has a major role in colitis development. However,
191 specific silencing of the leptin receptor *Lepr* in CD4+ T cells resulted in a selective defect in both
192 autoimmune and protective Th17 responses. Reis et al. demonstrated a reduced capacity for
193 differentiation towards Th17 phenotype by *Lepr*-deficient T cells associated with a lower activation of
194 the signal transducer and activator of transcription 3 (STAT3) and its downstream targets [20].
195
196

201
202 Therefore, the evidence available about leptin function in the intestinal mucosa remains controversial.
203 So far, most experiments have been performed either in animal models lacking leptin or its signaling or
204 by blocking LEPRb. Therefore, we set out the present study with the aim of clarify this question and
205 describe the effect of hyperleptinemia in C57BL/6 mice in steady state and under inflammation in the
206 intestinal mucosa.
207
208

225
226
227
228
229
230
231 **2. Methods**
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

2.1. Reagents

Except where indicated, all reagents and primers were obtained from Sigma (Barcelona, Spain). MonoPEGylated leptin (PEG-leptin) was obtained from Protein Laboratories Rehovot (Rehovot, Israel). RNeasy mini kits were obtained from Qiagen (Hilden, Germany). Reverse transcription was achieved with the iScriptTM cDNA Synthesis Kit, and iQTM Sybr® Green Supermix was used for amplification (Biorad, Alcobendas, Spain).

2.2. Animals

Eight weeks old male C57BL/6 mice (20-25 g) were obtained from Envigo (Barcelona, Spain) (n=7-10). Animals were maintained at the University of Granada Animal Facility in air-conditioned animal quarters with a 12 h light-dark cycle. Control mice were pair-fed with leptin-treated mice, adjusting the quantity of food of control groups to the daily intake of chow diet of leptin-groups (one day of delay). All animals had free access to sterile water. Once the experiment finished, animals were sacrificed under ketamine-xylazine anesthesia, and blood and tissues were collected, processed and/or snap frozen and kept at -80°C. Whole blood samples were analyzed with a hematologic counter (Mythic® 22CT C2 diagnostics, Orphée, Geneva, Switzerland).

All animal procedures in this study were carried out in accordance with the Guide for the Care and Use of Laboratory Animals as adopted and promulgated by the U.S. National Institutes of Health and were approved by the Animal Experimentation Ethics Committee of the University of Granada (ref. 2011-349).

2.3. Induction of acute DSS colitis and experimental design

281
282
283 Colitis was induced by adding 2.5% dextran sulfate sodium (DSS) to drinking water for 7 days. To
284 induce hyperleptinemia, mice received a daily subcutaneous (sc) injection of PEG-leptin (0.5 mg/kg),
285 whose half-life is ~20 hours. PEG-leptin treatment was initiated 7 days before the induction of colitis
286 and kept until the mice were sacrificed after another week. Control groups received an equal amount
287 of sterile saline solution sc.
288
289

290
291
292
293
294 The status of the animals was monitored daily by general examination and specifically by means of
295 body weight evolution, stool consistency (0-3), and fecal occult blood, corresponding to the signs of the
296 pathology in this model.
297
298

300
301
302 2.4. *Evaluation of colitis*
303

304 Animal blood was collected by heart puncture under ketamine-xylazine anesthesia. Then, mice were
305 sacrificed by cervical dislocation. The entire colon was removed, gently flushed with saline and blotted
306 on filter paper, placed on an ice-cold plate, cleaned of fat and mesentery and longitudinally opened so
307 as to exhaustively eliminate fecal remains. Each specimen was weighed and its length measured under
308 a constant load (2 g). A small segment was dissected from the intestine and used for RNA isolation. The
309 colon was subsequently divided longitudinally in several pieces for biochemical determinations. The
310 fragments were immediately frozen in liquid nitrogen and kept at -80°C until used. Alkaline
311 phosphatase (AP) activity was measured spectrophotometrically, as described [21]. AP is expressed as
312 mU/mg protein (1 U= 1 μ mol/min of substrate converted).
313
314

315
316 Plasma leptin was measured by ELISA (R&D Systems Inc., Minneapolis MN, USA) following the
317 manufacturer's instructions in mice untreated with PEG-leptin.
318
319

320 2.5. *Histological assessment of colon damage*
321
322
323

337
338
339 Distal colon tissue fragments were fixed in 4% paraformaldehyde (w/v). Five μ m sections were obtained
340 from paraffin-embedded colonic tissue and were placed on 3-amino propyl triethoxy silane coated
341 slides. After being de-paraffinized, sections were rehydrated in serial dilutions of ethanol and water.
342 Sections were then stained with hematoxylin & eosin (H&E) or alcian blue staining and mounted. H&E
343 staining was conducted to study morphology and check for integrity of the colonic tissue attending to
344 the following criteria. Crypt length (0-2), leukocyte infiltration (0-4), submucosal enlargement (0-2),
345 epithelial erosion (0-2) and loss of crypts structure (0-2). Images were captured and digitalised using a
346 Leica DMI3000B microscope equipped with a Leica DFC420 C Camera.
347
348
349
350
351
352
353
354
355
356

357 *2.6. Fecal occult blood determination*

358 Stool samples were freshly collected individually from each mouse and stored at -80°C. The protocol
359 used for the fecal occult blood (FOB) determination is an adaptation of the one first developed by the
360 Dr. Donald S. Young [22]. Briefly, stool samples were homogenized in distilled ultrapure water (EIA
361 Grade Ultra Pure Water, Spibio®, United Kingdom, 0.105 mg / μ l). After that, 200 μ l of that solution was
362 taken into a 15 ml tube and incubated at 100°C for 10 minutes and mixed with 1.2 ml of acetic acid and
363 distilled water (30/70). Next 1.8 ml of pure ethyl acetate was added on top and the whole mixture
364 vortexed and centrifuged (350 g/3 minutes/room temperature). Finally, the upper phase was collected
365 and exposed to 3,3',5,5'-tetramethylbenzidine in the presence of hydrogen peroxide and the reaction
366 was monitored spectrometrically after 30 and 60 seconds at 660 nm. As a reference, a hemoglobin curve
367 was generated in distilled water and subjected to the same protocol above described. Results are
368 expressed as μ g hemoglobin/mg of feces.
369
370
371
372
373
374
375
376
377
378
379
380
381

382 *2.7. Colonic explants culture*

383 After the mice sacrifice, the colon was removed and cleaned thoroughly. Here, in order to eliminate
384 any bacterial remains, fragments were exposed to a PBS solution containing 500 U/mL penicillin, 0.5
385 mg/mL streptomycin, 12.5 μ g/mL amphotericin B and 10 μ g/mL gentamycin. Next, the colon was
386
387
388
389
390
391
392

393
394
395 divided into several equal portions (~0.5 cm²), rinsed again in the antibiotic containing PBS and
396 cultured with DMEM featuring heat-inactivated fetal bovine serum (10 % v/v), 100 U/ml penicillin, 0.1
397 mg/ml streptomycin, 2.5 µg/mL amphotericin and 2 mM glutamine. After 24 h tissue fragments were
398 collected and frozen. Culture medium was centrifuged for 5 minutes at 300 g and 4°C and snap frozen
399 at -80°C for subsequent ProcartaPlex® assay of the following analytes: TNF α , IFN γ , G-CSF, GM-CSF,
400 IL-1 β , IL-6, IL-12p70, IL-10, IL-17A and IL-22 (Affymetrix, eBioscience, Barcelona, Spain). Results are
401 normalized to the protein amount of tissue fragments and results expressed as pg of cytokine/µg of
402 protein (BCA assay) [23].
403
404
405

406 *2.8. Western blot analysis*

407 Tissue samples were homogenized in lysis buffer (0.1% w/v SDS, 0.1% w/v sodium deoxycholate, 1% v/v
408 Triton X-100 in PBS) with protease inhibitor cocktail 1:200 (v/v) and phosphatase inhibitor cocktail
409 (1:100 v/v, Santa Cruz®, Heidelberg, Germany). Homogenates were sonicated and centrifuged at 1100 g
410 for 5 min at 4°C. Protein concentration was determined by the BCA assay. Samples were boiled for 5
411 min in Laemmli sample buffer (Bio-Rad®, Alcobendas, Spain) separated by SDS-PAGE, electroblotted
412 to nitrocellulose membranes (Millipore, Madrid, Spain) and probed with the corresponding antibodies.
413 The bands were detected by enhanced chemiluminescence (PerkinElmer®, Waltham, MA) and
414 quantitated with the software Image J. The primary antibodies anti-pSTAT3 (1:2000, ref. 9145S lot 31)
415 and anti-STAT3 (1:1000, ref. 9139S lot 8) were purchased from Cell Signaling (Denver, MA, US); anti- β -
416 actin JLA (1:1000, ref. JLA20s lot 6/25/15) from DSHB (Iowa city, IA, US); anti-BCL2 (1:500, ref. 14-6992-
417 81 lot E05256-1634) and anti-BAX (1:1000, ref. BMS163 lot 99486000) from eBiosciences (San Diego CA,
418 USA). Ponceau staining was applied routinely to confirm equal loading [24].
419
420
421

422 *2.9. RNA isolation and Quantitative Reverse-Transcription Polymerase Chain Reaction (RT-qPCR) Analysis*

423 Total RNA was isolated by using RNeasy mini kit (Qiagen, Hilden, Germany) and checked for integrity
424 by electrophoresis in 1% agarose gel (w/v). Quantification was determined by the 260/280 nm
425

449
450
451 absorbance ratio with a Nanodrop® (Thermo Scientific®). One µg RNA was subjected to reverse
452 transcription, iQTM Sybr® Green Supermix was used for amplification and specific DNA sequences
453 were amplified with a Biorad CFX connect real time PCR device (Alcobendas, Madrid, Spain). Primers
454 used are shown in Table 1. Results are expressed as 2^{-ddCt} using hypoxanthine guanine phosphoribosyl-
455 transferase (HPRT) as reference gene.
456
457
458

459 *2.10. Intestinal permeability assay in Caco 2T cells*
460
461

462 Caco 2T cells supplied by the European Collection of Authenticated Cell Cultures (ECACC, passes 54-
463 56) were used as *in vitro* model to evaluate the effect of leptin on paracellular permeability to 4 kDa
464 FITC-dextran in intestinal epithelial cells. Cells were seeded directly onto 3 µm pore size polycarbonate
465 Transwell™ (Corning Life Science NY, USA) inserts in 12 well plates and cultured in Dulbecco's
466 Modified Eagle's Medium (DMEM) supplemented with 10% v/v heat-inactivated fetal bovine serum, 2
467 mM L-glutamine, 1% v/v penicillin [100U/ml], 0.1 mg/ml streptomycin and 2.5 µg/ml of amphotericin B.
468 After two days, media was changed and leptin added at 0, 10 and 50 ng/ml into both the apical and
469 basolateral compartments. Media and leptin were refreshed every other day and transepithelial
470 electrical resistance (TEER) was measured to determine when the cells had reached full confluence and
471 formed a tight and functional monolayer. Once TEER became stable, the experiment was performed.
472 The cells were washed with sterile PBS and phenol red free medium added, with 4 kDa FITC-dextran in
473 the apical side at 1 mg/ml (time 0). Aliquots of 60 µl were taken every hour from the basolateral
474 compartment and media was replaced for a total of 7 hours. Finally, fluorescence was measured at
475 490/520 nm in a FLUOstarControl instrument (Polarstar OPTIMA, BMG Labtech). Paracellular flux was
476 calculated as the relative change compared with control group. Three different experiments were
477 carried out.
478
479

480 *2.11. Statistical analysis*
481
482

505
506
507 In all the experiments, samples were run in duplicate, and results are expressed as mean \pm SEM.
508
509 Differences among the means were tested for statistical significance by two-way ANOVA and a
510
511 posteriori Fisher least significant difference tests. All the analyses were carried out with GraphPad
512
513 Prism 6. Differences were considered significant at $p < 0.05$.
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

561
562
563
564
565
566
567 **3. Results**
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

3.1. Leptin administration prevents intestinal damage in mice

We generated a hyperleptinemic condition by daily administering exogenous PEG-leptin to C57BL6/J mice for 14 days, 7 days before the induction of acute DSS colitis and another 7 days concurrently with the administration of DSS. To control for the anorexic effect of leptin, the intake of untreated healthy and colitic control animals was adjusted by pair-feeding. As expected, the administration of leptin prior to the induction of DSS colitis induced weight loss, that began to stabilize at day 4 of administration. Pair-feeding resulted in a similar behavior of the untreated groups with one day of lag (Figure 1A). The anorexic effect of leptin disappeared after 5 days of PEG-leptin administration, so that food intake was normal before the administration of DSS (data not shown).

DSS colitis had similar features to those described originally by Okayasu in 1990 [25] and was consistent with previous experiments in our laboratory. DSS is considered to elicit inflammation mainly by a direct toxic effect on intestinal epithelial cells, including stem cells at the base of the crypts, thereby affecting normal cell turnover and compromising epithelial barrier function. Colonic inflammation ensues, characterized by bloody diarrhea, ulcerations and an intense leukocyte infiltration. As expected, both DSS groups presented body weight loss, which was significant for the DSS control group from day 6 onwards, while the DSS-leptin group experienced a more pronounced weight loss, starting on day 2. In contrast, the body weight of the noncolitic control and leptin groups followed a parallel and stable evolution up to the end of the experiment (Figure 1B). After DSS administration the stool status was evaluated as a valuable marker of intestinal inflammation (Figure 1C). The stool consistency score increased in both the DSS and DSS leptin groups from day 2, and was significantly higher at 4-6 d in the DSS group compared with the DSS-leptin group, due to reduced diarrhea and blood content in the latter. Accordingly, fecal occult blood was measured in a sample

617
618
619 taken at the end of the experiment and was found to be increased in the DSS group vs. the DSS-leptin
620 group, although statistical significance was not reached ($P = 0.069$) (Figure 1D).
621
622

623
624 To further reinforce these findings indicating an attenuated colonic damage in the DSS-leptin animals,
625 bowel wall thickening (weight/length ratio) was diminished in the DSS-leptin group when compared to
626 the DSS group (Figure 1E), and the histological study of colon cross sections using hematoxylin and
627 eosin staining showed a better preservation of mucosal structure in leptin-treated animals as well as
628 less leukocyte infiltration (Figures 2A and 2B). In accordance, AP activity and the expression of S100A8
629 (a calprotectin subunit) were reduced in colitic mice treated with leptin ($p=0.07$ for S100A8 expression)
630 (Figures 2C and 2D). Leptin plasma levels were not measured in PEG-leptin treated mice due to
631 interference with the ELISA assay, but a marked reduction was noted in the DSS group compared with
632 the control (Figure 1F). Leptin administration resulted in upregulation of the leptin receptor in the
633 colon of colitic but not control mice (Figure 1G).
634
635

636
637 The haematological analysis of the mice revealed that DSS colitis resulted in a significant decrease in
638 hematocrit (HTC), in the concentration of hemoglobin (Hb) and in the number of circulating
639 erythrocytes (RBC), consistent with the marked rectal bleeding inherent to the model. The
640 administration of leptin normalized these parameters (Figure 3A). The presence of total leucocytes in
641 blood (WBC) was increased by colitis, and the relative amount of basophils (BAS) and neutrophils
642 (NEU) within them was significantly reduced in leptin-treated mice (Figure 3B-C). Finally, both colitic
643 groups showed elevated levels of platelets in blood (platelet number, PLT, and thrombocrit, PCT), with
644 no differences between them (Figure 3D).
645
646

647
648 Together, these results indicate lower inflammation in the colitic animals that received leptin.
649
650

673
674
675
676
677 3.2. Leptin stimulates the intestinal immune response in physiological conditions but inhibits inflammation
678 in DSS induced colitis
680

681 To further study the effect of leptin on the intestinal inflammatory response, we cultured colonic
682 explants and determined cytokine concentration in the culture medium (Figure 4). Leptin given to
683 healthy, noncolitic animals showed a clear tendency to increase the secretion of most of the assayed
684 cytokines, including TNF, IL-17A, IL-10, IL-6, GM-CSF, G-CSF and slightly that of IL-1 β and IL-12,
685 thereby showing an immunostimulant effect in these conditions. It should be noted that none of these
686 changes reached statistical significance due to the distortion introduced by the data corresponding
687 colitic groups. As expected, DSS inflammation induced the innate immune response, with augmented
688 TNF or IL-1 β , as well as the adaptive immune response, potentiating the release of Th1, Th17 and Treg
689 cytokines IL-10, IL-17A, IL-22, IFN- γ , and also slightly that of IL-12p70 (Figures 4A-H). The colony
690 stimulating factors GM-CSF and G-CSF were also significantly induced by DSS (Figure 4I-J). No
691 significant differences were observed for the Th2 cytokines IL-13, IL-4 or for IL-27 (not shown). The
692 DSS-leptin group showed levels of TNF, IFN- γ , IL-1 β and IL17A intermediate between those of the
693 control and DSS groups, while IL12p70 levels were equivalent to those of the control groups, indicating
694 a regulatory anti-inflammatory effect of leptin in the colitis. In contrast, IL-10, IL-22, IL-6, GM-CSF and
695 G-CSF were unaffected by leptin treatment.
696
697

700 3.3. Epithelial barrier function is reinforced by leptin
701
702

703 To evaluate the state of epithelial barrier function, we analyzed the expression of antimicrobial
704 peptides and proteins involved in tight junctions by qRT-PCR. There was a marked increase in Reg3 γ
705 and haptoglobin (HP) expression in colitic animals compared with the controls, which was less
706 pronounced in the DSS-leptin group (Figure 5A-B). Lysozyme 2 (*Lyz-2*) was also induced in colitic mice
707 (Figure 5C). Leptin induced the expression of ZO-1 and claudin 4, an effect that, notably, was observed
708 in both control animals that received leptin ($p=0.06$) and in the DSS-leptin group, while claudin 5 was
709
710

729
730
731 significantly upregulated in the DSS-leptin group (Figure 5D-F). The glycocalix is another element of
732 the intestinal barrier. Alcian blue and nuclear red staining of colonic tissue showed a substantial
733 reduction of mucus in DSS colitis, which was partly counteracted in both the lumen and crypts in the
734 DSS-leptin group compared with the DSS group (Figure 5H). Conversely, no differences were noted in
735 noncolitic animals. Consequently, we measured the expression of mucin *Muc3* by qRT-PCR and found
736 it to be significantly decreased in DSS colitis, an effect that was attenuated in DSS-leptin mice.
737 Nevertheless, in the absence of inflammation, animals treated with leptin exhibited some decrease in
738 *Muc3* expression in colonic tissue (Figure 5G). Finally, phosphorylation of myosin light chain 2 (MLC2),
739 which has been related to an increased intestinal permeability, was reduced by leptin in the absence of
740 inflammation (Figure 6A). This effect persisted in the colitic groups but was attenuated, so that it was
741 no longer significant. An *in vitro* Caco-2T cell model was used to further study the effect of leptin on
742 intestinal permeability. In agreement with the results obtained *in vivo*, culturing cells with different
743 concentrations of leptin reduced the permeability to 4 kD FITC-dextran (Figure 6B).
744
745

746
747
748 The ability to restore the epithelial barrier is a determinant factor in the evolution and resolution of
749 acute colitis induced by DSS, so we analyzed the expression of proliferative and apoptotic factors in
750 colonic tissue. Western blot results for PCNA (Proliferating Cell Nuclear Antigen), STAT3
751 phosphorylation (pSTAT3/STAT3 ratio) and BCL2-associated x protein (BAX)/cell lymphoma 2 (BCL-2),
752 shown in Figure 6. PCNA, a marker of cell proliferation, was increased by leptin administration (Figure
753 6D). STAT3 (in its phosphorylated active form pSTAT3) induces cell proliferation and is involved in the
754 generation of antimicrobial peptides and mucins. In addition, it has been described as a key factor in
755 the signaling cascade of leptin. The results obtained confirm enhanced phosphorylation of STAT3 in
756 noncolitic leptin treated mice. The administration of DSS markedly increased the activation of STAT3,
757 but this response was significantly lower in colitic mice treated with leptin (Figure 6C). BAX and BCL-2
758 are well known pro- and antiapoptotic factors, respectively. The BAX/BCL-2 ratio was increased in the
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

785
786
787 DSS group, consistent with a higher apoptosis in the colon of these animals, but not in the animals
788
789 treated with leptin (Figure 6E).
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

841
842
843
844
845
846
847 **4. Discussion**
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896

Various adipokines, including leptin, adiponectin, resistin, visfatin, ghrelin, and apelin, mostly derived from mesenteric adipose tissue, have been related to intestinal inflammation [26-30]. In particular, leptin, resistin, ghrelin and adiponectin are upregulated in the mesenteric adipose tissue of Crohn's disease patients [31,32]. The present study was carried out to assess the effect of exogenous leptin in the development of experimentally induced Th1 colitis in normal mice [33]. This direct experimental approach may harvest different results from those obtained in animals devoid of normal leptin signaling, such as Zucker rats or ob/ob mice, due to adaptive changes in the latter as mentioned above. In order to control for the expected anorexigenic effect of leptin pair feeding was applied. Of note, even in these conditions body weight remained somewhat lower in leptin treated mice, possibly reflecting augmented basal metabolism, which is a known effect of leptin [34].

Our results categorically indicate a diminished colonic inflammatory response in leptin treated mice, based on multiple parameters: attenuated bowel wall thickening, AP activity, fecal blood and anemia, neutrophil and basophil counts, S100a8 mRNA expression, Reg3 γ and STAT3 phosphorylation, plus improved histology and stool consistency. In addition, inflammatory cytokine production by colonic explants (TNF α , IFN- γ , IL-1 β , IL-17A, IL-12 p70) was also lower, albeit without reaching statistical significance in this case. Of note, cytokine levels were somewhat higher in explants from noncolitic leptin-treated mice, such as IL-6 and G-CSF. This was not significant, despite a relatively large increase, possibly owing to the statistical distortion introduced by the colitic groups. Thus this might represent a real effect of leptin, which may in turn be involved in tissue repair and intestinal homeostasis. In particular, IL-6 has been related to intestinal epithelial proliferative and repair response after injury [35], and to antimicrobial protection [36]. Similar effects have been described for G-CSF [37]. Related to these findings is increased STAT3 phosphorylation. STAT3 signaling has been

897
898
899 shown to be relevant to leptin intestinal effects [38]. Thus our results suggest that leptin may
900
901 contribute to intestinal protection/repair in part by this mechanism.
902
903
904
905
906

907 These data globally point to an antiinflammatory effect of exogenous leptin. Because leptin has well
908 documented effects on barrier function [13-15,39], we also measured barrier parameters in colonic
909 samples. Leptin upregulated the expression of ZO-1 (*Tjp1*, p=0.06), *Cldn4* and *Cldn5* at the mRNA level.
910 This effect was attenuated in colitic mice in the case of *Tjp1*. Leptin also increased the expression of the
911 proliferation marker PCNA, augmented mucus production, and downregulated apoptosis (based on
912 BAX/BCL2). Considered globally, these data suggest a mucosal barrier protective effect of leptin.
913 Unfortunately we do not have direct evidence of enhanced barrier function *in vivo*, as DSS colitic
914 animals did not exhibit measurable LPS or bacterial translocation (this is consistent with our
915 experience with this model ([40] and data not shown). In Caco 2T cells leptin lowered paracellular
916 permeability to 4 kD FITC-dextran. It should be noted that leptin failed to enhance epithelial wound
917 healing *in vitro* (data not shown). Thus our results concur with previous reports showing a positive
918 effect of leptin on mucosal barrier function, related at least in part with epithelial proliferation and
919 regeneration, and, contrary to previous observations *in vivo* and *in vitro* [41], with a positive impact on
920 tight junctions.
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

936 Protection from DSS colitis may result from such direct barrier enhancing actions. A possible
937 alternative mechanism is activation of the mucosal immune system, inasmuch as it contributes to
938 barrier function by controlling bacterial translocation [42-45]. Generalized [46] or T cell specific [20]
939 blockade of leptin signaling enhances the susceptibility to infection, and leptin treatment protects
940 against experimental sepsis [47]. Of note, mice with epithelial but not hematopoietic specific deletion
941 of the leptin receptor are more sensitive to *Entamoeba histolytica* [10,11]. In addition to epithelial
942
943
944
945
946
947
948
949
950
951
952

953
954
955 mechanisms, leptin protection reportedly involves enhanced recruitment of neutrophils [48]. It is worth
956
957 noting that leptin has been documented to have gastroprotective effects as well [49].
958
959
960

961 Our results are consistent with those reported by Cakir et al. using the acetic acid rat colitis model,
962 using a 50-fold lower dose of unpegylated leptin and looking at short term effects (24 h) [50]. These
963 authors implicated the glucocorticoid receptor, as the antiinflammatory effect was reversed by
964 mifepristone. However, leptin has an inhibitory effect on the hypothalamus. Even though a substantial
965 part of circulating corticosterone may proceed from peripheral sources in these conditions [51-53],
966 plasma corticosterone levels were not increased in our study (data not shown), suggesting it is not
967 involved in leptin effects. Conversely, colitis had a dramatic effect on leptin levels, which were reduced
968 by 90%. This is in conflict with previous reports, which have documented increased circulating leptin
969 [54-57], which may be secondary to augmented synthesis by the intestinal epithelium, mucosal T cells,
970 or creeping fat/mesenteric adipose tissue [8,32,58]. It has been proposed that leptin expression may be
971 induced by translocating bacteria [59]. The reason for this discrepancy is unknown, but we have also
972 observed reduced plasma leptin in rat TNBS colitis (unpublished observations), and a similar result was
973 observed in DSS colitis by Deboer et al. [60]. It should be noted that leptin has been also positively
974 associated with body mass index and negatively with disease activity in IBD [61]. Thus, given that
975 weight loss associated with colitis is substantial and results in reduction of adipose tissue mass, this
976 may be the cause of hypoleptinemia. Our results suggest that it may aggravate inflammation. In turn,
977 decreased circulating leptin arguably has little effect in the anorexia associated with colitis, as the
978 latter, at least in experimental colitis, has been linked to increased IL-1 β levels [62,63]. Due to cross-
979 reactivity the levels of adipokine treated animals could not be assessed. Of note, the expression of the
980 leptin receptor was upregulated in the colon of leptin treated colitic mice, possibly reflecting feed-
981 forward regulation in an inflammatory context (since noncolitic mice showed normal expression levels).
982
983 Such a mechanism has been previously documented in the liver of leptin treated mice [64].
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008

1009
1010
1011 The effects of leptin in the inflamed intestine are complex, as the conflicting evidence available
1012 indicates. Thus ob/ob mice (which lack leptin) are resistant to both DSS and TNBS colitis [17], and
1013 become sensitive when exogenous leptin is administered or when WT MAT is transplanted [27],
1014 implicating mesenteric adipose tissue derived leptin as the colitogenic factor. Transfer colitis is also
1015 attenuated using KO leptin receptor T cells as donors [20]. Further, administration of a pegylated
1016 leptin receptor antagonist results in protection against IL10^{-/-} colitis [65]. Underscoring the importance
1017 of adaptive changes in leptin signaling, double knockout IL10^{-/-} ob/ob mice exhibit no changes in colitis
1018 severity compared with leptin expressing mice [66]. Thus no clear image emerges from existing
1019 evidence. It is likely that leptin effects depend on the biological context and experimental model. For
1020 instance, protection against colitis by the leptin antagonist has been assessed in the IL10^{-/-} model,
1021 which is characterized by higher involvement of the adaptive immune system and lower barrier
1022 disruption than either DSS or acetic acid colitis. This suggests that the antiinflammatory effects
1023 observed in these latter models may be favored by the epithelial actions of leptin. At any rate, our
1024 results suggest that the usefulness of leptin receptor antagonists may be hampered by the loss of
1025 repair mechanisms at play. Further research is required to clarify the precise role of leptin in intestinal
1026 inflammation.
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064

1065
1066
1067 **Conflict of interest disclosure**
1068
1069
1070
1071
1072

1073 The authors have no conflict of interest.
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120

Acknowledgements

The authors are thankful to Mercedes González and other laboratory members for their assistance, as well as to Dr. Diego Pérez Tilve (University of Cincinnati). This work was supported by the Ministerio de Economía y Competitividad (SAF2011-22922, SAF2011-22812, BFU2014-57736-P, AGL2014-58883-R) and Junta de Andalucía (CTS164, CTS235). BRG, CJA, BO and MAA are funded by Ministry of Education. CIBERehd is funded by the Instituto de Salud Carlos III.

1121
1122
1123 **REFERENCES**
1124
1125
1126

1127 [1] G. Fruhbeck, S.A. Jebb, A.M. Prentice, Leptin: physiology and pathophysiology, *Clinical*
1128 *physiology* (Oxford, England) 18 (1998) 399-419.
1129
1130 [2] T. Skurk, C. Alberti-Huber, C. Herder, H. Hauner, Relationship between adipocyte size and
1131 adipokine expression and secretion, *J Clin Endocrinol Metab* 92 (2007) 1023-1033.
1132
1133 [3] M. Pardo, A. Roca-Rivada, O. Al-Massadi, L.M. Seoane, J.P. Camina, F.F. Casanueva, Peripheral
1134 leptin and ghrelin receptors are regulated in a tissue-specific manner in activity-based
1135 anorexia, *Peptides* 31 (2010) 1912-1919.
1136
1137 [4] P.J. Havel, Peripheral signals conveying metabolic information to the brain: short-term and
1138 long-term regulation of food intake and energy homeostasis, *Exp Biol Med (Maywood)* 226
1139 (2001) 963-977.
1140
1141 [5] H.K. Park, R.S. Ahima, Physiology of leptin: energy homeostasis, neuroendocrine function and
1142 metabolism, *Metabolism* 64 (2015) 24-34.
1143
1144 [6] A. La Cava, G. Matarese, The weight of leptin in immunity, *Nat Rev Immunol* 4 (2004) 371-379.
1145
1146 [7] E. Gorska, K. Popko, A. Stelmaszczyk-Emmel, O. Ciepiela, A. Kucharska, M. Wasik, Leptin
1147 receptors, *European journal of medical research* 15 Suppl 2 (2010) 50-54.
1148
1149 [8] S. Sitaraman, X. Liu, L. Charrier, L.H. Gu, T.R. Ziegler, A. Gewirtz, D. Merlin, Colonic leptin:
1150 source of a novel proinflammatory cytokine involved in IBD, *FASEB J* 18 (2004) 696-698.
1151
1152 [9] A. Tuzun, A. Uygun, Z. Yesilova, A.M. Ozel, A. Erdil, H. Yaman, S. Bagci, M. Gulsen, N.
1153 Karaeren, K. Dagalp, Leptin levels in the acute stage of ulcerative colitis, *J Gastroenterol*
1154 Hepatol 19 (2004) 429-432.
1155
1156 [10] P. Duggal, X. Guo, R. Haque, K.M. Peterson, S. Ricklefs, D. Mondal, F. Alam, Z. Noor, H.P.
1157 Verkerke, C. Marie, C.A. Leduc, S.C. Chua, Jr., M.G. Myers, Jr., R.L. Leibel, E. Houpt, C.A.
1158 Gilchrist, A. Sher, S.F. Porcella, W.A. Petri, Jr., A mutation in the leptin receptor is associated
1159 with *Entamoeba histolytica* infection in children, *J Clin Invest* 121 (2011) 1191-1198.
1160
1161 [11] X. Guo, M.R. Roberts, S.M. Becker, B. Podd, Y. Zhang, S.C. Chua, Jr., M.G. Myers, Jr., P. Duggal,
1162 E.R. Houpt, W.A. Petri, Jr., Leptin signaling in intestinal epithelium mediates resistance to
1163 enteric infection by *Entamoeba histolytica*, *Mucosal Immunol* 4 (2011) 294-303.
1164
1165 [12] R. Madan, X. Guo, C. Naylor, E.L. Buonomo, D. Mackay, Z. Noor, P. Concannon, K.W. Scully, P.
1166 Pramoonjago, G.L. Kolling, C.A. Warren, P. Duggal, W.A. Petri, Jr., Role of leptin-mediated
1167 colonic inflammation in defense against *Clostridium difficile* colitis, *Infect Immun* 82 (2014)
1168 341-349.
1169
1170 [13] P. Plaisancie, R. Ducroc, M. El Homsi, A. Tsocas, S. Guilmeau, S. Zoghbi, O. Thibaudeau, A.
1171 Bado, Luminal leptin activates mucin-secreting goblet cells in the large bowel, *Am J Physiol*
1172 *Gastrointest Liver Physiol* 290 (2006) G805-812.
1173
1174 [14] M. El Homsi, R. Ducroc, J. Claustre, G. Jourdan, A. Gertler, M. Estienne, A. Bado, J.Y. Scoazec,
1175 P. Plaisancie, Leptin modulates the expression of secreted and membrane-associated mucins in
1176

1177
1178
1179 colonic epithelial cells by targeting PKC, PI3K, and MAPK pathways, Am J Physiol Gastrointest
1180 Liver Physiol 293 (2007) G365-373.
1181

1182 [15] T. Tanigawa, T. Watanabe, K. Otani, Y. Nadatani, H. Machida, H. Okazaki, H. Yamagami, K.
1183 Watanabe, K. Tominaga, Y. Fujiwara, N. Oshitani, K. Higuchi, T. Arakawa, Leptin promotes
1184 gastric ulcer healing via upregulation of vascular endothelial growth factor, Digestion 81 (2010)
1185 86-95.
1186
1187 [16] E.O. Adeyemi, S.A. Bastaki, I.S. Chandranath, M.Y. Hasan, M. Fahim, A. Adem, Mechanisms of
1188 action of leptin in preventing gastric ulcer, World J Gastroenterol 11 (2005) 4154-4160.
1189
1190 [17] B. Siegmund, H.A. Lehr, G. Fantuzzi, Leptin: a pivotal mediator of intestinal inflammation in
1191 mice, Gastroenterology 122 (2002) 2011-2025.
1192
1193 [18] B. Siegmund, J.A. Sennello, J. Jones-Carson, F. Gamboni-Robertson, H.A. Lehr, A. Batra, I.
1194 Fedke, M. Zeitz, G. Fantuzzi, Leptin receptor expression on T lymphocytes modulates chronic
1195 intestinal inflammation in mice, Gut 53 (2004) 965-972.
1196
1197 [19] G. Fantuzzi, J.A. Sennello, A. Batra, I. Fedke, H.A. Lehr, M. Zeitz, B. Siegmund, Defining the role
1198 of T cell-derived leptin in the modulation of hepatic or intestinal inflammation in mice, Clin
1199 Exp Immunol 142 (2005) 31-38.
1200
1201 [20] B.S. Reis, K. Lee, M.H. Fanok, C. Mascaraque, M. Amoury, L.B. Cohn, A. Rogoz, O.S. Dallner,
1202 P.M. Moraes-Vieira, A.I. Domingos, D. Mucida, Leptin receptor signaling in T cells is required
1203 for Th17 differentiation, J Immunol 194 (2015) 5253-5260.
1204
1205 [21] C. Hernandez-Chirlaque, R. Gamez-Belmonte, B. Ocon, P. Martinez-Moya, S. Wirtz, F. Sanchez
1206 de Medina, O. Martinez-Augustin, Tissue Non-specific Alkaline Phosphatase Expression is
1207 Needed for the Full Stimulation of T Cells and T Cell-Dependent Colitis, Journal of Crohn's &
1208 colitis 11 (2017) 857-870.
1209
1210 [22] C.L. Welch, D.S. Young, Spectrophotometry of occult blood in feces, Clin Chem 29 (1983) 2022-
1211 2025.
1212
1213 [23] P.K. Smith, R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H. Gartner, M.D. Provenzano, E.K.
1214 Fujimoto, N.M. Goeke, B.J. Olson, D.C. Klenk, Measurement of protein using bicinchoninic
1215 acid, Anal Biochem 150 (1985) 76-85.
1216
1217 [24] I. Romero-Calvo, B. Ocon, P. Martinez-Moya, M.D. Suarez, A. Zarzuelo, O. Martinez-Augustin,
1218 F.S. de Medina, Reversible Ponceau staining as a loading control alternative to actin in Western
1219 blots, Anal Biochem 401 (2010) 318-320.
1220
1221 [25] I. Okayasu, S. Hatakeyama, M. Yamada, T. Ohkusa, Y. Inagaki, R. Nakaya, A novel method in
1222 the induction of reliable experimental acute and chronic ulcerative colitis in mice,
1223 Gastroenterology 98 (1990) 694-702.
1224
1225 [26] H. Tilg, A.R. Moschen, Adipocytokines: mediators linking adipose tissue, inflammation and
1226 immunity, Nat Rev Immunol 6 (2006) 772-783.
1227
1228 [27] J.A. Sennello, R. Fayad, M. Pini, M.E. Gove, G. Fantuzzi, Transplantation of wild-type white
1229 adipose tissue normalizes metabolic, immune and inflammatory alterations in leptin-deficient
1230 ob/ob mice, Cytokine 36 (2006) 261-266.
1231
1232

1233
1234
1235 [28] Y. Ates, B. Degertekin, A. Erdil, H. Yaman, K. Dagalp, Serum ghrelin levels in inflammatory
1236 bowel disease with relation to disease activity and nutritional status, *Dig Dis Sci* 53 (2008) 2215-
1237 2221.
1238
1239 [29] A. Konrad, M. Lehrke, V. Schachinger, F. Seibold, R. Stark, T. Ochsenkuhn, K.G. Parhofer, B.
1240 Goke, U.C. Broedl, Resistin is an inflammatory marker of inflammatory bowel disease in
1241 humans, *Eur J Gastroenterol Hepatol* 19 (2007) 1070-1074.
1242
1243 [30] L. Valentini, E.K. Wirth, U. Schweizer, S. Hengstermann, L. Schaper, T. Koernicke, E. Dietz, K.
1244 Norman, C. Buning, B.M. Winklhofer-Roob, H. Lochs, J. Ockenga, Circulating adipokines and
1245 the protective effects of hyperinsulinemia in inflammatory bowel disease, *Nutrition* 25 (2009)
1246 172-181.
1247
1248 [31] B. Bertin, P. Desreumaux, L. Dubuquoy, Obesity, visceral fat and Crohn's disease, *Curr Opin
1249 Clin Nutr Metab Care* 13 (2010) 574-580.
1250
1251 [32] K. Karmiris, I.E. Koutroubakis, E.A. Kouroumalis, Leptin, adiponectin, resistin, and ghrelin--
1252 implications for inflammatory bowel disease, *Mol Nutr Food Res* 52 (2008) 855-866.
1253
1254 [33] R. Perez-Navarro, I. Ballester, A. Zarzuelo, F. Sanchez de Medina, Disturbances in epithelial
1255 ionic secretion in different experimental models of colitis, *Life Sci* 76 (2005) 1489-1501.
1256
1257 [34] R. Pandit, S. Beerens, R.A.H. Adan, Role of leptin in energy expenditure: the hypothalamic
1258 perspective, *Am J Physiol Regul Integr Comp Physiol* 312 (2017) R938-r947.
1259
1260 [35] K.A. Kuhn, N.A. Manieri, T.C. Liu, T.S. Stappenbeck, IL-6 stimulates intestinal epithelial
1261 proliferation and repair after injury, *PLoS One* 9 (2014) e114195.
1262
1263 [36] S.M. Dann, M.E. Spehlmann, D.C. Hammond, M. Iimura, K. Hase, L.J. Choi, E. Hanson, L.
1264 Eckmann, IL-6-dependent mucosal protection prevents establishment of a microbial niche for
1265 attaching/effacing lesion-forming enteric bacterial pathogens, *J Immunol* 180 (2008) 6816-6826.
1266
1267 [37] S.A. Eming, P. Martin, M. Tomic-Canic, Wound repair and regeneration: mechanisms,
1268 signaling, and translation, *Science translational medicine* 6 (2014) 265sr266.
1269
1270 [38] M.E. Gove, D.H. Rhodes, M. Pini, J.W. van Baal, J.A. Sennello, R. Fayad, R.J. Cabay, M.G. Myers,
1271 Jr., G. Fantuzzi, Role of leptin receptor-induced STAT3 signaling in modulation of intestinal and
1272 hepatic inflammation in mice, *J Leukoc Biol* 85 (2009) 491-496.
1273
1274 [39] C.S. Marie, H.P. Verkerke, S.N. Paul, A.J. Mackey, W.A. Petri, Jr., Leptin protects host cells from
1275 *Entamoeba histolytica* cytotoxicity by a STAT3-dependent mechanism, *Infect Immun* 80 (2012)
1276 1934-1943.
1277
1278 [40] B. Ocon, C.J. Aranda, R. Gamez-Belmonte, M.D. Suarez, A. Zarzuelo, O. Martinez-Augustin, F.
1279 Sanchez de Medina, The glucocorticoid budesonide has protective and deleterious effects in
1280 experimental colitis in mice, *Biochem Pharmacol* 116 (2016) 73-88.
1281
1282 [41] G. Le Drean, V. Haure-Mirande, L. Ferrier, C. Bonnet, P. Hulin, P. de Coppet, J.P. Segain,
1283 Visceral adipose tissue and leptin increase colonic epithelial tight junction permeability via a
1284 RhoA-ROCK-dependent pathway, *Faseb j* 28 (2014) 1059-1070.
1285
1286 [42] F. Sanchez de Medina, I. Romero-Calvo, C. Mascaraque, O. Martinez-Augustin, Intestinal
1287 inflammation and mucosal barrier function, *Inflamm Bowel Dis* 20 (2014) 2394-2404.
1288

1289
1290
1291 [43] H. Wang, W. Zhang, L. Zuo, J. Dong, W. Zhu, Y. Li, L. Gu, J. Gong, Q. Li, N. Li, J. Li, Intestinal
1292 dysbacteriosis contributes to decreased intestinal mucosal barrier function and increased
1293 bacterial translocation, *Letters in applied microbiology* 58 (2014) 384-392.
1294
1295 [44] J. Meng, H. Yu, J. Ma, J. Wang, S. Banerjee, R. Charboneau, R.A. Barke, S. Roy, Morphine
1296 induces bacterial translocation in mice by compromising intestinal barrier function in a TLR-
1297 dependent manner, *PLoS One* 8 (2013) e54040.
1298
1299 [45] M. Zareie, K. Johnson-Henry, J. Jury, P.C. Yang, B.Y. Ngan, D.M. McKay, J.D. Soderholm, M.H.
1300 Perdue, P.M. Sherman, Probiotics prevent bacterial translocation and improve intestinal barrier
1301 function in rats following chronic psychological stress, *Gut* 55 (2006) 1553-1560.
1302
1303 [46] M. Ozata, I.C. Ozdemir, J. Licinio, Human leptin deficiency caused by a missense mutation:
1304 multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction
1305 indicate new targets for leptin action, greater central than peripheral resistance to the effects
1306 of leptin, and spontaneous correction of leptin-mediated defects, *J Clin Endocrinol Metab* 84
1307 (1999) 3686-3695.
1308
1309 [47] J. Tschop, R. Nogueiras, S. Haas-Lockie, K.R. Kasten, T.R. Castaneda, N. Huber, K. Guanciale, D.
1310 Perez-Tilve, K. Habegger, N. Ottaway, S.C. Woods, B. Oldfield, I. Clarke, S. Chua, Jr., I.S.
1311 Farooqi, S. O'Rahilly, C.C. Caldwell, M.H. Tschop, CNS leptin action modulates immune
1312 response and survival in sepsis, *The Journal of neuroscience : the official journal of the Society
1313 for Neuroscience* 30 (2010) 6036-6047.
1314
1315 [48] C. Naylor, S. Burgess, R. Madan, E. Buonomo, K. Razzaq, K. Ralston, W.A. Petri, Jr., Leptin
1316 receptor mutation results in defective neutrophil recruitment to the colon during *Entamoeba
histolytica* infection, *mBio* 5 (2014)
1317
1318 [49] T. Brzozowski, P.C. Konturek, R. Pajdo, S. Kwiecien, A. Ptak, Z. Sliwowski, D. Drozdowicz, M.
1319 Pawlik, S.J. Konturek, E.G. Hahn, Brain-gut axis in gastroprotection by leptin and
1320 cholecystokinin against ischemia-reperfusion induced gastric lesions, *J Physiol Pharmacol* 52
1321 (2001) 583-602.
1322
1323 [50] B. Cakir, A. Bozkurt, F. Ercan, B.C. Yegen, The anti-inflammatory effect of leptin on
1324 experimental colitis: involvement of endogenous glucocorticoids, *Peptides* 25 (2004) 95-104.
1325
1326 [51] R.C. Gaillard, E. Spinedi, T. Chautard, F.P. Pralong, Cytokines, leptin, and the hypothalamo-
1327 pituitary-adrenal axis, *Ann N Y Acad Sci* 917 (2000) 647-657.
1328
1329 [52] E.W. Roubos, M. Dahmen, T. Kozicz, L. Xu, Leptin and the hypothalamo-pituitary-adrenal
1330 stress axis, *General and comparative endocrinology* 177 (2012) 28-36.
1331
1332 [53] M.R. Stieg, C. Sievers, O. Farr, G.K. Stalla, C.S. Mantzoros, Leptin: A hormone linking activation
1333 of neuroendocrine axes with neuropathology, *Psychoneuroendocrinology* 51 (2015) 47-57.
1334
1335 [54] M. Waluga, M. Hartleb, G. Boryczka, M. Kukla, K. Zwirska-Korczala, Serum adipokines in
1336 inflammatory bowel disease, *World J Gastroenterol* 20 (2014) 6912-6917.
1337
1338 [55] R. Faggioni, K.R. Feingold, C. Grunfeld, Leptin regulation of the immune response and the
1339 immunodeficiency of malnutrition, *FASEB J* 15 (2001) 2565-2571.
1340
1341 [56] M. Barbier, C. Cherbut, A.C. Aube, H.M. Blottiere, J.P. Galmiche, Elevated plasma leptin
1342 concentrations in early stages of experimental intestinal inflammation in rats, *Gut* 43 (1998)
1343 783-790.
1344

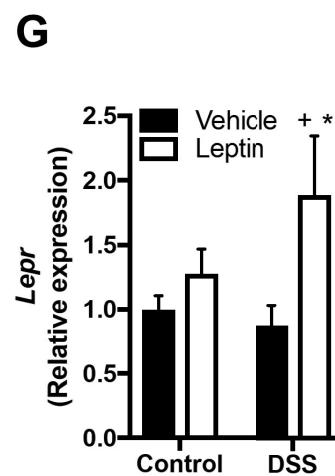
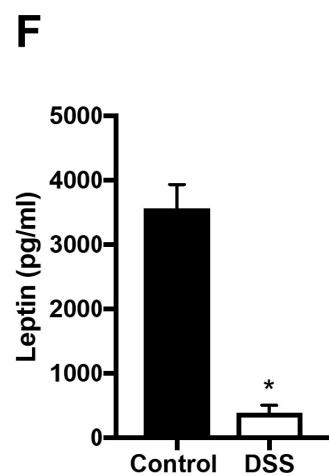
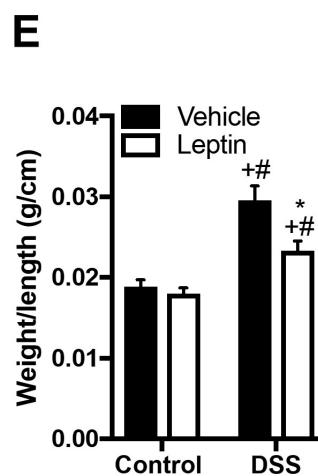
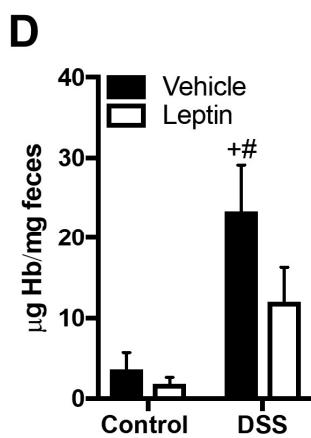
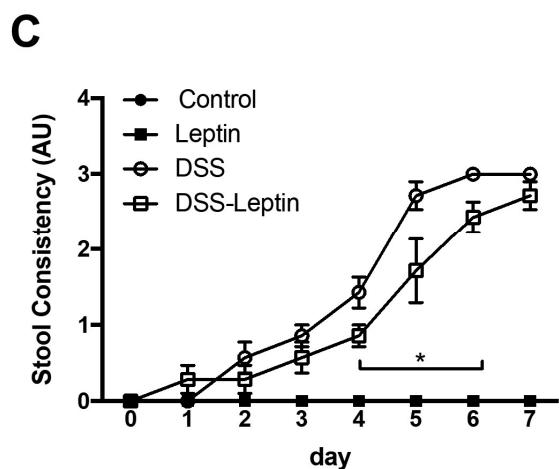
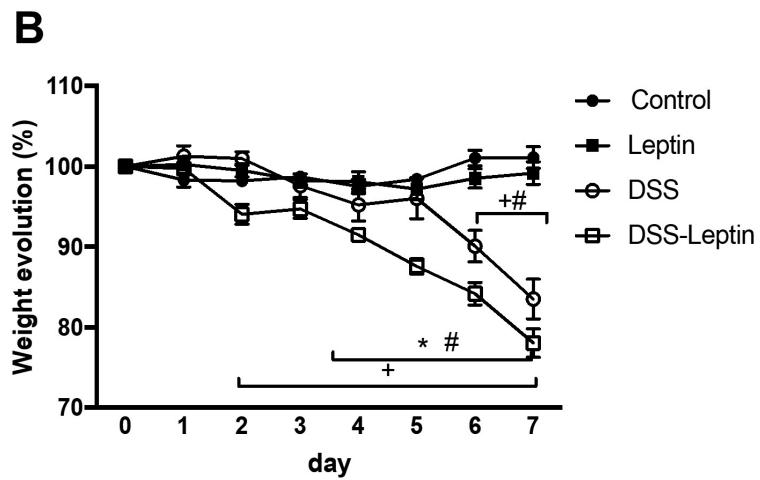
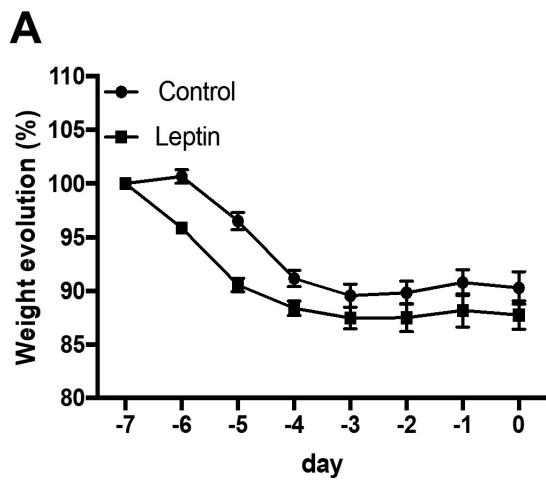
1345
1346
1347
1348 [57] G. Biesiada, J. Czepiel, A. Ptak-Belowska, A. Targosz, G. Krzysiek-Maczka, M. Strzalka, S.J. Konturek, T. Brzozowski, T. Mach, Expression and release of leptin and proinflammatory cytokines in patients with ulcerative colitis and infectious diarrhea, *J Physiol Pharmacol* 63 (2012) 471-481.
1349
1350
1351
1352 [58] K. Karmiris, I.E. Koutroubakis, C. Xidakis, M. Polychronaki, T. Voudouri, E.A. Kouroumalis, Circulating levels of leptin, adiponectin, resistin, and ghrelin in inflammatory bowel disease, *Inflamm Bowel Dis* 12 (2006) 100-105.
1353
1354
1355 [59] L. Peyrin-Biroulet, M. Chamaillard, F. Gonzalez, E. Beclin, C. Decourcelle, L. Antunes, J. Gay, C. Neut, J.F. Colombel, P. Desreumaux, Mesenteric fat in Crohn's disease: a pathogenetic hallmark or an innocent bystander?, *Gut* 56 (2007) 577-583.
1356
1357
1358
1359 [60] M.D. Deboer, Y. Li, Puberty is delayed in male mice with dextran sodium sulfate colitis out of proportion to changes in food intake, body weight, and serum levels of leptin, *Pediatric research* 69 (2011) 34-39.
1360
1361
1362
1363 [61] G. Chouliaras, I. Panayotou, D. Margoni, E. Mantzou, P. Pervanidou, Y. Manios, G.P. Chrousos, E. Roma, Circulating leptin and adiponectin and their relation to glucose metabolism in children with Crohn's disease and ulcerative colitis, *Pediatr Res* 74 (2013) 420-426.
1364
1365
1366
1367 [62] K.J. McHugh, S.M. Collins, H.P. Weingarten, Central interleukin-1 receptors contribute to suppression of feeding after acute colitis in the rat, *Am J Physiol* 266 (1994) R1659-1663.
1368
1369
1370 [63] T. El-Haj, S. Poole, M.J. Farthing, A.B. Ballinger, Anorexia in a rat model of colitis: interaction of interleukin-1 and hypothalamic serotonin, *Brain Res* 927 (2002) 1-7.
1371
1372
1373 [64] P. Cohen, G. Yang, X. Yu, A.A. Soukas, C.S. Wolfish, J.M. Friedman, C. Li, Induction of leptin receptor expression in the liver by leptin and food deprivation, *J Biol Chem* 280 (2005) 10034-10039.
1374
1375
1376 [65] U.P. Singh, N.P. Singh, H. Guan, B. Busbee, R.L. Price, D.D. Taub, M.K. Mishra, R. Fayad, M. Nagarkatti, P.S. Nagarkatti, Leptin antagonist ameliorates chronic colitis in IL-10(-)/(-) mice, *Immunobiology* 218 (2013) 1439-1451.
1377
1378
1379
1380 [66] B. Siegmund, J.A. Sennello, H.A. Lehr, A. Batra, I. Fedke, M. Zeitz, G. Fantuzzi, Development of intestinal inflammation in double IL-10- and leptin-deficient mice, *J Leukoc Biol* 76 (2004) 782-786.
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400

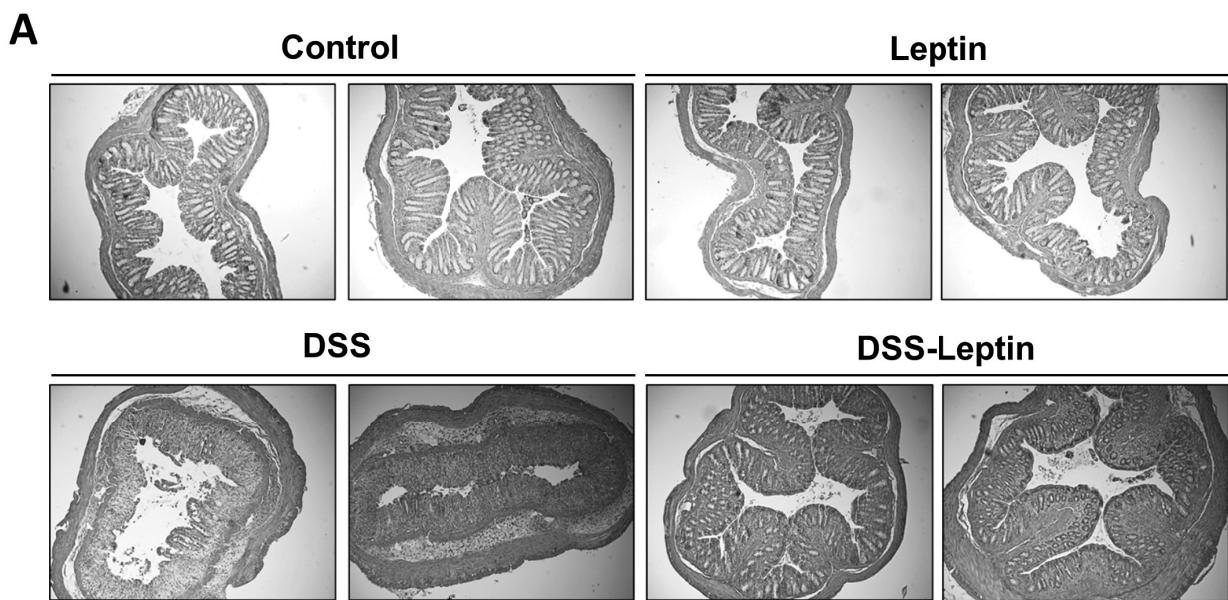
1401
1402
1403 **FIGURE LEGENDS**
1404
1405
1406

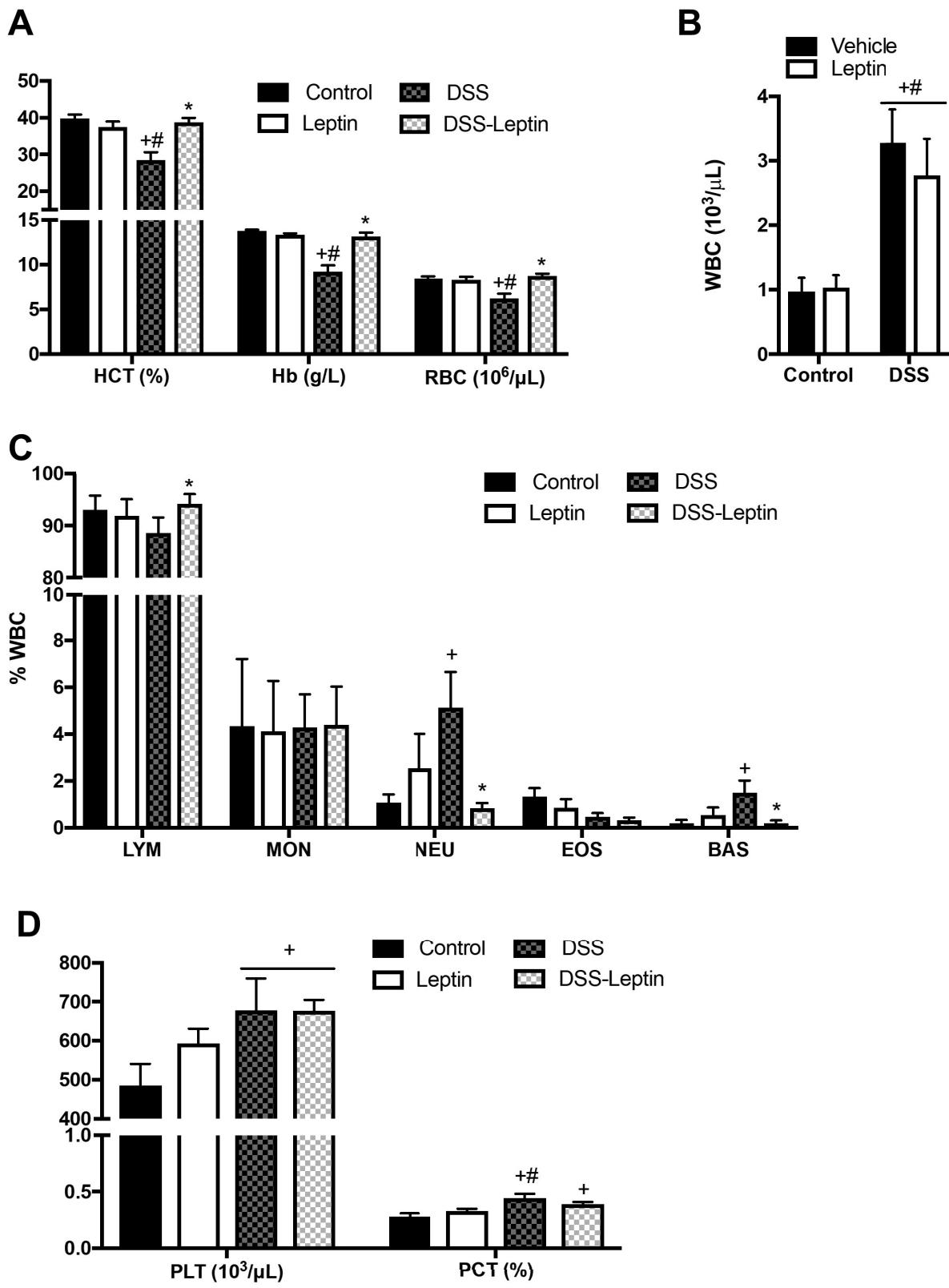
1407 Figure 1. Leptin administration prevents intestinal damage in mice (I). Intestinal colitis was induced
1408 with 2.5% DSS in drinking water and PEG-leptin or vehicle were administered s.c. PEG-leptin was
1409 found to prevent intestinal damage according to fecal consistency and blood content and decreased
1410 bowel wall thickening. Body weight evolution before (A) and after (B) induction of DSS colitis. (C) Stool
1411 consistency. (D) Fecal occult blood as μg of hemoglobin (Hb) per mg of feces. (E) Colonic weight/length
1412 ratio. (F) Plasma leptin levels. (G) Colonic expression of *Lepr*. $^+P<0.05$ vs Control; $^*P<0.05$ vs DSS;
1413 $^{\#}P<0.05$ vs Leptin (n=7-10).
1414
1415
1416
1417
1418
1419

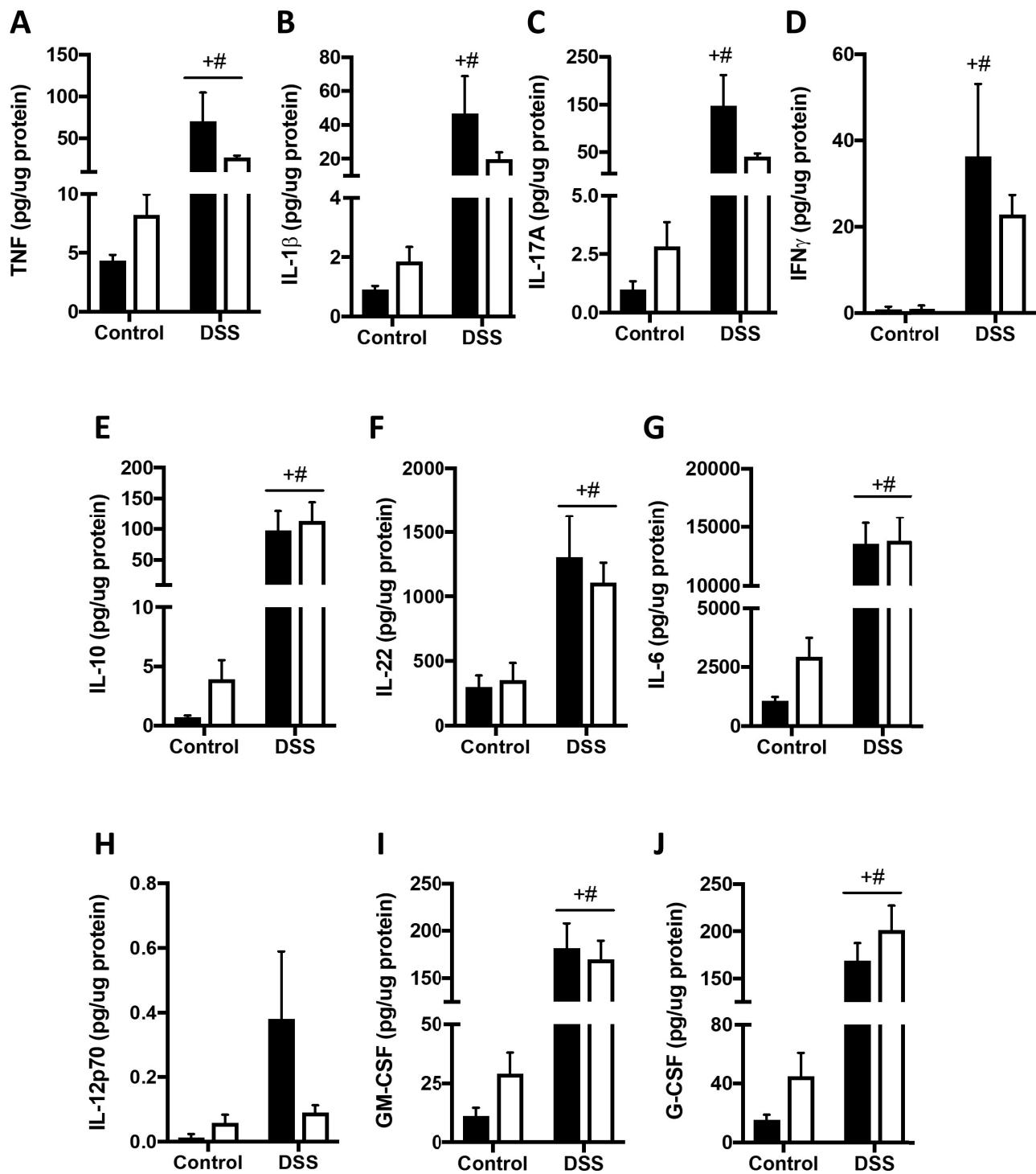
1420
1421
1422
1423
1424 Figure 2. Leptin administration prevents intestinal damage in mice (II). Intestinal colitis was induced
1425 with 2.5% DSS in drinking water and PEG-leptin or vehicle were administered s.c. Histological staining
1426 significantly shows a better preservation of mucosal structure and less leukocyte infiltration, AP
1427 activity and *S100a8* expression in leptin-treated mice. (A) H&E staining in colon. (B) H&E
1428 quantification; (C) Alkaline phosphatase (AP) activity in colon. (D) Colonic expression of *S100a8* by
1429 qPCR. $^+P<0.05$ vs Control; $^*P<0.05$ vs DSS; $^{\#}P<0.05$ vs Leptin (n=7-10).
1430
1431
1432
1433
1434

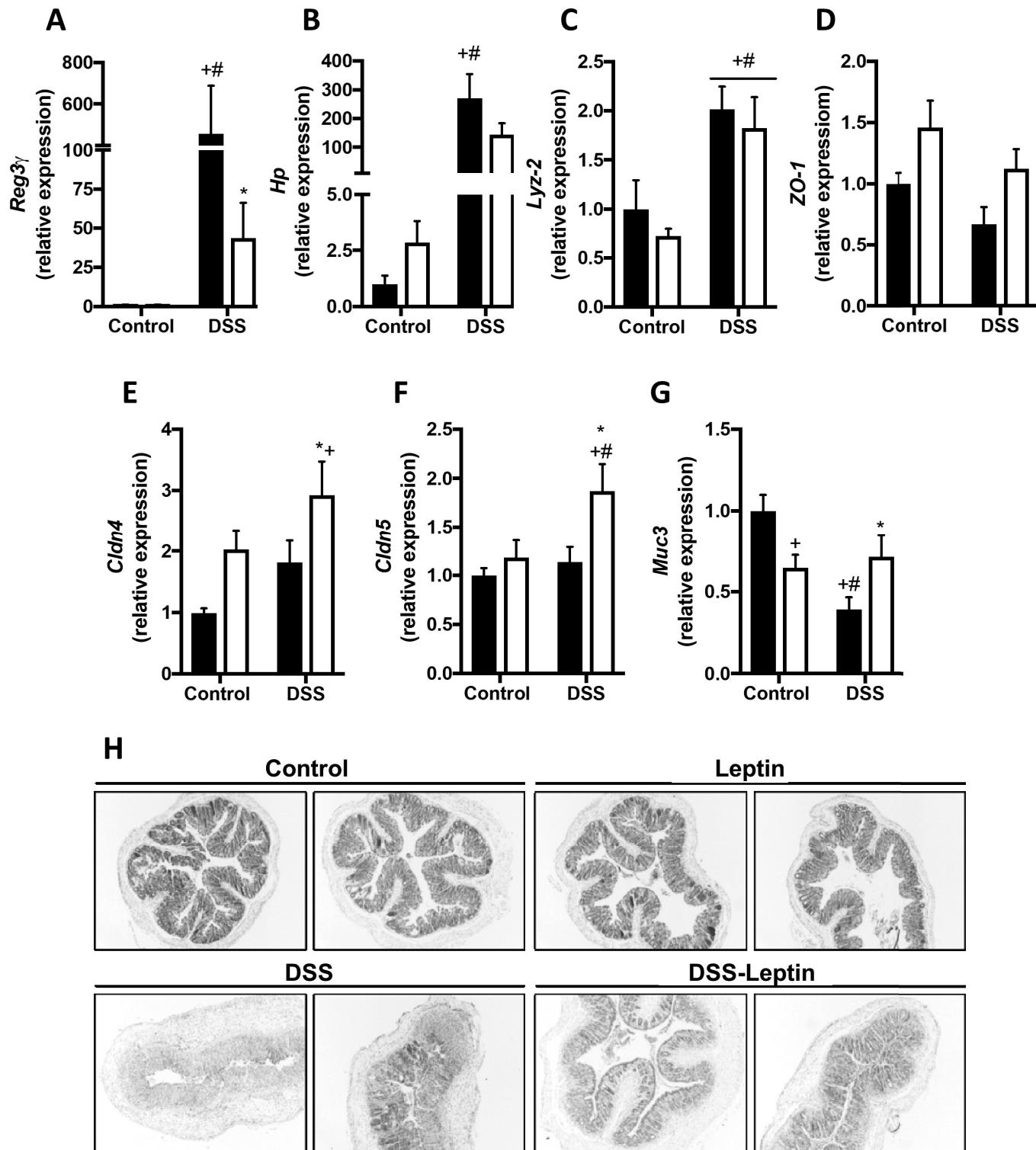
1435
1436
1437 Figure 3. Hemogram results. Intestinal colitis was induced with 2.5% DSS in drinking water and PEG-
1438 leptin or vehicle were administered s.c. PEG-leptin reduced anemia and prevented neutrophilia and
1439 basophilia. Plasma levels of Hb, total red blood cells (RBC) and hematocrit (HTC) (A) as well as total
1440 white blood cells (WBC) (B). (C) Percentage of circulating lymphocytes (LYM), monocytes (MON),
1441 neutrophils (NEU), eosinophils (EOS) and basophils (BAO). (D) Total platelets (PLT) and thrombocrit
1442 (PCT). $^+P<0.05$ vs Control; $^*P<0.05$ vs DSS; $^{\#}P<0.05$ vs Leptin (n=7-10).
1443
1444
1445
1446
1447
1448

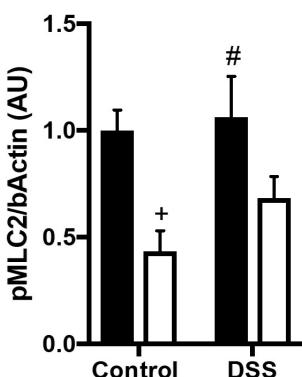







1457
1458
1459 **Figure 4. Cytokine and chemokine multiplex panel in colonic explants culture.** Intestinal colitis was
1460 induced with 2.5% DSS in drinking water and PEG-leptin or vehicle were administered s.c.
1461 Cytokine/chemokine expression was generally upregulated in response to DSS, and PEG-leptin mice
1462 exhibited levels of TNF, IFN- γ , IL-1 β and IL17A intermediate between those of the control and DSS
1463 groups, consistent with protection from colitis. A-J: TNF, IL-1 β , IL-7A, IFN γ , IL-10, IL-22, IL-6, IL-12p70,
1464 GM-CSF and G-CSF. *P<0.05 vs Control; *P<0.05 vs DSS; #P<0.05 vs Leptin (n=7-10).
1465
1466
1467
1468
1469
1470
1471
1472

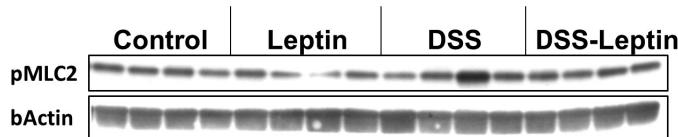
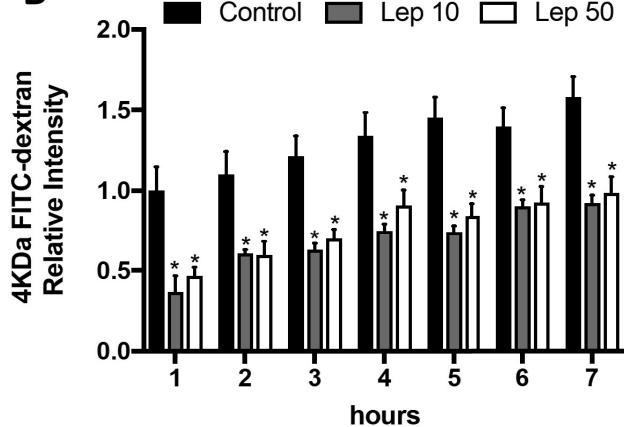


1473 **Figure 5. Epithelial barrier function is reinforced by leptin (I).** Intestinal colitis was induced with 2.5%
1474 DSS in drinking water and PEG-leptin or vehicle were administered s.c. PEG-leptin reduced the
1475 increase of *Reg3 γ* expression, augmented ZO-1 and claudin 4/5 (significant in some cases only, see
1476 text), and counteracted colitis-associated mucin depletion. Relative expression of *Reg3 γ* , *Hp*, *Lyz-2*, *ZO-1*,
1477 *Cldn4*, *Cldn4* and *Muc3* in colon by RT-qPCR (A-G). Alcian blue and nuclear red staining in colon
1478 sections (H). *P<0.05 vs Control; *P<0.05 vs DSS; #P<0.05 vs Leptin (n=7-10).
1479
1480
1481
1482
1483
1484
1485
1486


1487 **Figure 6. Epithelial barrier function is reinforced by leptin (II).** Intestinal colitis was induced with 2.5%
1488 DSS in drinking water and PEG-leptin or vehicle were administered s.c. PEG-leptin reduced MLC2
1489 phosphorylation, augmented cell proliferation and diminished apoptosis, while modulating STAT3
1490 phosphorylation. In addition, leptin reduced epithelial permeability in Caco 2 cells. (A) Determination
1491 of pMLC2 by western blot in mouse colon. (B) Assessment of paracellular permeability of 4 kDa FITC-
1492 dextran in Caco-2 cells at 0, 10 and 50 ng/ml of leptin. Analysis of protein expression of (A)
1493 pSTAT3/STAT3, (B) PCNA and (C) BAX/BCL2 in colon homogenates by western blot. *P<0.05 vs
1494 Control; *P<0.05 vs DSS; #P<0.05 vs Leptin, except for (B), where *P<0.05 versus Control (n=7-10).
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512

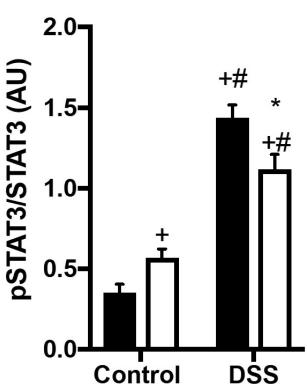

1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524 **Table 1.** List of primer sequences used in qPCRs (*Mus musculus*)
1525

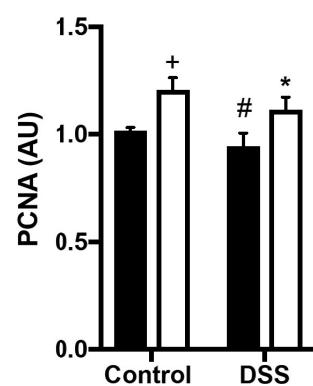

1526 Gene symbol	1527 Forward sequence	1528 Reverse sequence
1529 <i>s100a8</i>	1530 GATGGTGATAAAAGTGGGT	1531 CTGTAGACATATCCAGGGAC
1532 <i>Reg3γ</i>	1533 CAGAGGTGGATGGGAGTGGAG	1534 CACAGTGATTGCCTGAGGAAGAGA
1535 <i>Hp</i>	1536 ATGGACTTTGAAGATGACAG	1537 GTAGTCTGTAGAACTGTCGG
1538 <i>Lyz-2</i>	1539 ATTTCCCCCTCAAGTCACAG	1540 TGAAGAACTGACCTACAGAG
1541 <i>ZO-1</i>	1542 GGGGCCTACACTGATCAAGA	1543 TGGAGATGAGGCTCTGCTT
1544 <i>Hprt</i>	1545 AGGGATTGAAATCACGTTG	1546 TTTACTGGCAACATCAACAG
1547 <i>Cldn4</i>	1548 GACTGTGCAAAGTTACTAGC	1549 ACCAGCAATTGGATGTAAG
1550 <i>Cldn5</i>	1551 AACAGTTCTACTGAGATCC	1552 CTTTTAACACGTCCCTCTG
1553 <i>Muc3</i>	1554 AAAGATTACCTCCATCTCC	1555 TAAAACTAAGCATGCCCTTG

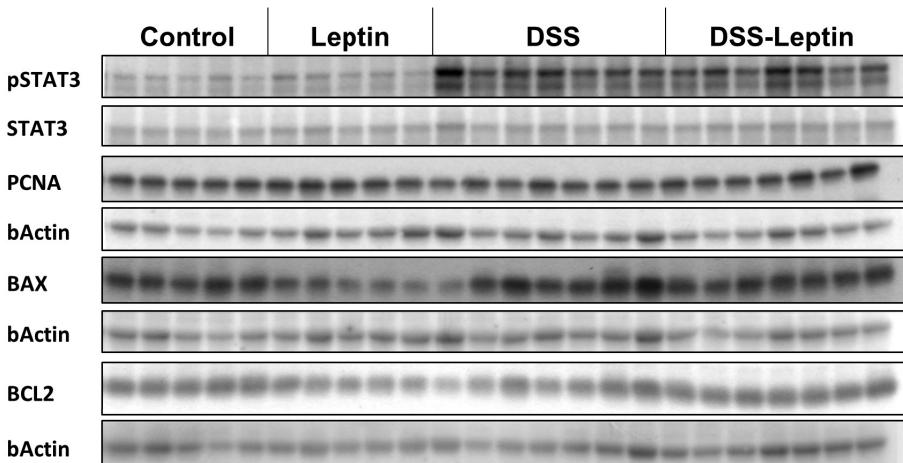
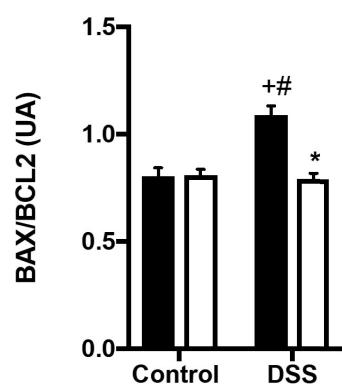


■ Vehicle
□ Leptin


A


B



C

D

E

