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Besides its function controlling energy expenditure and food intake, leptin is an important modulator
of inflammatory responses. The role of leptin in intestinal inflammation remains controversial, since
both pro-inflammatory and anti-inflammatory effects have been reported. This study was carried out
to further understand leptin contribution in the inflamed intestinal mucosa. Exogenous PEG-leptin or
saline solution was given to C57BL/6 mice for two weeks. After 1 week, acute colitis was induced to
C57BL/6 mice using dextran sulfate sodium (DSS) in drinking water. The severity of colitis,
inflammatory parameters and mucosal barrier function were evaluated. Overall our results indicate
that colitis was less severe in mice receiving leptin, as shown by a decrease in rectal bleeding, epithelial
damage and colon inflammatory markers, and improved diarrhea. Leptin-treated mice displayed an
increase in the expression of tight junction proteins and proliferative expression markers in colon,
indicating a reinforcement in the mucosal barrier function induced by leptin administration. PEG-
leptin treatment conferred protection to mice in the DSS model of colitis by reinforcing mucosal barrier

function.

Keywords: leptin, barrier function, experimental colitis
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1. Introduction

Leptin was discovered in 1994 as a metabolic hormone produced by adipose tissue, the first of the later
called adipokines [1]. Circulating leptin levels are correlated with adipose mass [2] and are modulated
by food intake [3,4]. Until the last decade, its main role was considered to be to the control of food
intake and energy expenditure, since leptin is secreted in response to food stimuli and activates satiety
in the CNS. Beside energy homeostasis, leptin exerts pleiotropic actions all over the organism,
including neuroendocrine and immune functions, and glucose, lipid and bone metabolism [5]. Leptin
affects both innate and adaptive immunity, where it can modulate the activity and function of
neutrophils and macrophages, increase the cytotoxic ability of NK cells, modulate the maturation and
survival of thymic T cells by reducing their apoptosis, or promote the switch towards Th1 and Th17 of
memory T cells [6]. The leptin receptor, LEPRDb, is expressed in numerous cell types, including neurons,
intestinal epithelial cells (IECs), and immune cells, such as macrophages, T cells, natural killer cells and

polymorphonuclear cells [7].

Although adipose tissue constitutes the main source of the hormone, leptin can be secreted by muscle,
stomach and placenta [8]. It has been described that plasma leptin levels are augmented during
intestinal colitis in individuals [9] irrespective of body mass index, and also in mice [8], where colonic
epithelial cells were identified as a cellular source of leptin, suggesting the importance of leptin effects

in the inflamed intestinal mucosa.

Different and opposite roles have been attributed to leptin in the gastrointestinal tract, where it has
been linked to both harmful and protective effects depending on the biological context. Thus, Duggal et
al found an increased susceptibility to intestinal infection by Entamoeba histolytica in children
associated with an amino acid substitution of the LEPR [10]. Further, intestinal epithelium-specific

deletion resulted in heightened susceptibility to infection and subsequent mucosal injury, indicating
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the importance of leptin intestinal actions [11]. Similarly, leptin has a protective role in the intestinal
mucosa in the Clostridium difficile model of colitis [12]. Of note, leptin can act from the luminal site, as
mucus secretion can be induced by luminal perfusion in the rat [13,14]. Likewise, leptin could prevent
gastric ulcer and promote its healing by increasing COX and NO activity, as well as mucus secretion
and angiogenesis [15,16]. Thus several studies support the role of leptin as an intestinal anti-

inflammatory agent.

Nevertheless, leptin is also considered a pro-inflammatory cytokine. Thus it has been shown that leptin
deficient ob/ob mice are resistant to intestinal inflammation induced by DSS or trinitrobenzene
sulfonic acid (TNBS) administration, associated with reduced cytokine secretion [17]. Mice receiving T
cells from leptin resistant db/db mouse donor display a delay in the onset of T cell transfer model of
colitis [18], as opposed to no difference with leptin deficient ob/ob mice donor cells [19], indicating
that leptin signaling in T cells, but not its production, has a major role in colitis development. However,
specific silencing of the leptin receptor Lepr in CD4+ T cells resulted in a selective defect in both
autoimmune and protective Th17 responses. Reis et al. demonstrated a reduced capacity for
differentiation towards Th17 phenotype by Lepr-deficient T cells associated with a lower activation of

the signal transducer and activator of transcription 3 (STAT3) and its downstream targets [20].

Therefore, the evidence available about leptin function in the intestinal mucosa remains controversial.
So far, most experiments have been performed either in animal models lacking leptin or its signaling or
by blocking LEPRb. Therefore, we set out the present study with the aim of clarify this question and
describe the effect of hyperleptinemia in C57BL/6 mice in steady state and under inflammation in the

intestinal mucosa.
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2. Methods

2.1. Reagents

Except where indicated, all reagents and primers were obtained from Sigma (Barcelona, Spain).
MonoPEGylated leptin (PEG-leptin) was obtained from Protein Laboratories Rehovot (Rehovot, Israel).
RNeasy mini kits were obtained from Qiagen (Hilden, Germany). Reverse transcription was achieved
with the iScriptTM cDNA Synthesis Kit, and iQTM Sybr® Green Supermix was used for amplification

(Biorad, Alcobendas, Spain).

2.2. Animals

Eight weeks old male C57BL/6 mice (20-25 g) were obtained from Envigo (Barcelona, Spain) (n=7-10).
Animals were maintained at the University of Granada Animal Facility in air-conditioned animal
quarters with a 12 h light-dark cycle. Control mice were pair-fed with leptin-treated mice, adjusting
the quantity of food of control groups to the daily intake of chow diet of leptin-groups (one day of
delay). All animals had free access to sterile water. Once the experiment finished, animals were
sacrificed under ketamine-xylazine anesthesia, and blood and tissues were collected, processed and/or
snap frozen and kept at —80°C. Whole blood samples were analyzed with a hematologic counter

(Mythic® 22CT C2 diagnostics, Orphée, Geneva, Switzerland).

All animal procedures in this study were carried out in accordance with the Guide for the Care and Use
of Laboratory Animals as adopted and promulgated by the U.S. National Institutes of Health and were
approved by the Animal Experimentation Ethics Committee of the University of Granada (ref. 2011-

349).

2.3. Induction of acute DSS colitis and experimental design
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Colitis was induced by adding 2.5% dextran sulfate sodium (DSS) to drinking water for 7 days. To
induce hyperleptinemia, mice received a daily subcutaneous (sc) injection of PEG-leptin (0.5 mg/kg),
whose half-life is ~20 hours. PEG-leptin treatment was initiated 7 days before the induction of colitis
and kept until the mice were sacrificed after another week. Control groups received an equal amount

of sterile saline solution sc.

The status of the animals was monitored daily by general examination and specifically by means of
body weight evolution, stool consistency (0-3), and fecal occult blood, corresponding to the signs of the

pathology in this model.

2.4. Evaluation of colitis

Animal blood was collected by heart puncture under ketamine-xylazine anesthesia. Then, mice were
sacrificed by cervical dislocation. The entire colon was removed, gently flushed with saline and blotted
on filter paper, placed on an ice-cold plate, cleaned of fat and mesentery and longitudinally opened so
as to exhaustively eliminate fecal remains. Each specimen was weighed and its length measured under
a constant load (2 g). A small segment was dissected from the intestine and used for RNA isolation. The
colon was subsequently divided longitudinally in several pieces for biochemical determinations. The
fragments were immediately frozen in liquid nitrogen and kept at —80°C until used. Alkaline
phosphatase (AP) activity was measured spectrophotometrically, as described [21]. AP is expressed as

mU/mg protein (1 U= 1 pmol/min of substrate converted).

Plasma leptin was measured by ELISA (R&D Systems Inc., Minneapolis MN, USA) following the

manufacturer’s instructions in mice untreated with PEG-leptin.

2.5. Histological assessment of colon damage
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Distal colon tissue fragments were fixed in 4% paraformaldehyde (w/v). Five pm sections were obtained
from paraffin-embedded colonic tissue and were placed on 3-amino propyl triethoxy silane coated
slides. After being de-paraffinized, sections were rehydrated in serial dilutions of ethanol and water.
Sections were then stained with hematoxylin & eosin (H&E) or alcian blue staining and mounted. H&E
staining was conducted to study morphology and check for integrity of the colonic tissue attending to
the following criteria. Crypt length (0-2), leukocyte infiltration (0-4), submucosal enlargement (0-2),
epithelial erosion (0-2) and loss of crypts structure (0-2). Images were captured and digitalised using a

Leica DMI3000B microscope equipped with a Leica DFC420 C Camera.

2.6. Fecal occult blood determination

Stool samples were freshly collected individually from each mouse and stored at -80°C. The protocol
used for the fecal occult blood (FOB) determination is an adaptation of the one first developed by the
Dr. Donald S. Young [22]. Briefly, stool samples were homogenized in distilled ultrapure water (EIA
Grade Ultra Pure Water, Spibio®, United Kingdom, 0.105 mg /ul). After that, 200 pl of that solution was
taken into a 15 ml tube and incubated at 100°C for 10 minutes and mixed with 1.2 ml of acetic acid and
distilled water (30/70). Next 1.8 ml of pure ethyl acetate was added on top and the whole mixture
vortexed and centrifuged (350 g/3 minutes/room temperature). Finally, the upper phase was collected
and exposed to 3,3',5,5'-tetramethylbenzidine in the presence of hydrogen peroxide and the reaction
was monitored spectrometrically after 30 and 60 seconds at 660 nm. As a reference, a hemoglobin curve
was generated in distilled water and subjected to the same protocol above described. Results are

expressed as pg hemoglobin/mg of feces.

2.7. Colonic explants culture
After the mice sacrifice, the colon was removed and cleaned thoroughly. Here, in order to eliminate
any bacterial remains, fragments were exposed to a PBS solution containing 500 U/mL penicillin, 0.5

mg/mL streptomycin, 12.5 pg/mL amphotericin B and 10 pg/mL gentamycin. Next, the colon was
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divided into several equal portions (~0.5 cm?), rinsed again in the antibiotic containing PBS and
cultured with DMEM featuring heat-inactivated fetal bovine serum (10 % v/v), 100 U/ml penicillin, 0.1
mg/ml streptomycin, 2.5 pg/mL amphotericin and 2 mM glutamine. After 24 h tissue fragments were
collected and frozen. Culture medium was centrifuged for 5 minutes at 300 g and 4°C and snap frozen
at -80°C for subsequent ProcartaPlex® assay of the following analytes: TNFa, IFNy, G-CSF, GM-CSF,
IL-1B, IL-6, IL-12p70, IL-10, IL-17A and IL-22 (Affymetrix, eBioscience, Barcelona, Spain). Results are
normalized to the protein amount of tissue fragments and results expressed as pg of cytokine/pg of

protein (BCA assay) [23].

2.8. Western blot analysis

Tissue samples were homogenized in lysis buffer (0.1% w/v SDS, 0.1% w/v sodium deoxycholate, 1% v/v
Triton X-100 in PBS) with protease inhibitor cocktail 1:200 (v/v) and phosphatase inhibitor cocktail
(1:100 v/v, Santa Cruz®, Heidelberg, Germany). Homogenates were sonicated and centrifuged at 1100 g
for 5 min at 4°C. Protein concentration was determined by the BCA assay. Samples were boiled for 5
min in Laemmli sample buffer (Bio-Rad®, Alcobendas, Spain) separated by SDS-PAGE, electroblotted
to nitrocellulose membranes (Millipore, Madrid, Spain) and probed with the corresponding antibodies.
The bands were detected by enhanced chemiluminescence (PerkinElmer®, Waltham, MA) and
quantitated with the software Image J. The primary antibodies anti-pSTAT3 (1:2000, ref. 9145S lot 31)
and anti-STAT3 (1:1000, ref. 9139S lot 8) were purchased from Cell Signaling (Denver, MA, US); anti-f3-
actin JLA (1:1000, ref. JLA20s lot 6/25/15) from DSHB (lowa city, 1A, US); anti-BCL2 (1:500, ref. 14-6992-
81 lot E05256-1634) and anti-BAX (1:1000, ref. BMS163 lot 99486000) from eBiosciences (San Diego CA,

USA). Ponceau staining was applied routinely to confirm equal loading [24].

2.9. RNA isolation and Quantitative Reverse-Transcription Polymerase Chain Reaction (RT-gPCR) Analysis
Total RNA was isolated by using RNeasy mini kit (Qiagen, Hilden, Germany) and checked for integrity

by electrophoresis in 1% agarose gel (w/v). Quantification was determined by the 260/280 nm
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absorbance ratio with a Nanodrop® (Thermo Scientific®). One pg RNA was subjected to reverse
transcription, iQTM Sybr® Green Supermix was used for amplification and specific DNA sequences
were amplified with a Biorad CFX connect real time PCR device (Alcobendas, Madrid, Spain). Primers
used are shown in Table 1. Results are expressed as 24t using hypoxanthine guanine phosphoribosyl-

transferase (HPRT) as reference gene.

2.10. Intestinal permeability assay in Caco 2T cells

Caco 2T cells supplied by the European Collection of Authenticated Cell Cultures (ECACC, passes 54-
56) were used as in vitro model to evaluate the effect of leptin on paracellular permeability to 4 kDa
FITC-dextran in intestinal epithelial cells. Cells were seeded directly onto 3 pm pore size polycarbonate
Transwell™ (Corning Life Science NY, USA) inserts in 12 well plates and cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM) supplemented with 10% v/v heat-inactivated fetal bovine serum, 2
mM L-glutamine, 1% v/v penicillin [100U/ml], 0.1 mg/ml streptomycin and 2.5 pg/ml of amphotericin B.
After two days, media was changed and leptin added at 0, 10 and 50 ng/ml into both the apical and
basolateral compartments. Media and leptin were refreshed every other day and transepithelial
electrical resistance (TEER) was measured to determine when the cells had reached full confluence and
formed a tight and functional monolayer. Once TEER became stable, the experiment was performed.
The cells were washed with sterile PBS and phenol red free medium added, with 4 kDa FITC-dextran in
the apical side at 1 mg/ml (time 0). Aliquots of 60 pl were taken every hour from the basolateral
compartment and media was replaced for a total of 7 hours. Finally, fluorescence was measured at
490/520 nm in a FLUOstarControl instrument (Polarstar OPTIMA, BMG Labtech). Paracellular flux was
calculated as the relative change compared with control group. Three different experiments were

carried out.

2.11. Statistical analysis
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In all the experiments, samples were run in duplicate, and results are expressed as mean + SEM.
Differences among the means were tested for statistical significance by two-way ANOVA and a
posteriori Fisher least significant difference tests. All the analyses were carried out with GraphPad

Prism 6. Differences were considered significant at p < 0.05.
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3. Results

3.1. Leptin administration prevents intestinal damage in mice

We generated a hyperleptinemic condition by daily administering exogenous PEG-leptin to C57BL6/)
mice for 14 days, 7 days before the induction of acute DSS colitis and another 7 days concurrently with
the administration of DSS. To control for the anorexic effect of leptin, the intake of untreated healthy
and colitic control animals was adjusted by pair-feeding. As expected, the administration of leptin prior
to the induction of DSS colitis induced weight loss, that began to stabilize at day 4 of administration.
Pair-feeding resulted in a similar behavior of the untreated groups with one day of lag (Figure 1A). The
anorexic effect of leptin disappeared after 5 days of PEG-leptin administration, so that food intake was

normal before the administration of DSS (data not shown).

DSS colitis had similar features to those described originally by Okayasu in 1990 [25] and was
consistent with previous experiments in our laboratory. DSS is considered to elicit inflammation
mainly by a direct toxic effect on intestinal epithelial cells, including stem cells at the base of the
crypts, thereby affecting normal cell turnover and compromising epithelial barrier function. Colonic
inflammation ensues, characterized by bloody diarrhea, ulcerations and an intense leukocyte
infiltration. As expected, both DSS groups presented body weight loss, which was significant for the
DSS control group from day 6 onwards, while the DSS-leptin group experienced a more pronounced
weight loss, starting on day 2. In contrast, the body weight of the noncolitic control and leptin groups
followed a parallel and stable evolution up to the end of the experiment (Figure 1B). After DSS
administration the stool status was evaluated as a valuable marker of intestinal inflammation (Figure
1C). The stool consistency score increased in both the DSS and DSS leptin groups from day 2, and was
significantly higher at 4-6 d in the DSS group compared with the DSS-leptin group, due to reduced

diarrhea and blood content in the latter. Accordingly, fecal occult blood was measured in a sample

11
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taken at the end of the experiment and was found to be increased in the DSS group vs. the DSS-leptin

group, although statistical significance was not reached (P = 0.069) (Figure 1D).

To further reinforce these findings indicating an attenuated colonic damage in the DSS-leptin animals,
bowel wall thickening (weight/length ratio) was diminished in the DSS-leptin group when compared to
the DSS group (Figure 1E), and the histological study of colon cross sections using hematoxylin and
eosin staining showed a better preservation of mucosal structure in leptin-treated animals as well as
less leukocyte infiltration (Figures 2A and 2B). In accordance, AP activity and the expression of S100A8
(a calprotectin subunit) were reduced in colitic mice treated with leptin (p=0.07 for ST00A8 expression)
(Figures 2C and 2D). Leptin plasma levels were not measured in PEG-leptin treated mice due to
interference with the ELISA assay, but a marked reduction was noted in the DSS group compared with
the control (Figure 1F). Leptin administration resulted in upregulation of the leptin receptor in the

colon of colitic but not control mice (Figure 1G).

The haematological analysis of the mice revealed that DSS colitis resulted in a significant decrease in
hematocrit (HTC), in the concentration of hemoglobin (Hb) and in the number of circulating
erythrocytes (RBC), consistent with the marked rectal bleeding inherent to the model. The
administration of leptin normalized these parameters (Figure 3A). The presence of total leucocytes in
blood (WBC) was increased by colitis, and the relative amount of basophils (BAS) and neutrophils
(NEU) within them was significantly reduced in leptin-treated mice (Figure 3B-C). Finally, both colitic
groups showed elevated levels of platelets in blood (platelet number, PLT, and thrombocrit, PCT), with

no differences between them (Figure 3D).

Together, these results indicate lower inflammation in the colitic animals that received leptin.

12



673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

3.2. Leptin stimulates the intestinal immune response in physiological conditions but inhibits inflammation
in DSS induced colitis

To further study the effect of leptin on the intestinal inflammatory response, we cultured colonic
explants and determined cytokine concentration in the culture medium (Figure 4). Leptin given to
healthy, noncolitic animals showed a clear tendency to increase the secretion of most of the assayed
cytokines, including TNF, IL-17A, IL-10, IL-6, GM-CSF, G-CSF and slightly that of IL-1p and IL-12,
thereby showing an immunostimulant effect in these conditions. It should be noted that none of these
changes reached statistical significance due to the distortion introduced by the data corresponding
colitic groups. As expected, DSS inflammation induced the innate immune response, with augmented
TNF or IL-1PB, as well as the adaptive immune response, potentiating the release of Th1, Th17 and Treg
cytokines IL-10, 1L-17A, 1L-22, IFN-y, and also slightly that of IL-12p70 (Figures 4A-H). The colony
stimulating factors GM-CSF and G-CSF were also significantly induced by DSS (Figure 4lI-J). No
significant differences were observed for the Th2 cytokines IL-13, IL-4 or for IL-27 (not shown). The
DSS-leptin group showed levels of TNF, IFN-y, IL-1p and IL17A intermediate between those of the
control and DSS groups, while IL12p70 levels were equivalent to those of the control groups, indicating
a regulatory anti-inflammatory effect of leptin in the colitis. In contrast, IL-10, IL-22, IL-6, GM-CSF and

G-CSF were unaffected by leptin treatment.

3.3. Epithelial barrier function is reinforced by leptin

To evaluate the state of epithelial barrier function, we analyzed the expression of antimicrobial
peptides and proteins involved in tight junctions by qRT-PCR. There was a marked increase in Reg3y
and haptoglogin (HP) expression in colitic animals compared with the controls, which was less
pronounced in the DSS-leptin group (Figure 5A-B). Lysozime 2 (Lyz-2) was also induced in colitic mice
(Figure 5C). Leptin induced the expression of ZO-1 and claudin 4, an effect that, notably, was observed
in both control animals that received leptin (p=0.06) and in the DSS-leptin group, while claudin 5 was

13
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significantly upregulated in the DSS-leptin group (Figure 5D-F). The glycocalix is another element of
the intestinal barrier. Alcian blue and nuclear red staining of colonic tissue showed a substantial
reduction of mucus in DSS colitis, which was partly counteracted in both the lumen and crypts in the
DSS-leptin group compared with the DSS group (Figure 5H). Conversely, no differences were noted in
noncolitic animals. Consequently, we measured the expression of mucin Muc3 by qRT-PCR and found
it to be significantly decreased in DSS colitis, an effect that was attenuated in DSS-leptin mice.
Nevertheless, in the absence of inflammation, animals treated with leptin exhibited some decrease in
Muc3 expression in colonic tissue (Figure 5G). Finally, phosphorylation of myosin light chain 2 (MLC2),
which has been related to an increased intestinal permeability, was reduced by leptin in the absence of
inflammation (Figure 6A). This effect persisted in the colitic groups but was attenuated, so that it was
no longer significant. An in vitro Caco-2T cell model was used to further study the effect of leptin on
intestinal permeability. In agreement with the results obtained in vivo, culturing cells with different

concentrations of leptin reduced the permeability to 4 kD FITC-dextran (Figure 6B).

The ability to restore the epithelial barrier is a determinant factor in the evolution and resolution of
acute colitis induced by DSS, so we analyzed the expression of proliferative and apoptotic factors in
colonic tissue. Western blot results for PCNA (Proliferating Cell Nuclear Antigen), STAT3
phosphorylation (pSTAT3/STAT3 ratio) and BCL2-associated x protein (BAX)/cell l[ymphoma 2 (BCL-2),
shown in Figure 6. PCNA, a marker of cell proliferation, was increased by leptin administration (Figure
6D). STAT3 (in its phosphorylated active form pSTAT3) induces cell proliferation and is involved in the
generation of antimicrobial peptides and mucins. In addition, it has been described as a key factor in
the signaling cascade of leptin. The results obtained confirm enhanced phosphorylation of STAT3 in
noncolitic leptin treated mice. The administration of DSS markedly increased the activation of STATS3,
but this response was significantly lower in colitic mice treated with leptin (Figure 6C). BAX and BCL-2

are well known pro- and antiapoptotic factors, respectively. The BAX/BCL-2 ratio was increased in the

14
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840

DSS group, consistent with a higher apoptosis in the colon of these animals, but not in the animals

treated with leptin (Figure 6E).
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4. Discussion

Various adipokines, including leptin, adiponectin, resistin, visfatin, ghrelin, and apellin, mostly derived
from mesenteric adipose tissue, have been related to intestinal inflammation [26-30]. In particular,
leptin, resistin, ghrelin and adiponectin are upregulated in the mesenteric adipose tissue of Crohn’s
disease patients [31,32]. The present study was carried out to assess the effect of exogenous leptin in
the development of experimentally induced Th1 colitis in normal mice [33]. This direct experimental
approach may harvest different results from those obtained in animals devoid of normal leptin
signaling, such as Zucker rats or ob/ob mice, due to adaptive changes in the latter as mentioned above.
In order to control for the expected anorexigenic effect of leptin pair feeding was applied. Of note, even
in these conditions body weight remained somewhat lower in leptin treated mice, possibly reflecting

augmented basal metabolism, which is a known effect of leptin [34].

Our results categorically indicate a diminished colonic inflammatory response in leptin treated mice,
based on multiple parameters: attenuated bowel wall thickening, AP activity, fecal blood and anemia,
neutrophil and basophil counts, S100a8 mMRNA expression, Reg3y and STAT3 phosphorylation, plus
improved histology and stool consistency. In addition, inflammatory cytokine production by colonic
explants (TNFa, IFN-y, IL-1B, IL-17A, IL-12 p70) was also lower, albeit without reaching statistical
significance in this case. Of note, cytokine levels were somewhat higher in explants from noncolitic
leptin-treated mice, such as IL-6 and G-CSF. This was not significant, despite a relatively large
increase, possibly owing to the statistical distortion introduced by the colitic groups. Thus this might
represent a real effect of leptin, which may in turn be involved in tissue repair and intestinal
homeostasis. In particular, IL-6 has been related to intestinal epithelial proliferative and repair
response after injury [35], and to antimicrobial protection [36]. Similar effects have been describied for

G-CSF [37]. Related to these findings is increased STAT3 phoshorylation. STAT3 signaling has been
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shown to be relevant to leptin intestinal effects [38]. Thus our results suggest that leptin may

contribute to intestinal protection/repair in part by this mechanism.

These data globally point to an antiinflammatory effect of exogenous leptin. Because leptin has well
documented effects on barrier function [13-15,39], we also measured barrier parameters in colonic
samples. Leptin upregulated the expression of ZO-1 (Tjp1, p=0.06), Cldn4 and Cldn5 at the mRNA level.
This effect was attenuated in colitic mice in the case of Tjp1. Leptin also increased the expression of the
proliferation marker PCNA, augmented mucus production, and downregulated apoptosis (based on
BAX/BCL2). Considered globally, these data suggest a mucosal barrier protective effect of leptin.
Unfortunately we do not have direct evidence of enhanced barrier function in vivo, as DSS colitic
animals did not exhibit measurable LPS or bacterial translocation (this is consistent with our
experience with this model ([40] and data not shown). In Caco 2T cells leptin lowered paracellular
permeability to 4 kD FITC-dextran. It should be noted that leptin failed to enhance epithelial wound
healing in vitro (data not shown). Thus our results concur with previous reports showing a positive
effect of leptin on mucosal barrier function, related at least in part with epithelial proliferation and
regeneration, and, contrary to previous observations in vivo and in vitro [41], with a positive impact on

tight junctions.

Protection from DSS colitis may result from such direct barrier enhancing actions. A possible
alternative mechanism is activation of the mucosal immune system, inasmuch as it contributes to
barrier function by controlling bacterial translocation [42-45]. Generalized [46] or T cell specific [20]
blockade of leptin signaling enhances the susceptibility to infection, and leptin treatment protects
against experimental sepsis [47]. Of note, mice with epithelial but not hematopoietic specific deletion

of the leptin receptor are more sensitive to Entamoeba histolytica [10,11]. In addition to epithelial
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mechanisms, leptin protection reportedly involves enhanced recruitment of neutrophils [48]. It is worth

noting that leptin has been documented to have gastroprotective effects as well [49].

Our results are consistent with those reported by Cakir et al. using the acetic acid rat colitis model,
using a 50-fold lower dose of unpegylated leptin and looking at short term effects (24 h) [50]. These
authors implicated the glucocorticoid receptor, as the antiinflammatory effect was reversed by
mifepristone. However, leptin has an inhibitory effect on the hypothalamus. Even though a substantial
part of circulating corticosterone may proceed from peripheral sources in these conditions [51-53],
plasma corticosterone levels were not increased in our study (data not shown), suggesting it is not
involved in leptin effects. Conversely, colitis had a dramatic effect on leptin levels, which were reduced
by 90%. This is in conflict with previous reports, which have documented increased circulating leptin
[54-57], which may be secondary to augmented synthesis by the intestinal epithelium, mucosal T cells,
or creeping fat/mesenteric adipose tissue [8,32,58]. It has been proposed that leptin expression may be
induced by translocating bacteria [59]. The reason for this discrepancy is unknown, but we have also
observed reduced plasma leptin in rat TNBS colitis (unpublished observations), and a similar result was
observed in DSS colitis by Deboer et al. [60]. It should be noted that leptin has been also positively
associated with body mass index and negatively with disease activity in IBD [61]. Thus, given that
weight loss associated with colitis is substantial and results in reduction of adipose tissue mass, this
may be the cause of hypoleptinemia. Our results suggest that it may aggravate inflammation. In turn,
decreased circulating leptin arguably has little effect in the anorexia associated with colitis, as the
latter, at least in experimental colitis, has been linked to increased IL-1B levels [62,63]. Due to cross-
reactivity the levels of adipokine treated animals could not be assessed. Of note, the expression of the
leptin receptor was upregulated in the colon of leptin treated colitic mice, possibly reflecting feed-
forward regulation in an inflammatory context (since noncolitic mice showed normal expression levels).

Such a mechanism has been previously documented in the liver of leptin treated mice [64].
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The effects of leptin in the inflamed intestine are complex, as the conflicting evidence available
indicates. Thus ob/ob mice (which lack leptin) are resistant to both DSS and TNBS colitis [17], and
become sensitive when exogenous leptin is administered or when WT MAT s transplanted [27],
implicating mesenteric adipose tissue derived leptin as the colitogenic factor. Transfer colitis is also
attenuated using KO leptin receptor T cells as donors [20]. Further, administration of a pegylated
leptin receptor antagonist results in protection against IL107" colitis [65]. Underscoring the importance
of adaptive changes in leptin signaling, double knockout IL107" ob/ob mice exhibit no changes in colitis
severity compared with leptin expressing mice [66]. Thus no clear image emerges from existing
evidence. It is likely that leptin effects depend on the biological context and experimental model. For
instance, protection against colitis by the leptin antagonist has been assessed in the IL107~ model,
which is characterized by higher involvement of the adaptive immune system and lower barrier
disruption than either DSS or acetic acid colitis. This suggests that the antiinflammatory effects
observed in these latter models may be favored by the epithelial actions of leptin. At any rate, our
results suggest that the usefulness of leptin receptor antagonists may be hampered by the loss of
repair mechanisms at play. Further research is required to clarify the precise role of leptin in intestinal

inflammation.
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FIGURE LEGENDS

Figure 1. Leptin administration prevents intestinal damage in mice (I). Intestinal colitis was induced
with 2.5% DSS in drinking water and PEG-leptin or vehicle were administered s.c. PEG-leptin was
found to prevent intestinal damage according to fecal consistency and blood content and decreased
bowel wall thickening. Body weight evolution before (A) and after (B) induction of DSS colitis. (C) Stool
consistency. (D) Fecal occult blood as pg of hemoglobin (Hb) per mg of feces. (E) Colonic weight/length
ratio. (F) Plasma leptin levels. (G) Colonic expression of Lepr. *P<0.05 vs Control; *P<0.05 vs DSS;

#P<0.05 vs Leptin (n=7-10).

Figure 2. Leptin administration prevents intestinal damage in mice (ll). Intestinal colitis was induced
with 2.5% DSS in drinking water and PEG-leptin or vehicle were administered s.c. Histological staining
significantly shows a better preservation of mucosal structure and less leukocyte infiltration, AP
activity and S700a8 expression in leptin-treated mice. (A) H&E staining in colon. (B) H&E
quantification; (C) Alkaline phosphatase (AP) activity in colon.(D) Colonic expression of S$100a8 by

gqPCR. *P<0.05 vs Control; *P<0.05 vs DSS; #*P<0.05 vs Leptin (n=7-10).

Figure 3. Hemogram results. Intestinal colitis was induced with 2.5% DSS in drinking water and PEG-
leptin or vehicle were administered s.c. PEG-leptin reduced anemia and prevented neutrophilia and
basophilia. Plasma levels of Hb, total red blood cells (RBC) and hematocrit (HTC) (A) as well as total
white blood cells (WBC) (B). (C) Percentage of circulating lymphocytes (LYM), monocytes (MON),
neutrophils (NEU), eosinophils (EOS) and basophils (BAO). (D) Total platelets (PLT) and thrombocrit

(PCT). *P<0.05 vs Control; *P<0.05 vs DSS; *P<0.05 vs Leptin (n=7-10).
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Figure 4. Cytokine and chemokine multiplex panel in colonic explants culture. Intestinal colitis was
induced with 2.5% DSS in drinking water and PEG-leptin or vehicle were administered s.c.
Cytokine/chemokine expression was generally upregulated in response to DSS, and PEG-leptin mice
exhibited levels of TNF, IFN-y, IL-1p and IL17A intermediate between those of the control and DSS
groups, consistent with protection from colitis. A-J: TNF, IL-1f, IL-7A, IFNy, IL-10, 1L-22, IL-6, IL-12p70,

GM-CSF and G-CSF. *P<0.05 vs Control; *P<0.05 vs DSS; #P<0.05 vs Leptin (n=7-10).

Figure 5. Epithelial barrier function is reinforced by leptin (I). Intestinal colitis was induced with 2.5%

DSS in drinking water and PEG-leptin or vehicle were administered s.c. PEG-leptin reduced the
increase of Reg3y expression, augmented ZO-1 and claudin 4/5 (significant in some cases only, see

text), and counteracted colitis-associated mucin depletion. Relative expression of Reg3y, Hp, Lyz-2, ZO-
1, Cldn4, Cldn4 and Muc3 in colon by RT-qPCR (A-G). Alcian blue and nuclear red staining in colon

sections (H). *P<0.05 vs Control; *P<0.05 vs DSS; *P<0.05 vs Leptin (n=7-10).

Figure 6. Epithelial barrier function is reinforced by leptin (ll). Intestinal colitis was induced with 2.5%
DSS in drinking water and PEG-leptin or vehicle were administered s.c. PEG-leptin reduced MLC2
phosphorylation, augmented cell proliferation and diminished apoptosis, while modulating STAT3
phosphorylation. In addition, leptin reduced epithelial permeability in Caco 2 cells. (A) Determination
of pMLC2 by western blot in mouse colon. (B) Assessment of paracellular permeability of 4 kDa FITC-
dextran in Caco-2 cells at 0, 10 and 50 ng/ml of leptin. Analysis of protein expression of (A)
pSTAT3/STAT3, (B) PCNA and (C) BAX/BCL2 in colon homogenates by western blot. *P<0.05 vs

Control; "P<0.05 vs DSS; #*P<0.05 vs Leptin, except for (B), where *P<0.05 versus Control (n=7-10).
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Table 1. List of primer sequences used in qPCRs (Mus musculus)

Gene symbol Forward sequence Reverse sequence

5100a8 GATGGTGATAAAAGTGGGT CTGTAGACATATCCAGGGAC
Reg3y CAGAGGTGGATGGGAGTGGAG CACAGTGATTGCCTGAGGAAGAGA
Hp ATGGACTTTGAAGATGACAG GTAGTCTGTAGAACTGTCGG

Lyz-2 ATTTCCCCTCTAAGTCACAG TGAAGAACTGACCTACAGAG

Z0-1 GGGGCCTACACTGATCAAGA TGGAGATGAGGCTTCTGCTT

Hprt AGGGATTTGAATCACGTTTG TTTACTGGCAACATCAACAG

Cldn4 GACTGTGCAAAGTTACTAGC ACCAGCAATTTGGATGTAAG
Cldn5 AACAGTTCCTACTGAGATCC CTTTTTAACACGTCCCTCTG

Muc3 AAAGATTACCTCCCATCTCC TAAAACTAAGCATGCCCTTG
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