

1 **Investigation of the agricultural reuse potential of urban**
2 **wastewater and other resources derived by using membrane**
3 **bioreactor technology within the circular economy framework**

4 **Laura Antiñolo Bermúdez^{1*}, Verónica Díaz Mendoza¹, Juan Carlos Leyva Díaz¹, Jaime Martín Pascual¹,**

5 **María del Mar Muñio Martínez² and Jose Manuel Poyatos Capilla¹**

6 ¹Department of Civil Engineering and Institute of Water Research, University of Granada, Granada, Spain

7 ²Department of Chemical Engineering and Institute of Water Research, University of Granada, Granada,
8 Spain

9 *Corresponding author

10 lantinolo@ugr.es; vdiaz@ugr.es; jcleyma@ugr.es; jmpascual@ugr.es; mmunio@ugr.es; jpoyatos@ugr.es

11 5

12 **6 Abstract**

13 The European Union, as delineated in Regulation (EU) 2020/741, sets forth minimum
14 criteria for the reuse of wastewater. Directive 86/278/CEE sets the regulations for the
15 reuse of sewage sludge in agriculture. This study aimed to investigate the treated water
16 derived from a pilot plant situated in Granada, Spain, that utilizes membrane bioreactor
17 technology to process real urban wastewater with the quality standards necessary for
18 agricultural reuse. Additionally, the study evaluated the utilization potential of other
19 resources generated during wastewater treatment, including biogas and biostabilized
20 sludge. The pilot plant incorporated a membrane bioreactor featuring four ultrafiltration
21 membranes operating continuously alongside a sludge treatment line operating in batch
22 mode. The pilot plant operated during four cycles, each with distinct hydraulic retention
23 time.

17 times (6 hours and 12 hours) and variable mixed liquor-suspended solids concentrations
18 (ranging from 2688 mg L⁻¹ to 7542 mg L⁻¹). During these cycles, the plant was doped with
19 increasing concentrations of emerging contamination compounds (diclofenac,
20 ibuprofen, and erythromycin) to test their effect on the resources derived from the
21 treatment. Subsequently, a tertiary treatment involving an advanced oxidation process
22 was applied to the different water lines, which left the wastewater treatment plant for
23 a period of 30 minutes and utilized varying concentrations of oxidant. The results
24 indicate that the effluent obtained meets the required quality standards for agricultural
25 use. Therefore, there is potential to use this waste as a resource, which is in line with
26 the principles of the circular economy. Furthermore, the other resources generated
27 during the treatment process, such as the biogas produced during the digestion process
28 and the biostabilized sludge, have the potential to be used as resources according to the
29 circular economy indicators.

30
Keywords: circular economy; membrane bioreactor; pharmaceutical compounds;
reuse; urban wastewater treatment.

31

32 **1. Introduction**

33 The identification of emerging contaminant compounds, notably pharmaceutical
34 substances, has become evident in global water systems (Garduño-Jiménez et al., 2023;
35 Kookana et al., 2020). The introduction of such compounds into these facilities has the
potential to disrupt their functionality, resulting in possible inadequate wastewater

36 treatment processes. Furthermore, it should be noted that climatic events in recent
37 years have caused water scarcity in regions not historically affected and exacerbating
38 existing shortages in areas already grappling with inadequate water resources (Duque-
39 Acevedo et al., 2020). Additionally, in recent decades, the global population has
40 exhibited a sustained period of growth. The consumption of water by the general
41 population, in conjunction with the various industrial production activities that are
42 associated with human activity, has resulted in the generation of substantial and
43 progressively increasing volumes of urban and industrial wastewater (Rajesh Banu et al.,
44 2020). In this context, the circular economy emerges as a solution based on the idea of
45 reducing waste and extending the useful life of resources, focusing on efficiency and
46 reducing consumption of raw materials and pollution (Lehmann et al., 2022). This
47 necessitates a comprehensive study of treated water reuse for agricultural applications.
48 Within this context, the European Union (EU), through Regulation (EU) 2020/741,
49 delineates minimum criteria for wastewater reuse for agricultural purposes. The
50 directive emphasizes the interest in promoting the circular economy principles, imposes
51 stringent quality standards for reused water in agriculture, and concurrently diminishes
52 the reliance on fertilizer applications. In addition, wastewater treatment plants also
53 produce other wastes that need to be treated, such as those produced in the sludge line.
54 The European Parliament's Waste Framework Directive (EU) 850/2018 focuses on the
55 management, reduction, and effective recovery of economically valuable waste.
56 Directive 86/278/CEE sets regulations for the reuse of sewage sludge in agriculture.

57 Membrane bioreactors are a technology that is proving effective against
58 contaminants that cannot be removed by conventional treatment technologies. This
59 technology, which is commonly used to filter pathogens, has great potential to reduce

60 emerging organic and microbial contaminants (Verlicchi et al., 2023). It is also presented
61 in some cases as a technology with removal efficiencies of around 100% due to its longer
62 cell retention time (Kundan et al., 2022). Wastewater treatment plants (WWTPs) that
63 use membrane bioreactor technology demonstrate the attainment of high-quality
64 effluents (Bonetta et al., 2022). The integration of membrane bioreactors with tertiary
65 chemical treatments, such as advanced oxidation processes (AOPs), is currently being
66 investigated. This tertiary treatment can rapidly oxidize and completely degrade organic
67 pollutants (Gopalakrishnan et al., 2023). One of the most studied AOPs for wastewater
68 treatment is the H₂O₂/UV process. An H₂O₂/UV system can completely mineralize any
69 organic compound, reducing it to CO₂ and water (Antiñolo Bermúdez et al., 2021). The
70 combined use of AOPs as a tertiary treatment in wastewater treatment plants can
71 provide mechanisms for the biodegradation of contaminants, thus preventing their
72 release into the environment.

73 Throughout the treatment regimen, valuable resources are concurrently generated,
74 including biogas from sludge digestion and biostabilized sludge. The biostabilized sludge
75 can be used as fertilizer or an agricultural soil conditioner. In addition, the volume of
76 activated sludge from wastewater treatment plants is expected to increase significantly
77 in the coming years due to the large-scale construction of wastewater treatment plants
78 (Lu et al., 2023), making the study and optimization of this process of particular interest.
79 This approach underscores the potential for resource recovery and sustainable practices
80 within wastewater treatment.

81 The EU, like most governments around the world, focuses on the quality of its
82 resources. Directive 2008/105/EC, which includes emerging pharmaceutical compounds

83 such as anti-inflammatories and antibiotics, monitors substances that are not currently
84 subject to phase-out legislation. Nevertheless, these substances have been the subject
85 of investigation and have been demonstrated to be present in rivers, lakes, aquifers, and
86 natural environments. Consequently, they may present a certain risk in the long term.
87 Therefore, the study of their elimination is essential to prevent their entry into
88 ecosystems.

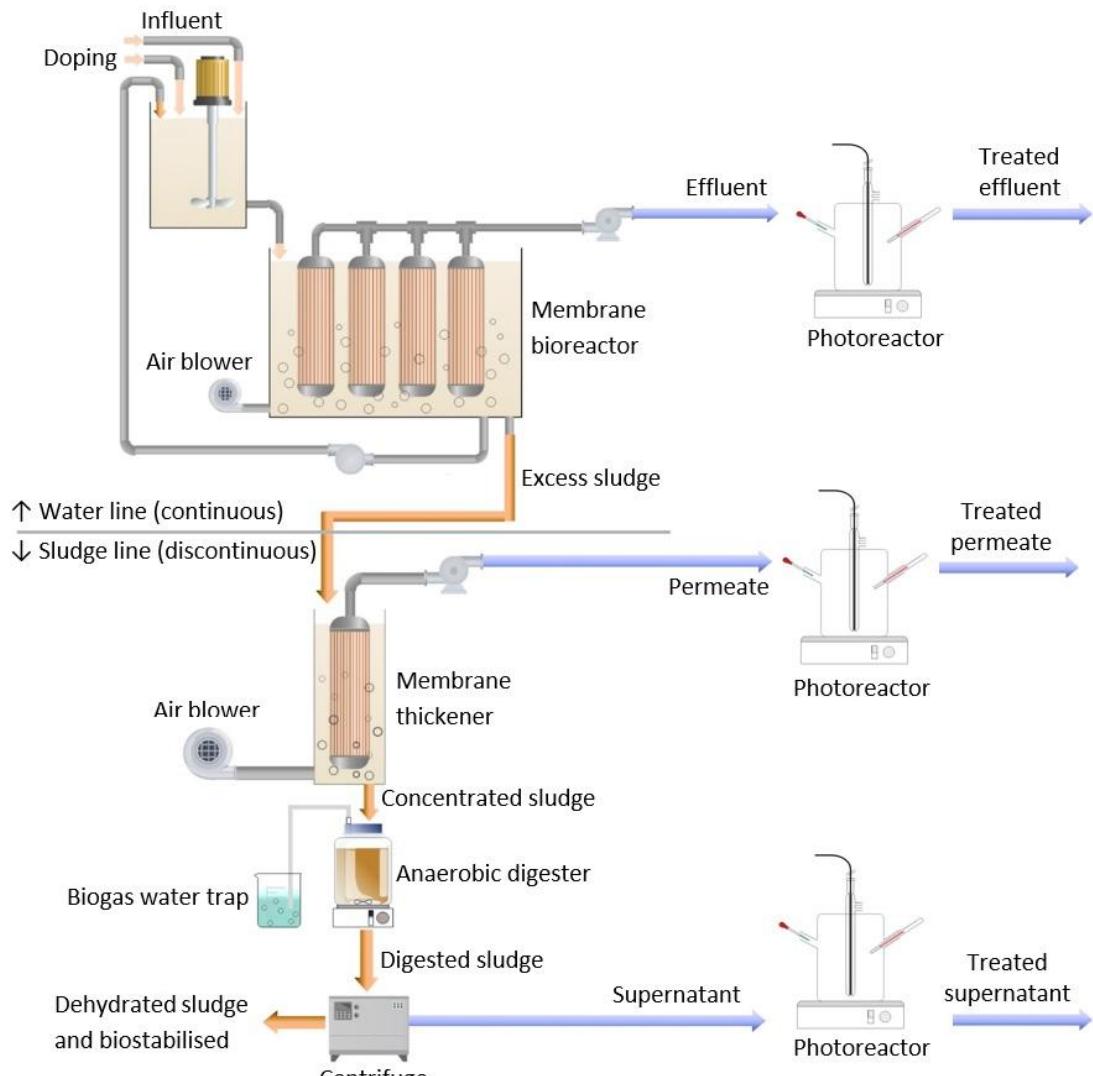
89 The aim of this investigation was to evaluate the efficiency of a MBR-AOP system in
90 generating high-quality effluent with the potential to be reused in agricultural
91 applications. This study also examined the potential of other generated wastes to be
92 utilized as resources, such as biogas and biostabilized sludge. To this end, the
93 recoverable resources generated by a semi-technical pilot plant with membrane
94 bioreactor technology fed with real urban wastewater, which was also subjected to
95 different pharmaceutical doping, were evaluated. In pursuit of this aim, an assessment
96 was conducted on the effluent quality and potential utilizable resources, employing
97 circular economy indicators. The plant was doped with increasing concentrations of
98 three pharmaceutical compounds of emerging concern, namely ibuprofen,
99 erythromycin, and diclofenac, under a range of operational conditions. These conditions
100 included four operating cycles, each with two hydraulic retention times (HRT) of 6 and
101 12 hours, as well as different mixed liquor-suspended solids (MLSS) concentrations.
102 Under these conditions, the quality of the water intended for use, the potential of the
103 excess sludge, and its energy potential in the digestion of the sludge line will be
104 evaluated with circular economy indicators.

105 **2. Materials and methods**

106 **2.1 Pilot plant**

107 The pilot-scale urban wastewater treatment plant employing membrane
108 bioreactor technology was located at the Los Vados WWTP (Granada, Spain). This plant
109 treated urban wastewater from the primary settling. The system comprises a cylindrical
110 mixing tank equipped with mechanical stirring, linked to a rectangular bioreactor with
111 an 85 L capacity. The bioreactor contains four ultrafiltration membrane modules with a
112 total filtration surface area of 3.72 m². Each membrane module has an individual surface
113 area of 0.93 m² and a pore size of 0.04 µm (ZW-10 from Zenon). The membranes are
114 constructed from polyvinylidene fluoride (PVDF) and feature an outside/in hollow-fiber
115 configuration. Each module has a drained weight of 1.9 kg and a wet weight of 2.1 kg,
116 with a permeate hold-up volume of 0.13 L. The plant was operated for four cycles under
117 the specified operating conditions, as outlined in Table 1.

118 **Table 1.** Operation conditions of mixed liquor suspended solids (MLSS), hydraulic
119 retention time (HRT), and solids retention time (SRT) in each cycle for the steady state.


Cycle	HRT (h)	MLSS (mg L ⁻¹)	SRT (day)
1	6	5940 ± 515	22.3
2	6	7542 ± 1730	10.7
3	12	5967 ± 485	38.5
4	12	2688 ± 744	36.5

120

121 The typical operational transmembrane pressure (TMP) ranges from 10 kPa to
122 50 kPa, with a maximum TMP of 62 kPa. The flow rate during operation was 4.25 L m⁻²
123 h⁻¹ for cycles 1 and 2 and 2.12 L m⁻² h⁻¹ for cycles 3 and 4. Filtration in these modules was
124 conducted using a peristaltic pump in a combined cycle of 9 minutes and 35 seconds of
125 filtration, followed by 25 seconds of backwashing. The filtration process was initiated by

126 drawing fluid from the external surface of the membrane into the internal compartment
127 via a suction mechanism. The membrane tank was continuously aerated to mechanically
128 clean the membrane surfaces, maintain aerobic conditions, and ensure the
129 homogenization of the mixed liquor. The air flow rate was $226.52 \text{ L min}^{-1}$ (56.63 L min^{-1}
130 per membrane module), with a dissolved oxygen set point of 1.5 mg L^{-1} . Once the set
131 point was reached, aeration ceased and resumed when the dissolved oxygen level
132 dropped below half of the set point. The system included a recirculation stream rate
133 that was 50% higher than the effluent current from the membrane tank to the mixing
134 tank, which ensured a constant MLSS concentration. Figure 1 shows a diagram of the
135 pilot plant and the sludge line.

136

137

138 **Figure 1.** Diagram of the pilot plant that used membrane bioreactor technology.

139

140 Once a stable state had been achieved, a purge flow was initiated to extract
 141 waste sludge from the system. The pilot plant representing the water line was operated
 142 continuously across four cycles with modified operational parameters, specifically the
 143 MLSS concentration and the HRT.

144 The sludge line operated with daily sludge purged from the water line in batch
 145 mode. The sludge was concentrated in a membrane thickener, resulting in a
 146 concentration of 20.0% (v/v). The thickening process occurred in a vertically oriented,

147 aerated circular tank with a total volume of 6.7 L and an effective volume of 4.32 L. A
148 hollow-fiber microfiltration membrane with an overall surface area of 0.10 m² was
149 immersed in the aforementioned tank. The membrane operated in a series of cycles of
150 suction and backwashing, with each cycle optimized according to the ideal TMP (10–50
151 kPa). The hollow fibers of the membrane were composed of PVDF with an internal
152 support made of braided polyester. Subsequently, the thickened sludge was transferred
153 to a laboratory-scale digester, which was housed in a thermostatically controlled
154 refrigerator for digestion. The digester was agitated under anaerobic conditions and
155 included a water trap to capture the biogas produced. The temperature was maintained
156 at a constant 32.5°C using a controller situated within the thermostatic refrigerator. The
157 digestion process was allowed to continue for a period of 28 days to ensure that the
158 sludge was completely degraded. Subsequently, centrifugation was employed to
159 separate the liquid and solid phases of the digestate, which had been produced
160 following digestion. This semi-technical scale pilot plant refers to a fully autonomous
161 and functional plant that is a reduced-scale industrial plant located outdoors, just like
162 an industrial scale plant. This scaling will provide data that is closer to reality than the
163 laboratory-scale plant would provide. A similar study was carried out by analyzing a plant
164 with the same characteristics but scaled up to a larger plant. The results showed that
165 the removal rates of chemical oxygen demand (COD), fifth-day biological oxygen
166 demand (BOD₅), and total suspended solids (TSS) parameters were maintained.
167 Furthermore, from a kinetic point of view, there was an improvement in the
168 heterotrophic biomass present in the membrane bioreactor. A significant increase in cell
169 retention time in the system was also observed (Leyva-Díaz et al., 2013).

170 The samples subjected to advanced oxidation processes in each cycle were
171 effluent, supernatant, and centrifuge reject water, thereby encompassing all water
172 outlets of the integrated water treatment process.

173

174 **2.2 Dosage of pharmaceuticals in cycles**

175 The pharmaceuticals chosen for this study were diclofenac, ibuprofen, and
176 erythromycin. The selection criteria included the nature of the compounds, ensuring
177 that only one antibiotic was included. A single antibiotic was selected for investigation
178 to identify the potential effects it may have on the plant and to differentiate its effects
179 from those of anti-inflammatory compounds. Erythromycin was selected for analysis due
180 to its inclusion on the second 2018 List of Priority Substances in the field of water policy
181 (Directive 2008/105/EC), derived from Directive 2013/39/EU. Ibuprofen and diclofenac
182 were selected for examination because of their high prevalence and widespread usage.

183 Wastewater treatment plants that employ conventional methods achieve an average
184 removal efficiency of 65.6% for erythromycin (Ping et al., 2022). Nonsteroidal anti-
185 inflammatory pharmaceuticals, such as diclofenac and ibuprofen, are the
186 pharmaceuticals most frequently detected in water sources (Wijaya et al., 2020; Antiñolo
187 Bermúdez et al., 2023). The dosing criteria for diclofenac and erythromycin were
188 selected based on their water solubility. Once the steady state was reached, three dosing
189 cycles were performed in each cycle. The first cycle was conducted at a concentration
190 2.5 times lower than the solubility value, the second at a concentration equal to the
191 solubility value, and the third at a concentration four times the solubility value. In the
192 case of ibuprofen, due to its high water solubility, it was deemed unnecessary to utilize
193 water solubility to establish the dosing criteria. Consequently, the dosage values were

194 based on the highest concentration of ibuprofen recorded in wastewater worldwide, as
195 determined by previous research (Tayo et al., 2018). A continuous dosage regimen was
196 maintained throughout the development of the cycles in the pilot plant, with regard to
197 pharmaceuticals. Table 2 shows the concentrations of pharmaceutical products for each
198 dosing in each cycle.

199 **Table 2.** Concentration of pharmaceutical compounds for each dosing.

	Ibuprofen	Diclofenac	Erythromycin
Dosing 1 (mg L ⁻¹)	0.06	0.95	0.58
Dosing 2 (mg L ⁻¹)	0.13	2.37	1.44
Dosing 3 (mg L ⁻¹)	0.56	9.48	5.76

200 Water solubility (25°C) of erythromycin: 1.44 mg L⁻¹. Water solubility (25°C) of diclofenac:
201 2.37 mg L⁻¹.
202 To ensure the correct dissolution of the pharmaceuticals, they were initially
203 dissolved in 100 mL of water, where they were vortexed for 5 minutes. They were then
204 brought to a volume of 30 L, which were dosed together with the effluent in a mixing
205 tank at the flow rate set for each cycle according to the established HRT.

206

207 **2.3 Analytical methods**

208 During the operation of the plant in the four cycles studied and its different
209 doping phases, samples of influent, effluent, and bioreactor were taken daily from the
210 pilot plant (continuous water line) to characterize the wastewater and the operation.

211 The following parameters were tested: COD, BOD₅, TSS, pH, conductivity, temperature,
212 color analysis, and turbidity. Control analyses for BOD₅, COD and TSS were carried out
213 according to Standard Methods (Metcalf et al., 2004). Turbidity measurements were
214 conducted in accordance with the specifications outlined in the UNE-EN ISO 7027-
215 1:2016 standard. Temperature and conductivity measurements were obtained with a

216 Crison CM 35® meter (Barcelona, Spain). The pH was determined using a Crison pH 25®
217 meter (Barcelona, Spain). Absorbance measurements were conducted at various
218 wavelengths on a Thermo Helios Gamma 9423 UVG 1002E spectrophotometer. Color
219 measurements were conducted in accordance with the methodology outlined in
220 Method B of the UNE-EN ISO 7887:2012 standard.

221 For the anaerobic digestion of the sludge produced in the pilot plant in the four
222 cycles of operation, four digesters were used per cycle, corresponding to the reference
223 (digester 1), doping 1 (digester 2), doping 2 (digester 3), and doping 3 (digester 4).
224 Throughout the digestion process, all digesters were subjected to a series of tests for
225 COD, TSS, pH, conductivity, temperature, alkalinity, and volatile fatty acids. The
226 methodologies delineated by the American Public Health Association (APHA)
227 (Association et al., 2022) were employed to determine volatile fatty acids and alkalinity.

228 The permeate from the thickening phase of the activated sludge prior to
229 digestion, as well as the rejects from the centrifugation phase following digestion of the
230 sludge, were subjected to a color test. The color test was used to ascertain the evolution
231 of the color of the sample following the AOP, so the sample was measured both before
232 and after the AOP test. A series of spot tests for *Escherichia coli* was conducted using
233 the membrane filtration method outlined in the DifcoTM manual (Gómez Nieto &
234 Hontoria García, 2003). The method entails the filtration of the sample through a 0.45
235 µm membrane and subsequent incubation at 44°C on plates with Endo Agar as the
236 culture medium. Furthermore, chromatographic detection of nitrogen and phosphorus
237 was also carried out. Two ion chromatographs were employed in this study: a Metrohom
238 ECO IC plus 919 IC ion chromatograph with autosampler and a Metrohom Compact IC

239 761 ion chromatograph. The analytical method employed was high-performance liquid
240 chromatography (HPLC) with a triple quadrupole mass spectrometry detector.

241 The advanced oxidation process was conducted using a UV-Consulting Peschl®
242 photochemical reactor (Mainz, Germany). The reactor has a capacity of 0.8 L. The
243 photoirradiation source is a medium-pressure mercury vapor lamp with an emission
244 spectrum in the ultraviolet range above 190 nm and a power output of 150 W. The
245 reactor is equipped with stirring to ensure thorough mixing and is insulated by a
246 cylindrical quartz tube surrounded by a cooling jacket. The cooling system, which
247 employed a cold-water bath, ensured that the photoreactor operated at a constant
248 temperature of 20°C. The samples underwent H₂O₂/UV treatments, each lasting 30
249 minutes, utilizing three progressively higher concentrations of H₂O₂: 25 mg/L, 50 mg/L,
250 and 100 mg/L. During these experiments, aliquots were collected at specific time
251 intervals of 0 minutes, 10 minutes, 20 minutes, and 30 minutes to monitor the reaction
252 progression.

253 Furthermore, tests were conducted to ascertain the nitrogen and phosphorus
254 concentrations present in the plant effluent across the different operational cycles. The
255 influent and effluent samples were analyzed using a Metrohm ECO IC autosampler ion
256 chromatograph coupled with a 919 IC and a Metrohm Compact IC 761 ion
257 chromatograph. The analytical method employed was HPLC equipped with a triple-
258 quadrupole mass spectrometry detector (Monteoliva-García et al., 2019b).

259 **2.4 Circular economy indicators**

260 To provide a comprehensive evaluation of the wastewater treatment process, a
261 series of indicators were established to assess the quality of the water, the quality of the

262 sludge, and the production of biogas. Once the results from the circular economy
263 indicators were calculated and analyzed, the suitability of the treated water for reuse in
264 agricultural irrigation, in terms of resource recovery, was assessed at various stages of
265 the treatment process. The potential of the biostabilized sludge produced was also
266 assessed.

267 **2.4.1 Circular economy indicators for water**

268 Indicator of reducing matter removal efficiency (I_{RECOD})

269 Although this indicator does not refer to the circular economy as such, it does
270 indicate the overall efficiency of the wastewater treatment plant. This indicator is
271 calculated using Equation 1 (Bermúdez et al., 2022):

$$I_{RECOD} = \frac{Q_w(COD_{in} - COD_{eff})}{10^6} \left(\frac{\text{Kg O}_2}{\text{day}} \right) \quad [1]$$

272

273 Where Q_w : wastewater flow rate (L day^{-1})
274 COD_{in} : chemical oxygen demand concentration in the influent (mg L^{-1}).
275 COD_{eff} : chemical oxygen demand concentration in the effluent (mg L^{-1}).
276
277

278 Indicator of recovery of water in the treatment process ($I_{W,R}$):

279 This indicator analyses the percentage of water that is recovered in the entire
280 water treatment process, including the water line and the sludge line. This indicator is
281 calculated using Equation 2 (Bermúdez et al., 2022):

$$I_{W,R} = \frac{Q_{eff} + Q_p + Q_s}{Q_w} \cdot 100 \quad (\%) \quad [2]$$

282

283

284 Where Q_{eff} : effluent flow rate in water line (L day^{-1}).
285 Q_p : flow rate permeate from the sludge thickener (L day^{-1}).

286 Q_s : flow rate supernatant from digester sludge centrifugation (L day⁻¹).

287

288 Indicator of effluent inorganic content for nitrogen ($I_{EIC(N)}$) and for phosphorus ($I_{EIC(P)}$):

289 Wastewater contains significant concentrations of nutrients such as nitrogen and
290 phosphorus, which, if discharged into the environment, can lead to excessive algal
291 growth, known as eutrophication. This results in adverse effects such as poorer water
292 quality habitats and food sources, as well as reduced concentrations of dissolved oxygen
293 and its availability for aquatic life (Cao et al., 2022). Given their capacity to exert a
294 significant impact on the environment, the discharge concentration of these substances
295 is subject to legislative regulation (Directive 98/15/CE). Nevertheless, they are a valuable
296 compound in agriculture, and the potential for reuse of these compounds in the
297 recovery of treated water is a significant benefit. These indicators are calculated using
298 Equation 3 and 4 (Preisner et al., 2020)(Bermúdez et al., 2022):

$$I_{EIC(N)} = N_{eff} \cdot Q_{eff} \left(\frac{mg}{day} \right) \quad [3]$$

$$I_{EIC(P)} = P_{eff} \cdot Q_{eff} \left(\frac{mg}{day} \right) \quad [4]$$

299 Where N_{eff} : inorganic nitrogen concentration in the effluent (mg L⁻¹).

300 P_{eff} : inorganic phosphorus concentration in the effluent (mg L⁻¹).

301 **2.4.2 Circular economy indicators for sludge**

302 Indicator of the amount of sludge recovered as a function of sludge produced ($I_{SG, \%R}$):

303 This indicator is employed to ascertain the proportion of biostabilized sludge
304 recovered at the conclusion of the treatment process in the sludge line in relation to the

305 total quantity generated in the water line during the water treatment process. It is
306 calculated using Equation 5 (Molina-Sánchez et al., 2018):

$$I_{SG,\%R}(\%) = \frac{m_{SG,R}}{m_{SG,T}} \cdot 100 \quad [5]$$

307 Where $m_{SG,R}$: sludge flow rate recovered during the water treatment process (kg day^{-1}).
308 $m_{SG,T}$: sludge flow rate produced during the water treatment process (kg day^{-1}).
309

310 Indicator of technological nutrient performance for recovered sludge ($I_{SG,R}$):

311 This indicator differs from the previous one in that it shows the quantity of sludge
312 recovered during the treatment of wastewater in relation to the volume of wastewater
313 treated. It is calculated using Equation 6 (Bermúdez et al., 2022):

$$I_{SG,R} = \frac{m_{SG,R}}{Q_{\text{eff}}} \quad \left(\frac{\text{kg}}{\text{L}} \right) \quad [6]$$

314 Where $m_{SG,R}$: sludge flow rate recovered during the water treatment process (kg day^{-1}).

315 **2.4.3 Circular economy for biogas produced**

316 The COD of the digester is monitored to calculate the biogas produced during
317 digestion. For anaerobic digestion systems in general, the methane production in
318 relation to the COD removed is 4 mg COD removed per mg methane (i.e. 1 mg methane
319 is produced for every 4 mg COD removed). The mass of methane is one-quarter of the
320 mass of COD removed in the process (35°C and 760 mm Hg) (Gobernment of Spain,
321 2007). The maximum daily CH_4 ($\text{L biogas Kg}^{-1} \text{ sludge day}^{-1}$) was calculated from the daily
322 quantity of COD removed per kilogram of sludge digested.

323 Biogas indicator of biogas generation potential in relation to sludge mass flow rate (I_{MDP}):

324 This indicator is employed to ascertain the potential of the sludge to generate
325 biogas during anaerobic digestion. The result provides information about the maximum
326 daily production of biogas. It is calculated using Equation 7:

$$I_{MDP} = \frac{0.35 \cdot COD_R}{\rho_{sludge}} \left(\frac{\text{L } CH_4}{\text{Kg Sludge}} \right) \quad [7]$$

327 Where COD_R: chemical oxygen demand per day during the anaerobic digestion.

328 ρ_{sludge} : sludge density in anaerobic digestion (by default 1)

329

330 Efficiency of biogas transformation into electric energy (E_b):

331 During the anaerobic digestion process, biogas is produced, which is a resource
332 that can be utilized to generate electrical energy that can then be employed in internal
333 combustion engines. Approximately 6.5 kWh of energy is produced from one m³ of
334 biogas, with an estimated 35% biogas conversion efficiency (Salguero-Puerta et al.,
335 2019). This indicator is calculated using Equation 8:

$$E_b = 6.5 \cdot q_b \cdot 0.35 \left(\frac{\text{kWh}}{\text{day}} \right) \quad [8]$$

336 Where E_b: energy obtained from biogas (kWh day⁻¹).

337 q_b : volumetric flow of biogas obtained by the anaerobic digestion (m³ biogas day⁻¹).
338

339 **3. Results and discussion**

340 **3.1 Pilot plant reuse options**

341 The pilot plant's operating efficiency data for the different duty cycles and the
342 doping carried out within them are shown in Table 3.

343

344

Table 3. Operation efficiencies data for the different cycles.

Cycle		Influent BOD ₅ (mgO ₂ L ⁻¹)	Influent COD (mgO ₂ L ⁻¹)	Influent TSS (mg L ⁻¹)	Effluent BOD ₅ (mgO ₂ L ⁻¹)	Effluent COD (mgO ₂ L ⁻¹)	Effluent TSS (mg L ⁻¹)	BOD ₅ Removal (%)	COD Removal (%)	TSS Removal (%)
1	Dosing 1	228 ± 43	415 ± 67	89 ± 24	2 ± 2	25 ± 15	4 ± 3	99.0 ± 1.0	93.5 ± 4.9	94.4 ± 6.0
	Dosing 2	342 ± 50	575 ± 100	121 ± 33	3 ± 1	23 ± 18	3 ± 1	99.0 ± 0.2	95.6 ± 3.7	97.2 ± 1.4
	Dosing 3	254 ± 29	488 ± 31	98 ± 2	1 ± 1	21 ± 13	2 ± 1	99.6 ± 0.4	95.8 ± 2.5	98.0 ± 1.3
2	Dosing 1	282 ± 18	535 ± 120	107 ± 34	8 ± 5	63 ± 37	7 ± 7	97.0 ± 2.1	88.2 ± 5.4	94.0 ± 4.1
	Dosing 2	242 ± 44	476 ± 73	80 ± 6	7 ± 5	58 ± 17	2 ± 2	97.0 ± 2.1	87.7 ± 3.1	97.0 ± 2.7
	Dosing 3	242 ± 22	458 ± 24	89 ± 9	5 ± 3	50 ± 20	5 ± 3	97.9 ± 2.0	89.1 ± 3.9	94.3 ± 3.4
3	Dosing 1	244 ± 27	552 ± 128	87 ± 8	2 ± 1	33 ± 32	2 ± 2	99.3 ± 0.3	92.7 ± 8.6	97.7 ± 2.4
	Dosing 2	236 ± 60	502 ± 254	80 ± 11	3 ± 2	21 ± 26	6 ± 3	98.9 ± 0.9	96.6 ± 4.4	92.8 ± 2.9
	Dosing 3	300 ± 27	497 ± 30	91 ± 11	2 ± 1	37 ± 29	2 ± 2	99.2 ± 0.5	92.5 ± 6.0	97.6 ± 1.9
4	Dosing 1	383 ± 78	589 ± 72	134 ± 46	11 ± 6	42 ± 38	2 ± 1	97.4 ± 1.2	93.3 ± 7.9	98.0 ± 1.4
	Dosing 2	396 ± 69	638 ± 115	126 ± 13	21 ± 11	41 ± 36	3 ± 2	94.4 ± 3.3	94.7 ± 5.9	98.2 ± 2.5
	Dosing 3	400 ± 22	571 ± 41	118 ± 7	28 ± 7	48 ± 13	2 ± 1	93.0 ± 2.1	91.6 ± 2.5	98.3 ± 0.9

345 Cycle 1: 6 hours of hydraulic retention time (HRT) and 5940 ± 515 mgL⁻¹ of mixed liquor suspended solids346 (MLSS); cycle 2: 6 hours of HRT and 7542 ± 1730 mgL⁻¹ of MLSS; cycle 3: 12 hours of HRT and 5967 ± 485347 mgL⁻¹ of MLSS; cycle 4: 12 hours of HRT and 2688 ± 744 mgL⁻¹ of MLSS).

348 The operating cycles lasted 61 days for cycle 1, 81 days for cycle 2, 69 days for

349 cycle 3 and 61 days for cycle 4. The data pertaining to this section were subjected to a

350 comparative analysis with the data obtained from the study of the cycles without

351 pharmaceutical doping (Bermúdez et al., 2022). Regulation (EU) 2020/741 classifies

352 reclaimed water for agricultural irrigation (quality A, B, C, and D) according to quality

353 requirements that control *E. Coli*, BOD₅, TSS and turbidity, with the highest quality being354 category A in cycles 1, 2 and 3. In the case of cycle 4, the BOD₅ value must be ≤10 mg L⁻¹355 ¹ for the limits established by the legislation, so that according to Regulation (EU)

356 2020/741 (Table 2, annex I) it would be in category B, which corresponds to that

357 established by Directive 91/271/EEC. From the perspective of the reuse of treated water,

358 the levels of total suspended solids comply with the most restrictive legislation in all

359 cycles with their respective doping phases. In addition, the water can be discharged into

360 the watercourse as it complies with current legislation Directive 91/271/CEE.

361 Furthermore, the limits for TSS of ≤35 mg L⁻¹ and a removal rate of 90.0 % have been

362 established. This study has demonstrated that the water in question largely meets these
363 limits, as evidenced by the data presented in Table 3. Additionally, the minimum
364 discharge concentrations for BOD_5 are $\leq 25 \text{ mg O}_2 \text{ L}^{-1}$, and the removal rates are 70.0 -
365 90.0 % removal. For COD, the minimum requirements are 75.0 % and $\leq 125 \text{ mg O}_2 \text{ L}^{-1}$.
366 The pilot plant has demonstrated that these plant performance requirements can be
367 met even at the highest dosages, with removal rates exceeding 93% for BOD_5 and 87.7%
368 for COD. Other studies have demonstrated comparable removal rates, thereby
369 substantiating the potential of MBR as a promising technology for effective wastewater
370 treatment (Calero-Díaz et al., 2017; Do & Chu, 2022; Monteoliva-García et al., 2019b,
371 2019a). Pharmaceutical removal performance in all operating cycles, irrespective of the
372 doping phase, was over 94% for ibuprofen, 76% for diclofenac, and 85% for
373 erythromycin. This highlights the good performance of membrane bioreactor technology
374 against this type of contaminant.

375 In addition, influent and effluent samples from the pilot plant were analyzed in
376 order to ascertain the amount of total nitrogen and total phosphorus present. The plant
377 is unable to remove these nutrients due to the absence of anoxic and anaerobic zones.
378 This is due to the fact that the technology employed in the pilot plant in this research is
379 designed in such a way that no removal of nitrogen and phosphorus occurs, and the
380 treated water contains these nutrients, thereby making a positive contribution to the
381 receiving environment in agriculture.

382 The results of the turbidity values obtained for the effluent in the different cycles
383 demonstrate that they are in compliance with the minimum requirements for water
384 reuse in agriculture (cycle 1: $< 4.3 \text{ NTU}$; cycle 2 $< 6.3 \text{ NTU}$; cycle 3 $< 8.5 \text{ NTU}$; cycle 4 < 10.7

385 NTU). In the case of cycle 1, the reclaimed water would comply with quality value A
386 (Annex I; Table 1; Table 2), the most restrictive one that allows direct irrigation of the
387 feed. Consequently, the water from the other cycles would have a quality B for having
388 turbidity values higher than 5 NTU. For values above 5 NTU, it is established that it can
389 be used for irrigation without the feed being in direct contact with the water. The
390 membranes utilized in this study were five years old, which may account for the observed
391 turbidity values exceeding the anticipated levels for ultrafiltration membranes, given
392 that their integrity may have been compromised by prolonged use. These membranes
393 were previously employed in a study with lower turbidity results (<1 NTU) (Monteoliva-
394 García et al., 2020).

395 For the *E. Coli* tests, all the cycles studied, with their respective doping, meet the
396 requirements for maximum quality A (Table 1, Annex I), as defined in Regulation (EU)
397 2020/741, with values below 10 CFU (cycle 1: <6.62 CFU; cycle 2 <7.3 CFU; cycle 3 <7.1
398 CFU; cycle 4 <6.2 CFU). Recycled water of this quality can be used to irrigate raw food
399 crops.

400 During the four operating cycles studied and the examination of the various
401 parameters required by legislation, the treated water could be used for irrigation in
402 agriculture in all four cycles. In the case of cycles one, two and three, it would be possible
403 to irrigate crops that are consumed raw and the edible part is in direct contact with the
404 reclaimed water, as the maximum quality of reuse has been obtained. In the case of cycle
405 4, the treated water is suitable for irrigation of food crops that are consumed raw and
406 the edible part is not in contact with the treated water, as well as processed food crops
407 and non-food crops.

408 **3.2 Advanced oxidation processes**

409 **3.2.1 Water line**

410 The data pertaining to this section are subjected to a comparative analysis with
411 the data obtained from the study of the cycles without pharmaceutical doping
412 (Bermúdez et al., 2022). When the AOPs were applied to the effluent of the different
413 cycles in their different phases, in the cases where ibuprofen was detected (cycles 1 and
414 2), complete elimination was achieved with the application of the lowest concentration
415 of 25 mg L⁻¹ H₂O₂. Furthermore, other authors have verified that a nearly complete
416 removal of 99% of the ibuprofen present in wastewater can be achieved after 30 minutes
417 of treatment with the same dose of hydrogen peroxide (Afonso-Olivares et al., 2016). A
418 further study demonstrated that ibuprofen was completely degraded after 40 minutes
419 of treatment at this concentration, with the same result achieved in only 10 minutes of
420 treatment at a 50 mg L⁻¹ H₂O₂ concentration (Monteoliva-García et al., 2019b). The rapid
421 photolysis of ibuprofen at low oxidant concentrations indicates a rapid elimination of the
422 pharmaceutical with an effective photodecomposition of H₂O₂ and that was verified by
423 another study utilizing a similar lamp and where practically all the ibuprofen was
424 consumed (Adityosulindro et al., 2022).

425 The pharmaceutical diclofenac was identified in the effluents of all cycles. When
426 treated with AOP at a concentration of 25 mg L⁻¹ of H₂O₂, the compound was removed
427 with an efficiency of over 83% in all cycles. This increased to 99% when the concentration
428 of the oxidant was increased to 100 mg L⁻¹. In another study, similar results were
429 obtained, with the removal of over 80% attributed to direct photodegradation
430 (Lekkerkerker-Teunissen et al., 2012).

431 In the case of erythromycin, where it was detected in the effluents of cycles 1, 2,
432 and 4, it was found that the treatment with AOPs had limitations. While the treatment
433 was effective, removal efficiencies ranging from 19.9% to 73.4% in all cycles were
434 achieved for the highest oxidant concentration of 100 mg L^{-1} applied. These yields are
435 lower than those of the pharmaceuticals ibuprofen and diclofenac. This phenomenon
436 appears to be related to the nature of the compound in question (an antibiotic), whereas
437 the other pharmaceuticals are anti-inflammatory. A similar range of removal was
438 observed in another study despite the use of longer treatment times of up to 45 minutes,
439 with removals ranging from 34% to 76% (Afonso-Olivares et al., 2016).

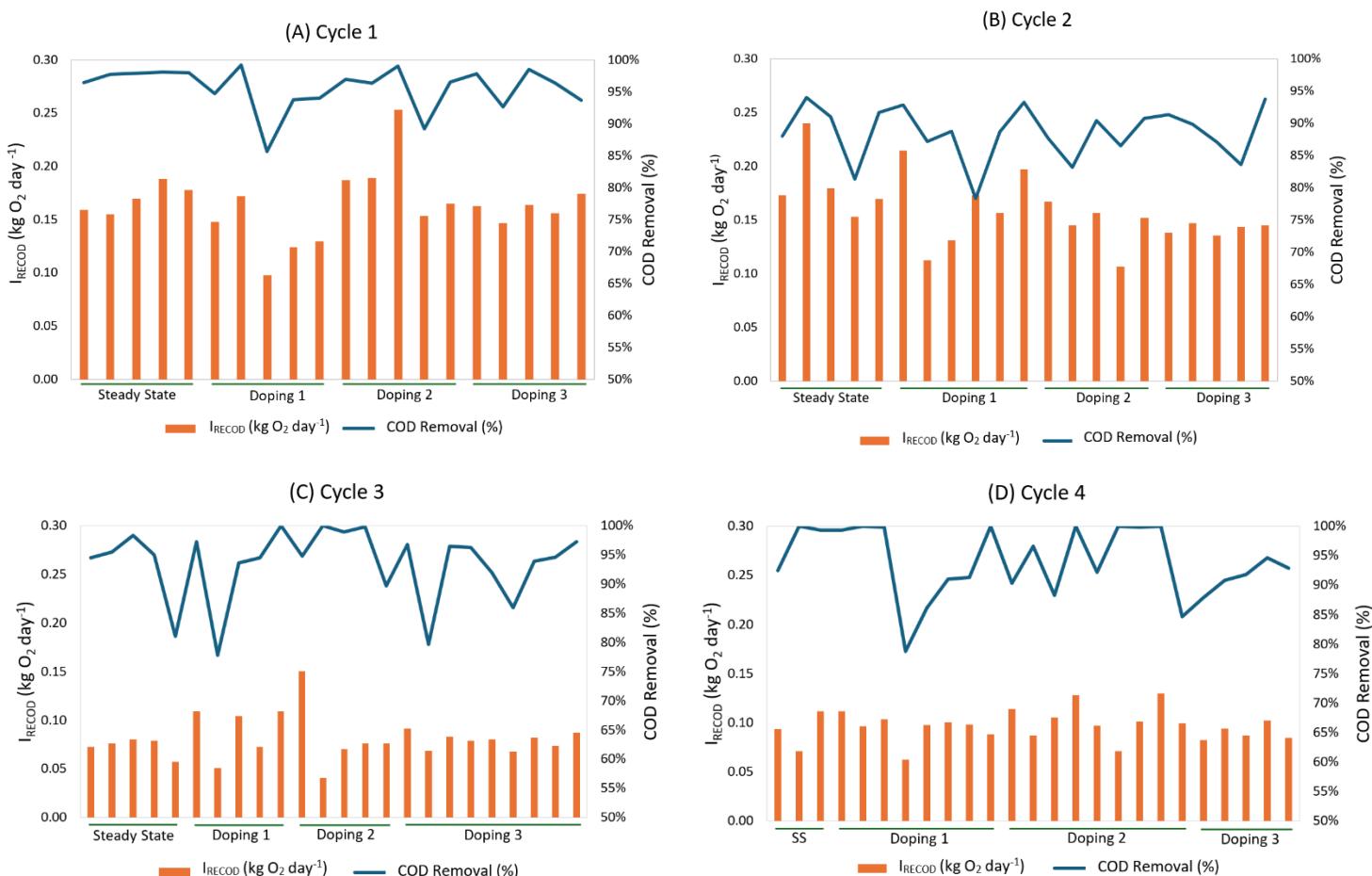
440 **3.2.2 Sludge line**

441 The data pertaining to this section were subject to a comparative analysis with
442 the data obtained from the study of the cycles without pharmaceutical doping
443 (Bermúdez et al., 2022). The treated sludge was subject to two stages of water removal.
444 The first stage occurred during the thickening phase prior to digestion, while the second
445 stage occurred during centrifugation of the digested sludge. The supernatant of the
446 thickened activated sludge and the centrifugation water were subjected to the tertiary
447 treatment of advanced UV/ H_2O_2 oxidation during the four cycles of operation and in their
448 different phases. After 30 min of treatment, the removal efficacy of the pharmaceuticals
449 in both the supernatant water and the centrifuge water was found to be highly
450 satisfactory.

451 In cases where ibuprofen was detected, it was completely eliminated in all cycles,
452 which is in agreement with the results obtained by other authors. This demonstrates the
453 efficacy of this treatment for this pharmaceutical (Afonso-Olivares et al., 2016). In the

454 case of diclofenac, water disinfection is highly effective, with complete removal in many
455 cases. The lowest concentration of oxidant (25 mg L⁻¹ H₂O₂) consistently yields removal
456 efficiencies of over 82%, regardless of the concentration of 50 mg L⁻¹ and 100 mg L⁻¹ of
457 H₂O₂ employed in all cycles for supernatant water and the centrifuge water. These
458 exemplary removal efficiencies for diclofenac are also documented in the scientific
459 literature to be in excess of 80% (Lekkerkerker-Teunissen et al., 2012). The same is true
460 for erythromycin, which achieves very good elimination performances. For the
461 concentration of 25 mg L⁻¹ of H₂O₂ in the supernatant water, the erythromycin removal
462 yields were always higher than 39%, and for the centrifugate water at 40%. In the case
463 of the high oxidant concentrations of 50 mg L⁻¹ and 100 mg L⁻¹ H₂O₂ studied, complete
464 elimination was observed in all cycles for supernatant water and the centrifuge water.

465 **3.2.3 Color analysis**


466 Although color analysis is not explicitly included in the legislation as a
467 determining factor in the use of treated water for agricultural purposes, it can be
468 considered a quality parameter and was, therefore, measured. The results obtained for
469 the effluent in the steady state in the different cycles demonstrate that following the
470 AOP test, the color of the effluent is reduced by more than 77% in all cases, with some
471 reaching 100%. In the case of cycle 3, the effluent of the water line in the three cases of
472 doping carried out leaves the system without color in most cases. In those cases in which
473 a very residual color does emerge, this is completely eliminated after being subjected to
474 the AOP treatment. For supernatant in cycles 1, 2, and 3, a color removal of more than
475 80% is also achieved in most cases for the highest absorbance values (620 nm). In some
476 instances, this is complete, but in others, it is more moderate at the lowest oxidant
477 concentration. In the case of cycle 4 for the supernatant, color removal yields of over

478 90% are achieved and even complete for the 50 mg/L and 100 mg/L H_2O_2 treatments.
 479 Regarding the treatments applied to the water resulting from the centrifugation of the
 480 digested sludge in all cycles, as well as to the effluent and the supernatant, the color
 481 removal yields are moderate compared to the cases of the effluent and the supernatant,
 482 with removal yields ranging between 40% and 80% in all cycles.

483 **3.3 Circular economy indicators**

484 **3.3.1 Indicator of reducing matter removal efficiency (I_{RECOD})**

485 The temporal evolution of the circular economy indicator I_{RECOD} is presented in Figure 2
 486 below.

487 **Figure 2.** Temporal evolution of the circular economy indicator I_{RECOD} in cycle 1 (A), 2
 488 (B), 3 (C) and 4 (D). SS: Steady State.

489 The data pertaining to I_{RECOD} were subjected to a comparative analysis with the
490 data obtained from the study of the cycles without pharmaceutical doping (Bermúdez et
491 al., 2022). This circular economy indicator is linked to legislation because it indirectly
492 represents the COD evolution parameter. As illustrated in Figure 2, the disposal
493 percentages, although fluctuating, are consistently within the parameters permitted by
494 legislation throughout the various stages of the cycles. The reducing matter removal in
495 kilograms of oxygen per day, as represented in the columns, illustrates the temporal
496 evolution during the operation of the cycle phases. This discrepancy in organic matter
497 removal efficiency is primarily attributable to the elevated HRT employed in cycles 3 and
498 4 and the largest SRT. Moreover, in the case of cycles 1 and 3, where the MLSS
499 concentration is similar, the different HRT in cycle 3 appears to exert a greater influence
500 on the observed behavior, which is comparable to that observed in cycle 4 with the same
501 HRT but a lower MLSS concentration. This results in an increase in efficiency but a
502 decrease in the removal rate of kg BOD₅ per day. The efficiencies observed across all
503 cycles are comparable, offering insight into the system's behavior during different
504 operational phases.

505 3.3.2 Circular economy indicators for water

506 Table 4 shows the circular economy indicators for water.

507 **Table 4.** Indicator of recovery of water in the treatment process ($I_{W,R}$), effluent inorganic
 508 content for nitrogen ($I_{EIC(N)}$) and effluent inorganic content for phosphorous ($I_{EIC(P)}$).

Cycle		$I_{W,R}$ (%)	$I_{EIC(N)}$ (mg day ⁻¹)	$I_{EIC(P)}$ (mg day ⁻¹)
1	Dosing 1		4454.0	14660.8
	Dosing 2	99.99	4352.0	14232.4
	Dosing 3		4386.0	13712.2
2	Dosing 1		2754.0	12465.4
	Dosing 2	99.98	2597.6	12088.4
	Dosing 3		2522.8	12165.2
3	Dosing 1		13814.2	1042.1
	Dosing 2	99.99	12535.8	955.4
	Dosing 3		12945.5	906.1
4	Dosing 1		15830.4	7954.3
	Dosing 2	99.99	16631.1	7505.5
	Dosing 3		16337.0	7758.8

509 The percentage of water recovered during the treatment process, as represented
 510 by the $I_{W,R}$ indicator, is highly satisfactory. The vast majority of the water that undergoes
 511 treatment is recovered and is also potentially suitable for reuse because no restrictions
 512 for these nutrients are specified in the legislation. The elevated data are a consequence
 513 of the centrifugation applied to the digested sludge and the fact that the purged sludge
 514 flow rate is markedly inferior to the water line effluent flow rate. This process enables
 515 the production of such high yields, although these are not viable on an industrial scale.
 516 This percentage is considerably higher than that achieved in other studies, where 47.0%
 517 is recovered in wastewater from the pig farming industry (Molina-Moreno et al., 2017)
 518 and approximately 85% is obtained from paper industry waters (Molina-Sánchez et al.,
 519 2018). For the indicators $I_{EIC(N)}$ and $I_{EIC(P)}$, significant mass fluxes of mg day⁻¹ were
 520 obtained. The maximum production of nitrogen is obtained in cycle 4 for doping 2, with
 521 $I_{EIC(N)}$ of 16631.1 mg N day⁻¹ and the maximum production of phosphorus in cycle 1 for
 522 doping 1 with $I_{EIC(P)}$ of 14660.8 mg P day⁻¹. The amounts obtained per cycle as the amount
 523 of doping increases are approximate, so it seems that the amount of nutrients (nitrogen
 524 and phosphorus) is not affected. The influence of the HRT on the amount of nutrients is
 525 remarkable because, when the HRT is lower (6 hours, cycles 1 and 2), the minimum

526 amounts of total nitrogen and the maximum amounts of phosphorus are obtained.

527 When the HRT is higher (12 hours, cycles 3 and 4), the behavior is reversed, and the

528 minimum amount of total phosphorus and the maximum amount of total nitrogen are

529 obtained. The inorganic content of the effluent represents an added value for the reuse

530 of water in agriculture due to its nutrient load. This type of biostabilized sludge can be

531 used as a soil conditioner or fertilizer due to the organic fraction contained in these

532 nutrients (Kaszycki et al., 2021). A number of countries, including Sweden and

533 Switzerland, have already initiated the recovery of phosphorus in order to lay the

534 groundwork for the wider recovery of phosphorus. This represents a viable opportunity

535 with the potential to replace 15% of the world's phosphorus demand (Som Gupta &

536 Khatiwada, 2024). This study does not meet the standards set for the discharge of

537 treated water for the new EU directive proposal approved in April 2024, which will

538 include nutrient removal restrictions for member states with long-term targets.

539 However, it should be noted that the co-concentration of these nutrients could be

540 beneficial from the point of view of the potential use of this water in agriculture. In order

541 to adapt the pilot plant to the standards of the new EU directive (April 2024), the pilot

542 plant will be adapted by adding two modules before the membrane bioreactor, where

543 anaerobic and anoxic conditions are present, which would allow the elimination of

544 phosphorus and nitrogen nutrients.

545 **3.4 Circular economy indicators for sludge**

546 The amount of sludge concentrate recovered was estimated on the basis of the

547 sludge produced in the plant. During the four operating cycles studied, the amount of

548 sludge recovered, represented by the indicator ($I_{SG, \%R}$), was 0.68% during the doping, the

549 same as for the steady state (Bermúdez et al., 2022). The sludge treatment line operates
550 discontinuously, so this result is always similar in terms of sludge recovery per liter of
551 sludge produced in the water line.

552 Table 5 shows the values of the sludge flow rate recovered during the water
553 treatment process, the sludge flow rate produced during the wastewater treatment
554 process, the sludge recovery indicator ($I_{SG,R}$) and the effective sludge flow rate per day.
555 The values of these indicators are the same for all doping levels, as they depend on the
556 flow of water treated in the plant and the flow of sludge produced.

557 **Table 5.** Performance of parameters of circular economy indicators for activated sludge.
558 $m_{SG,R}$: sludge flow rate recovered during the water treatment process (kg day^{-1}); $m_{SG,T}$:
559 sludge flow rate produced during the water treatment process (kg day^{-1}); Q_{eff} : flow rate
560 (L day^{-1}); $I_{SG,R}$: indicator of technological nutrient performance for recovered sludge.

Cycle	$m_{SG,R}$ (Kg day^{-1})	$m_{SG,T}$ (Kg day^{-1})	Q_{eff} (L day^{-1})	$I_{SG,R}$ (Kg L^{-1})
1	0.026	3.80	343,80	$7.55 \cdot 10^{-5}$
2	0.054	7.98	347.98	$1.56 \cdot 10^{-4}$
3	0.015	2.21	172.21	$7.75 \cdot 10^{-5}$
4	0.016	2.33	172.33	$9.22 \cdot 10^{-5}$

561

562 In this study, a pilot-scale plant was used. Therefore, the $I_{SG,R}$ indicator data are
563 very small as they are given as a function of the treated water flow. If we consider scaling-
564 up this plant to industrial size, it has the potential to produce a significant amount of
565 biostabilized sludge that can be reused in agriculture. Other studies have achieved higher
566 percentages of biostabilized sludge of 4% (Molina-Moreno et al., 2017; Molina-Sánchez
567 et al., 2018), but a lower percentage of treated water is recovered. Other studies have
568 reported overall recovery rates of 2% sludge in urban wastewater treatment plants
569 (Kaszycki et al., 2021). Other authors also highlight the energy potential of sewage

570 sludge, which can also be efficiently converted into heat, electricity, and biofuels,
571 although this line of research is still under development (Castellanos et al., 2024). The
572 residual concentration of the emerging contaminant pharmaceuticals studied in this
573 research and retained in the biostabilized sludge does not currently represent a
574 limitation for the reuse of biostabilized sludge, as no concentration of these compounds
575 is included in Directive 86/278/EEC on the reuse of sewage sludge in agriculture.

576 It should also be noted that anaerobic treatment of urban wastewater and sludge
577 is very important because, in addition to the benefits of energy production and
578 agricultural use, it reduces greenhouse gas emissions (Gupta & Khatiwada, 2024).

579 **3.5 Circular economy indicator for biogas produced**

580 During the anaerobic digestion process, organic substances were decomposed,
581 and biogas was generated. In this context, micro-organisms engage in metabolic activity
582 in an environment characterized by a lack of oxygen, namely an anaerobic environment
583 (Molina-Moreno et al., 2017; Salguero-Puerta et al., 2019). The calculation of the
584 volumetric flow rate of biogas generated was obtained by an indirect method. This
585 involved the use of stoichiometric calculations and the evaluation of COD reduction
586 throughout the digestion process.

587 Table 6 presents the maximum daily biogas production per liter of activated
588 sludge during the digestion phase in the different cycles, as well as the cumulative biogas
589 production over the entire digestion period.

590 **Table 6.** Biogas produced during the anaerobic digestion process. I_{MDP} : Biogas indicator
591 of biogas generation potential in relation to sludge mass flow rate.

Cycle	Digester	Biogas produced (mg CH ₄ L ⁻¹)	I _{MDP} (L biogas Kg ⁻¹ sludge)	Total volume CH ₄ (L Kg ⁻¹ sludge throughout the digestion)
1	Digester 1	675.0	0.134	0.945
	Digester 2	591.6	0.088	0.735
	Digester 3	583.5	0.099	0.817
2	Digester 1	1233.3	0.257	1.727
	Digester 2	1950.8	0.210	2.731
	Digester 3	2033.3	0.443	2.847
3	Digester 1	2233.3	0.642	3.127
	Digester 2	1016.8	0.222	1.423
	Digester 3	1450.0	0.303	1.937
4	Digester 1	793.4	0.117	1.111
	Digester 2	641.7	0.077	0.898
	Digester 3	540.0	0.128	0.756

592 Digester 1: dosage of pharmaceuticals with concentration 1. Digester 2: dosage of
 593 pharmaceuticals with concentration 2. Digester 3: dosage of pharmaceuticals with concentration
 594 3.

595

596 The maximum daily production of methane (CH₄) occurs in cycle 2 in digester 0

597 (0.793 L biogas Kg⁻¹ sludge day⁻¹), which corresponds to the steady state of the cycle

598 (Bermúdez et al., 2022). This is due to the fact that in cycle 2 the SRT (10.7 days) is much

599 lower than in cycle 3 (38.5 days). This means that in cycle 2 the microorganisms have

600 more biodegradable matter available and their consumption rate is much higher than

601 that of the sludge with longer cell retention time, which would be more stabilized.

602 With regard to digester 0 for cycles 3 and 4 (Bermúdez et al., 2022), which exhibit

603 the lowest daily production rates (0.198 L biogas Kg⁻¹ sludge day⁻¹ for cycle 3 and 0.117

604 L biogas Kg⁻¹ sludge day⁻¹ for cycle 4) and operate at the same HRT, the maximum daily

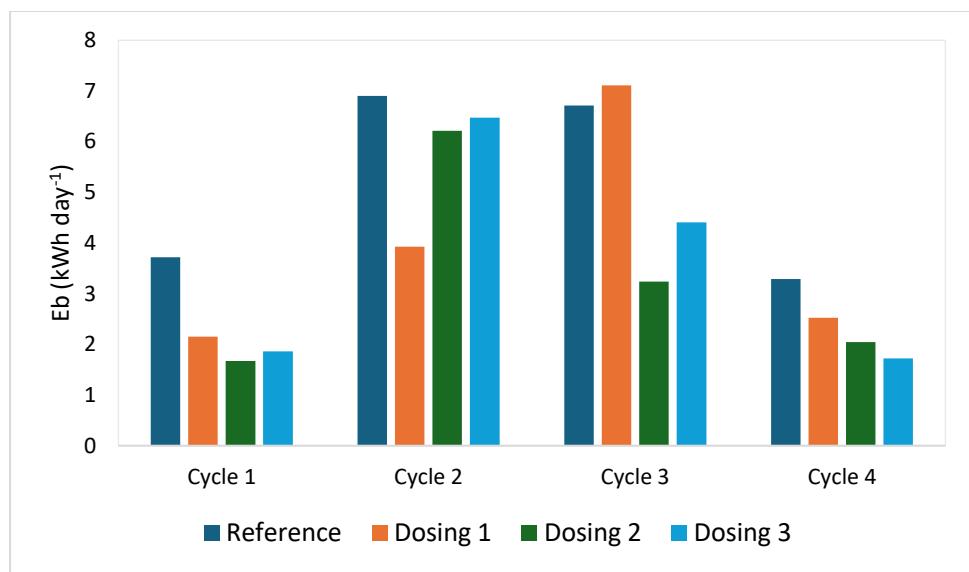
605 production rate of methane is observed in cycle 3 with 0.642 L biogas Kg⁻¹ sludge day⁻¹

606 in doping 1 (Table 6), accompanied by a higher total methane production. However, cycle

607 3 exhibits the highest SRT. This higher production is favored by a higher MLSS

608 concentration compared to cycle 4. A comparison of cycles 3 and 4 (12 h HRT) with cycle

609 1 (6 h HRT) indicates that a more adapted aerobic biocommunity does not necessarily


610 imply that the sludge from which it originates has a higher biogas potential under

611 anaerobic conditions. This may be attributed to the longer HRT of cycle 3 in comparison
612 to cycle 1. This indicates that the microorganisms are more adapted to the conditions,
613 which in turn facilitates digestion and consequently results in a higher total final
614 methane production.

615 The results are comparable to those of previous studies conducted at lower
616 temperatures, indicating that the methane production rate in this study was low relative
617 to expectations during digestion (Zhang et al., 2018). The low methane production may
618 be attributed to the scaling-up of the anaerobic digester, which has likely significantly
619 influenced the biological digestion process by inhibiting it to a minimum.

620 With regard to the evolution of the digesters in the presence of doping, there is
621 a generalized decrease with respect to digester 0 (Bermúdez et al., 2022), with the
622 exception of cycle 3, where there is an increase in the I_{MDP} (maximum daily methane
623 produced) in doping 1. This decrease is more pronounced in digester 2, with a slight
624 recovery in digester 3. This phenomenon appears to be linked to the fact that the system,
625 which has a higher concentration of pharmaceuticals, is more stimulated, leading to
626 greater microbial activity in an attempt to counteract the effect of the toxic substance.
627 This results in peaks of activity, during which methane production increases. This
628 behavior does not occur in cycle 4, which has the lowest concentration of micro-
629 organisms, so the effect of the peak activity observed in the other cycles does not seem
630 to be significant in this case, although the I_{MDP} occurs in cycle 3. Therefore, it appears
631 that the concentration of micro-organisms in the system and the effect of increased
632 doping are the variables that most affect the digesters in the production of biogas.

633 Figure 3 illustrates the theoretical total energy production from the biogas
634 produced per kg of sludge in the anaerobic digestion process, calculated by Equation 7.
635 This value is derived from the maximum methane production observed per day during
636 the entire 28 days anaerobic digestion period.

637
638 **Figure 3.** Theoretical energy produced per kilogram of sludge generated during
639 anaerobic digestion.

640 In the steady state, during the 28 day process, the cycle with the highest potential
641 energy production from E_b , the highest output is achieved when the system remains
642 unaltered reaching a total value of $6.92 \text{ kWh day}^{-1}$ in cycle 2 during the reference phase
643 (Bermúdez et al., 2022). This is indicative of the highest biogas production in this cycle,
644 which can be attributed to the fact that cycle 2 has the highest MLSS concentration, the
645 lowest HRT and the lowest SRT so the potential for methane production was at its
646 maximum. The findings indicate that the introduction of doping into the principal system
647 is associated with a reduction in biogas production. However, biogas production tends
648 to recover with an increase in the concentration of pharmaceuticals added in cycles 1, 2
649 and 3. This is because the system becomes more excited and produces more biogas,

650 resulting in more electricity. Consequently, the greatest electrical energy production is
651 consistently observed when the system is not subjected to alterations due to the doping
652 of the pharmaceuticals (Bermúdez et al., 2022). Subsequently, the addition of doping
653 results in a reduction in biogas production, accompanied by a tendency for recovery at
654 higher concentrations of pharmaceuticals in cycles 1, 2 and 3. In cycle 4, where the MLSS
655 concentration is lowest and the HRT concentration is highest, it always decreases.

656 These theoretical energy results estimated using the circular economy indicators
657 look promising. There are several energetically and economically viable wastewater
658 treatment plants around the world that successfully recover biogas (Gupta & Khatiwada,
659 2024).

660 **4. Conclusions**

661 The present study examined four operational cycles in which the HRT and MLSS
662 concentration were varied during the operation of a pilot plant utilizing membrane
663 bioreactor technology (cycle 1 with 6 h of HRT and 5940 ± 515 of MLSS; cycle 2 with 6 h
664 of HRT and 7542 ± 1730 of MLSS; cycle 3 with 12 h of HRT and 5967 ± 485 of MLSS; cycle
665 4 with 12 h of HRT and 2688 ± 744 of MLSS). The system performs the integrated
666 treatment of real urban wastewater, including the water line and sludge line. In various
667 cycles, the plant was subjected to different doping methods, such as increasing
668 concentrations of the pharmaceuticals diclofenac, ibuprofen, and erythromycin.
669 Furthermore, the various outlet water lines of the system, both in the water line and in
670 the sludge line, were subjected to advanced oxidation treatments. A variety of circular
671 economy indicators were employed to evaluate the plant's resource recovery. The
672 following conclusions were reached:

673 – In accordance with the regulations established in legislation, the parameters of
674 TSS, turbidity, *E. Coli*, and BOD₅ were satisfied. This allows the treated water to
675 be reused in cycles 1, 2, and 3 for the irrigation of raw food and with irrigation
676 that allows direct contact of the treated water with the edible part of the food.
677 This complies with the maximum quality established in legislation (A). In the case
678 of cycle 4, the second-best quality (B) was obtained. This allows the use of treated
679 water for irrigation in instances where the edible part of the food is not in direct
680 contact with the irrigation. This is in accordance with the principles of circularity,
681 thereby facilitating the complete integration of treated water into the agricultural
682 process.

683 – The employment of circular economy indicators for the resources generated
684 during integrated wastewater treatment has yielded encouraging outcomes. The
685 indicators demonstrate that the treated water can be utilized almost entirely in
686 agriculture, thereby indicating the integration of this waste as a resource.
687 Moreover, the treated water presents throughout the four cycles studied
688 valuable nutrients in agriculture, including nitrogen and phosphorus. It is
689 possible to select the nitrogen present in a higher concentration in the case of
690 the 12 hours of HRT or the phosphorus in the case of the 6 hours of HRT,
691 according to the needs of the agricultural reuse.

692 – The proportion of sludge recovered is markedly low in comparison to the volume
693 of water treated. Nevertheless, during the anaerobic digestion of activated
694 sludge, high-value resources such as biogas are produced, which has the
695 potential to be used for the production of electricity. The best results are
696 obtained in the case of the cycles with the highest concentration of MLSS and a

697 lower SRT in the bioreactor so the higher methane production potential results
698 from the presence of more biodegradable biomass in the anaerobic reactor in
699 the sludge line.

700 **Acknowledgements**

701 Grant PID2021-124740NB-I00 funded by MICIU/AEI/10.13039/501100011033 and by
702 ERDF, EU.

703

704 **REFERENCES**

705 Adityosulindro, S., Julcour, C., Riboul, D., & Barthe, L. (2022). Degradation of ibuprofen
706 by photo-based advanced oxidation processes: exploring methods of activation and
707 related reaction routes. *International Journal of Environmental Science and*
708 *Technology*, 19(4), 3247–3260. <https://doi.org/10.1007/S13762-021-03372-5/TABLES/3>

710 Afonso-Olivares, C., Fernández-Rodríguez, C., Ojeda-González, R. J., Sosa-Ferrera, Z.,
711 Santana-Rodríguez, J. J., & Rodríguez, J. M. D. (2016). Estimation of kinetic
712 parameters and UV doses necessary to remove twenty-three pharmaceuticals from
713 pre-treated urban wastewater by UV/H₂O₂. *Journal of Photochemistry and*
714 *Photobiology A: Chemistry*, 329, 130–138.
715 <https://doi.org/10.1016/J.JPHOTOCHEM.2016.06.018>

716 Antiñolo Bermúdez, L., Díaz Mendoza, V., Poyatos Capilla, J. M., Muñío Martínez, M. del
717 M., & Martín Pascual, J. (2023). Effect of Pharmaceutical Compounds (Diclofenac,
718 Ibuprofen, and Erythromycin) on the Heterotrophic Behaviors of Biomass of a

719 Membrane Bioreactor to Treat Urban Wastewater. *Environments* 2023, Vol. 10,
720 Page 198, 10(12), 198. <https://doi.org/10.3390/ENVIRONMENTS10120198>

721 Antiñolo Bermúdez, L., Pascual, J. M., Del Mar Muñio Martínez, M., Manuel, J., & Capilla,
722 P. (2021). *Effectiveness of Advanced Oxidation Processes in Wastewater Treatment:*
723 *State of the Art.* <https://doi.org/10.3390/w13152094>

724 Association, A. P. H., Association, A. W. W., & Federation, W. E. (2022). *Standar Methods*
725 *for examination of water and wastewater* (22nd ed.).

726 Bermúdez, A., Díaz, L., Pascual, M., Martínez, M., Capilla, P., Stephen Inbaraj, B., Baglieri,
727 A., Antiñolo Bermúdez, L., Carlos Leyva Díaz, J., Martín Pascual, J., del Mar Muñío
728 Martínez, M., & Manuel Poyatos Capilla, J. (2022). Study of the Potential for
729 Agricultural Reuse of Urban Wastewater with Membrane Bioreactor Technology in
730 the Circular Economy Framework. *Agronomy* 2022, Vol. 12, Page 1877, 12(8), 1877.
731 <https://doi.org/10.3390/AGRONOMY12081877>

732 Bonetta, S., Pignata, C., Gasparro, E., Richiardi, L., Bonetta, S., & Carraro, E. (2022).
733 *Impact of wastewater treatment plants on microbiological contamination for*
734 *evaluating the risks of wastewater reuse.* <https://doi.org/10.1186/s12302-022-00597-0>

736 Calero-Díaz, G., Monteoliva-García, A., Leyva-Díaz, J. C., López-López, C., Martín-Pascual,
737 J., Torres, J. C., & Poyatos, J. M. (2017). Impact of ciprofloxacin, carbamazepine and
738 ibuprofen on a membrane bioreactor system: Kinetic study and biodegradation
739 capacity. *Journal of Chemical Technology & Biotechnology*, 92(12), 2944–2951.
740 <https://doi.org/10.1002/jctb.5316>

741 Cao, M., Hu, A., Gad, M., Adyari, B., Qin, D., Zhang, L., Sun, Q., & Yu, C. P. (2022). Domestic
742 wastewater causes nitrate pollution in an agricultural watershed, China. *Science of
743 The Total Environment*, 823, 153680.
744 <https://doi.org/10.1016/J.SCITOTENV.2022.153680>

745 Castellanos, H. G., Aryanfar, Y., Keçebaş, A., Assad, M. E. H., Islam, S., Naveed, Q. N., &
746 Lasisi, A. (2024). A new paradigm for mining energy from industrial sludge: A low-
747 cost fuel. *Journal of Water Process Engineering*, 59, 104987.
748 <https://doi.org/10.1016/J.JWPE.2024.104987>

749 Do, K. U., & Chu, X. Q. (2022). Performances of membrane bioreactor technology for
750 treating domestic wastewater operated at different sludge retention time.
751 *Development in Wastewater Treatment Research and Processes: Removal of
752 Emerging Contaminants from Wastewater through Bio-Nanotechnology*, 107–122.
753 <https://doi.org/10.1016/B978-0-323-85583-9.00010-7>

754 Gobernment of Spain. (2007). *ENERGÍA Y NOVABLES BIOMASA DIGESTORES
755 anaerobios BIOMASA DIGESTORES anaerobios Energía de la BIOMASA GOBIERNO DE
756 ESPAÑA MINISTERIO DE INDUSTRIA, TURISMO Y COMERCIO.*
757 https://www.idae.es/sites/default/files/documentos/publicaciones_idae/documentos_10737 biomasa_digestores_anaerobios_a2007_0d62926d.pdf

759 Gómez Nieto, M. Á., & Hontoria García, E. (2003). *Técnicas analíticas en el control de la
760 ingeniería ambiental* (M. Á. Gómez Nieto & E. Hontoria García, Eds.).

761 Gopalakrishnan, G., Jeyakumar, R. B., & Somanathan, A. (2023). Challenges and Emerging
762 Trends in Advanced Oxidation Technologies and Integration of Advanced Oxidation

763 Processes with Biological Processes for Wastewater Treatment. *Sustainability* 2023,
764 Vol. 15, Page 4235, 15(5), 4235. <https://doi.org/10.3390/SU15054235>

765 Gupta, A. S., & Khatiwada, D. (2024). Investigating the sustainability of biogas recovery
766 systems in wastewater treatment plants- A circular bioeconomy approach.
767 *Renewable and Sustainable Energy Reviews*, 199, 114447.
768 <https://doi.org/10.1016/J.RSER.2024.114447>

769 Kaszycki, P., Głodniok, M., & Petryszak, P. (2021). Towards a bio-based circular economy
770 in organic waste management and wastewater treatment – The Polish perspective.
771 *New Biotechnology*, 61, 80–89. <https://doi.org/10.1016/J.NBT.2020.11.005>

772 Kundan, S., Rupam, B., & Dash, R. R. (2022). Biological Treatment of Contaminants of
773 Emerging Concern in Wastewater: A Review. *Journal of Hazardous, Toxic, and
774 Radioactive Waste*, 26(2), 4022002. [https://doi.org/10.1061/\(ASCE\)HZ.2153-5515.0000685](https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000685)

776 Lehmann, C., Cruz-Jesus, F., Oliveira, T., & Damásio, B. (2022). Leveraging the circular
777 economy: Investment and innovation as drivers. *Journal of Cleaner Production*, 360,
778 132146. <https://doi.org/10.1016/J.JCLEPRO.2022.132146>

779 Lekkerkerker-Teunissen, K., Benotti, M. J., Snyder, S. A., & van Dijk, H. C. (2012).
780 Transformation of atrazine, carbamazepine, diclofenac and sulfamethoxazole by
781 low and medium pressure UV and UV/H₂O₂ treatment. In *Separation and
782 Purification Technology* (Vol. 96, pp. 33–43).
783 <https://doi.org/https://doi.org/10.1016/j.seppur.2012.04.018>

784 Leyva-Díaz, J. C., Martín-Pascual, J., González-López, J., Hontoria, E., & Poyatos, J. M.

785 (2013). Effects of scale-up on a hybrid moving bed biofilm reactor – membrane

786 bioreactor for treating urban wastewater. *Chemical Engineering Science*, 104, 808–

787 816. <https://doi.org/10.1016/J.CES.2013.10.004>

788 Lu, Q., Wang, S., Ping, Q., & Li, Y. (2023). A novel approach to enhance methane

789 production during anaerobic digestion of waste activated sludge by combined

790 addition of trypsin, nano-zero-valent iron and activated carbon. *Chemosphere*, 341,

791 140007. <https://doi.org/10.1016/J.CHEMOSPHERE.2023.140007>

792 Metcalf, L., Eddy, H. P., & Tchobanoglous, G. (2004). Wastewater energy: treatment and

793 reuse. *McGraw-Hill*, 1819.

794 Molina-Moreno, V., Leyva-Díaz, J. C., Llorens-Montes, F. J., & Cortés-García, F. J. (2017).

795 Design of Indicators of Circular Economy as Instruments for the Evaluation of

796 Sustainability and Efficiency in Wastewater from Pig Farming Industry. *Water* 2017,

797 Vol. 9, Page 653, 9(9), 653. <https://doi.org/10.3390/W9090653>

798 Molina-Sánchez, E., Leyva-Díaz, J. C., Cortés-García, F. J., & Molina-Moreno, V. (2018).

799 Proposal of Sustainability Indicators for the Waste Management from the Paper

800 Industry within the Circular Economy Model. *Water* 2018, Vol. 10, Page 1014, 10(8),

801 1014. <https://doi.org/10.3390/W10081014>

802 Monteoliva-García, A., Martín-Pascual, J. J., Muñío, M. M., & Poyatos, J. M. (2019a).

803 Removal of a Pharmaceutical Mix from Urban Wastewater Coupling Membrane

804 Bioreactor with Advanced Oxidation Processes. In *Journal of Environmental*

805 *Engineering* (Vol. 145, Issue 9). [https://doi.org/10.1061/\(asce\)ee.1943-](https://doi.org/10.1061/(asce)ee.1943-)

806 7870.0001571

807 Monteoliva-García, A., Martín-Pascual, J., Muñío, M. M., & Poyatos, J. M. (2020). Effects
808 of carrier addition on water quality and pharmaceutical removal capacity of a
809 membrane bioreactor – Advanced oxidation process combined treatment. *Science
810 of the Total Environment*, 708, 135104.
811 <https://doi.org/10.1016/j.scitotenv.2019.135104>

812 Monteoliva-García, A., Martín-Pascual, J., Muñío, M., & Poyatos, J. (2019b). Removal of
813 carbamazepine, ciprofloxacin and ibuprofen in real urban wastewater by using light-
814 driven advanced oxidation processes. *International Journal of Environmental
815 Science and Technology*, 16(10), 6005–6018. [https://doi.org/10.1007/s13762-019-02365-9](https://doi.org/10.1007/s13762-019-
816 02365-9)

817 Ping, Q., Zhang, Z., Ma, L., Yan, T., Wang, L., & Li, Y. (2022). The prevalence and removal
818 of antibiotic resistance genes in full-scale wastewater treatment plants: Bacterial
819 host, influencing factors and correlation with nitrogen metabolic pathway. *Science
820 of the Total Environment*, 827, 154154.
821 <https://doi.org/10.1016/J.SCITOTENV.2022.154154>

822 Preisner, M., Neverova-Dziopak, E., & Kowalewski, Z. (2020). Analysis of eutrophication
823 potential of municipal wastewater. *Water Science and Technology*, 81(9), 1994–
824 2003. <https://doi.org/10.2166/WST.2020.254>

825 Rajesh Banu, J., Kavitha, S., Yukesh Kannah, R., Bhosale, R. R., & Kumar, G. (2020).
826 Industrial wastewater to biohydrogen: Possibilities towards successful biorefinery
827 route. *Bioresource Technology*, 298, 122378.
828 <https://doi.org/10.1016/J.BIOTECH.2019.122378>

829 Salguero-Puerta, L., Leyva-Díaz, J. C., Cortés-García, F. J., & Molina-Moreno, V. (2019).
830 Sustainability Indicators Concerning Waste Management for Implementation of the
831 Circular Economy Model on the University of Lome (Togo) Campus. *International
832 Journal of Environmental Research and Public Health* 2019, Vol. 16, Page 2234,
833 16(12), 2234. <https://doi.org/10.3390/IJERPH16122234>

834 Som Gupta, A., & Khatiwada, D. (2024). Investigating the sustainability of biogas recovery
835 systems in wastewater treatment plants-A circular bioeconomy approach.
836 Renewable and Sustainable Energy Reviews, 199, 114447.
837 <https://doi.org/10.1016/j.rser.2024.114447>

838 Tayo, L. L., Caparanga, A. R., Doma, B. T., & Liao, C.-H. (2018). A Review on the Removal
839 of Pharmaceutical and Personal Care Products (PPCPs) using Advanced Oxidation
840 Processes. *Journal of Advanced Oxidation Technologies*, 21(1), 196–214.
841 <https://doi.org/10.26802/jaots.2017.0079>

842 Verlicchi, P., Grillini, V., Lacasa, E., Archer, E., Krzeminski, P., Gomes, A. I., Vilar, V. J. P.,
843 Rodrigo, M. A., Gäbler, J., & Schäfer, L. (2023). Selection of indicator contaminants
844 of emerging concern when reusing reclaimed water for irrigation — A proposed
845 methodology. *Science of The Total Environment*, 873, 162359.
846 <https://doi.org/10.1016/J.SCITOTENV.2023.162359>

847 Wijaya, L., Alyemeni, M., Ahmad, P., Alfarhan, A., Barcelo, D., El-Sheikh, M. A., & Pico, Y.
848 (2020). *Ecotoxicological Effects of Ibuprofen on Plant Growth of Vigna unguiculata*
849 L. <https://doi.org/10.3390/plants9111473>

850 Zhang, L., De Vrieze, J., Hendrickx, T. L. G., Wei, W., Temmink, H., Rijnaarts, H., & Zeeman,
851 G. (2018). Anaerobic treatment of raw domestic wastewater in a UASB-digester at

852 10 °C and microbial community dynamics. *Chemical Engineering Journal*, 334,
853 2088–2097. <https://doi.org/10.1016/J.CEJ.2017.11.073>

854

855

856