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Abstract

The Standard Model Effective Field Theory (SMEFT) provides a powerful, model-
independent framework to explore deviations from the Standard Model (SM) by
parametrizing potential new physics through higher-dimensional operators. This
thesis investigates the renormalisation structure of SMEFT, focusing on dimension-
eight operators, which are increasingly relevant in precision analyses and in models
where dimension-six effects are suppressed.

We review renormalisation in quantum field theory, emphasizing dimensional
regularisation and the MS scheme, and outline the conceptual foundations of EFTs.
One of the central results of this work the systematic construction and classifica-
tion of bosonic operators in SMEFT at dimension eight, employing Group Theory
techniques and removing redundancies by working in momentum space. Building
on this operator basis, we compute the complete one-loop renormalisation group
equations (RGEs) involving insertions of dimension-eight-or-lower operators. This
includes pure dimension-eight effects, pairs of dimension-six operators and lepton-
number-violating sectors. Our calculations use an off-shell Green’s function basis
and leverage algebraic simplifications derived from symmetry and gauge invariance.

These results are applied to positivity bounds and oblique parameters, provid-
ing essential tools for consistent SMEFT analyses across energy scales. The findings

extend SMEFT’s theoretical reach and support its use in high-precision phenomenol-

ogy.



Resumen

La Teorfa de Campos Efectiva del Modelo Esténdar (SMEFT, por sus siglas en inglés)
proporciona un marco potente e independiente de modelos para explorar desviaciones
del Modelo Estandar (SM), parametrizando posibles nuevas fisicas mediante ope-
radores de dimension superior. Esta tesis investiga la estructura de renormalizacién
de la SMEFT, centrandose en operadores de dimensién ocho, los cuales son cada vez
mas relevantes en andlisis de precisién y en modelos donde los efectos de dimensién
seis estan suprimidos.

Se revisa la renormalizacion en teoria cuantica de campos, con énfasis en la regu-
larizacién dimensional y el esquema MS, y se presentan los fundamentos conceptuales
de las teorias efectivas de campos. Uno de los resultados centrales de este trabajo es
la construccion y clasificacion sistematica de los operadores bosénicos en SMEFT de
dimensién ocho, empleando técnicas de Teoria de Grupos y eliminando redundancias
mediante el trabajo en espacio de momentos. A partir de esta base de operadores,
se calculan las ecuaciones completas del grupo de renormalizacién (RGEs) a un lazo
que involucran inserciones de operadores de dimensién ocho o inferior. Esto incluye
efectos puros de dimensién ocho, pares de operadores de dimensién seis y sectores
que violan el nimero lepténico. Nuestros cdlculos utilizan una base de funciones de
Green fuera de su capa de masa y aprovechan simplificaciones algebraicas derivadas
de la simetria y la invariancia gauge.

Estos resultados se aplican a cotas de positividad y a los ‘parametros oblicuos’,
proporcionando herramientas esenciales para analisis coherentes dentro de SMEFT
en distintos regimenes de energia. Los hallazgos amplian el alcance tedrico de

SMEFT y respaldan su uso en estudios fenomenoldgicos de alta precision.
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Chapter 1.

Introduction

1.1 Motivation

In the latter half of the 20th century, collider experiments revealed that particles once
thought to be elementary actually exhibited substructure, leading to the identifica-
tion of quarks and other subnuclear constituents. Such experiments were interpreted
within the general framework of Quantum Field Theories (QFTs), which provided
the foundation for more specific theories such as Quantum Electrodynamics (QED),
Quantum Chromodynamics (QCD), and ultimately the Standard Model (SM) of
particle physics. The SM provided a precise description of the observed particles
and their interactions. However, one piece of the puzzle remained missing: a scalar
mediator that would give mass to the otherwise massless particles in the model,
through the Higgs mechanism.

The Higgs boson was finally detected in 2012 at the LHC [1, 2], decades after
its prediction. By that time, other observations from Cosmology, Astrophysics and
Particle Physics had already pointed out inconsistencies of the SM. Thus, before the
SM was empirically validated as the most accurate QFT, there were already new
models in development. Supersymmetry [3, 4], Extra Dimensions [5-7], Composite
Higgs Models [8-10], and String Theory [11-13] are examples of well-established

theoretical frameworks developed near the discovery of the Higgs boson and were

1



2 Renormalization of the SMEFT to dimension eight

actively explored in anticipation of LHC-era data. There are also extensions of the
SM with Axion-Like Particles [14-21], Dark Photons [22] or Leptoquarks [23-26],
which could explain the deviations of experimental data from the SM.

While the detection of the Higgs boson completed the SM, it also sharpened the
need to address its known limitations, as numerous phenomena remain unexplained.
In the search for the Higgs particle, its mass and couplings were constrained, and
these restrictions affected models that predicted alternative phenomena in the MeV-
GeV region, such as hidden sectors or dark photons. Later on, the focus of experi-
ments moved to the exploration of higher and higher energies. This led to increased
interest in theoretical frameworks capable of addressing the limitations of the SM. In
the absence of clear New Physics (NP) signals, precision measurements and indirect
constraints have become central tools in the search for Beyond the Standard Model
(BSM) physics. The situation is reminiscent of the pre-Higgs era, in the sense that
searches are imposing restrictions on NP models. But this time, there is no single
dominant theory awaiting validation, nor a specific resonance whose discovery would
serve as a definitive turning point. The Higgs’s expected properties were predicted
with precision, and all the experiments were focused on these specific signals. In the
current experimental landscape, there are several open lines of research looking for
dark matter, heavy neutrinos or high-energy effects, all of which cover a wide region
of the parameter space. The vast range of possibilities contrasts with the limited set
of actual results.

In this context, precision physics gains much more relevance. Data analysis now
depends much more on refining the techniques than before, since there is abundant
registered data. The emphasis is now on model-independent approaches and robust
statistics. It is important to build a consistent, minimal parameter space where
most, if not all, experiments can express and compare their results within the same
framework. QFT leaves freedom to build lots of different models, but this variety
complicates the comparison of predictions and the interpretation of data. For this
reason, the use of Effective Field Theories (EFTs) is crucial. Precision Physics at

lower energies already uses form factors and effective interactions in EFTs; such



Chapter 1. Introduction 3

as Chiral Perturbation Theory (yPT) (applicable to low-energy QCD), the Soft
Collinear Effective Theory (SCET) (used in jet physics) or Heavy Quark Effective
Theory (HQET) (the EFT of mesons with heavy quarks). In the case of BSM
physics, it is sensible to set a common framework, for example, with Standard Model
Effective Field Theory (SMEFT), the EFT parameterising NP with SM fields and
symmetries. Other EFTs are covering similar energy ranges, like Higgs Effective
Field Theory (HEFT). However, if the traditional Higgs mechanism for the SM is
assumed and no NP is discovered below the Electroweak (EW) scale, then SMEFT is
the most reasonable option for a comprehensive analysis, and indeed it is a popular
one, although alternative formulations and extensions always have to be considered.

Using all resources from QFT in general and, in particular, from EFT, we can
exploit SMEFT so that it becomes a thorough tool for analysis. Two key aspects
are discussed in this thesis: the calculation of a minimal set of operators that cover
all the possible interactions in SMEFT within a limited accuracy range (that we
will specify later), and the running of the couplings and parameters across different
energy scales. To put these topics into context, Chapter 2 reviews renormalisation in
QFT, and specifically, the advantages of Dimensional Regularisation (DimReg) and
the Modified Minimal Subtraction (MS) renormalisation scheme. The concept of
power counting is introduced here and explained in more detail in Chapter 3, along
with another important resource of EFT: matching.

Defining a framework to unify theories requires a common parameterisation of the
results. In an EFT| all the allowed interactions can be expressed in terms of a minimal
set, known as a basis of operators. In Chapter 4, we will see the importance of
building a basis of operators for SMEFT, although we will allow certain redundancies
for our convenience. In the years before the start of the thesis, there were complete
bases of operators up to dimension seven [27-31]. We will use a basis extended to
include operators that are redundant via the Equation of Motion (EoM), which were
only known for dimension six [32] before 2021. Constructing such a basis is a non-
trivial mathematical task, but over the last few years, there have been key impactful

contributions to the problem. Currently, there are already systematic methods to
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generate sets of independent operators for SMEFT, but it is not easy to compare
different bases or to rotate from one to another. We will see how to build such
algorithms, including our contribution to the construction of the complete bosonic
operator basis at dimension eight, which plays a key role in the computation of the
Renormalisation Group Equations (RGEs).

The running of SMEFT operators is currently a hot topic, that saw its first
peak a decade ago, with the complete one-loop renormalisation up to dimension-six
SMEFT operators [33-40], a milestone that enabled systematic RGE analyses and
consistent matching to Ultraviolet (UV) models. Recently, attention has been drawn

to dimension-eight operators for different reasons:

1. They are dominant with respect to dimension-six operators in some observ-
ables [41].

2. Dimension-six operators do not arise in some models, thus, dimension-eight

are the leading contribution [30, 42] (ignoring dimension-seven).

3. If the NP scale is low, they could be less suppressed by power-counting ef-
fects [42, 43].

4. As the precision of experimental measurements grows, the theoretical precision

needs to increase too [43-45].

As dimension-eight operators get involved in calculations, the need for the run-
ning of higher-dimensional Wilson coefficients (WCs) is starting to become apparent
among many researchers. In Chapter 5, we will review the results of the RGE at
one loop for all operators up to dimension eight. We will explain in detail the cho-
sen method of computation and comment on other methods. This thesis focuses on
one-loop results; higher-loop corrections are beyond our current scope.

Finally, we demonstrate how the results of this work, along with those of other
groups, are being applied and what the prospects of this line of research are. In
particular, we will show applications to positivity bounds [46], restrictions on the

signs of scattering amplitudes imposed by the properties of the S-matrix. These
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constraints can be used either as tests of the unitarity of the S-matrix or as tools to
restrict the RGEs. By their definition, they directly affect operators of dimension
eight or greater, so we will explore some of the consequences in Section 5.7. Another
avenue to be explored is the oblique parameters, where dimension eight operators
contribute at Next to Next to Leading Order (NNLO). We will not perform fits
or very complex studies here, but only remark on some interesting facts directly
deduced from the RGEs.

1.2 Notation and conventions

We assume the reader is familiar with QFT and, more specifically, the SM and its
symmetry groups. Amplitudes and Feynman diagrams are written in the conventions
of [47], drawn with Jaxodraw [48], and computed with FeynRules [49], FeynArts [50]
and FormCalc [51].

In this thesis, we will describe the SM with the following Lagrangian:

]' v 1 a a uv 1 v

'CSM - — ZGﬁVGA“ - ZW/WW e ZB#VB’M
+ @D + 001D + uiPu® + deilpd® + eCilpe®
+ (D, H)' (D"H) + m%|H|? — X\ H|*

- (?Jggq_affuﬁ +ylsq®Hd® + yoploHe® + h.c.) , (1.1)

where B, W and G represent the gauge bosons of U(1)y, SU(2), and SU(3)¢; while
g1, g2 and g3 stand for the corresponding gauge couplings. Likewise, T = (v, e;)'
and ¢" = (u; dr)" are the left-handed leptons and u,d, e are their right-handed
counterparts. We will always assume there are ny = 3 generations unless otherwise
stated. Weuse H' = (H* H°)" = (H, +iH, Hs+iH,)" for the Higgs doublet.
We also define the dual vector ﬁj = i(H");(0?);; = (H');e;; and the dual field

strength tensors: ﬁw, = F’7¢,5,, where F,, = B,,, W! ny and €934 = +1.

B
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We use the minus-sign covariant derivative:

I /\A
Lw!—ig oG (1.2)

D,u = 3# - lgl}/B# - lgg 9

with Y, of and A\ being the hypercharge operator, the Pauli and Gell-Mann matri-
ces, respectively.
We will declare consistent conventions for the indices, and follow them strictly

unless there is no possible confusion:

Isospin: i, j, k, [ going from 1 to 2

Flavour: «, 3, v, 4, €, ( going from 1 to 3

Colour: a, b, ¢ going from 1 to 8

SU(2) adjoint generators: I, J, K, L going from 1 to 3
SU(3) adjoint generators: A, B, C going from 1 to 8

Lorentz: u, v, p, 0, k, A going from 0 to 3



Chapter 2.

Regularisation and renormalisation

Renormalisation is a foundational concept in QFT, with deep mathematical roots in
the study of self-similar systems and scaling behaviour. Broadly speaking, renormal-
isation refers to the redefinition of a theory’s parameters such that its predictions
remain consistent when probed at different energy scales*. A well-known illustra-
tion of this idea is found in fractals: mathematical structures that display identical
patterns upon successive magnification, a property known as ‘scale invariance’ [52].
Self-similarity is not exclusive to abstract mathematics; it is also observed in phys-
ical systems, such as turbulent flows, biological growth patterns, and critical phenom-
ena in statistical mechanics [52]. In the context of QFT, it underlies the structure
of the Lagrangian formalism. The parameters appearing in a Lagrangian—such as
coupling constants and masses—are not directly observable and, when inserted into
perturbative calculations, often lead to UV divergences in loop integrals [47, 53].
To address these divergences, a two-step procedure is implemented. First, regu-
larisation is introduced: a mathematical scheme, such as dimensional regularisation
or a momentum cutoff, that renders the divergent integrals well-defined. Second,
the divergences are absorbed through renormalisation, which redefines the theory’s

bare parameters to cancel out infinities, resulting in finite, physically meaningful

*This connection between QFT renormalisation and fractals was inspired by the lecture notes
of Prof. McGreevy.
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——

Figure 2.1: One-loop self-energy diagrams contributing to the propagator of the right-handed elec-
tron e in the unbroken Standard Model. Each diagram involves a fermion-boson loop and is
labelled according to the hypercharge of the internal fermion line: Left: ¥_; (left-handed electron
and charged Higgs). Center: X, (right-handed electron and B gauge boson). Right: ¥; (left-
handed neutrino and neutral Higgs). These diagrams yield logarithmic divergences and motivate
the introduction of regularisation and renormalisation.

predictions [47]. The resulting renormalised Lagrangian maintains the same form as
the original but with scale-dependent, analytic couplings and field normalizations.

This procedure can be understood conceptually as a type of scale transformation:
just as the recursive definition of a fractal preserves essential structural properties,
renormalisation in QFT modifies the parameters while preserving the form of the
theory. This idea is formalized in the language of the Renormalisation Group (RG),
which governs the flow of parameters across energy scales [54, 55].

In this chapter, we provide a structured overview of regularisation and renor-
malisation in QFT. We begin by examining the origin of divergences in perturba-
tive calculations and survey several regularisation techniques. Special emphasis is
placed on DimReg and the modified minimal subtraction MS scheme, which are
used throughout the remainder of this thesis. We also discuss the distinction be-
tween renormalisable and non-renormalisable theories, and set the stage for the use
of EFTs, such as the SMEFT, in handling non-renormalisable interactions in a con-

sistent and predictive framework [56, 57].

2.1 Divergences

In perturbative quantum field theory, observables such as cross-sections and decay
rates are computed using Green’s functions, which are derived from the theory’s

Lagrangian. However, the Lagrangian itself is not directly physical: it contains
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parameters—such as couplings and masses—that serve as inputs to a formalism
rather than measurable quantities. These parameters often lead to divergences when
inserted into loop-level Feynman diagrams.

The divergences encountered in loop calculations originate from the UV region
of the momentum integrals, where virtual particles probe arbitrarily high energies.
Without a systematic method to regulate and absorb these divergences, the Green’s
functions become ill-defined and physical predictions are lost. This issue necessi-
tates the introduction of regularisation and renormalisation, which are discussed
throughout this chapter. These methods allow us to redefine the parameters in
such a way that physical predictions remain finite and consistent with experimental
results [47, 53].

To illustrate the nature of such divergences, we begin with a concrete example:
the Wavefunction Renormalisation (WFR) at one loop for a right-handed charged
lepton in the unbroken SM. The relevant two-point Green’s function is defined as
iG(p) = (€ata), which corresponds to the free propagator at the tree level.

At one loop, three diagrams contribute corrections to this quantity. These cor-

rections can be expressed in the form:

iGrL(p) iX(p) iGri(p), (2.1)

where iGr,(p) is the tree-level propagator and 3(p) represents the self-energy inser-
tion. The contributing diagrams, shown in Figure 2.1, involve various combinations
of bosons and fermions circulating in the loop. We label them by the hypercharge

of the internal fermion line:
e Y _1: A charged Higgs loop with a left-handed electron.
e Y5 A gauge boson loop with a right-handed electron.
e Y. 1: A neutral Higgs loop with a left-handed neutrino.

For example, the diagram where a left-handed electron and a charged Higgs
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circulate in the loop yields:

: — e1 T, e1* o d4k kf 1
iXa] = (] YT )aal = / er) R+ = R Tl T i (no sum over ),
(2.2)

where 3¢ is the Yukawa coupling of the lepton.
Using Feynman parameters, Wick rotation and variable change, we can transform

the integral into a standardised expression with a general solution:

d?k 1 i 1 4—d
t- / R (R —A+iE?  (4n)t N%F( 5 ) (2.3)

which is divergent as k — oo for d = 4 dimensions.

These integrals are logarithmically divergent in the UV limit and must be regulat-
ed. In the sections that follow, we will evaluate them using dimensional regularisation

to isolate and cancel the divergent pieces through the renormalisation process.

2.2 Regularisation

To address UV divergences in loop integrals, QFT employs various regularisation
methods, each introducing a formal prescription (a ‘regulator’) that modifies the
divergent integrals to make them finite and computable. These methods affect the
structure of the theory to different extents and vary in their compatibility with

symmetries. Some examples are:

Cutoff The cutoff method introduces a physical energy scale A that restricts the
integration domain of the loop momentum. This approach is intuitive but breaks
Lorentz invariance and is not suited for preserving gauge symmetries. Its simplicity
makes it useful for rough or pedagogical calculations, though it lacks theoretical

elegance.
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Derivative method This method involves differentiating the divergent integral
with respect to a dimensionful parameter until the result becomes convergent, then
integrating it back. While this cancels divergences formally, it introduces arbitrary
integration constants A, Ao, ..., making it ambiguous unless symmetry constraints

(like gauge invariance) uniquely determine those constants.

Pauli-Villars A more systematic variation of the derivative method, this regulator
introduces unphysical ‘ghost’ fields' (with modified statistics) to cancel divergences.
These fields do not correspond to real particles but are inserted in the Lagrangian.
While it works well in Abelian theories, this approach can violate gauge invariance

in non-Abelian settings and becomes cumbersome with higher-loop corrections.

Lattice Spacetime is discretised into a lattice, effectively regulating integrals by
removing the UV limit. This method preserves unitarity and is well-suited for non-
perturbative problems (e.g., QCD), but breaks Lorentz symmetry and is computa-

tionally demanding. It is not easily adapted to theories with chiral fermions.

2.2.1 (Naive) Dimensional Regularisation

DimReg stands out as the most widely adopted regularisation scheme available in
quantum field theory. Its popularity stems from its ability to preserve key symmetries
of the theory —Lorentz, gauge, and, in the case of massless fermions, chiral symmetry—
while retaining the analytic structure of Green’s functions. Although somewhat
abstract in its formulation, dimensional regularisation has become the standard in
loop calculations and is the default approach in the majority of modern perturbative
analyses.

Let us return to the loop integral presented earlier in Equation (2.3), which
was shown to be logarithmically divergent. The divergence arose from the high-

E3dk — d—,f. Rather than al-

momentum behaviour of the integrand, which scales as k°%7 =

fNot to be confused with Fadeev-Popov ghosts.
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tering the limits of integration or modifying the particle content of the Lagrangian,
dimensional regularisation instead modifies the dimension of the integration mea-
sure itself. This is achieved by analytically continuing the number of spacetime
dimensions from four to d = 4 — 2¢, with the limit ¢ — 0 taken at the end of the cal-
culation. While the notion of non-integer dimensions is mathematically formal and
lacks direct physical interpretation, the method allows for a controlled expansion of
divergent quantities in terms of poles in e.

Using DimReg the scalar loop integral appearing in Equation (2.3) becomes:

i 1 4—d i 1
- et () "t 24

where the divergence is parametrised by € — 0.

DimReg also affects the mass dimensions of fields and couplings. For example,

the dimension of a Yukawa coupling ¥, shifts as:
W]=0—[y]=e=y" — pny (2.5)

where g is an arbitrary mass scale introduced to compensate for the change in di-
mension, ensuring that the interaction terms in the Lagrangian remain dimensionless
in d spacetime dimensions.

Including the mass dimension correction x?¢ by the two Yukawa couplings in the

amplitude (2.2) and expanding (2.4) around e = 0 we get*:

2e 11 1 1 4re=1E |
i e AeF (€) ~ T2 <e +In (—A +0(e) ), (2.6)

where g is the Euler-Mascheroni constant. Thus, the regulated amplitude (2.2) is:

2] = i%p + finite. (2.7)

We use I'(€) = 1/e + v + O(e) and 27 ¢ = 1 — elnz + O(e?).
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It is important to emphasise that the scale p introduced here is not a physical cutoff.
It only appears to ensure dimensional consistency, but eventually disappears from
physical observables after renormalisation. Nonetheless, intermediate expressions

—such as beta functions and anomalous dimensions— can depend on it explicitly.

2.3 Counterterms and renormalisation conditions

Renormalisation is the process by which divergences in loop amplitudes are absorbed
into redefinitions of the theory’s bare parameters and fields. These redefinitions
introduce counterterms that cancel divergent contributions from loop diagrams [53].
The freedom in choosing the finite parts of these counterterms is what defines a
renormalisation scheme

The choice of scheme does not affect physical observables, such as S-matrix ele-
ments, but it does alter intermediate quantities like Green’s functions and running
couplings. Each scheme imposes different conditions on the counterterms and thus
results in different expressions for renormalised parameters.

The formalism applies at all-loops order. In perturbation theory, we expand the
counterterms Z in terms with the same loop suppression Z = 1 + 0 + O(2L), where
0 will also be called counterterms without possible confusion in this text, since we

always work at one loop.

2.3.1 Omnshell scheme

In the On-shell (OS) scheme, renormalisation conditions are imposed so that renor-
malised quantities match physically measured ones. For example, propagator poles
are fixed at physical particle masses, and the residues at those poles are normalized
to unity [55].

Applying this to the right-handed lepton propagator, we resum the 1PI 1-loop
contributions due to the self-energy ¥(p) into the dressed propagator (see Figure 2.2).
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O - O

Figure 2.2: The resummation of 1PI diagrams leads to a diagram formally similar to the tree-level
expression: the dressed propagator.

Then, we fix the renormalised self-energy ¥ z(p) such that

—zR(p)‘ = 0. (2.8)

Although physically motivated, the OS scheme becomes cumbersome in theories

with many parameters or in EFTs, where not all couplings are physical observables.

2.3.2 Minimal Subtraction scheme

The Minimal Subtraction (MS) scheme introduces counterterms that cancel only
the divergent parts of loop amplitudes. In dimensional regularisation, divergences

5MS

appear as poles in € = (4 —d)/2. MS counterterms subtract these poles without

touching finite terms [58]:
ws _ (W 1] e
M =i e P (29)

This approach is simple and efficient, especially when dealing with large numbers
of parameters, and is well-suited to theories like SMEFT. However, it lacks direct
physical interpretation since renormalised masses and couplings do not correspond

to physical observables.

2.3.3 Modified Minimal Subtraction scheme

The MS scheme [59] improves on MS by removing not only the 1/¢ poles but also

associated constants such as In(4r) and the Euler—Mascheroni constant g (as was
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the case in equation (2.6)). This modification improves the behaviour of beta func-
tions and is the standard scheme used in the computation of renormalisation group
equations.

For a generic parameter g such that [glq = 1 — € the relation between bare and

renormalised forms is written as

9o = K Zggr(1), (2.10)

where p is the renormalisation scale®, and Z, contains only the divergent and 7z-

dependent pieces in MS.

2.3.4 Renormalised Lagrangian

Once a renormalisation scheme is chosen, the renormalised Lagrangian is obtained
by substituting bare parameters and fields with their renormalised counterparts and
associated counterterms. For instance, the kinetic term of a fermion field v is written

at one-loop order as
L = Zyhighp = ¢ gidpr + 640 gidg. (2.11)

This decomposition separates the renormalised term and the counterterm. The same
applies to mass and interaction terms. The complete renormalised Lagrangian thus
consists of the original Lagrangian (in terms of renormalised parameters) plus a sum
of counterterms determined by the chosen scheme.

These renormalisation techniques are foundational for the treatment of loop cor-
rections in EFTs. In particular, they are applied throughout Chapter 5 to study
the SMEFT, where the dimension-six and dimension-eight operators require careful

handling of counterterms and running couplings across scales.

§We will discuss its relevance in Section 5.1.1.
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2.4 Renormalised perturbation theory

Perturbative quantum field theory systematically expands around the free theory
using a series of small parameters—usually couplings or inverse mass scales. However,
we have seen loop diagrams often lead to divergences that must be handled carefully.
Renormalised Perturbation Theory provides a consistent framework to perform these
calculations by starting from a Lagrangian expressed in terms of renormalised fields
and couplings. Counterterms are introduced from the beginning and are determined
order-by-order in perturbation theory [53].

Instead of adding counterterms after encountering divergences in each process, the
approach assumes their presence and uses physical constraints or matching conditions
to fix their coefficients. This method is not only more elegant but also essential in
theories like the SMEFT, where the structure of the theory at low energies reflects
the influence of physics at higher scales.

In the SM, renormalised perturbation theory leads to a finite set of countert-
erms sufficient to absorb all one-loop divergences. These include approximatelyd 33

counterterms [60-62]
e 19 WFR (for gauge bosons, Higgs, and all SM fermions),

e 13 coupling renormalisations (for gi, go, g3, all Yukawas, and the Higgs quartic

coupling),
e 1 mass parameter renormalisation (the Higgs potential parameter m?%).

Once these are fixed by appropriate renormalisation conditions, physical predictions
such as cross-sections and decay rates become finite [55].

Renormalised Perturbation Theory allows for a structured and symmetry-preserving
approach to loop calculations in both renormalisable and EFTs. Its general princi-

ples—introduction of counterterms, renormalisation conditions, and gauge-invariant

IWe are not counting gauge fixing or redundant terms that can also be included in the SM.
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regularisation methods—serve as the core of modern amplitude computations, and
will be extensively applied in the remainder of this thesis, particularly in the con-
text of SMEFT. However, we must first clear out the role renormalisation plays in

theories where there is no finite number of counterterms.

2.5 Renormalisability

A quantum field theory is said to be renormalisable if all UV divergences in its
amplitudes can be absorbed into a finite number of counterterms. This condition
applies not only to Green’s functions but also to S-matrix elements since the latter are
obtained from the former via the LSZ reduction formula, which does not introduce
additional divergences. Thus, the divergences of S-matrix elements are controlled
by the divergences of the underlying Green’s functions, meaning that a consistent
renormalisation of the latter ensures the finiteness of the former.

In practice, the divergences arise from One-particle-irreducible (1PI) diagrams.
These are diagrams that cannot be disconnected by cutting a single internal line.
Connected (reducible) diagrams are built by combining 1PT diagrams and do not in-
troduce new divergences beyond those already present in their 1PI components. This
is because any additional line connecting two 1PI blobs carries no loop momentum
and hence does not generate UV divergences. Therefore, it suffices to renormalise the
1PI Green’s functions at a given loop order. In our discussion of the Standard Mod-
el, for instance, we observed that renormalising the 1PI two-, three- and four-point
functions was sufficient to ensure finiteness at one loop for all relevant scattering
amplitudes. This feature is representative of renormalisable theories: a bounded
number of divergent structures, fully captured by a finite counterterm set.

Of course, not every 1PI diagram is divergent. Since our interest lies in renor-
malisation, it is convenient to define a tool to discard finite diagrams. Since this
classification is non-trivial, we begin by using a simpler, though only approximate,
instrument.

We define the superficial degree of divergence D of a loop diagram as the scaling
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power of the diagram in the UV limit, where the loop momentum becomes large [63].
For a 1PI diagram with n, gauge bosons, n, fermions, n, scalars, and n; insertions
of operator O; with mass dimension r; = [O;]!, the superficial degree of divergence
is
D=4-3/2ny—ny—nx— > ni(4—r) (2.12)
in a 4-dimensional theory. This can be deduced either by counting loop momenta
and noting that the superficial degree of divergence is related to the mass dimension
of the matrix element that contains the 1PI Green’s function.
It is a useful diagnostic tool in determining whether a Feynman diagram is di-

vergent:
e D < 0: the diagram is convergent,
e D = 0: it is logarithmically divergent,

e D > 0: it exhibits power-law divergence proportional to A, where A is a UV
cutoff.

This estimate, however, is superficial — it assumes no cancellations due to sym-
metries or specific vertex structures. Therefore, diagrams with non-negative D might
still be finite, or even vanish by construction.

To illustrate this, consider the diagrams shown in Figure 2.3. The diagram on
the left, which contributes to Higgs wave-function renormalisation, has a positive
D and is divergent. The diagram on the centre, contributing to the quartic Higgs
coupling, has D = 0 and is logarithmically divergent. In contrast, the diagram on
the right has D < 0 and yields finite results.

In the SM, all operators have r; < 4, but one can wonder what happens to
D (2.12) when the mass dimension is higher than 4. Each insertion of a higher-
dimensional operator increases D by r; — 4, making the superficial degree of diver-

gence more positive with each insertion, and thus the corresponding diagram will be

I Assuming canonical mass dimension for all fields.
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Figure 2.3: Left: a Green’s Function with a positive superficial degree of divergence. Centre: A
Green’s Function with zero superficial degree of divergence (in this case, it is divergent). Right: A
Green’s Function with a negative superficial degree of divergence.

increasingly divergent. The effect of such divergences will need to be renormalised
with more higher-dimensional operators and so on, leading to potentially an infinite
tower of counterterms.

In renormalisable theories, power counting implies that only diagrams with a
small number of external fields can be divergent. This ensures that only a finite
number of counterterms are needed, corresponding to operators of dimension four
or less. This is not the case for non-renormalisable theories, like EFTs, which have
higher-dimensional operators. As an anticipation for the following chapter, this issue
is addressed by fixing a certain power counting above which all contributions are
negligible. Thus, higher-dimensional operators will only be renormalised provided

they have a sufficiently low power counting order.



Chapter 3.
EFTs and matching

3.1 Separation of scales

The principle of separation of scales is foundational in physics, underpinning both
theoretical frameworks and experimental methodologies. It refers to the idea that
physical phenomena occurring at vastly different energy (or length) scales can often
be studied independently. Historically, this approach has enabled the simplification
of complex systems by focusing only on the relevant degrees of freedom at a given
scale.

A classic example is the description of planetary motion: Kepler’s laws and New-
tonian gravity successfully predict orbital dynamics without requiring knowledge of
planetary topography. Even in modern high-precision measurements, detailed sur-
face features such as mountains and craters have negligible influence on celestial
mechanics. Likewise, the Earth’s electromagnetic field can be characterised without
accounting for local, small-scale sources like refrigerator magnets.

This principle is not specific to gravity or electromagnetism. It is a general
feature of many physical theories, including those that govern subatomic interactions.
For instance, chemical reactions are typically studied using QED, while ignoring
weak and strong interactions—these only become relevant at much higher energies

or shorter distances. At nuclear scales, the strong interaction becomes significant,

20
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yet quark and gluon degrees of freedom remain inaccessible until energies reach the
subnuclear regime.

The separation of scales enables simplifications across physical contexts. Classical
mechanics is adequate for macroscopic systems, while QFT is essential at subatomic
distances. The key insight is that high-energy (or UV) physics becomes irrelevant to
low-energy (or Infrared (IR)) observables—except through renormalised parameters
or suppressed corrections.

EFTs systematise this concept within the language of Lagrangians. In EFTs,
short-distance physics is encoded through higher-dimensional operators in a local,
low-energy theory. These operators are suppressed by powers of a large scale A and
their contributions are organised by a power-counting scheme. This allows theoretical
predictions to be systematically improved by including higher-order terms as required
by experimental precision.

Importantly, EFTs can be formulated even without full knowledge of the UV
theory. This makes them especially valuable in contexts where the high-energy com-
pletion is unknown or inaccessible. Calculations are simplified because irrelevant
operators—those suppressed by high powers of 1/A—can be safely neglected below
the matching scale.

Conversely, EFTs can also serve as a bottom-up tool. By matching high-energy
experimental data to the EF'T parameters, one can constrain or even infer properties
of potential UV theories. This dual role—as a predictive low-energy model and a tool
for model-independent UV inference—makes EFTs indispensable in contemporary

particle physics.

3.2 Motivation and description of EFTs

In its most general form, an EFT is a QFT designed to describe physical processes at
energies below a certain cutoff scale A. This framework is motivated by the principle
of separation of scales: at low energies, the effects of high-energy degrees of freedom

can be encoded through local interactions without requiring an explicit treatment of
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the full UV theory.

Typically, an EFT is constructed by identifying the relevant light fields and their
symmetries, while systematically integrating out the heavy degrees of freedom. This
process yields an infinite series of higher-dimensional operators, suppressed by inverse
powers of the cutoff scale.

From a computational perspective, EFTs offer predictive power because calcula-
tions can be organised as a power series expansion in the small parameter p/A where
p is the characteristic momentum of the process. If the theory is known to order n,
the resulting theoretical uncertainty is of order O(p/A)"™!. This truncation ensures
that only a finite number of operators need to be considered at any desired accuracy.

Historically, EF'T's have been employed long before their formal methodology was
established. A notable example is Fermi’s theory of weak interactions, which effec-
tively described beta decay well before the discovery of the electroweak gauge bosons.
Modern developments, such as the SMEFT, extend this philosophy by incorporating
higher-dimensional operators that capture the effects of possible new physics.

The flexibility, precision, and universality of EFTs have made them an indispens-
able tool in both theoretical and experimental particle physics. Their formulation
allows for systematic improvements and error estimation, even in the absence of a
fully known UV theory.

3.3 Power Counting and mass dimension

EFTs, as quantum field theories, are expressed through Lagrangians that encapsulate
all relevant physics below a cutoff scale. A defining feature of EFTs is that all
observables can be expanded as a power series in the ratio of two scales: the typical
energy of the process m and the heavy scale M, often associated with new physics.

This ratio defines the power-counting parameter:

A= (3.1)

SE
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Typically, EFTs are constructed to include only a single mass scale M, with all
heavier degrees of freedom integrated out. Consequently, all quantities in the EFT
can be assigned a scaling behaviour in terms of A\. To establish this behaviour, we
introduce a power counting scheme—a systematic prescription that assigns a scaling

dimension to each field, coupling, or operator in the theory:

pu~m(1,1,1,1) = AM(1,1,1,1), (3.2)
which implies
1 1 4 1.,
Ty ™~ E ~ W and d*x = W/\ (33)

Thus, momentum scales as A and position scales as A\7*.

To assign a scaling to fields, we consider their kinetic terms, which dominate at
high energy and must be included in the free theory. These terms must be of order
A* to match the scaling of the action (which is dimensionless). For example, the

kinetic term of a scalar field ¢ is:
Lign = [09]* ~ A2(N\g)*. (3.4)

Imposing Ly, ~ A* implies ¢ ~ . Analogous arguments apply to gauge and fermion
fields, yielding similar results consistent with their canonical mass dimensions.
Since observables are computed by evaluating matrix elements of operators, the

power counting of an operator O scales as:
O ~ N1, (3.5)

where [O] is the canonical mass dimension. This scaling holds for weakly coupled
EFTs, where the kinetic terms dominate. For strongly coupled theories, a different
power counting scheme may be required, as interactions can modify the dominant
scaling.

In weakly coupled EFTs, the expansion is often performed simultaneously in pow-

ers of X\ and the coupling constant g. DimReg ensures that loop corrections introduce
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logarithmic dependence on the ratio p/A, leading to expansions in parameters like
glog(p/A). To maintain accuracy, terms with logarithms must be resumed when the
logs are large.

This power counting framework enables consistent truncation of the EFT La-

grangian and allows for reliable estimation of theoretical uncertainties.

3.4 Examples

Before we develop the technical structure of the SMEFT) it is instructive to consider
simpler EFTs that exemplify key features of the framework. These examples, drawn
from both particle and atomic physics, serve to highlight conceptual foundations
such as separation of scales, power counting, matching, and the emergence of higher-
dimensional operators—features that are central to SMEFT but are often obscured
by its complexity.

While the concepts of decoupling and low-energy expansion are straightforward
in idealised settings, real UV theories often involve subtleties such as nontrivial field
content or strong interactions. These complications motivate the need for examples
that isolate specific technical tools and conceptual strategies. In what follows, we
explore a series of EFTs with distinct structures and purposes, each selected to
emphasise a particular principle relevant to the construction and interpretation of
SMEFT.

Through this approach, we aim not only to build intuition but also to motivate
the technical choices and methods employed later in this thesis. This section was
heavily inspired by [57, 64]

3.4.1 Fermi Theory: A Prototype for Matching in EFTs

The Fermi theory of weak interactions stands as one of the earliest examples of an
EFT. Before the establishment of QFT and the EW SM, Enrico Fermi proposed a

contact interaction between four fermions to describe processes like beta decay [65].
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In modern notation, the Lagrangian takes the form:

Lrormi = —% (D™ (1 = 7)) [p7u(1 = 7)) (3.6)

where G is the Fermi constant, determined experimentally from muon decay*. Di-
mensional analysis reveals that this operator has mass dimension six, making the
theory non-renormalisable. Observables scale as o ~ G% E?, which implies a break-

down of perturbative unitarity around energies
E ~ Apermi ~ 1/v/Gr =~ 300 GeV. (3.7)

This behaviour is a distinguishing feature of EFTs: predictive power at low
energies, but inconsistencies emerge at energies approaching the cutoff. In this case,
the UV completion is known—the full electroweak theory, where weak interactions
are mediated by massive W* bosons. The Fermi operator emerges from the tree-level
matching of the full Standard Model onto the EFT by integrating out the W boson.

The resulting Wilson coefficient is:

Gr_ %
V3 smi

where g is the SU(2), gauge coupling. This example demonstrates tree-level match-

(3.8)

ing and the identification of Wilson coefficients, a procedure central to SMEFT.
The Fermi theory is also an example of how gauge symmetry can be hidden at low
energies. The full electroweak theory has local SU(2)., x U(1)y symmetry, but in the
EFT, this is effectively replaced by approximate global symmetries. Understanding
how symmetry principles constrain operator structure is crucial for constructing
consistent EFTs like SMEFT, which preserve the gauge symmetries of the SM.

Thus, Fermi theory serves not just as a historical curiosity, but as a pedagogical

*In the Fermi theory, the interactions responsible for muon decay and beta decay have the same
coupling. This can only be understood after the EFT is UV-completed.
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prototype for modern EFT techniques—matching, operator classification, and power

counting—that reappear throughout SMEFT.

3.4.2 Chiral Perturbation Theory: Constructing EFTs from

Symmetry Principles

YPT is the low-energy effective field theory of QCD in the presence of light quarks.
It provides a canonical example of how an EFT can be built from symmetry consid-
erations alone, without direct knowledge of the UV dynamics — a perspective that
is also central to the construction of SMEFT.

The starting point is the observation that QCD with n, massless quarks has a

global chiral symmetry:
SU(nq)L X SU(nq)R — SU(nq)V, (39)

which is spontaneously broken by the QCD vacuum. The resulting Nambu-Goldstone
Bosons (NGBs) are the light pseudoscalar mesons (pions for n, = 2, or the octet
including kaons and the n for n, = 3). These NGBs are described by a unitary
matrix-valued field U(x) € SU(n,), parameterised as:

U(z) = exp (@) : (3.10)

where F'is the pion decay constant and ® collects the meson fields in the adjoint
representation.

To construct the effective Lagrangian, yPT employs a derivative and mass ex-
pansion, with all terms organised by their transformation properties under chiral

symmetry. The low-energy theory is built from all operators consistent with:
e The symmetries of QCD (chiral symmetry, parity, Lorentz invariance),

e The field content (NGBs in U(z)),
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e A well-defined power-counting in momenta or derivative order.

External source fields v, a,,s,p are coupled to QCD via quark bilinears and
introduced as background fields transforming under chiral symmetry [66]. These
spurions enable a systematic construction of invariant terms in the chiral Lagrangian

and allow one to define a generating functional:
Zypr[v, 0,5, pl, (3.11)
which reproduces the same Green’s functions as QCD in the low-energy regime:
Zqgep|v, a, s,p| = Zypr(v, a, s, p). (3.12)

The Leading Order (LO) Lagrangian, which contains the lowest number of deriva-

tives and quark mass insertions, is:
F2
Lio = - [DUD*U + Uty + x'U], (3.13)

where:
e D,U=0,U—ir,U+1iUl,, with r, = v, +a,, [, = v, —a,,
e \ = 2B(s +ip), encodes explicit symmetry breaking due to quark masses.
This construction mirrors the principles used in SMEFT:
e Operators are classified by their dimension and symmetry structure [27],
e Background field techniques and spurions are used to build invariant terms [67],

e A power-counting scheme organises the expansion in increasing orders of p/A,

as explained in 3.3 and as was done in [68].

In SMEFT, as in yPT, we do not require full knowledge of the UV theory. Instead,

symmetry and field content dictate the allowed operators, which are suppressed
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by powers of the cutoff scale. While SMEFT is weakly coupled and xPT is non-
perturbative in its UV origin, both serve as examples of systematic, symmetry-based

EFT construction.

3.4.3 Soft-Collinear Effective Theory: Factorisation and
Mode Separation

SCET is a powerful framework developed to describe the interactions of energetic,
collimated particles (such as those in jet physics), especially when soft and collinear
emissions dominate the dynamics [69-71]. It provides a clear illustration of EFT
techniques adapted to systems with a preferred direction, as is common in collider
experiments.

Unlike yPT, SCET does not integrate out entire fields, but instead integrates out
energy modes. Fields are decomposed into contributions from distinct momentum
regions: hard (high-energy), collinear (boosted along a lightlike direction), anti-
collinear, and ultrasoft. Each mode is treated as a separate field in the effective
theory.

This decomposition gives rise to a novel power-counting scheme based on a small
parameter A, related to the energy hierarchy between the soft and collinear modes.
A generic four-momentum p# is expressed using light-cone vectors n* = (1,0,0,1),
n* = (1,0,0,—1), and transverse components:

p“zn-p%“—i—n-p%ﬂ-i-pﬁt_- (3.14)
Collinear momenta scale as p, ~ (A2, 1, \), anti-collinear as (A2, 1, \), and ultrasoft
as (A2, A% \%). The EFT Lagrangian is built to preserve the gauge symmetry and
scaling properties of each sector.

This feature distinguishes SCET from other EFTs: the power-counting is aniso-
tropic and depends on both the direction and energy of fields. The Lagrangian

includes only interactions that respect the scaling laws of the modes involved. For
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instance, an operator contributing to collinear-quark interactions must scale consis-
tently with A and conserve gauge symmetry in each sector.
While SMEFT does not distinguish field modes in the same way, both frameworks

rely on systematic power counting and matching procedures. The analogy lies in:

Separation of scales: SMEFT assumes a hierarchy between the electroweak scale

and the new physics scale A, while SCET separates hard and collinear scales.

Matching across modes or theories: Both use diagrammatic and functional

matching to determine WCs.

Power counting: SCET’s anisotropic counting has its SMEFT analogue in opera-

tor dimension and loop suppression.

Moreover, recent work has explored the SMEFT analogue of SCET for EW pro-
cesses with boosted final states, emphasising the need for EFT tools that can combine

scale hierarchy and directionality in collider phenomenology [72].
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The SMEFT is the EFT of the SM extended with non-renormalisable interactions.
Conceptually, this implies the existence of a more fundamental UV theory, from
which SMEFT can be obtained by integrating out heavy degrees of freedom. While
numerous UV completions are theoretically possible—each with distinct phenomeno-
logical implications—experimental constraints restrict the space of viable models [73—
75]. Nevertheless, SMEFT remains a valuable framework even without assuming a
specific UV completion, particularly in the context of weakly coupled extensions of
the SM.

Classifying operators within an EFT—and especially within SMEFT—is a non-
trivial task that requires careful attention to Lorentz invariance, gauge invariance,
and algebraic identities. The subsequent sections develop the formal machinery
necessary to implement these constraints and systematically construct a complete
operator basis. Although the concepts introduced here are generalisable to any EFT,

our discussion from this point onward will focus specifically on SMEFT.

4.1 SMEFT operators and their classification

The field content of the SMEFT is identical to that of the SM. We consider SMEFT
to be valid up to a cutoff scale A, beyond which the effective description breaks down.

This scale also serves as the matching point in a top-down approach. However, in this

30
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thesis, we adopt a bottom-up perspective: we systematically construct all operators
consistent with the symmetries of the SM, organised by increasing mass dimension

and suppressed by powers of 1/A. The general SMEFT Lagrangian is written as:

nops(

oo ) (p)
Cry
Lsmerr = Lsvm + Z Z Z AT—iOff;’Zl, (4.1)

r=5 q p=1

where r is the operator dimension, ¢ labels the operator class, and p = 1,. .., nops(q)
indexes all operators within a given class g. Unless otherwise noted, all WC c,(f 21 are
dimensionless.

Operators are grouped into classes, defined by their field content and Lorentz
structure. For classification purposes, fields are typically grouped into three cate-
gories: gauge field strength tensors X, fermions and their conjugates v, and Higgs
fields and their conjugates H. Covariant derivatives are denoted by D. An operator
of mass dimension r belongs to a class X"X¢" H™H D"P | satisfying the dimension
relation: 2ny + %nw + ny +np = r. Some classifications make further distinctions,
such as helicity decomposition (e.g., X € { X, Xg}, ¥ € {¢1,9¥r}) or charge conju-
gation (v +— {9, 9"}, H — {H, H'}). In this work, we adopt a minimal and generic
naming convention for operator classes.

Within each class, operators can be grouped into subclasses or types that specify
the exact field content. For instance, ¢2H? is the only subclass of the dimension-five
operators 1?H?, while the dimension-six class X¢?H contains multiple subclasses
such as B(?H, Be?H, and W/(*H.

When fermions are involved, it is often useful to further group operators into
terms that reflect flavour indices. Assuming ny fermion families, such terms may
represent up to n;‘” operators. Flavour symmetries can reduce this number. For ex-
ample, the Weinberg operator [O,2p2],
indices, yielding w

EFTs generally can contain a large set of higher-dimensional operators at a giv-

5 1s symmetric under exchange of its flavour

independent operators instead of nfc

en dimension. However, many of these operators yield identical contributions to



32 Renormalization of the SMEFT to dimension eight

physical observables—such as S-matrix elements—and are therefore considered de-
pendent. From a practical and conceptual standpoint, it is desirable to identify a
minimal, non-redundant set of operators that fully capture the dynamics of the the-
ory. To achieve this, one must carefully examine the various mechanisms by which
operator dependencies arise, including symmetry constraints, integration by parts,

field redefinitions, and equations of motion.

4.1.1 Global and gauge symmetries

Bianchi identities

The Bianchi identities express a geometric constraint on field strength tensors in
gauge theories and can be written as a cyclic identity involving covariant deriva-
tives [53]:

D,F,, +D,F,,+ D,F,, = 0. (4.2)

Contracting this identity with the Lorentz-invariant Levi-Civita tensor e””* leads

to a condition involving the dual field strength tensor:
D, =0 (4.3)

where Fro = P’ F,,,.  Although this equation resembles an EoM for the dual
field strength, it arises purely from geometric consistency—specifically, from Bianchi
identities—and not from the variation of an action.

This distinction becomes conceptually important when constructing operator
bases such as Green’s bases, where the goal is to eliminate redundant operators.
Since (4.3) follows identically from the structure of the gauge field, operators involv-
ing this combination are considered redundant and are excluded, even in bases that
permit EoM redundancies. In this sense, dual field strengths are effectively treated

as “on-shell” objects to address the Bianchi identities.
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Fierz identities

In operator constructions involving fermions, spinor algebra often leads to cumber-
some expressions involving products of Dirac matrices. These expressions can be
systematically simplified using Fierz identities [76], which express products of bilin-
ears in terms of alternative contractions. The general identity in a four-dimensional

spacetime is given by [77]:

mn~— st sn?

1
rr re — ZTr[PPFSFQFT]rﬁLtFS (4.4)

where P,Q,S,T = 1,...16 and m,n,s,t = 1,...4 run over spinor components. The

set I'P spans a chiral basis of the space of 4 x 4 complex matrices:
I'" € {R, L, Ry", Ly", 0"}, (4.5)

with projectors R = %(1 +), L = %(1 — 75) and the antisymmetric combination

ot = 1[y*,+"]. The dual basis is

1
I'p e {R, L, Ly, Ry,, §UW} . (4.6)

These identities are particularly useful for simplifying operators containing at least
four fermionic fields. For example, at the tree level in four dimensions, one can relate

operators of the form:

O, = (y"0)(ey,e) = lonlnser(INV")mn (R, st (4.7)

02 - (gmen)(ésgt)(smndsta (48>

where flavour indices are omitted for brevity. These two operators are related via
the Fierz identity (4.4) by:
1

However, at the loop level—particularly when using dimensional regularisation in
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d = 4 — 2¢ dimensions—this identity no longer holds exactly. The difference between
the two forms becomes an operator of order O(e), which, when combined with the
1/e poles from UV divergences, can generate finite contributions at one loop. At
two or more loops, the violation of the Fierz identity can affect divergent structures
directly [78].

To account for this, one formally introduces a new operator defined by:
1
&= 5(’)1 + Oy, (4.10)

which vanishes in four dimensions but must be retained in d # 4 calculations. These
are known as evanescent operators. Although they contribute only at loop level in
RGEs, they do not affect tree-level amplitudes. In the context of this thesis, we
restrict our attention to one-loop renormalisation, where the RGEs are unaffected
by evanescent operators. As such, we will treat Fierz-related redundancies as valid

identities, even in DimReg.

Schouten identities

Another important class of algebraic identities relevant to the simplification of oper-
ator bases in EFTs are the Schouten identities. These identities arise from the linear
dependence of vectors in a finite-dimensional space. Specifically, in four-dimensional
spacetime, any set of five (or more) four-vectors must be linearly dependent [79].
This leads to an identity among tensors, involving the metric and the Levi-Civita

symbol:
Guv€apys + 9pa€pyév + 9up€ysva + Gur€svap + 9us€vapy = 0. (411)

Contracting this identity with a product of five four-vectors a®b?c?’d’e” demon-
strates that a generic linear combination of these vectors must vanish. If the determi-
nant of the matrix formed by these vectors is zero—as enforced by this identity—the
vectors are linearly dependent. This relation is fundamental and purely geometric,

and it holds only in four dimensions.
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The Schouten identity leads to nontrivial relations among operator structures.
For example, given two field strength tensors X and F', and tensors A,,, S,., Ty,
(antisymmetric, symmetric, and generic rank-2 tensors, respectively), the following
identities hold:

A XPFY = A, X1 F" (4.12)
~V v 14 1 ~V

Su Xl = —8,, XU F** + 2 St X"F,, (4.13)
>, 1 o S

T, X"X" = ~THX"X,,. (4.14)

4#

These identities are useful in identifying and eliminating redundancies among
higher-dimensional operators, particularly those involving dual-field strengths. They
effectively allow one to “move the dual” between tensors under contractions. As
with Fierz identities, Schouten identities depend on the dimensionality of spacetime.
Therefore, in DimReg, violations of these relations give rise to evanescent operators,
which vanish in four dimensions but can affect loop-level amplitudes when extended
tod=4— 2e.

4.1.2 Integration by parts

Operators containing derivatives can exhibit redundancies arising from total deriva-
tives. Specifically, if an operator takes the form D, O, it contributes a surface term
when inserted into the action. Assuming that all fields vanish at spatial infinity—a
common boundary condition that ensures well-defined conserved charges in local,
flat QF Ts—such total derivatives integrate to zero in the path integral. This leads

to a linear relation among the terms that result from expanding the derivative:
DO"=0,+0;+---=0. (4.15)

Each of the operators O; contains the derivative acting on only a subset of the fields

in the original expression. This identity follows from applying Integration by Parts
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(IBP) within the path integral of the action.
As a concrete example, consider the following scalar operators constructed from
the Higgs doublet H:

O, = (H'H)D, (H'H) D" (H'H) (4.16)
O, = (H'H)" (D*H'H + H'D*H) (4.17)
Os = (H'H)" (D, H'D"H) . (4.18)

These operators are related through the following total derivative:

0= D, |(H'H)" D" (H'H)] (4.19)
—2(H'H) D, (H'H) D" (H'H) + (H'H)* (D*H'H + H'D*H)
+2(H'H)* (D, H'D*H) = 20, + 05 + 204 (4.20)

This relation implies that only two of the three operators are linearly indepen-
dent. Redundancies of this type, originating from IBP identities, represent one of
the primary obstacles in constructing a complete, non-redundant operator basis in
EFTs. In practice, distributing derivatives over composite field expressions without
generating redundant terms demands either a systematic algebraic method or a very

meticulous—and often tedious—manual analysis.

4.1.3 Field redefinitions

A field redefinition is a local transformation of a quantum field ¢ into a new field ¢/,
defined by a functional ¢ = F[¢'], where the functional F' is assumed to be expressible
as a finite power series in ¢’ and its derivatives. The redefined field ¢’ is of the same

type as the original field ¢, though possibly with a different normalization. If F[¢']
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creates a one-particle state from the vacuum, i.e.

(pIF[¢']10) # 0 (4.21)

then the physical S-matrix elements computed from the transformed Lagrangian
L[F[¢]] are identical to those derived from the original Lagrangian L£[¢].

This invariance follows from the behaviour of the generating functional under
a change of variables in the path integral. The original generating functional with

source J is

217 = / Do exp(iS[e] + Jo) = / Dé exp (i / dxL[o) +J¢)) L 12

Since the path integral sums over all configurations of ¢, we may treat ¢ as a
dummy integration variable. Under the change of variables ¢ = F[¢'], the measure

transforms as:

¢ = Fl¢'(2)], (4.23)
D¢’ = D¢/ %, , (4.24)

where the Jacobian determinant is unity when DimReg is employed [80]. The gen-

erating functional becomes:

210 = / D exp (i / dxL[¢] + JF[(b’(:z:)]) | (4.25)

where L'[¢'] = L]F[¢']].
In contrast, the generating functional constructed from £’ with a source coupled
directly to ¢’ is:
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2] = / D¢ exp (i / dxL'[¢] + J¢’) (4.26)

The difference between Z[J] and Z'[.J] manifests in their respective Green’s func-
tions, which are defined by functional derivatives with respect to J. However, phys-
ical S-matrix elements depend only on the poles of Green’s functions, which remain
invariant under such transformations provided F[¢/] can also create a one-particle
state from the vacuum.

Field redefinitions therefore represent a redundancy at the level of the Lagrangian:
two Lagrangians related by such a transformation yield identical S-matrix elements.
However, one may choose to build operator bases from off-shell Green’s functions.
In this context, operators related by field redefinitions are not considered redun-
dant, as they yield distinct correlators. This perspective is often advantageous for
explicit computations, and we will adopt it throughout this thesis. Nonetheless, we
remain mindful of field redefinitions, as they play a crucial role in the structure and

interpretation of EFTs operator bases in specific contexts.

4.1.4 Equations of motion

Given a Lagrangian £[¢, 0,¢| involving generic fields ¢, the classical EoMs are defined

as:

oL oL
E[¢,0,0] = %509 50 (4.27)
These EoM terms can appear as components of higher-dimensional operators.
Consider a generic operator O = O(¢) - E(¢) involving such a structure. Now
perform the field redefinition ¢(z) = ¢'(2) —eO(¢'), where £ < 1 is a small expansion

parameter. This transformation induces a shift in the Lagrangian:

£6] = £16] - 00 (G5 — 5o

) O = L[] — cO(¢) + O2). (4.28)
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The linear term in e reproduces the EoM operator O, thus demonstrating that
such operators can be removed via field redefinitions.

Field redefinitions can be extended to a power series in ¢, and applying such
expansions to operators involving EoMs introduces new higher-dimensional terms
into the effective Lagrangian. This makes clear that eliminating an EoM operator
by substitution is not equivalent to simply setting it to zero—it corresponds instead
to a controlled reorganisation of the theory under a non-linear change of variables. In
practice, EoM redundancies are often used to replace operators involving derivatives
with other operator classes. Notably, this is the only redundancy mechanism that
allows operators of distinct field content to be identified as equivalent.

In the context of renormalisation, especially when working off-shell, it is essential
to consider these redundancies. They can be systematically eliminated via field
redefinitions after the UV divergences have been computed. However, to simplify
the analysis, we will use the EoM directly to remove such operators. This approach
is valid for one-loop computations involving only a single insertion of a redundant
operator, which is the case for all diagrams considered in this work™.

At LO in the SMEFT power counting, the Standard Model EoMs are:

D*Hj = m¥% H; — NH[*H; — ¢®F e (y")apu” — & (y))i505 — & (y°) 2502,
i), = (y >a5uﬂH*e’” +(y )aﬁdﬁHj’
PE, = (y)ape’H
1lDd5 = (yd)aﬁq
iPug = (y*)hpq"H
ilDeﬁ = (y°): 5€O‘HT
D"B,, = Z G ——— HTID vH,
z[) u,d,q,e,l

*Since we intend to renormalise at one-loop, the insertion of two (one-loop-renormalised) re-
dundant operators would be formally a two-loop contribution to the redefined operator.
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92 T 92 ;4.57
D'W/!, = ) > ol — EHHD 'H,
h=q,t

gs -
D'GY, = -5 > oA, (4.29)
p=u,d,q

where Hi DLH = Y(H'o"iD, H — iD, H'o' H).

These expressions can be extended to include higher-order terms in the power-
counting expansion. For example, Refs. [81, 82] apply the EoMs up to A=2 [83]
to eliminate redundant dimension-six operators and study their contribution to the

RGEs of physical operators at dimension eight.

4.1.5 Repeated fields

If all operators contained only distinct fields, then the total number of terms would
be determined by the number of independent Lorentz- and gauge-invariant combi-
nations, which can be computed using Group Theory standard methods. In that
case, incorporating flavour simply involves multiplying the count by the appropriate
powers of the number of flavours associated with each field.

However, when operators involve repeated fields, this naive estimate typically
overcounts the number of independent terms. This reduction arises from additional
internal symmetries, including field (anti)commutation properties, flavour symmetry,
and gauge index permutations. These symmetries are not independent—they often
interplay in nontrivial ways—so they must be treated collectively.

Intuitively, the effect of these symmetries can be understood by analysing the
inequivalent permutations of fields and indices. Consider, for instance, operators of
the form ¢?H?, which involve two identical scalar fields and two identical fermionic

doublets. The relevant symmetry considerations are as follows:

e The Higgs fields H are complex scalar doublets under SU(2) ., commute under

field exchange, and are Lorentz scalars without colour charge.

"We take this example from [84].
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e The lepton doublets ¢ are also SU(2)., doublets, but they are anticommuting

Grassmann fields, and hence antisymmetric under exchange.

e Lorentz invariance requires that the fermion bilinear be contracted into a
Lorentz scalar. The antisymmetry of the spinor contraction compensates for

the Grassmann sign.

e Gauge invariance under SU(2), allows contractions of the four doublets either
into singlets or triplets. However, a singlet contraction of two identical bosons
would vanish due to the symmetry of the fields; thus, the Higgs pair must be

contracted as a triplet.

e Consequently, the lepton doublets must also be contracted as an SU(2), triplet,

which is symmetric in their flavour indices.

e Finally, overall gauge invariance requires hypercharge neutrality, which further

constrains the allowed combinations.

As a result, instead of the naive n?p flavour structures one might expect from two
lepton fields, the actual number of independent flavour contractions for this operator

w, reflecting the symmetry under flavour exchange.

class is reduced to

While in this simple example one can construct an explicit operator form by hand,
the general task of counting and constructing independent operators is far more in-
volved. Fortunately, the types of redundancies discussed here—arising from Lorentz,
gauge, and flavour symmetries—can be addressed systematically using modern alge-
braic and computational methods, such as those based on Hilbert series techniques

or symmetry-group classification algorithms.

4.1.6 Notational Choices

The counting of effective operators has been automated using several different ap-
proaches. As long as the field content and symmetries of a theory are known, these

methods can be systematically extended to a wide range of models. In this work,
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we have primarily adopted an intuitive, traditional algorithm [84] to characterise
operator dependencies and count independent terms. An alternative, fully algebraic
approach is provided by the Hilbert series formalism [85-89], which yields equivalent
results [67, 90-92]. In terms of computational structure, both methods require essen-
tially the same input (field content and symmetries) and produce the same output
(the number of invariants), with the main difference being computational efficiency.

It is important to note that explicitly constructing a minimal operator basis—i.e.,
listing a complete set of independent operators class by class—is significantly more
challenging than simply counting them. Although the number of independent terms
remains the same, the operators can be expressed in different forms depending on
the chosen conventions. One may, for instance, prefer to express the basis using
the smallest possible number of terms, resulting in a compact representation. Alter-
natively, it may be advantageous to expand the terms to make flavour symmetries
manifest; this is particularly useful in contexts where flavour structure plays a critical
role (as in the dimension-seven basis of Refs. [28, 31]).

Another common choice involves whether to express operators explicitly as real
or complex terms. In general, a subclass of operators can be written in real form if its
field content is closed under complex conjugation. For example, operators of the type
(?H?D involve the field set {¢, (", H, H'}, which allows for real combinations. By
contrast, operators like fe H? typically yield complex structures, and our convention
treats terms with {¢, e, H, HT, H'} as distinct from those with {¢f,e, H, H, H'}. One
could, in principle, form real linear combinations across such types, but this approach
is rarely adopted in the literature.

Finally, one may choose between using standard field strength tensors F' and F
or adopting a chiral convention in which the left- and right-handed combinations are
defined as Fr p = F' F iF. While the number of operators remains unchanged under
this choice, the chiral basis yields operators with well-defined helicity, which can be

advantageous in specific phenomenological analyses.
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4.2 Operator counting algorithm

Once all possible relations between operators are understood, one can determine
the minimal number of independent interactions required to define an EFT. This
process has been automated in various tools such as Sim2Int [93] and basisgen [94],
which we employ to reproduce the number of independent SMEFT operators and
the minimal number of terms in each class. In addition to the physical operators, we
also consider redundant ones, as they play an important role in the renormalisation
framework discussed in the next chapter.

If an operator class contains no repeated fields or derivatives, the number of
invariant terms under global and gauge symmetries can be obtained using standard
group-theoretical techniques [95-97].

For classes involving repeated fields, Ref. [84] describes a systematic method to

count independent operators, which can be summarised as follows:

e For m repeated fields, symmetries are represented by permutation elements

g, € Sm, where G; includes global, gauge, and flavour symmetries.

e The full symmetry of the operator is encoded in a tensor product representation
of the symmetric group: sy (2),. @ TSU(@)igne & TSUB)e & TsU(2), @ Thelds, With

Thields Tepresenting field (anti)commutation properties.

e This combined representation is decomposed into irreducible representations
of S;,. The greatest multiplicity among all the irreps is equal to the minimum
number of terms. The total number of irreps (including multiplicity) gives the

number of independent operators.
e For every set of repeated fields, this decomposition is carried out separately.

e The final operator count for a given subclass is obtained by multiplying the

counts from each repeated subset.
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If operators include derivatives, each derivative acting on a field may be consid-
ered a distinct field with its own Lorentz transformation properties. When multiple
derivatives act on the same field, their antisymmetric part can be rewritten as a field
strength tensor via the commutator of covariant derivatives:

1 )\A

Wi, — 1937(;@ : (4.30)

[D,,D,] = —ig%BW g
In such cases, we typically discard the antisymmetric component and substitute it
with the corresponding field strength tensor, which belongs to a different operator
class. To avoid overcounting, derivatives are decomposed into irreducible representa-
tions of the Lorentz group. It has been shown [84] that only the highest-spin irreps
of the derivative expansion contribute to genuinely independent structures, while
the lower-spin components correspond to redundancies from EoMs. These can be
retained in a Green’s basis but are otherwise removed for minimality.

IBP redundancies are handled by treating derivatives as a dummy field ©. In
this formalism, an operator type with n derivatives is decomposed into subtypes
with k instances of ® and n — k standard derivatives. If each subtype contains
N(n, k) operators, then the total number of independent structures is given by the

alternating sum [84]:
k=n

No =Y (—1)*N(n, k) (4.31)

k=0

These methods are implemented in several modern tools. Sim2Int [93] uses the
algorithm outlined above, while basisgen [94] follows a comparable prescription and
yields equivalent results. The Hilbert series approach, implemented in DEFT [98], is
conceptually distinct but agrees with these tools in all tested cases. Recently, on-shell
methods for basis-generation have also been automated in ABC4EFT [99)].

In Table 4.1 we show an overview of SMEFT operator counting. Given the large
number of operator classes, a full analysis is impractical here. Nevertheless, some
general patterns can be observed. Certain classes are purely physical-—especially

those without derivatives. Others are purely redundant due to equations of motion.
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As we will see in Chapter 5, such classes typically do not contribute to the dimension-
eight RGEs, as their one-loop divergences vanish. Moreover, they usually appear only

at the loop level in weakly coupled UV completions of SMEFT.

4.3 Offshell independence in momentum space’

One of the central challenges in working with EFTs is the construction of a minimal
and independent operator basis. While many modern matching and running proce-
dures do not require the basis to be explicitly fixed, the presence of redundant opera-
tors—arising from FoMs, IBP, or algebraic identities—necessitates careful treatment
in practical computations. This is especially true when one computes counterterms
or matches a UV theory to an EFT.

The key question we address in this section is: given a set of operators, how can
one determine whether they are linearly independent? If dependencies exist, how
can one obtain a minimal independent set? While automated tools (such as those
implementing the algorithm described in Section 4.2) can provide the number of
independent operators, they do not yield explicit operator expressions. To this end,
we propose a constructive method that tests operator independence using off-shell
Green’s functions at tree level—what we refer to as a Green’s Basis.

Several motivations support the development of this approach:

1. In standard quantum field theory calculations using Feynman diagrams, matrix
elements are derived from connected and amputated diagrams. The number of
such diagrams increases rapidly with the number of external legs, whereas 1PI

diagrams are fewer, making the computation more manageable.

2. In the path integral formulation of matching [100-102], the resulting EFT
generally includes operators that are redundant due to IBP, field redefinitions,

or other identities. A straightforward way to simplify the EFT is to match

¥This section contains original work from the thesis.
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Class # terms # operators Class | # terms 7 Operators
2 16
VI 240 20 Z4g4 30 +110 30 +110
+ +
H'D" | 041 0+1 HD? | 242 242
H'DM| 242 2+2 HY| 140 140
Hel 140 1+0 W25 | 0+5 0+ 45
21/; g;’ o v WIHD'| 0454 | 0+ 486
¢2H2D 9 + " 81* o Y?H?D3 | 16+ 135 | 144 + 1215
Y L 6+ ; 54+ " YPH3D? | 36460 | 324+ 540
L + + YPHAD | 134+14 | 117+ 126
W 3840 2751 + 0 GH | 640 5440
27192
X )f({ fD 00 +320 00 +230 YAD? | 67 +461 | 4923 + 36549
v + + GYHD | 168 + 270 | 13338 + 22092
XY*H 1640 1444+ 0 ¢4H2 9340 6603 + 0
)(2l)2 0+3 O+3 XH2D4 O—|—6 0+6
3
X°] 440 £+0 X¢2D*| 04100 | 0900
W2 H?D? 448 24 4 66 XyY2HD? | 48 + 208 432 + 1872
Y*H3D 240 1840 XY?H?D | 92+ 66 828 + 594
Y?H* 240 1240 X2H®| 22+0 198 + 0
D 6+ 8 276 + 858 Xt | 21640 16380 + 0
PV H 1840 1188 +0 X2p4 0+3 0+3
X2 H? 440 2440 X2H?D? | 18+ 44 18 4 44
Dimension | # terms # operators X?H* 10+0 10+0
X2Y2?D | 57+ 188 513 4 1692
50 240 1240 X22H | 96+0 864 + 0
8 | 1019 + 1642 | 44807 + 66197 X4 4340 43+ 0
Table 4.1: Number of SMEFT operators up to dimension eight, for three fermion generations
(ny = 3). Each class is listed with the number of independent terms and operators, split as

physical + redundant (due to EoM) real operators and terms. The counting was obtained using
the Sym2Int [93] package. Upper-left: Classes of dimension-five, -six and -seven operators. Right:
Classes of dimension-eight operators. Lower-left: Summary of all classes.
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off-shell amplitudes at tree level onto a known basis of independent Green’s

functions.

3. Helicity amplitude methods have proven effective in computing certain anoma-
lous dimensions strictly on-shell [103—112]. However, their applicability is lim-
ited in scenarios involving operator mixing across different mass dimensions or
in amplitudes generated by operators with fewer external legs than the pro-

cesses they contribute to.

The method developed in [113] is based on the momentum-space representation
of operators and tree-level amplitudes. To determine operator dependencies, we eval-
uate Green’s functions for processes involving insertions of the candidate operators.
By restricting our analysis to 1PI diagrams, we exclude contributions from one-
particle-reducible diagrams and, implicitly, keep EoM-induced redundancies. This
off-shell framework naturally leads to a basis where operators are independent up to
field redefinitions, that can later be removed by onshell relations (See Section 4.5).
The amplitudes derived in this way are expressed as linear combinations of kinemtic
invariants—Lorentz-invariant products of external momenta and polarisation vec-
tors (or spinor structures in fermionic cases). Therefore, if we have a set of oper-
ators {O®} contributing to the process a — b, the resulting amplitudes can be

parametrised at tree level as:

Ala =) =cP>" g, (4.32)

p7m

where ¢ are the Wilson Coefficient of the irrelevant operators, k., are the kinematic
invariants and f}", the amplitude matriz, is a set of numerical coefficients and SM
couplings derived from the Feynman Rules of the Lagrangian.

The linear independence of the operators is then equivalent to the linear inde-
pendence of the vectors. Thus, testing operator independence reduces to computing
the rank of the amplitude matrix. If the rank equals the number of operators (or

the dimension of the set of kinematic invariants, whichever is smaller), the operators
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are independent.

Importantly, a non-maximal rank in a specific process does not necessarily imply
operator dependence—it could result from accidental symmetries. Therefore, to
conclusively establish operator dependence, one must test multiple processes.

The various redundancies discussed in Section 4.1 can be understood as linear
independence of the amplitude matrix in momentum space. There are only three

differences:

e IBP manifests as momentum conservation. The effect of IBP can be imple-
mented by removing one of the external momenta from the set of kinematic

invariants.
e EoM relations are not considered in this off-shell approach.

e Redundancies by Schouten identities, which relate to four-vector independence
in four dimensions, are avoided by restricting the contractions with only four
independent momenta and/or polarisation vectors when there is a larger num-

ber.

Integration by Parts The interplay between IBP identities and momentum con-
servation can be elucidated by examining the derivative expansion of a total deriva-
tive operator constructed from two fields ¢ and y, implicitly contracted with some
tensor structure g, (internal indices are suppressed for clarity).

Expanding the total derivative yields the identity referenced in Eq. (4.15). Upon
performing a Fourier transform of the Lagrangian, and considering that the derivative
acts only on the adjacent field, the resulting expression naturally simplifies to a

statement of momentum conservation:

Du(¢§MX) = DM¢§;¢X + ¢§,uDMX = 07 (433)
pr =+ =0. (4.34)

This reasoning can be readily generalized to systems involving arbitrary field content.
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As an example, let’s review the case shown in 4.1.2 from the momentum space

perspective. Let us consider the same dimension-eight six-Higgs operators:

O, = (H'H)D, (H'H) D" (H'H), (4.35)
0, = (H'H)* (D*H'H + H'D*H) (4.36)
Os = (H'H)* (D,H'D"H) . (4.37)

The 1PI amplitude for H°(py) — H°(po)H ' (p3)H ™~ (ps) H" (ps)H ™ (ps) reads:

.A =21 C1 (2/4,13 + 21{14 + 2%15 + 2"4316 — 2/4323 — 2/{124 — 2%25 — 2"{26
— K34 — 2K35 — K36 — K45 — 2K46 — 556)
— 4y CQ(I{H + K92 + K33 + K44 + K55 + 566)

-+ 2 03(2/{12 — K34 — R3¢ — K45 — /{56) s (438)

where k;; = p; - pj and ¢, n = 1,2, 3 are the WC of the operators.
Apparently, the amplitude matrix f associated with this process is of rank 3. To
illustrate this, consider the submatrix f , corresponding to the invariants ki1, K12,

k13 which takes the form:

0 0 4i
f=1|-4i 0 0| = 3>Rank(f) > Rank(f) =3. (4.39)
0 4i 0

However, the set of kinematic invariants chosen is not linearly independent due
to momentum conservation, specifically p; = ps +p3+ps+ps+ps. As a consequence,
the invariants x;; can always be expressed in terms of the others and thus eliminated.

Taking this constraint into account, we obtain instead:

A=2i C1 (2%33 + 3/<L43 + 2/<L44 + 2:%53 + 3%54 + 2%55 + 3/'{63 + 2’4364 + 3H65 + 2566)

— 87, CQ(IiQQ —+ K32 + K33 —+ K492 + K43 —+ K44 + K52 —+ KR53 + K54 —+ K55 + KRg2 + Kg3
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+ Re4 + Rg5 + KJG6)
+ 21 Cg(2/€22 + 2/132 + 2/%42 — K43 + 2%52 — Kyq + 2'%62 — Kg3 — /’565) . (440)

The corresponding matrix is found to have rank 2. This can be readily seen from the
fact that the first and third rows in the expression above sum to minus one half of the
second row, i.e., Oy = —2(O;1 + O3) holds. At the level of the Lagrangian, this linear

dependence originates from the identity given in (4.19), derived in Section 4.1.2.

A more involved example We now turn to a slightly more sophisticated example.
When gauge bosons are included, the structure of the process remains conceptually

analogous. Consider, for instance, the following set of operators:

O, = D,(H'H)D"B"B,,, (4.41)
O, = (D*H'H + H'D*H)B"*B,,, (4.42)
Os = D,H'D"HB"’B,, . (4.43)

The amplitude for the process H%(p;) — H°(ps)B(ps)B(ps) takes the following

form:

- / / /
A = —ici (k3331 + 23434 + K3aaa — Kjz33 — 2Ky334 — Ky344)
. / /
+ dicy(2K9034 + 2K9334 + 2K2434 + Kagza + 2K3434 + K3aaa — 2Ky399 — 2Ky303
/ / /
— 2Kiy39y — Kizzy — 2K — 2Kiy33y — Kazaa)

. /
— dics(Kaosa + Kassa + K243a — Kiygoe — K323 — K4324) - (4.44)

p1 has been eliminated using momentum conservation. The relevant kinematic in-
variants are defined as kijr = (€3-24)(Pi-p;) (pr-p1) and K5 = (€3-pi) (€a-p5) (Pr - 21),
where € denotes a polarization vector.

The matrix constructed from these invariants has rank 2, implying that one of

the operators can be expressed as a linear combination of the other two. Indeed, it
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is straightforward to verify from the expression above that
1 1
O =—-05—=0s.
1 12 75

This linear dependence corresponds to the following relation at the level of the La-

grangian:

O,=-D,(H'H)D"B"”B,,— D,(H'H)D’B"**B,,
= -D,(H'H)D"B*B,, — D,(H'H)D"B""B,,
= —D,(H'H)D"B"B,, — 0,

1
= 0, = —§DM(HT H)D"B*B,,
1 1
=3 D*(H'H)B*B"* — éDu(HTH)BP”D“BW
1 14
— EDQ(HTH)B" B, — O,
1
= 0 = ZLDQ(HTH)BP”BVP
1 14 1 14
— _Z(DQHTH + H'D*H)B""B,, — Z(ZD“HTDMH)B ’B,,
1 1
= ——0y— =0;5. 4.45
4 2 9 3 ( )
In the first equality, we have made use of the Bianchi identity,
D,B"" + D,B" + D,B" = (.

In the second step, we have relabeled indices as v <+ p in the final operator. In
the fifth equality, the derivative acting on B””has been integrated by parts. In the
penultimate step, the derivative was explicitly expanded. Throughout the derivation,
we have also used the antisymmetry of the field strength tensor, B"? = —B*".

This example illustrates that off-shell redundancies can be efficiently identified in

momentum space, even when their discovery through purely algebraic manipulations
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becomes nontrivial—such as in scenarios involving a large number of fields or a large

operator basis.

Schouten identities As an example illustrating the implementation of Schouten

identities in momentum space, consider the following set of operators:

O, =i(D,H'o'D,H — D,H'e" D, H)BL W™, (4.46)
O, =i(D,H'e'D,H — D,H'c' D, H)B W' (4.47)

These operators are related by the identity given in Eq. (4.12).
We now proceed to compute and impose momentum conservation in the ampli-

tude for the following process:

Ho(pl) = Ho(pQ)WS(p3)B(p4)- (4.48)

The resulting expression is:

A = ¢1(—HK323443 — K323444 + K343424 + K342334 + K342344)

+ co(—Ka23433 — Ka23434 — K3aza2s + Ksa2a33 + K3a2434) - (4.49)

In this case, the kinematic invariants are defined as K;jkimn = €(€i, Pj, Pis D1) (Em -+ Dn)

/
and K/ijklmn

represents polarization vectors. At first glance, one might conclude that the corre-

= €(&i,€5, Pk 1) (Dm - Pn) Where € denotes the Levi-Civita symbol, and €

sponding operators are linearly independent, as the matrix constructed from these
invariants has rank 2.

However, as anticipated in the discussion of conditions for operator independence
(see 4.3), we must account for Schouten identities. These identities constrain contrac-
tions involving more than four independent vectors in four-dimensional spacetime.
To implement this, we construct kinematic invariants using contractions involving
at most four linearly independent momenta and/or polarization vectors. In this

example, after eliminating p; via momentum conservation, we are left with three
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independent momenta and two polarization vectors, which satisfy the following re-
lation:

Pa = a1€3 + A2€4 + azpa + a4ps, (4.50)

for some real coefficients a;,7 = 1, ..., 4. Incorporating this constraint, the amplitude

takes the form:
A = (c1 + ¢2) |a3k3a2303 + a3(1 + a4) k342303 + a4(1 + aq) k342333
+ arazkasse + a1 (1 + 2a4)Kaa2333 + A2a4ka2343 + AT Kaaz333 | - (4.51)

From this expression, it is evident that the two operators are related—in fact, they
are identical up to an evanescent term, which vanishes in D = 4.

As a final remark, the kinematic invariants depend solely on the process under
consideration—that is, the external states involved—and the overall power counting
of the operator coefficients. As previously noted, the invariants may change when
the diagrams are evaluated on-shell; however, apart from this, once the field content
of the theory is specified and the relevant kinematic invariants are determined, the

method can be applied consistently [114, 115].

4.4 A Green’s basis of bosonic operators®

There is a fundamental distinction between determining the number of independent
operators in an effective field theory and constructing their explicit forms. Due to the
freedom to perform linear transformations—i.e., basis rotations—among operators,
multiple representations of the same physical content can exist. In the context of
a Green’s basis, there is often an additional degree of freedom in choosing which
operators are labelled as redundant and which are retained as physical.

While the final form of an operator basis can vary depending on conventions, the

$This section contains original work from the thesis.
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crucial objective is to identify one valid, complete, and independent basis. Once this
is achieved, other bases will be related via appropriate transformations (rotations).

In the construction of such bases, the Hilbert Series is highly effective for enumer-
ating invariants, but it does not provide the explicit form of the operators. For this
task, the so-called ‘traditional’ method—i.e., the direct construction of Lorentz- and
gauge-invariant operators followed by elimination of redundancies—can be adapted
to produce independent operator sets systematically, organised by field content and
mass dimension.

Notably, systematic implementations of this method have only emerged in recent
years, and its extension to the construction of Green’s bases happened after the
beginning of this thesisY. Before these advancements, operator bases were assembled
‘manually’, often through iterative procedures that identified and removed redun-
dancies one by one. In many cases, the full operator count was unknown before this
construction, leading to incremental updates as new dependencies were discovered!.

A systematic approach to constructing physical bases was introduced in [29] and
later extended to Green’s bases in [116]. This method leverages the spin-helicity
formalism to recast operator structures into spinor variables, facilitating the use of
momentum-space independence criteria, such as those listed in (4.3). Furthermore,
it incorporates the full set of symmetries described in Section 4.2, applied directly
to the spinor representation. While this framework is rigorous and comprehensive,
its implementation is technically involved and computationally demanding.

Before the publication of those results, an alternative and considerably simpler
method—particularly well-suited for bosonic operators and lower-dimensional cas-
es—was presented in [113]. This method, developed as part of the original work in
this thesis, provides an accessible route to constructing a Green’s basis without sacri-

ficing rigour. Relying on the momentum-space algorithm for identifying independent

ISee, for instance, the developments of the dimension-eight [116] and dimension-seven [117]
Green’s bases.

IThe evolution can be traced in the arXiv revisions of the Warsaw basis [27] and the dimension-
seven basis of [31], which was later refined by other authors [28].
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operator structures (as summarized in 4.3) and on established operator counting re-
sults in SMEFT (see Table 4.1), the method is conceptually straightforward: one
generates all candidate operator structures consistent with the symmetries and then
tests their linear independence by evaluating amplitudes for relevant processes.
Crucially, we showed in Section 4.2 that to establish the independence of a set
of operators belonging to a given class, it suffices to consider physical processes that
involve only the fields present in that class. Table 4.2 lists the specific processes
used to construct a Green’s basis for bosonic operators. The physical operators were
selected to match those appearing in the basis proposed by [30], while the redundant

operators were chosen to be real-valued for consistency and convenience.

Type # operators Process
BH*D* 3 H°(p1) — H°(p2) B(ps)
W H2D* 3 HO(p1) — H™ (p2)W (ps)
B2H2D? 12 H(p1) — H°(p2) B(p3) B(pa)
W2H?D? 19 H(p1) — H°(p2)W* (p3)W ™ (pa)
W BH2D? 19 H(py) — H~(p2)W*(ps) B(pa)
G2H?D? 12 H(p1) — H(p2) G (ps) G (ps)
W2BD? 4 B(p1) = W (p2)W ™ (p3)
G2BD? 4 B(p1) — GA(p2)G” (ps)
W3D? 4 Wi(p1) = W (p2)W ™ (p3)
G? 4 GA(p1) — GP(p2)G (ps)
B2D4 1 Not needed
W?2D4 1 Not needed
G2 D4 1 Not needed

Table 4.2: Processes used in [113] to prove off-shell independence of bosonic dimension eight op-
erators. Columns show the subclasses (types) of operators, the number of elements in the Green’s
Basis and the process used to check the maximal rank of the amplitude matrix. Class X2D*
does not require computations since each subclass contains only one independent operator. Other
bosonic dimension eight classes with redundant operators (H°D?, H*D* X H*D?) had already
been computed in Ref. [81].

The operator bases computed to date are summarized in Table 4.3. The explicit

list of operators used in our computations is provided in Appendix A. In particular,
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the Green’s basis for dimension-eight bosonic operators was constructed using the
methodology outlined in the previous section. This basis includes 89 physical oper-
ators, coinciding with those in Ref.[30], along with 86 redundant operators. While
some of the redundant operators had been previously derived in Ref.[81], many were

presented in Ref. [113] for the first time and are original contributions of this work.

4.4.1 List of original operators in the Green’s basis.

The off-shell independent operators were obtained by evaluating the amplitudes of
the processes listed in Table 4.2 and verifying that the resulting matrix has a rank
equal to the expected number of independent operators. The latter was computed
using the tools Sym2Int [93] and basisgen [94], and is reported for all operator
classes up to dimension eight in Table 4.1. Notably, the number of operators in-
creases significantly in the presence of fermionic fields; for this reason, our analysis
is restricted to the purely bosonic sector*.

For completeness, the interaction terms listed below also include the physical
operators (in the relevant classes) as defined in Ref. [30], using the same naming

conventions for consistency.

4.4.2 Operators in the class X H?D*

There are 3 real terms for X = B and 3 more for X = W. In the first case, it
suffices to compute the amplitude for the process H(p;) — H(p2)B(p3), while in
the second case only H°(p;) — H°(p2)W ™ (p2) is needed.

X =B

ol — i(D,H'D*H — D*H'D,H)D,B" (4.52)

8; BH2D4

** Also, this work was partially motivated by the intention to compute of the RGEs of bosonic
dimension-eight opearators in [118].
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O .. = (D,H'D*H + D*H'D,H)D,B" | (4.53)
o . . =i(D,D,H D’H — D’H'D,D,H)D,B" . (4.54)
X=W
oW . =i(D,H'oe' D*H — D*H'o! D, H)D, W™ (4.55)
o2 .= (D,H'¢'D*H + D*H'¢' D, H)D, W™ | (4.56)
O, yopn = (D, D, HG DPH — DPHlg' D, D, H)D,W'™ . (4.57)

4.4.3 Operators in the class X?H?D?

There are 12 independent operators for X? = B2, 19 for X% = W? and also 19 for
X? = WB. One can check the independence of the operators below by evaluating
the amplitudes H%(p1) — H(p2) B(ps) B(pa), H%(p1) — H(p2)W* (p3)W ™ (p4) and
H®(p1) = H* (p2)W™ (p3) B(pa), respectively.

X2 — 32
OSJ)BQWD? - (DMHTDVH)BupBypa (4.58)
Oa(jzﬁﬂmm = (D“HTDMH)BW)B””, (4.59)
Oz yape = (D'"H'D,H)B,,B"" | (4.60)
O e yepe = (D H'H + H'D,H)D,B" B, (4.61)
O )eere = i(H'D,D,H — D,D,H H)B" B",, (4.62)
Oz pyape = H'HD, D, B" B, (4.63)
O e pyepe = i(H'D,H — D,H'H)D,B" B, (4.64)
O )eere = (H'D,H + D,H'H)D,B" B",, (4.65)
O )z yepe = (H'D*H + D*H'H)B"B,,, (4.66)
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, =i(H'D*H — D*H'H)B"B,,

Oéljlg)szl)z = (HTDVH + DVHTH)D#BHPEVP

o012

8;B2H2D2 — =1

0(1)

8;W2H2D?2 —

0(2)

8;W2H2D2 —
0(3)

8;W2H?2D? —

0(4)

8;W2H2D2 —

0(5)

8;W2H2D?
0(6)

8;W2H?2D?

0(7)

8;W2H2D2

0(8)

8;W2H2D2 —

0(9)

8;W2H?2D?

0(10)

8;W2H2D?

0(11)

8;W2H2D?
012

8;W2H?2D?

0(13)

8;W2H2D?

o)

8;W2H2D?
o015

8;W2H?2D?

0(16)

8;W2H2D?

0(17)

8;W2H2D?
0(18)

8;W2H?2D?

0(19)

8;W2H2D2 —

(H'D,H — D,H'H)D,B" B",.

= (D*H'D"H)W W)* |

= (D*H'D, H)W, W

= (D"H'D, H)W] W,
_ ZEIJK(DMHTO.IDVH>WI;]pWVKp ’
= EIJK(DMHTUIDVHXWJP’WVM _ W;[prp) 7
_ IJK(D#HT IDVH)(WJ WK,O + W] WKP)

IJK(HT I'pvH — DVH'o IH)D WJupWV[; :

_ GIJKHTO_IHDDD#WJ;L;)WI;V :
= i(H'D,H — D,H'H)D, W W,
= (H'D,H + D,H'H)D,WrWw.
— (H'D,H + D,H'H)D, W”")WI”
—z(HTD H—D HTH)D WI,upWIz/’
— HTHD qupD WIV
= (D, HYH + H'D H)WI”’)D“WI

vp)

= (D HTH HTD H)WIVpDuWI

vp )

= (D HTH+HTD H)DuwlupWI

vp)

= (D H'H - H'D H)Duwlupwl

vpo

— EIJK(HTO'IDVH—FDVHTO'IH)D WJM)WK

vp

=ie"’*(H'e'D"H — D"H'o' H)D W' WJ .

(4.67)
(4.68)
(4.69)
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X?=WB

X? =@

1)
OB;WBH2D2
0(2)

8; W BH2D?

0(3)

8;WBH2D?

(4)
OB;WBH2D2
0(5)

8;W BH2D?

0(6)

8;WBH2D?

(1)
OB;WBH2D2
0(8)

8;W BH2D?

0(9)

8;WBH2D?

(10)
OB;WBH2D2
O(U)

8;W BH2D?

0(12)

8;WBH2D?

(13)
OB;WBH2D2
0(14)

8;W BH2D?

0(15)

8;WBH2D?

0(16)

8:W BH2D?
0(17)

8;W BH2D?

0(18)

8;WBH2D?

0(19)

8;WBH2D?

0(1)

8;G2H?2D?

= (D"H'e'D,H)B, ,W",

— (D"H'e'D,H)B,, W

= i(D"H'o'D"H)(B,,,W," — B,,W.?),
= (D*H'¢' D"H)(B,,,W,}” + B,,W,.*),
= i(D"H'o' D" H)(B,,W}* — B,,W!"),
= (D"H'o' D" H)(B,,W!* + B,,W!*),
= i(H'e'D"*H — D"H'¢' H)D,B"*"W
= (H'¢'D"H + D'H'¢' H)D,B*W}
=i(H'e'D"H — D"H'¢c'H)D,B"W, ,
= (H'¢'H)D"B,,D,W""

= (D,H'o'H + H'o'D,H)B,,D"W'"
=i(D,H'e'H — H'¢'D,H)B,,D"*W""
= (H'¢'H)B,,D,D"W"

— i(D,H'o'H — H'¢' D,H)D"B,,W"*
—i(H'e'D,H — D,H'¢' H)D"B,, W,

= (H'o! H)(D*B"")W],,
— (H'o'H)(D*D,W'")B,,
= i(D"H'o'H — H'e' DYH)B"D,W! .

= (D'H'e'H + H'o' D"H)B" D, W} .

_ } A ~Av
— (D"H'D,H)GA. G,
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(4.108)
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o?

8;G2H2D?2

3)
08 G2H2D? —
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= (D*H'D,H)G;,G*,
= (D"H'D,H)G},G*,
D,H'H + H'D,H)D,G*"* G4 |
W p

= z'(HT D,D,H — D,D,H'H)G** G},

= H'HD,D,G*"*G"

=i(H'D,H — D,H H)D,G*G"
= (H'D,H + D,H'H)D,G**G"
= (H'D*H + D*H'H)G** G4,
=i(H'D*H — D*H'H)G*"G}),

= (H'D,H + D,H'H)D, GG
= i(H'D,H — D,H'H)D,G*"*G*".

4.4.4 Operators in the class X3?D?

In this case, there are 4 operators for each of the combinations X3
= W3 and X3

G*B, X3

— W?B, X% =
= G3. The (CP-conserving) W3 and G® operators were

previously presented in Ref. [119]. For the test, again, only one amplitude is need-

ed for each combination to manifest their independence.

W (p2)W™(p3) and B(p1) — G(p2)G(ps3).

X3 =W?B

Oleppe = BuD,W™ D,We7
Ogt)WBm = B, (D 2me)WIVp’
OE(S?I)/VQBDQ = EWDPWIWDOWIW )
OE(;;LI)/V?BDQ - EW(D2WIW>WIVW

For example: B(p;) —

4.120
4.121
4.122
4.123

~—~~
~— ~— ~— ~—
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X3 =G*B
OéléQBm = BWD/JGAWDUGAW )
05(522:2BD2 = BW(D2GAMP)GAV
OéBézsz = B D GA/WD GAPU,
4 v
Oé;éQBD2 = BW(DQGAW)GAP‘
X3 =Ws3
O(l{)mD2 _ IJKWI D, W p, wkee
(95(321)/1/3[)2 _ IJKWI D WJWD WKO’V
05(5?13{/3132 _ IJKWI DpWJ'uVDgWKpU,
(,)E(fl)mD2 _ IJKWI DpWJp#DUWKJV’
X3 =@

0(1)03D2 _ fABCGA D GB,uVD GCpO’

uv
0(2%;3D2 — fABC’GA D GBp/J,D GCG’V
Oé3GdD2 _ fABCGA DPGB/WDO-GC’DU,
Oé4)GBD2 _ fABCGA pGB’D’uDJGCUV :

pv

4.4.5 Operators in the class X2D*

61

4.133
4.134
4.135
4.136

~~ I~ I/~
~—  ~— ~— ~—

In this class, there is only 1 operator per category, X = B, W, G. So the independence

of operators is obvious.
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X=0B
Og.p2pi = (DyD,B"™)(D°D"B,,) . (4.137)
X=W
Osw2ps = (De DWW )(D7D*W],) . (4.138)
X=G
Os.c2ps = (Dy DG (D D?G2,) . (4.139)
Dimension Basis
f Grzadkowski et al. [27]
dg Gherardi, Marzocca and Venturini [32]
dr Lehman [31] + Liao and Ma [28§]
dr Zhang [117]
ds Murphy [30] & Li, Ren, Shu et al. [29]
ds Chala, A.D and Guedes [113] (bosonic) & Ren and Yu [116] (GB only)

Table 4.3: List of tables and references up to dimension 8. There are also physical bases of dimension
nine [120, 121] that follow the procedure of the dimension seven [28] and dimension eight [116]
precedents, respectively. They both build bases by applying the independence relations to sets of
operators until the number is minimal, but the latter uses a systematic method generalizable to
any dimension for SMEFT.

4.5 Omnshell relations

A Green’s basis can be constructed to include a specific set of physical opera-

tors—those that remain after eliminating redundancies via the EoM. The relationship
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between a Green’s basis and the physical operators it contains is not univocal, nor
is a given set of physical operators uniquely linked to a Green’s basis. Thus, when
working with physical and redundant sets of operators simultaneously, the two bases
have to be specified. The relation between them is typically expressed through a
redefinition of the associated WCs in the physical basis —the on-shell relations.

Consider a redundant operator of the form
R=2) hlg,a"™)0O,,
p

where the EoMs relate the left-hand side to a linear combination of physical operators
O, on the right-hand side. The coefficients h,(g,a™) are are analytic functions of
the SM couplings g = (g1, 92, g3, A, m%) and WCs associated with physical operators.

Now consider inserting R into the Lagrangian, constructed from the physical

basis:
L = Lppys + IR,

where b is the Wilson coefficient of the redundant operator. Substituting R and

regrouping terms by operator class yields

L= Z (ap + bhy(g, a(m))) Oy,

which is equivalent to performing a shift of the form
a, — ¢, = a, + bhy(g,a™) (4.140)

on the WCs of the physical Lagrangian. This is analogous to the effect of a field
redefinition.

It is important to note, as discussed in Section 4.1.4, that if redundant operators
are inserted more than once (i.e., at higher loop order), the EoMs relations no longer

hold in general, and care must be taken in such cases.
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4.5.1 Computation of the on-shell relations

The on-shell relations between operators are obtained by substituting the terms pro-
portional to the EoMs, such that the resulting operators contain a reduced number
of derivatives. After suitable algebraic manipulations, these new operators can be
rewritten in terms of the physical basis. However, due to the inherent freedom in
choosing a basis, some redundant operators may not manifest their dependence on
EoMs terms explicitly, which can render the derivation of on-shell relations a labo-
rious task.

A practical strategy to streamline this process involves performing a matching
between two Lagrangians: the one constructed from physical operators (serving as
the IR theory) and the one involving redundant operators, from which EoMs terms
have been eliminated (interpreted as the UV theory). Typically, finding all possible
EoM terms is not straightforward, and it is extremely complicated for operators with
two or more derivatives. There has been recent progress in the automatisation of
this process [114, 115], but most of the calculations of our onshell relations were
performed by hand.

After implementing the EoMs by hand in the redundant operators, the result-
ing terms need to be expressed as a linear combination of the physical operators.
The safest course of action is to carry out the matching at the tree level, using the
same processes employed earlier to verify the independence of operators (see Ta-
ble 4.2). Since the relevant kinematic invariants have already been identified in that
context, setting up the corresponding system of equations becomes a straightfor-
ward procedure. This is the process we chose to obtain the on-shell relations of the
new dimension-eight redundant operators presented in Ref. [113] with the previously
known physical basis of Ref. [30].

Let us consider an explicit example. In the SMEFT operator class X H*D?, there

are a total of 241 operators of the type BH*D?. Our goal is to determine the on-shell

(3)

8. BHAD? By examining its definition,

reduction of the operator O

O yyipe = (H'H)D,B™ (D, H'iH + h.c.), (4.141)
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we observe that the EoMs for the B field strength tensor,
—
D"B,, = —%HTiDVH 4. (cf Eq. (4.29)),

can be applied directly. If we retain only order A° terms, the resulting expression
becomes proportional to an operator in the class H°D?, that already belongs in the
physical basis:
0P — (HHLEND, H(D,HH + h.c.) (4.142)
= 5 y u .c.), .

8; BH4D?
(2)

8;H6D2"
effect of OS’])B pape 1s equivalent to a shift in the Wilson coefficient of Oé(fl)ﬁ p2> given

by:

which is then matched onto the structure —g; O Consequently, the on-shell

(2) (2) (2)
Cg mop2 ™7 Cg gop2 — Y1Cg gepe-

(2)
8;H6D?>
many., accounting for all other contributing operators. From the set of known boson-

This shift can then be incorporated into the full coefficient of O which are

ic operators at dimension eight, we already have the following additional contribu-

tions'T:
(8) 2
2 2 1 bs. g2 2 p2 91 1 L.
Cé7;{6D2 — Cé71)q6D2 + ZbS;BgD‘lg%gg - T - Qbé;)BHQDélgl)\ - gbé;])BHQD‘lglgg
+ 2b§;i22H2D491>‘ - Cz(z%Hw?gl + bg, 2 ps g\ + ngIQ{)‘lD‘lA - sz(s?;{w‘l)‘

10 8 11
9 9 bé;v&BhﬂDlegQ bé;i)/VBHQD29192 3bé;VIZ'BH2D2glg2
+ bs.w2pigi9s + - -

2 4 8
(7)
(13) (3) 2 bs.w rap292
— bswpr2p29192 — §bS;WH2D49192 - 4 ’

(4.143)

but additional contributions arise from redundant dimension-eight fermionic opera-

ttSee the Appendix A to check the definitions of all the operators.
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tors, as well as from products of dimension-six operators.
In the latter case, when pairs of dimension-six operators are setting on-shell
a dimension-eight operator, it is important to note that one of the contributing

operators is physical, while the other is redundant. Consider, for example, the

()

dimension-six operator Og.ppp, defined analogously to (98; BHAD?

Oe.spir = D, B" (H'iD,H + h.c.), (4.144)

and the corresponding EoMs for the B field strength tensor, extended to include

order A=2 terms:
. <=
D'Byy = ... + %%HH D, H + fermionic. (4.145)
Using this relation, we obtain an additional contribution to the WC shift, as com-
puted in Ref. [81]:

2 2
Cé}IGDQ — CéJ)LIeDz + ag,up(9106:8pH — 92bs;wpH — Y, 1rp)- (4.146)
As previously discussed, EoM substitutions are not valid for multiple insertions of
redundant operators. However, in the example under consideration (see Figure 4.1),

each contribution involves only a single insertion of a redundant operator.

\ / N /
\ s/ N\ >
\\\: / AN -
. \/W \/\/\ ~
-7 N\ 7/ \™ o
/s N\ / N
/ N\ / N

Figure 4.1: Feynman diagrams illustrating the contributions of the operators 05(31)3 gape (left) and

O¢.gppu (right) to the on-shell realization of Og}{ﬁ p2- On the left, the A° EoM is applied to
the gauge boson leg via the gauge coupling g;. On the right, the EoM at order A=2 is used,
which requires the insertion of Og,p. Black dots represent SM vertices, Green boxes represent
dimension-six interactions and orange boxes represent dimension-eight interactions.

The full list of on-shell relations is too long to write, but the ones used for
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calculations have already been published in different articles [32, 81, 82, 113]. There

are also on-shell relations for dimension-seven Green’s Basis that we did not need

here [117].
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Renormalisation Group Equations

We now arrive at the central topic of this thesis: the RGEs. In this section, we will
synthesize the information presented in previous sections to explain this powerful
tool of QFT. Conceptually, the key question we seek to address is: What is the
relationship between two measurements of the same observable at different energy
scales? In particle physics, this typically refers to scattering processes occurring
at accelerators with varying center-of-mass energies. Renormalisation provides a
framework to relate these measurements to parameters in the Lagrangian. If the
energy of the process always remains within the energy range of a single EFT, only
one theory should be required to describe the experiment. In this case, assuming the
experiment and theory remain the same, the measured Lagrangian parameter would
(in principle) be identical, but at different scales. So, what is the mathematical

relationship between these two values of the parameter?

5.1 Definition

5.1.1 Callan-Symanzyk Equation

Recall the MS scheme defined in Section 2.3.3. As discussed earlier, the bare and
renormalised parameters are related by an expression that explicitly includes a depen-

dence on the renormalisation scale p for the renormalised parameter (see Eq. (2.10)).

68
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However, we did not focus on this aspect at that point. This scale dependence is a key
feature of minimal subtraction schemes, which we will soon explore after formalizing
the RGEs.

For example, we take the Green’s function computed for the WFR of the right-
handed leptons, as introduced in Section 2.1. In this case, the relation between the

bare Green’s function GY(p) and the renormalised Green’s function G(p)* is:
iG°(p) = (e°¢”) = p*Ze(n) (ee) (5.1)

where the factor p?¢ compensates for the shift in the mass dimension of the electron
fields in d = 4 — 2¢ dimensions compared to d = 4. The renormalised Green’s
function is scale-dependent due to the running of the renormalised couplings. This
implies that the counterterms are also scale-dependent, as they are functions of the
renormalised couplings and masses.

Since the bare Green’s function and the bare fields are not scale-dependent, the
renormalised Green’s function must acquire scale dependence to compensate for both
the renormalisation factor Z, = 1+6,.(u) and the p*¢ factor. This compensating scale
dependence is mathematically expressed by the Callan-Symanzik equation [122, 123]:

dG° 1 dG(p) 1 dZ.(p)

p——=0= 0= pu*Z.G(n) |2¢ + 7 + I ) 5.2
an R TP TR A A L (5:2)

where the scale dependence of the Green’s function is unknown.

The next step is to express this relationship as a RGE for the Green’s function

Gp) = (re):
WSS Bt 1. G 0) (5.

where [ is the beta function, which governs the scale dependence of G(u).

Thus, the RGE is a first-order linear differential equation. Beta functions are

*From now on, we will drop the subscript R from renormalised quantities. Bare quantities will
be distinguished by the superscript 0.
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defined as the coefficient of the zero-derivative term in the differential equations
for the Green’s function, computed up to the desired loop level and involving only
renormalised quantities. In the case of WFR for the electron, the Green’s function
depends on the Yukawa couplings y© and the gauge coupling ¢;, as deduced from
the Feynman diagrams in Figure 2.1. To find an exact solution for the RGE (if it
exists), we would need the RGEs of y, and gy, as well.

The RGEs can be defined at any loop order. Higher-loop corrections are obtained
by including additional terms in the counterterms and inserting them into the Callan-
Symanzik equation, solving perturbatively.

Before delving into a simplified derivation of the beta functions, there are some

important caveats to discuss.

5.1.2 Running couplings

When the beta function is different from zero, we say the Green’s Function (or
whatever object is being considered) is running. There is a difference between renor-
malising and running. Renormalisation involves absorbing divergences into redefined
(renormalised) parameters and fields, while running refers to the scale dependence
of these renormalised parameters, as governed by the RGEs.

We can compute the running of any renormalisable quantity in the Lagrangian,
including couplings and operators, as well as Green’s functions. In particular, when
studying the running of operators in both the SM and beyond, we observe a relation-
ship between the running of the coefficients of these operators. The starting point
for this analysis is the scale independence of the bare Lagrangian. Specifically, the

bare Lagrangian £ satisfies:

dc’
This condition implies:
dc? do?
PO | 0 Py _
) (M@Op +cpht i ) =0, (5.5)
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which leads to the relation:
dcg d(’)g

Ma:—ﬂdua

(5.6)

where cg are the bare WCs and (92 are the corresponding operators. Here, we are
assuming that all the operators are independent.

From this, we can deduce that the running of WC is intimately connected with
the running of the operators themselves. In the EFT formalism, it is customary to
write the RGEs for the WCs, as they encapsulate the energy scale dependence of the

operators.

5.1.3 Anomalous dimension

Given the beta function of a coupling or WC ¢, we define the anomalous dimension
v as:

v =B/ (5.7)

where ¢ is evaluated at tree-level. Thus, v is determined by the loop corrections
to the quantity being considered, just like the beta functions. The term ‘anomalous
dimension’ refers to the modification in the power counting of fields due to the effects
of DimReg, which alters the spacetime dimension to regulate divergences.

To see this, recall the definition of power counting and its relation with mass
dimension (see Section 3.3). By definition of the power counting, there is a ‘dilata-
tion” symmetry in the Lagrangian [47]: The invariance under the rescaling of all
dimensionful quantities (including fields, couplings, and derivatives) by a dimension-
less factor A, with the rescaling given by g — A9lg, where [g], represents the mass
dimension of the quantity g. Since this is true for all dimensions, we can compare
the shift in the mass dimension when going from d = 4 — 2¢ dimensions to d = 4
dimensions.

Dimensional continuation (analytical continuation of the spacetime dimension)
modifies the power counting of dimensionful quantities. For example, the change in

the mass dimension for a quantity g introduces a factor of ¢ in its definition, as
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seen in Eq. (2.5):
{9} gmaae = WA ama - (5.8)

Here,ve represents the difference in mass dimensions between d = 4 — 2¢ and d = 4.
Taking the scale derivative with respect to u, we find the tree-level RGEs for the

quantity g:
dg
H du

This equation shows that the tree-level anomalous dimension represents the dis-

veg = ([gla=a—2c — [gla=4)g- (5.9)

tortion in the power counting of a quantity when the spacetime dimension is changed.
At higher loop levels, the anomalous dimension also accounts for the scale introduced

by loop integrals, which contribute additional terms to the RGEs.

5.1.4 Applications of running

In QFT, the RGEs have two main applications: resumming logarithmic terms and
expressing the values of couplings at different energy scales. The procedure involves
calculating the value of an observable at a given scale based on its known value at a
lower energy scale.

For example', let us consider the scattering process H*H? — H+H in the
SM. At tree level, the amplitude is straightforward. At one-loop, we can use tools
like FeynRules [49], FeynArts [50] and FormCalc [51] to perform the computation.
For simplicity, we focus on the self-renormalisation of the Higgs quartic coupling A,
considering only the terms proportional to A (see Figure 5.1).

To compute physical observables at one loop, we need the finite part of the
amplitude, as the counterterm cancels the divergences. At tree level, the amplitude
is given by:

ATE ) = —2). (5.10)

fAdapted from Ref. [124]
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\ ’ \ N ’ N ’
\ s N ’ N ’
N N Ny \®/
x » «
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/ N / -_- \ s \

Figure 5.1: Diagrams contributing to the amplitude of H+H? — H+ H? at tree-level and one-loop.
Only diagrams proportional to A are included here. The black dots represent SM vertices, and the
black cross represents the counterterm.

At one-loop, the amplitude takes the form:

g 3N N 2
A [M]_%2 In -y +3 ) (5.11)

where the ratio p/my arises naturally from the loop integral solved using DimReg
and the MS scheme.

Assuming the values of the couplings are known at a smaller, well-explored scale
A, we aim to evaluate them at a higher scale A., which corresponds to future collider
energies. This allows us to make predictions for experiments at A, and compare them
with the data at the low-energy scale A,. Directly evaluating both amplitudes at
i = A, could lead to a non-perturbative result if the separation between the high
scale and the theory scale is too large (i.e., A, > my). To address this, we compute

the RGEs for the Higgs quartic coupling A. Using the MS counterterm:

3\
S 12
O\ 2n2¢’ (5.12)
and the Callan-Symanzik equation (Eq. (5.2)), we obtain:
dA 3\
— =2e\TL| + —[1L]. 5.13
n =271+ 271 (5.13)

Setting ¢ — 0 and solving these equations for constant coefficients leads to a
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logarithmic dependence on the energy scale:

u% _ 37T_A22 - (5.14)

1 1 3
) - A/ = (5.15)
M) = AA) (1 + A(A)% In (A/u)> | (5.16)

Here, A represents the integration constant, determined by imposing a boundary
condition on the coupling at a known scale.

In this simplified case, we can express the coupling A at the low scale A in terms
of its value at the high energy scale A.. The amplitude at low scale can then be
‘run’ up to the high-energy value. If we run the tree-level amplitude, we obtain the
‘RG-improved’ result at LO:

ALHIO — _9)\(11 = A) = —2A(A.) (1 + /\(Ac)% In (AC/AS)> T s

This expression includes a logarithmic term that remains well-behaved, even if the
collider scale is significantly separated from the theory scale my, provided the ex-
periment is performed at a scale A, that is not too far from A..

We can also apply the Leading Logarithmic (LL) expansion in the Next to Leading
Order (NLO) expression by inserting the solution of the RGE into the one-loop

amplitude. The result remains well-behaved:

eevio _ 300 = AP (m ( ¥ ) . 2)

272 miy 3

_ 3227%6] (1 + /\[AC]% In (AC/AS)> - (m ( Tﬁz ) + ;) . (5.18)

H

The key point is that there are two perturbative expansions: one in the coupling

A and another in the product of A and the logarithm of the energy scales, AIn(A./Ay),



Chapter 5. Renormalisation Group Equations 75

which is known as the LL expansion. If both expansions are of the same order, pertur-
bation theory breaks down. However, when they are well-separated, this formulation
absorbs the divergences from the logarithms of distant scales. The LL+NLO ampli-
tude is related to the NLO expression expanded at u = A. ~ A, which implies that
the problematic logarithm in Eq. (5.11) has been resummed into the well-behaved

expression in Eq. (5.18).

5.1.5 Mixing and power counting

The structure of SMEFT RGEs requires detailed consideration of operator renormal-
isation beyond the case of single operators. In QFTs, loop diagrams with operator
insertions can generate divergent amplitudes contributing to distinct operator struc-
tures. As a result, the corresponding counterterms imply a matrix structure in
the RGEs, reflecting operator mixing, which significantly influences the evolution of
WCs.

When the insertion of an operator O, in a loop induces divergences in a different
operator Oy, the renormalisation procedure necessitates including counterterms for
O, even if it was not present in the bare Lagrangian. This leads to RGEs of the

form:

deg
dp

= Z%tCt + (9(02), (5.19)

t

I

where ¢, and ¢; are WCs, and 74 is the Anomalous Dimension Matrix (ADM) encod-
ing the mixing. The O(c?) term reflects contributions from higher-loop or multiple
insertions.

As discussed in Section 2.5, regulating divergences in higher-dimensional opera-
tors sometimes requires operators of even higher dimension. In the EFT framework,
truncating the Lagrangian at a given operator dimension fixes the calculational preci-
sion. However, loop-level diagrams involving multiple insertions of lower-dimensional
operators can contribute to higher-dimensional structures if consistent with the pow-

er counting. For example, one-loop diagrams with two insertions of dimension-six
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operators can generate contributions of the form:

(5. o2

which is, in principle, comparable in magnitude to the one-loop corrections for

dimension-eight operators.

While some all-dimensional predictions of the ADM are possible in special cas-
es (e.g., the RGEs H™ and ¢*H™ operators [125] are known for all dimensions in
SMEFT), in general, explicit computation order by order remains the most reliable

method for determining these effects.

5.2 Algorithm and computation

Our goal is to derive a general expression for the RGEs that can be applied system-
atically to SMEFT and other EFTs. Consider an operator and its corresponding

WC in the bare Lagrangian:
0
c
Ar—4

After renormalisation, divergences are absorbed into counterterms, encoded in the

L£°> o°. (5.21)

renormalisation constant Z», and a factor of yu” appears to compensate for the
dimensional mismatch introduced by DimReg. The renormalised operator can then
be written in terms of the bare one as:

C C

Ar_4o = Zop" = Z50° (5.22)

Zop'

where Z,; accounts for the WEFR of the fields appearing in the operator O. Using the
standard definitions ¢(©) = Z,p for scalars and x© = Z, 2y for fermions or gauge
bosons, we express:

Zy= [ 2z, 2" (5.23)

P=p,X
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where n4 denotes the number of each field ¢ in O. For instance, for an operator like
(?H?, we would have Z, = Z;*Z; "

From Eq. (5.22), we can extract the bare coefficient ¢(”) in terms of renormalised
quantities. Applying the Callan-Symanzik equation (5.2) and expanding the renor-
malisation constants as Z = 1 + §, we obtain:

de? de (TL)

d
<y de _ _ R SR 5.24
o =>udu v 60+C“du(‘9+ é) (5.24)

where ~(TH)

€ represents the tree-level anomalous dimension of ¢, and the second term
originates from the scale dependence of the counterterms. In the limit ¢ — 0, the
first term vanishes, and only the loop-induced running remains.

Since the explicit pu-dependence has been factored out, the scale dependence in
the counterterms arises solely from their dependence on running couplings. This

allows us to re-express the derivative as:

d
(1L) _ (TL)

AL = czmj B go (o +5) (5.25)
where the z,, denote the running parameters, and BfnT L) are their LO beta functions.
The contributions from WFR, encoded in d,, can be computed separately and added
to the operator beta function.

We now express the RGE for the Wilson coefficient as:

d (¢
- — ) — (=2 ) + WFR 5.26
P et () + WER (5.20
where ¢o = —cdo denotes the coefficient of the divergence at one loop (i.e.,

the one-loop contribution to the operator’s counterterm) in the MS scheme. This
expression captures the dependence of the WC on the running parameters via the

structure of the divergent terms.
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5.2.1 Preliminary considerations

Once the general expression for the beta function in Eq. (5.26) is established, sev-
eral important considerations must be addressed before calculating the divergences.
Operator insertions lead to a proliferation of diagrams, some of which are highly
nontrivial to evaluate. A systematic approach is therefore essential to identify which

contributions are necessary and which can be safely ignored. Key points include:

e Power counting determines which operator insertions are relevant. For a com-
plete result at a given order, all contributions with the same power-counting

suppression must be included.

e Lower-dimensional operators may receive higher-order corrections from multi-

ple insertions of marginal or irrelevant operators.

e Not all ADM elements need to be computed. Some contributions vanish due

to symmetry or structural arguments.

e Operator selection can be optimized when the UV theory naturally suppresses

certain interactions.

The first point concerns operator mixing. In principle, mixing occurs among all
operators within a given dimensional class and between different classes via multiple
insertions. While listing participating operators is straightforward at low dimensions,
the computation of their associated diagrams becomes increasingly demanding. For-
tunately, the various contributions to the beta function are additive, allowing the
calculation to be modularized.

Although renormalisation typically focuses on higher-dimensional operators, lower-
dimensional operators can also receive loop-level corrections. Such corrections must
carry dimensionful suppression factors due to power counting. In SMEFT, where the
Higgs vacuum expectation value and mass mpy provide the only low-energy scales,

this implies that such contributions often arise through Higgs insertions, typically
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in the form of loops involving Higgs fields. Nonetheless, each case requires explicit
analysis to determine relevance.

Non-renormalisation theorems [126] provide predictive power by identifying zeros
in the ADM without explicit calculation. While currently limited—mostly apply-
ing to linear renormalisation of dimension-six and dimension-eight operators at one
loop—they are still useful for simplifying computations. Structural arguments based
on operator content, such as mismatched field content or quantum numbers, can also
be used to anticipate vanishing contributions.

In weakly coupled UV completions of SMEFT, not all operator classes are gener-
ated at tree level. As shown in [127], some operators only arise at loop level. Their
insertions into RGEs introduce additional loop suppression, which can justify their
exclusion from beta function calculations—though some authors choose to retain
them for completeness. Additionally, many UV completions do not include Lepton
Number Violation (LNV) operators at low energies due to the large scale (typically
A ~ 10 GeV) expected for these models [128], offering further grounds for their

omission in practical computations.

5.2.2 Offshell diagrammatical approach

Historically, the RGEs of SMEFT have been computed diagrammatically and off-
shell. Results up to O(A~3) have been obtained using this approach. We adopt an
off-shell formalism, as 1PI diagrams are typically easier to organize and compute,
despite introducing additional redundancies. Rather than removing the redundancies
case by case, our approach instead employs a Green’s basis to systematically absorb
redundancies, followed by the application of EoMs.

We applied this method to dimension-eight operators, leading to original re-
sults [82, 118, 129] (see also [81], which was the first computation using this ap-
proach). Other groups have similarly used it to renormalise dimension-seven opera-
tors in 2023 [117]. In recent years, alternative techniques have emerged. Functional

renormalisation provides a robust non-diagrammatic method, and promising results
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have been obtained via unitarity cuts [111] and geometrical approaches based on the
space of operators [130-132].

The core idea of the off-shell method is to work within the framework of renor-
malised perturbation theory, computing only the divergences of 1PI diagrams. As
discussed in Section 4.4, this necessitates including additional operators to absorb di-
vergences, which are later removed via on-shell relations. Amplitudes are expressed
as linear combinations of kinematic invariants, determined by the operator’s field
content and power counting. Constructing the independent kinematic structures
using metric tensors, spinors, and the Levi-Civita symbol becomes straightforward
under this framework.

We now present the method in general terms, with specific examples and re-
finements order by order in power counting, in subsequent sections. Consider the
SMEFT Lagrangian in renormalised perturbation theory, including physical opera-
tors from Table A:

Loy = Loy + Z 3 Z X: ‘14 (5.27)

r=5 g¢q p=1

(p)

Here, g are the WCs of the p-th operator in class ¢ with mass dimension r, cho-

sen to be dlmensmnless by explicit power counting. In the low-energy theory, we take

(p ). Then, redundant operators Ry(fq)

the same physical operators with coefficients ay
and their coefficients bnq are added to absorb off—shell divergences. Each operator
has an associated counterterm ZT(Z), expanded perturbatively as ZT(Z) =1+ 57(%)

In the case that the operator term has flavour indices, the counterterm should
respect the symmetries of the coefficient, while admitting flavour-dependent con-
tributions. In that case, the counterterm also has flavour indices, so the following
notation is preferable:

(2o [a))ap... = [aP))ap.. + (001} ]as.. (5.28)

r?q

In any case, counterterms are fixed by the divergent parts of one-loop 1PI dia-
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grams using DimReg and the MS scheme:

al) = —salr) (5.29)
blr) = —5P)pe) (5.30)

where contributions from WFR are omitted at this stage. Thus, it is remarkably
simpler to work directly with the divergences. Once computed, redundant coefficients
are removed using on-shell relations. The physical divergences are shifted according
to the on-shell relations defined, as defined in Eq. (4.140):

) o 80, = 2, — 3 Wy A g (a0 (531
and these are inserted into the RGE as defined in Eq. (5.26).

The tree-level anomalous dimension is derived from the field content and space-
time dimensionality. For an operator O = X"X¢"» H™2 D"P in d = 4—2¢ dimensions,
we obtain:

(TL)

YW =nx +ny +ng—2=n4 — 2, (5.32)

where ny is the number of fields in the operator and the subtraction of 2 accounts for
the overall mass dimension of the Lagrangian term in d dimensions. WER is typically
included after computing all operator mixings. It contributes to self-renormalisation
via SM counterterms.

All diagrammatic computations are carried out using the tools FeynRules [49],
FeynArts [50], and FormCalc [51], with MatchMakerEFT [133] used for cross-checks.
These tools automate Feynman rule generation and diagram evaluation. The Back-
ground Field Method [134] is applied manually when necessary. MatchMakerEFT also
performs one-loop matching and RGE extraction, though its default implementation
includes only dimension-six RGEs up to O(A7?).

Counterterms are computed using DimReg and the MS scheme. Since we restrict
ourselves to one-loop computations, evanescent operators are not included; they

contribute only finite parts and thus do not affect the RGEs.
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We have outlined the general renormalisation strategy. In subsequent sections,
we explore explicit examples across different operator classes, summarising known
RGEs at lower orders and comparing them with our results at O(A~*). We highlight
universal features as well as complications that arise only at higher orders in the

power counting expansion.

5.3 Renormalisation up to first order in the cutoff

The first irrelevant operator encountered in the SMEFT is the Weinberg operator,

along with its Hermitian conjugate:

[Os;e]as = €ijer(Cy) T CLSHIH' (5.33)
; B J B

Vi Vi *\J *
0L il = eijent,C(0g) T (H*Y (H")', (5.34)

which correspond to the operator Q,, in the basis of Ref. [27].

This operator plays a central role in seesaw mechanisms, where it emerges upon
integrating out heavy fermions—for example right-handed neutrinos—that couple to
light SM leptons via Yukawa interactions. After Electroweak Symmetry Breaking
(EWSB), the operator defined above generates a Majorana mass term for the left-
handed neutrinos:

02
(essermlag|Osiertlap = < les;2me]as (VE)a (Ve )s (5.35)

and analogously for the Hermitian conjugate. Here, (v7)¢ = io?(vy)’ denotes the
charge-conjugated field. The RGE running leads to radiative corrections to the light
neutrino masses generated via this mechanism.

From the standpoint of power counting, dimension-five operators can only mix
among themselves at order O(A~1). There is no operator mixing into dimension-four

(renormalisable) terms in the SM at this order, either. The corresponding RGE can
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be schematically expressed as:
o d (d5)
167 M@C5 =~y %y (5.36)

(@) is the anomalous dimension matrix governing the evolution of the oper-

where
ator coefficients.

The one-loop renormalisation of this operator was first computed in Refs. [33, 34],
with both analyses yielding consistent results. A later study in Ref. [35] revisited
the calculation and corrected a missing numerical factor.! These results can now be
easily reproduced using modern tools such as FeynRules, FeynArts, and FormCalc,
following our methodology.

To extract the counterterm associated with [c5. o], we consider the process
(er)a(vr)s — HPH~. At one loop, 21 Feynman diagrams contribute to the ampli-

tude, as shown in Fig. 5.2. The divergent part of the amplitude reads:

2 2

167°€[¢, errlap = —%[05%](15 + %[05;%]&6 — 2A[eseri]ap
+ (sl D) + (esen] WAIWADT) o (537)

At this order, there are no one-loop connected reducible diagrams beyond those
contributing to WFR. Consequently, the full RGE for the operator coefficient can be
derived using the divergence in Eq. (5.37) and the counterterms for the Higgs and
lepton fields from Ref. [35]:

(T g 93
(0¢)i = = 1672  327% 327T26IL (5.38)
T elf,elt T wl[,,ult T di1,,d1t 2 2
5y — r(lylly)) T () () g 35 (530
m2e 8m2e 8m2e 167m2¢  1672e

TPossibly related to a vertex diagram miscalculation, although this is not explicitly discussed
in the original papers.
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Figure 5.2: One-loop Feynman diagrams contributing to the renormalisation of the Weinberg op-
erator. There are 21 diagrams in total, accounting for all relevant internal field insertions and
channels. Black dots indicate SM vertices, while blue boxes denote insertions of dimension-five
operators.

where the matrices of (d;); refer to flavour space. In our notation®, we obtain:

1679% [esen]g = (—363 + 40 + Tr [205) (5) + 6(5") (5™) + 6(5") (¥™)]) lesen]s
3

= = ((esern) ] 1) + (lesen] [y 1))

5 (5.40)

af ’
It is worth noting that all the numerical coefficients in this RGE are of order one,
in agreement with expectations from naturalness and effective field theory dimen-

sional analysis.

SRef. [35] uses Kap = [C5:H]ap + [CE;ZH]W
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5.4 Renormalisation up to second order in the
cutoff

At the next order in the SMEFT expansion, we encounter operators of dimension
six. In this regime, the anomalous dimension governing the scale dependence of the
WCs ¢, can be written as:
16720 gy = 7By + 12 5.41
,udlucﬁ,p Vps  Cos +Vp  C5 - (5.41)
Here, (%) encodes the mixing between dimension-six operators, while ’y,(,d52) repre-
sents the contribution from insertions of two dimension-five operators.

A few years after the introduction of the Warsaw basis, the authors of Refs. [37—
40] carried out a detailed analysis of the RGEs of these operators, including their
mutual mixing. In total, there are 63 independent operators (for one generation) at
dimension six, including four that violate baryon and lepton numbers. This gives rise
to 632 = 3969 possible entries in the ADM (excluding flavour indices), making the
full computation of all loop diagrams a substantial task. As a result, it is advisable
to first analyse the operator mixing class by class before focusing on individual
operators.

Using Naive Dimensional Analysis (NDA), the authors of Ref. [135] were able
to identify which entries in the ADM could be non-vanishing. However, explicit
one-loop computations revealed more vanishing entries than NDA had predicted.
These additional zeros arose either due to the absence of contributing Feynman
diagrams or the finiteness of those diagrams. In several cases, cancellations occurred
between diagrammatic divergences and counterterms associated with the EoM. Such
cancellations are more naturally understood using on-shell methods, we will also
encounter them when discussing dimension-eight operators.

The complete set of RGEs for the dimension-six operators is distributed across

four major references [37-40], organized by the type of contribution: (1) those in-
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volving the Higgs quartic coupling A, (2) Yukawa couplings, (3) gauge couplings, and
(4) operators that violate baryon and lepton number.

We present below a summary of the non-vanishing anomalous dimensions based
on the explicit one-loop results, supplemented by the NDA-based expectations (see
Table 3 in Ref. [39]). In particular, some entries deviate from the NDA-expected
magnitude v ~ O(1). This behavior is especially prominent in the RGE for the
six-Higgs operator Oy = (HTH)?, which includes terms such as [39]:

d
16#2@66;11 = 108Ace;r — (4891 + 120793) o, + - - - (5-42)

While this effect does not appear at dimension five, it becomes more significant as

we move to higher-dimensional operators.

Ve (1//\2) X3 HS HAD? XZ2H? ¢2H3 X@/}zH ¢2H2D ¢4
X3 g 0 0 0 0 0 0 0
HG @ y2 )\92 g4 y3 0 )\yQ 0
HD? g 0 y? l [l 0 1> 0
X2H? g 0 0 y? 0 yg 0 0
VP H? g0 ) v Yy vy
X*H || ¢ 0 0 vg ) y? 0 wg
YPHD g 0y f f f vy
Ut g0 0 0 0 Y Y’ Y’

Table 5.1: Anomalous dimension matrix for dimension-six operators. Rows correspond to operator
classes receiving corrections; columns indicate source operator classes. ) indicates a vanishing entry
where NDA suggests a non-zero contribution. See [37—-40] for complete results.

In addition to the mixing of dimension-six operators among themselves, there
exists another contribution at order A=2 : the insertion of two dimension-five opera-
tors into one-loop diagrams. These contributions can also renormalise dimension-six

operators. This effect was computed in Ref. [36] for the SM and a two-Higgs-doublet
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model¥. The resulting additional terms in the RGEs of dimension-six operators are:

d. 3

168° 3 -lehiles = = (Idhanllesent]) (5.43)
d

167 -leiilos = (Idenllesen]) (5.44)
d 3 .

165° 1 -lesenlos = 5 (Ihenllesanlly]) (5.45)

167T21[06-ez]a6 — 21k snla [cs:er] 5o (5.46)

d/J/ ’ vp 2 5,£H Y ’

In the above, we have made use of the symmetry of the Weinberg operator,

[ ilas = [ ] s (5.47)

to simplify expressions.

5.5 Renormalisation up to third order in the cut-
off

In this case, the anomalous dimension governing the scale dependence of dimension-
seven operators takes the form:

ps ps

d
167r2u@c7;p = (d7)07;s + 7,5d53>c§ + 7(d5d6)c506;3 ) (5.48)

The primary interest in dimension-seven operators arises from their contribu-
tions to the neutrino mass matrix, similar to the dimension-five Weinberg operator.
However, at dimension seven, the number of operator classes increases, and not

all contribute to neutrino masses at tree level. Consequently, the RGEs for these

INote that the definitions of the Weinberg operator and its Hermitian conjugate in Ref. [36]
differ from the conventions used here.
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operators were completed more recently.

The first results concerning their self-mixing were published by Ref. [136], focus-
ing on LNV and Baryon Number Violation (BNV) sectors. Before that, Ref. [125]
had analysed potentially vanishing entries in the ADM using techniques inspired
by the non-renormalisation theorems of Ref. [126] and NDA [135]. This approach
allowed them to identify and discard many diagrams expected to yield zero contribu-
tions, thus streamlining the full computation. However, these methods only apply to
single insertions of marginal operators and sometimes predict non-zero mixing where
no one-loop diagram exists (e.g., mixing of ¥?H* into other classes).

We summarize the structure of the ADM, grouped by operator class, in Table 5.2.

Yon (1/A%) 2 174 27173 27172712 2172 4 4 (L 4: h (& 4: D
Y*H* *H*D «*H*D* Xy*H* *H ¢*D *H P*D

¢2H4 y2 yS y4 y292 y3 0 0 0
W2H3D 0 y? Y3 1) y? 0 0 0
Y2 H?D? 0 0 y? 0 0 e 0 0
X2 H? 0 y y? y? y 0 0 0
Ve 0 0 y’ yg’® vy 0 0
YD 0 0 y? 0 0 > 0 0
(L=1)y*H 0 0 0 0 0 0 y? y?
(L=1)y'D 0 0 0 0 0 0 0 y?
2 H? m2 ymy y*m?, 0 ym? 0 0 0

Table 5.2: Anomalous dimension matrix of dimension seven operators. All operators have lepton
number L = 2 except the last two columns and rows. The columns represent the greatest terms
from each contribution mixing into the operators in each row. §J represents a vanishing entry where
the Equations of Motion cancel the off-shell divergence. See [136] for complete RGEs.

In addition to pure dimension-seven contributions, insertions of lower-dimension
operators can also generate effects at order A=3 . Contributions relevant to neutrino
mass corrections were calculated in [137], while a comprehensive treatment of double
and triple insertions involving marginal operators was later provided in [117]. These
results were obtained using an off-shell approach with the dimension-seven Green’s

basis. Table 5.3 summarizes the dominant mixing effects of lower-dimensional oper-
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ators into dimension-seven operators.

’ Vs5m (1/A3) H 1/)2H2 ‘ HG H4D2 X2H2 wQH?) 1/12H2D XTZJQH w4 X3 ‘

v H! 1 1 g g’ g’ y? gy 0 0

V2H3D 0 0 y 0 1 1 g 0 0
Y2H?D? 0 0 1 0 1 0 0 1 0

X2 H? 0 0 0 g g 0 y 0 g?

YV H 0 0 Y 0 y 1 g y 0

YD 0 0 0 0 0 0 0 0 0
(L=1)¢'H 0 0 0 0 0 0 0 y 0
(L=1)¢*D 0 0 0 0 0 0 0 0 0
P2 H? 0 m3 0 0 0 0 0 0 0

Table 5.3: Anomalous dimension matrix. All dimension seven operators have lepton number L = 2
except the last two rows. The columns represent the greatest terms from each contribution mixing
into the operators in each row. See [117] for complete RGEs.

Furthermore, the authors of Ref. [117] required the second-order RGEs of dimen-
sion-six operators, since the on-shell reduction of the Green’s basis at order A= in-
volved redefining physical dimension-seven operators using contributions from redun-
dant dimension-six operators from classes H*D?, X H?D? ?H2D, y*HD?, H?*D*
and X2D?. These redundant operators become physical when inserted alongside
a Weinberg operator. Interestingly, triple insertions of the Weinberg operator do
not contribute directly to the dimension-seven operator RGEs. However, they in-
duce shifts via on-shell relations involving H*D? redundant operators, which in turn
modify the WC of the dimension-seven Weinberg-like operator. Among all lower-
dimensional operators, only the Weinberg operator’s RGE is modified at order A3
, as no valid diagrams can be drawn for other classes at this order.

This interplay illustrates how RGEs at lower dimensions are essential for the con-
sistent renormalisation of higher-dimensional operators. We encountered a similar
effect in the renormalisation of dimension-eight operators, which will be discussed in

the subsequent sections.
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5.6 Renormalisation up to fourth order in the cut-
off!

We adopt an off-shell diagrammatic approach, using the Green’s basis defined in the
Appendices, supplemented by the necessary on-shell reduction identities. The cor-
responding FeynRules [49] model is publicly available online in GitHub, alongside
intermediate steps such as the on-shell relations at order A=* and the divergences for
the redundant Lagrangian. Due to the vast number of resulting equations—many
of which contain long expressions—we limit the discussion to specific illustrative
examples of interest. Although not explicitly discussed in this section, WFR is sys-
tematically included in all self-renormalisation computations. Its contributions are
essential for maintaining consistency across field redefinitions and operator mixing.

At present, there remain additional contributions to the ADM that have not yet
been computed. In particular, while the renormalisation of all bosonic operators is
complete, the renormalisation of two-fermion operators is only partially known, and
the RGEs for four-fermion operators are only available assuming minimal flavour
violation[138].

The results presented here are original and were entirely computed by members
of the Granada Fisica Tedrica y de Altas Energias (FTAE) group. All results are
available in a public GitHub repository, including the RGEs computed to date, most
of the divergences and on-shell redundancies, and the implementation of the Green’s
basis in a FeynRules model. These findings have also been published in four peer-
reviewed articles [81, 118, 129, 138] —note the last three are co-authored by the author
of this thesis.

Considering the structure of the Green’s basis and the on-shell relations, it is note-
worthy that fermionic operators do not redefine physical bosonic operators. In other
words, the WCs shifts for physical bosonic operators contain only redundant bosonic

operators and no fermionic ones. This result follows directly from the EoMs (4.29):

I'This section contains original work from the thesis.
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as shown in Section 4.1.4, while the bosonic EoMs (e.g., for H, B, W, G) may
include fermionic terms, the fermionic EoMs do not include purely bosonic contribu-
tions. This asymmetry stems from the conservation of fermion number in the EoMs
and holds to all orders in A. We leverage this property to compute the mixing of
bosonic and fermionic operators into bosonic operators first, simplifying the overall
analysis. Furthermore, since the number of bosonic operators is significantly lower
(as can be seen in Table 4.1), they represent a smooth, introductory approach to the
calculations, beginning with simpler cases involving bosonic operators to validate the
method with less complex algebraic structures.

For simplicity, we exclude the insertion of operators that arise only at the loop
level in weakly coupled theories [127], as they correspond to formally two-loop con-
tributions. However, some authors have considered these operators at lower power-
counting orders (e.g., dimension-six and dimension-seven loop-generated operators).
In the context of weakly coupled UV completions of the UV, such operators do not
contribute at tree level and are therefore omitted here. Nonetheless, dimension-eight
loop-generated operators are retained in the Green’s basis, and their RGEs indicate
mixing with tree-level-generated operators. The mixing of tree-level generated oper-
ators into loop-level operators is an effect already observed at dimension six™, which
cannot be fully addressed without explicit computation.

Regarding the contributions at power-counting order A=* , we identify three main

categories based on the operator insertions in the loops:
e The insertion of one dimension-eight operator.
e The insertion of two dimension-six operators.
e The insertion of more than one LNV operator.

These computations can be separated for clarity, although all LNV operator

insertions are handled together to streamline the analysis. The contributions to the

**Recall Table 5.1 shows the mixing of class ¥* into X2 H.
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anomalous dimensions can be expressed as:

(d5d7)

d 4
16M@c&p = 1B gy + ) et 4 Al (d5d6)

d 2
C5C7;s + Vps 056566;5 + f)ésf )C6§SC6§t (549>

P
where ¢, denotes the WCs associated with dimension-r operators, and the indices
p s, t, label operator structures. The various v coefficients represent the different

contributions to the anomalous dimensions arising from operator mixing at this order.

5.6.1 Insertion of dimension-eight operators

We begin by addressing the renormalisation group mixing among dimension-eight
operators. In [118], we presented for the first time a comprehensive list of RGEs
for bosonic operators. The complete expressions are available in a Mathematica
notebook hosted online at GitHub. These were provided not only to facilitate the
running of observables but also to enable cross-comparisons with results from other
groups. Although prior results were scarce [111], the available cross-checks have been
positive. Subsequently, another study employing a geometric approach to SMEFT
renormalisation [130] confirmed the agreement with our findings in the overlapping
results.

It is logical to start the computation with the mixing of bosonic and fermion-
ic operators into bosonic ones, given their phenomenological relevance [139-146].
Nonetheless, our decision to begin with bosonic dimension-eight operators is primar-

ily pragmatic:

e Bosonic operators constitute a much smaller subset compared to fermionic

ones, implying a reduced computational workload.

e Avoiding fermionic external legs significantly limits the kinematic invariants,

simplifying amplitude matching and accelerating the extraction of divergences.

e The Green’s basis for dimension-eight bosonic operators was established in

[113], including all necessary on-shell relations.
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e The on-shell relations for bosonic operators do not involve fermionic operators.
Therefore, the divergences of fermionic operators are not required to derive the

RGEs of bosonic operators—though the reverse is not true.

Table 5.4 summarises the leading contributions to the ADM. Despite their smaller
number, bosonic operators already outnumber the complete dimension-six basis.

Interestingly, we observe operators induced at loop-level in weakly coupled the-
ories being renormalised by tree-level-generated interactions. This effect, which was
previously observed only in a single fermionic case at order order A=2 (specifically,
the class Xt?H renormalised by tree-level-generated %), now also appears among
bosonic operators. Although such mixing is allowed in principle, it was scarcely
studied, marking a key insight from our computation.

Many of the zero entries in the ADM are understood via non-renormalisation the-
orems or the absence of contributing diagrams. Some of the more subtle vanishing
contributions—termed non-trivial zeros—result from cancellations involving diver-

gences and on-shell relations. For example the divergences of o , cancel with

8;W2BH
the on-shell contribution from OS;W BH2 D2 T, Conversely, some non-zero entries result
purely from redundant operator mixing, such as the contribution of class H*D* into
HS.

As in the dimension-six case, we observe large anomalous dimensions in several
RGEs. Operators containing six or eight Higgs fields typically have the largest

coefficients. For instance:

d 184
167@@%18 = ?)\3 — 1201020 e — 1692 N2l + 1262080

+ 36G2AC s+ 12g195Ac D0 + 480262 L 4+ 192X ¢y
o+ 2AXTY (o o + g ps) (0)" (5) (") (4")

+ 24NTy [( weps + Coaps — Coapgaps — cfl‘é)HQDg)(y“)(y“)*(y“)(y“)*] -
(5.50)

' These cancellations are basis-dependent and may not appear in alternative operator bases.
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Operators with four Higgs fields can also feature large anomalous dimensions, as

seen in:

d ‘
167T2M@C§;33H4D2 = 12)‘02’1}{4172 + 60g, Tt [(céé)HgDs)(yu)(yu) }

— 36Tr [(cggB HzD)(y")(y")*] v (5.51)

d U U\ * U U\ *
1675 4l pn = 40Ty () () (") ] + 48T [ (o)) ) ()] + -
(5.52)

and there are more of them.

Yo (/A | HS HOD? HAD' X2H' XH'D?> X¢*H® (?H’D® ¢?H° *H'D Xy*H?D *HD?

Hs /\ )\2 )\3 g2)\ g)\z 0 yri)\ y:} yQ)\ y2g)\ ZU:S%\
H6D2 0 by 94 0 g)\ 0 y292 0 y2 ng yd
H'D* 0 0 e 0 0 0 % 0 0 0 0
X3H? 0 0 0 0 1] 0 0 0 1} 0
X2t 00 g7 g’ vg v'g? 0 0 vy yg*

X?2H?D? 0 0 g% 0 0 0 e 0 0 0 0
XH*D? 0 0 ' 0 s 0 v2g 0 0 y? yg

Table 5.4: Anomalous dimension matrix for dimension-eight bosonic operators. Entries indicate

the leading terms in the mixing. @ represents entries vanishing due to EoMs canceling the off-shell
divergences. See [118] for full expressions.

Example: RGE of H*D*

We now present a detailed example of how RGEs are computed at dimension eight,
focusing on a representative case: the H*D* operators. This class provides an ideal
illustration due to its comparatively simple structure.

The definitions of all operators mentioned here can be found in Appendix A. In

particular, the relevant physical operators in the H*D* class are:

6%4174 = (D, H'D,H)(D"H'D"H), (5.53)
ips = (D,H'D,H)(D"H'D"H), (5.54)
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ehips = (D“H' D, H)(D"H' D, H). (5.55)

The first step is to consider the operators that contribute on-shell to this class.

Using the on-shell relations presented in Ref. [113], we find:

CSI)L]4D4 = ag;{‘lD‘l + g%b8;B2D4 - glbé?)BH2D4 - ggbs;WZD‘l + ngé:;))I)/VHQD‘“ (556>
Cg;_p;m = aé;1)q4D4 - g%b&B?D4 + glbé?])gH2D4 - gng;WQD4 + g2b${)/[/HZD4aS;{4D47 (5'57)
Cotaps = Gopgsps + 93bsawv2ps — GobShy s i (5.58)

)

These expressions show that, in addition to the H*D* operators, we must compute
the divergences of the X H2D* and X?D* operator classes. Notably, the X2D*
operators do not contain Higgs fields, and hence cannot be renormalised by tree-level-
generated operators. This is because all such tree-level classes involve at least four
Higgs fields or two Higgs fields and two fermions; on the other side, loop contractions
can involve at most two field insertions from one operator, implying that the resulting
diagrams will always contain at least two Higgs fields or two fermion fields.

For simplicity, we also invoke non-renormalisation theorems (see, e.g., Ref. [126]),
which in this case imply that H*D* operators can only be renormalised on-shell by
tree-level-generated classes including H*D*, 12 H2D? and v*. However, at one-loop
level, 1»* does not contribute to purely bosonic operators, so we only need to consider
insertions of H*D* and ¥2H?D? operators.

In total, 19 operators need to be inserted into loop diagrams. These diagrams
are similar to those shown in Figure 5.3, and the resulting expressions are highly
cumbersome, requiring symbolic computation tools for tractability. For the process
HOHY — H*H~, we illustrate here only the one-loop contribution from the insertion
of Oy -

The ultraviolet divergence from ol

8;H4D4 1S:

ic(l)
. 8;H4 DA
AL

UV = Toor2c (3(59% — g3 — 4\)Kaas + 3(—59% + g3 + 4\) Kz
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N\ s / N -~
Ny \\ ’ ! N N
Ny / 4 Ny \
. p; .
)| *\ , . /,, W
/ \\ /N N / \\ /
7/ -~ \ \ / ~=7

Figure 5.3: One-loop contributions to the off-shell amplitude for H*D*. Black dots represent SM
interactions, and orange boxes denote dimension-eight operators. The left two diagrams represent
direct renormalisation via H*D?* and ¢? H?D?3, while the right two contribute indirectly through
on-shell relations.

- 3(9% - 159; + 12)\)/‘63444 - 159%’@233 - 239%1‘42234 - 129%142323 + 269%@324
+ 1247 Kasss — 5gikasaa + 1897 kasaa — 697 koss + 1497 Kaazs — 397 Koaaa

+ 129353334 - 39% K3344 + 129%/13434 - 1793/12233 - 5793/412234 - 2095 K2244

— 22g3 kosos + 13893 Kasas + 4205 Kasss + 4803 kassa — 1795 Kasas — 2895 Kauo

— 84g3 ko33 — 2203 Koasa + 4595 Kauaa + 4295 Ksssa + 2593 Ks3as + 6295 K3aza

+ 52AR2233 + 108 AK2234 + 40AK2244 + 8AKa393 + 120\ Ko304 — 48 K333

— 144XK9334 — 92AK9344 — 16AKouo4 — 120AKo4a33 — 184 MKoa34 — 36AKogaa

— 48\K3334 +4NK3344 — 88AK3434) + . .. (5.59)

where over 500 additional terms from insertions of other irrelevant interactions are
omitted for brevity. While the following expressions are a bit shorter, it is very
common to encounter such lengthy amplitudes when computing at order A=* . Tt
is rather impractical to analyse such bulky contributions as a whole. We focus on
(95(;314 D OS;# pa and Oé‘?’;ﬂ pa in the remainder of this section to obtain the full
self-renormalisation of H*D*. The rest of the contributions to these RGEs (or other

contributions, for that matter) are obtained analogously.
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The divergences of the X H?D* operators by H*D* are:

(1) (2)

. iglcg-H4D4 19168.H4D4
AIL HOHO S B) = > _ ) _
A ( ) T 06n%e (1123333 — M32333) + 647 2e (1132333 — 7123333)
191 Céi)qél DA
19272 (1123333 — 732333) ,
(5.60)
AL (HOHO — T ig?cé?;{ﬁlm
— = —
ARy ( 3) 10272 (1123333 — 732333)
ig2 Cé?}'f‘lD‘l 5 61
19272 (M32333 — M23333) 5 (5.61)
with the following definitions for kinematic invariants:
Fmnst = DPm * PnPs * Dt (5.62)
Mimnst = €3 * PiPm. * PuPs * Di- (5.63)

The corresponding tree-level amplitudes needed to absorb the divergences (i.e.,

the ones entering Eq. (5.56)) are:

IA?}{/(HOHO — HJFH*) =2 (aé§L4D4(—I€2324 + Ko433 + Ii2434)

+ agj)ga;m (—Hao32a + Kosza + Kazaa) + aé?L4D4(—/€2234 + Ko3za + /f2434)> ; (5.64)
A (H°H® — B) = 2i (bé?)BH2D4 (1132223 — 7M32323 — 722233 + 7722333)) ; (5.65)

AR (HOH? — W?) = —2i (bé?l)/I/HQD4(n32223 — 732323 — 722233 + 7722333)) . (5.66)

Equating the UV and IR amplitudes leads to a system of equations, with one
equation per kinematic invariant. We deliberately use a redundant basis of invariants

to form an over-constrained system, enabling consistency checks of the computation.
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Solving the system yields the off-shell divergences:

N |
Wi = 5550 (0;1;[41)4(39; 3303 — 24\) + e (297 — 2092 — 8))

e (897 — 892 — 8)\)) , (5.67)

1
@spn = 5o (Clape(—86% — 1498 — 83+ ) pu(~21% — 3963 — 24)

o cipi (897 — 895 — 8)) (5.68)

- 1
al) e = o ( i (893 + 3693 — 48N) + )y e (207 + 2893 — 32))

¢ apa (397 + 25¢3 — 80)\)> ,

5.69)
73 g1 1
bé;J)3H2D4 - 192712¢ (zcé;;{“D‘* o 308;H4D4 + Cé(s;l)LI4D4)7 (5.70)
73 % (2) (3)
bS;WH2D4 - 1927T2€<_08;H4D4 + Cg;H4D4)- (5-71)

Substituting these into Eq. (5.56), we obtain the on-shell divergences, which con-
tribute to the RGEs (5.26). Including the tree—level anomalous dimensions nyips = 2,

ny2p2ps = 2, and the WEFR term o (5Hc the final RGEs are:

H4D4’

d (1) 8 @ 7 41 8
16W2M@CS;H4D4 — C8;H4D4 gg% + 592 +8A ) + 08 ;HAD* _9%6 + Egg - g)\
(3) ) 5) 8
+ CS;H4D4 (_ig% + 592 + 5)\)
(5.72)
(2) e 7 14 8 ) 11 43
1671'2,[1,(1—68 HApt = Cg.gapa (gg% + Eg% + §)\ + Co. a4 ?g% + Egg + 8A
) ) 8
+ Cé?}ﬂDzL (59% + 595 + g)‘> + (5.73)
d (3) (1) 8 (2) 2 29 32
167r2,u@c&H4D4 = Cg.pyapa —59% — 1295 + 16X ) + g pap _59% - Egg T ?)‘
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80
+ Cé?l)“{‘lD‘i (—39% — 149% + g)\) + ...

(5.74)

As previously mentioned, this is comparably one of the simplest cases of renor-
malisation of dimension eight operators among themselves. It is remarkably lengthy,
indeed, but it gets worse for classes that receive many more contributions like H°D?,
which gets insertions from almost all classes both direct and indirect.

Apart from the pedagogical approach to the computation of RGEs, this example
serves as a sample of the delicate work behind Ref. [118] as well as a reminder of the
considerable difficulty posed by the ambitious project of computing the whole ADM

at order A% .

5.6.2 Insertion of two dimension-six operators

Ref. [81] was the first to systematically renormalise dimension-eight interactions, tak-
ing into account the mixing of two dimension-six operators into a bosonic dimension-
eight operator. After completing the remaining contributions to the RGEs of bosonic
operators, we turned our attention once again to the renormalisation of fermionic
operators, beginning with the insertion of two dimension-six operators [82]. This
required the extension of the Green’s Basis with fermionic operators. We used a
modified version of [116]’s basis, modified to include the physical operators of [30].
We also computed the corresponding onshell relations, needed for the RGEs. The
combined results of the bosonic and fermionic RGEs are presented in Tables 5.6 and
5.7, respectively. We remind all of the results are available in GitHub.

Unlike single-operator insertions, there are no general non-renormalisation the-
orems for multiple insertions**. On the other hand, diagrammatic leg-counting be-
comes a powerful tool to anticipate possible contributions. As such, many com-

binations are trivially zero due to the absence of valid Feynman diagrams. The

HThese were only derived recently [147].
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method involves pairing two dimension-six operators (as well as SM interactions)
and determining whether they can form a divergent Feynman diagram that matches
a dimension-eight operator. This analysis must be performed case by case for each
pair of insertions.

Most of the zeros in Tables 5.6 and 5.7 arise from the absence of valid diagrams.
However, we remark on the absence of non-trivial zeros that result from accidental
cancellations among off-shell divergences contributing to the same physical operator,
when considered on-shell. Note the onshell-relations generate contributions from a
broad number of operators, Table 5.5 shows the onshell contributions of fermionic
operators due to redundancies. These contributions amount to nonvanishing terms
in the RGEs of physical operators. In total, 11 classes are renormalised by inser-
tions of pairs of dimension-six operators, excluding the RGEs of lower-dimensional

coeflicients.

| H'D?¢?H2D J2HD? X H2D?| H'D* H°D? y2H2D* y2H*D? $*H*D X¢*H*D X H'D?

W2H?D v
P2 H3 v v v v v v
1/J2H2D3 v
V2 H3D? v v v v
v2H*D v v v v v v v v
2 HP v v v v v v v v v v
X¢2H?D v v
Xoy2H? v v v

Table 5.5: Green’s functions (columns) that, on-shell, contribute to the renormalisation of the
different physical operators (rows) are indicated with v'. Dimension-six and -eight interactions are
separated by vertical and horizontal lines.

It is noteworthy that large anomalous dimensions are again observed, despite the
loop suppression. As in the previous section, classes of operators involving more than
six Higgs fields yield the largest anomalous dimensions, and sizable contributions are
also found in the four-Higgs sector. Moreover, the RGEs of lower-dimensional oper-

ators at order A= also exhibit large anomalous dimensions, including contributions
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from the fermionic sector. For example:

d
1671'2/1@/\ = m3(5¢hp — 24cypenn + 24¢k0) + . .. (5.75)
d
167 2#@[0611 Jap = —48m[ccnlagenn + 24mEenn|Ceaqlapyslysy) + - - (5.76)
o d m%[ 2 2 2 2 ex/, e\t
16w ,u@cG;H = ﬂ(?ﬁg1 — 1595 + 840X)c3; p — 48m3; Tr [eare(y®) (y)'] cuo + - ...
(5.77)

We also verify that none of the one-loop generated dimension-eight operators
are renormalised by pairs of tree-level generated dimension-six interactions. This is
because tree-level-generated vertices involve at least two Higgs fields. Consequently,
when inserted in pairs, they necessarily produce operators with four or more Hig-
gs legs, whereas tree-level-generated dimension-eight operators typically contain at

most two Higgs fields.

Example: RGE of H*D*

We now complete the example from the previous section by analyzing the contribu-
tion of dimension-six operator pairs to the RGE of the H*D* operator. In this case,
since non-renormalisation theorems are not applicable, we first carry out a prelimi-
nary inspection to reduce the number of candidate insertions. In particular, any pair
of tree-level dimension-six operators necessarily contributes to interactions with four
or more external fields, implying that operators like X2D* and X H2D* cannot be
renormalised via these insertions.

Matching external Higgs legs to form valid diagrams with four external Higgs
fields reveals that only combinations of two H*D? operators or two ¥ H?D operators
can contribute, as illustrated in Fig. 5.4.

We compute the one-loop amplitude for the process HYH — H* H~, restricting
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Figure 5.4: One-loop contributions to the H*D* amplitude from pairs of dimension-six insertions.
Green boxes represent dimension-six operator insertions.

to insertions of H*D? operators for simplicity. The resulting amplitude is:

i
. 41L 2 2
A = 1992¢ (6cFphanas — BcHpranas(4cun + cup) + 24caniCuphazss — 18¢H phasa

+ 48¢% ko33 — 24cuncrpkanss + 6C3 plagss + 128¢50Ka234 — 88cHnCH DK2234
+ 10}, prazss + 48¢hkaaaa — 48cHncrpRasas + 12¢75 phooas + 24cHnCphiasas
+ 120%11)/{2323 - 1280%@@324 + 64cgocaprages — 280%@@324 — 480%5/‘62333

+ 24cgncHpkasss — 180%[)/{2333 - 640?5@%2334 + 128cyocrpkazss — 8C§{D/42334
+ 16¢5k2340 + 64cncr plasas + 8¢k pkasas — 24CHnCHDR2a24 + 24CH pRaaaa
+ 16¢}n k2433 — S6cHOCHD k2133 + 14CT ploass — 64T nkaa3a — 16cHnCH DR2434
+ 4cG phasza — 48¢hnkaaaa + A8cHCH DR21aa — 24CT phaaas + 96¢TK3333

— 2depncnpkssss + 3¢ pRasss + 336¢Hnkassa — T2cH0CHDK3334

— 6C7 pkassa + 192¢h k3310 — 48cHncrphisais — 6CH phazas + 288¢Hka434

— 24cyncyphagss — 1265 pkasa + 336CH0Kaa4a — 48CHOCH DFR3444

—12¢}; pkgaas + 3kaaas (32¢h5 — 8cunenp + ¢yp)) -

(5.78)

The kinematic invariants x;j; are defined as in the previous section (5.62). The tree-
level amplitude in the IR limit also matches that of the previous section, allowing

us to extract the off-shell divergences. In this case, they coincide with the physical



Chapter 5. Renormalisation Group Equations 103

divergences, as there are no EoM contributions.

it = s (1668 0 — B2cemmcomn + 11¢Gup), (5.79)
Caps = M(l&é;fm + 16¢6,ar1¢6,1D + 5¢5,11p); (5.80)
Eg? 4ps — M(ZLOC(%;HD + 1606;HDC6;HD — 70(25;HD)‘ (581)

The corresponding contributions to the RGEs are then straightforwardly obtained
using Eq. (5.26):

1
167T2/L@c${4l)4 = —5 (1663 40 — 32¢qmcenp + e yp). (5.82)
or2de® L 16 5¢2 5.83
'LLdMCS;H4D4 - 37726( Cs,nn + 10Ce;rCe; D + CG;HD)> (5.83)
or2pde® L 16 72 5.84
T ,U@C&Hz;[y; = _ﬁ( C,r T 10C6;rCe;HD — CG;HD)' (5.84)

5.6.3 Insertion of Lepton Number Violating operators

We now turn our attention to the insertion of LNV operators in the renormalisation
of dimension-eight operators. At order A=* | we identify three distinct types of LNV
insertions that contribute: (i) four insertions of the Weinberg operator in a single
diagram, (ii) two Weinberg operators plus one dimension-six operator, and (iii) one
Weinberg operator with one dimension-seven operator. In principle, these insertions
may appear either within loop diagrams or attached to external legs, effectively
putting off-shell diagrams on shell.

This is a case where it is crucial to analyze the possible operator structures and
diagram topologies before performing explicit calculations. In the off-shell formalism,
we focus exclusively on 1PI diagrams. Any redundancies arising in the WC are

accounted for through appropriate shifts. For clarity, we restrict our analysis to the
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’ (’VHS)nl H HG H4D2 1p2j{3 w2H2D’l/J4‘ ’ (’YHGD?)nl H H6 H4D2 77[121%[3 1/12H2D1/J4‘

HS® 1 Ay y2 0 HS¢ 0 1 0 0 0
H*D? A2y PN 0 H*D? A y y2 0
Y2H? v oy 0 Y2H? 1 y 0

V2H2D A0 Y2 H2D 2 0
Yt 0 P 0
| (uep)u || B H'D? $2H3 02H2D *| | (yxeme)ut || H® H*D? 2H3 2 H?D 4|
HS® 0 0 0 0 0 HS® 0 0 0 0 0
H*D? 1 0 0 0 H*D? g° 0 0 0
V2 H? 0 0 0 Y2 H3 0 0 0
1/)2H2D 1 0 1/)2H2D 92 0
v 0 pt 0
’ (7XH4D2)nl H HG H4D2 ’1/22H3 1/)2H2D w4‘
HS 0 0 0 0 0
H'D? g 0 0 0
Y2H? 0 0 0
Y*H?*D g 0
P! 0

Table 5.6: Anomalous dimension matrix for the insertion of two dimension-six operators. The
columns and rows represent the greatest terms from each contribution mixing into the bosonic
operators of different classes. See [81] for complete RGEs.

RGESs of purely bosonic operators, postponing the study of fermionic operators for
future work.

Because the renormalised operators under consideration do not contain fermions,
the contributing diagrams will have only bosonic external legs. However, the inserted
operators all include fermionic fields and must therefore be contracted to form loops
within the 1PI diagrams. Yukawa and gauge couplings appearing in these loops
must also respect this constraint. As a result, there are no off-shell divergences
proportional to the Higgs quartic coupling A. Similarly, 1Pl diagrams cannot be
proportional to the Higgs mass parameter m?%, which prevents any direct divergent
contribution to lower-dimensional operators. However, such terms could still appear

indirectly through field redefinitions when applying the WC shifts.
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| (vxyens)u | H® HD2 2 H? ¢2H2D %] | (yyemeps)w || H® HAD? ¢2H3 ¢2H2D 44|

105

H 0 0 0 0 0 H 0 0 0 0 0
HD? 0 0 yg O HD? 0 0 1 0
W2 H 0 g 0 W2 H3 0 0 0

V2H?D yg 0 W2H?D 11
e 0 Pt 0

| (voeme ) | H® HAD? 923 2 B2D | | (yyerap)w || HO HAD? 2 B3 42 H2D ']
H 0y 1 y oy H 0 0 0 0 0
H4D2 yB y2 y3 y>\ H4D‘2 y2 Yy y2 g2

’1/12H3 y y2 y2 1/}2H3 1 Yy y2

¢2H2D y3 0 ’(/)2H2D y2 y2

e 0 Pt 0

| (xe2p)w || HS HAD2 2 H3 2 H2D %] | (yyemsp2)w || H® HAD? ¢ H3 $2H?D 44|

H 0 0 0 0 0 HE 0 0 0 0 0
H4D? 0 0 g 0 H4D? 0 y yg O

W2 H® 0 0 0 W2 H3 0 g 0
Y?H?D g g Y?H?D yg O

e 0 Pt 0

Table 5.7:  Anomalous dimension matrix for the insertion of two dimension-six operators. The
columns and rows represent the greatest terms from each contribution mixing into the fermionic
operators of different classes. See [82] for complete RGEs.

Regarding the fermionic loops: four-fermion operators appearing at dimension
six or seven do not contribute to the RGEs of bosonic operators at one-loop order;
their contributions begin at two loops, which lies beyond the scope of this analysis.

In terms of loop suppression, some dimension-six operators are generated only
at one loop when integrating out UV completions of the SMEFT. Inserting such
operators into another loop effectively yields a two-loop suppression, making their
contributions negligible for our purposes. This particularly affects the renormalisa-
tion of dimension-eight operators involving gauge bosons.

At this stage, all candidate insertions involve operators with at least two external
Higgs fields. Since two or more such insertions are required to build the relevant 1PI

diagrams, every contributing diagram will have at least four Higgs fields as external
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legs. Hence, only dimension-eight operators with at least four Higgs fields can be
renormalised via these insertions.

When analysing the mixing into dimension-eight operators with many fields, such
as HSD? or H®, one might consider adding SM vertices to increase the number of
external legs. While these vertices do not affect power counting in the SMEFT,
their insertion introduces internal propagators that must be integrated over. This
procedure is limited: increasing the number of loop momenta in the numerator
eventually renders the diagram finite, as explained in Section 2.5.

Let us now consider each class of insertions in more detail:

Four Weinberg operators: Diagrams with four Weinberg insertions involve fer-
mion loops and yield eight Higgs external legs. These contribute to the renor-
malisation of H®, but not to any other purely bosonic dimension-eight opera-

tors.

Two Weinberg operators and one dimension-six operator: Since the loop
must contain only fermions, only fermionic dimension-six operators can be
inserted. Bosonic dimension-six insertions contribute only via WC shifts upon

setting the divergences on shell.

One Weinberg and one dimension-seven operator: In this case, symmetry con-
siderations lead to significant cancellations. The Weinberg operator is symmet-
ric in flavor indices: [cs.m|ag = [C5:0m]pa- In contrast, dimension-seven opera-
tors in the X¢?H? class are antisymmetric: [cromx]as = —[Cromx]pa. As a re-

sult, contributions to bosonic operators are proportional to Tr[cs.om-cromx] = 0.

These features have also been analyzed in [129], where the complete RGE were
originally computed. Here, we summarise the large entries of the ADM schematically,
which align with the conclusions drawn in the previous sections: Operators with more
than six Higgs tend to gather the largest terms deviating from the naively expected

value v ~ O(1). For example:
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167?%%08;1{8 =32\Tr [—cgzﬂcg,;wc;m + cé?%mc&mcg;w] +... (5.85)
167T2M%c§}16m = —322Re (Tr |} ucp) ) + - (5.86)
1672#%06;H = 16m7 Tr [(cg}“ — cé?;w)c&mc;;m} + ... (5.87)
167r2u%)\ = —8m7 Re (Tr [cg;ch%HDD . (5.88)

Many entries of the ADM vanish, as summarised in Table 5.8. Some zeros arise
trivially from the cancellations mentioned above. Others result from accidental (non-
trivial) cancellations. For instance, one-particle-reducible diagrams involving two
Weinberg operators set on-shell by a bosonic dimension-six operator (see Figure 5.5)

vanish upon applying unitarity cuts. To conclude, we remark that, when restricting

Figure 5.5: Diagrams with two dimension-five operators renormalising a dimension-eight operator
via a dimension-six insertion. Although considered in the RGEs via on-shell relations up to order
A2 (see Appendix B from [32]) and order A=2 off-shell divergences (computed directly or inferred
from the on-shell divergences (G.2) in Ref. [36]) with insertions of two Weinberg operators, these
diagrams yield no net contribution. Coloured vertices represent insertions of ds (red), dg (green),
and d7 (blue) operators.

to LNV insertions, loop-generated operators are not renormalised at one loop by

tree-level-generated operators.
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Figure 5.6: One-loop diagrams contributing to H*D* from LNV insertions. Blue boxes denote
dimension-five operators; red boxes denote dimension-seven operators.

Example: RGE of H*D*

For completeness, we now compute the RGE contribution to H*D* from LNV in-
sertions. This is a concise calculation, as most terms in the full equation originate
from lepton number-conserving operator insertions.

According to the preceding arguments, operators like X2D* and X H?>D* cannot
be renormalised by LNV insertions, as they involve fewer than four Higgs fields.
Similarly, H*D* cannot be renormalised by diagrams with four Weinberg operators
or with two Weinberg operators plus a dimension-six insertion, as these generate more
than four external Higgs legs. The only viable LNV insertion is the combination of
one Weinberg operator with a dimension-seven operator of the type ¢2H?D?,

Figure 5.6 shows the relevant diagrams. The amplitude for the same process as

the previous cases, H'HY — HTH~, evaluates to:

. 1

A = %Re (Tl“ [CI—,%HC%HD]) (Ko222 + 4Ka293 + 2K 2033 + 4Koza3 + 4Rasss + Kass3)
(5.89)

where the k are the same kinematic invariants defined in earlier sections. Solv-

ing the resulting system of equations from the IR amplitude (5.64), we extract the

divergences:
5&1@4 =Y (5.90)
2 1 2
Eé;z)r#m = 47r2€Re (Tr [Cg;éHcg;l?HD}> , (5.91)
e aps =0, (5.92)
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As there are no one-particle-reducible contributions, this corresponds to the full

physical divergence. The RGE is thus:

d
16w2u@c§;}l4m =0, (5.93)
d
167T2u@cg}{4D4 = —8Re (Tr [CE;EHC%HDD : (5.94)
d
167T2,uacg’}{@4 =0. (5.95)
1™ A | - HID? WPHED | QHY PHPD Q*H?D? XyPH
H* 1] A hY A 0 Ag? 0
HOD? 0 1 12 1 y e 0
H*D* 0| o0 0 0 0 1 0
X3H> 0| 0 0 0 0 0 0
X2H* 0l 0 0 0 0 e g
X2H2D? 0| 0 0 0 0 0 0
X H*D? 0l 0 0 0 0 g 0

Table 5.8: ADM for dimension-eight bosonic operators. Columns correspond to insertions of the
Weinberg operator and of dimension-six or dimension-seven operators. All zeros arise from the
absence of diagrams or symmetry-induced cancellations. See [129] for full details on theRGE.

5.7 Applications

5.7.1 Positivity bounds

Positivity bounds are mathematical inequalities among WCs, derived from two-to-
two scattering amplitudes by imposing the fundamental principles of analyticity,
unitarity, and crossing symmetry of the S-matrix. These bounds constrain the al-

lowed parameter space of EFTs, providing insight into the possible UV completions.
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In the context of the SMEFT, they are especially relevant due to their interplay
with power counting: they typically constrain operators of dimension eight or high-
er, which also makes them a valuable tool for analysing the impact of subleading
interactions.

In particular, positivity bounds constrain combinations of dimension-eight op-
erators and may also affect processes involving multiple insertions of dimension-six
operators, including combinations with LNV terms. This makes them a powerful
consistency check for low-energy EFTs.

While positivity bounds are derived at tree level, an important question is whether
they continue to hold under RG evolution. Using the complete set of RGEs derived
in the previous Section 5.6, one can assess whether loop corrections preserve or vi-
olate these bounds. Schematically, one starts with a positivity inequality valid at
some high scale A and evolves the WC down to lower scales using the RGEs. If
the inequality is violated at any intermediate scale, this could signal a more general
instability of positivity bounds, although a deeper study would be required.

As a concrete example, consider the dimension-eight class H*D*, which con-
tributes to four-Higgs scattering processes. Ref. [148] analyzed the RG evolution of
these operators and its implications for positivity bounds. The tree-level positivity

constraints derived from such processes [149] are:

cChips >0 (5.96)
Cg}{‘lm + Cz(g;J)LI4D4 >0 (5.97)
i+ haps + Caps >0. (5.98)

Assuming these bounds are satisfied at the threshold scale of SMEFT p = A, we
examine their stability under RG running. Solving the LL. RGEs gives:

d
1677 M@cg’}ﬂm = a7t (5.99)
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where 7, is the ADM obtained in Eq. 5.72. The running then induces the following

differential inequalities at one loop:

d
1672 u@cgﬂm = ¢ palAlae > 0, (5.100)
d

167{21“@(02}{4D4 + Cé(;l)'-l‘lD‘l) = Z CE(SI:)H4D4 [A]P)/St > Oa (5101)

s=1,2

d

167r2,ua(cé2{4[)4 S hpn o) =Y capalAlse > 0. (5.102)

s=1,2,3

We now test whether these RG-evolved inequalities remain valid. For instance,

consider the contribution proportional to g7 in the first inequality. From the RGEs

(2)

s 4 s ONe obtains:

70(%) 11lc ?) 50(:_)’)
g% ( 8,;[4D4 + 8,2H4D4 —I— 8,]2‘141)4 ) (5103)

Rewriting this expression, we find:

of ¢

19 7
gcgﬂm + §<C§1)'{4D4 + CSJ)LHDAL + CS;#D‘*) + écgﬂm' (5.104)

Although each term appears positive if Eqs. (5.96) are satisfied, certain values
of CS;# pa can render the entire expression negative. This means that the positivity
bounds can be violated under RG running, even if they hold at the threshold scale.

A similar analysis can be applied to other operator classes with four-field con-
tent. For example, Ref. [118] considered the class X?H?D? using its RGEs and
the associated positivity bounds [150]. It was found that RG contributions from
H*D* and ¢¥?H?D? to X2H?D? preserve positivity bounds, assuming those of the
contributing operator classes hold [149, 151]. This supports the notion that while
positivity can be violated through running in specific cases, other operator classes
remain consistent under the RG flow.

Additionally, in Ref. [129], we applied the positivity bounds of the H*D* class,
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together with the renormalisation group equations originally derived in this work,
to establish a nontrivial relation among LNV operators. Specifically, considering the
RGE for cgﬂ p+ (Eq. (5.93)), one obtains the following constraint:

Re (Tr el oudZun]) > 0. (5.105)

under the assumption that no dimension-six or dimension-eight operators are gen-
erated at tree level. This inequality represents a purely low-energy statement that
imposes a positivity constraint on the UV coefficients as.0y and agz 1 p derived from
analytic properties of the S-matrix.

This result has significant implications for UV-complete theories such as Seesaw
models. In particular, Seesaw models of type I[] and III[] generate LNV operators at
tree level, but do not produce operators in the H*D* class. Therefore, the positivity
condition in Eq. (5.105) becomes a nontrivial test of these models. As shown in
Ref. [129], the bound is satisfied in both Seesaw I and III. The key observation is
that these UV completions do not generate the operator (’)g} p» Which implies that
the right-hand side of Eq. (5.105) vanishes, thereby preserving the inequality.

This analysis illustrates how loop-level positivity bounds can bridge low-energy
effective constraints with UV dynamics, offering a novel probe of the structure of
BSM physics.

5.7.2 Oblique parameters

The oblique parameters quantify deviations from the SM predictions for the self-
energies of EW gauge bosons, arising due to potential new physics. They play a
central role in Electroweak Precision Test (EWPT)), where they can be stringently
constrained by experimental measurements. Originally introduced by Peskin and
Takeuchi [152], these parameters capture universal corrections to gauge boson prop-
agators and are particularly effective in diagnosing the effects of heavy new physics
that does not couple directly to fermions.

The vacuum polarization functions ITxy (p?) describe gauge boson self-energies
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in the unbroken EW phase. The traditional oblique parameters S, T, U and their
rescaled forms S , T, U , as well as the more recent incorporations (X, Y, V, W) are
defined as follows [153]:

A o
S=125=—%yspp =0), (5.106)
Sy
2
T = aT = 22 (Myayws(p = 0) — M- (p = 0)), (5.107)
My
A «
U =~ 550 = —@([yays(p = 0) — Wy (p = 0), (5.108)
9
9
V= —2 2 ( /1;V3W3(p = ) - gV+W* (P = 0))7 (5-109)
myy
9
1
9192
X=g 1 ap(p = 0), (5.111)
91
1
9
14

where av & 1/137 is the fine structure constant, sy is the sine of the Weinberg angle,

and the derivatives are with respect to p? and evaluated at p = 0:

Pi'(0) = dg](f) " (5.114)

pe=

The parameters S, T, W, Y describe LO deviations from SM predictions, whereas
U, X, V represent subleading higher-order effects. The parameter Z is defined
analogously for the QCD sector but is not an EW observable.

In the SMEFT framework, these parameters can be expressed in terms of the

Wilson coefficients of universal dimension-six operators. Using the Green’s basis [32],



114 Renormalization of the SMEFT to dimension eight

we obtain:
U2
S = 167T FCLG HWB (5115)
. 1 v
T=— 2A2(I6HD (5116)
1 m
W=— A2 Y beow (5.117)
1 m
1m?
7 = —iA—VQVbG;Qg. (5.119)

Here, Ogox are operators from class X?D? that are redundant under EoM. The
parameters my, and vy denote the geometric W mass and Higgs vacuum expectation
value, respectively, as defined in [154]. At LO, these expressions reduce to their SM
values, with additional corrections suppressed by powers of A. At NLO, dimension-
eight operators and one-loop RGE effects enter. The dimension-eight contributions

to the S, T, U oblique parameters are given by [30]:

U4
S = A4CBWBH4 (5120)
A 1 UT (2)
T = —5 xiCops (5.121)
4
Up
U = A408 W2H4 - (5122)

The renormalisation group running at order A=* allows us to track the quantum
corrections to these parameters. It has been shown in [81] that the dimension-six
operators do not mix into S and U at this order. Instead, their renormalisation
involves dimension-eight operators in the classes H*D*, X2?H* XH*D? X¢?H3,
V2H?D3, X?H?D, *H?*D?, as detailed in Table 5.4.

The T parameter, however, does receive corrections from insertions of dimension-

six operators via the running of o? Notably, the operator Og. g from class

8;H6D?"
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Y?H?D, which does not directly contribute to T at order A=2 can induce contri-
butions at order A= through self-mixing into 05(3;2}16 p2- Using the ADM from [81]
(presented in Table 5.6), along with fits of Electroweak Precision Data (EWPD) to
SMEFT [155], bounds on coefficients such as [Og.gua)w can be established under the
assumption that no other operators contribute.

These constraints also impact the structure of the neutrino mass matrix. The
dimension-five Weinberg operator Os.¢ry induces a Majorana mass for neutrinos after
electroweak symmetry breaking. At order A™3 | its dimension-seven analogue O7.o

contributes as well. Together, they yield the relation [156]:

v? v?

[m,] = _K(C&ZH + chm) (5.123)

This constraint implies a correlation between the coefficients ¢, and c7,p required
to reproduce the small observed neutrino masses. However, the operator 05(316 D2
also receives loop-level contributions from these LNV operators. As shown in [129],
this leads to an additional contribution to the 7" parameter (5.120):
2

T = —ﬁ% In %Tr [C5.0mCr0m] - (5.124)
This relation provides a second constraint on the Wilson coefficients, effectively lift-
ing blind directions in the mass matrix [m,].s. In the one-generation limit, these
conditions are illustrated in Figure 5.7, showing that the coefficients a5,z and az,eq
cannot both take arbitrary values.

While the analyses discussed here rely on simplified assumptions about the opera-
tor content of new physics, they highlight the utility of oblique parameter constraints
in SMEFT. Particularly, they demonstrate how loop-level running and dimension-
eight contributions can impose non-trivial constraints on otherwise unconstrained
directions in parameter space. Future work involving global SMEFT fits and higher-
order RGEs will benefit from these insights and further develop a systematic under-
standing of Electroweak Precision Observable (EWPO) under running at order A~*
and in the presence of LNV.
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Figure 5.7: Constraints on LNV Wilson coefficients from neutrino mass (blue line) and the T
parameter (yellow region). The plot is generated with the following parameters: A = 1TeV and
v=246GeV, T = 0,10 £ 0, 12 [155] and m,, < 0,081 eV.
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Conclusiones

6.1 Resumen y vision general

La investigacion en fisica de particulas se basa fundamentalmente en observaciones
experimentales y en su interpretacion dentro de un marco teérico. A lo largo de
las ultimas décadas, el SM ha emergido como la teoria dominante, no solo por su
extraordinario poder predictivo, sino también por el respaldo constante que recibe
de los datos experimentales. Aunque la evidencia favorece abrumadoramente al SM
frente a cualquier alternativa BSM, los datos atin dejan espacio para una teoria mas
completa, cuyas caracteristicas precisas siguen siendo desconocidas.

Los proximos experimentos, incluyendo colisionadores de particulas de préxima
generacion y detectores de ondas gravitacionales, buscan revelar nuevas pistas que
puedan guiarnos mas alla del SM. Mientras tanto, los fisicos pueden perfeccionar los
analisis existentes y desarrollar nuevas técnicas para la interpretacién de datos. La
renormalizacién y las EFT's son herramientas esenciales para alcanzar estos objetivos.

En el Capitulo 2, revisamos los fundamentos de la renormalizacion. Aunque en
sus inicios fue vista como problematica, la renormalizacién se ha convertido en una
técnica poderosa dentro de la QFT de precision. En particular, solo ciertos esquemas
de regularizacion permiten eliminar las divergencias sin perder propiedades deseables

de las QFTs. La combinacién de la DimReg y el esquema MS es ahora el enfoque
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estandar. Si bien la DimReg, tal como se define en este contexto, también presenta
desafios—especialmente en amplitudes quirales—el marco es confiable a un lazo.

Para explorar modelos que difieren del SM a altas energias pero que son consis-
tentes con los datos a bajas energias, recurrimos a teorias no renormalizables. En el
Capitulo 3, discutimos el uso de EFT's, que en principio requieren un niimero infinito
de contratérminos. Sin embargo, la precision finita de los experimentos acota efec-
tivamente el niimero de contratérminos que deben considerarse. Esta caracteristica
restaura la capacidad predictiva y permite calculos de precision. Ilustramos esto con
diversas EFTs utilizadas histéricamente antes del establecimiento del SM, muchas
de las cuales siguen siendo relevantes para fenémenos a escalas sub-EW.

Dado que nuestro interés se sitia mas alld del vev de Higgs, y que el SM repre-
senta la teoria de mayor energia confirmada experimentalmente, lo tomamos como
base para construir una EFT. En el Capitulo 4, describimos los beneficios de usar
bases de operadores y abordamos los desafios al identificar un conjunto completo e
independiente de interacciones. Argumentamos que conservar operadores relaciona-
dos mediante ciertas redefiniciones de campo—equivalentes a aplicar las EoMs en
la Lagrangiana—puede simplificar calculos intermedios. Por ejemplo, las funciones
de Green en una Lagrangiana redundante pueden calcularse usando tinicamente di-
agramas 1PI. Aunque las redundancias deben eliminarse eventualmente, esto puede
hacerse al final del célculo aplicando relaciones en la capa de masa (on-shell). Si bien
trabajar con una Lagrangiana independiente on-shell no siempre es necesario, el en-
foque diagramatico off-shell de la renormalizacién si impone esta condicién. En este
marco, calculamos la primera base de Green de operadores bosénicos de dimension
ocho, publicada en Ref. [113] y detallada en la Seccién 4.4. Los resultados también
se presentan en el Apéndice A, junto con operadores fermionicos de dimension ocho.
Las relaciones on-shell de esta base de Green constituyen otro resultado original que
permite eliminar redundancias a favor de la base fisica de Ref. [30].

El Capitulo 5 consolida estas ideas para sistematizar la renormalizacién en la
SMEFT. Derivamos la ecuacién de Callan—Symanzik en una forma 1til para la renor-

malizacion de operadores de dimensién ocho. Tras resumir el método diagraméatico
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off-shell y repasar la historia de la renormalizacion en la SMEFT, aplicamos nuestro
marco para calcular las RGEs completas de todos los operadores bosénicos, asi como
contribuciones sustanciales para operadores fermionicos. Con excepcion de la renor-
malizacion de operadores bosénicos mediante inserciones de operadores de dimensién
seis [81], estos resultados [82, 118, 129] son contribuciones originales de esta tesis.
Para ofrecer una vision general del estado actual de la renormalizacion en la
SMEFT—y ubicar nuestras contribuciones en contexto—remitimos al Cuadro 7.1,
que resume los esfuerzos realizados y en curso en este campo. Las entradas calculadas

en esta tesis estan destacadas.

| ds d? dg d3 ds X dg dy di d2 x dg dg ds X dy ds
d<4 (bosénicos) [37] [81] [118]
d<4 (fermidnicos) 137] [82] [111, 132, 138]
ds [33-35] [137) [137]
dg (bosénicos) [36] [37-39] [129] [81] [129] [118]
ds (fermiénicos) [36] v [37-40] X 82] X [111, 132, 138]
& [117] « [117] v [28, 136]
ds (bosénicos) [129] [129] [81] [129] [118]
ds (fermidnicos) X X [82] X [111, 132, 138]

Table 6.1: Estado del arte de la renormalizacidn del SMEFT (adaptado de Refs. [81, 118, 129]).
Las filas muestran los operadores renormalizados (clasificados por dimension y estadisticas). Las
columnas indican los operadores que contribuyen a la evolucion del RG. Las entradas vacias corre-
sponden a contribuciones nulas, v indica que la contribucion completa estd disponible, v senala que
existen resultados parciales (aunque sustanciales), y X indica que no se conoce nada, o casi nada,

al respecto. Las contribuciones realizadas en esta tesis estdn marcadas con | Recuadros azules .

La evolucién (running) de los WC en SMEFT tiene una amplia gama de apli-
caciones. En particular, las RGEs de operadores de dimension seis ya se utilizan
en estudios fenomenoldgicos. Como se discute en la Seccién 5.7, se espera que las
RGEs de operadores de dimensién ocho desempenen un papel similar en fisica de alta
precision, e incluso podrian abrir nuevas vias conceptuales. Una de estas direcciones
involucra cotas de positividad, que son restricciones derivadas de la unitariedad,
causalidad y analiticidad. Dado que estas cotas son efectos de orden A=, el uso de
RGEs para estudiar sus violaciones es particularmente pertinente. Como se senald

en la Seccion 5.7, la observacion de que el running del RG puede llevar a aparentes
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violaciones de estas cotas podria motivar una reevaluaciéon del marco SMEFT.

6.2 Lineas futuras de investigacion

De este trabajo se desprenden diversas direcciones prometedoras:

Completar las RGE restantes a orden A~ Una extensién natural consiste
en calcular las RGEs para todos los operadores fermiénicos de dimensiéon ocho, in-
cluyendo interacciones de cuatro fermiones y contribuciones con LNV provenientes

de combinaciones de operadores de menor dimension.

Aclarar el papel dela SMEFT en EWPT Aunque las contribuciones de dimen-
sion seis y ocho a los parametros oblicuos son conocidas para operadores bosénicos,
su relacién con las interacciones fermidnicas sigue sin esclarecerse, dado que los
parametros oblicuos se estudian mayormente en teorias universales. Investigar esta
relacién profundizaria nuestra comprension de la aplicabilidad de la SMEFT en las
EWPTs.

Investigar la dependencia de base en las ADM Se ha observado que ciertos
calculos off-shell muestran cancelaciones al evaluarse on-shell. Entender mas pro-
fundamente este efecto podria esclarecer la relacién entre la eleccién de base y las
estructuras de divergencia. Esto requeriria construir nuevas bases de operadores y
recalcular las RGEs a orden A=, lo cual es actualmente poco practico. Resulta més

factible esperar una mayor automatizacién de las técnicas de renormalizacion.

Comparar métodos de renormalizaciéon: off-shell, on-shell y geométrico
Las RGEs a dimensién ocho ya se estan utilizando para validar enfoques alternativos
de renormalizacion. Una vez alcanzada la renormalizaciéon completa, una compara-
cién sistematica de estos métodos—no solo en cuanto a resultados, sino también

en eficiencia computacional—seria de gran valor. La SMEFT, por su simplicidad y
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compatibilidad con una amplia gama de observables de baja energia, es un terreno

ideal para tales estudios comparativos.

Reflexiéon final Sea cual sea el camino que se elija, las RGEs de dimension ocho
representan una herramienta poderosa en la bisqueda continua de NP. En un sentido
mas amplio, la renormalizacién y las EFTs han demostrado ser indispensables en la
QFT y siguen moldeando la manera en que conectamos teorias de alta energia con
fenomenos de baja energia. Con esta tesis, buscamos aportar a una comprension
mas profunda de estas herramientas y motivar la exploracién continua en este campo

prometedor.
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Conclusions

7.1 Summary and overview

Research in particle physics relies fundamentally on experimental observations and
their interpretation within a theoretical framework. Over the past decades, the SM
has emerged as the dominant theory—mnot only due to its remarkable predictive power
but also because of the consistent support it receives from experimental data. While
the evidence overwhelmingly favours the SM over any BSM alternatives, the data
still leave room for a more complete theory, the features of which remain unknown
with precision.

Upcoming experiments, including next-generation particle colliders and gravi-
tational wave detectors, aim to uncover additional clues that may lead us beyond
the SM. In the meantime, physicists can refine existing analyses and develop new
techniques for data interpretation. Renormalisation and EFTs are essential tools in
achieving these goals.

In Chapter 2, we reviewed the foundations of renormalisation. Although once con-
sidered problematic, renormalisation has become a powerful technique in precision
QFT. In particular, only certain regularisation schemes can eliminate divergences
while preserving desirable properties of QFTs. The combination of DimReg and
the MS scheme is now standard practice. While DimReg—as defined in this con-
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text—also introduces challenges, especially with chiral amplitudes, the framework is
reliable at one-loop level.

To explore models that differ from the SM at high energies but remain consistent
with low-energy evidence, we turn to non-renormalisable theories. In Chapter 3,
we discussed the use of EFTs; which may require, in principle, an infinite number
of counterterms. However, the finite precision of experiments effectively bounds the
number of counterterms that need to be considered. This feature restores predictivity
and enables precision calculations. We illustrated this with several EFTs historically
used before the SM was established—many of which remain relevant for sub-EW scale
phenomena.

Since our interest lies beyond the Higgs Vacuum Expectation Value (vev), and
because the SM represents the highest-energy theory currently confirmed by experi-
ment, we take it as the foundation for building an EFT. In Chapter 4, we outlined
the benefits of using operator bases and discussed the challenges involved in iden-
tifying a complete and independent set of interactions. We argued that retaining
operators related by certain field redefinitions—equivalent to applying the EoMs
in the Lagrangian—can simplify intermediate computations. For instance, Green’s
functions in a redundant Lagrangian can be computed using only 1PI diagrams.
While redundancies must eventually be removed, this can be done at the end of
the calculation by applying on-shell relations. Although working with an on-shell
independent Lagrangian is not always required, the off-shell diagrammatic approach
to renormalisation does impose this condition. In this framework, we computed the
first Green’s Basis of dimension eight bosonic operators, published in Ref. [113] and
detailed in Section 4.4. The results are also shown in Appendix A altogether with
dimension-eight fermionic operators. The onshell relations of this Green’s Basis are
also an original result that allows to remove redundancies in favour of the physical
basis of Ref. [30].

Chapter 5 consolidates these ideas to systematize the renormalisation of the
SMEFT. We derived the Callan-Symanzik equation in a useful form tailored for

the renormalisation of dimension-eight operators. After summarizing the off-shell
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diagrammatic method and reviewing the history of SMEFT renormalisation, we ap-
plied our framework to compute the complete RGEs for all bosonic operators, as well
as substantial contributions to fermionic ones. Except for bosonic operator renor-
malisation via insertions of dimension-six operators [81], these results [82, 118, 129]
are original contributions of this thesis.

To provide an overview of the current state of SMEFT renormalisation—and to
place our contributions in context—we refer to Table 7.1, which summarizes complet-

ed and ongoing efforts in this area. Entries computed in this thesis are highlighted.

‘ ds d? dg d} ds x dg dr d? d2 x dg d? ds x dr dg

d<4 (bosonic) [37] [81] [118]

d<4 (fermionic) [37] [82] [111, 132, 138]
ds [33-35] [137] [137]

dg (bosonic) [36] [37-39] [129] [81] [129] [118]

dg (fermionic) [36] [37-40] X [82] X [111, 132, 138]
dy 117 v (117 [28, 136]

ds (bosonic) [129] [129] [81] [129] [118]

ds (fermionic) X X [82] X [111, 132, 138]

Table 7.1: State of the art of the SMEFT renormalisation (adapted from Refs.[81, 118, 129]).
The rows show the renormalised operators (categorised by dimensions and statistics). The columns
show the operators contributing to RG running. Blank entries vanish, v~ denotes that the complete
contribution is available, implies that only (but substantial) partial results are present, and X
indicates that nothing, or very little, 1s known. The contribution made in this thesis is marked by
Blue bozes .

The running of WC in SMEFT has a wide range of applications. In particular,
RGEs for dimension-six operators are already being used in phenomenological stud-
ies. As discussed in Section 5.7, the RGEs of dimension-eight operators are expected
to play a similar role in high-precision physics and may also illuminate new conceptu-
al avenues. One such direction involves positivity bounds—constraints derived from
unitarity, causality, and analyticity. Since these bounds are inherently order A~*
effects, the use of RGEs to explore their violation is particularly relevant. As noted
in Section 5.7, the observation that RG running can lead to apparent violations of

positivity bounds may prompt a reevaluation of the SMEFT framework.
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7.2 Future directions

Several promising research directions emerge from this work:

Complete the remaining RGE at order A=* A natural extension involves
computing the RGEs for all fermionic operators at dimension eight, including four-
fermion interactions and LNV contributions arising from lower-dimensional operator

combinations.

Clarify SMEFT’s role in EWPT While the dimension-six and dimension-eight
contributions to oblique parameters are known for bosonic operators, their relation-
ship with fermionic interactions remains unclear, as oblique parameters are mostly

studied in universal theories. Investigating this relationship would enhance our un-
derstanding of SMEFT’s applicability to EWPTs.

Investigate basis dependence in ADM It has been observed that off-shell com-
putations sometimes exhibit cancellations when expressions are taken on-shell. A
deeper understanding of this effect could shed light on the interplay between ba-
sis choices and divergence structures. This would require constructing new operator
bases and re-computing RGEs at order A=* | which is currently impractical. Waiting

for further automation in renormalisation techniques appears more feasible.

Compare renormalisation methods: off-shell, on-shell and geometrical
The RGEs at dimension eight are already being used to validate alternative renormal-
isation approaches. Once full renormalisation is achieved, a systematic comparison
of these methods—mnot only in terms of results but also in computational efficien-
cy—would be highly valuable. SMEFT, with its simplicity and compatibility with
a wide range of low-energy observables, provides an ideal testing ground for such a

comparative study.
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Final Remarks Whichever path is chosen, the RGE at dimension eight represent a
powerful tool in the ongoing search for NP. More broadly, renormalisation and EFTs
have proven indispensable in QFT and continue to shape the way we bridge high-
energy theories with low-energy phenomena. With this thesis, we aim to contribute
to a deeper understanding of these tools and to motivate continued exploration in

this promising field.
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Tables of SMEFT Operators
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Table A.1: Green’s basis of dimension-eight bosonic operators.
Original work, extracted from [113].
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Adapted from Refs. [30, 116]. (x) represents a complex class of operators.
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redundant. Adapted from Refs. [30, 116].



ob)

Wd2H?2D

10) (7)

Wd2H2D
Opiern
Opirrep
ov

Bd2H2D

(/)(7)

Bd2H?2D

0(1)

WudH?2D

OU)

WudH?D

o

WudH?D

0(1)

BudH?D

Xy2H?D

)
Owenrp

(3)
OW€2H2D
0(5)

Wi2H2D

0(7)

Wi2H2D

0(9)

Wi2H2D

o)

We2H?2D

ous)

We2H2D

o4

WE2H2D

019

W{E2H2D

oisa)

W2H2D

Dimension 8

(dv'd)D*(Hto"H) W,
i(dyd)(HT D YW,

DH(dyvd)(Ho! HYW!

i
i(dy” Drd) (Hio! )WL,
(@ d)DH(H'H)B,,
i(dy"d)(H' D"H)B,,
DH(dyvd)(HH)B,,
i(dy Drd)(H H)B,,
Y TAd)(HTDrH)GA,
u’y”d)(HTaID“H)WIV

uy’ DAd)(H o  H)W!

(w

(

( Qv
(uy”d)(HT ‘o' H)D*W L,
(wy"d)(H'D*H)B,,
(EVVK)D”(HTGIH)WJV
i(h”é)(HT D I”H)Wlf,,

(tr o' o)DM HTH)W],

ity olt)(HI D)W,
e”K(ZV”OIZ)D”(HTUJH)W,f,
el K Ty oty (BT DI HYWE

Dr(yv0)(Hto! HYW!

v
(v Do) (Ho! HYW!,
A
i(ly" D

(1./1\" DH (Z";'V(T‘, [) (

Lng)(H' H)U I

pv

o' HYWE

pv

1(1-“\"(?7”?1%)(1[]%'/}[)” i

pv

0(2)

Wd2H2D

0(4)

Wd2H2D

ol

Wd2H?D

(2
OdeHQD

4)
Openp

0(2)

WudH?2D

O ({)

WudH?D

0(2)

BudH?D
(2
Owensp

4)
OW€2H2D
(9(6)

Wi2H2D

0(8)

Wi2H2D

0(14)

We2H?2D

o419

We2H2D
01

W{E2H2D

O(zo

W{E2H2D

(dv*d) D*(H o' HYW,
i(wd)(Hf‘ﬁqu)ny
i(dy Drd)(H o H)W,
(dyd)D*(H'H)B,,
i(dy*d)(H'D»H)B,,
i(@y Drd)(H H)B,,

(@y'TAd)(H'D*H)G2,
(wd)(ﬁﬁaIDuH)’va
(wy” Drd)(H' o H)W],
(wy"d)(H! D"H)B,,,

ey 0)D*(Hio" H)W,

i(y o) (H DI H)WL,

(ty o' 6)DH(HTH)W,

iy o) (H D r )WL,
EI‘]K(Z’}/VO'IE)D“(HTUJH)W;,(/
i ”K(Zyvofe)(HfﬁJuH)’Wjﬁ

i(Ty D) (o' H)W),
DH(Ty'o u)( [‘H)Hlfl,
<(" v ]“ II p]r/

i€l /K (7 "ﬁw) (Hio? H)WE

Table A.6: Green’s Basis of dimension-eight Xv?H?D operators (Part II). Operators in grey are
redundant. Adapted from Refs. [30, 116].



O(l)

B(2H2D

0(3)

B(2H2D

0(5)

B(2H2D

(7)
Openzp

O(‘J)

B(?H?D

O(”)

B(?H?D

ou3)

B(?H2D

O(”)

Gq2H2D

O13)

Gq2H2D
1)
qu2H2D

3)
qu2H2D

X¢*H’D O,

0(713)

Wq2H2D

0(715)

Wq2H2D

0(717)

Wq2H2D

019

Wq2H2D

0(21)

Wq2H2D

(M)
OBq2H2D

0(9)

Bq2H2D

O(”)

Bq2H2D

O(I‘J)

Bq2H2D

Dimension 8

(ty'o'O)D*(H'o" H) B,
i(T*o ) (VD H) B
(Z,YVK)DN(HTH)B/LV
i(fy0) (H' DH)B,

DA e o
i(Ty D '#) (H1o" H)B,,
i(y" D 0)(H' H) By,
(@*T*o") DH (10 )G,
i(qy T 0" ) (H D H)G,
(@ TAq) D*(HH)G2,
i@y T4q) (HTﬁ“H)GﬁV
D*(gy'TAo"q)(H o' H)GL,

AT ~
i(qy"TAD"q)(H'o! H)GA

,
i(qy T4 Brg) (H'H)GA,
(@ 0) D (1o H)W],
i(@"a) (D" H)W,
(7“0’ q) DH(HTH)W],
i@yola) (' DL,
""K(gy’a'q) D*(H'a" H)W,Y,
ielK (qy" o' q)(HI DM H) WS

DH*(gqy"q)(H o' HYW !

v

s , .
i(gy” D*q)(H'o! HYW!

1%

iy D lrg)(H EW!

pv

6TJI\'D;L (q,‘;,yo.f(D (][|O_]]]>H'I'\

o
ie" 5 (q ”ﬁ’“q)(U"'CT‘]UﬁWi
(@ o'q)D*(H'o'H) By,
i(gv/0q) (H1 D "“H) B,
(@y"q)D*(H'H)B,,,
i(q)(H' D H)B,,

D*(qy’o'q)(H'o'H)B,,

< i

i(gy” D "*q)(H'o'H) By,
< i

i(gy” D*q)(H'H)B,,

0(2)

B(2H2D

0(4)

B(2H2D

0(6)

BRI

(8)
Openzp

O(|U>

B(?H?D

O(|2>

B(?H2D

ot

B(?H?D

0(14)

Wq2H2D

O(l‘j)

Wq2H2D

0(18)

Wq2H2D

O

Wq2H2D

019

Bq2H2D

O(|2>

Bq2H2D

O(|4>

Bq2H2D

(ty*" ) D (H'o ) By
i(Fy*0"0)(H D1 H) B,
(Z,YVE)DN(HTH)EMV
i(23*0)(HY D" H)B,
i(Z“,» ”?’“‘)(HT(TIH)B’W
Dr(EyO)(H'H) By

i(Zy* D 0) (H'H) B,

@' T4o! ) D (H1o! H)G,
i(qyT40"q)(H D' )G,
(m,,TAq)Du(HTH)@ﬁ,,
i(c—],yuTAq)(HTﬁpH)éﬁy
i(gy*TA D 1) (H1o' H)G,

DMgy'TAq)(HH)GA

T v

i(qy T4 D) (HTH)G,
(@) DH (o T,
i(3"q)(H1 D 1 H) W,

(@ o’q) DH(HTH)W],
i@y*o'a) (1 Br) T,

el (@l ) DM (o H)WS
iel/K (gyolq) (H! D/rH W

= .
i(qy" D*q)(H o' HYW!

v

DH(gy olq)(HTH)W!

Qv

i(gy” D) (HH)W!

pv

. <= .
i€]]k (ﬁ", v I;L(A])([]'\‘O_J]])H;’R

pv

(@y"o’q) D (H'o H)B,,
i(gy"o’q)(H' D'“H)B,,
(@y'q)D*(H'H)B,,
i(q)(H' D H)B,,
1(@,V?’“q)(ﬂ"ﬁ’ﬂ)]}w

D*(qyq)(HTH)B,,

Rrd ,
i(¢y" D*q)(H'H)B,,

Table A.7: Green’s Basis of dimension-eight X2 H?D operators (Part III). Operators in grey are
redundant. Adapted from Refs. [30, 116].
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Basis of dimension-five, -six and -seven operators needed for the renormalisation of

dimension-eight bosonic operators. Operators in grey are redundant. Adapted from Refs. [27, 28,

31, 32].





