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Abstract

The Standard Model Effective Field Theory (SMEFT) provides a powerful, model-

independent framework to explore deviations from the Standard Model (SM) by

parametrizing potential new physics through higher-dimensional operators. This

thesis investigates the renormalisation structure of SMEFT, focusing on dimension-

eight operators, which are increasingly relevant in precision analyses and in models

where dimension-six effects are suppressed.

We review renormalisation in quantum field theory, emphasizing dimensional

regularisation and the MS scheme, and outline the conceptual foundations of EFTs.

One of the central results of this work the systematic construction and classifica-

tion of bosonic operators in SMEFT at dimension eight, employing Group Theory

techniques and removing redundancies by working in momentum space. Building

on this operator basis, we compute the complete one-loop renormalisation group

equations (RGEs) involving insertions of dimension-eight-or-lower operators. This

includes pure dimension-eight effects, pairs of dimension-six operators and lepton-

number-violating sectors. Our calculations use an off-shell Green’s function basis

and leverage algebraic simplifications derived from symmetry and gauge invariance.

These results are applied to positivity bounds and oblique parameters, provid-

ing essential tools for consistent SMEFT analyses across energy scales. The findings

extend SMEFT’s theoretical reach and support its use in high-precision phenomenol-

ogy.



Resumen

La Teoŕıa de Campos Efectiva del Modelo Estándar (SMEFT, por sus siglas en inglés)

proporciona un marco potente e independiente de modelos para explorar desviaciones

del Modelo Estándar (SM), parametrizando posibles nuevas f́ısicas mediante ope-

radores de dimensión superior. Esta tesis investiga la estructura de renormalización

de la SMEFT, centrándose en operadores de dimensión ocho, los cuales son cada vez

más relevantes en análisis de precisión y en modelos donde los efectos de dimensión

seis están suprimidos.

Se revisa la renormalización en teoŕıa cuántica de campos, con énfasis en la regu-

larización dimensional y el esquema MS, y se presentan los fundamentos conceptuales

de las teoŕıas efectivas de campos. Uno de los resultados centrales de este trabajo es

la construcción y clasificación sistemática de los operadores bosónicos en SMEFT de

dimensión ocho, empleando técnicas de Teoŕıa de Grupos y eliminando redundancias

mediante el trabajo en espacio de momentos. A partir de esta base de operadores,

se calculan las ecuaciones completas del grupo de renormalización (RGEs) a un lazo

que involucran inserciones de operadores de dimensión ocho o inferior. Esto incluye

efectos puros de dimensión ocho, pares de operadores de dimensión seis y sectores

que violan el número leptónico. Nuestros cálculos utilizan una base de funciones de

Green fuera de su capa de masa y aprovechan simplificaciones algebraicas derivadas

de la simetŕıa y la invariancia gauge.

Estos resultados se aplican a cotas de positividad y a los ‘parámetros oblicuos’,

proporcionando herramientas esenciales para análisis coherentes dentro de SMEFT

en distintos reǵımenes de enerǵıa. Los hallazgos ampĺıan el alcance teórico de

SMEFT y respaldan su uso en estudios fenomenológicos de alta precisión.
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Chapter 1.

Introduction

1.1 Motivation

In the latter half of the 20th century, collider experiments revealed that particles once

thought to be elementary actually exhibited substructure, leading to the identifica-

tion of quarks and other subnuclear constituents. Such experiments were interpreted

within the general framework of Quantum Field Theories (QFTs), which provided

the foundation for more specific theories such as Quantum Electrodynamics (QED),

Quantum Chromodynamics (QCD), and ultimately the Standard Model (SM) of

particle physics. The SM provided a precise description of the observed particles

and their interactions. However, one piece of the puzzle remained missing: a scalar

mediator that would give mass to the otherwise massless particles in the model,

through the Higgs mechanism.

The Higgs boson was finally detected in 2012 at the LHC [1, 2], decades after

its prediction. By that time, other observations from Cosmology, Astrophysics and

Particle Physics had already pointed out inconsistencies of the SM. Thus, before the

SM was empirically validated as the most accurate QFT, there were already new

models in development. Supersymmetry [3, 4], Extra Dimensions [5–7], Composite

Higgs Models [8–10], and String Theory [11–13] are examples of well-established

theoretical frameworks developed near the discovery of the Higgs boson and were

1
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actively explored in anticipation of LHC-era data. There are also extensions of the

SM with Axion-Like Particles [14–21], Dark Photons [22] or Leptoquarks [23–26],

which could explain the deviations of experimental data from the SM.

While the detection of the Higgs boson completed the SM, it also sharpened the

need to address its known limitations, as numerous phenomena remain unexplained.

In the search for the Higgs particle, its mass and couplings were constrained, and

these restrictions affected models that predicted alternative phenomena in the MeV-

GeV region, such as hidden sectors or dark photons. Later on, the focus of experi-

ments moved to the exploration of higher and higher energies. This led to increased

interest in theoretical frameworks capable of addressing the limitations of the SM. In

the absence of clear New Physics (NP) signals, precision measurements and indirect

constraints have become central tools in the search for Beyond the Standard Model

(BSM) physics. The situation is reminiscent of the pre-Higgs era, in the sense that

searches are imposing restrictions on NP models. But this time, there is no single

dominant theory awaiting validation, nor a specific resonance whose discovery would

serve as a definitive turning point. The Higgs’s expected properties were predicted

with precision, and all the experiments were focused on these specific signals. In the

current experimental landscape, there are several open lines of research looking for

dark matter, heavy neutrinos or high-energy effects, all of which cover a wide region

of the parameter space. The vast range of possibilities contrasts with the limited set

of actual results.

In this context, precision physics gains much more relevance. Data analysis now

depends much more on refining the techniques than before, since there is abundant

registered data. The emphasis is now on model-independent approaches and robust

statistics. It is important to build a consistent, minimal parameter space where

most, if not all, experiments can express and compare their results within the same

framework. QFT leaves freedom to build lots of different models, but this variety

complicates the comparison of predictions and the interpretation of data. For this

reason, the use of Effective Field Theories (EFTs) is crucial. Precision Physics at

lower energies already uses form factors and effective interactions in EFTs, such



Chapter 1. Introduction 3

as Chiral Perturbation Theory (χPT) (applicable to low-energy QCD), the Soft

Collinear Effective Theory (SCET) (used in jet physics) or Heavy Quark Effective

Theory (HQET) (the EFT of mesons with heavy quarks). In the case of BSM

physics, it is sensible to set a common framework, for example, with Standard Model

Effective Field Theory (SMEFT), the EFT parameterising NP with SM fields and

symmetries. Other EFTs are covering similar energy ranges, like Higgs Effective

Field Theory (HEFT). However, if the traditional Higgs mechanism for the SM is

assumed and no NP is discovered below the Electroweak (EW) scale, then SMEFT is

the most reasonable option for a comprehensive analysis, and indeed it is a popular

one, although alternative formulations and extensions always have to be considered.

Using all resources from QFT in general and, in particular, from EFT, we can

exploit SMEFT so that it becomes a thorough tool for analysis. Two key aspects

are discussed in this thesis: the calculation of a minimal set of operators that cover

all the possible interactions in SMEFT within a limited accuracy range (that we

will specify later), and the running of the couplings and parameters across different

energy scales. To put these topics into context, Chapter 2 reviews renormalisation in

QFT, and specifically, the advantages of Dimensional Regularisation (DimReg) and

the Modified Minimal Subtraction (MS) renormalisation scheme. The concept of

power counting is introduced here and explained in more detail in Chapter 3, along

with another important resource of EFT: matching.

Defining a framework to unify theories requires a common parameterisation of the

results. In an EFT, all the allowed interactions can be expressed in terms of a minimal

set, known as a basis of operators. In Chapter 4, we will see the importance of

building a basis of operators for SMEFT, although we will allow certain redundancies

for our convenience. In the years before the start of the thesis, there were complete

bases of operators up to dimension seven [27–31]. We will use a basis extended to

include operators that are redundant via the Equation of Motion (EoM), which were

only known for dimension six [32] before 2021. Constructing such a basis is a non-

trivial mathematical task, but over the last few years, there have been key impactful

contributions to the problem. Currently, there are already systematic methods to
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generate sets of independent operators for SMEFT, but it is not easy to compare

different bases or to rotate from one to another. We will see how to build such

algorithms, including our contribution to the construction of the complete bosonic

operator basis at dimension eight, which plays a key role in the computation of the

Renormalisation Group Equations (RGEs).

The running of SMEFT operators is currently a hot topic, that saw its first

peak a decade ago, with the complete one-loop renormalisation up to dimension-six

SMEFT operators [33–40], a milestone that enabled systematic RGE analyses and

consistent matching to Ultraviolet (UV) models. Recently, attention has been drawn

to dimension-eight operators for different reasons:

1. They are dominant with respect to dimension-six operators in some observ-

ables [41].

2. Dimension-six operators do not arise in some models, thus, dimension-eight

are the leading contribution [30, 42] (ignoring dimension-seven).

3. If the NP scale is low, they could be less suppressed by power-counting ef-

fects [42, 43].

4. As the precision of experimental measurements grows, the theoretical precision

needs to increase too [43–45].

As dimension-eight operators get involved in calculations, the need for the run-

ning of higher-dimensional Wilson coefficients (WCs) is starting to become apparent

among many researchers. In Chapter 5, we will review the results of the RGE at

one loop for all operators up to dimension eight. We will explain in detail the cho-

sen method of computation and comment on other methods. This thesis focuses on

one-loop results; higher-loop corrections are beyond our current scope.

Finally, we demonstrate how the results of this work, along with those of other

groups, are being applied and what the prospects of this line of research are. In

particular, we will show applications to positivity bounds [46], restrictions on the

signs of scattering amplitudes imposed by the properties of the S-matrix. These
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constraints can be used either as tests of the unitarity of the S-matrix or as tools to

restrict the RGEs. By their definition, they directly affect operators of dimension

eight or greater, so we will explore some of the consequences in Section 5.7. Another

avenue to be explored is the oblique parameters, where dimension eight operators

contribute at Next to Next to Leading Order (NNLO). We will not perform fits

or very complex studies here, but only remark on some interesting facts directly

deduced from the RGEs.

1.2 Notation and conventions

We assume the reader is familiar with QFT and, more specifically, the SM and its

symmetry groups. Amplitudes and Feynman diagrams are written in the conventions

of [47], drawn with Jaxodraw [48], and computed with FeynRules [49], FeynArts [50]

and FormCalc [51].

In this thesis, we will describe the SM with the following Lagrangian:

LSM =− 1

4
GA
µνG

Aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν

+ qαi /Dqα + ℓαi /Dℓα + uαi /Duα + dαi /Ddα + eαi /Deα

+ (DµH)† (DµH) +m2
H |H|2 − λ|H|4

−
(
yuαβq

αH̃uβ + ydαβq
αHdβ + yeαβl

αHeβ + h.c.
)
, (1.1)

where B, W and G represent the gauge bosons of U(1)Y , SU(2)L and SU(3)C ; while

g1, g2 and g3 stand for the corresponding gauge couplings. Likewise, ℓ⊤ ≡ (νL eL)
⊤

and q⊤ ≡ (uL dL)
⊤ are the left-handed leptons and u, d, e are their right-handed

counterparts. We will always assume there are nf = 3 generations unless otherwise

stated. We use H⊤ ≡ (H+ H0)⊤ ≡ (H1 + iH2 H3 + iH4)
⊤ for the Higgs doublet.

We also define the dual vector H̃j = i(H†)i(σ
2)ij = (H†)iϵij and the dual field

strength tensors: F̃µν = F ρσϵρσµν where Fµν = Bµν , W
I
µν , G

A
µν and ϵ1234... = +1.
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We use the minus-sign covariant derivative:

Dµ = ∂µ − ig1Y Bµ − ig2
σI

2
W I
µ − ig3

λA

2
GA
µ , (1.2)

with Y , σI and λA being the hypercharge operator, the Pauli and Gell-Mann matri-

ces, respectively.

We will declare consistent conventions for the indices, and follow them strictly

unless there is no possible confusion:

Isospin: i, j, k, l going from 1 to 2

Flavour: α, β, γ, δ, ϵ, ζ going from 1 to 3

Colour: a, b, c going from 1 to 8

SU(2) adjoint generators: I, J , K, L going from 1 to 3

SU(3) adjoint generators: A, B, C going from 1 to 8

Lorentz: µ, ν, ρ, σ, κ, λ going from 0 to 3



Chapter 2.

Regularisation and renormalisation

Renormalisation is a foundational concept in QFT, with deep mathematical roots in

the study of self-similar systems and scaling behaviour. Broadly speaking, renormal-

isation refers to the redefinition of a theory’s parameters such that its predictions

remain consistent when probed at different energy scales∗. A well-known illustra-

tion of this idea is found in fractals: mathematical structures that display identical

patterns upon successive magnification, a property known as ‘scale invariance’ [52].

Self-similarity is not exclusive to abstract mathematics; it is also observed in phys-

ical systems, such as turbulent flows, biological growth patterns, and critical phenom-

ena in statistical mechanics [52]. In the context of QFT, it underlies the structure

of the Lagrangian formalism. The parameters appearing in a Lagrangian—such as

coupling constants and masses—are not directly observable and, when inserted into

perturbative calculations, often lead to UV divergences in loop integrals [47, 53].

To address these divergences, a two-step procedure is implemented. First, regu-

larisation is introduced: a mathematical scheme, such as dimensional regularisation

or a momentum cutoff, that renders the divergent integrals well-defined. Second,

the divergences are absorbed through renormalisation, which redefines the theory’s

bare parameters to cancel out infinities, resulting in finite, physically meaningful

∗This connection between QFT renormalisation and fractals was inspired by the lecture notes
of Prof. McGreevy.

7
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Figure 2.1: One-loop self-energy diagrams contributing to the propagator of the right-handed elec-
tron e in the unbroken Standard Model. Each diagram involves a fermion-boson loop and is
labelled according to the hypercharge of the internal fermion line: Left: Σ−1 (left-handed electron
and charged Higgs). Center: Σ0 (right-handed electron and B gauge boson). Right: Σ+1 (left-
handed neutrino and neutral Higgs). These diagrams yield logarithmic divergences and motivate
the introduction of regularisation and renormalisation.

predictions [47]. The resulting renormalised Lagrangian maintains the same form as

the original but with scale-dependent, analytic couplings and field normalizations.

This procedure can be understood conceptually as a type of scale transformation:

just as the recursive definition of a fractal preserves essential structural properties,

renormalisation in QFT modifies the parameters while preserving the form of the

theory. This idea is formalized in the language of the Renormalisation Group (RG),

which governs the flow of parameters across energy scales [54, 55].

In this chapter, we provide a structured overview of regularisation and renor-

malisation in QFT. We begin by examining the origin of divergences in perturba-

tive calculations and survey several regularisation techniques. Special emphasis is

placed on DimReg and the modified minimal subtraction MS scheme, which are

used throughout the remainder of this thesis. We also discuss the distinction be-

tween renormalisable and non-renormalisable theories, and set the stage for the use

of EFTs, such as the SMEFT, in handling non-renormalisable interactions in a con-

sistent and predictive framework [56, 57].

2.1 Divergences

In perturbative quantum field theory, observables such as cross-sections and decay

rates are computed using Green’s functions, which are derived from the theory’s

Lagrangian. However, the Lagrangian itself is not directly physical: it contains
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parameters—such as couplings and masses—that serve as inputs to a formalism

rather than measurable quantities. These parameters often lead to divergences when

inserted into loop-level Feynman diagrams.

The divergences encountered in loop calculations originate from the UV region

of the momentum integrals, where virtual particles probe arbitrarily high energies.

Without a systematic method to regulate and absorb these divergences, the Green’s

functions become ill-defined and physical predictions are lost. This issue necessi-

tates the introduction of regularisation and renormalisation, which are discussed

throughout this chapter. These methods allow us to redefine the parameters in

such a way that physical predictions remain finite and consistent with experimental

results [47, 53].

To illustrate the nature of such divergences, we begin with a concrete example:

the Wavefunction Renormalisation (WFR) at one loop for a right-handed charged

lepton in the unbroken SM. The relevant two-point Green’s function is defined as

iG(p) = ⟨eαeα⟩, which corresponds to the free propagator at the tree level.

At one loop, three diagrams contribute corrections to this quantity. These cor-

rections can be expressed in the form:

iGTL(p) iΣ(p) iGTL(p), (2.1)

where iGTL(p) is the tree-level propagator and Σ(p) represents the self-energy inser-

tion. The contributing diagrams, shown in Figure 2.1, involve various combinations

of bosons and fermions circulating in the loop. We label them by the hypercharge

of the internal fermion line:

• Σ−1: A charged Higgs loop with a left-handed electron.

• Σ0: A gauge boson loop with a right-handed electron.

• Σ+1: A neutral Higgs loop with a left-handed neutrino.

For example, the diagram where a left-handed electron and a charged Higgs
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circulate in the loop yields:

i[Σ−1] ≡ ([ye]⊤[ye]∗)ααI =

∫
d4k

(2π)4
/k

k2 + iε

1

(p− k)2 +m2
H + iε

(no sum over α) ,

(2.2)

where ye is the Yukawa coupling of the lepton.

Using Feynman parameters, Wick rotation and variable change, we can transform

the integral into a standardised expression with a general solution:

I =

∫
ddk

(2π)d
1

(k2 −∆+ iε)2
=

i

(4π)
d
2

1

∆2− d
2

Γ

(
4− d
2

)
(2.3)

which is divergent as k →∞ for d = 4 dimensions.

These integrals are logarithmically divergent in the UV limit and must be regulat-

ed. In the sections that follow, we will evaluate them using dimensional regularisation

to isolate and cancel the divergent pieces through the renormalisation process.

2.2 Regularisation

To address UV divergences in loop integrals, QFT employs various regularisation

methods, each introducing a formal prescription (a ‘regulator’) that modifies the

divergent integrals to make them finite and computable. These methods affect the

structure of the theory to different extents and vary in their compatibility with

symmetries. Some examples are:

Cutoff The cutoff method introduces a physical energy scale Λ that restricts the

integration domain of the loop momentum. This approach is intuitive but breaks

Lorentz invariance and is not suited for preserving gauge symmetries. Its simplicity

makes it useful for rough or pedagogical calculations, though it lacks theoretical

elegance.
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Derivative method This method involves differentiating the divergent integral

with respect to a dimensionful parameter until the result becomes convergent, then

integrating it back. While this cancels divergences formally, it introduces arbitrary

integration constants Λ1,Λ2, . . . , making it ambiguous unless symmetry constraints

(like gauge invariance) uniquely determine those constants.

Pauli-Villars A more systematic variation of the derivative method, this regulator

introduces unphysical ‘ghost’ fields† (with modified statistics) to cancel divergences.

These fields do not correspond to real particles but are inserted in the Lagrangian.

While it works well in Abelian theories, this approach can violate gauge invariance

in non-Abelian settings and becomes cumbersome with higher-loop corrections.

Lattice Spacetime is discretised into a lattice, effectively regulating integrals by

removing the UV limit. This method preserves unitarity and is well-suited for non-

perturbative problems (e.g., QCD), but breaks Lorentz symmetry and is computa-

tionally demanding. It is not easily adapted to theories with chiral fermions.

2.2.1 (Naive) Dimensional Regularisation

DimReg stands out as the most widely adopted regularisation scheme available in

quantum field theory. Its popularity stems from its ability to preserve key symmetries

of the theory –Lorentz, gauge, and, in the case of massless fermions, chiral symmetry–

while retaining the analytic structure of Green’s functions. Although somewhat

abstract in its formulation, dimensional regularisation has become the standard in

loop calculations and is the default approach in the majority of modern perturbative

analyses.

Let us return to the loop integral presented earlier in Equation (2.3), which

was shown to be logarithmically divergent. The divergence arose from the high-

momentum behaviour of the integrand, which scales as k3 dk
k4

= dk
k
. Rather than al-

†Not to be confused with Fadeev-Popov ghosts.
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tering the limits of integration or modifying the particle content of the Lagrangian,

dimensional regularisation instead modifies the dimension of the integration mea-

sure itself. This is achieved by analytically continuing the number of spacetime

dimensions from four to d = 4− 2ϵ, with the limit ϵ→ 0 taken at the end of the cal-

culation. While the notion of non-integer dimensions is mathematically formal and

lacks direct physical interpretation, the method allows for a controlled expansion of

divergent quantities in terms of poles in ϵ.

Using DimReg the scalar loop integral appearing in Equation (2.3) becomes:

I =
i

(4π)
d
2

1

∆2− d
2

Γ

(
4− d
2

)
=

i

(4π)2−ϵ
1

∆ϵ
Γ (ϵ) (2.4)

where the divergence is parametrised by ϵ→ 0.

DimReg also affects the mass dimensions of fields and couplings. For example,

the dimension of a Yukawa coupling ye shifts as:

[ye] = 0 7→ [ye] = ϵ⇒ ye 7→ µϵye (2.5)

where µ is an arbitrary mass scale introduced to compensate for the change in di-

mension, ensuring that the interaction terms in the Lagrangian remain dimensionless

in d spacetime dimensions.

Including the mass dimension correction µ2ϵ by the two Yukawa couplings in the

amplitude (2.2) and expanding (2.4) around ϵ = 0 we get‡:

µ2ϵ i

(4π)2−ϵ
1

∆ϵ
Γ (ϵ) ≈ i

16π2

(
1

ϵ
+ ln

(
4πe−γEµ2

∆

)
+O(ϵ)

)
, (2.6)

where γE is the Euler-Mascheroni constant. Thus, the regulated amplitude (2.2) is:

i[Σ−1] = i
([ye]⊤[ye]∗)αα

16π2ϵ
/p+ finite . (2.7)

‡We use Γ(ϵ) = 1/ϵ+ γE +O(ϵ) and x−ϵ = 1− ϵ lnx+O(ϵ2).
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It is important to emphasise that the scale µ introduced here is not a physical cutoff.

It only appears to ensure dimensional consistency, but eventually disappears from

physical observables after renormalisation. Nonetheless, intermediate expressions

–such as beta functions and anomalous dimensions– can depend on it explicitly.

2.3 Counterterms and renormalisation conditions

Renormalisation is the process by which divergences in loop amplitudes are absorbed

into redefinitions of the theory’s bare parameters and fields. These redefinitions

introduce counterterms that cancel divergent contributions from loop diagrams [53].

The freedom in choosing the finite parts of these counterterms is what defines a

renormalisation scheme

The choice of scheme does not affect physical observables, such as S-matrix ele-

ments, but it does alter intermediate quantities like Green’s functions and running

couplings. Each scheme imposes different conditions on the counterterms and thus

results in different expressions for renormalised parameters.

The formalism applies at all-loops order. In perturbation theory, we expand the

counterterms Z in terms with the same loop suppression Z = 1 + δ +O(2L), where
δ will also be called counterterms without possible confusion in this text, since we

always work at one loop.

2.3.1 Onshell scheme

In the On-shell (OS) scheme, renormalisation conditions are imposed so that renor-

malised quantities match physically measured ones. For example, propagator poles

are fixed at physical particle masses, and the residues at those poles are normalized

to unity [55].

Applying this to the right-handed lepton propagator, we resum the 1PI 1-loop

contributions due to the self-energy Σ(p) into the dressed propagator (see Figure 2.2).
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Figure 2.2: The resummation of 1PI diagrams leads to a diagram formally similar to the tree-level
expression: the dressed propagator.

Then, we fix the renormalised self-energy ΣR(p) such that

d

d/p
ΣR(/p)

∣∣∣∣
/p=0

= 0. (2.8)

Although physically motivated, the OS scheme becomes cumbersome in theories

with many parameters or in EFTs, where not all couplings are physical observables.

2.3.2 Minimal Subtraction scheme

The Minimal Subtraction (MS) scheme introduces counterterms that cancel only

the divergent parts of loop amplitudes. In dimensional regularisation, divergences

appear as poles in ϵ = (4− d)/2. MS counterterms δMS subtract these poles without

touching finite terms [58]:

δMS = i
([ye]⊤[ye]∗)αα

16π2ϵ
/p . (2.9)

This approach is simple and efficient, especially when dealing with large numbers

of parameters, and is well-suited to theories like SMEFT. However, it lacks direct

physical interpretation since renormalised masses and couplings do not correspond

to physical observables.

2.3.3 Modified Minimal Subtraction scheme

The MS scheme [59] improves on MS by removing not only the 1/ϵ poles but also

associated constants such as ln(4π) and the Euler–Mascheroni constant γE (as was
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the case in equation (2.6)). This modification improves the behaviour of beta func-

tions and is the standard scheme used in the computation of renormalisation group

equations.

For a generic parameter g such that [g]d = 1 − ϵ the relation between bare and

renormalised forms is written as

g0 = µϵZggR(µ), (2.10)

where µ is the renormalisation scale§, and Zg contains only the divergent and γE-

dependent pieces in MS.

2.3.4 Renormalised Lagrangian

Once a renormalisation scheme is chosen, the renormalised Lagrangian is obtained

by substituting bare parameters and fields with their renormalised counterparts and

associated counterterms. For instance, the kinetic term of a fermion field ψ is written

at one-loop order as

L = Zψψi/∂ψ = ψRi/∂ψR + δψψRi/∂ψR. (2.11)

This decomposition separates the renormalised term and the counterterm. The same

applies to mass and interaction terms. The complete renormalised Lagrangian thus

consists of the original Lagrangian (in terms of renormalised parameters) plus a sum

of counterterms determined by the chosen scheme.

These renormalisation techniques are foundational for the treatment of loop cor-

rections in EFTs. In particular, they are applied throughout Chapter 5 to study

the SMEFT, where the dimension-six and dimension-eight operators require careful

handling of counterterms and running couplings across scales.

§We will discuss its relevance in Section 5.1.1.
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2.4 Renormalised perturbation theory

Perturbative quantum field theory systematically expands around the free theory

using a series of small parameters—usually couplings or inverse mass scales. However,

we have seen loop diagrams often lead to divergences that must be handled carefully.

Renormalised Perturbation Theory provides a consistent framework to perform these

calculations by starting from a Lagrangian expressed in terms of renormalised fields

and couplings. Counterterms are introduced from the beginning and are determined

order-by-order in perturbation theory [53].

Instead of adding counterterms after encountering divergences in each process, the

approach assumes their presence and uses physical constraints or matching conditions

to fix their coefficients. This method is not only more elegant but also essential in

theories like the SMEFT, where the structure of the theory at low energies reflects

the influence of physics at higher scales.

In the SM, renormalised perturbation theory leads to a finite set of countert-

erms sufficient to absorb all one-loop divergences. These include approximately¶ 33

counterterms [60–62]

• 19 WFR (for gauge bosons, Higgs, and all SM fermions),

• 13 coupling renormalisations (for g1, g2, g3, all Yukawas, and the Higgs quartic

coupling),

• 1 mass parameter renormalisation (the Higgs potential parameter m2
H).

Once these are fixed by appropriate renormalisation conditions, physical predictions

such as cross-sections and decay rates become finite [55].

Renormalised Perturbation Theory allows for a structured and symmetry-preserving

approach to loop calculations in both renormalisable and EFTs. Its general princi-

ples—introduction of counterterms, renormalisation conditions, and gauge-invariant

¶We are not counting gauge fixing or redundant terms that can also be included in the SM.
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regularisation methods—serve as the core of modern amplitude computations, and

will be extensively applied in the remainder of this thesis, particularly in the con-

text of SMEFT. However, we must first clear out the role renormalisation plays in

theories where there is no finite number of counterterms.

2.5 Renormalisability

A quantum field theory is said to be renormalisable if all UV divergences in its

amplitudes can be absorbed into a finite number of counterterms. This condition

applies not only to Green’s functions but also to S-matrix elements since the latter are

obtained from the former via the LSZ reduction formula, which does not introduce

additional divergences. Thus, the divergences of S-matrix elements are controlled

by the divergences of the underlying Green’s functions, meaning that a consistent

renormalisation of the latter ensures the finiteness of the former.

In practice, the divergences arise from One-particle-irreducible (1PI) diagrams.

These are diagrams that cannot be disconnected by cutting a single internal line.

Connected (reducible) diagrams are built by combining 1PI diagrams and do not in-

troduce new divergences beyond those already present in their 1PI components. This

is because any additional line connecting two 1PI blobs carries no loop momentum

and hence does not generate UV divergences. Therefore, it suffices to renormalise the

1PI Green’s functions at a given loop order. In our discussion of the Standard Mod-

el, for instance, we observed that renormalising the 1PI two-, three- and four-point

functions was sufficient to ensure finiteness at one loop for all relevant scattering

amplitudes. This feature is representative of renormalisable theories: a bounded

number of divergent structures, fully captured by a finite counterterm set.

Of course, not every 1PI diagram is divergent. Since our interest lies in renor-

malisation, it is convenient to define a tool to discard finite diagrams. Since this

classification is non-trivial, we begin by using a simpler, though only approximate,

instrument.

We define the superficial degree of divergence D of a loop diagram as the scaling
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power of the diagram in the UV limit, where the loop momentum becomes large [63].

For a 1PI diagram with nx gauge bosons, nψ fermions, nϕ scalars, and ni insertions

of operator Oi with mass dimension ri = [Oi]‖, the superficial degree of divergence

is

D = 4− 3/2nψ − nϕ − nX −
∑

ni(4− ri) (2.12)

in a 4-dimensional theory. This can be deduced either by counting loop momenta

and noting that the superficial degree of divergence is related to the mass dimension

of the matrix element that contains the 1PI Green’s function.

It is a useful diagnostic tool in determining whether a Feynman diagram is di-

vergent:

• D < 0: the diagram is convergent,

• D = 0: it is logarithmically divergent,

• D > 0: it exhibits power-law divergence proportional to ΛD, where Λ is a UV

cutoff.

This estimate, however, is superficial — it assumes no cancellations due to sym-

metries or specific vertex structures. Therefore, diagrams with non-negativeD might

still be finite, or even vanish by construction.

To illustrate this, consider the diagrams shown in Figure 2.3. The diagram on

the left, which contributes to Higgs wave-function renormalisation, has a positive

D and is divergent. The diagram on the centre, contributing to the quartic Higgs

coupling, has D = 0 and is logarithmically divergent. In contrast, the diagram on

the right has D < 0 and yields finite results.

In the SM, all operators have ri < 4, but one can wonder what happens to

D (2.12) when the mass dimension is higher than 4. Each insertion of a higher-

dimensional operator increases D by ri − 4, making the superficial degree of diver-

gence more positive with each insertion, and thus the corresponding diagram will be

‖Assuming canonical mass dimension for all fields.
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Figure 2.3: Left: a Green’s Function with a positive superficial degree of divergence. Centre: A
Green’s Function with zero superficial degree of divergence (in this case, it is divergent). Right: A
Green’s Function with a negative superficial degree of divergence.

increasingly divergent. The effect of such divergences will need to be renormalised

with more higher-dimensional operators and so on, leading to potentially an infinite

tower of counterterms.

In renormalisable theories, power counting implies that only diagrams with a

small number of external fields can be divergent. This ensures that only a finite

number of counterterms are needed, corresponding to operators of dimension four

or less. This is not the case for non-renormalisable theories, like EFTs, which have

higher-dimensional operators. As an anticipation for the following chapter, this issue

is addressed by fixing a certain power counting above which all contributions are

negligible. Thus, higher-dimensional operators will only be renormalised provided

they have a sufficiently low power counting order.
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EFTs and matching

3.1 Separation of scales

The principle of separation of scales is foundational in physics, underpinning both

theoretical frameworks and experimental methodologies. It refers to the idea that

physical phenomena occurring at vastly different energy (or length) scales can often

be studied independently. Historically, this approach has enabled the simplification

of complex systems by focusing only on the relevant degrees of freedom at a given

scale.

A classic example is the description of planetary motion: Kepler’s laws and New-

tonian gravity successfully predict orbital dynamics without requiring knowledge of

planetary topography. Even in modern high-precision measurements, detailed sur-

face features such as mountains and craters have negligible influence on celestial

mechanics. Likewise, the Earth’s electromagnetic field can be characterised without

accounting for local, small-scale sources like refrigerator magnets.

This principle is not specific to gravity or electromagnetism. It is a general

feature of many physical theories, including those that govern subatomic interactions.

For instance, chemical reactions are typically studied using QED, while ignoring

weak and strong interactions—these only become relevant at much higher energies

or shorter distances. At nuclear scales, the strong interaction becomes significant,

20
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yet quark and gluon degrees of freedom remain inaccessible until energies reach the

subnuclear regime.

The separation of scales enables simplifications across physical contexts. Classical

mechanics is adequate for macroscopic systems, while QFT is essential at subatomic

distances. The key insight is that high-energy (or UV) physics becomes irrelevant to

low-energy (or Infrared (IR)) observables—except through renormalised parameters

or suppressed corrections.

EFTs systematise this concept within the language of Lagrangians. In EFTs,

short-distance physics is encoded through higher-dimensional operators in a local,

low-energy theory. These operators are suppressed by powers of a large scale Λ and

their contributions are organised by a power-counting scheme. This allows theoretical

predictions to be systematically improved by including higher-order terms as required

by experimental precision.

Importantly, EFTs can be formulated even without full knowledge of the UV

theory. This makes them especially valuable in contexts where the high-energy com-

pletion is unknown or inaccessible. Calculations are simplified because irrelevant

operators—those suppressed by high powers of 1/Λ—can be safely neglected below

the matching scale.

Conversely, EFTs can also serve as a bottom-up tool. By matching high-energy

experimental data to the EFT parameters, one can constrain or even infer properties

of potential UV theories. This dual role—as a predictive low-energy model and a tool

for model-independent UV inference—makes EFTs indispensable in contemporary

particle physics.

3.2 Motivation and description of EFTs

In its most general form, an EFT is a QFT designed to describe physical processes at

energies below a certain cutoff scale Λ. This framework is motivated by the principle

of separation of scales: at low energies, the effects of high-energy degrees of freedom

can be encoded through local interactions without requiring an explicit treatment of
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the full UV theory.

Typically, an EFT is constructed by identifying the relevant light fields and their

symmetries, while systematically integrating out the heavy degrees of freedom. This

process yields an infinite series of higher-dimensional operators, suppressed by inverse

powers of the cutoff scale.

From a computational perspective, EFTs offer predictive power because calcula-

tions can be organised as a power series expansion in the small parameter p/Λ where

p is the characteristic momentum of the process. If the theory is known to order n,

the resulting theoretical uncertainty is of order O(p/Λ)n+1. This truncation ensures

that only a finite number of operators need to be considered at any desired accuracy.

Historically, EFTs have been employed long before their formal methodology was

established. A notable example is Fermi’s theory of weak interactions, which effec-

tively described beta decay well before the discovery of the electroweak gauge bosons.

Modern developments, such as the SMEFT, extend this philosophy by incorporating

higher-dimensional operators that capture the effects of possible new physics.

The flexibility, precision, and universality of EFTs have made them an indispens-

able tool in both theoretical and experimental particle physics. Their formulation

allows for systematic improvements and error estimation, even in the absence of a

fully known UV theory.

3.3 Power Counting and mass dimension

EFTs, as quantum field theories, are expressed through Lagrangians that encapsulate

all relevant physics below a cutoff scale. A defining feature of EFTs is that all

observables can be expanded as a power series in the ratio of two scales: the typical

energy of the process m and the heavy scale M , often associated with new physics.

This ratio defines the power-counting parameter:

λ =
m

M
. (3.1)
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Typically, EFTs are constructed to include only a single mass scale M , with all

heavier degrees of freedom integrated out. Consequently, all quantities in the EFT

can be assigned a scaling behaviour in terms of λ. To establish this behaviour, we

introduce a power counting scheme—a systematic prescription that assigns a scaling

dimension to each field, coupling, or operator in the theory:

pµ ∼ m(1, 1, 1, 1) ≡ λM(1, 1, 1, 1), (3.2)

which implies

xµ ∼
1

m
∼ 1

λM
and d4x =

1

M4
λ−4 (3.3)

Thus, momentum scales as λ and position scales as λ−1.

To assign a scaling to fields, we consider their kinetic terms, which dominate at

high energy and must be included in the free theory. These terms must be of order

λ4 to match the scaling of the action (which is dimensionless). For example, the

kinetic term of a scalar field ϕ is:

Lkin = |∂ϕ|2 ∼ λ2(λϕ)
2. (3.4)

Imposing Lkin ∼ λ4 implies ϕ ∼ λ. Analogous arguments apply to gauge and fermion

fields, yielding similar results consistent with their canonical mass dimensions.

Since observables are computed by evaluating matrix elements of operators, the

power counting of an operator O scales as:

O ∼ λ[O], (3.5)

where [O] is the canonical mass dimension. This scaling holds for weakly coupled

EFTs, where the kinetic terms dominate. For strongly coupled theories, a different

power counting scheme may be required, as interactions can modify the dominant

scaling.

In weakly coupled EFTs, the expansion is often performed simultaneously in pow-

ers of λ and the coupling constant g. DimReg ensures that loop corrections introduce
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logarithmic dependence on the ratio p/Λ, leading to expansions in parameters like

g log(p/Λ). To maintain accuracy, terms with logarithms must be resumed when the

logs are large.

This power counting framework enables consistent truncation of the EFT La-

grangian and allows for reliable estimation of theoretical uncertainties.

3.4 Examples

Before we develop the technical structure of the SMEFT, it is instructive to consider

simpler EFTs that exemplify key features of the framework. These examples, drawn

from both particle and atomic physics, serve to highlight conceptual foundations

such as separation of scales, power counting, matching, and the emergence of higher-

dimensional operators—features that are central to SMEFT but are often obscured

by its complexity.

While the concepts of decoupling and low-energy expansion are straightforward

in idealised settings, real UV theories often involve subtleties such as nontrivial field

content or strong interactions. These complications motivate the need for examples

that isolate specific technical tools and conceptual strategies. In what follows, we

explore a series of EFTs with distinct structures and purposes, each selected to

emphasise a particular principle relevant to the construction and interpretation of

SMEFT.

Through this approach, we aim not only to build intuition but also to motivate

the technical choices and methods employed later in this thesis. This section was

heavily inspired by [57, 64]

3.4.1 Fermi Theory: A Prototype for Matching in EFTs

The Fermi theory of weak interactions stands as one of the earliest examples of an

EFT. Before the establishment of QFT and the EW SM, Enrico Fermi proposed a

contact interaction between four fermions to describe processes like beta decay [65].
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In modern notation, the Lagrangian takes the form:

LFermi = −
GF√
2

[
ψ̄eγ

µ(1− γ5)ψν
] [
ψ̄pγµ(1− γ5)ψn

]
, (3.6)

where GF is the Fermi constant, determined experimentally from muon decay∗. Di-

mensional analysis reveals that this operator has mass dimension six, making the

theory non-renormalisable. Observables scale as σ ∼ G2
FE

2, which implies a break-

down of perturbative unitarity around energies

E ∼ ΛFermi ∼ 1/
√
GF ≈ 300GeV. (3.7)

This behaviour is a distinguishing feature of EFTs: predictive power at low

energies, but inconsistencies emerge at energies approaching the cutoff. In this case,

the UV completion is known—the full electroweak theory, where weak interactions

are mediated by massiveW± bosons. The Fermi operator emerges from the tree-level

matching of the full Standard Model onto the EFT by integrating out the W boson.

The resulting Wilson coefficient is:

GF√
2
=

g22
8m2

W

, (3.8)

where g2 is the SU(2)L gauge coupling. This example demonstrates tree-level match-

ing and the identification of Wilson coefficients, a procedure central to SMEFT.

The Fermi theory is also an example of how gauge symmetry can be hidden at low

energies. The full electroweak theory has local SU(2)L×U(1)Y symmetry, but in the

EFT, this is effectively replaced by approximate global symmetries. Understanding

how symmetry principles constrain operator structure is crucial for constructing

consistent EFTs like SMEFT, which preserve the gauge symmetries of the SM.

Thus, Fermi theory serves not just as a historical curiosity, but as a pedagogical

∗In the Fermi theory, the interactions responsible for muon decay and beta decay have the same
coupling. This can only be understood after the EFT is UV-completed.
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prototype for modern EFT techniques—matching, operator classification, and power

counting—that reappear throughout SMEFT.

3.4.2 Chiral Perturbation Theory: Constructing EFTs from

Symmetry Principles

χPT is the low-energy effective field theory of QCD in the presence of light quarks.

It provides a canonical example of how an EFT can be built from symmetry consid-

erations alone, without direct knowledge of the UV dynamics — a perspective that

is also central to the construction of SMEFT.

The starting point is the observation that QCD with nq massless quarks has a

global chiral symmetry:

SU(nq)L × SU(nq)R → SU(nq)V , (3.9)

which is spontaneously broken by the QCD vacuum. The resulting Nambu-Goldstone

Bosons (NGBs) are the light pseudoscalar mesons (pions for nq = 2, or the octet

including kaons and the η for nq = 3). These NGBs are described by a unitary

matrix-valued field U(x) ∈ SU(nq), parameterised as:

U(x) = exp

(
i
√
2Φ(x)

F

)
, (3.10)

where F is the pion decay constant and Φ collects the meson fields in the adjoint

representation.

To construct the effective Lagrangian, χPT employs a derivative and mass ex-

pansion, with all terms organised by their transformation properties under chiral

symmetry. The low-energy theory is built from all operators consistent with:

• The symmetries of QCD (chiral symmetry, parity, Lorentz invariance),

• The field content (NGBs in U(x)),
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• A well-defined power-counting in momenta or derivative order.

External source fields vµ, aµ, s, p are coupled to QCD via quark bilinears and

introduced as background fields transforming under chiral symmetry [66]. These

spurions enable a systematic construction of invariant terms in the chiral Lagrangian

and allow one to define a generating functional:

ZχPT[v, a, s, p], (3.11)

which reproduces the same Green’s functions as QCD in the low-energy regime:

ZQCD[v, a, s, p] = ZχPT[v, a, s, p]. (3.12)

The Leading Order (LO) Lagrangian, which contains the lowest number of deriva-

tives and quark mass insertions, is:

LLO =
F 2

4
Tr
[
DµU

†DµU + U †χ+ χ†U
]
, (3.13)

where:

• DµU = ∂µU − irµU + iUlµ, with rµ = vµ + aµ, lµ = vµ − aµ,

• χ = 2B(s+ ip), encodes explicit symmetry breaking due to quark masses.

This construction mirrors the principles used in SMEFT:

• Operators are classified by their dimension and symmetry structure [27],

• Background field techniques and spurions are used to build invariant terms [67],

• A power-counting scheme organises the expansion in increasing orders of p/Λ,

as explained in 3.3 and as was done in [68].

In SMEFT, as in χPT, we do not require full knowledge of the UV theory. Instead,

symmetry and field content dictate the allowed operators, which are suppressed
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by powers of the cutoff scale. While SMEFT is weakly coupled and χPT is non-

perturbative in its UV origin, both serve as examples of systematic, symmetry-based

EFT construction.

3.4.3 Soft-Collinear Effective Theory: Factorisation and

Mode Separation

SCET is a powerful framework developed to describe the interactions of energetic,

collimated particles (such as those in jet physics), especially when soft and collinear

emissions dominate the dynamics [69–71]. It provides a clear illustration of EFT

techniques adapted to systems with a preferred direction, as is common in collider

experiments.

Unlike χPT, SCET does not integrate out entire fields, but instead integrates out

energy modes. Fields are decomposed into contributions from distinct momentum

regions: hard (high-energy), collinear (boosted along a lightlike direction), anti-

collinear, and ultrasoft. Each mode is treated as a separate field in the effective

theory.

This decomposition gives rise to a novel power-counting scheme based on a small

parameter λ, related to the energy hierarchy between the soft and collinear modes.

A generic four-momentum pµ is expressed using light-cone vectors nµ = (1, 0, 0, 1),

n̄µ = (1, 0, 0,−1), and transverse components:

pµ = n · p n̄
µ

2
+ n̄ · p n

µ

2
+ pµ⊥. (3.14)

Collinear momenta scale as pc ∼ (λ2, 1, λ), anti-collinear as (λ̄2, 1, λ̄), and ultrasoft

as (λ2, λ2, λ2). The EFT Lagrangian is built to preserve the gauge symmetry and

scaling properties of each sector.

This feature distinguishes SCET from other EFTs: the power-counting is aniso-

tropic and depends on both the direction and energy of fields. The Lagrangian

includes only interactions that respect the scaling laws of the modes involved. For
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instance, an operator contributing to collinear-quark interactions must scale consis-

tently with λ and conserve gauge symmetry in each sector.

While SMEFT does not distinguish field modes in the same way, both frameworks

rely on systematic power counting and matching procedures. The analogy lies in:

Separation of scales: SMEFT assumes a hierarchy between the electroweak scale

and the new physics scale Λ, while SCET separates hard and collinear scales.

Matching across modes or theories: Both use diagrammatic and functional

matching to determine WCs.

Power counting: SCET’s anisotropic counting has its SMEFT analogue in opera-

tor dimension and loop suppression.

Moreover, recent work has explored the SMEFT analogue of SCET for EW pro-

cesses with boosted final states, emphasising the need for EFT tools that can combine

scale hierarchy and directionality in collider phenomenology [72].



Chapter 4.

SMEFT

The SMEFT is the EFT of the SM extended with non-renormalisable interactions.

Conceptually, this implies the existence of a more fundamental UV theory, from

which SMEFT can be obtained by integrating out heavy degrees of freedom. While

numerous UV completions are theoretically possible—each with distinct phenomeno-

logical implications—experimental constraints restrict the space of viable models [73–

75]. Nevertheless, SMEFT remains a valuable framework even without assuming a

specific UV completion, particularly in the context of weakly coupled extensions of

the SM.

Classifying operators within an EFT—and especially within SMEFT—is a non-

trivial task that requires careful attention to Lorentz invariance, gauge invariance,

and algebraic identities. The subsequent sections develop the formal machinery

necessary to implement these constraints and systematically construct a complete

operator basis. Although the concepts introduced here are generalisable to any EFT,

our discussion from this point onward will focus specifically on SMEFT.

4.1 SMEFT operators and their classification

The field content of the SMEFT is identical to that of the SM. We consider SMEFT

to be valid up to a cutoff scale Λ, beyond which the effective description breaks down.

This scale also serves as the matching point in a top-down approach. However, in this

30
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thesis, we adopt a bottom-up perspective: we systematically construct all operators

consistent with the symmetries of the SM, organised by increasing mass dimension

and suppressed by powers of 1/Λ. The general SMEFT Lagrangian is written as:

LSMEFT = LSM +
∞∑
r=5

∑
q

nops(q)∑
p=1

c
(p)
r; q

Λr−4
O(p)
r; q, (4.1)

where r is the operator dimension, q labels the operator class, and p = 1, . . . , nops(q)

indexes all operators within a given class q. Unless otherwise noted, all WC c
(p)
r; q are

dimensionless.

Operators are grouped into classes, defined by their field content and Lorentz

structure. For classification purposes, fields are typically grouped into three cate-

gories: gauge field strength tensors X, fermions and their conjugates ψ, and Higgs

fields and their conjugates H. Covariant derivatives are denoted by D. An operator

of mass dimension r belongs to a class XnXψnψHnHDnD , satisfying the dimension

relation: 2nX + 3
2
nψ + nH + nD = r. Some classifications make further distinctions,

such as helicity decomposition (e.g., X ∈ {XL, XR}, ψ ∈ {ψL, ψR}) or charge conju-
gation (ψ 7→ {ψ, ψ†}, H 7→ {H,H†}). In this work, we adopt a minimal and generic

naming convention for operator classes.

Within each class, operators can be grouped into subclasses or types that specify

the exact field content. For instance, ℓ2H2 is the only subclass of the dimension-five

operators ψ2H2, while the dimension-six class Xψ2H contains multiple subclasses

such as Bℓ2H, Be2H, and Wℓ2H.

When fermions are involved, it is often useful to further group operators into

terms that reflect flavour indices. Assuming nf fermion families, such terms may

represent up to n
nψ
f operators. Flavour symmetries can reduce this number. For ex-

ample, the Weinberg operator [Or;ℓ2H2 ]
αβ

is symmetric under exchange of its flavour

indices, yielding
nf (nf+1)

2
independent operators instead of n2

f .

EFTs generally can contain a large set of higher-dimensional operators at a giv-

en dimension. However, many of these operators yield identical contributions to
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physical observables—such as S-matrix elements—and are therefore considered de-

pendent. From a practical and conceptual standpoint, it is desirable to identify a

minimal, non-redundant set of operators that fully capture the dynamics of the the-

ory. To achieve this, one must carefully examine the various mechanisms by which

operator dependencies arise, including symmetry constraints, integration by parts,

field redefinitions, and equations of motion.

4.1.1 Global and gauge symmetries

Bianchi identities

The Bianchi identities express a geometric constraint on field strength tensors in

gauge theories and can be written as a cyclic identity involving covariant deriva-

tives [53]:

DρFµν +DµFνρ +DνFρµ = 0. (4.2)

Contracting this identity with the Lorentz-invariant Levi-Civita tensor ϵρσµν leads

to a condition involving the dual field strength tensor:

DσF̃
ρσ = 0 (4.3)

where F̃ ρσ = ϵρσµνFµν . Although this equation resembles an EoM for the dual

field strength, it arises purely from geometric consistency—specifically, from Bianchi

identities—and not from the variation of an action.

This distinction becomes conceptually important when constructing operator

bases such as Green’s bases, where the goal is to eliminate redundant operators.

Since (4.3) follows identically from the structure of the gauge field, operators involv-

ing this combination are considered redundant and are excluded, even in bases that

permit EoM redundancies. In this sense, dual field strengths are effectively treated

as “on-shell” objects to address the Bianchi identities.
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Fierz identities

In operator constructions involving fermions, spinor algebra often leads to cumber-

some expressions involving products of Dirac matrices. These expressions can be

systematically simplified using Fierz identities [76], which express products of bilin-

ears in terms of alternative contractions. The general identity in a four-dimensional

spacetime is given by [77]:

ΓPmnΓ
Q
st =

1

4
Tr[ΓPΓSΓ

QΓT ]Γ
T
mtΓ

S
sn, (4.4)

where P,Q, S, T = 1, ...16 and m,n, s, t = 1, ...4 run over spinor components. The

set ΓP spans a chiral basis of the space of 4× 4 complex matrices:

ΓP ∈ {R,L,Rγµ, Lγµ, σµν} , (4.5)

with projectors R = 1
2
(1 + γ5), L = 1

2
(1 − γ5) and the antisymmetric combination

σµν = i
2
[γµ, γν ]. The dual basis is

ΓP ∈
{
R,L, Lγµ, Rγµ,

1

2
σµν

}
. (4.6)

These identities are particularly useful for simplifying operators containing at least

four fermionic fields. For example, at the tree level in four dimensions, one can relate

operators of the form:

O1 = (ℓγµℓ)(eγµe) = ℓmℓneset(Lγ
µ)mn(Rγµ)st, (4.7)

O2 = (ℓmen)(esℓt)δmnδst, (4.8)

where flavour indices are omitted for brevity. These two operators are related via

the Fierz identity (4.4) by:

O2 = −
1

2
O1. (4.9)

However, at the loop level—particularly when using dimensional regularisation in
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d = 4−2ϵ dimensions—this identity no longer holds exactly. The difference between

the two forms becomes an operator of order O(ϵ), which, when combined with the

1/ϵ poles from UV divergences, can generate finite contributions at one loop. At

two or more loops, the violation of the Fierz identity can affect divergent structures

directly [78].

To account for this, one formally introduces a new operator defined by:

E =
1

2
O1 +O2, (4.10)

which vanishes in four dimensions but must be retained in d ̸= 4 calculations. These

are known as evanescent operators. Although they contribute only at loop level in

RGEs, they do not affect tree-level amplitudes. In the context of this thesis, we

restrict our attention to one-loop renormalisation, where the RGEs are unaffected

by evanescent operators. As such, we will treat Fierz-related redundancies as valid

identities, even in DimReg.

Schouten identities

Another important class of algebraic identities relevant to the simplification of oper-

ator bases in EFTs are the Schouten identities. These identities arise from the linear

dependence of vectors in a finite-dimensional space. Specifically, in four-dimensional

spacetime, any set of five (or more) four-vectors must be linearly dependent [79].

This leads to an identity among tensors, involving the metric and the Levi-Civita

symbol:

gµνϵαβγδ + gµαϵβγδν + gµβϵγδνα + gµγϵδναβ + gµδϵναβγ = 0 . (4.11)

Contracting this identity with a product of five four-vectors aαbβcγdδeν demon-

strates that a generic linear combination of these vectors must vanish. If the determi-

nant of the matrix formed by these vectors is zero—as enforced by this identity—the

vectors are linearly dependent. This relation is fundamental and purely geometric,

and it holds only in four dimensions.
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The Schouten identity leads to nontrivial relations among operator structures.

For example, given two field strength tensors X and F , and tensors Aµν , Sµν , Tµν

(antisymmetric, symmetric, and generic rank-2 tensors, respectively), the following

identities hold:

AµνX
µ
ρF̃

νρ = AµνX̃
µ
ρF

νρ , (4.12)

SµνX
µ
ρF̃

νρ = −SµνX̃µ
ρF

νρ +
1

2
SµµX̃

νρFνρ , (4.13)

TµνX
µρX̃ν

ρ =
1

4
T µµX

νρX̃νρ . (4.14)

These identities are useful in identifying and eliminating redundancies among

higher-dimensional operators, particularly those involving dual-field strengths. They

effectively allow one to “move the dual” between tensors under contractions. As

with Fierz identities, Schouten identities depend on the dimensionality of spacetime.

Therefore, in DimReg, violations of these relations give rise to evanescent operators,

which vanish in four dimensions but can affect loop-level amplitudes when extended

to d = 4− 2ϵ.

4.1.2 Integration by parts

Operators containing derivatives can exhibit redundancies arising from total deriva-

tives. Specifically, if an operator takes the form DµOµ, it contributes a surface term

when inserted into the action. Assuming that all fields vanish at spatial infinity—a

common boundary condition that ensures well-defined conserved charges in local,

flat QFTs—such total derivatives integrate to zero in the path integral. This leads

to a linear relation among the terms that result from expanding the derivative:

DµOµ ≡ O1 +O2 + · · · = 0 . (4.15)

Each of the operators Oi contains the derivative acting on only a subset of the fields

in the original expression. This identity follows from applying Integration by Parts
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(IBP) within the path integral of the action.

As a concrete example, consider the following scalar operators constructed from

the Higgs doublet H:

O1 =
(
H†H

)
Dµ

(
H†H

)
Dµ
(
H†H

)
(4.16)

O2 =
(
H†H

)2 (
D2H†H +H†D2H

)
(4.17)

O3 =
(
H†H

)2 (
DµH

†DµH
)
. (4.18)

These operators are related through the following total derivative:

0 = Dµ

[(
H†H

)2
Dµ
(
H†H

)]
(4.19)

= 2
(
H†H

)
Dµ

(
H†H

)
Dµ
(
H†H

)
+
(
H†H

)2 (
D2H†H +H†D2H

)
+ 2

(
H†H

)2 (
DµH

†DµH
)
= 2O1 +O2 + 2O3 (4.20)

This relation implies that only two of the three operators are linearly indepen-

dent. Redundancies of this type, originating from IBP identities, represent one of

the primary obstacles in constructing a complete, non-redundant operator basis in

EFTs. In practice, distributing derivatives over composite field expressions without

generating redundant terms demands either a systematic algebraic method or a very

meticulous—and often tedious—manual analysis.

4.1.3 Field redefinitions

A field redefinition is a local transformation of a quantum field ϕ into a new field ϕ′,

defined by a functional ϕ = F [ϕ′], where the functional F is assumed to be expressible

as a finite power series in ϕ′ and its derivatives. The redefined field ϕ′ is of the same

type as the original field ϕ, though possibly with a different normalization. If F [ϕ′]
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creates a one-particle state from the vacuum, i.e.

⟨p|F [ϕ′]|0⟩ ≠ 0 (4.21)

then the physical S-matrix elements computed from the transformed Lagrangian

L[F [ϕ′]] are identical to those derived from the original Lagrangian L[ϕ].
This invariance follows from the behaviour of the generating functional under

a change of variables in the path integral. The original generating functional with

source J is

Z[J ] =

∫
Dϕ exp(iS[ϕ] + Jϕ) ≡

∫
Dϕ exp

(
i

∫
dxL[ϕ] + Jϕ)

)
. (4.22)

Since the path integral sums over all configurations of ϕ, we may treat ϕ as a

dummy integration variable. Under the change of variables ϕ = F [ϕ′], the measure

transforms as:

ϕ′ = F [ϕ′(x)] , (4.23)

Dϕ′ = Dϕ′
∣∣∣∣δFδϕ′

∣∣∣∣ , (4.24)

where the Jacobian determinant is unity when DimReg is employed [80]. The gen-

erating functional becomes:

Z[J ] =

∫
Dϕ′ exp

(
i

∫
dxL′[ϕ′] + JF [ϕ′(x)]

)
, (4.25)

where L′[ϕ′] ≡ L[F [ϕ′]].

In contrast, the generating functional constructed from L′ with a source coupled

directly to ϕ′ is:
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Z ′[J ] =

∫
Dϕ′ exp

(
i

∫
dxL′[ϕ′] + Jϕ′

)
(4.26)

The difference between Z[J ] and Z ′[J ] manifests in their respective Green’s func-

tions, which are defined by functional derivatives with respect to J . However, phys-

ical S-matrix elements depend only on the poles of Green’s functions, which remain

invariant under such transformations provided F [ϕ′] can also create a one-particle

state from the vacuum.

Field redefinitions therefore represent a redundancy at the level of the Lagrangian:

two Lagrangians related by such a transformation yield identical S-matrix elements.

However, one may choose to build operator bases from off-shell Green’s functions.

In this context, operators related by field redefinitions are not considered redun-

dant, as they yield distinct correlators. This perspective is often advantageous for

explicit computations, and we will adopt it throughout this thesis. Nonetheless, we

remain mindful of field redefinitions, as they play a crucial role in the structure and

interpretation of EFTs operator bases in specific contexts.

4.1.4 Equations of motion

Given a Lagrangian L[ϕ, ∂µϕ] involving generic fields ϕ, the classical EoMs are defined

as:

E[ϕ, ∂µϕ] ≡ ∂µ
δL

δ(∂µϕ)
− δL
δϕ
. (4.27)

These EoM terms can appear as components of higher-dimensional operators.

Consider a generic operator O = O(ϕ) · E(ϕ) involving such a structure. Now

perform the field redefinition ϕ(x) = ϕ′(x)−εO(ϕ′), where ε≪ 1 is a small expansion

parameter. This transformation induces a shift in the Lagrangian:

L[ϕ] = L[ϕ′]− εO(ϕ′)

(
∂µ

δL
δ(∂µϕ′)

− δL
δϕ′

)
+O(ε2) ≡ L[ϕ′]− ϵO(ϕ′)+O(ε2). (4.28)
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The linear term in ε reproduces the EoM operator O, thus demonstrating that

such operators can be removed via field redefinitions.

Field redefinitions can be extended to a power series in ε, and applying such

expansions to operators involving EoMs introduces new higher-dimensional terms

into the effective Lagrangian. This makes clear that eliminating an EoM operator

by substitution is not equivalent to simply setting it to zero—it corresponds instead

to a controlled reorganisation of the theory under a non-linear change of variables. In

practice, EoM redundancies are often used to replace operators involving derivatives

with other operator classes. Notably, this is the only redundancy mechanism that

allows operators of distinct field content to be identified as equivalent.

In the context of renormalisation, especially when working off-shell, it is essential

to consider these redundancies. They can be systematically eliminated via field

redefinitions after the UV divergences have been computed. However, to simplify

the analysis, we will use the EoM directly to remove such operators. This approach

is valid for one-loop computations involving only a single insertion of a redundant

operator, which is the case for all diagrams considered in this work∗.

At LO in the SMEFT power counting, the Standard Model EoMs are:

D2Hj = m2
HHj − λ|H|2Hj − q̄α,kϵkj(yu)αβuβ − d̄β(yd)∗αβqαj − ēβ(ye)∗αβℓαj ,

i /Dqjα = (yu)αβu
βH†

kϵ
kj + (yd)αβd

βHj,

i /Dℓjα = (ye)αβe
βHj,

i /Ddβ = (yd)∗αβq
αH†,

i /Duβ = (yu)∗αβq
αH̃†,

i /Deβ = (ye)∗αβℓ
αH†,

DµBµν = −g1
∑

ψ=u,d,q,e,ℓ

ψ̄Y γνψ −
g1
2
H†i
←→
D νH,

∗Since we intend to renormalise at one-loop, the insertion of two (one-loop-renormalised) re-
dundant operators would be formally a two-loop contribution to the redefined operator.
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DµW I
µν = −

g2
2

∑
ψ=q,ℓ

ψ̄σIγνψ −
g2
2
H†i
←→
D I

νH,

DµGA
µν = −

g3
2

∑
ψ=u,d,q

ψ̄λAγνψ, (4.29)

where H†i
←→
D I

νH = 1
2
(H†σI iDνH − iDνH

†σIH).

These expressions can be extended to include higher-order terms in the power-

counting expansion. For example, Refs. [81, 82] apply the EoMs up to Λ−2 [83]

to eliminate redundant dimension-six operators and study their contribution to the

RGEs of physical operators at dimension eight.

4.1.5 Repeated fields

If all operators contained only distinct fields, then the total number of terms would

be determined by the number of independent Lorentz- and gauge-invariant combi-

nations, which can be computed using Group Theory standard methods. In that

case, incorporating flavour simply involves multiplying the count by the appropriate

powers of the number of flavours associated with each field.

However, when operators involve repeated fields, this naive estimate typically

overcounts the number of independent terms. This reduction arises from additional

internal symmetries, including field (anti)commutation properties, flavour symmetry,

and gauge index permutations. These symmetries are not independent—they often

interplay in nontrivial ways—so they must be treated collectively.

Intuitively, the effect of these symmetries can be understood by analysing the

inequivalent permutations of fields and indices. Consider, for instance, operators of

the form ℓ2H2, which involve two identical scalar fields and two identical fermionic

doublets†. The relevant symmetry considerations are as follows:

• The Higgs fields H are complex scalar doublets under SU(2)L, commute under

field exchange, and are Lorentz scalars without colour charge.

†We take this example from [84].
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• The lepton doublets ℓ are also SU(2)L doublets, but they are anticommuting

Grassmann fields, and hence antisymmetric under exchange.

• Lorentz invariance requires that the fermion bilinear be contracted into a

Lorentz scalar. The antisymmetry of the spinor contraction compensates for

the Grassmann sign.

• Gauge invariance under SU(2)L allows contractions of the four doublets either

into singlets or triplets. However, a singlet contraction of two identical bosons

would vanish due to the symmetry of the fields; thus, the Higgs pair must be

contracted as a triplet.

• Consequently, the lepton doublets must also be contracted as an SU(2)L triplet,

which is symmetric in their flavour indices.

• Finally, overall gauge invariance requires hypercharge neutrality, which further

constrains the allowed combinations.

As a result, instead of the naive n2
f flavour structures one might expect from two

lepton fields, the actual number of independent flavour contractions for this operator

class is reduced to
nf (nf+1)

2
, reflecting the symmetry under flavour exchange.

While in this simple example one can construct an explicit operator form by hand,

the general task of counting and constructing independent operators is far more in-

volved. Fortunately, the types of redundancies discussed here—arising from Lorentz,

gauge, and flavour symmetries—can be addressed systematically using modern alge-

braic and computational methods, such as those based on Hilbert series techniques

or symmetry-group classification algorithms.

4.1.6 Notational Choices

The counting of effective operators has been automated using several different ap-

proaches. As long as the field content and symmetries of a theory are known, these

methods can be systematically extended to a wide range of models. In this work,
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we have primarily adopted an intuitive, traditional algorithm [84] to characterise

operator dependencies and count independent terms. An alternative, fully algebraic

approach is provided by the Hilbert series formalism [85–89], which yields equivalent

results [67, 90–92]. In terms of computational structure, both methods require essen-

tially the same input (field content and symmetries) and produce the same output

(the number of invariants), with the main difference being computational efficiency.

It is important to note that explicitly constructing a minimal operator basis—i.e.,

listing a complete set of independent operators class by class—is significantly more

challenging than simply counting them. Although the number of independent terms

remains the same, the operators can be expressed in different forms depending on

the chosen conventions. One may, for instance, prefer to express the basis using

the smallest possible number of terms, resulting in a compact representation. Alter-

natively, it may be advantageous to expand the terms to make flavour symmetries

manifest; this is particularly useful in contexts where flavour structure plays a critical

role (as in the dimension-seven basis of Refs. [28, 31]).

Another common choice involves whether to express operators explicitly as real

or complex terms. In general, a subclass of operators can be written in real form if its

field content is closed under complex conjugation. For example, operators of the type

ℓ2H2D involve the field set {ℓ, ℓ†, H,H†}, which allows for real combinations. By

contrast, operators like ℓeH3 typically yield complex structures, and our convention

treats terms with {ℓ, e†, H,H†, H†} as distinct from those with {ℓ†, e,H,H,H†}. One

could, in principle, form real linear combinations across such types, but this approach

is rarely adopted in the literature.

Finally, one may choose between using standard field strength tensors F and F̃

or adopting a chiral convention in which the left- and right-handed combinations are

defined as FL,R = F ∓ iF̃ . While the number of operators remains unchanged under

this choice, the chiral basis yields operators with well-defined helicity, which can be

advantageous in specific phenomenological analyses.
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4.2 Operator counting algorithm

Once all possible relations between operators are understood, one can determine

the minimal number of independent interactions required to define an EFT. This

process has been automated in various tools such as Sim2Int [93] and basisgen [94],

which we employ to reproduce the number of independent SMEFT operators and

the minimal number of terms in each class. In addition to the physical operators, we

also consider redundant ones, as they play an important role in the renormalisation

framework discussed in the next chapter.

If an operator class contains no repeated fields or derivatives, the number of

invariant terms under global and gauge symmetries can be obtained using standard

group-theoretical techniques [95–97].

For classes involving repeated fields, Ref. [84] describes a systematic method to

count independent operators, which can be summarised as follows:

• For m repeated fields, symmetries are represented by permutation elements

πGi ∈ Sm, where Gi includes global, gauge, and flavour symmetries.

• The full symmetry of the operator is encoded in a tensor product representation

of the symmetric group: πSU(2)left ⊗ πSU(2)right ⊗ πSU(3)c ⊗ πSU(2)L ⊗ πfields, with
πfields representing field (anti)commutation properties.

• This combined representation is decomposed into irreducible representations

of Sm. The greatest multiplicity among all the irreps is equal to the minimum

number of terms. The total number of irreps (including multiplicity) gives the

number of independent operators.

• For every set of repeated fields, this decomposition is carried out separately.

• The final operator count for a given subclass is obtained by multiplying the

counts from each repeated subset.
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If operators include derivatives, each derivative acting on a field may be consid-

ered a distinct field with its own Lorentz transformation properties. When multiple

derivatives act on the same field, their antisymmetric part can be rewritten as a field

strength tensor via the commutator of covariant derivatives:

[Dµ, Dν ] = −ig1
Y

2
Bµν − ig2

σI

2
W I
µν − ig3

λA

2
GA
µν . (4.30)

In such cases, we typically discard the antisymmetric component and substitute it

with the corresponding field strength tensor, which belongs to a different operator

class. To avoid overcounting, derivatives are decomposed into irreducible representa-

tions of the Lorentz group. It has been shown [84] that only the highest-spin irreps

of the derivative expansion contribute to genuinely independent structures, while

the lower-spin components correspond to redundancies from EoMs. These can be

retained in a Green’s basis but are otherwise removed for minimality.

IBP redundancies are handled by treating derivatives as a dummy field D. In

this formalism, an operator type with n derivatives is decomposed into subtypes

with k instances of D and n − k standard derivatives. If each subtype contains

N(n, k) operators, then the total number of independent structures is given by the

alternating sum [84]:

NO =
k=n∑
k=0

(−1)kN(n, k) (4.31)

These methods are implemented in several modern tools. Sim2Int [93] uses the

algorithm outlined above, while basisgen [94] follows a comparable prescription and

yields equivalent results. The Hilbert series approach, implemented in DEFT [98], is

conceptually distinct but agrees with these tools in all tested cases. Recently, on-shell

methods for basis-generation have also been automated in ABC4EFT [99].

In Table 4.1 we show an overview of SMEFT operator counting. Given the large

number of operator classes, a full analysis is impractical here. Nevertheless, some

general patterns can be observed. Certain classes are purely physical—especially

those without derivatives. Others are purely redundant due to equations of motion.
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As we will see in Chapter 5, such classes typically do not contribute to the dimension-

eight RGEs, as their one-loop divergences vanish. Moreover, they usually appear only

at the loop level in weakly coupled UV completions of SMEFT.

4.3 Offshell independence in momentum space‡

One of the central challenges in working with EFTs is the construction of a minimal

and independent operator basis. While many modern matching and running proce-

dures do not require the basis to be explicitly fixed, the presence of redundant opera-

tors—arising from EoMs, IBP, or algebraic identities—necessitates careful treatment

in practical computations. This is especially true when one computes counterterms

or matches a UV theory to an EFT.

The key question we address in this section is: given a set of operators, how can

one determine whether they are linearly independent? If dependencies exist, how

can one obtain a minimal independent set? While automated tools (such as those

implementing the algorithm described in Section 4.2) can provide the number of

independent operators, they do not yield explicit operator expressions. To this end,

we propose a constructive method that tests operator independence using off-shell

Green’s functions at tree level—what we refer to as a Green’s Basis.

Several motivations support the development of this approach:

1. In standard quantum field theory calculations using Feynman diagrams, matrix

elements are derived from connected and amputated diagrams. The number of

such diagrams increases rapidly with the number of external legs, whereas 1PI

diagrams are fewer, making the computation more manageable.

2. In the path integral formulation of matching [100–102], the resulting EFT

generally includes operators that are redundant due to IBP, field redefinitions,

or other identities. A straightforward way to simplify the EFT is to match

‡This section contains original work from the thesis.
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Class # terms # operators

ψ2H2 2 + 0 12 + 0

H2D4 0 + 1 0 + 1
H4D2 2 + 2 2 + 2
H6 1 + 0 1 + 0

ψ2D3 0 + 5 0 + 45
ψ2HD2 0 + 24 0 + 216
ψ2H2D 9 + 14 81 + 126
ψ2H3 6 + 0 54 + 0

ψ4 38 + 0 2751 + 0
XH2D2 0 + 2 0 + 2
Xψ2D 0 + 30 0 + 270
Xψ2H 16 + 0 144 + 0
X2D2 0 + 3 0 + 3
X2H2 8 + 0 8 + 0

X3 4 + 0 4 + 0

ψ2H2D2 4 + 8 24 + 66
ψ2H3D 2 + 0 18 + 0
ψ2H4 2 + 0 12 + 0
ψ4D 6 + 8 276 + 858
ψ4H 18 + 0 1188 + 0

Xψ2H2 4 + 0 24 + 0

Dimension # terms # operators

5 2 + 0 12 + 0
6 84 + 81 3045 + 665
7 36 + 16 1542 + 924
8 1019 + 1642 44807 + 66197

Class # terms # operators

H2D6 0 + 1 0 + 1
H4D4 3 + 10 3 + 10
H6D2 2 + 2 2 + 2
H8 1 + 0 1 + 0

ψ2D5 0 + 5 0 + 45
ψ2HD4 0 + 54 0 + 486
ψ2H2D3 16 + 135 144 + 1215
ψ2H3D2 36 + 60 324 + 540
ψ2H4D 13 + 14 117 + 126
ψ2H5 6 + 0 54 + 0
ψ4D2 67 + 461 4923 + 36549
ψ4HD 168 + 270 13338 + 22092
ψ4H2 93 + 0 6603 + 0

XH2D4 0 + 6 0 + 6
XH4D2 6 + 4 6 + 4
Xψ2D3 0 + 100 0 + 900

Xψ2HD2 48 + 208 432 + 1872
Xψ2H2D 92 + 66 828 + 594
Xψ2H3 22 + 0 198 + 0

Xψ4 216 + 0 16380 + 0
X2D4 0 + 3 0 + 3

X2H2D2 18 + 44 18 + 44
X2H4 10 + 0 10 + 0
X2ψ2D 57 + 188 513 + 1692
X2ψ2H 96 + 0 864 + 0
X3D2 0 + 16 0 + 16
X3H2 6 + 0 6 + 0

X4 43 + 0 43 + 0

Table 4.1: Number of SMEFT operators up to dimension eight, for three fermion generations
(nf = 3). Each class is listed with the number of independent terms and operators, split as
physical + redundant (due to EoM) real operators and terms. The counting was obtained using
the Sym2Int [93] package. Upper-left: Classes of dimension-five, -six and -seven operators. Right:
Classes of dimension-eight operators. Lower-left: Summary of all classes.
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off-shell amplitudes at tree level onto a known basis of independent Green’s

functions.

3. Helicity amplitude methods have proven effective in computing certain anoma-

lous dimensions strictly on-shell [103–112]. However, their applicability is lim-

ited in scenarios involving operator mixing across different mass dimensions or

in amplitudes generated by operators with fewer external legs than the pro-

cesses they contribute to.

The method developed in [113] is based on the momentum-space representation

of operators and tree-level amplitudes. To determine operator dependencies, we eval-

uate Green’s functions for processes involving insertions of the candidate operators.

By restricting our analysis to 1PI diagrams, we exclude contributions from one-

particle-reducible diagrams and, implicitly, keep EoM-induced redundancies. This

off-shell framework naturally leads to a basis where operators are independent up to

field redefinitions, that can later be removed by onshell relations (See Section 4.5).

The amplitudes derived in this way are expressed as linear combinations of kinemtic

invariants–Lorentz-invariant products of external momenta and polarisation vec-

tors (or spinor structures in fermionic cases). Therefore, if we have a set of oper-

ators {O(p)} contributing to the process a → b, the resulting amplitudes can be

parametrised at tree level as:

A(a→ b) = c(p)
∑
p,m

fmp κm , (4.32)

where c(p) are the Wilson Coefficient of the irrelevant operators, κm are the kinematic

invariants and fmp , the amplitude matrix, is a set of numerical coefficients and SM

couplings derived from the Feynman Rules of the Lagrangian.

The linear independence of the operators is then equivalent to the linear inde-

pendence of the vectors. Thus, testing operator independence reduces to computing

the rank of the amplitude matrix. If the rank equals the number of operators (or

the dimension of the set of kinematic invariants, whichever is smaller), the operators
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are independent.

Importantly, a non-maximal rank in a specific process does not necessarily imply

operator dependence—it could result from accidental symmetries. Therefore, to

conclusively establish operator dependence, one must test multiple processes.

The various redundancies discussed in Section 4.1 can be understood as linear

independence of the amplitude matrix in momentum space. There are only three

differences:

• IBP manifests as momentum conservation. The effect of IBP can be imple-

mented by removing one of the external momenta from the set of kinematic

invariants.

• EoM relations are not considered in this off-shell approach.

• Redundancies by Schouten identities, which relate to four-vector independence

in four dimensions, are avoided by restricting the contractions with only four

independent momenta and/or polarisation vectors when there is a larger num-

ber.

Integration by Parts The interplay between IBP identities and momentum con-

servation can be elucidated by examining the derivative expansion of a total deriva-

tive operator constructed from two fields ϕ and χ, implicitly contracted with some

tensor structure g̃µ (internal indices are suppressed for clarity).

Expanding the total derivative yields the identity referenced in Eq. (4.15). Upon

performing a Fourier transform of the Lagrangian, and considering that the derivative

acts only on the adjacent field, the resulting expression naturally simplifies to a

statement of momentum conservation:

Dµ(ϕg̃µχ) = Dµϕg̃µχ+ ϕg̃µD
µχ = 0, (4.33)

pµT = pµϕ + pµχ = 0. (4.34)

This reasoning can be readily generalized to systems involving arbitrary field content.
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As an example, let’s review the case shown in 4.1.2 from the momentum space

perspective. Let us consider the same dimension-eight six-Higgs operators:

O1 =
(
H†H

)
Dµ

(
H†H

)
Dµ
(
H†H

)
, (4.35)

O2 =
(
H†H

)2 (
D2H†H +H†D2H

)
, (4.36)

O3 =
(
H†H

)2 (
DµH

†DµH
)
. (4.37)

The 1PI amplitude for H0(p1) 7→ H0(p2)H
+(p3)H

−(p4)H
+(p5)H

−(p6) reads:

A = 2i c1(2κ13 + 2κ14 + 2κ15 + 2κ16 − 2κ23 − 2κ24 − 2κ25 − 2κ26

− κ34 − 2κ35 − κ36 − κ45 − 2κ46 − κ56)

− 4i c2(κ11 + κ22 + κ33 + κ44 + κ55 + κ66)

+ 2i c3(2κ12 − κ34 − κ36 − κ45 − κ56) , (4.38)

where κij = pi · pj and cn, n = 1, 2, 3 are the WC of the operators.

Apparently, the amplitude matrix f associated with this process is of rank 3. To

illustrate this, consider the submatrix f̂ , corresponding to the invariants κ11, κ12,

κ13 which takes the form:

f̂ =

 0 0 4i

−4i 0 0

0 4i 0

 =⇒ 3 ≥ Rank(f) ≥ Rank(̂f) = 3 . (4.39)

However, the set of kinematic invariants chosen is not linearly independent due

to momentum conservation, specifically p1 = p2+p3+p4+p5+p6. As a consequence,

the invariants κi1 can always be expressed in terms of the others and thus eliminated.

Taking this constraint into account, we obtain instead:

A = 2i c1(2κ33 + 3κ43 + 2κ44 + 2κ53 + 3κ54 + 2κ55 + 3κ63 + 2κ64 + 3κ65 + 2κ66)

− 8i c2(κ22 + κ32 + κ33 + κ42 + κ43 + κ44 + κ52 + κ53 + κ54 + κ55 + κ62 + κ63
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+ κ64 + κ65 + κ66)

+ 2i c3(2κ22 + 2κ32 + 2κ42 − κ43 + 2κ52 − κ54 + 2κ62 − κ63 − κ65) . (4.40)

The corresponding matrix is found to have rank 2. This can be readily seen from the

fact that the first and third rows in the expression above sum to minus one half of the

second row, i.e., O2 = −2(O1+O3) holds. At the level of the Lagrangian, this linear

dependence originates from the identity given in (4.19), derived in Section 4.1.2.

A more involved example We now turn to a slightly more sophisticated example.

When gauge bosons are included, the structure of the process remains conceptually

analogous. Consider, for instance, the following set of operators:

O1 = Dµ(H
†H)DνBµρBνρ , (4.41)

O2 = (D2H†H +H†D2H)BνρBνρ , (4.42)

O3 = DµH
†DµHBνρBνρ . (4.43)

The amplitude for the process H0(p1) 7→ H0(p2)B(p3)B(p4) takes the following

form:

A = −ic1(κ3334 + 2κ3434 + κ3444 − κ′4333 − 2κ′4334 − κ′4344)

+ 4ic2(2κ2234 + 2κ2334 + 2κ2434 + κ3334 + 2κ3434 + κ3444 − 2κ′4322 − 2κ′4323

− 2κ′4324 − κ′4333 − 2κ− 2κ′4334 − κ4344)

− 4ic3(κ2234 + κ2334 + κ2434 − κ′4322 − κ4323 − κ4324) . (4.44)

p1 has been eliminated using momentum conservation. The relevant kinematic in-

variants are defined as κijkl = (ε3 ·ε4)(pi ·pj)(pk ·pl) and κ′ijkl = (ε3 ·pi)(ε4 ·pj)(pk ·pl),
where ε denotes a polarization vector.

The matrix constructed from these invariants has rank 2, implying that one of

the operators can be expressed as a linear combination of the other two. Indeed, it
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is straightforward to verify from the expression above that

O1 = −
1

4
O2 −

1

2
O3.

This linear dependence corresponds to the following relation at the level of the La-

grangian:

O1 = −Dµ(H
†H)DµBρνBνρ −Dµ(H

†H)DρBνµBνρ

= −Dµ(H
†H)DµBρνBνρ −Dµ(H

†H)DνBµρBνρ

= −Dµ(H
†H)DµBρνBνρ −O1

⇒ O1 = −
1

2
Dµ(H

†H)DµBρνBνρ

=
1

2
D2(H†H)BρνBνρ − 1

2
Dµ(H

†H)BρνDµBνρ

=
1

2
D2(H†H)BρνBνρ −O1

⇒ O1 =
1

4
D2(H†H)BρνBνρ

= −1

4
(D2H†H +H†D2H)BνρBνρ −

1

4
(2DµH

†DµH)BνρBνρ

= −1

4
O2 −

1

2
O3 . (4.45)

In the first equality, we have made use of the Bianchi identity,

DµB
νρ +DνB

ρµ +DρB
µν = 0.

In the second step, we have relabeled indices as ν ↔ ρ in the final operator. In

the fifth equality, the derivative acting on Bρνhas been integrated by parts. In the

penultimate step, the derivative was explicitly expanded. Throughout the derivation,

we have also used the antisymmetry of the field strength tensor, Bνρ = −Bρν .

This example illustrates that off-shell redundancies can be efficiently identified in

momentum space, even when their discovery through purely algebraic manipulations
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becomes nontrivial—such as in scenarios involving a large number of fields or a large

operator basis.

Schouten identities As an example illustrating the implementation of Schouten

identities in momentum space, consider the following set of operators:

O1 = i(DµH
†σIDνH −DνH

†σIDµH)Bµ
ρW̃

Iνρ , (4.46)

O2 = i(DµH
†σIDνH −DνH

†σIDµH)B̃µ
ρW

Iνρ . (4.47)

These operators are related by the identity given in Eq. (4.12).

We now proceed to compute and impose momentum conservation in the ampli-

tude for the following process:

H0(p1) 7→ H0(p2)W
3(p3)B(p4). (4.48)

The resulting expression is:

A = c1(−κ323443 − κ323444 + κ343424 + κ342334 + κ342344)

+ c2(−κ423433 − κ423434 − κ343423 + κ342433 + κ342434) . (4.49)

In this case, the kinematic invariants are defined as κijklmn = ϵ(εi, pj, pk, pl) (εm · pn)
and κ′ijklmn = ϵ(εi, εj, pk, pl)(pm · pn) where ε denotes the Levi-Civita symbol, and ϵ

represents polarization vectors. At first glance, one might conclude that the corre-

sponding operators are linearly independent, as the matrix constructed from these

invariants has rank 2.

However, as anticipated in the discussion of conditions for operator independence

(see 4.3), we must account for Schouten identities. These identities constrain contrac-

tions involving more than four independent vectors in four-dimensional spacetime.

To implement this, we construct kinematic invariants using contractions involving

at most four linearly independent momenta and/or polarization vectors. In this

example, after eliminating p1 via momentum conservation, we are left with three
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independent momenta and two polarization vectors, which satisfy the following re-

lation:

p4 = a1ε3 + a2ε4 + a3p2 + a4p3, (4.50)

for some real coefficients ai, i = 1, ..., 4. Incorporating this constraint, the amplitude

takes the form:

A = (c1 + c2)

[
a3κ342323 + a3(1 + a4)κ342323 + a4(1 + a4)κ342333

+ a1a3κ342332 + a1(1 + 2a4)κ342333 + a2a4κ342343 + a21κ342333

]
. (4.51)

From this expression, it is evident that the two operators are related—in fact, they

are identical up to an evanescent term, which vanishes in D = 4.

As a final remark, the kinematic invariants depend solely on the process under

consideration—that is, the external states involved—and the overall power counting

of the operator coefficients. As previously noted, the invariants may change when

the diagrams are evaluated on-shell; however, apart from this, once the field content

of the theory is specified and the relevant kinematic invariants are determined, the

method can be applied consistently [114, 115].

4.4 A Green’s basis of bosonic operators§

There is a fundamental distinction between determining the number of independent

operators in an effective field theory and constructing their explicit forms. Due to the

freedom to perform linear transformations—i.e., basis rotations—among operators,

multiple representations of the same physical content can exist. In the context of

a Green’s basis, there is often an additional degree of freedom in choosing which

operators are labelled as redundant and which are retained as physical.

While the final form of an operator basis can vary depending on conventions, the

§This section contains original work from the thesis.
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crucial objective is to identify one valid, complete, and independent basis. Once this

is achieved, other bases will be related via appropriate transformations (rotations).

In the construction of such bases, the Hilbert Series is highly effective for enumer-

ating invariants, but it does not provide the explicit form of the operators. For this

task, the so-called ‘traditional’ method—i.e., the direct construction of Lorentz- and

gauge-invariant operators followed by elimination of redundancies—can be adapted

to produce independent operator sets systematically, organised by field content and

mass dimension.

Notably, systematic implementations of this method have only emerged in recent

years, and its extension to the construction of Green’s bases happened after the

beginning of this thesis¶. Before these advancements, operator bases were assembled

‘manually’, often through iterative procedures that identified and removed redun-

dancies one by one. In many cases, the full operator count was unknown before this

construction, leading to incremental updates as new dependencies were discovered‖.

A systematic approach to constructing physical bases was introduced in [29] and

later extended to Green’s bases in [116]. This method leverages the spin-helicity

formalism to recast operator structures into spinor variables, facilitating the use of

momentum-space independence criteria, such as those listed in (4.3). Furthermore,

it incorporates the full set of symmetries described in Section 4.2, applied directly

to the spinor representation. While this framework is rigorous and comprehensive,

its implementation is technically involved and computationally demanding.

Before the publication of those results, an alternative and considerably simpler

method—particularly well-suited for bosonic operators and lower-dimensional cas-

es—was presented in [113]. This method, developed as part of the original work in

this thesis, provides an accessible route to constructing a Green’s basis without sacri-

ficing rigour. Relying on the momentum-space algorithm for identifying independent

¶See, for instance, the developments of the dimension-eight [116] and dimension-seven [117]
Green’s bases.

‖The evolution can be traced in the arXiv revisions of the Warsaw basis [27] and the dimension-
seven basis of [31], which was later refined by other authors [28].



Chapter 4. SMEFT 55

operator structures (as summarized in 4.3) and on established operator counting re-

sults in SMEFT (see Table 4.1), the method is conceptually straightforward: one

generates all candidate operator structures consistent with the symmetries and then

tests their linear independence by evaluating amplitudes for relevant processes.

Crucially, we showed in Section 4.2 that to establish the independence of a set

of operators belonging to a given class, it suffices to consider physical processes that

involve only the fields present in that class. Table 4.2 lists the specific processes

used to construct a Green’s basis for bosonic operators. The physical operators were

selected to match those appearing in the basis proposed by [30], while the redundant

operators were chosen to be real-valued for consistency and convenience.

Type # operators Process

BH2D4 3 H0(p1)→ H0(p2)B(p3)
WH2D4 3 H0(p1)→ H−(p2)W

+(p3)
B2H2D2 12 H0(p1)→ H0(p2)B(p3)B(p4)
W 2H2D2 19 H0(p1)→ H0(p2)W

+(p3)W
−(p4)

WBH2D2 19 H0(p1)→ H−(p2)W
+(p3)B(p4)

G2H2D2 12 H0(p1)→ H0(p2)G
A(p3)G

B(p4)
W 2BD2 4 B(p1)→ W+(p2)W

−(p3)
G2BD2 4 B(p1)→ GA(p2)G

B(p3)
W 3D2 4 W3(p1)→ W+(p2)W

−(p3)
G3 4 GA(p1)→ GB(p2)G

C(p3)
B2D4 1 Not needed
W 2D4 1 Not needed
G2D4 1 Not needed

Table 4.2: Processes used in [113] to prove off-shell independence of bosonic dimension eight op-
erators. Columns show the subclasses (types) of operators, the number of elements in the Green’s
Basis and the process used to check the maximal rank of the amplitude matrix. Class X2D4

does not require computations since each subclass contains only one independent operator. Other
bosonic dimension eight classes with redundant operators (H6D2, H4D4, XH4D2) had already
been computed in Ref. [81].

The operator bases computed to date are summarized in Table 4.3. The explicit

list of operators used in our computations is provided in Appendix A. In particular,
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the Green’s basis for dimension-eight bosonic operators was constructed using the

methodology outlined in the previous section. This basis includes 89 physical oper-

ators, coinciding with those in Ref.[30], along with 86 redundant operators. While

some of the redundant operators had been previously derived in Ref.[81], many were

presented in Ref. [113] for the first time and are original contributions of this work.

4.4.1 List of original operators in the Green’s basis.

The off-shell independent operators were obtained by evaluating the amplitudes of

the processes listed in Table 4.2 and verifying that the resulting matrix has a rank

equal to the expected number of independent operators. The latter was computed

using the tools Sym2Int [93] and basisgen [94], and is reported for all operator

classes up to dimension eight in Table 4.1. Notably, the number of operators in-

creases significantly in the presence of fermionic fields; for this reason, our analysis

is restricted to the purely bosonic sector∗∗.

For completeness, the interaction terms listed below also include the physical

operators (in the relevant classes) as defined in Ref. [30], using the same naming

conventions for consistency.

4.4.2 Operators in the class XH2D4

There are 3 real terms for X = B and 3 more for X = W . In the first case, it

suffices to compute the amplitude for the process H0(p1) → H0(p2)B(p3), while in

the second case only H0(p1)→ H0(p2)W
+(p2) is needed.

X = B

O(1)

8;BH2D4 = i(DνH
†D2H −D2H†DνH)DµB

µν , (4.52)

∗∗Also, this work was partially motivated by the intention to compute of the RGEs of bosonic
dimension-eight opearators in [118].
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O(2)

8;BH2D4 = (DνH
†D2H +D2H†DνH)DµB

µν , (4.53)

O(3)

8;BH2D4 = i(DρDνH
†DρH −DρH†DρDνH)DµB

µν . (4.54)

X = W

O(1)

8;WH2D4 = i(DνH
†σID2H −D2H†σIDνH)DµW

Iµν , (4.55)

O(2)

8;WH2D4 = (DνH
†σID2H +D2H†σIDνH)DµW

Iµν , (4.56)

O(3)

8;BH2D4 = i(DρDνH
†σIDρH −DρH†σIDρDνH)DµW

Iµν . (4.57)

4.4.3 Operators in the class X2H2D2

There are 12 independent operators for X2 = B2, 19 for X2 = W 2 and also 19 for

X2 = WB. One can check the independence of the operators below by evaluating

the amplitudes H0(p1) → H0(p2)B(p3)B(p4), H
0(p1) → H0(p2)W

+(p3)W
−(p4) and

H0(p1)→ H+(p2)W
+(p3)B(p4), respectively.

X2 = B2

O(1)

8;B2H2D2 = (DµH†DνH)BµρB
νρ , (4.58)

O(2)

8;B2H2D2 = (DµH†DµH)BνρB
νρ , (4.59)

O(3)

8;B2H2D2 = (DµH†DµH)BνρB̃
νρ , (4.60)

O(4)

8;B2H2D2 = (DµH
†H +H†DµH)DνB

µρBν
ρ , (4.61)

O(5)

8;B2H2D2 = i(H†DµDνH −DµDνH
†H)BµρBν

ρ , (4.62)

O(6)

8;B2H2D2 = H†HDµDνB
µρBν

ρ , (4.63)

O(7)

8;B2H2D2 = i(H†DνH −DνH
†H)DµB

µρBν
ρ , (4.64)

O(8)

8;B2H2D2 = (H†DνH +DνH
†H)DµB

µρBν
ρ , (4.65)

O(9)

8;B2H2D2 = (H†D2H +D2H†H)BνρB̃νρ , (4.66)



58 Renormalization of the SMEFT to dimension eight

O(10)

8;B2H2D2 = i(H†D2H −D2H†H)BνρB̃νρ (4.67)

O(11)

8;B2H2D2 = (H†DνH +DνH
†H)DµB

µρB̃ν
ρ (4.68)

O(12)

8;B2H2D2 = i(H†DνH −DνH
†H)DµB

µρB̃ν
ρ . (4.69)

X2 = W 2

O(1)

8;W 2H2D2 = (DµH†DνH)W I
µρW

Iρ
ν , (4.70)

O(2)

8;W 2H2D2 = (DµH†DµH)W I
νρW

Iνρ , (4.71)

O(3)

8;W 2H2D2 = (DµH†DµH)W I
νρW̃

Iνρ , (4.72)

O(4)

8;W 2H2D2 = iϵIJK(DµH†σIDνH)W J
µρW

Kρ
ν , (4.73)

O(5)

8;W 2H2D2 = ϵIJK(DµH†σIDνH)(W J
µρW̃

Kρ
ν − W̃ J

µρW
Kρ
ν ) , (4.74)

O(6)

8;W 2H2D2 = iϵIJK(DµH†σIDνH)(W J
µρW̃

Kρ
ν + W̃ J

µρW
Kρ
ν ) , (4.75)

O(7)

8;W 2H2D2 = iϵIJK(H†σIDνH −DνH†σIH)DµW
JµρW̃K

νρ , (4.76)

O(8)

8;W 2H2D2 = ϵIJKH†σIHDνDµW
JµρW̃Kν

ρ , (4.77)

O(9)

8;W 2H2D2 = i(H†DνH −DνH
†H)DµW

IµρW̃ Iν
ρ , (4.78)

O(10)

8;W 2H2D2 = (H†DνH +DνH
†H)DµW

IµρW̃ Iν
ρ , (4.79)

O(11)

8;W 2H2D2 = (H†DνH +DνH
†H)DµW

IµρW Iν
ρ , (4.80)

O(12)

8;W 2H2D2 = i(H†DνH −DνH
†H)DµW

IµρW Iν
ρ , (4.81)

O(13)

8;W 2H2D2 = H†HDµW
IµρDνW

Iν
ρ , (4.82)

O(14)

8;W 2H2D2 = (DµH
†H +H†DµH)W IνρDµW I

νρ , (4.83)

O(15)

8;W 2H2D2 = i(DµH
†H −H†DµH)W IνρDµW I

νρ , (4.84)

O(16)

8;W 2H2D2 = (DµH
†H +H†DµH)DµW IνρW̃ I

νρ , (4.85)

O(17)

8;W 2H2D2 = i(DµH
†H −H†DµH)DµW IνρW̃ I

νρ , (4.86)

O(18)

8;W 2H2D2 = ϵIJK(H†σIDνH +DνH†σIH)DµW
JµρWK

νρ , (4.87)

O(19)

8;W 2H2D2 = iϵIJK(H†σIDνH −DνH†σIH)DµW
JµρWK

νρ . (4.88)
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X2 = WB

O(1)

8;WBH2D2 = (DµH†σIDµH)BνρW
Iνρ , (4.89)

O(2)

8;WBH2D2 = (DµH†σIDµH)BνρW̃
Iνρ , (4.90)

O(3)

8;WBH2D2 = i(DµH†σIDνH)(BµρW
I ρ
ν −BνρW

I ρ
µ ) , (4.91)

O(4)

8;WBH2D2 = (DµH†σIDνH)(BµρW
I ρ
ν +BνρW

I ρ
µ ) , (4.92)

O(5)

8;WBH2D2 = i(DµH†σIDνH)(BµρW̃
I ρ
ν −BνρW̃

I ρ
µ ) , (4.93)

O(6)

8;WBH2D2 = (DµH†σIDνH)(BµρW̃
I ρ
ν +BνρW̃

I ρ
µ ) , (4.94)

O(7)

8;WBH2D2 = i(H†σIDµH −DµH†σIH)DµB
νρW I

νρ , (4.95)

O(8)

8;WBH2D2 = (H†σIDνH +DνH†σIH)DµB
µρW I

νρ , (4.96)

O(9)

8;WBH2D2 = i(H†σIDνH −DνH†σIH)DµB
µρW I

νρ , (4.97)

O(10)

8;WBH2D2 = (H†σIH)DµBµρDνW
Iνρ , (4.98)

O(11)

8;WBH2D2 = (DνH
†σIH +H†σIDνH)BµρD

µW Iνρ , (4.99)

O(12)

8;WBH2D2 = i(DνH
†σIH −H†σIDνH)BµρD

µW Iνρ , (4.100)

O(13)

8;WBH2D2 = (H†σIH)BµρDνD
µW Iνρ , (4.101)

O(14)

8;WBH2D2 = i(DνH
†σIH −H†σIDνH)DµBµρW̃

Iνρ , (4.102)

O(15)

8;WBH2D2 = i(H†σIDµH −DµH
†σIH)DµBνρW̃

Iνρ , (4.103)

O(16)

8;WBH2D2 = (H†σIH)(D2Bνρ)W̃ I
νρ , (4.104)

O(17)

8;WBH2D2 = (H†σIH)(DρDµW
Iµν)B̃νρ , (4.105)

O(18)

8;WBH2D2 = i(DνH†σIH −H†σIDνH)B̃µρDµW
I
νρ , (4.106)

O(19)

8;WBH2D2 = (DνH†σIH +H†σIDνH)B̃µρDµW
I
νρ . (4.107)

X2 = G2

O(1)

8;G2H2D2 = (DµH†DνH)GA
µρG

Aνρ , (4.108)
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O(2)

8;G2H2D2 = (DµH†DµH)GA
νρG

Aνρ , (4.109)

O(3)

8;G2H2D2 = (DµH†DµH)GA
νρG̃

Aνρ , (4.110)

O(4)

8;G2H2D2 = (DµH
†H +H†DµH)DνG

AµρGAν
ρ , (4.111)

O(5)

8;G2H2D2 = i(H†DµDνH −DµDνH
†H)GAµρGAν

ρ , (4.112)

O(6)

8;G2H2D2 = H†HDµDνG
AµρGAν

ρ , (4.113)

O(7)

8;G2H2D2 = i(H†DνH −DνH
†H)DµG

AµρGAν
ρ , (4.114)

O(8)

8;G2H2D2 = (H†DνH +DνH
†H)DµG

AµρGAν
ρ , (4.115)

O(9)

8;G2H2D2 = (H†D2H +D2H†H)GAνρG̃Aν
ρ , (4.116)

O(10)

8;G2H2D2 = i(H†D2H −D2H†H)GAνρG̃A
νρ (4.117)

O(11)

8;G2H2D2 = (H†DνH +DνH
†H)DµG

AµρG̃Aν
ρ (4.118)

O(12)

8;G2H2D2 = i(H†DνH −DνH
†H)DµG

AµρG̃Aν
ρ . (4.119)

4.4.4 Operators in the class X3D2

In this case, there are 4 operators for each of the combinations X3 = W 2B, X3 =

G2B, X3 = W 3 and X3 = G3. The (CP-conserving) W 3 and G3 operators were

previously presented in Ref. [119]. For the test, again, only one amplitude is need-

ed for each combination to manifest their independence. For example: B(p1) →
W+(p2)W

−(p3) and B(p1)→ G(p2)G(p3).

X3 = W 2B

O(1)

8;W 2BD2 = BµνDρW
IµνDσW

Iρσ , (4.120)

O(2)

8;W 2BD2 = Bµν(D
2W Iµρ)W Iν

ρ , (4.121)

O(3)

8;W 2BD2 = B̃µνDρW
IµνDσW

Iρσ , (4.122)

O(4)

8;W 2BD2 = B̃µν(D
2W Iµρ)W Iν

ρ . (4.123)
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X3 = G2B

O(1)

8;G2BD2 = BµνDρG
AµνDσG

Aρσ , (4.124)

O(2)

8;G2BD2 = Bµν(D
2GAµρ)GAν

ρ , (4.125)

O(3)

8;G2BD2 = B̃µνDρG
AµνDσG

Aρσ , (4.126)

O(4)

8;G2BD2 = B̃µν(D
2GAµρ)GAν

ρ . (4.127)

X3 = W 3

O(1)

8;W 3D2 = ϵIJKW I
µνDρW

JµνDσW
Kρσ , (4.128)

O(2)

8;W 3D2 = ϵIJKW I
µνDρW

JρµDσW
Kσν , (4.129)

O(3)

8;W 3D2 = ϵIJKW̃ I
µνDρW

JµνDσW
Kρσ , (4.130)

O(4)

8;W 3D2 = ϵIJKW̃ I
µνDρW

JρµDσW
Kσν , (4.131)

(4.132)

X3 = G3

O(1)

8;G3D2 = fABCGA
µνDρG

BµνDσG
Cρσ , (4.133)

O(2)

8;G3D2 = fABCGA
µνDρG

BρµDσG
Cσν , (4.134)

O(3)

8;G3D2 = fABCG̃A
µνDρG

BµνDσG
Cρσ , (4.135)

O(4)

8;G3D2 = fABCG̃A
µνDρG

BρµDσG
Cσν , (4.136)

4.4.5 Operators in the class X2D4

In this class, there is only 1 operator per category, X = B,W,G. So the independence

of operators is obvious.
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X = B

O8;B2D4 = (DσDµB
µν)(DσDρBρν) . (4.137)

X = W

O8;W 2D4 = (DσDµW
Iµν)(DσDρW I

ρν) . (4.138)

X = G

O8;G2D4 = (DσDµG
Aµν)(DσDρGA

ρν) . (4.139)

Dimension Basis

d6 Grzadkowski et al. [27]
d6 Gherardi, Marzocca and Venturini [32]

d7 Lehman [31] + Liao and Ma [28]
d7 Zhang [117]

d8 Murphy [30] & Li, Ren, Shu et al. [29]

d8 Chala, A.D and Guedes [113] (bosonic) & Ren and Yu [116] (GB only)

Table 4.3: List of tables and references up to dimension 8. There are also physical bases of dimension
nine [120, 121] that follow the procedure of the dimension seven [28] and dimension eight [116]
precedents, respectively. They both build bases by applying the independence relations to sets of
operators until the number is minimal, but the latter uses a systematic method generalizable to
any dimension for SMEFT.

4.5 Onshell relations

A Green’s basis can be constructed to include a specific set of physical opera-

tors—those that remain after eliminating redundancies via the EoM. The relationship
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between a Green’s basis and the physical operators it contains is not univocal, nor

is a given set of physical operators uniquely linked to a Green’s basis. Thus, when

working with physical and redundant sets of operators simultaneously, the two bases

have to be specified. The relation between them is typically expressed through a

redefinition of the associated WCs in the physical basis –the on-shell relations.

Consider a redundant operator of the form

R =
∑
p

hp(g, a
(m))Op,

where the EoMs relate the left-hand side to a linear combination of physical operators

Op on the right-hand side. The coefficients hp(g, a
(m)) are are analytic functions of

the SM couplings g ≡ (g1, g2, g3, λ,m
2
H) and WCs associated with physical operators.

Now consider inserting R into the Lagrangian, constructed from the physical

basis:

L = Lphys + bR,

where b is the Wilson coefficient of the redundant operator. Substituting R and

regrouping terms by operator class yields

L =
∑(

ap + bhp(g, a
(m))

)
Op,

which is equivalent to performing a shift of the form

ap 7→ cp = ap + bhp(g, a
(m)) (4.140)

on the WCs of the physical Lagrangian. This is analogous to the effect of a field

redefinition.

It is important to note, as discussed in Section 4.1.4, that if redundant operators

are inserted more than once (i.e., at higher loop order), the EoMs relations no longer

hold in general, and care must be taken in such cases.



64 Renormalization of the SMEFT to dimension eight

4.5.1 Computation of the on-shell relations

The on-shell relations between operators are obtained by substituting the terms pro-

portional to the EoMs, such that the resulting operators contain a reduced number

of derivatives. After suitable algebraic manipulations, these new operators can be

rewritten in terms of the physical basis. However, due to the inherent freedom in

choosing a basis, some redundant operators may not manifest their dependence on

EoMs terms explicitly, which can render the derivation of on-shell relations a labo-

rious task.

A practical strategy to streamline this process involves performing a matching

between two Lagrangians: the one constructed from physical operators (serving as

the IR theory) and the one involving redundant operators, from which EoMs terms

have been eliminated (interpreted as the UV theory). Typically, finding all possible

EoM terms is not straightforward, and it is extremely complicated for operators with

two or more derivatives. There has been recent progress in the automatisation of

this process [114, 115], but most of the calculations of our onshell relations were

performed by hand.

After implementing the EoMs by hand in the redundant operators, the result-

ing terms need to be expressed as a linear combination of the physical operators.

The safest course of action is to carry out the matching at the tree level, using the

same processes employed earlier to verify the independence of operators (see Ta-

ble 4.2). Since the relevant kinematic invariants have already been identified in that

context, setting up the corresponding system of equations becomes a straightfor-

ward procedure. This is the process we chose to obtain the on-shell relations of the

new dimension-eight redundant operators presented in Ref. [113] with the previously

known physical basis of Ref. [30].

Let us consider an explicit example. In the SMEFT operator class XH4D2, there

are a total of 2+1 operators of the type BH4D2. Our goal is to determine the on-shell

reduction of the operator O(3)

8;BH4D2 . By examining its definition,

O(3)

8;BH4D2 = (H†H)DνB
µν(DµH

†iH + h.c.), (4.141)
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we observe that the EoMs for the B field strength tensor,

DµBµν = −
g1
2
H†i
←→
D νH + ... (c.f. Eq. (4.29)),

can be applied directly. If we retain only order Λ0 terms, the resulting expression

becomes proportional to an operator in the class H6D2, that already belongs in the

physical basis:

O(3)

8;BH4D2 = −(H†H)
g1
2
H†i
←→
D νH(DµH

†iH + h.c.), (4.142)

which is then matched onto the structure −g1O(2)

8;H6D2 . Consequently, the on-shell

effect of O(3)

8;BH4D2 is equivalent to a shift in the Wilson coefficient of O(2)

8;H6D2 , given

by:

c
(2)

8,H6D2 7→ c
(2)

8,H6D2 − g1c(2)8,H6D2 .

This shift can then be incorporated into the full coefficient of O(2)

8;H6D2 , which are

many., accounting for all other contributing operators. From the set of known boson-

ic operators at dimension eight, we already have the following additional contribu-

tions††:

c
(2)

8,H6D2 7→ c
(2)

8,H6D2 +
1

4
b8;B2D4g21g

2
2 −

b
(8)

8;B2H2D2g
2
1

2
− 2b

(1)

8;BH2D4g1λ−
1

8
b
(3)

8;BH2D4g1g
2
2

+ 2b
(3)

8;BH2D4g1λ − c(3)8;BH4D2g1 + b8;H2D6g21λ+ 2b
(12)

8;H4D4λ− 2b
(6)

8;H4D4λ

+ b8;W 2D4g21g
2
2 +

b
(10)

8;WBH2D2g1g2

2
−
b
(8)

8;WBH2D2g1g2

4
−

3b
(11)

8;WBH2D2g1g2

8

− b(13)8;WBH2D2g1g2 −
1

2
b
(3)

8;WH2D4g
2
1g2 −

b
(7)

8;WH4D2g2

4
,

(4.143)

but additional contributions arise from redundant dimension-eight fermionic opera-

††See the Appendix A to check the definitions of all the operators.
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tors, as well as from products of dimension-six operators.

In the latter case, when pairs of dimension-six operators are setting on-shell

a dimension-eight operator, it is important to note that one of the contributing

operators is physical, while the other is redundant. Consider, for example, the

dimension-six operator O6;BDH , defined analogously to O(3)

8;BH4D2 :

O6;BDH = DνB
µν(H†iDµH + h.c.), (4.144)

and the corresponding EoMs for the B field strength tensor, extended to include

order Λ−2 terms:

DµBµν = ...+
a6;HD
Λ2

g1
2
H†i
←→
D νH + fermionic. (4.145)

Using this relation, we obtain an additional contribution to the WC shift, as com-

puted in Ref. [81]:

c
(2)

8,H6D2 7→ c
(2)

8,H6D2 + a6,HD(g1b6;BDH − g2b6;WDH − b′6;HD). (4.146)

As previously discussed, EoM substitutions are not valid for multiple insertions of

redundant operators. However, in the example under consideration (see Figure 4.1),

each contribution involves only a single insertion of a redundant operator.

Figure 4.1: Feynman diagrams illustrating the contributions of the operators O(3)
8;BH4D2 (left) and

O6;BDH (right) to the on-shell realization of O(2)
8;H6D2 . On the left, the Λ0 EoM is applied to

the gauge boson leg via the gauge coupling g1. On the right, the EoM at order Λ−2 is used,
which requires the insertion of O6;HD. Black dots represent SM vertices, Green boxes represent
dimension-six interactions and orange boxes represent dimension-eight interactions.

The full list of on-shell relations is too long to write, but the ones used for
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calculations have already been published in different articles [32, 81, 82, 113]. There

are also on-shell relations for dimension-seven Green’s Basis that we did not need

here [117].



Chapter 5.

Renormalisation Group Equations

We now arrive at the central topic of this thesis: the RGEs. In this section, we will

synthesize the information presented in previous sections to explain this powerful

tool of QFT. Conceptually, the key question we seek to address is: What is the

relationship between two measurements of the same observable at different energy

scales? In particle physics, this typically refers to scattering processes occurring

at accelerators with varying center-of-mass energies. Renormalisation provides a

framework to relate these measurements to parameters in the Lagrangian. If the

energy of the process always remains within the energy range of a single EFT, only

one theory should be required to describe the experiment. In this case, assuming the

experiment and theory remain the same, the measured Lagrangian parameter would

(in principle) be identical, but at different scales. So, what is the mathematical

relationship between these two values of the parameter?

5.1 Definition

5.1.1 Callan-Symanzyk Equation

Recall the MS scheme defined in Section 2.3.3. As discussed earlier, the bare and

renormalised parameters are related by an expression that explicitly includes a depen-

dence on the renormalisation scale µ for the renormalised parameter (see Eq. (2.10)).

68
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However, we did not focus on this aspect at that point. This scale dependence is a key

feature of minimal subtraction schemes, which we will soon explore after formalizing

the RGEs.

For example, we take the Green’s function computed for the WFR of the right-

handed leptons, as introduced in Section 2.1. In this case, the relation between the

bare Green’s function G0(p) and the renormalised Green’s function G(p)∗ is:

iG0(p) =
〈
e0e0

〉
= µ2ϵZe(µ) ⟨ee⟩ , (5.1)

where the factor µ2ϵ compensates for the shift in the mass dimension of the electron

fields in d = 4 − 2ϵ dimensions compared to d = 4. The renormalised Green’s

function is scale-dependent due to the running of the renormalised couplings. This

implies that the counterterms are also scale-dependent, as they are functions of the

renormalised couplings and masses.

Since the bare Green’s function and the bare fields are not scale-dependent, the

renormalised Green’s function must acquire scale dependence to compensate for both

the renormalisation factor Ze = 1+δe(µ) and the µ2ϵ factor. This compensating scale

dependence is mathematically expressed by the Callan-Symanzik equation [122, 123]:

µ
dG0

dµ
!
= 0⇒ 0 = µ2ϵZeG(µ)

[
2ϵ+

1

G(µ)
µ
dG(µ)

dµ
+

1

Ze(µ)
µ
dZe(µ)

dµ

]
, (5.2)

where the scale dependence of the Green’s function is unknown.

The next step is to express this relationship as a RGE for the Green’s function

G(p) = ⟨ee⟩:

µ
dG(µ)

dµ
= βG(ye(µ), g1(µ), G(µ)) (5.3)

where βG is the beta function, which governs the scale dependence of G(µ).

Thus, the RGE is a first-order linear differential equation. Beta functions are

∗From now on, we will drop the subscript R from renormalised quantities. Bare quantities will
be distinguished by the superscript 0.
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defined as the coefficient of the zero-derivative term in the differential equations

for the Green’s function, computed up to the desired loop level and involving only

renormalised quantities. In the case of WFR for the electron, the Green’s function

depends on the Yukawa couplings ye and the gauge coupling g1, as deduced from

the Feynman diagrams in Figure 2.1. To find an exact solution for the RGE (if it

exists), we would need the RGEs of ye and g1, as well.

The RGEs can be defined at any loop order. Higher-loop corrections are obtained

by including additional terms in the counterterms and inserting them into the Callan-

Symanzik equation, solving perturbatively.

Before delving into a simplified derivation of the beta functions, there are some

important caveats to discuss.

5.1.2 Running couplings

When the beta function is different from zero, we say the Green’s Function (or

whatever object is being considered) is running. There is a difference between renor-

malising and running. Renormalisation involves absorbing divergences into redefined

(renormalised) parameters and fields, while running refers to the scale dependence

of these renormalised parameters, as governed by the RGEs.

We can compute the running of any renormalisable quantity in the Lagrangian,

including couplings and operators, as well as Green’s functions. In particular, when

studying the running of operators in both the SM and beyond, we observe a relation-

ship between the running of the coefficients of these operators. The starting point

for this analysis is the scale independence of the bare Lagrangian. Specifically, the

bare Lagrangian L0 satisfies:

µ
dL0

dµ
= 0. (5.4)

This condition implies: ∑
p

(µ
dc0p
dµ
O0
p + c0pµ

dO0
p

dµ
) = 0, (5.5)
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which leads to the relation:

µ
dc0p
dµ

= −µ
dO0

p

dµ
, (5.6)

where c0p are the bare WCs and O0
p are the corresponding operators. Here, we are

assuming that all the operators are independent.

From this, we can deduce that the running of WC is intimately connected with

the running of the operators themselves. In the EFT formalism, it is customary to

write the RGEs for the WCs, as they encapsulate the energy scale dependence of the

operators.

5.1.3 Anomalous dimension

Given the beta function of a coupling or WC c, we define the anomalous dimension

γ as:

γ = β/c, (5.7)

where c is evaluated at tree-level. Thus, γ is determined by the loop corrections

to the quantity being considered, just like the beta functions. The term ‘anomalous

dimension’ refers to the modification in the power counting of fields due to the effects

of DimReg, which alters the spacetime dimension to regulate divergences.

To see this, recall the definition of power counting and its relation with mass

dimension (see Section 3.3). By definition of the power counting, there is a ‘dilata-

tion’ symmetry in the Lagrangian [47]: The invariance under the rescaling of all

dimensionful quantities (including fields, couplings, and derivatives) by a dimension-

less factor λ, with the rescaling given by g 7→ λ[g]g, where [g], represents the mass

dimension of the quantity g. Since this is true for all dimensions, we can compare

the shift in the mass dimension when going from d = 4 − 2ϵ dimensions to d = 4

dimensions.

Dimensional continuation (analytical continuation of the spacetime dimension)

modifies the power counting of dimensionful quantities. For example, the change in

the mass dimension for a quantity g introduces a factor of µγϵ in its definition, as
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seen in Eq. (2.5):

{g}d=4−2ϵ = µγϵ {g}d=4 . (5.8)

Here,γϵ represents the difference in mass dimensions between d = 4− 2ϵ and d = 4.

Taking the scale derivative with respect to µ, we find the tree-level RGEs for the

quantity g:

µ
dg

dµ
= γϵg ≡ ([g]d=4−2ϵ − [g]d=4)g. (5.9)

This equation shows that the tree-level anomalous dimension represents the dis-

tortion in the power counting of a quantity when the spacetime dimension is changed.

At higher loop levels, the anomalous dimension also accounts for the scale introduced

by loop integrals, which contribute additional terms to the RGEs.

5.1.4 Applications of running

In QFT, the RGEs have two main applications: resumming logarithmic terms and

expressing the values of couplings at different energy scales. The procedure involves

calculating the value of an observable at a given scale based on its known value at a

lower energy scale.

For example†, let us consider the scattering process H+H0 → H+H0 in the

SM. At tree level, the amplitude is straightforward. At one-loop, we can use tools

like FeynRules [49], FeynArts [50] and FormCalc [51] to perform the computation.

For simplicity, we focus on the self-renormalisation of the Higgs quartic coupling λ,

considering only the terms proportional to λ (see Figure 5.1).

To compute physical observables at one loop, we need the finite part of the

amplitude, as the counterterm cancels the divergences. At tree level, the amplitude

is given by:

ATL[µ] = −2λ. (5.10)

†Adapted from Ref. [124]
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Figure 5.1: Diagrams contributing to the amplitude of H+H0 → H+H0 at tree-level and one-loop.
Only diagrams proportional to λ are included here. The black dots represent SM vertices, and the
black cross represents the counterterm.

At one-loop, the amplitude takes the form:

A1L[µ] =
3λ2

2π2

(
ln

(
µ2

m2
H

)
+

2

3

)
, (5.11)

where the ratio µ/mH arises naturally from the loop integral solved using DimReg

and the MS scheme.

Assuming the values of the couplings are known at a smaller, well-explored scale

Λs, we aim to evaluate them at a higher scale Λc, which corresponds to future collider

energies. This allows us to make predictions for experiments at Λc and compare them

with the data at the low-energy scale Λs. Directly evaluating both amplitudes at

µ = Λc could lead to a non-perturbative result if the separation between the high

scale and the theory scale is too large (i.e., Λc ≫ mH). To address this, we compute

the RGEs for the Higgs quartic coupling λ. Using the MS counterterm:

δλ = −
3λ

2π2ϵ
, (5.12)

and the Callan-Symanzik equation (Eq. (5.2)), we obtain:

µ
dλ

dµ
= 2ϵλ[TL] +

3λ2

π2
[1L]. (5.13)

Setting ϵ → 0 and solving these equations for constant coefficients leads to a
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logarithmic dependence on the energy scale:

µ
dλ

dµ
=

3λ2

π2
⇒ (5.14)

1

λ(µ)
− 1

λ(Λ)
=

3

π2
ln (Λ/µ)⇒ (5.15)

λ(µ) = λ(Λ)

(
1 + λ(Λ)

3

π2
ln (Λ/µ)

)−1

. (5.16)

Here, Λ represents the integration constant, determined by imposing a boundary

condition on the coupling at a known scale.

In this simplified case, we can express the coupling λ at the low scale Λs in terms

of its value at the high energy scale Λc. The amplitude at low scale can then be

‘run’ up to the high-energy value. If we run the tree-level amplitude, we obtain the

‘RG-improved’ result at LO:

ALL+LO = −2λ(µ = Λs) = −2λ(Λc)
(
1 + λ(Λc)

3

π2
ln (Λc/Λs)

)−1

(5.17)

This expression includes a logarithmic term that remains well-behaved, even if the

collider scale is significantly separated from the theory scale mH , provided the ex-

periment is performed at a scale Λs that is not too far from Λc.

We can also apply the Leading Logarithmic (LL) expansion in the Next to Leading

Order (NLO) expression by inserting the solution of the RGE into the one-loop

amplitude. The result remains well-behaved:

ALL+NLO =
3(λ[µ = Λs])

2

2π2

(
ln

(
Λ2
s

m2
H

)
+

2

3

)
=

3λ2[Λc]

2π2

(
1 + λ[Λc]

3

π2
ln (Λc/Λs)

)−2(
ln

(
Λ2
s

m2
H

)
+

2

3

)
. (5.18)

The key point is that there are two perturbative expansions: one in the coupling

λ and another in the product of λ and the logarithm of the energy scales, λ ln(Λc/Λs),
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which is known as the LL expansion. If both expansions are of the same order, pertur-

bation theory breaks down. However, when they are well-separated, this formulation

absorbs the divergences from the logarithms of distant scales. The LL+NLO ampli-

tude is related to the NLO expression expanded at µ = Λc ≈ Λs, which implies that

the problematic logarithm in Eq. (5.11) has been resummed into the well-behaved

expression in Eq. (5.18).

5.1.5 Mixing and power counting

The structure of SMEFT RGEs requires detailed consideration of operator renormal-

isation beyond the case of single operators. In QFTs, loop diagrams with operator

insertions can generate divergent amplitudes contributing to distinct operator struc-

tures. As a result, the corresponding counterterms imply a matrix structure in

the RGEs, reflecting operator mixing, which significantly influences the evolution of

WCs.

When the insertion of an operator Ot in a loop induces divergences in a different

operator Os, the renormalisation procedure necessitates including counterterms for

Os, even if it was not present in the bare Lagrangian. This leads to RGEs of the

form:

µ
dcs
dµ

=
∑
t

γstct +O(c2), (5.19)

where cs and ct are WCs, and γst is the Anomalous Dimension Matrix (ADM) encod-

ing the mixing. The O(c2) term reflects contributions from higher-loop or multiple

insertions.

As discussed in Section 2.5, regulating divergences in higher-dimensional opera-

tors sometimes requires operators of even higher dimension. In the EFT framework,

truncating the Lagrangian at a given operator dimension fixes the calculational preci-

sion. However, loop-level diagrams involving multiple insertions of lower-dimensional

operators can contribute to higher-dimensional structures if consistent with the pow-

er counting. For example, one-loop diagrams with two insertions of dimension-six
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operators can generate contributions of the form:

βp
Λ4
∼
(csct
Λ4

)
, (5.20)

which is, in principle, comparable in magnitude to the one-loop corrections for

dimension-eight operators.

While some all-dimensional predictions of the ADM are possible in special cas-

es (e.g., the RGEs Hn and ℓ2Hn operators [125] are known for all dimensions in

SMEFT), in general, explicit computation order by order remains the most reliable

method for determining these effects.

5.2 Algorithm and computation

Our goal is to derive a general expression for the RGEs that can be applied system-

atically to SMEFT and other EFTs. Consider an operator and its corresponding

WC in the bare Lagrangian:

L0 ⊃ c0

Λr−4
O0. (5.21)

After renormalisation, divergences are absorbed into counterterms, encoded in the

renormalisation constant ZO, and a factor of µγ appears to compensate for the

dimensional mismatch introduced by DimReg. The renormalised operator can then

be written in terms of the bare one as:

ZOµ
γ c

Λr−4
O = ZOµ

γ c

Λr−4
ZϕO0 (5.22)

where Zϕ accounts for the WFR of the fields appearing in the operator O. Using the

standard definitions φ(0) = Zφφ for scalars and χ(0) = Z
− 1

2
χ χ for fermions or gauge

bosons, we express:

Zϕ =
∏
ϕ=φ,χ

Z−nφ
φ Z−nχ/2

χ (5.23)
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where nϕ denotes the number of each field ϕ in O. For instance, for an operator like

ℓ2H2, we would have Zϕ = Z−2
H Z−1

ℓ .

From Eq. (5.22), we can extract the bare coefficient c(0) in terms of renormalised

quantities. Applying the Callan-Symanzik equation (5.2) and expanding the renor-

malisation constants as Z = 1 + δ, we obtain:

µ
dc0

dµ
= 0⇒ µ

dc

dµ
= −γ(TL)ϵc+ cµ

d

dµ
(δO + δϕ) (5.24)

where γ(TL)ϵ represents the tree-level anomalous dimension of c, and the second term

originates from the scale dependence of the counterterms. In the limit ϵ → 0, the

first term vanishes, and only the loop-induced running remains.

Since the explicit µ-dependence has been factored out, the scale dependence in

the counterterms arises solely from their dependence on running couplings. This

allows us to re-express the derivative as:

β(1L)
c = c

∑
m

β(TL)
m

d

dxm
(δO + δϕ) (5.25)

where the xm denote the running parameters, and β
(TL)
m are their LO beta functions.

The contributions from WFR, encoded in δϕ, can be computed separately and added

to the operator beta function.

We now express the RGE for the Wilson coefficient as:

β = −c
∑
m

γ(TL)
m xm

d

dxm

(
c̃O
cO

)
+WFR, (5.26)

where c̃O = −cδO denotes the coefficient of the divergence at one loop (i.e.,

the one-loop contribution to the operator’s counterterm) in the MS scheme. This

expression captures the dependence of the WC on the running parameters via the

structure of the divergent terms.
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5.2.1 Preliminary considerations

Once the general expression for the beta function in Eq. (5.26) is established, sev-

eral important considerations must be addressed before calculating the divergences.

Operator insertions lead to a proliferation of diagrams, some of which are highly

nontrivial to evaluate. A systematic approach is therefore essential to identify which

contributions are necessary and which can be safely ignored. Key points include:

• Power counting determines which operator insertions are relevant. For a com-

plete result at a given order, all contributions with the same power-counting

suppression must be included.

• Lower-dimensional operators may receive higher-order corrections from multi-

ple insertions of marginal or irrelevant operators.

• Not all ADM elements need to be computed. Some contributions vanish due

to symmetry or structural arguments.

• Operator selection can be optimized when the UV theory naturally suppresses

certain interactions.

The first point concerns operator mixing. In principle, mixing occurs among all

operators within a given dimensional class and between different classes via multiple

insertions. While listing participating operators is straightforward at low dimensions,

the computation of their associated diagrams becomes increasingly demanding. For-

tunately, the various contributions to the beta function are additive, allowing the

calculation to be modularized.

Although renormalisation typically focuses on higher-dimensional operators, lower-

dimensional operators can also receive loop-level corrections. Such corrections must

carry dimensionful suppression factors due to power counting. In SMEFT, where the

Higgs vacuum expectation value and mass mH provide the only low-energy scales,

this implies that such contributions often arise through Higgs insertions, typically
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in the form of loops involving Higgs fields. Nonetheless, each case requires explicit

analysis to determine relevance.

Non-renormalisation theorems [126] provide predictive power by identifying zeros

in the ADM without explicit calculation. While currently limited—mostly apply-

ing to linear renormalisation of dimension-six and dimension-eight operators at one

loop—they are still useful for simplifying computations. Structural arguments based

on operator content, such as mismatched field content or quantum numbers, can also

be used to anticipate vanishing contributions.

In weakly coupled UV completions of SMEFT, not all operator classes are gener-

ated at tree level. As shown in [127], some operators only arise at loop level. Their

insertions into RGEs introduce additional loop suppression, which can justify their

exclusion from beta function calculations—though some authors choose to retain

them for completeness. Additionally, many UV completions do not include Lepton

Number Violation (LNV) operators at low energies due to the large scale (typically

Λ ∼ 1010GeV) expected for these models [128], offering further grounds for their

omission in practical computations.

5.2.2 Offshell diagrammatical approach

Historically, the RGEs of SMEFT have been computed diagrammatically and off-

shell. Results up to O(Λ−3) have been obtained using this approach. We adopt an

off-shell formalism, as 1PI diagrams are typically easier to organize and compute,

despite introducing additional redundancies. Rather than removing the redundancies

case by case, our approach instead employs a Green’s basis to systematically absorb

redundancies, followed by the application of EoMs.

We applied this method to dimension-eight operators, leading to original re-

sults [82, 118, 129] (see also [81], which was the first computation using this ap-

proach). Other groups have similarly used it to renormalise dimension-seven opera-

tors in 2023 [117]. In recent years, alternative techniques have emerged. Functional

renormalisation provides a robust non-diagrammatic method, and promising results
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have been obtained via unitarity cuts [111] and geometrical approaches based on the

space of operators [130–132].

The core idea of the off-shell method is to work within the framework of renor-

malised perturbation theory, computing only the divergences of 1PI diagrams. As

discussed in Section 4.4, this necessitates including additional operators to absorb di-

vergences, which are later removed via on-shell relations. Amplitudes are expressed

as linear combinations of kinematic invariants, determined by the operator’s field

content and power counting. Constructing the independent kinematic structures

using metric tensors, spinors, and the Levi-Civita symbol becomes straightforward

under this framework.

We now present the method in general terms, with specific examples and re-

finements order by order in power counting, in subsequent sections. Consider the

SMEFT Lagrangian in renormalised perturbation theory, including physical opera-

tors from Table A:

LUV = LSM +
∞∑
r=5

∑
q

nq∑
p=1

c
(p)
r; q

Λr−4
O(p)
r; q. (5.27)

Here, c
(p)
r,q are the WCs of the p-th operator in class q with mass dimension r, cho-

sen to be dimensionless by explicit power counting. In the low-energy theory, we take

the same physical operators, with coefficients a
(p)
r,q . Then, redundant operators R(p)

r,q

and their coefficients b
(p)
r,q are added to absorb off-shell divergences. Each operator

has an associated counterterm Z
(p)
r,q , expanded perturbatively as Z

(p)
r,q = 1 + δ

(p)
r,q .

In the case that the operator term has flavour indices, the counterterm should

respect the symmetries of the coefficient, while admitting flavour-dependent con-

tributions. In that case, the counterterm also has flavour indices, so the following

notation is preferable:

[Z(p)
r; q]αβ...[a

(p)
r; q]αβ... = [a(p)r; q]αβ... + [δa(p)r; q]αβ.... (5.28)

In any case, counterterms are fixed by the divergent parts of one-loop 1PI dia-
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grams using DimReg and the MS scheme:

ã(p)r; q = −δ(p)r; qa
(p)
r; q (5.29)

b̃(p)r; q = −δ(p)r; qb
(p)
r; q (5.30)

where contributions from WFR are omitted at this stage. Thus, it is remarkably

simpler to work directly with the divergences. Once computed, redundant coefficients

are removed using on-shell relations. The physical divergences are shifted according

to the on-shell relations defined, as defined in Eq. (4.140):

ã(p)r; q 7→ c̃(p)r; q = ã(p)r; q −
∑
s

h(m2
H , λ, gi,

{
a(p)r; q
}
)b̃(s)r; q (5.31)

and these are inserted into the RGE as defined in Eq. (5.26).

The tree-level anomalous dimension is derived from the field content and space-

time dimensionality. For an operatorO = XnXψnψHnHDnD in d = 4−2ϵ dimensions,

we obtain:

γ(TL) = nX + nψ + nH − 2 ≡ nϕ − 2, (5.32)

where nϕ is the number of fields in the operator and the subtraction of 2 accounts for

the overall mass dimension of the Lagrangian term in d dimensions. WFR is typically

included after computing all operator mixings. It contributes to self-renormalisation

via SM counterterms.

All diagrammatic computations are carried out using the tools FeynRules [49],

FeynArts [50], and FormCalc [51], with MatchMakerEFT [133] used for cross-checks.

These tools automate Feynman rule generation and diagram evaluation. The Back-

ground Field Method [134] is applied manually when necessary. MatchMakerEFT also

performs one-loop matching and RGE extraction, though its default implementation

includes only dimension-six RGEs up to O(Λ−2).

Counterterms are computed using DimReg and the MS scheme. Since we restrict

ourselves to one-loop computations, evanescent operators are not included; they

contribute only finite parts and thus do not affect the RGEs.
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We have outlined the general renormalisation strategy. In subsequent sections,

we explore explicit examples across different operator classes, summarising known

RGEs at lower orders and comparing them with our results at O(Λ−4). We highlight

universal features as well as complications that arise only at higher orders in the

power counting expansion.

5.3 Renormalisation up to first order in the cutoff

The first irrelevant operator encountered in the SMEFT is the Weinberg operator,

along with its Hermitian conjugate:

[O5; ℓH ]αβ = ϵijϵkl(ℓ
i
α)

⊤CℓkβH
jH l , (5.33)

[O†
5; ℓH ]αβ = ϵijϵklℓ

i

αC(ℓ
k

β)
⊤(H∗)j(H∗)l , (5.34)

which correspond to the operator Qνν in the basis of Ref. [27].

This operator plays a central role in seesaw mechanisms, where it emerges upon

integrating out heavy fermions—for example right-handed neutrinos—that couple to

light SM leptons via Yukawa interactions. After Electroweak Symmetry Breaking

(EWSB), the operator defined above generates a Majorana mass term for the left-

handed neutrinos:

[c5; ℓH ]αβ[O5; ℓH ]αβ →
v2

2
[c5; ℓ2H2 ]αβ(νL)

c
α(νL)β , (5.35)

and analogously for the Hermitian conjugate. Here, (νL)
c
α = iσ2(νL)

∗
α denotes the

charge-conjugated field. The RGE running leads to radiative corrections to the light

neutrino masses generated via this mechanism.

From the standpoint of power counting, dimension-five operators can only mix

among themselves at order O(Λ−1). There is no operator mixing into dimension-four

(renormalisable) terms in the SM at this order, either. The corresponding RGE can
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be schematically expressed as:

16π2µ
d

dµ
c5 = γ(d5)c5 (5.36)

where γ(d5) is the anomalous dimension matrix governing the evolution of the oper-

ator coefficients.

The one-loop renormalisation of this operator was first computed in Refs. [33, 34],

with both analyses yielding consistent results. A later study in Ref. [35] revisited

the calculation and corrected a missing numerical factor.‡ These results can now be

easily reproduced using modern tools such as FeynRules, FeynArts, and FormCalc,

following our methodology.

To extract the counterterm associated with [c5;,ℓH ]αβ, we consider the process

(eL)α(νL)β → H0H−. At one loop, 21 Feynman diagrams contribute to the ampli-

tude, as shown in Fig. 5.2. The divergent part of the amplitude reads:

16π2ϵ[c̃; ℓH ]αβ = −g
2
1

4
[c5; ℓH ]αβ +

3g22
4

[c5; ℓH ]αβ − 2λ[c5; ℓH ]αβ

+
(
([c5;ℓH ] [y

e] [ye]†) + ([c5;ℓH ] [y
e] [ye]†)⊤

)
αβ
. (5.37)

At this order, there are no one-loop connected reducible diagrams beyond those

contributing to WFR. Consequently, the full RGE for the operator coefficient can be

derived using the divergence in Eq. (5.37) and the counterterms for the Higgs and

lepton fields from Ref. [35]:

(δℓ)i = −
(
[ye]∗[ye]⊤

)
16π2ϵ

− g21
32π2ϵ

1− g22
32π2ϵ

1 (5.38)

δH = −
Tr
(
[ye][ye]†

)
8π2ϵ

− 3
Tr
(
[yu][yu]†

)
8π2ϵ

− 3
Tr
(
[yd][yd]†

)
8π2ϵ

− g21
16π2ϵ

− 3g22
16π2ϵ

, (5.39)

‡Possibly related to a vertex diagram miscalculation, although this is not explicitly discussed
in the original papers.
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Figure 5.2: One-loop Feynman diagrams contributing to the renormalisation of the Weinberg op-
erator. There are 21 diagrams in total, accounting for all relevant internal field insertions and
channels. Black dots indicate SM vertices, while blue boxes denote insertions of dimension-five
operators.

where the matrices of (δℓ)i refer to flavour space. In our notation§, we obtain:

16π2 d

dµ
[c5;ℓH ]αβ =

(
−3g22 + 4λ+ Tr

[
2(ye)†(ye) + 6(yu)†(yu) + 6(yd)†(yd)

])
[c5;ℓH ]αβ

− 3

2

(
([c5;ℓH ] [y

e] [ye]†) + ([c5;ℓH ] [y
e] [ye]†)⊤

)
αβ
. (5.40)

It is worth noting that all the numerical coefficients in this RGE are of order one,

in agreement with expectations from naturalness and effective field theory dimen-

sional analysis.

§Ref. [35] uses καβ = [c5;ℓH ]αβ + [c†5;ℓH ]αβ
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5.4 Renormalisation up to second order in the

cutoff

At the next order in the SMEFT expansion, we encounter operators of dimension

six. In this regime, the anomalous dimension governing the scale dependence of the

WCs c6;p can be written as:

16π2µ
d

dµ
c6;p = γ(d6)ps c6;s + γ(d5

2)
p c25 . (5.41)

Here, γ(d6) encodes the mixing between dimension-six operators, while γ
(d52)
p repre-

sents the contribution from insertions of two dimension-five operators.

A few years after the introduction of the Warsaw basis, the authors of Refs. [37–

40] carried out a detailed analysis of the RGEs of these operators, including their

mutual mixing. In total, there are 63 independent operators (for one generation) at

dimension six, including four that violate baryon and lepton numbers. This gives rise

to 632 = 3969 possible entries in the ADM (excluding flavour indices), making the

full computation of all loop diagrams a substantial task. As a result, it is advisable

to first analyse the operator mixing class by class before focusing on individual

operators.

Using Naive Dimensional Analysis (NDA), the authors of Ref. [135] were able

to identify which entries in the ADM could be non-vanishing. However, explicit

one-loop computations revealed more vanishing entries than NDA had predicted.

These additional zeros arose either due to the absence of contributing Feynman

diagrams or the finiteness of those diagrams. In several cases, cancellations occurred

between diagrammatic divergences and counterterms associated with the EoM. Such

cancellations are more naturally understood using on-shell methods, we will also

encounter them when discussing dimension-eight operators.

The complete set of RGEs for the dimension-six operators is distributed across

four major references [37–40], organized by the type of contribution: (1) those in-
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volving the Higgs quartic coupling λ, (2) Yukawa couplings, (3) gauge couplings, and

(4) operators that violate baryon and lepton number.

We present below a summary of the non-vanishing anomalous dimensions based

on the explicit one-loop results, supplemented by the NDA-based expectations (see

Table 3 in Ref. [39]). In particular, some entries deviate from the NDA-expected

magnitude γ ∼ O(1). This behavior is especially prominent in the RGE for the

six-Higgs operator OH = (H†H)3, which includes terms such as [39]:

16π2 d

dµ
c6;H = 108λc6;H − (48g41 + 12g21g

2
2)c6;HB + . . . (5.42)

While this effect does not appear at dimension five, it becomes more significant as

we move to higher-dimensional operators.

γmn (1/Λ
2) X3 H6 H4D2 X2H2 ψ2H3 Xψ2H ψ2H2D ψ4

X3 g2 0 0 /0 0 0 0 0
H6 /0 y2 λg2 g4 y3 0 λy2 0
H4D2 /0 0 y2 /0 /0 0 y2 0
X2H2 /0 0 0 y2 0 yg 0 0
ψ2H3 /0 0 y3 /0 y2 y2g y3 y3

Xψ2H /0 0 0 yg /0 y2 /0 yg
ψ2H2D /0 0 y2 /0 /0 /0 y2 y2

ψ4 /0 0 0 0 0 /0 y2 y2

Table 5.1: Anomalous dimension matrix for dimension-six operators. Rows correspond to operator
classes receiving corrections; columns indicate source operator classes. /0 indicates a vanishing entry
where NDA suggests a non-zero contribution. See [37–40] for complete results.

In addition to the mixing of dimension-six operators among themselves, there

exists another contribution at order Λ−2 : the insertion of two dimension-five opera-

tors into one-loop diagrams. These contributions can also renormalise dimension-six

operators. This effect was computed in Ref. [36] for the SM and a two-Higgs-doublet
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model¶. The resulting additional terms in the RGEs of dimension-six operators are:

16π2 d

dµ
[c

(1)
6;Hℓ]αβ = −3

2

(
[c†5;ℓH ][c5;ℓH ]

)
αβ
, (5.43)

16π2 d

dµ
[c

(3)
6;Hℓ]αβ =

(
[c†5;ℓH ][c5;ℓH ]

)
αβ
, (5.44)

16π2 d

dµ
[c6;eH ]αβ =

3

2

(
[c†5;ℓH ][c5;ℓH ][y

e]
)
αβ
, (5.45)

16π2 d

dµ
[c6;ℓℓ]αβγρ = −

1

2
[c†5;ℓH ]αγ[c5;ℓH ]βσ. (5.46)

In the above, we have made use of the symmetry of the Weinberg operator,

[c
(†)
5;ℓH ]αβ = [c

(†)
5;ℓH ]βα, (5.47)

to simplify expressions.

5.5 Renormalisation up to third order in the cut-

off

In this case, the anomalous dimension governing the scale dependence of dimension-

seven operators takes the form:

16π2µ
d

dµ
c7;p = γ(d7)ps c7;s + γ(d5

3)
p c35 + γ(d5d6)ps c5c6;s . (5.48)

The primary interest in dimension-seven operators arises from their contribu-

tions to the neutrino mass matrix, similar to the dimension-five Weinberg operator.

However, at dimension seven, the number of operator classes increases, and not

all contribute to neutrino masses at tree level. Consequently, the RGEs for these

¶Note that the definitions of the Weinberg operator and its Hermitian conjugate in Ref. [36]
differ from the conventions used here.
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operators were completed more recently.

The first results concerning their self-mixing were published by Ref. [136], focus-

ing on LNV and Baryon Number Violation (BNV) sectors. Before that, Ref. [125]

had analysed potentially vanishing entries in the ADM using techniques inspired

by the non-renormalisation theorems of Ref. [126] and NDA [135]. This approach

allowed them to identify and discard many diagrams expected to yield zero contribu-

tions, thus streamlining the full computation. However, these methods only apply to

single insertions of marginal operators and sometimes predict non-zero mixing where

no one-loop diagram exists (e.g., mixing of ψ2H4 into other classes).

We summarize the structure of the ADM, grouped by operator class, in Table 5.2.

γmn (1/Λ
3)

(L = 1) (L = 1)
ψ2H4 ψ2H3D ψ2H2D2 Xψ2H2 ψ4H ψ4D ψ4H ψ4D

ψ2H4 y2 y3 y4 y2g2 y3 0 0 0
ψ2H3D 0 y2 y3 /0 y2 0 0 0
ψ2H2D2 0 0 y2 0 0 y2 0 0
Xψ2H2 0 y y2 y2 y 0 0 0
ψ4H 0 0 y3 yg3 y2 y3 0 0
ψ4D 0 0 y2 0 0 y2 0 0

(L = 1) ψ4H 0 0 0 0 0 0 y2 y3

(L = 1) ψ4D 0 0 0 0 0 0 0 y2

ψ2H2 m2
H ym2

H y2m2
H 0 ym2

H 0 0 0

Table 5.2: Anomalous dimension matrix of dimension seven operators. All operators have lepton
number L = 2 except the last two columns and rows. The columns represent the greatest terms
from each contribution mixing into the operators in each row. /0 represents a vanishing entry where
the Equations of Motion cancel the off-shell divergence. See [136] for complete RGEs.

In addition to pure dimension-seven contributions, insertions of lower-dimension

operators can also generate effects at order Λ−3 . Contributions relevant to neutrino

mass corrections were calculated in [137], while a comprehensive treatment of double

and triple insertions involving marginal operators was later provided in [117]. These

results were obtained using an off-shell approach with the dimension-seven Green’s

basis. Table 5.3 summarizes the dominant mixing effects of lower-dimensional oper-
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ators into dimension-seven operators.

γ55m (1/Λ3) ψ2H2 H6 H4D2 X2H2 ψ2H3 ψ2H2D Xψ2H ψ4 X3

ψ2H4 1 1 g2 g2 g2 y2 gy 0 0
ψ2H3D 0 0 y 0 1 1 g 0 0
ψ2H2D2 0 0 1 0 1 0 0 1 0
Xψ2H2 0 0 0 g g 0 y 0 g2

ψ4H 0 0 y 0 y 1 g y 0
ψ4D 0 0 0 0 0 0 0 0 0

(L = 1) ψ4H 0 0 0 0 0 0 0 y 0
(L = 1) ψ4D 0 0 0 0 0 0 0 0 0

ψ2H2 0 m2
H 0 0 0 0 0 0 0

Table 5.3: Anomalous dimension matrix. All dimension seven operators have lepton number L = 2
except the last two rows. The columns represent the greatest terms from each contribution mixing
into the operators in each row. See [117] for complete RGEs.

Furthermore, the authors of Ref. [117] required the second-order RGEs of dimen-

sion-six operators, since the on-shell reduction of the Green’s basis at order Λ−3 in-

volved redefining physical dimension-seven operators using contributions from redun-

dant dimension-six operators from classes H4D2, XH2D2, ψ2H2D, ψ2HD2, H2D4

and X2D2. These redundant operators become physical when inserted alongside

a Weinberg operator. Interestingly, triple insertions of the Weinberg operator do

not contribute directly to the dimension-seven operator RGEs. However, they in-

duce shifts via on-shell relations involving H4D2 redundant operators, which in turn

modify the WC of the dimension-seven Weinberg-like operator. Among all lower-

dimensional operators, only the Weinberg operator’s RGE is modified at order Λ−3

, as no valid diagrams can be drawn for other classes at this order.

This interplay illustrates how RGEs at lower dimensions are essential for the con-

sistent renormalisation of higher-dimensional operators. We encountered a similar

effect in the renormalisation of dimension-eight operators, which will be discussed in

the subsequent sections.
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5.6 Renormalisation up to fourth order in the cut-

off‖

We adopt an off-shell diagrammatic approach, using the Green’s basis defined in the

Appendices, supplemented by the necessary on-shell reduction identities. The cor-

responding FeynRules [49] model is publicly available online in GitHub, alongside

intermediate steps such as the on-shell relations at order Λ−4 and the divergences for

the redundant Lagrangian. Due to the vast number of resulting equations—many

of which contain long expressions—we limit the discussion to specific illustrative

examples of interest. Although not explicitly discussed in this section, WFR is sys-

tematically included in all self-renormalisation computations. Its contributions are

essential for maintaining consistency across field redefinitions and operator mixing.

At present, there remain additional contributions to the ADM that have not yet

been computed. In particular, while the renormalisation of all bosonic operators is

complete, the renormalisation of two-fermion operators is only partially known, and

the RGEs for four-fermion operators are only available assuming minimal flavour

violation[138].

The results presented here are original and were entirely computed by members

of the Granada F́ısica Teórica y de Altas Enerǵıas (FTAE) group. All results are

available in a public GitHub repository, including the RGEs computed to date, most

of the divergences and on-shell redundancies, and the implementation of the Green’s

basis in a FeynRules model. These findings have also been published in four peer-

reviewed articles [81, 118, 129, 138] –note the last three are co-authored by the author

of this thesis.

Considering the structure of the Green’s basis and the on-shell relations, it is note-

worthy that fermionic operators do not redefine physical bosonic operators. In other

words, the WCs shifts for physical bosonic operators contain only redundant bosonic

operators and no fermionic ones. This result follows directly from the EoMs (4.29):

‖This section contains original work from the thesis.
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as shown in Section 4.1.4, while the bosonic EoMs (e.g., for H, B, W , G) may

include fermionic terms, the fermionic EoMs do not include purely bosonic contribu-

tions. This asymmetry stems from the conservation of fermion number in the EoMs

and holds to all orders in Λ. We leverage this property to compute the mixing of

bosonic and fermionic operators into bosonic operators first, simplifying the overall

analysis. Furthermore, since the number of bosonic operators is significantly lower

(as can be seen in Table 4.1), they represent a smooth, introductory approach to the

calculations, beginning with simpler cases involving bosonic operators to validate the

method with less complex algebraic structures.

For simplicity, we exclude the insertion of operators that arise only at the loop

level in weakly coupled theories [127], as they correspond to formally two-loop con-

tributions. However, some authors have considered these operators at lower power-

counting orders (e.g., dimension-six and dimension-seven loop-generated operators).

In the context of weakly coupled UV completions of the UV, such operators do not

contribute at tree level and are therefore omitted here. Nonetheless, dimension-eight

loop-generated operators are retained in the Green’s basis, and their RGEs indicate

mixing with tree-level-generated operators. The mixing of tree-level generated oper-

ators into loop-level operators is an effect already observed at dimension six∗∗, which

cannot be fully addressed without explicit computation.

Regarding the contributions at power-counting order Λ−4 , we identify three main

categories based on the operator insertions in the loops:

• The insertion of one dimension-eight operator.

• The insertion of two dimension-six operators.

• The insertion of more than one LNV operator.

These computations can be separated for clarity, although all LNV operator

insertions are handled together to streamline the analysis. The contributions to the

∗∗Recall Table 5.1 shows the mixing of class ψ4 into Xψ2H.
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anomalous dimensions can be expressed as:

16µ
d

dµ
c8;p = γ(d8)ps c8;s + γ(d5

4)
p c45 + γ(d5d7)ps c5c7;s + γ(d5

2d6)
ps c5c5c6;s + γ

(d62)
pst c6;sc6;t (5.49)

where cr;p denotes the WCs associated with dimension-r operators, and the indices

p s, t, label operator structures. The various γ coefficients represent the different

contributions to the anomalous dimensions arising from operator mixing at this order.

5.6.1 Insertion of dimension-eight operators

We begin by addressing the renormalisation group mixing among dimension-eight

operators. In [118], we presented for the first time a comprehensive list of RGEs

for bosonic operators. The complete expressions are available in a Mathematica

notebook hosted online at GitHub. These were provided not only to facilitate the

running of observables but also to enable cross-comparisons with results from other

groups. Although prior results were scarce [111], the available cross-checks have been

positive. Subsequently, another study employing a geometric approach to SMEFT

renormalisation [130] confirmed the agreement with our findings in the overlapping

results.

It is logical to start the computation with the mixing of bosonic and fermion-

ic operators into bosonic ones, given their phenomenological relevance [139–146].

Nonetheless, our decision to begin with bosonic dimension-eight operators is primar-

ily pragmatic:

• Bosonic operators constitute a much smaller subset compared to fermionic

ones, implying a reduced computational workload.

• Avoiding fermionic external legs significantly limits the kinematic invariants,

simplifying amplitude matching and accelerating the extraction of divergences.

• The Green’s basis for dimension-eight bosonic operators was established in

[113], including all necessary on-shell relations.
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• The on-shell relations for bosonic operators do not involve fermionic operators.

Therefore, the divergences of fermionic operators are not required to derive the

RGEs of bosonic operators—though the reverse is not true.

Table 5.4 summarises the leading contributions to the ADM. Despite their smaller

number, bosonic operators already outnumber the complete dimension-six basis.

Interestingly, we observe operators induced at loop-level in weakly coupled the-

ories being renormalised by tree-level-generated interactions. This effect, which was

previously observed only in a single fermionic case at order order Λ−2 (specifically,

the class Xψ2H renormalised by tree-level-generated ψ4), now also appears among

bosonic operators. Although such mixing is allowed in principle, it was scarcely

studied, marking a key insight from our computation.

Many of the zero entries in the ADM are understood via non-renormalisation the-

orems or the absence of contributing diagrams. Some of the more subtle vanishing

contributions—termed non-trivial zeros—result from cancellations involving diver-

gences and on-shell relations. For example, the divergences of O(1)

8;W 2BH2 cancel with

the on-shell contribution from O(13)

8;WBH2D2
††. Conversely, some non-zero entries result

purely from redundant operator mixing, such as the contribution of class H4D4 into

H8.

As in the dimension-six case, we observe large anomalous dimensions in several

RGEs. Operators containing six or eight Higgs fields typically have the largest

coefficients. For instance:

16π2µ
d

dµ
c8;H8 =

184

3
λ3c

(2)

H4 − 12g1λ
2c

(1)

BH4D2 − 16g2λ
2c

(1)

WH4D2 + 12g21λc
(1)

B2H4

+ 36g22λc
(1)

W 2H4 + 12g1g2λc
(1)

WBH4 + 48λ2c
(2)

H6D2 + 192λcH8

+ 24λTr
[
(c

(1)

u2H2D3 + c
(2)

u2H2D3)(y
u)∗(yu)(yu)∗(yu)

]
+ 24λTr

[
(c

(1)

q2H2D3 + c
(2)

q2H2D3 − c(3)q2H2D3 − c(4)q2H2D3)(y
u)(yu)∗(yu)(yu)∗

]
.

(5.50)

††These cancellations are basis-dependent and may not appear in alternative operator bases.
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Operators with four Higgs fields can also feature large anomalous dimensions, as

seen in:

16π2µ
d

dµ
c
(1)

8;BH4D2 = 12λc
(1)

BH4D2 + 60g1Tr
[
(c

(4)

q2H2D3)(y
u)(yu)∗

]
− 36Tr

[
(c

(1)

q2BH2D)(y
u)(yu)∗

]
+ . . . (5.51)

16π2µ
d

dµ
c
(1)

8;WH4D2 = 44g2Tr
[
(c

(4)

q2H2D3)(y
u)(yu)∗

]
+ 48Tr

[
(c

(11)

q2WH2D)(y
u)(yu)∗

]
+ . . .

(5.52)

and there are more of them.

γmn (1/Λ
4) H8 H6D2 H4D4 X2H4 XH4D2 Xψ2H3 ψ2H2D3 ψ2H5 ψ2H4D Xψ2H2D ψ2H3D2

H8 λ λ2 λ3 g2λ gλ2 0 y4λ y3 y2λ y2gλ y3λ
H6D2 0 λ g4 0 gλ 0 y2g2 0 y2 y2g y3

H4D4 0 0 g2 0 0 0 y2 0 0 0 0
X3H2 0 0 0 0 /0 0 /0 0 0 /0 0
X2H4 0 0 g4 g2 g3 yg y2g2 0 0 y2g yg2

X2H2D2 0 0 g2 0 0 0 g2 0 0 0 0
XH4D2 0 0 g2 0 g2 0 y2g 0 0 y2 yg

Table 5.4: Anomalous dimension matrix for dimension-eight bosonic operators. Entries indicate
the leading terms in the mixing. /0 represents entries vanishing due to EoMs canceling the off-shell
divergences. See [118] for full expressions.

Example: RGE of H4D4

We now present a detailed example of how RGEs are computed at dimension eight,

focusing on a representative case: the H4D4 operators. This class provides an ideal

illustration due to its comparatively simple structure.

The definitions of all operators mentioned here can be found in Appendix A. In

particular, the relevant physical operators in the H4D4 class are:

c
(1)

8;H4D4 = (DµH
†DνH)(DνH†DµH), (5.53)

c
(2)

8;H4D4 = (DµH
†DνH)(DµH†DνH), (5.54)
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c
(3)

8;H4D4 = (DµH†DµH)(DνH†DνH). (5.55)

The first step is to consider the operators that contribute on-shell to this class.

Using the on-shell relations presented in Ref. [113], we find:

c
(1)

8;H4D4 = a
(1)

8;H4D4 + g21b8;B2D4 − g1b(3)8;BH2D4 − g22b8;W 2D4 + g2b
(3)

8;WH2D4 , (5.56)

c
(2)

8;H4D4 = a
(2)

8;H4D4 − g21b8;B2D4 + g1b
(3)

8;BH2D4 − g22b8;W 2D4 + g2b
(3)

8;WH2D4a
(2)

8;H4D4 , (5.57)

c
(3)

8;H4D4 = a
(3)

8;H4D4 + g22b8;W 2D4 − g2b(3)8;WH2D4 . (5.58)

These expressions show that, in addition to the H4D4 operators, we must compute

the divergences of the XH2D4 and X2D4 operator classes. Notably, the X2D4

operators do not contain Higgs fields, and hence cannot be renormalised by tree-level-

generated operators. This is because all such tree-level classes involve at least four

Higgs fields or two Higgs fields and two fermions; on the other side, loop contractions

can involve at most two field insertions from one operator, implying that the resulting

diagrams will always contain at least two Higgs fields or two fermion fields.

For simplicity, we also invoke non-renormalisation theorems (see, e.g., Ref. [126]),

which in this case imply that H4D4 operators can only be renormalised on-shell by

tree-level-generated classes including H4D4, ψ2H2D3 and ψ4. However, at one-loop

level, ψ4 does not contribute to purely bosonic operators, so we only need to consider

insertions of H4D4 and ψ2H2D3 operators.

In total, 19 operators need to be inserted into loop diagrams. These diagrams

are similar to those shown in Figure 5.3, and the resulting expressions are highly

cumbersome, requiring symbolic computation tools for tractability. For the process

H0H0 → H+H−, we illustrate here only the one-loop contribution from the insertion

of O(1)

8;H4D4 .

The ultraviolet divergence from O(1)

8;H4D4 is:

iA1L
UV =

ic
(1)

8;H4D4

192π2ϵ

(
3(5g21 − g22 − 4λ)κ2223 + 3(−5g21 + g22 + 4λ)κ2224
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Figure 5.3: One-loop contributions to the off-shell amplitude for H4D4. Black dots represent SM
interactions, and orange boxes denote dimension-eight operators. The left two diagrams represent
direct renormalisation via H4D4 and ψ2H2D3, while the right two contribute indirectly through
on-shell relations.

− 3(g21 − 15g22 + 12λ)κ3444 − 15g21κ2233 − 23g21κ2234 − 12g21κ2323 + 26g21κ2324

+ 12g21κ2333 − 5g21κ2344 + 18g21κ2424 − 6g21κ2433 + 14g21κ2434 − 3g21κ2444

+ 12g21κ3334 − 3g21κ3344 + 12g21κ3434 − 17g22κ2233 − 57g22κ2234 − 20g22κ2244

− 22g22κ2323 + 138g22κ2324 + 42g22κ2333 + 48g22κ2334 − 17g22κ2344 − 28g22κ2424

− 84g22κ2433 − 22g22κ2434 + 45g22κ2444 + 42g22κ3334 + 25g22κ3344 + 62g22κ3434

+ 52λκ2233 + 108λκ2234 + 40λκ2244 + 8λκ2323 + 120λκ2324 − 48λκ2333

− 144λκ2334 − 92λκ2344 − 16λκ2424 − 120λκ2433 − 184λκ2434 − 36λκ2444

− 48λκ3334 +4λκ3344 − 88λκ3434) + . . . (5.59)

where over 500 additional terms from insertions of other irrelevant interactions are

omitted for brevity. While the following expressions are a bit shorter, it is very

common to encounter such lengthy amplitudes when computing at order Λ−4 . It

is rather impractical to analyse such bulky contributions as a whole. We focus on

O(1)

8;H4D4 , O(2)

8;H4D4 and O(3)

8;H4D4 in the remainder of this section to obtain the full

self-renormalisation of H4D4. The rest of the contributions to these RGEs (or other

contributions, for that matter) are obtained analogously.
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The divergences of the XH2D4 operators by H4D4 are:

iA1L
UV(H

0H0 → B) =
ig1c

(1)

8;H4D4

96π2ϵ
(η23333 − η32333) +

ig1c
(2)

8;H4D4

64π2ϵ
(η32333 − η23333)

+
ig1c

(3)

8;H4D4

192π2ϵ
(η23333 − η32333) ,

(5.60)

iA1L
UV(H

0H0 → W3) =
ig2c

(2)

8;H4D4

192π2ϵ
(η23333 − η32333)

+
ig2c

(3)

8;H4D4

192π2ϵ
(η32333 − η23333) , (5.61)

with the following definitions for kinematic invariants:

κmnst = pm · pnps · pt, (5.62)

ηlmnst = ε3 · plpm · pnps · pt. (5.63)

The corresponding tree-level amplitudes needed to absorb the divergences (i.e.,

the ones entering Eq. (5.56)) are:

iATLIR (H0H0 → H+H−) = 2i
(
a
(1)

8;H4D4(−κ2324 + κ2433 + κ2434)

+ a
(2)

8;H4D4(−κ2324 + κ2334 + κ2344) + a
(3)

8;H4D4(−κ2234 + κ2334 + κ2434)
)
, (5.64)

iATLIR (H0H0 → B) = 2i
(
b
(3)

8;BH2D4(η32223 − η32323 − η22233 + η22333)
)
, (5.65)

iATLIR (H0H0 → W 3) = −2i
(
b
(3)

8;WH2D4(η32223 − η32323 − η22233 + η22333)
)
. (5.66)

Equating the UV and IR amplitudes leads to a system of equations, with one

equation per kinematic invariant. We deliberately use a redundant basis of invariants

to form an over-constrained system, enabling consistency checks of the computation.
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Solving the system yields the off-shell divergences:

ã
(1)

8;H4D4 =
1

96π2ϵ

(
c
(1)

8;H4D4(3g
2
1 − 33g22 − 24λ) + c

(2)

8;H4D4(2g
2
1 − 20g22 − 8λ)

+ c
(3)

8;H4D4(8g
2
1 − 8g22 − 8λ)

)
, (5.67)

ã
(2)

8;H4D4 =
1

96π2ϵ

(
c
(1)

8;H4D4(−8g21 − 14g22 − 8λ+ c
(2)

8;H4D4(−21g21 − 39g22 − 24λ)

+ c
(3)

8;H4D4(−8g21 − 8g22 − 8λ)
)
, (5.68)

ã
(3)

8;H4D4 =
1

96π2ϵ

(
c
(1)

8;H4D4(8g
2
1 + 36g22 − 48λ) + c

(2)

8;H4D4(2g
2
1 + 28g22 − 32λ)

+ c
(3)

8;H4D4(3g
2
1 + 25g22 − 80λ)

)
,

(5.69)

b̃
(3)

8;BH2D4 =
g1

192π2ϵ
(2c

(1)

8;H4D4 − 3c
(2)

8;H4D4 + c
(3)

8;H4D4), (5.70)

b̃
(3)

8;WH2D4 =
g1

192π2ϵ
(−c(2)8;H4D4 + c

(3)

8;H4D4). (5.71)

Substituting these into Eq. (5.56), we obtain the on-shell divergences, which con-

tribute to the RGEs (5.26). Including the tree-level anomalous dimensions nH4D4 = 2,

nψ2H2D3 = 2, and the WFR term ∝ δHc
(p)

8;H4D4 , the final RGEs are:

16π2µ
d

dµ
c
(1)

8;H4D4 = c
(1)

8;H4D4

(
−8

3
g21 + 5g22 + 8λ

)
+ c

(2)

8;H4D4

(
−g21

7

6
+

41

6
g22 +

8

3
λ

)
+ c

(3)

8;H4D4

(
−5

2
g21 +

5

2
g22 +

8

3
λ

)
+ . . .

(5.72)

16π2µ
d

dµ
c
(2)

8;H4D4 = c
(1)

8;H4D4

(
7

3
g21 +

14

3
g22 +

8

3
λ

)
+ c

(2)

8;H4D4

(
11

2
g21 +

43

6
g22 + 8λ

)
+ c

(3)

8;H4D4

(
5

2
g21 +

5

2
g22 +

8

3
λ

)
+ . . . (5.73)

16π2µ
d

dµ
c
(3)

8;H4D4 = c
(1)

8;H4D4

(
−8

3
g21 − 12g22 + 16λ

)
+ c

(2)

8;H4D4

(
−2

3
g21 −

29

3
g22 +

32

3
λ

)
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+ c
(3)

8;H4D4

(
−3g21 − 14g22 +

80

3
λ

)
+ . . .

(5.74)

As previously mentioned, this is comparably one of the simplest cases of renor-

malisation of dimension eight operators among themselves. It is remarkably lengthy,

indeed, but it gets worse for classes that receive many more contributions like H6D2,

which gets insertions from almost all classes both direct and indirect.

Apart from the pedagogical approach to the computation of RGEs, this example

serves as a sample of the delicate work behind Ref. [118] as well as a reminder of the

considerable difficulty posed by the ambitious project of computing the whole ADM

at order Λ−4 .

5.6.2 Insertion of two dimension-six operators

Ref. [81] was the first to systematically renormalise dimension-eight interactions, tak-

ing into account the mixing of two dimension-six operators into a bosonic dimension-

eight operator. After completing the remaining contributions to the RGEs of bosonic

operators, we turned our attention once again to the renormalisation of fermionic

operators, beginning with the insertion of two dimension-six operators [82]. This

required the extension of the Green’s Basis with fermionic operators. We used a

modified version of [116]’s basis, modified to include the physical operators of [30].

We also computed the corresponding onshell relations, needed for the RGEs. The

combined results of the bosonic and fermionic RGEs are presented in Tables 5.6 and

5.7, respectively. We remind all of the results are available in GitHub.

Unlike single-operator insertions, there are no general non-renormalisation the-

orems for multiple insertions‡‡. On the other hand, diagrammatic leg-counting be-

comes a powerful tool to anticipate possible contributions. As such, many com-

binations are trivially zero due to the absence of valid Feynman diagrams. The

‡‡These were only derived recently [147].
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method involves pairing two dimension-six operators (as well as SM interactions)

and determining whether they can form a divergent Feynman diagram that matches

a dimension-eight operator. This analysis must be performed case by case for each

pair of insertions.

Most of the zeros in Tables 5.6 and 5.7 arise from the absence of valid diagrams.

However, we remark on the absence of non-trivial zeros that result from accidental

cancellations among off-shell divergences contributing to the same physical operator,

when considered on-shell. Note the onshell-relations generate contributions from a

broad number of operators, Table 5.5 shows the onshell contributions of fermionic

operators due to redundancies. These contributions amount to nonvanishing terms

in the RGEs of physical operators. In total, 11 classes are renormalised by inser-

tions of pairs of dimension-six operators, excluding the RGEs of lower-dimensional

coefficients.

H4D2 ψ2H2D ψ2HD2XH2D2 H4D4H6D2 ψ2H2D3 ψ2H3D2 ψ2H4DXψ2H2DXH4D2

ψ2H2D ✓
ψ2H3 ✓ ✓ ✓ ✓ ✓ ✓

ψ2H2D3 ✓
ψ2H3D2 ✓ ✓ ✓ ✓
ψ2H4D ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ψ2H5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Xψ2H2D ✓ ✓
Xψ2H3 ✓ ✓ ✓

Table 5.5: Green’s functions (columns) that, on-shell, contribute to the renormalisation of the
different physical operators (rows) are indicated with ✓. Dimension-six and -eight interactions are
separated by vertical and horizontal lines.

It is noteworthy that large anomalous dimensions are again observed, despite the

loop suppression. As in the previous section, classes of operators involving more than

six Higgs fields yield the largest anomalous dimensions, and sizable contributions are

also found in the four-Higgs sector. Moreover, the RGEs of lower-dimensional oper-

ators at order Λ−4 also exhibit large anomalous dimensions, including contributions
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from the fermionic sector. For example:

16π2µ
d

dµ
λ = m4

H(5c
2
HD − 24cHDcH□ + 24c2H□) + . . . (5.75)

16π2µ
d

dµ
[ceH ]αβ = −48m2

H [ceH ]αβcH□ + 24m2
HcH□[cℓedq]αβγδ[y

d]δγ) + . . . (5.76)

16π2µ
d

dµ
c6;H =

m2
H

24
(37g21 − 15g22 + 840λ)c2HD − 48m2

HTr
[
cHℓ(y

e)(ye)†
]
cH□ + . . .

(5.77)

We also verify that none of the one-loop generated dimension-eight operators

are renormalised by pairs of tree-level generated dimension-six interactions. This is

because tree-level-generated vertices involve at least two Higgs fields. Consequently,

when inserted in pairs, they necessarily produce operators with four or more Hig-

gs legs, whereas tree-level-generated dimension-eight operators typically contain at

most two Higgs fields.

Example: RGE of H4D4

We now complete the example from the previous section by analyzing the contribu-

tion of dimension-six operator pairs to the RGE of the H4D4 operator. In this case,

since non-renormalisation theorems are not applicable, we first carry out a prelimi-

nary inspection to reduce the number of candidate insertions. In particular, any pair

of tree-level dimension-six operators necessarily contributes to interactions with four

or more external fields, implying that operators like X2D4 and XH2D4 cannot be

renormalised via these insertions.

Matching external Higgs legs to form valid diagrams with four external Higgs

fields reveals that only combinations of two H4D2 operators or two ψ2H2D operators

can contribute, as illustrated in Fig. 5.4.

We compute the one-loop amplitude for the process H0H0 → H+H−, restricting
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Figure 5.4: One-loop contributions to the H4D4 amplitude from pairs of dimension-six insertions.
Green boxes represent dimension-six operator insertions.

to insertions of H4D2 operators for simplicity. The resulting amplitude is:

iA1L =
i

192π2ϵ

(
6c2HDκ2222 − 6cHDκ2223(4cH□ + cHD) + 24cH□cHDκ2224 − 18c2HDκ2224

+ 48c2H□κ2233 − 24cH□cHDκ2233 + 6c2HDκ2233 + 128c2H□κ2234 − 88cH□cHDκ2234

+ 10c2HDκ2234 + 48c2H□κ2244 − 48cH□cHDκ2244 + 12c2HDκ2244 + 24cH□cHDκ2323

+ 12c2HDκ2323 − 128c2H□κ2324 + 64cH□cHDκ2324 − 28c2HDκ2324 − 48c2H□κ2333

+ 24cH□cHDκ2333 − 18c2HDκ2333 − 64c2H□κ2334 + 128cH□cHDκ2334 − 8c2HDκ2334

+ 16c2H□κ2344 + 64cH□cHDκ2344 + 8c2HDκ2344 − 24cH□cHDκ2424 + 24c2HDκ2424

+ 16c2H□κ2433 − 56cH□cHDκ2433 + 14c2HDκ2433 − 64c2H□κ2434 − 16cH□cHDκ2434

+ 4c2HDκ2434 − 48c2H□κ2444 + 48cH□cHDκ2444 − 24c2HDκ2444 + 96c2H□κ3333

− 24cH□cHDκ3333 + 3c2HDκ3333 + 336c2H□κ3334 − 72cH□cHDκ3334

− 6c2HDκ3334 + 192c2H□κ3344 − 48cH□cHDκ3344 − 6c2HDκ3344 + 288c2H□κ3434

− 24cH□cHDκ3434 − 12c2HDκ3434 + 336c2H□κ3444 − 48cH□cHDκ3444

−12c2HDκ3444 + 3κ4444
(
32c2H□ − 8cH□cHD + c2HD

))
.

(5.78)

The kinematic invariants κijkl are defined as in the previous section (5.62). The tree-

level amplitude in the IR limit also matches that of the previous section, allowing

us to extract the off-shell divergences. In this case, they coincide with the physical
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divergences, as there are no EoM contributions.

c̃
(1)

8;H4D4 =
1

96π2ϵ
(16c26;H□ − 32c6;H□c6;HD + 11c26;HD), (5.79)

c̃
(2)

8;H4D4 =
1

96π2ϵ
(16c26;H□ + 16c6;H□c6;HD + 5c26;HD), (5.80)

c̃
(3)

8;H4D4 =
1

96π2ϵ
(40c26;H□ + 16c6;H□c6;HD − 7c26;HD). (5.81)

The corresponding contributions to the RGEs are then straightforwardly obtained

using Eq. (5.26):

16π2µ
d

dµ
c
(1)

8;H4D4 = −
1

3
(16c26;H□ − 32c6;H□c6;HD + 11c26;HD), (5.82)

16π2µ
d

dµ
c
(2)

8;H4D4 = −
1

3π2ϵ
(16c26;H□ + 16c6;H□c6;HD + 5c26;HD), (5.83)

16π2µ
d

dµ
c
(3)

8;H4D4 = −
1

3π2ϵ
(40c26;H□ + 16c6;H□c6;HD − 7c26;HD). (5.84)

5.6.3 Insertion of Lepton Number Violating operators

We now turn our attention to the insertion of LNV operators in the renormalisation

of dimension-eight operators. At order Λ−4 , we identify three distinct types of LNV

insertions that contribute: (i) four insertions of the Weinberg operator in a single

diagram, (ii) two Weinberg operators plus one dimension-six operator, and (iii) one

Weinberg operator with one dimension-seven operator. In principle, these insertions

may appear either within loop diagrams or attached to external legs, effectively

putting off-shell diagrams on shell.

This is a case where it is crucial to analyze the possible operator structures and

diagram topologies before performing explicit calculations. In the off-shell formalism,

we focus exclusively on 1PI diagrams. Any redundancies arising in the WC are

accounted for through appropriate shifts. For clarity, we restrict our analysis to the
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(γH8)nl H6 H4D2 ψ2H3 ψ2H2D ψ4

H6 1 λ y y2 0
H4D2 λ2 yλ y2λ 0
ψ2H3 y2 yλ 0
ψ2H2D y2λ 0
ψ4 0

(γH6D2)nl H6 H4D2 ψ2H3 ψ2H2D ψ4

H6 0 1 0 0 0
H4D2 λ y y2 0
ψ2H3 1 y 0
ψ2H2D y2 0
ψ4 0

(γH4D4)nl H6 H4D2 ψ2H3 ψ2H2D ψ4

H6 0 0 0 0 0
H4D2 1 0 0 0
ψ2H3 0 0 0
ψ2H2D 1 0
ψ4 0

(γX2H4)nl H6 H4D2 ψ2H3 ψ2H2D ψ4

H6 0 0 0 0 0
H4D2 g2 0 0 0
ψ2H3 0 0 0
ψ2H2D g2 0
ψ4 0

(γXH4D2)nl H6 H4D2 ψ2H3 ψ2H2D ψ4

H6 0 0 0 0 0
H4D2 g 0 0 0
ψ2H3 0 0 0
ψ2H2D g 0
ψ4 0

Table 5.6: Anomalous dimension matrix for the insertion of two dimension-six operators. The
columns and rows represent the greatest terms from each contribution mixing into the bosonic
operators of different classes. See [81] for complete RGEs.

RGEs of purely bosonic operators, postponing the study of fermionic operators for

future work.

Because the renormalised operators under consideration do not contain fermions,

the contributing diagrams will have only bosonic external legs. However, the inserted

operators all include fermionic fields and must therefore be contracted to form loops

within the 1PI diagrams. Yukawa and gauge couplings appearing in these loops

must also respect this constraint. As a result, there are no off-shell divergences

proportional to the Higgs quartic coupling λ. Similarly, 1PI diagrams cannot be

proportional to the Higgs mass parameter m2
H , which prevents any direct divergent

contribution to lower-dimensional operators. However, such terms could still appear

indirectly through field redefinitions when applying the WC shifts.
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(γXψ2H3)nl H6 H4D2 ψ2H3 ψ2H2D ψ4

H6 0 0 0 0 0
H4D2 0 0 yg 0
ψ2H3 0 g 0
ψ2H2D yg 0
ψ4 0

(γψ2H2D3)nl H6 H4D2 ψ2H3 ψ2H2D ψ4

H6 0 0 0 0 0
H4D2 0 0 1 0
ψ2H3 0 0 0
ψ2H2D 1 1
ψ4 0

(γψ2H5)nl H6 H4D2 ψ2H3 ψ2H2D ψ4

H6 0 y 1 y y
H4D2 y3 y2 y3 yλ
ψ2H3 y y2 y2

ψ2H2D y3 0
ψ4 0

(γψ2H4D)nl H6 H4D2 ψ2H3 ψ2H2D ψ4

H6 0 0 0 0 0
H4D2 y2 y y2 g2

ψ2H3 1 y y2

ψ2H2D y2 y2

ψ4 0

(γXψ2H2D)nl H6 H4D2 ψ2H3 ψ2H2D ψ4

H6 0 0 0 0 0
H4D2 0 0 g 0
ψ2H3 0 0 0
ψ2H2D g g
ψ4 0

(γψ2H3D2)nl H6 H4D2 ψ2H3 ψ2H2D ψ4

H6 0 0 0 0 0
H4D2 0 y yg 0
ψ2H3 0 g 0
ψ2H2D yg 0
ψ4 0

Table 5.7: Anomalous dimension matrix for the insertion of two dimension-six operators. The
columns and rows represent the greatest terms from each contribution mixing into the fermionic
operators of different classes. See [82] for complete RGEs.

Regarding the fermionic loops: four-fermion operators appearing at dimension

six or seven do not contribute to the RGEs of bosonic operators at one-loop order;

their contributions begin at two loops, which lies beyond the scope of this analysis.

In terms of loop suppression, some dimension-six operators are generated only

at one loop when integrating out UV completions of the SMEFT. Inserting such

operators into another loop effectively yields a two-loop suppression, making their

contributions negligible for our purposes. This particularly affects the renormalisa-

tion of dimension-eight operators involving gauge bosons.

At this stage, all candidate insertions involve operators with at least two external

Higgs fields. Since two or more such insertions are required to build the relevant 1PI

diagrams, every contributing diagram will have at least four Higgs fields as external
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legs. Hence, only dimension-eight operators with at least four Higgs fields can be

renormalised via these insertions.

When analysing the mixing into dimension-eight operators with many fields, such

as H6D2 or H8, one might consider adding SM vertices to increase the number of

external legs. While these vertices do not affect power counting in the SMEFT,

their insertion introduces internal propagators that must be integrated over. This

procedure is limited: increasing the number of loop momenta in the numerator

eventually renders the diagram finite, as explained in Section 2.5.

Let us now consider each class of insertions in more detail:

Four Weinberg operators: Diagrams with four Weinberg insertions involve fer-

mion loops and yield eight Higgs external legs. These contribute to the renor-

malisation of H8, but not to any other purely bosonic dimension-eight opera-

tors.

Two Weinberg operators and one dimension-six operator: Since the loop

must contain only fermions, only fermionic dimension-six operators can be

inserted. Bosonic dimension-six insertions contribute only via WC shifts upon

setting the divergences on shell.

One Weinberg and one dimension-seven operator: In this case, symmetry con-

siderations lead to significant cancellations. The Weinberg operator is symmet-

ric in flavor indices: [c5;ℓH ]αβ = [c5;ℓH ]βα. In contrast, dimension-seven opera-

tors in the Xψ2H2 class are antisymmetric: [c7;ℓHX ]αβ = −[c7;ℓHX ]βα. As a re-

sult, contributions to bosonic operators are proportional to Tr[c5;ℓH ·c7;ℓHX ] = 0.

These features have also been analyzed in [129], where the complete RGE were

originally computed. Here, we summarise the large entries of the ADM schematically,

which align with the conclusions drawn in the previous sections: Operators with more

than six Higgs tend to gather the largest terms deviating from the naively expected

value γ ∼ O(1). For example:
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16π2µ
d

dµ
c8;H8 = 32λTr

[
−c(1)6;Hℓc5;ℓHc

†
5;ℓH + c

(3)
6;Hℓc5;ℓHc

†
5;ℓH

]
+ . . . (5.85)

16π2µ
d

dµ
c
(1)

8;H6D2 = −32λRe
(
Tr
[
c†5;ℓHc

(2)
7;ℓHD

])
+ . . . (5.86)

16π2µ
d

dµ
c6;H = 16m2

H Tr
[
(c

(1)
6;Hℓ − c

(3)
6;Hℓ)c5;ℓHc

†
5;ℓH

]
+ . . . (5.87)

16π2µ
d

dµ
λ = −8m4

H Re
(
Tr
[
c†5;ℓHc

(2)
7;ℓHD

])
. (5.88)

Many entries of the ADM vanish, as summarised in Table 5.8. Some zeros arise

trivially from the cancellations mentioned above. Others result from accidental (non-

trivial) cancellations. For instance, one-particle-reducible diagrams involving two

Weinberg operators set on-shell by a bosonic dimension-six operator (see Figure 5.5)

vanish upon applying unitarity cuts. To conclude, we remark that, when restricting

Figure 5.5: Diagrams with two dimension-five operators renormalising a dimension-eight operator
via a dimension-six insertion. Although considered in the RGEs via on-shell relations up to order
Λ−2 (see Appendix B from [32]) and order Λ−2 off-shell divergences (computed directly or inferred
from the on-shell divergences (G.2) in Ref. [36]) with insertions of two Weinberg operators, these
diagrams yield no net contribution. Coloured vertices represent insertions of d5 (red), d6 (green),
and d7 (blue) operators.

to LNV insertions, loop-generated operators are not renormalised at one loop by

tree-level-generated operators.
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Figure 5.6: One-loop diagrams contributing to H4D4 from LNV insertions. Blue boxes denote
dimension-five operators; red boxes denote dimension-seven operators.

Example: RGE of H4D4

For completeness, we now compute the RGE contribution to H4D4 from LNV in-

sertions. This is a concise calculation, as most terms in the full equation originate

from lepton number-conserving operator insertions.

According to the preceding arguments, operators like X2D4 and XH2D4 cannot

be renormalised by LNV insertions, as they involve fewer than four Higgs fields.

Similarly, H4D4 cannot be renormalised by diagrams with four Weinberg operators

or with twoWeinberg operators plus a dimension-six insertion, as these generate more

than four external Higgs legs. The only viable LNV insertion is the combination of

one Weinberg operator with a dimension-seven operator of the type ψ2H2D2.

Figure 5.6 shows the relevant diagrams. The amplitude for the same process as

the previous cases, H0H0 → H+H−, evaluates to:

iA1L =
i

8π2ϵ
Re
(
Tr
[
c†5;ℓHc

(2)
7;ℓHD

])
(κ2222 + 4κ2223 + 2κ2233 + 4κ2323 + 4κ2333 + κ3333)

(5.89)

where the κ are the same kinematic invariants defined in earlier sections. Solv-

ing the resulting system of equations from the IR amplitude (5.64), we extract the

divergences:

c̃
(1)

8;H4D4 = 0, (5.90)

c̃
(2)

8;H4D4 =
1

4π2ϵ
Re
(
Tr
[
c†5;ℓHc

(2)
7;ℓHD

])
, (5.91)

c̃
(3)

8;H4D4 = 0. (5.92)
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As there are no one-particle-reducible contributions, this corresponds to the full

physical divergence. The RGE is thus:

16π2µ
d

dµ
c
(1)

8;H4D4 = 0, (5.93)

16π2µ
d

dµ
c
(2)

8;H4D4 = −8Re
(
Tr
[
c†5;ℓHc

(2)
7;ℓHD

])
, (5.94)

16π2µ
d

dµ
c
(3)

8;H4D4 = 0. (5.95)

γ
(d54)
p , γ

(d52d6)
ps , γ

(d5d7)
ps - H4D2 ψ2H2D ψ2H4 ψ2H3D ψ2H2D2 Xψ2H2

H8 1 λ λ λ 0 λg2 0

H6D2 0 1 12 1 y g2 0

H4D4 0 0 0 0 0 1 0

X3H2 0 0 0 0 0 0 0

X2H4 0 0 0 0 0 g2 g

X2H2D2 0 0 0 0 0 0 0

XH4D2 0 0 0 0 0 g 0

Table 5.8: ADM for dimension-eight bosonic operators. Columns correspond to insertions of the
Weinberg operator and of dimension-six or dimension-seven operators. All zeros arise from the
absence of diagrams or symmetry-induced cancellations. See [129] for full details on theRGE.

5.7 Applications

5.7.1 Positivity bounds

Positivity bounds are mathematical inequalities among WCs, derived from two-to-

two scattering amplitudes by imposing the fundamental principles of analyticity,

unitarity, and crossing symmetry of the S-matrix. These bounds constrain the al-

lowed parameter space of EFTs, providing insight into the possible UV completions.
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In the context of the SMEFT, they are especially relevant due to their interplay

with power counting: they typically constrain operators of dimension eight or high-

er, which also makes them a valuable tool for analysing the impact of subleading

interactions.

In particular, positivity bounds constrain combinations of dimension-eight op-

erators and may also affect processes involving multiple insertions of dimension-six

operators, including combinations with LNV terms. This makes them a powerful

consistency check for low-energy EFTs.

While positivity bounds are derived at tree level, an important question is whether

they continue to hold under RG evolution. Using the complete set of RGEs derived

in the previous Section 5.6, one can assess whether loop corrections preserve or vi-

olate these bounds. Schematically, one starts with a positivity inequality valid at

some high scale Λ and evolves the WC down to lower scales using the RGEs. If

the inequality is violated at any intermediate scale, this could signal a more general

instability of positivity bounds, although a deeper study would be required.

As a concrete example, consider the dimension-eight class H4D4, which con-

tributes to four-Higgs scattering processes. Ref. [148] analyzed the RG evolution of

these operators and its implications for positivity bounds. The tree-level positivity

constraints derived from such processes [149] are:

c
(2)

8;H4D4 >0 (5.96)

c
(1)

8;H4D4 + c
(2)

8;H4D4 >0 (5.97)

c
(1)

8;H4D4 + c
(2)

8;H4D4 + c
(3)

8;H4D4 >0 . (5.98)

Assuming these bounds are satisfied at the threshold scale of SMEFT µ = Λ, we

examine their stability under RG running. Solving the LL RGEs gives:

16π2µ
d

dµ
c
(p)

8;H4D4 ≡ c
(t)

8;H4D4 [Λ]γpt (5.99)



Chapter 5. Renormalisation Group Equations 111

where γpt is the ADM obtained in Eq. 5.72. The running then induces the following

differential inequalities at one loop:

16π2µ
d

dµ
c
(2)

8;H4D4 ≡ c
(t)

8;H4D4 [Λ]γ2t > 0, (5.100)

16π2µ
d

dµ
(c

(1)

8;H4D4 + c
(2)

8;H4D4) ≡
∑
s=1,2

c
(t)

8;H4D4 [Λ]γst > 0, (5.101)

16π2µ
d

dµ
(c

(1)

8;H4D4 + c
(2)

8;H4D4 + c
(3)

8;H4D4) ≡
∑
s=1,2,3

c
(t)

8;H4D4 [Λ]γst > 0. (5.102)

We now test whether these RG-evolved inequalities remain valid. For instance,

consider the contribution proportional to g21 in the first inequality. From the RGEs

of c
(2)

8;H4D4 , one obtains:

g21

(
7c

(1)

8;H4D4

3
+

11c
(2)

8;H4D4

2
+

5c
(3)

8;H4D4

2

)
. (5.103)

Rewriting this expression, we find:

19

6
c
(2)

8;H4D4 +
7

3
(c

(1)

8;H4D4 + c
(2)

8;H4D4 + c
(3)

8;H4D4) +
1

6
c
(3)

8;H4D4 . (5.104)

Although each term appears positive if Eqs. (5.96) are satisfied, certain values

of c
(3)

8;H4D4 can render the entire expression negative. This means that the positivity

bounds can be violated under RG running, even if they hold at the threshold scale.

A similar analysis can be applied to other operator classes with four-field con-

tent. For example, Ref. [118] considered the class X2H2D2, using its RGEs and

the associated positivity bounds [150]. It was found that RG contributions from

H4D4 and ψ2H2D3 to X2H2D2 preserve positivity bounds, assuming those of the

contributing operator classes hold [149, 151]. This supports the notion that while

positivity can be violated through running in specific cases, other operator classes

remain consistent under the RG flow.

Additionally, in Ref. [129], we applied the positivity bounds of the H4D4 class,
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together with the renormalisation group equations originally derived in this work,

to establish a nontrivial relation among LNV operators. Specifically, considering the

RGE for c
(2)

8;H4D4 (Eq. (5.93)), one obtains the following constraint:

Re
(
Tr
[
c†5;ℓHc

(2)
7;ℓHD

])
> 0, (5.105)

under the assumption that no dimension-six or dimension-eight operators are gen-

erated at tree level. This inequality represents a purely low-energy statement that

imposes a positivity constraint on the UV coefficients a5;ℓH and a
(2)
7;ℓHD, derived from

analytic properties of the S-matrix.

This result has significant implications for UV-complete theories such as Seesaw

models. In particular, Seesaw models of type I[] and III[] generate LNV operators at

tree level, but do not produce operators in the H4D4 class. Therefore, the positivity

condition in Eq. (5.105) becomes a nontrivial test of these models. As shown in

Ref. [129], the bound is satisfied in both Seesaw I and III. The key observation is

that these UV completions do not generate the operator O(2)
ℓHD, which implies that

the right-hand side of Eq. (5.105) vanishes, thereby preserving the inequality.

This analysis illustrates how loop-level positivity bounds can bridge low-energy

effective constraints with UV dynamics, offering a novel probe of the structure of

BSM physics.

5.7.2 Oblique parameters

The oblique parameters quantify deviations from the SM predictions for the self-

energies of EW gauge bosons, arising due to potential new physics. They play a

central role in Electroweak Precision Test (EWPT)), where they can be stringently

constrained by experimental measurements. Originally introduced by Peskin and

Takeuchi [152], these parameters capture universal corrections to gauge boson prop-

agators and are particularly effective in diagnosing the effects of heavy new physics

that does not couple directly to fermions.

The vacuum polarization functions ΠX,Y (p
2) describe gauge boson self-energies
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in the unbroken EW phase. The traditional oblique parameters S, T , U and their

rescaled forms Ŝ, T̂ , Û , as well as the more recent incorporations (X, Y , V , W ) are

defined as follows [153]:

Ŝ =
α

4s2θ
S = −g22Π′

W 3B(p = 0), (5.106)

T̂ = αT =
g22
m2
W

(ΠW 3W 3(p = 0)− ΠW+W−(p = 0)), (5.107)

Û = − α

4s2θ
U = −g22(Π′

W 3W 3(p = 0)− Π′
W+W−(p = 0)), (5.108)

V =
g22

2m2
W

(Π′′
W 3W 3(p = 0)− Π′′

W+W−(p = 0)), (5.109)

W =
g22

2m2
W

Π′′
W 3W 3(p = 0), (5.110)

X =
g1g2
2m2

W

Π′′
W 3B(p = 0), (5.111)

Y =
g21

2m2
W

Π′′
BB(p = 0), (5.112)

Z =
g23

2m2
W

Π′′
GG(p = 0). (5.113)

where α ≈ 1/137 is the fine structure constant, sθ is the sine of the Weinberg angle,

and the derivatives are with respect to p2 and evaluated at p = 0:

Pi′(0) =
dΠ(p2)

dp2

∣∣∣∣
p2=0

. (5.114)

The parameters S, T , W , Y describe LO deviations from SM predictions, whereas

U , X, V represent subleading higher-order effects. The parameter Z is defined

analogously for the QCD sector but is not an EW observable.

In the SMEFT framework, these parameters can be expressed in terms of the

Wilson coefficients of universal dimension-six operators. Using the Green’s basis [32],
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we obtain:

S = 16π2 v
2
T

Λ2
a6;HWB (5.115)

T̂ = −1

2

v2T
Λ2
a6;HD (5.116)

W = −1

2

m2
W

Λ2
b6;2W (5.117)

Y = −1

2

m2
W

Λ2
b6;2B (5.118)

Z = −1

2

m2
W

Λ2
b6;2G. (5.119)

Here, O6;2X are operators from class X2D2 that are redundant under EoM. The

parameters mW and vT denote the geometric W mass and Higgs vacuum expectation

value, respectively, as defined in [154]. At LO, these expressions reduce to their SM

values, with additional corrections suppressed by powers of Λ. At NLO, dimension-

eight operators and one-loop RGE effects enter. The dimension-eight contributions

to the S, T , U oblique parameters are given by [30]:

S =
v4T
Λ4
c8;WBH4 (5.120)

T̂ = −1

2

v4T
Λ4
c
(2)

8;H6D2 (5.121)

U =
v4T
Λ4
c8;W2H4 . (5.122)

The renormalisation group running at order Λ−4 allows us to track the quantum

corrections to these parameters. It has been shown in [81] that the dimension-six

operators do not mix into S and U at this order. Instead, their renormalisation

involves dimension-eight operators in the classes H4D4, X2H4, XH4D2, Xψ2H3,

ψ2H2D3, Xψ2H2D, ψ2H3D2, as detailed in Table 5.4.

The T parameter, however, does receive corrections from insertions of dimension-

six operators via the running of O(2)

8;H6D2 . Notably, the operator O6;Hud from class
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ψ2H2D, which does not directly contribute to T at order Λ−2 can induce contri-

butions at order Λ−4 through self-mixing into O(2)

8;H6D2 . Using the ADM from [81]

(presented in Table 5.6), along with fits of Electroweak Precision Data (EWPD) to

SMEFT [155], bounds on coefficients such as [O6;Hud]tb can be established under the

assumption that no other operators contribute.

These constraints also impact the structure of the neutrino mass matrix. The

dimension-five Weinberg operator O5;ℓH induces a Majorana mass for neutrinos after

electroweak symmetry breaking. At order Λ−3 , its dimension-seven analogue O7;ℓH

contributes as well. Together, they yield the relation [156]:

[mν ] = −
v2

Λ
(c5;ℓH +

v2

2Λ2
c7;ℓH) (5.123)

This constraint implies a correlation between the coefficients c5;ℓH and c7;ℓH required

to reproduce the small observed neutrino masses. However, the operator O(2)

8;H6D2

also receives loop-level contributions from these LNV operators. As shown in [129],

this leads to an additional contribution to the T parameter (5.120):

T = − 1

4π2α

v2

Λ2
ln

Λ

µ
Tr [c5;ℓHc7;ℓH ] . (5.124)

This relation provides a second constraint on the Wilson coefficients, effectively lift-

ing blind directions in the mass matrix [mν ]αβ. In the one-generation limit, these

conditions are illustrated in Figure 5.7, showing that the coefficients a5;ℓH and a7;ℓH

cannot both take arbitrary values.

While the analyses discussed here rely on simplified assumptions about the opera-

tor content of new physics, they highlight the utility of oblique parameter constraints

in SMEFT. Particularly, they demonstrate how loop-level running and dimension-

eight contributions can impose non-trivial constraints on otherwise unconstrained

directions in parameter space. Future work involving global SMEFT fits and higher-

order RGEs will benefit from these insights and further develop a systematic under-

standing of Electroweak Precision Observable (EWPO) under running at order Λ−4

and in the presence of LNV.
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Figure 5.7: Constraints on LNV Wilson coefficients from neutrino mass (blue line) and the T
parameter (yellow region). The plot is generated with the following parameters: Λ = 1TeV and
v = 246GeV, T = 0, 10± 0, 12 [155] and mν < 0, 081 eV.



Chapter 6.

Conclusiones

6.1 Resumen y visión general

La investigación en f́ısica de part́ıculas se basa fundamentalmente en observaciones

experimentales y en su interpretación dentro de un marco teórico. A lo largo de

las últimas décadas, el SM ha emergido como la teoŕıa dominante, no solo por su

extraordinario poder predictivo, sino también por el respaldo constante que recibe

de los datos experimentales. Aunque la evidencia favorece abrumadoramente al SM

frente a cualquier alternativa BSM, los datos aún dejan espacio para una teoŕıa más

completa, cuyas caracteŕısticas precisas siguen siendo desconocidas.

Los próximos experimentos, incluyendo colisionadores de part́ıculas de próxima

generación y detectores de ondas gravitacionales, buscan revelar nuevas pistas que

puedan guiarnos más allá del SM. Mientras tanto, los f́ısicos pueden perfeccionar los

análisis existentes y desarrollar nuevas técnicas para la interpretación de datos. La

renormalización y las EFTs son herramientas esenciales para alcanzar estos objetivos.

En el Caṕıtulo 2, revisamos los fundamentos de la renormalización. Aunque en

sus inicios fue vista como problemática, la renormalización se ha convertido en una

técnica poderosa dentro de la QFT de precisión. En particular, solo ciertos esquemas

de regularización permiten eliminar las divergencias sin perder propiedades deseables

de las QFTs. La combinación de la DimReg y el esquema MS es ahora el enfoque

117
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estándar. Si bien la DimReg, tal como se define en este contexto, también presenta

desaf́ıos—especialmente en amplitudes quirales—el marco es confiable a un lazo.

Para explorar modelos que difieren del SM a altas enerǵıas pero que son consis-

tentes con los datos a bajas enerǵıas, recurrimos a teoŕıas no renormalizables. En el

Caṕıtulo 3, discutimos el uso de EFTs, que en principio requieren un número infinito

de contratérminos. Sin embargo, la precisión finita de los experimentos acota efec-

tivamente el número de contratérminos que deben considerarse. Esta caracteŕıstica

restaura la capacidad predictiva y permite cálculos de precisión. Ilustramos esto con

diversas EFTs utilizadas históricamente antes del establecimiento del SM, muchas

de las cuales siguen siendo relevantes para fenómenos a escalas sub-EW.

Dado que nuestro interés se sitúa más allá del vev de Higgs, y que el SM repre-

senta la teoŕıa de mayor enerǵıa confirmada experimentalmente, lo tomamos como

base para construir una EFT. En el Caṕıtulo 4, describimos los beneficios de usar

bases de operadores y abordamos los desaf́ıos al identificar un conjunto completo e

independiente de interacciones. Argumentamos que conservar operadores relaciona-

dos mediante ciertas redefiniciones de campo—equivalentes a aplicar las EoMs en

la Lagrangiana—puede simplificar cálculos intermedios. Por ejemplo, las funciones

de Green en una Lagrangiana redundante pueden calcularse usando únicamente di-

agramas 1PI. Aunque las redundancias deben eliminarse eventualmente, esto puede

hacerse al final del cálculo aplicando relaciones en la capa de masa (on-shell). Si bien

trabajar con una Lagrangiana independiente on-shell no siempre es necesario, el en-

foque diagramático off-shell de la renormalización śı impone esta condición. En este

marco, calculamos la primera base de Green de operadores bosónicos de dimensión

ocho, publicada en Ref. [113] y detallada en la Sección 4.4. Los resultados también

se presentan en el Apéndice A, junto con operadores fermiónicos de dimensión ocho.

Las relaciones on-shell de esta base de Green constituyen otro resultado original que

permite eliminar redundancias a favor de la base f́ısica de Ref. [30].

El Caṕıtulo 5 consolida estas ideas para sistematizar la renormalización en la

SMEFT. Derivamos la ecuación de Callan–Symanzik en una forma útil para la renor-

malización de operadores de dimensión ocho. Tras resumir el método diagramático



Chapter 6. Conclusiones 119

off-shell y repasar la historia de la renormalización en la SMEFT, aplicamos nuestro

marco para calcular las RGEs completas de todos los operadores bosónicos, aśı como

contribuciones sustanciales para operadores fermiónicos. Con excepción de la renor-

malización de operadores bosónicos mediante inserciones de operadores de dimensión

seis [81], estos resultados [82, 118, 129] son contribuciones originales de esta tesis.

Para ofrecer una visión general del estado actual de la renormalización en la

SMEFT—y ubicar nuestras contribuciones en contexto—remitimos al Cuadro 7.1,

que resume los esfuerzos realizados y en curso en este campo. Las entradas calculadas

en esta tesis están destacadas.

d5 d25 d6 d35 d5 × d6 d7 d45 d25 × d6 d26 d5 × d7 d8

d≤4 (bosónicos) ✓ [37] ✓ [81] ✓ [118]

d≤4 (fermiónicos) ✓ [37] ✓ [82] ✓ [111, 132, 138]

d5 ✓ [33–35] ✓ [137] ✓ [137]

d6 (bosónicos) ✓ [36] ✓ [37–39] ✓ [129] ✓ [81] ✓ [129] ✓ [118]

d6 (fermiónicos) ✓ [36] ✓ [37–40] X ✓ [82] X ✓ [111, 132, 138]

d7 ✓ [117] ✓ [117] ✓ [28, 136]

d8 (bosónicos) ✓ [129] ✓ [129] ✓ [81] ✓ [129] ✓ [118]

d8 (fermiónicos) X X ✓ [82] X ✓ [111, 132, 138]

Table 6.1: Estado del arte de la renormalización del SMEFT (adaptado de Refs. [81, 118, 129]).
Las filas muestran los operadores renormalizados (clasificados por dimensión y estad́ısticas). Las
columnas indican los operadores que contribuyen a la evolución del RG. Las entradas vaćıas corre-
sponden a contribuciones nulas, ✓ indica que la contribución completa está disponible, ✓ señala que
existen resultados parciales (aunque sustanciales), y X indica que no se conoce nada, o casi nada,

al respecto. Las contribuciones realizadas en esta tesis están marcadas con Recuadros azules .

La evolución (running) de los WC en SMEFT tiene una amplia gama de apli-

caciones. En particular, las RGEs de operadores de dimensión seis ya se utilizan

en estudios fenomenológicos. Como se discute en la Sección 5.7, se espera que las

RGEs de operadores de dimensión ocho desempeñen un papel similar en f́ısica de alta

precisión, e incluso podŕıan abrir nuevas v́ıas conceptuales. Una de estas direcciones

involucra cotas de positividad, que son restricciones derivadas de la unitariedad,

causalidad y analiticidad. Dado que estas cotas son efectos de orden Λ−4, el uso de

RGEs para estudiar sus violaciones es particularmente pertinente. Como se señaló

en la Sección 5.7, la observación de que el running del RG puede llevar a aparentes



120 Renormalization of the SMEFT to dimension eight

violaciones de estas cotas podŕıa motivar una reevaluación del marco SMEFT.

6.2 Ĺıneas futuras de investigación

De este trabajo se desprenden diversas direcciones prometedoras:

Completar las RGE restantes a orden Λ−4 Una extensión natural consiste

en calcular las RGEs para todos los operadores fermiónicos de dimensión ocho, in-

cluyendo interacciones de cuatro fermiones y contribuciones con LNV provenientes

de combinaciones de operadores de menor dimensión.

Aclarar el papel de la SMEFT en EWPT Aunque las contribuciones de dimen-

sión seis y ocho a los parámetros oblicuos son conocidas para operadores bosónicos,

su relación con las interacciones fermiónicas sigue sin esclarecerse, dado que los

parámetros oblicuos se estudian mayormente en teoŕıas universales. Investigar esta

relación profundizaŕıa nuestra comprensión de la aplicabilidad de la SMEFT en las

EWPTs.

Investigar la dependencia de base en las ADM Se ha observado que ciertos

cálculos off-shell muestran cancelaciones al evaluarse on-shell. Entender más pro-

fundamente este efecto podŕıa esclarecer la relación entre la elección de base y las

estructuras de divergencia. Esto requeriŕıa construir nuevas bases de operadores y

recalcular las RGEs a orden Λ−4, lo cual es actualmente poco práctico. Resulta más

factible esperar una mayor automatización de las técnicas de renormalización.

Comparar métodos de renormalización: off-shell, on-shell y geométrico

Las RGEs a dimensión ocho ya se están utilizando para validar enfoques alternativos

de renormalización. Una vez alcanzada la renormalización completa, una compara-

ción sistemática de estos métodos—no solo en cuanto a resultados, sino también

en eficiencia computacional—seŕıa de gran valor. La SMEFT, por su simplicidad y
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compatibilidad con una amplia gama de observables de baja enerǵıa, es un terreno

ideal para tales estudios comparativos.

Reflexión final Sea cual sea el camino que se elija, las RGEs de dimensión ocho

representan una herramienta poderosa en la búsqueda continua de NP. En un sentido

más amplio, la renormalización y las EFTs han demostrado ser indispensables en la

QFT y siguen moldeando la manera en que conectamos teoŕıas de alta enerǵıa con

fenómenos de baja enerǵıa. Con esta tesis, buscamos aportar a una comprensión

más profunda de estas herramientas y motivar la exploración continua en este campo

prometedor.



Chapter 7.

Conclusions

7.1 Summary and overview

Research in particle physics relies fundamentally on experimental observations and

their interpretation within a theoretical framework. Over the past decades, the SM

has emerged as the dominant theory—not only due to its remarkable predictive power

but also because of the consistent support it receives from experimental data. While

the evidence overwhelmingly favours the SM over any BSM alternatives, the data

still leave room for a more complete theory, the features of which remain unknown

with precision.

Upcoming experiments, including next-generation particle colliders and gravi-

tational wave detectors, aim to uncover additional clues that may lead us beyond

the SM. In the meantime, physicists can refine existing analyses and develop new

techniques for data interpretation. Renormalisation and EFTs are essential tools in

achieving these goals.

In Chapter 2, we reviewed the foundations of renormalisation. Although once con-

sidered problematic, renormalisation has become a powerful technique in precision

QFT. In particular, only certain regularisation schemes can eliminate divergences

while preserving desirable properties of QFTs. The combination of DimReg and

the MS scheme is now standard practice. While DimReg—as defined in this con-
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text—also introduces challenges, especially with chiral amplitudes, the framework is

reliable at one-loop level.

To explore models that differ from the SM at high energies but remain consistent

with low-energy evidence, we turn to non-renormalisable theories. In Chapter 3,

we discussed the use of EFTs, which may require, in principle, an infinite number

of counterterms. However, the finite precision of experiments effectively bounds the

number of counterterms that need to be considered. This feature restores predictivity

and enables precision calculations. We illustrated this with several EFTs historically

used before the SM was established—many of which remain relevant for sub-EW scale

phenomena.

Since our interest lies beyond the Higgs Vacuum Expectation Value (vev), and

because the SM represents the highest-energy theory currently confirmed by experi-

ment, we take it as the foundation for building an EFT. In Chapter 4, we outlined

the benefits of using operator bases and discussed the challenges involved in iden-

tifying a complete and independent set of interactions. We argued that retaining

operators related by certain field redefinitions—equivalent to applying the EoMs

in the Lagrangian—can simplify intermediate computations. For instance, Green’s

functions in a redundant Lagrangian can be computed using only 1PI diagrams.

While redundancies must eventually be removed, this can be done at the end of

the calculation by applying on-shell relations. Although working with an on-shell

independent Lagrangian is not always required, the off-shell diagrammatic approach

to renormalisation does impose this condition. In this framework, we computed the

first Green’s Basis of dimension eight bosonic operators, published in Ref. [113] and

detailed in Section 4.4. The results are also shown in Appendix A altogether with

dimension-eight fermionic operators. The onshell relations of this Green’s Basis are

also an original result that allows to remove redundancies in favour of the physical

basis of Ref. [30].

Chapter 5 consolidates these ideas to systematize the renormalisation of the

SMEFT. We derived the Callan–Symanzik equation in a useful form tailored for

the renormalisation of dimension-eight operators. After summarizing the off-shell
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diagrammatic method and reviewing the history of SMEFT renormalisation, we ap-

plied our framework to compute the complete RGEs for all bosonic operators, as well

as substantial contributions to fermionic ones. Except for bosonic operator renor-

malisation via insertions of dimension-six operators [81], these results [82, 118, 129]

are original contributions of this thesis.

To provide an overview of the current state of SMEFT renormalisation—and to

place our contributions in context—we refer to Table 7.1, which summarizes complet-

ed and ongoing efforts in this area. Entries computed in this thesis are highlighted.

d5 d25 d6 d35 d5 × d6 d7 d45 d25 × d6 d26 d5 × d7 d8

d≤4 (bosonic) ✓ [37] ✓ [81] ✓ [118]

d≤4 (fermionic) ✓ [37] ✓ [82] ✓ [111, 132, 138]

d5 ✓ [33–35] ✓ [137] ✓ [137]

d6 (bosonic) ✓ [36] ✓ [37–39] ✓ [129] ✓ [81] ✓ [129] ✓ [118]

d6 (fermionic) ✓ [36] ✓ [37–40] X ✓ [82] X ✓ [111, 132, 138]

d7 ✓ [117] ✓ [117] ✓ [28, 136]

d8 (bosonic) ✓ [129] ✓ [129] ✓ [81] ✓ [129] ✓ [118]

d8 (fermionic) X X ✓ [82] X ✓ [111, 132, 138]

Table 7.1: State of the art of the SMEFT renormalisation (adapted from Refs.[81, 118, 129]).
The rows show the renormalised operators (categorised by dimensions and statistics). The columns
show the operators contributing to RG running. Blank entries vanish, ✓ denotes that the complete
contribution is available, ✓ implies that only (but substantial) partial results are present, and X
indicates that nothing, or very little, is known. The contribution made in this thesis is marked by
Blue boxes .

The running of WC in SMEFT has a wide range of applications. In particular,

RGEs for dimension-six operators are already being used in phenomenological stud-

ies. As discussed in Section 5.7, the RGEs of dimension-eight operators are expected

to play a similar role in high-precision physics and may also illuminate new conceptu-

al avenues. One such direction involves positivity bounds—constraints derived from

unitarity, causality, and analyticity. Since these bounds are inherently order Λ−4

effects, the use of RGEs to explore their violation is particularly relevant. As noted

in Section 5.7, the observation that RG running can lead to apparent violations of

positivity bounds may prompt a reevaluation of the SMEFT framework.
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7.2 Future directions

Several promising research directions emerge from this work:

Complete the remaining RGE at order Λ−4 A natural extension involves

computing the RGEs for all fermionic operators at dimension eight, including four-

fermion interactions and LNV contributions arising from lower-dimensional operator

combinations.

Clarify SMEFT’s role in EWPT While the dimension-six and dimension-eight

contributions to oblique parameters are known for bosonic operators, their relation-

ship with fermionic interactions remains unclear, as oblique parameters are mostly

studied in universal theories. Investigating this relationship would enhance our un-

derstanding of SMEFT’s applicability to EWPTs.

Investigate basis dependence in ADM It has been observed that off-shell com-

putations sometimes exhibit cancellations when expressions are taken on-shell. A

deeper understanding of this effect could shed light on the interplay between ba-

sis choices and divergence structures. This would require constructing new operator

bases and re-computing RGEs at order Λ−4 , which is currently impractical. Waiting

for further automation in renormalisation techniques appears more feasible.

Compare renormalisation methods: off-shell, on-shell and geometrical

The RGEs at dimension eight are already being used to validate alternative renormal-

isation approaches. Once full renormalisation is achieved, a systematic comparison

of these methods—not only in terms of results but also in computational efficien-

cy—would be highly valuable. SMEFT, with its simplicity and compatibility with

a wide range of low-energy observables, provides an ideal testing ground for such a

comparative study.
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Final Remarks Whichever path is chosen, the RGE at dimension eight represent a

powerful tool in the ongoing search for NP. More broadly, renormalisation and EFTs

have proven indispensable in QFT and continue to shape the way we bridge high-

energy theories with low-energy phenomena. With this thesis, we aim to contribute

to a deeper understanding of these tools and to motivate continued exploration in

this promising field.
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Appendix A.

Tables of SMEFT Operators



Dimension 8

H8 OH8 (H†H)4

O(1)

H6 (H†H)2(DµH
†DµH) O(2)

H6 (H†H)(H†σIH)(DµH
†σIDµH)

H6D2

O(3)

H6 (H†H)2(H†D2H + h.c.) O(4)

H6 (H†H)2Dµ(H
†i
←→
D µH)

O(1)

H4 (DµH
†DνH)(DνH†DµH) O(2)

H4 (DµH
†DνH)(DµH†DνH)

O(3)

H4 (DµH†DµH)(DνH†DνH) O(4)

H4 DµH
†DµH(H†D2H + h.c.)

O(5)

H4 DµH
†DµH(H†iD2H + h.c.) O(6)

H4 (DµH
†H)(D2H†DµH) + h.c.

O(7)

H4 (DµH
†H)(D2H†iDµH) + h.c. O(8)

H4 (D2H†H)(D2H†H) + h.c.

O(9)

H4 (D2H†H)(iD2H†H) + h.c. O(10)

H4 (D2H†D2H)(H†H)

O(11)

H4 (H†D2H)(D2H†H) O(12)

H4 (DµH
†H)(DµH†D2H) + h.c.

H4

O(13)

H4 (DµH
†H)(DµH†iD2H) + h.c.

O
(1)

G2H4 (H†H)2GA
µνG

Aµν O
(2)

G2H4 (H†H)2G̃A
µνG

Aµν

O(1)

W 2H4 (H†H)2W I
µνW

Iµν O(2)

W 2H4 (H†H)2W̃ I
µνW

Iµν

O(3)

W 2H4 (H†σIH)(H†σJH)W I
µνW

Jµν O(4)

W 2H4 (H†σIH)(H†σJH)W̃ I
µνW

Jµν

O(1)

WBH4 (H†H)(H†σIH)W I
µνB

µν O(2)

WBH4 (H†H)(H†σIH)W̃ I
µνB

µνX2H4

O(1)

B2H4 (H†H)2BµνB
µν O(2)

B2H4 (H†H)2B̃µνB
µν

O(1)

WH4D2 i(H†H)(DµH†σIDνH)W I
µν O(2)

WH4D2 i(H†H)(DµH†σIDνH)W̃ I
µν

O(3)

WH4D2 iϵIJK(H†σIH)(DµH†σJDνH)WK
µν O(4)

WH4D2 iϵIJK(H†σIH)(DµH†σJDνH)W̃K
µν

O(5)

WH4D2 (H†H)DνW
Iµν(DµH

†σIH + h.c.) O(6)

WH4D2 (H†H)DνW
Iµν(DµH

†iσIH + h.c.)

O(7)

WH4D2 ϵIJK(DµH
†σIH)(H†σJDνH)WKµν

O(1)

BH4D2 i(H†H)(DµH†DνH)Bµν O(2)

BH4D2 i(H†H)(DµH†DνH)B̃µν

XH4D2

O(3)

BH4D2 (H†H)DνB
µν(DµH

†iH + h.c.)

H2D6 OH2D6 D2H†DµDνD
µDνH+h.c.

O(1)

WH2D4 i(DνH
†σID2H −D2H†σIDνH)DµW

Iµν O(2)

WH2D4 (DνH
†σID2H +D2H†σIDνH)DµW

Iµν

O(3)

WH2D4 i(DρDνH
†σIDρH −DρH†σIDρDνH)DµW

Iµν

O(1)

BH2D4 i(DνH
†D2H −D2H†DνH)DµB

µν O(2)

BH2D4 (DνH
†D2H +D2H†DνH)DµB

µν
XH2D4

O(3)

BH2D4 i(DρDνH
†DρH −DρH†DρDνH)DµB

µν

Table A.1: Green’s basis of dimension-eight bosonic operators. Operators in gray are redundant.
Original work, extracted from [113].



Dimension 8

O(1)

W 2H2D2 (DµH†DνH)W I
µρW

Iρ
ν O(2)

W 2H2D2 (DµH†DµH)W I
νρW

Iνρ

O(3)

W 2H2D2 (DµH†DµH)W I
νρW̃

Iνρ O(4)

W 2H2D2 iϵIJK(DµH†σIDνH)W J
µρW

Kρ
ν

O(5)

W 2H2D2 ϵIJK(DµH†σIDνH)(W J
µρW̃

Kρ
ν − W̃ J

µρW
Kρ
ν ) O(6)

W 2H2D2 iϵIJK(DµH†σIDνH)(W J
µρW̃

Kρ
ν + W̃ J

µρW
Kρ
ν )

O(7)

W 2H2D2 iϵIJK(H†σIDνH −DνH†σIH)DµW
JµρW̃K

νρ O(8)

W 2H2D2 ϵIJKH†σIHDνDµW
JµρW̃Kν

ρ

O(9)

W 2H2D2 i(H†DνH −DνH
†H)DµW

IµρW̃ Iν
ρ O(10)

W 2H2D2 (H†DνH +DνH
†H)DµW

IµρW̃ Iν
ρ

O(11)

W 2H2D2 (H†DνH +DνH
†H)DµW

IµρW Iν
ρ O(12)

W 2H2D2 i(H†DνH −DνH
†H)DµW

IµρW Iν
ρ

O(13)

W 2H2D2 H†HDµW
IµρDνW

Iν
ρ O(14)

W 2H2D2 (DµH
†H +H†DµH)W IνρDµW I

νρ

O(15)

W 2H2D2 i(DµH
†H −H†DµH)W IνρDµW I

νρ O(16)

W 2H2D2 (DµH
†H +H†DµH)DµW IνρW̃ I

νρ

O(17)

W 2H2D2 i(DµH
†H −H†DµH)DµW IνρW̃ I

νρ O(18)

W 2H2D2 ϵIJK(H†σIDνH +DνH†σIH)DµW
JµρWK

νρ

O(19)

W 2H2D2 iϵIJK(H†σIDνH −DνH†σIH)DµW
JµρWK

νρ

O(1)

WB2H2D2 (DµH†σIDµH)BνρW
Iνρ O(2)

WB2H2D2 (DµH†σIDµH)BνρW̃
Iνρ

O(3)

WB2H2D2 i(DµH†σIDνH)(BµρW
I ρ
ν −BνρW

I ρ
µ ) O(4)

WB2H2D2 (DµH†σIDνH)(BµρW
I ρ
ν +BνρW

I ρ
µ )

O(5)

WB2H2D2 i(DµH†σIDνH)(BµρW̃
I ρ
ν −BνρW̃

I ρ
µ ) O(6)

WB2H2D2 (DµH†σIDνH)(BµρW̃
I ρ
ν +BνρW̃

I ρ
µ )

O(7)

WBH2D2 i(H†σIDµH −DµH†σIH)DµB
νρW I

νρ O(8)

WBH2D2 (H†σIDνH +DνH†σIH)DµB
µρW I

νρ

O(9)

WBH2D2 i(H†σIDνH −DνH†σIH)DµB
µρW I

νρ O(10)

WBH2D2 (H†σIH)DµBµρDνW
Iνρ

O(11)

WBH2D2 (DνH
†σIH +H†σIDνH)BµρD

µW Iνρ O(12)

WBH2D2 i(DνH
†σIH −H†σIDνH)BµρD

µW Iνρ

O(13)

WBH2D2 (H†σIH)BµρDνD
µW Iνρ O(14)

WBH2D2 i(DνH
†σIH −H†σIDνH)DµBµρW̃

Iνρ

O(15)

WBH2D2 i(H†σIDµH −DµH
†σIH)DµBνρW̃

Iνρ O(16)

WBH2D2 (H†σIH)(D2Bνρ)W̃ I
νρ

O(17)

WBH2D2 (H†σIH)(DρDµW
Iµν)B̃νρ O(18)

WBH2D2 i(DνH†σIH −H†σIDνH)B̃µρDµW
I
νρ

O(19)

WBH2D2 (DνH†σIH +H†σIDνH)B̃µρDµW
I
νρ

O(1)

B2H2D2 (DµH†DνH)BµρB
νρ O(2)

B2H2D2 (DµH†DµH)BνρB
νρ

O(3)

B2H2D2 (DµH†DµH)BνρB̃
νρ O(4)

B2H2D2 (DµH
†H +H†DµH)DνB

µρBν
ρ

O(5)

B2H2D2 i(H†DµDνH −DµDνH
†H)BµρBν

ρ O(6)

B2H2D2 H†HDµDνB
µρBν

ρ

O(7)

B2H2D2 i(H†DνH −DνH
†H)DµB

µρBν
ρ O(8)

B2H2D2 (H†DνH +DνH
†H)DµB

µρBν
ρ

O(9)

B2H2D2 (H†D2H +D2H†H)BνρB̃νρ O(10)

B2H2D2 i(H†D2H −D2H†H)BνρB̃νρ

O(11)

B2H2D2 (H†DνH +DνH
†H)DµB

µρB̃ν
ρ O(12)

B2H2D2 i(H†DνH −DνH
†H)DµB

µρB̃ν
ρ

O(1)

G2H2D2 (DµH†DνH)GA
µρG

Aνρ O(2)

G2H2D2 (DµH†DµH)GA
νρG

Aνρ

O(3)

G2H2D2 (DµH†DµH)GA
νρG̃

Aνρ O(4)

G2H2D2 (DµH
†H +H†DµH)DνG

AµρGAν
ρ

O(5)

G2H2D2 i(H†DµDνH −DµDνH
†H)GAµρGAν

ρ O(6)

G2H2D2 H†HDµDνG
AµρGAν

ρ

O(7)

G2H2D2 i(H†DνH −DνH
†H)DµG

AµρGAν
ρ O(8)

G2H2D2 (H†DνH +DνH
†H)DµG

AµρGAν
ρ

O(9)

G2H2D2 (H†D2H +D2H†H)GAνρG̃Aν
ρ O(10)

G2H2D2 i(H†D2H −D2H†H)GAνρG̃A
νρ

X2H2D2

O(11)

G2H2D2 (H†DνH +DνH
†H)DµG

AµρG̃Aν
ρ O(12)

G2H2D2 i(H†DνH −DνH
†H)DµG

AµρG̃Aν
ρ

Table A.2: Green’s basis of dimension-eight bosonic operators. Operators in gray are redundant.
Original work, extracted from [113].



Dimension 8

O(1)

ℓ2H4D i(ℓγµℓ)(H†←→D µH)(H†H) O(2)

ℓ2H4D i(ℓγµσIℓ)[(H†←→D I
µH)(H†H) + (H†←→D µH)(H†σIH)]

O(3)

ℓ2H4D iϵIJK(ℓγµσIℓ)(H†←→D J
µH)(H†σKH) O(4)

ℓ2H4D ϵIJK(ℓγµσIℓ)(H†σJH)Dµ(H
†σKH)

O(5)

ℓ2H4D (ℓγµℓ)Dµ(H
†H)(H†H) O(6)

ℓ2H4D i(ℓγµ
←→
D µℓ)(H

†H)(H†H)

O(7)

ℓ2H4D i(ℓγµ
←→
D I

µℓ)(H
†σIH)(H†H) O(8)

ℓ2H4D Dµ(ℓγ
µσIℓ)(H†σIH)(H†H)

O(1)

e2H4D i(eγµe)(H†←→D µH)(H†H) O(2)

e2H4D (eγµe)Dµ(H
†H)(H†H)

O(3)

e2H4D i(eγµ
←→
D µe)(H

†H)(H†H)

O(1)

q2H4D i(qγµq)(H†←→D µH)(H†H) O(2)

q2H4D i(qγµσIq)[(H†←→D I
µH)(H†H) + (H†←→D µH)(H†σIH)]

O(3)

q2H4D iϵIJK(qγµσIq)(H†←→D J
µH)(H†σKH) O(4)

q2H4D ϵIJK(qγµσIq)(H†σJH)Dµ(H
†σKH)

O(5)

q2H4D (qγµq)Dµ(H
†H)(H†H) O(6)

q2H4D i(qγµ
←→
D µq)(H

†H)(H†H)

O(7)

q2H4D i(qγµ
←→
D I

µq)(H
†σIH)(H†H) O(8)

q2H4D Dµ(qγ
µσIq)(H†σIH)(H†H)

O(1)

u2H4D i(uγµu)(H†←→D µH)(H†H) O(2)

u2H4D (uγµu)Dµ(H
†H)(H†H)

O(3)

e2H4D i(uγµ
←→
D µu)(H

†H)(H†H)

O(1)

d2H4D i(dγµd)(H†←→D µH)(H†H) O(2)

d2H4D (dγµd)Dµ(H
†H)(H†H)

O(3)

e2H4D i(dγµ
←→
D µd)(H

†H)(H†H)

ψ2H4D

O(1)

udH4D i(uγµd)(H̃†←→D µH)(H†H)

OℓeH5 (ℓeH)(H†H)2 OquH5 (quH̃)(H†H)2

ψ2H5(∗) O(3)

qdH5 (qdH)(H†H)2

O(1)

leWH3 (ℓσµνe)σIH(H†H)W I
µν O(2)

leWH3 (ℓσµνe)H(H†σIH)W I
µν

OleBH3 (ℓσµνe)H(H†H)Bµν

OquGH3 (qσµνTAu)H̃(H†H)GA
µν

O(1)

quWH3 (qσµνu)σIH̃(H†H)W I
µν O(2)

quWH3 (qσµνu)H̃(H†σIH)W I
µν

OquBH3 (qσµνu)H̃(H†H)Bµν

OqdGH3 (qσµνTAd)H(H†H)GA
µν

O(1)

qdWH3 (qσµνd)σIH(H†H)W I
µν O(2)

qdWH3 (qσµνd)H(H†σIH)W I
µν

Xψ2H3(∗)

OqdBH3 (qσµνd)H(H†H)Bµν

Table A.3: Green’s Basis of dimension-eight fermionic operators. Operators in grey are redundant.
Adapted from Refs. [30, 116]. (∗) represents a complex class of operators.



Dimension 8

O(1)

ℓeH3D2 (ℓeH)(DµH
†DµH) O(2)

ℓeH3D2 (ℓeσIH)(DµH
†σIDµH)

O(3)

ℓeH3D2 (ℓσµνeH)(DµH
†DνH) O(4)

ℓeH3D2 (ℓσµνeσIH)(DµH
†σIDνH)

O(5)

ℓeH3D2 (ℓeDµH)(H†DµH) O(6)

ℓeH3D2 (ℓσµνeDνH)(H†DµH)

O(7)

ℓeH3D2 (ℓDµeH)Dµ(H
†H) O(8)

ℓeH3D2 (ℓDµeH)(H†i
←→
D µH)

O(9)

ℓeH3D2 (ℓσµνDµeH)Dν(H
†H) O(10)

ℓeH3D2 (ℓσµνDµeH)(H†i
←→
D νH)

O(11)

ℓeH3D2 (DµℓeH)Dµ(H
†H) O(12)

ℓeH3D2 (DµℓeH)(H†i
←→
D µH)

O(13)

ℓeH3D2 (ℓD2eH)(H†H) O(14)

ℓeH3D2 (ℓeD2H)(H†H)

O(15)

ℓeH3D2 (DµℓeDµH)(H†H) O(16)

ℓeH3D2 (Dµℓσ
µνDνeH)(H†H)

O(1)

quH3D2 (quH̃)(DµH
†DµH) O(2)

quH3D2 (quσIH̃)(DµH
†σIDµH)

O(3)

quH3D2 (qσµνuH̃)(DµH
†DνH) O(4)

quH3D2 (qσµνuσIH̃)(DµH
†σIDνH)

O(5)

quH3D2 (quDµH̃)(DµH
†H) O(6)

quH3D2 (qσµνuDνH̃)(DµH
†H)

O(7)

quH3D2 (qDµuH̃)Dµ(H
†H) O(8)

quH3D2 (qDµuH̃)(H†i
←→
D µH)

O(9)

quH3D2 (qσµνDµuH̃)Dν(H
†H) O(10)

quH3D2 (qσµνDµuH̃)(H†i
←→
D νH)

O(11)

quH3D2 (DµquH̃)Dµ(H
†H) O(12)

quH3D2 (DµquH̃)(H†i
←→
D µH)

O(13)

quH3D2 (qD2uH̃)(H†H) O(14)

quH3D2 (quD2H̃)(H†H)

O(15)

quH3D2 (DµquDµH̃)(H†H) O(16)

quH3D2 (Dµqσ
µνDνuH̃)(H†H)

O(1)

qdH3D2 (qdH)(DµH
†DµH) O(2)

qdH3D2 (qdσIH)(DµH
†σIDµH)

O(3)

qdH3D2 (qσµνdH)(DµH
†DνH) O(4)

qdH3D2 (qσµνdσIH)(DµH
†σIDνH)

O(5)

qdH3D2 (qdDµH)(H†DµH) O(6)

qdH3D2 (qσµνdDνH)(H†DµH)

O(7)

qdH3D2 (qDµdH)Dµ(H
†H) O(8)

qdH3D2 (qDµdH)(H†i
←→
D µH)

O(9)

qdH3D2 (qσµνDµdH)Dν(H
†H) O(10)

qdH3D2 (qσµνDµdH)(H†i
←→
D νH)

O(11)

qdH3D2 (DµqdH)Dµ(H
†H) O(12)

qdH3D2 (DµqdH)(H†i
←→
D µH)

O(13)

qdH3D2 (qD2dH)(H†H) O(14)

qdH3D2 (qdD2H)(H†H)

ψ2H3D2(∗)

O(15)

qdH3D2 (DµqdDµH)(H†H) O(16)

qdH3D2 (Dµqσ
µνDνdH)(H†H)

Table A.4: Green’s Basis of dimension-eight fermionic operators. Operators in grey are redundant.
Adapted from Refs. [30, 116]. (∗) represents a complex class of operators.



Dimension 8

O(1)

We2H2D (eγνe)Dµ(H†σIH)W I
µν O(2)

We2H2D (eγνe)Dµ(H†σIH)W̃ I
µν

O(3)

We2H2D i(eγνe)(H†←→D IµH)W I
µν O(4)

We2H2D i(eγνe)(H†←→D IµH)W̃ I
µν

O(5)

We2H2D Dµ(eγνe)(H†σIH)W I
µν O(6)

We2H2D i(eγν
←→
D µe)(H†σIH)W I

µν

O(7)

We2H2D i(eγν
←→
D µe)(H†σIH)W̃ I

µν

O(1)

Be2H2D (eγνe)Dµ(H†H)Bµν O(2)

Be2H2D (eγνe)Dµ(H†H)B̃µν

O(3)

Be2H2D i(eγνe)(H†←→D µH)Bµν O(4)

Be2H2D i(eγνe)(H†←→D µH)B̃µν

O(5)

Be2H2D Dµ(eγνe)(H†H)Bµν O(6)

Be2H2D i(eγν
←→
D µe)(H†H)Bµν

O(7)

Be2H2D i(eγν
←→
D µe)(H†H)B̃µν

O(1)

Gu2H2D (uγνTAu)Dµ(H†H)GA
µν O(2)

Gu2H2D (uγνTAu)Dµ(H†H)G̃A
µν

O(3)

Gu2H2D i(uγνTAu)(H†←→D µH)GA
µν O(4)

Gu2H2D i(uγνTAu)(H†←→D µH)G̃A
µν

O(5)

Gu2H2D Dµ(uγνTAu)(H†H)GA
µν O(6)

Gu2H2D i(uγνTA
←→
D µu)(H†H)Gµν

O(7)

Gu2H2D i(uγνTA
←→
D µu)(H†H)G̃µν

O(1)

Wu2H2D (uγνu)Dµ(H†σIH)W I
µν O(2)

Wu2H2D (uγνu)Dµ(H†σIH)W̃ I
µν

O(3)

Wu2H2D i(uγνu)(H†←→D IµH)W I
µν O(4)

Wu2H2D i(uγνu)(H†←→D IµH)W̃ I
µν

O(5)

Wu2H2D Dµ(uγνu)(H†σIH)W I
µν O(6)

Wu2H2D i(uγν
←→
D µu)(H†σIH)W I

µν

O(7)

Wu2H2D i(uγν
←→
D µu)(H†σIH)W̃ I

µν

O(1)

Bu2H2D (uγνu)Dµ(H†H)Bµν O(2)

Bu2H2D (uγνu)Dµ(H†H)B̃µν

O(3)

Bu2H2D i(uγνu)(H†←→D µH)Bµν O(4)

Bu2H2D i(uγνu)(H†←→D µH)B̃µν

O(5)

Bu2H2D Dµ(uγνu)(H†H)Bµν O(6)

Bu2H2D i(uγν
←→
D µu)(H†H)Bµν

O(7)

Bu2H2D i(uγν
←→
D µu)(H†H)B̃µν

O(1)

Gd2H2D (dγνTAd)Dµ(H†H)GA
µν O(2)

Gd2H2D (dγνTAd)Dµ(H†H)G̃A
µν

O(3)

Gd2H2D i(dγνTAd)(H†←→D µH)GA
µν O(4)

Gd2H2D i(dγνTAd)(H†←→D µH)G̃A
µν

O(5)

Gd2H2D Dµ(dγνTAd)(H†H)GA
µν O(6)

Gd2H2D i(dγνTA
←→
D µd)(H†H)Gµν

Xψ2H2D

O(7)

Gd2H2D i(dγνTA
←→
D µd)(H†H)G̃µν

Table A.5: Green’s Basis of dimension-eight Xψ2H2D operators (Part I). Operators in grey are
redundant. Adapted from Refs. [30, 116].



Dimension 8

O(1)

Wd2H2D (dγνd)Dµ(H†σIH)W I
µν O(2)

Wd2H2D (dγνd)Dµ(H†σIH)W̃ I
µν

O(3)

Wd2H2D i(dγνd)(H†←→D IµH)W I
µν O(4)

Wd2H2D i(dγνd)(H†←→D IµH)W̃ I
µν

O(5)

Wd2H2D Dµ(dγνd)(H†σIH)W I
µν O(6)

Wd2H2D i(dγν
←→
D µd)(H†σIH)W I

µν

O(7)

Wd2H2D i(dγν
←→
D µd)(H†σIH)W̃ I

µν

O(1)

Bd2H2D (dγνd)Dµ(H†H)Bµν O(2)

Bd2H2D (dγνd)Dµ(H†H)B̃µν

O(3)

Bd2H2D i(dγνd)(H†←→D µH)Bµν O(4)

Bd2H2D i(dγνd)(H†←→D µH)B̃µν

O(5)

Bd2H2D Dµ(dγνd)(H†H)Bµν O(6)

Bd2H2D i(dγν
←→
D µd)(H†H)Bµν

O(7)

Bd2H2D i(dγν
←→
D µd)(H†H)B̃µν

O(1)

GudH2D (uγνTAd)(H̃†DµH)GA
µν O(2)

GudH2D (uγνTAd)(H̃†DµH)G̃A
µν

O(1)

WudH2D (uγνd)(H̃†σIDµH)W I
µν O(2)

WudH2D (uγνd)(H̃†σIDµH)W̃ I
µν

O(3)

WudH2D (uγνDµd)(H̃†σIH)W I
µν O(4)

WudH2D (uγνDµd)(H̃†σIH)W̃ I
µν

O(5)

WudH2D (uγνd)(H̃†σIH)DµW I
µν

O(1)

BudH2D (uγνd)(H̃†DµH)Bµν O(2)

BudH2D (uγνd)(H̃†DµH)B̃µν

O(1)

Wℓ2H2D (ℓγνℓ)Dµ(H†σIH)W I
µν O(2)

Wℓ2H2D (ℓγνℓ)Dµ(H†σIH)W̃ I
µν

O(3)

Wℓ2H2D i(ℓγνℓ)(H†←→D IµH)W I
µν O(4)

Wℓ2H2D i(ℓγνℓ)(H†←→D IµH)W̃ I
µν

O(5)

Wℓ2H2D (ℓγνσIℓ)Dµ(H†H)W I
µν O(6)

Wℓ2H2D (ℓγνσIℓ)Dµ(H†H)W̃ I
µν

O(7)

Wℓ2H2D i(ℓγνσI l)(H†←→D µH)W I
µν O(8)

Wℓ2H2D i(lγνσI l)(H†←→D µH)W̃ I
µν

O(9)

Wℓ2H2D ϵIJK(ℓγνσIℓ)Dµ(H†σJH)WK
µν O(10)

Wℓ2H2D ϵIJK(ℓγνσIℓ)Dµ(H†σJH)W̃K
µν

O(11)

Wℓ2H2D iϵIJK(ℓγνσIℓ)(H†←→D JµH)WK
µν O(12)

Wℓ2H2D iϵIJK(ℓγνσIℓ)(H†←→D JµH)W̃K
µν

O(13)

Wℓ2H2D Dµ(ℓγνℓ)(H†σIH)W I
µν O(14)

Wℓ2H2D i(ℓγν
←→
D µℓ)(H†σIH)W I

µν

O(15)

Wℓ2H2D i(ℓγν
←→
D µℓ)(H†σIH)W̃ I

µν O(16)

Wℓ2H2D Dµ(ℓγνσIℓ)(H†H)W I
µν

O(17)

Wℓ2H2D i(ℓγν
←→
D Iµℓ)(H†H)W I

µν O(18)

Wℓ2H2D i(ℓγν
←→
D Iµℓ)(H†H)W̃ I

µν

O(19)

Wℓ2H2D ϵIJKDµ(ℓγνσIℓ)(H†σJH)WK
µν O(20)

Wℓ2H2D iϵIJK(ℓγν
←→
D Iµℓ)(H†σJH)WK

µν

Xψ2H2D

O(21)

Wℓ2H2D iϵIJK(ℓγν
←→
D Iµℓ)(H†σJH)W̃K

µν

Table A.6: Green’s Basis of dimension-eight Xψ2H2D operators (Part II). Operators in grey are
redundant. Adapted from Refs. [30, 116].



Dimension 8

O(1)

Bℓ2H2D (ℓγνσIℓ)Dµ(H†σIH)Bµν O(2)

Bℓ2H2D (ℓγνσIℓ)Dµ(H†σIH)B̃µν

O(3)

Bℓ2H2D i(ℓγνσIℓ)(H†←→D IµH)Bµν O(4)

Bℓ2H2D i(ℓγνσIℓ)(H†←→D IµH)B̃µν

O(5)

Bℓ2H2D (ℓγνℓ)Dµ(H†H)Bµν O(6)

Bℓ2H2D (ℓγνℓ)Dµ(H†H)B̃µν

O(7)

Bℓ2H2D i(ℓγνℓ)(H†←→D µH)Bµν O(8)

Bℓ2H2D i(ℓγνℓ)(H†←→D µH)B̃µν

O(9)

Bℓ2H2D Dµ(ℓγνσIℓ)(H†σIH)Bµν O(10)

Bℓ2H2D i(ℓγν
←→
D Iµℓ)(H†σIH)Bµν

O(11)

Bℓ2H2D i(ℓγν
←→
D Iµℓ)(H†σIH)B̃µν O(12)

Bℓ2H2D Dµ(ℓγνℓ)(H†H)Bµν

O(13)

Bℓ2H2D i(ℓγν
←→
D µℓ)(H†H)Bµν O(14)

Bℓ2H2D i(ℓγν
←→
D µℓ)(H†H)B̃µν

O(1)

Gq2H2D (qγνTAσIq)Dµ(H†σIH)GA
µν O(2)

Gq2H2D (qγνTAσIq)Dµ(H†σIH)G̃A
µν

O(3)

Gq2H2D i(qγνTAσIq)(H†←→D IµH)GA
µν O(4)

Gq2H2D i(qγνTAσIq)(H†←→D IµH)G̃A
µν

O(5)

Gq2H2D (qγνTAq)Dµ(H†H)GA
µν O(6)

Gq2H2D (qγνTAq)Dµ(H†H)G̃A
µν

O(7)

Gq2H2D i(qγνTAq)(H†←→D µH)GA
µν O(8)

Gq2H2D i(qγνTAq)(H†←→D µH)G̃A
µν

O(9)

Gq2H2D Dµ(qγνTAσIq)(H†σIH)GA
µν O(10)

Gq2H2D i(qγνTA
←→
D Iµq)(H†σIH)GA

µν

O(11)

Gq2H2D i(qγνTA
←→
D Iµq)(H†σIH)G̃A

µν O(12)

Gq2H2D Dµ(qγνTAq)(H†H)GA
µν

O(13)

Gq2H2D i(qγνTA
←→
D µq)(H†H)GA

µν O(14)

Gq2H2D i(qγνTA
←→
D µq)(H†H)G̃A

µν

O(1)

Wq2H2D (qγνq)Dµ(H†σIH)W I
µν O(2)

Wq2H2D (qγνq)Dµ(H†σIH)W̃ I
µν

O(3)

Wq2H2D i(qγνq)(H†←→D IµH)W I
µν O(4)

Wq2H2D i(qγνq)(H†←→D IµH)W̃ I
µν

O(5)

Wq2H2D (qγνσIq)Dµ(H†H)W I
µν O(6)

Wq2H2D (qγνσIq)Dµ(H†H)W̃ I
µν

O(7)

Wq2H2D i(qγνσIq)(H†←→D µH)W I
µν O(8)

Wq2H2D i(qγνσIq)(H†←→D µH)W̃ I
µν

O(9)

Wq2H2D ϵIJK(qγνσIq)Dµ(H†σJH)WK
µν O(10)

Wq2H2D ϵIJK(qγνσIq)Dµ(H†σJH)W̃K
µν

O(11)

Wq2H2D iϵIJK(qγνσIq)(H†←→D JµH)WK
µν O(12)

Wq2H2D iϵIJK(qγνσIq)(H†←→D JµH)W̃K
µν

O(13)

Wq2H2D Dµ(qγνq)(H†σIH)W I
µν O(14)

Wq2H2D i(qγν
←→
D µq)(H†σIH)W I

µν

O(15)

Wq2H2D i(qγν
←→
D µq)(H†σIH)W̃ I

µν O(16)

Wq2H2D Dµ(qγνσIq)(H†H)W I
µν

O(17)

Wq2H2D i(qγν
←→
D Iµq)(H†H)W I

µν O(18)

Wq2H2D i(qγν
←→
D Iµq)(H†H)W̃ I

µν

O(19)

Wq2H2D ϵIJKDµ(qγνσIq)(H†σJH)WK
µν O(20)

Wq2H2D iϵIJK(qγν
←→
D Iµq)(H†σJH)WK

µν

O(21)

Wq2H2D iϵIJK(qγν
←→
D Iµq)(H†σJH)W̃K

µν

O(1)

Bq2H2D (qγνσIq)Dµ(H†σIH)Bµν O(2)

Bq2H2D (qγνσIq)Dµ(H†σIH)B̃µν

O(3)

Bq2H2D i(qγνσIq)(H†←→D IµH)Bµν O(4)

Bq2H2D i(qγνσIq)(H†←→D IµH)B̃µν

O(5)

Bq2H2D (qγνq)Dµ(H†H)Bµν O(6)

Bq2H2D (qγνq)Dµ(H†H)B̃µν

O(7)

Bq2H2D i(qγνq)(H†←→D µH)Bµν O(8)

Bq2H2D i(qγνq)(H†←→D µH)B̃µν

O(9)

Bq2H2D Dµ(qγνσIq)(H†σIH)Bµν O(10)

Bq2H2D i(qγν
←→
D Iµq)(H†σIH)Bµν

O(11)

Bq2H2D i(qγν
←→
D Iµq)(H†σIH)B̃µν O(12)

Bq2H2D Dµ(qγνq)(H†H)Bµν

Xψ2H2D

O(13)

Bq2H2D i(qγν
←→
D µq)(H†H)Bµν O(14)

Bq2H2D i(qγν
←→
D µq)(H†H)B̃µν

Table A.7: Green’s Basis of dimension-eight Xψ2H2D operators (Part III). Operators in grey are
redundant. Adapted from Refs. [30, 116].



Dimension 7

ψ2H4 O(7)
ℓH ϵijϵmn(ℓ

iCℓm)(HjHn)(H†H)

ψ2H2D2 O(1)
ℓHD ϵijϵmnℓ

iC(Dµℓj)Hm(DµH
n) O(2)

ℓHD ϵimϵjnℓ
iC(Dµℓj)Hm(DµH

n)

ψ2H3D OℓHDe ϵijϵmn(ℓ
iCγµe)H

jHmDµHn

ψ2H2X OℓHB ϵijϵmnℓ
iC(σµνℓ

m)HjHnBµν OℓHW ϵij(σ
Iϵ)mnℓ

iC(σµνℓ
m)HjHnW Iµν

Dimension 6

H6 OH (H†H)3

OH□ (H†H)2(H†H) OHD (H†DµH)†(H†DµH)

H4D2

O′
HD (H†H)(DµH)†(DµH) O′′

HD i(H†H)Dµ(H
†DµH −DµH†H)

OuH (H†H)qH̃u OdH (H†H)qHd

ψ2H3

OeH (H†H)ℓHe

O(1)
Hq i(qγµq)(H†DµH −DµH

†H) O(3)
Hq i(qσIγµq)(H†σIDµH −DµH

†σIH)

OHu i(uγµu)(H†DµH −DµH
†H) OHd i(dγµd)(H†DµH −DµH

†H)

O(1)
Hℓ i(ℓγµℓ)(H†DµH −DµH

†H) O(3)
Hℓ i(ℓσIγµℓ)(H†σIDµH −DµH

†σIH)ψ2H2D

OHe i(eγµe)(H†DµH −DµH
†H) OHud i(uγµd)(H†DµH −DµH

†H)

O(1)
qq (qγµq)(qγµq) O(3)

qq (qγµσIq)(qγµσ
Iq)

Ouu (uγµu)(uγµu) Odd (dγµd)(dγµd)

O(1)
ud (uγµu)(dγµd) O(8)

ud (uγµTAu)(dγµT
Ad)

O(1)
qu (qγµq)(uγµu) O(8)

qu (qγµTAq)(uγµT
Au)

O(1)
qd (qγµq)(dγµd) O(8)

qd (qγµTAq)(dγµT
Ad)

O(1)
quqd ϵij(q

iu)(qd) O(8)
quqd ϵij(q

iTAu)(qjTAd)

O(1)
ℓq (ℓγµℓ)(qγµq) O(3)

ℓq (ℓγµσIℓ)(qγµσ
Iq)

Oeu (eγµe)(uγµu) Oed (eγµe)(dγµd)

Oqe (qγµq)(eγµe) Oℓu (ℓγµℓ)(uγµu)

Oℓd (ℓγµℓ)(dγµd) Oℓedq (ℓe)(dq)

O(1)
ℓequ ϵij(ℓ

i
e)(qu) O(3)

ℓequ ϵij(ℓ
i
σµνe)(qσµνu)

Oℓℓ (ℓγµℓ)(ℓγµℓ) Oee (eγµe)(eγµe)

ψ4

Oℓe (ℓγµℓ)(eγµe)

Dimension 5

ψ2H2 O(5)
ℓH ϵijϵmn(ℓ

iCℓm)(HjHn)

Table A.8: Basis of dimension-five, -six and -seven operators needed for the renormalisation of
dimension-eight bosonic operators. Operators in grey are redundant. Adapted from Refs. [27, 28,
31, 32].




