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Resumen (en inglés)

The final goal of this project is the development of distribution theory in
order to give an answer to a classical problem: the existence of solution of partial
differential equations. We have decide to separate the text into three different
parts: a first chapter introducing distribution theory, a second one dedicated
to expose the fundamental tool that we will use and, finally, the third chapter
exclusively based on the proof of the Ehrenpreis-Malgrange theorem, which, under

certain conditions, grants the existence of such solution.

During Chapter 1: Distributions and Chapter 2: Fourier transform we will fo-
llow the same line as W. RUDIN in his work Functional Analysis[12]. Of course, we
have not included proofs of all the results which appear in this project. We develop
those that, according to our criterion, are useful in order to the comprehension
of the concepts which are treated here. For this same reason, the proof of the
theorem which gives name to Chapter 3: Ehrenpreis-Malgrange theorem, belongs
to the paper A New Constructive Proof of the Malgrange-Ehrenpreis Theorem
wrote by P. WAGNER about that same theorem published in The American

Mathematical Monthly [13].

Our main aim in the first chapter will be to find a space where we can sol-
ve our problem. The elements of such space should verify some basics rules of
calculus and let us, as possible, generalize the classical notions of function and

differentiability. We will obtain it after a bit of work.
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In the first section from Chapter 1 we will fix once and for always a non-
empty open set € in R™ in order to define a topology in the vector space C*(€2)
of differentiable complex functions on §2. As we will see, such topology makes it
into a Fréchet space with the Heine-Borel property such that Cauchy sequences
will converge. Then we will consider the union of all of the topological subspaces
that consist on complex differentiable functions whose support lies on a compact
subset K C ) when we variate the compact set K in order obtain the collection
of differentiable functions whose support lies on §2 which will be denoted as D((2)
and its elements will be named as test functions. This set will be provided with
a new topology very similar to the one constructed before in order to consider
the topological dual space D’'(2), the space of distributions that gives name to
the chapter. The main result on this first section will be a characterization of
the continuity of linear applications on D(£2) which will allows us to work with

distributions without take into account their topological nature:

Proposition. Let A be a linear functional on D(R™). The following conditions

are equivalent:
i) A e D'(Q).
it) To every compact K C ) there exist N € Ny and C > 0 such that:
[Ag| < Cllo]|x Vo € D(Q) : sop(¢) C K
where || - ||n is given by ||¢]|y = max {|D*¢(x)| : v € Q, |a] < N}.

At this point we can introduce the first example of a distribution that is not a
function in C*°(Q2): the famous Dirac measure ¢,, centred in xy € €2 which maps
a function ¢ € D(Q?) into the number ¢(x).

The problem of inducing classical calculus in this new space of distributions

will be addressed in the second section. We will first notice that it is possible to
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identify some of the elements of D’(2) with locally integrable complex functions
on 2 to continue defining a sort of derivative in D’(2) such that when we con-
sider the derivative of elements equivalent to functions we obtain the elements
equivalent to the derivative of those functions. Later, we will define the product
of functions and distributions and prove that we can find a sort of Leibniz’s rule
when we multiply functions and distributions to end stating some properties of

sequences of distributions and defining the usually called weak limit.

Proposition. Leibniz formula. Let A € D'(Q) and f € C>®(Q) be a distri-
bution and a function respectively. Then, the next equality holds for every multi-
index o € Ny -

D*(fA) = cas(D*Pf)(D°A)

BLa
where cop € Q are known numbers.

The next section treats about local properties of distributions. We start de-
fining when two distributions will be equal on an open set w C 2. As we will
see, that definition will allow us to describe a distribution globally from its local
behaviour. The proof of that needs from partitions of unity that we will have
constructed just before.

After generalize the notion of support of functions into our case, we will do the
same with convolutions. We first infer how should act convolution when factors
are a distribution and a test function in order to, after prove that some properties
of convolution of functions are still verifying, define, under certain hypothesis, the
convolution of two distributions. At this point we remark a pair of results that

will be useful later:
Proposition. Consider u,v,w € D'(R").
i) If supp(u) or supp(v) is a compact set, then

UXV=V*xU
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i) If at least two of supp(u), supp(v) or supp(w) are compact sets, then

(u*v)*w=ux*(vkw)

Corollary. Consider u,v,w € D'(R") and fiz a multi-index o € Njj. The next

statements hold:
i) D% = (D*0) *w. In particular w =9 x u
i) If at least one of sop(u) or sop(v) are compact sets then

D%(u*v) = (D%) * v = u * (D)

If in the first part of this work we constructed the space where we will solve
our problem, in Chapter 2 we will introduce the crux tool which we will use in
order to reach our target: the Fourier transform. We dedicate a first section to
remember how that transform acts over complex integrable functions in order to
generalize it to the space of distributions later.

After introduce, in a second section, a new space of functions, which will be
named the Schwarz class §,,, consisting on the usually called rapidly decreasing
functions. In this space Fourier transform will result to be a linear and continuous
bijection (whose inverse application is also continuous) from S, into S, (the
inversion theorem). Among the results we expose during this chapter we can

highlight the following one:

Theorem.

i) S, is a Fréchet space.

it) If P € Clzy,...,x,] is a polynomial, g € S,, and o € Ny is a multi-index,

then the mappings

f=Pf f—=gf [—=Df
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are continuous linear mappings of S, to S,.
i) If f € S, and P € Clxy, ..., ] is a polinomial, then:

F(P(D)f) = P(i()f and
F(Pf)="P(i(-) f

where () represents the n-dimensional variable.

We will dedicate the last section in this chapter to a very special kind of
distributions, usually called tempered distributions &), which will be a sort of
topological dual space of S,, and, therefore, they will inherit the goods proper-
ties of §,, respect on Fourier transform. We will se that those distributions are
not but the elements in D’(R™) which posse continuous extensions to S,. The
first examples of those distributions may be distributions with compact support,
polynomials, measurable functions whose absolute value is majorized by some
polynomial and every function in LP(R™) with 1 < p < co. In the same line of

what we do with Fourier transform in §,,, we remark the next result:

Theorem.

i) The Fourier Transform is a linear continuous bijection of S!, onto S, of

period 4, whose inverse 1s also continuous.
it) Siu € S, and P € Clzy,...,x,] is a polynomial, then
F(P(D)u) = P(i(:))u and

F(Pu) = P(i(-)a

In the third and last chapter we will reach the culminating point of this

project. As we will see, the Ehrenpreis-Malgrange theorem allows us to prove
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that, under certain hypothesis on v € D'(R"), we can find a solution in the

distribution sense to the problem:
P(D)u=wv [«

We will first clarify the concept of fundamental solution, which will be the key
in order to reach our goal, since those special solutions will allows us to generate
the solutions of [*]; to, finally, make the proof of the result that gives name to the
chapter. Before doing that, we will introduce a couple of technical lemmas. The
first one treats about solving a linear equation system consisting of a Vander-
monde matrix and certain vector from the canonical basis of R™, whose proof will
be made through residue theorem. The second one will be a collection of three
formulas inferred from theorems, propositions, lemmas and corollaries dispersed
throughout the document. The last result in this project will be, as announced,

the Ehrenpreis-Malgrange theorem.

Theorem. Ehrenpreis-Malgrange. Let P € Clzy,...,z,]| be a non constant
complez polynomial in n € N real variables and v € D'(R™) with compact support.
Then the problem

P(D)u=w

has a solution E € D'(R").

Instead of developing the classical proof, based on Hahn-Banach theorem;
the one we introduce here will be the constructive proof which P. WAGNER
published in  The American Mathematical Monthly[13] as we said before. Due
to this theorem highlights the utility of distribution theory in its application to
linear partial differential equations, already very early constructive proof were
found. The proof we will show consist on constructing the fundamental solution

as a sum of finitely many distributions.



Introduccion

El objetivo del presente trabajo es el desarrollo de la teoria de distribucio-
nes con el fin de dar respuesta a un problema clésico: la existencia de solucién de
ecuaciones diferenciales en derivadas parciales. En lo referente a estructura hemos
decidido separar el escrito en tres partes diferenciadas: un primer capitulo intro-
ductorio a la teoria de distribuciones, un segundo tema en el que presentaremos la
herramienta fundamental que vamos a utilizar y, finalmente, el tercer capitulo que
dedicaremos exclusivamente a la prueba del teorema de Ehrenpreis-Malgrange el
cual, bajo ciertas condiciones, garantiza la existencia de tal solucion.

Como veremos mas adelante la necesidad de la nocién de distribuciéon se basa
en una premisa muy simple: derivar las funciones que no son derivables. Una

motivacién clasica consiste en pararse a analizar la conocida féormula

z—b T—a

w(z)v (z) de = lim w(z)v(z) — lim u(x)v(x) — v(z)u (z) dx
/M[U() (@)oa) <><>/]a’b[<><>

donde a,b € R con a < by u,v :]a,b[— R derivables y tales que u'v y v'u son
integrables. Si tomamos como v una funcién meseta, indefinidamente derivable y

de soporte compacto contenido en |a, b], la identidad anterior se convierte en:

/M () do =~ /] et

y vemos que salvo la integral, derivar u y multiplicar por v se traduce en derivar

v y hacer el producto por u. Si tomamos por definiciéon de ser derivable que la

11
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integral del producto de u por la derivada de cualquier meseta v sea integrable,
tendremos una suerte de propiedad que verifica no sélo cualquier funcién derivable
sino otras muchas mas. En tal caso podriamos redefinir la derivada de la funcion
u como aquella funcion u* que verifica:

/] o) == [ gt ds

Ja,b

para cualquier funciéon meseta ¢ € C*]a,b[. A modo de ejemplo podemos consi-
derar el siguiente problema: encontrar una funcion f : R — R de forma que se

verifique la ecuacion diferencial

, -1 sixz <0
f(x) = sgn(z) = _
+1 six >0

entendida en el sentido anterior. Si tomamos f : R — R dada por f(z) = |z| =

abs(z) Vx € R y tomamos una meseta ¢ € C*°(R) se tiene:

[leldta) do= [ aote) dot [ o) da =
" s ¢(z) dx — . P(z) dr = —/R¢(:L’)sgn(x) dx

y en cierta manera f parece ser una solucién no derivable de la ecuacién
propuesta. En vista de esto, da la impresién de que en este caso el problema
de encontrar una soluciéon no radica tanto en la existencia de esta, sino mas
bien en lo que nosotros entendemos por derivada. Enfocaremos el primer capitulo
a dar rigor a esta forma de derivar, aunque no serd este el punto de partida.
Comenzaremos dotando al conjunto de funciones indefinidamente derivables sobre
un abierto euclideo €2 C R™ de una topologia, la cual utilizaremos para definir una
nueva dentro de una coleccion de funciones meseta muy particulares. Al considerar
el dual topoldgico de este tltimo, a cuyos elementos llamaremos distribuciones,

nos toparemos con la grata sorpresa de que, ademas de representantes de todas
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las funciones de C*(£2), podemos encontrar elementos que se llevan muy bien
no solo con esta forma de derivar sino también con reglas clasicas del calculo.
En el segundo capitulo trataremos de extender la nociéon de transformada de
Fourier que conocemos para funciones integrables a este nuevo contexto para,
finalmente, comprobar en el iltimo mediante el teorema de Ehrenpreis-Malgrange
que este espacio no solo es el idéneo para plantear el problema, sino también para

resolverlo.

De alguna manera, lo expuesto aqui nos recuerda a la construccién del cuerpo
complejo C. Partiamos del problema de encontrar una raiz de un polinomio con
coeficientes reales, que no siempre podiamos resolver en R, y configurabamos un
ambiente nuevo en el que todas las ecuaciones tuviesen soluciéon. Nuestro caso es
similar: partiendo del problema de encontrar las soluciones de una ecuacién (di-
ferencial) desarrollaremos una nueva teoria, que tendra importancia en si misma,

a partir de la cual podremos dar respuesta a nuestro problema.

En el desarrollo de los dos primeros capitulos de este documento nos hemos
basado esencialmente en la obra de W. RUDIN Functional Analysis [12],mientras
que la prueba del teorema que da nombre al tercero procede de un articulo de P.

WAGNER publicado en The American Mathematical Monthly [13].

Tal prueba, a diferencia de las pruebas clédsicas, basadas en la aplicacion del
teorema de Hahn-Banach, se trata de una demostracion constructiva. Puesto que
este resultado pone de manifiesto la utilidad de la teoria de distribuciones en
lo referente a su aplicacién al campo de las ecuaciones diferenciales, ya desde
su publicacién la comunidad matematica comenzé a buscar demostraciones que
permitiesen calcular la solucién de forma explicita. El prototipo de todas ellas
es la denominada ”escalera de Hérmander” que emplea particiones de la unidad
(ver [11]), no obstante la férmula obtenida depende de los ceros del polinomio

y no es muy explicita en este sentido. Sera en 1994 cuando H. KONIG publique



14 INTRODUCCION

una nueva prueba consistente en representar la solucion fundamental integrando
la transformada de Fourier de ciertas funciones de médulo unidad (ver [6]). La
prueba que presentaremos aqui consiste en una simplificacion de este procedi-
miento, construyendo la solucién buscada como suma finita de distribuciones.
Por dltimo comentamos que no hemos incluido con detalle las demostracio-
nes de todos los resultados que aparecen en este escrito. Desarrollamos aqui
unicamente las que, a nuestro criterio, son tutiles para aprender a manejar los
conceptos con los que trabajamos. Por la misma razén nos hemos decantado por
la citada prueba de P. WAGNER en lugar de la desarrollada por RUDIN en el ya

mencionado libro.



Capitulo 1

Distribuciones

La finalidad de este primer capitulo no es otra que confeccionar un espacio
que pueda ser candidato a la resoluciéon de nuestro problema. Los elementos de
tal conjunto, a los que llamaremos distribuciones, deberan respetar ciertas reglas
clasicas del cdlculo y permitirnos generalizar, en la medida de lo posible, las
nociones tradicionales de funcién y diferenciabilidad.

Dado ) # Q = Q° C R” un dominio en R™ definiremos una topologia lo-
calmente convexa en el espacio vectorial C>(€2,C) en la cual las sucesiones de
Cauchy convergeran. Si ahora fijamos un compacto K C {2 podemos considerar
el subespacio de funciones derivables de soporte contenido en K en cual po-
dremos dotar de la topologia inducida. La unién de todos estos espacios nos
permite considerar un nuevo conjunto: el subespacio de funciones con sopor-
te compacto y contenido en 2, al que denotaremos D(2), que serd dotado de
una nueva topologia intimamente ligada a las anteriores y cuyo dual topoldgico,
D'(Q) := {¢: D(Q) = C: ¢ es lineal y continua}, serd el conjunto buscado.

Posteriormente comprobaremos que, efectivamente, en D’'(£2) podemos encon-
trar una fotocopia de C*(f2) asi como definir una nueva forma de derivar que

generaliza a la derivada clasica. Tras analizar detenidamente alguna que otra

15



16 CAPITULO 1. DISTRIBUCIONES

propiedad de las distribuciones, generalizaremos también el producto de convo-

lucion, que, como veremos, sera clave en la resolucién de nuestro problema.

1.1. Funciones Test y Distribuciones

Dedicaremos esta primera seccion a formalizar la construccién del espacio que
buscamos, no sin antes aclarar la notacién que vamos a seguir. Fijado n € N,

emplearemos el término MULTI-INDICE para referirnos a la n-upla
a=(ag,..,ap)

de enteros no negativos oy para k € [1,n] N N. Tal n-upla tendra asociada el

operador diferencial

de orden
n
lal = > o
k=1

siempre que tales derivadas parciales estén definidas. Ademés, entenderemos por
la] = 0 que D*f = f. Dados dos multi-indices o y § de n € N componentes

definimos la suma de multi-indices como

o+ B = (al + 617 ey Oty + Bn)

y escribiremos f < a cuando se verifique que 3; < «a; ¥j € [1,n] N N. En tal

situacion también podemos definir la diferencia de multi-indices mediante:

a—f:=(a;— P,y an — Br).

Teniendo en cuenta esto, fijado ) # Q2 = QY C R™ (donde 2° denota el interior

de ) diremos que una funcién f : 2 — C ES DE CLASE C*, lo cual denotaremos
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por f € C*(Q), si D*f € C(R), esto es, si D*[ tiene sentido y es continua; para
todo multi-indice a.
Recordemos ahora que el SOPORTE DE UNA FUNCION f : Q — C se define

CcOo1mo

sop(f) = {x €Q: f(x)# 0}

donde hemos usado la barra superior para denotar la clausura o cierre del con-
junto.
Por 1ltimo, comentamos que si x € R® y « es un multi-indice, escribiremos

x® para referirnos a la expresién:

« al

= .T)l . $a".

z n

Una topologia para C*(12)

Consideremos ahora un subconjunto compacto K C R". Definimos el con-
junto Dy como la coleccién de funciones de clase C*° cuyo soporte se encuentra

contenido en K:
Dy :={f €C®R"): sop(f) C K}
y notemos que si K C () el conjunto Dy puede identificarse con un subespacio
de C*(Q).
Nuestro objetivo es dotar a C*>°(€2) de una topologia que, como veremos, estara

intimamente ligada con la nocién de convergencia uniforme.

Teorema 1.1.1. En el espacio vectorial C*(S2) podemos definir una topologia

localmente convexa T verificando:

i) El espacio topoldgico (C*(2),7) es un espacio de Fréchet, esto es, la topo-
logia 7, ademds de ser localmente convexa, estd inducida por una métrica

completa e invariante por traslaciones.
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ii) En (C*(Q),7T) se cumple la propiedad de Heine-Borel.
iii) Para cada compacto K C €, el subespacio Dy es un cerrado en 7.

Demostracion. Comenzamos tomando una sucesién de subconjuntos compactos

de € {Ki}ieN tal que K; C Ky y Q = U K, v, fijado N € N, definimos
i€N
seminormas py en C*(§2) por

pn(f) = méx{|D°‘f(a:)| cx € Ky, o < N}, fec=(9). (1.1)

Tal coleccién define una topologia 7 en C*(2) que serd metrizable, localmente
convexa e invariante por traslaciones (ver 1.37 y 1.38 (c) en [12]) y que viene

determinada por la base de entornos centrada en cero definida por:
~ 1
B = {VN = {f eC™(Q): pn(f) < N} ; NEN}.

Para entender cémo funciona esta topologia resulta imprescindible relacionarla
con la nocién de convergencia. Sean f € C*(Q) y {fn}neN C C*(2) una sucesion

de funciones convergiendo a f en la topologia 7. Entonces:
fnif@vaeBHnoeN:Vn>n0fn—feVN<:>

1
<:>VNEN3nOEN:Vn>n0pN(fn—f)<N<:>

1
< VN € N3ng €N :Vn>ngméx{|D(f,—f)(z)|: €Ky, |a| <N} < N’

que es precisamente la convergencia uniforme sobre compactos de €2 de {Da( fn) }n N
a D*(f) para todo o multi-indice de orden || € Ny.

Como consecuencia inmediata destacamos un hecho que nos serd ttil en lo
sucesivo: puesto que (C*(€2), 7) es un espacio métrico, la continuidad de funciones

estd caracterizada mediante sucesiones y dado z, € 2 la aplicacién ¢,, : C>*(Q2) —

R definida por ¢(f) = f(xo) Vf € C>(Q) es continua en esta topologia.
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Con esto presente, comprobar que los Dy son cerrados en 7 no es complica-
do, pues estos conjuntos no son mas que la interseccion de los nicleos de estas

aplicaciones, para x variando en el complementario de K:

Dy ={feC®): fz)=0Vz e Q\ K} =
= () {fec®@): f(2)=0}= ) kex(¢,).
z€Q\K zeQ\K
Para probar la complitud, tomamos una sucesién de Cauchy { fn}neN en
(C>(R2),7). Fijado N € N, encontramos ng € N tal que para p,q > ng se tie-
ne f, — f; € V. En tal caso, |D*f,(z) — D*f,(z)| < 1/N Vz € Ky siempre que
la] < N, por lo que cada {Da f”}neN converge uniformemente en subconjuntos
compactos de {2 a una funcién g, (jes equivalente!). Como sabemos que si una su-
cesion de funciones { f”}neN de clase C! converge uniformemente sobre compactos

a una funcién h y la sucesién de derivadas {h],} _ converge de la misma forma

neN
a otra funcién h se tiene h de clase C' y B/ = h; es inmediato que gy € C(Q) y
Jo = D%gg, por lo que {fn}nEN — ¢ en la topologia T de C*(12).

Esto concluye la prueba de que tanto (C*(2),7) como Dk con la topologia
inducida T|p,. son espacios de Fréchet.

A continuacién comprobamos que (C*(2),7) verifica la propiedad de Heine-
Borel. Supongamos entonces que E C C™(2) es cerrado y acotado. Como E es

un subconjunto de un espacio métrico, basta ver que toda sucesién de elementos

de E admite una parcial convergente. Puesto que la acotacion de E equivale a:
E'MN >0 pN(f) < MN VN € N,Vf <)

podemos usar las desigualdades |Df(x)| < MyVz € Ky, |a| < N para deducir
la equicontinuidad de {Dﬁf  f € E} en Ky_; para || < N — 1. Usando el
teorema de Ascoli-Arceld y el proceso de diagonalizacién de Cantor(Apendix A

de [12]), para cada sucesién de elementos de E encontramos una parcial { fm}meN
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para la que {D/B fm}m oy converge uniformemente en subconjuntos compactos de
() para todo multi-indice 3, por lo que { fm} converge en la topologia de C*=(£2),
como buscdbamos.

Por ultimo observemos que, al trabajar con espacios de dimension infinita,
la propiedad de Heine-Borel implica que tanto C*°(2) como Dk no pueden ser

espacios normados (Teorema de Riesz). O

Nota. En lo que resta de documento haremos el abuso de notacion estindar e

identificaremos el espacio topoldgico (C*(2),T) con C*(R).

Finalmente, resaltamos en una proposicion la caracterizacion de la convergen-

cia en esta topologia usada en la demostracion anterior.
Proposicién 1.1.2. Sean f,, € C*(Q) y f € C>(QQ). Equivalen:
i) fo— [

i1) La sucesion {Do‘(fn)} converge uniformemente sobre compactos de ) a

D*(f) para todo milti-indice o € Nj.

neN

El espacio de las Funciones Test

Al igual que antes, tomemos () # Q = QY C R" y para cada K C € compacto
consideremos el conjunto Dy asociado. Definimos el CONJUNTO DE FUNCIONES
TEST (SOBRE §2) como la unién de todos estos Dy:

D(Q) = U Dk
K comp. de Q
Es muy fécil comprobar que D(2) es un espacio vectorial bajo las operaciones
usuales de suma y producto por escalares sobre funciones complejas. Ademads, es

claro que:

» €D(Q) < ¢ €C(N) ysop(¢p) C N es compacto
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Counsideremos ahora las normas
6] n := max{|D*¢(z)| : € Q, |a| < N} para ¢ € D(Q), N € Ny (1.2)

La propia definicién de éstas nos sugiere la idea de que las restricciones de
tales normas a un Dy inducira la misma topologia en Dy que las seminormas py
definidas en la férmula a partir de cierta sucesién de compactos {K N} Ney- En
efecto, dado K C 2 compacto podemos encontrar Ny € N tal que K C Ky VN >
No. Ademsds, si N > Nj se tiene ||¢||n = pn(¢) V¢ € Dk. Por otro lado, puesto

que

l|ol|n < |@l|nr1 Yy Pa (D) < Prga(0)

la topologia que induce cada familia de seminormas no depende del primer valor
de N, esto es, del menor compacto de la sucesién,(basta comprobar que cada
par de topologia tiene los mismos abiertos) por lo que concluimos que ambas

topologias de Dk coinciden y una base de entornos centrada en cero sera:
Va={¢€Dx: [Idlly<x}, NeN.

Nota 1.1.3. Estas normas definidas en la formula definen una topologia
metrizable localmente convexa en D(SY), sin embargo tal topologia no es completa.

Basta tomar Q =R y ¢ € D(R) tal que
sop(f) C [0,1], ¢(z) > OVx €]0, 1.
Definiendo, para m € N
V) = 3 o — k)

tenemos que {1} es una sucesion de Cauchy en esta topologia, pero su limite
no tiene soporte compacto y por tanto no puede ser un elemento de D(R). Para

convencerse de esto, basta ver la forma de, por ejemplo, la funcion sy obtenida
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a partir de ¢(t) := h(4dxt —2) ¥t € R donde h € C*(R) es la funcion meseta
definida en el apéndice[Al Los grafos de ¢ y o estdn recogidos en la figura[1.1]

06

02

15

(a) Grafo de ¢ (b) Grafo de 999

Figura 1.1: Grafos

A continuacién definiremos una topologia 7 en D(f2) localmente convexa en
la que toda sucesion de Cauchy si converje, aunque a cambio, sacrificaremos que

tal topologia sea metrizable.

Teorema 1.1.4. Sea K C Q un subconjunto compacto de una abierto no vacio
Q2 C R™ y denotemos por T a la topologia inducida por C*(Q2) (definida en la
seccion en Dk T|x y llamemos B al conjunto formado por los subconjuntos

W C D(Q) convexos y equilibrados tales que Dx N W € 1 VK C Q:
B:={W CDQ) : W convezo y equilibrado con Dx NW € 7 YK C Q}.
Entonces el conjunto

r={Jo+W :6€D(Q), W e s}

verifica:

i) T es una topologia en D(Q) y B una base de entornos centrada en cero para

T.
i1) T hace de D()) un espacio vectorial topoldgico localmente convero.

Nota 1.1.5. Una demostracion de esto puede encontrarse en 6.4 de [12].
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Nota 1.1.6. Un cONJUNTO W de un espacio vectorial V se dice EQUILIBRADO

siVa € K : |a| <1 se tiene que W C W.

Nota 1.1.7. En lo sucesivo identificaremos el espacio topoldgico (D(Q2), ) con

el conjunto D(S).

Sin mas objetivo que facilitar el trabajo con la topologia 7 recién definida

comprobamos el siguiente resultado.
Proposicién 1.1.8.

i) Un subconjunto convexo y equilibrado V- C D(Q) es abierto si y sélo si

Vep.

i1) La topologia T de D C D(Q) coincide con la topologia inducida por T en

Dk.

iii) Si E C D(Q) estd acotado existen K C Q compacto tal que E C Dk y una

sucesion {MN}NeNy tal que Vo € E se verifica:

iv) D(Q) tiene la propiedad de Heine-Borel.

v) Si {qbp}peN es una sucesion de Cauchy en D(2), entonces existe K C €

compacto tal que ¢, € Di, Vp € N y ademds:
lim ||¢p, — ¢4lln =0, VN € Ny.
p,q—>oo

vi) Si {gbp}peN — 0 en D(Q) existe K C 2 compacto tal que sop(¢p,) C K, Vp €

N y para cada multi-indice o se tiene {Da¢p}p€N — 0 uniformemente.

vii) En D(Q) toda sucesion de Cauchy converge.
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Demostracion.

i) Puesto que 8 C 7 basta comprobar que si V' C D(£2) es convexo, equilibrado
y abierto (en D(2)), entonces Dx NV € 7, VK C 2 compacto. Probemos que es
entorno de todos sus puntos. Sea ¢ € D NV. Como ¢ € V € 7 encontramos
Wep:p+W CV.Ental caso ¢ + Dx N W C ¢ + Dg NV como buscabamos
(notemos que ¢ + D N W es abierto de Dk por tener este tltimo la topologia
inducida por el espacio de Frechet C*(f2)).

ii) Queremos ver si Tx = T|p, para K C  compacto. Probamos la doble
inclusién. Supongamos primero O € T|p,. Entonces existe £ € 7 tal que O =
DgNE. Para ¢ € O, por ser E € 7, encontramos W € (8 de forma que ¢+ W C FE.
Teniendo en cuenta que ¢p+WNDg C Dk concluimos ¢p+WNDg C O. Escojamos
ahora F € 1 y veamos que existe V € 7 : E = Dg NV. Por definiciéon de 7,
para ¢ € E encontramos N € N, § > 0 de forma que {w €Dk : || —9d|ln < 5}.
Tomando Wy = {¢ € D(Q) : |[¢||x < &} se tiene Wy, € By Dx N (¢ + W) =

¢+ (Dxk NW,) C E 'y basta tomar V = (J ¢+ W.
¢CE

#1) Lo hacemos por contrarreciproco. Sea E C D(Q): E ¢ Dg VK C Q
compacto. Usando el recubrimiento por compactos definido en la demostracion
de encontramos una sucesion {qu} de elementos de E y otra {xm} de
elementos de €2 tales que ¢,,(z,,) # 0Vm € Ny {xn} no tiene limite en €2
(de tenerlo podriamos encontrar un compacto conteniendo a los elementos de la

sucesion). Consideremos el conjunto

W = {6 € D(Q) : [¢(x)] <M |Gm(@m)|}

Como cada compacto K C () s6lo contiene un nimero finito de elementos de
{IL’m}, Dk NW €1 y W € . Como ¢,, ¢ mW, ningiin multiplo de W pue-

de contener a E y este no es acotado (en el sentido de los espacios vectoriales
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topoldgicos, ver nota |1.1.9)), como buscdbamos. Para concluir la prueba de este
apartado, escojamos E C D({2) acotado. Por ii), F es acotado en algin Dk y por

tanto
sup{||¢||n : ¢ € E} < 0o VN € No.

iv) Es consecuencia de aplicar #ii), pues Dk tiene la propiedad de Heine-Borel.

v) Dado que toda sucesién de Cauchy es acotada (ver Teorema 1.29 de [12])
iii) nos dice que cada sucesién de Cauchy { ¢m}m€N de D(Q2) estéd contenida en
algin Dg. Por i) {qu} es también una sucesién de Cauchy en 7.

vi) Es una reformulacién de vi).

vii) Consecuencia directa de i), v) y la complitud de Dk. O
Nota 1.1.9. Sobre la acotacién de conjuntos.

i) ESPACIOS VECTORIALES TOPOLOGICOS. Sea (X, 7) e.v.t. E C X se dice

acotado st YV e Uj ds >0 : E CtV Vi > s.

ii) ESPACIOS METRICOS. Sea (M,d) e.m. E C M se dice acotado si 3K >
0:d(z,y) < K Vr,y € E.

A continuacién probaremos una caracterizacion de la continuidad de aplicacio-
nes lineales de dominio D(£2) cuyo codominio es un espacio tolopdgico localmente
convexo arbitrario. Un vistazo rapido al enunciado bastara para recordarnos a la

que tenemos para aplicaciones lineales entre espacios normados.

Nota 1.1.10. Daremos por conocido que en un espacio vectorial topologico V

sobre un cuerpo K son equivalentes:
1. E CV esta acotado.

2. Si {a:n}neN es una sucesion en E y {O‘”}neN — 0 es una sucesion en K

convergiendo a cero, entonces {xnan}neN — 0.
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Nota 1.1.11. También usaremos que para toda sucesion {xn}neN — 0 en un
espacio vectorial topologico metrizable existe una sucesion {'yn}neN — 00 de es-

calares positivos tal que {xn%}neN — 0.

Teorema 1.1.12. Caracterizaciéon de Continuidad. Sea Y un espacio to-
poldgico localmente convero y A : D(Q) — Y una aplicacion lineal. Son equiva-

lentes:
i) A es continua.
it) A es acotada, esto es, lleva conjuntos acotados en conjuntos acotados.
iti) Si {¢m} — 0 en D(Q) entonces {Adn} — 0 enY.
iv) Para todo K C 2 compacto, la restriccion de A a Dk es continua.

Demostracion.

i) — ). Supongamos A continua y tomemos E C D(2) acotado. Conside-
remos W € UJ un entorno de cero en Y. Puesto que A es continua y AO = 0
encontramos un entorno V- € L{g) ) de forma que A(V) C W. La acotacién de E

nos da un t € R tal que £ C tV, por lo que
A(E) CA(tV) =tA(V) CtW.

ii) — 4i1). Supongamos que A es acotada y que {¢,, } — 0 en D(Q). Aplicando
la proposicién encontramos K C €2 tal que {¢m} — 0 en Dk de forma que
la restriccién de A a tal Dk es acotada. Como {(bm} — 0, en particular esta
acotada y, puesto que A es acotada, la sucesién {A(bm} estard acotada. Usando la
nota (en D) encontramos una sucesion {ym} — 00 de escalares positivos

tal que {'quﬁm} — 0. En tal caso la sucesion {A(’ymgbm)} también estd acotada
y usando la nota|l.1.10|con £ = {A(ym@n): m e N} v a,, = ;! concluimos que
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{AGm)} = L A mm) } — 0

como buscabamos.

iii) — ). Tomemos {¢,,} — 0 en Dy. Usando ii) de la proposicién m
tenemos {¢,,} — 0 en D(Q). Utilizando i) {A¢,,} — 0 en Y y como Dy es
metrizable conluimos iv).

iv) — 1). Sea U € U convexo y equilibrado. Entonces V := A7'(U) es

convexo y equilibrado. Por i) de la proposicién m
Ver<« DNV eTx YDk C D(Q).

por lo que i) y iv) son equivalentes. O]

Corolario 1.1.13. Fijado un multi-indice v el operador D® : D(Q2) — D(Q2) es

una aplicacion continua.

Demostracion. Basta darse cuenta de que ||[D*¢||n < ||@||n+ja] VIV € Ny, por lo

que D es continuo en cada Dy O

El concepto de Distribucion

Definicién 1.1.14. Distribucién Diremos que un funcional lineal en D(S2) es
una distribucion en Q si es continuo en la topologia de D(S2). Al conjunto de

todas las distribuciones en S lo denotaremos D'(S2).

Comenzamos esta, tan breve como trascendente, seccién enunciando la que
serd la definicién en torno a la que girard el resto de este escrito. A continuacion
reenunciamos el teorema [1.1.12| desde el el punto de vista de las distribuciones,

obteniendo asi una caracterizacion.

Proposicién 1.1.15. Caracterizaciéon de Distribuciones. Sea A un funcio-

nal lineal en D(QY). Son equivalentes:
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i) A e D'(Q).
it) Para todo K C Q compacto existen N € Ng y C > 0 tales que:

[A¢| < Cl[g]|n Vo € Di. (1.3)

Diremos que A es una DISTRIBUCION DE ORDEN N € Ny si N € Nj es el
minimo entero no negativo para el cual la desigualdad se verifica para todo
K c Q compacto. Caso de no existir tal N diremos que A es una DISTRIBUCION
DE ORDEN INFINITO.

Introducimos ahora el primer ejemplo de distribucion, cuya importancia, como

veremos mas adelante, sera vital para alcanzar nuestro objetivo.

Definicién 1.1.16. MEDIDA DE DIRAC EN RY. Dado z € Q definimos la
aplicacion lineal 6, : D(Q) — K como la aplicacion que nos lleva cada ¢ € D(Q)

en el escalar ¢(x):

Cuando =0 a la aplicacion & := &y se la llama MEDIDA DE DIRAC EN R¥.

Notemos que la caracterizacion de la proposicién [1.1.15| nos asegura que 6, es
una distribucién de orden 0.

Como conclusion a esta seccién vamos a aclarar las propiedades de la topolgia
de D(Q2) que tenemos pendientes. En primer lugar fijemos K C 2 compacto, y
expresemos Dy en la forma:

Dk = () Ker(d,).
zeO\K

Usando esta identidad y el apartado i) de la proposicién junto con el hecho
de que en un espacio vectorial topolégico cualquier subespacio que sea espacio de

Fréchet es un cerrado (ver 1.27 de [1Z] ) concluimos que Dk es un subespacio
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cerrado de D(2). Ademds Dy tiene interior vacio en la topologia de D(€2). Usan-
do el recubrimiento numerable por compactos de 2 {Kn}neN introducido en la
seccién [L1] tenemos
D(Q) = U Dx,
neN

y D(Q) es de primera categoria en si mismo. Puesto que toda sucesién de Cauchy

en D(Q2) converge, el Teorema de Baire nos dice que D(£2) no puede ser metrizable.

1.2. Calculo en Distribuciones

En esta segunda seccién abordaremos el problema de inducir el calculo de R”
en el espacio D’'(2) recién definido. Comenzaremos viendo que podemos identi-
ficar de forma razonable ciertos elementos de D’'(£2) con funciones de C*(Q2) y
continuaremos definiendo una derivada en D'(2) de forma que cuando derivemos
elementos equivalentes a funciones obtengamos el elemento equivalente a la deri-
vada de la funcién. Posteriormente comprobaremos que la regla del producto se
lleva medianamente bien con esta redefinicién de derivada, finalizando la seccion

con algunas propiedades sobre sucesiones de distribuciones.

Funciones vistas como Distribuciones

Supongamos [ : €2 — R una funcion localmente integrable. Consideremos el

funcional lineal en D(£2) definido por

Ap(6) = / o) f(x)dz V6 € D(SY). (1.4)

Puesto que K C €2 compacto : ¢ € Dk, se tiene:

A < (S 1£1) - Nlello
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y la proposicién garantiza que Ay € D'(Q).

En adelante abusaremos del lenguaje y llamaremos funciones a estas distri-
buciones, pues, en vista de la relacion parece mas que razonable identificar la
distribucién Ay con f.

Hacemos ahora lo propio con medidas de Borel complejas sobre 2 y medidas
positivas sobre €2 localmente finitas. Llamemos p a una medida de esta indole y

definamos la distribucion:

Mié) = [ 6 dnvo € D(@), (15)

la cual identificaremos con .

Derivacion de Distribuciones

Sea av un multi-indice y A € D’(€2) una distribucién. Motivados por la férmula
de Green, version en dimension arbitraria de la formula de integracién por partes
para funciones de una variable, definimos la derivada a-ésima como el funcional
lineal en D(1):

(DA)(¢) == (=1)*'A(D*¢) V¢ € D(Q). (1.6)

Siempre que |[A¢| < C||d||ny Vo € D, pues en estas condiciones se tiene

[(D*A)(9)] < Cl[D*¢l|n < Ol n+a

y por la caracterizacién [1.1.15 D € D'(QQ).

Notemos ahora que fijada una distribucion A y dos multi-indices a y [ se

tiene:
DeDPA = D*PA = DED>A

puesto que D® y D? conmutan sobre funciones de clase C*.
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Derivada de una funcién vista como distribucién

A continuacién vamos a intentar convencernos de que hemos hecho bien en
llamar funcién a la distribucién Ay asociada a la funcién localmente integrable f.
El problema que abordamos es claro: cuando D®f exista en el sentido clasico y

tanto f como D®f sean locamente integrables en (), se debe verificar que
ADaf — DaAf

No obstante, a poco que se piense esta ultima igualdad equivale a que Vo € D(€2)

se tenga:

(=Dl fo f(2)(D0)(2) dx = [, (D*f)(2)¢() dz

lo cual es facil de comprobar cuando f tiene derivadas parciales continuas de

orden menor o igual que N € N, esto es, f € CN(Q); y |a| < N.

Producto de funciones y distribuciones

Sean A € D'(Q) y f € C*°(Q). Definimos la DISTRIBUCION PRODUCTO de f

y A, que denotaremos fA como:

(fA)(®) := A(f¢) V¢ € D(). (1.7)

En primer lugar, notemos que la férmula tiene perfecto sentido, pues, para
¢ € D(QQ), tenemos f¢p € D(2). Otro detalle a tener en cuenta podria ser que A f
y fA, contrariamente a lo que podria sugerir la notacién; son objetos matematicos
distintos: mientras que el primero es un escalar, el segundo es una distribucion.
Para comprobar esto ultimo, nos basaremos en la féormula de Leibniz para el

producto de funciones:

D°(fg) = 3 cas (D™ )(D%g), V¥f, g € C=(Q). (1.8)

Ba
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Donde los c,p son escalares conocidos pero irrelevantes para probar lo que bus-
camos. Como A € D'(Q2) para cada compacto K C 2 encontramos C' > 0, N €
Ny : |A(@)] < C||9||n Vo € D(R2). Utilizando la férmula de Leibniz para funcio-
nes [1.8 podemos encontrar C' > 0 (dependiente de f, K y N) tal que ||f¢||y <
C||6||x Vo € Dy. Puesto que en tal caso |(fA) (@) < CC||¢||x Vo € Dy, sélo
queda aplicar el teorema [I.1.15]

Con el fin de adaptar al caso que nos ocupa esta férmula probamos el siguiente

resultado:

Proposicién 1.2.1. Férmula de Leibniz. Sean A € D'(QQ) una distribucion

y f € C>®(Q) una funcion. Para todo multi-indice o se tiene:

D*(fA) =) cap(D* P f)(D°A) (1.9)

BLla

Demostracion. Comenzamos la prueba fijando v € R™ y definiendo h, : R" — R
mediante h,(x) := exp(u - x), Vo € R", que verifica D*h,, = u®h,,. Aplicando la

formula de Leibniz para funciones a f = h,, g = h, obtenemos:

o a—03, 8 n

(0% ) .

(u+wv) —E Capt®PV” u, v eR
BLa

En particular:

u® = (v+ (—v+u)* = Z Capt® P (—v +u)’ =

BLla

BLla v<B

=Y (=DM > (=D)Plegpes,.

V<« 7<BLa

Donde hemos usado que (—1)/7 = (=1)Zk=1 8% = (—1)Zk=1 = Dikmr e =

(—D)IB(=1)=hl = (=D)IFI(=1)P! para B y v multi-indices con |y| < |B]. Si ahora
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comparamos los eslabones primero y ltimo obtenemos:

—1)le S A —
Y () eapes, = - T

v<B<a 0 en otro caso

que usado junto a la férmula de Leibniz para funciones aplicada a D?(DY f¢)

nos da la igualdad:

> (=)D (D) =Y " (=1)leap Y s (DT f) (D7) =

B<a f<a <A
=> (D*HD¢) Y (—1)leqges, = (1) fD%.
y<a y<BLa

Finalizamos fijando ¢ € D(£2) y operando:

D(fA)(¢) = (—1)PI(fA)(D*¢) = (=1)A(fD*¢) =
> (=D)VPleasA(DP (@D P £)) = cap(DPA)(¢D* P f) =

BLa BLa

=Y cas((DPF)(DPA))(9)

BLla

como buscabamos. O

Sucesiones de distribuciones y limite débil

En este punto es importante recordar cémo funcionan las topologias débiles

en un espacio vectorial X # () dotado de una topologia 7. Dada una familia
F = {fk (X, 1) = (X, k) : (Xk, Tk) esp. top. y fr ap. lineal, k € N}

diremos que Tr es la TOPOLOGIA INICIAL en X para F si es la topologia menos
fina (con menos abiertos) que hace continuas a todas las f.
Llamamos TOPOLOGIA DEBIL de (X, 7) a la topologfa inicial w(X) = 7x« en

X para F = X*. Por otro lado, notemos que para x € X podemos considerar el
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funcional lineal y continuo, llamado usualmente inyeccion candnica en el bidual,
J, : X* — R definido por J,(f) := f(x), Vf € X* y definir la TOPOLOGIA DEBIL*
w*(X) en X* como la topologfa inicial en X* para F := {J, : X* > R:z € X}.
Puesto que D'(£2) es el conjunto de todas las aplicaciones lineales y continuas
de D(2), podemos considerar la topologia débil* en D'(2) inducida por D(€2),
que lo convierte, véase Seccion 3.14 de [12], en un espacio localmente convexo.
Una vez aclarado esto, diremos que una sucesién de distribuciones sobre €2
{Ak}keN converge a la distribuciéon A € D’'(2), hecho que notaremos por {Ak} —

A, si {Ak} converge a A en la topologia débil* de D'({2), es decir, si:
lim Ayp = Ag Vo € D(9).
—00

Enfatizamos que, en particular, si { fk} ren €8 una sucesion de funciones localmente
integrables, diremos que { f,} converge a la distribucién A € D’(2) (en el sentido

de las distribuciones) cuando

k—o0

lim /Q () fu(z)dz = A(¢) Yo € D(S).

A modo de ejemplo, para ilustrar lo ‘facil’ que resulta converger en este sentido,

citamos las siguientes proposiciones:

Proposicién 1.2.2. Sean A, € D'(Q2) Vk € N tales que para cada ¢ € D(Q)
existe limyg_,o0 A (¢). Entonces la aplicacion A : D(Q) — R definida por

A(g) = lim A(6) ¥o € D(9)

es lineal y continua (A € D'()) y para todo multi-indice o se tiene que:

DA, TSY pen.

Demostracion. Sea un compacto K C €. Puesto que A(¢) = limy_,oo Ax(¢) existe
para toda ¢ € Dg, v dado que Dk es espacio de Fréchet, el teorema de Banach-

Steinhaus (ver Teorema 2.8 de [12]) implica que la restriccion de A a Dy es
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continua. Aplicando el teorema [1.1.12] obtenemos la continuidad de A y como la
linealidad es clara concluimos que A € D’(2). En tal caso:

(D*A)(¢) = (—D)!A(D*¢) = (=1)* lim A,(D*¢) = lim (D*A.)(¢).

k—o0 k—o0

]

Proposicién 1.2.3. Consideremos A, € D'(2) Yk € N y g, € C®(Q2) Vk € N
tales que {A} — A € D'(Q) en sentido D'(Q) y {gr} — g € C*() en el sentido
C>(Q2). Entonces

{gkAk} — gA.

Demostracion. La prueba es consecuencia del Teorema 2.17 de [12]. O

1.3. Distribuciones a nivel local

Sean Aj, Ay € D'(Q) dado un abierto no vacio ) # w = w® C Q diremos que
A; y A son localmente iguales sobre w, afirmacion que notaremos por Ay = Ay

A1 (¢) = Ma(9) Vo € D(w).

Esta definicion nos permite estudiar distribuciones a nivel local y, como veremos,
describir globalmente una distribuciéon a partir de su comportamiento local. Pre-
viamente, demostramos un lema sobre particiones de la unidad que nos serd 1util

en el futuro.

Lema 1.3.1 (Existencia de particiones de la unidad en ). Sea I' C 7gn
una coleccion de abiertos euclideos cuya union es Q) (en adelante, a un subconjunto
I' de estas caracteristicas lo llamaremos recubrimiento por abiertos de §2). En-
tonces existe una sucesion {wk} C D(Q) de funciones test tal que 0 < iy, Vk € N

verificando:
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i) Para todo k € N eziste w C T' tal que sop(¢y) C w.
W) Y peoUk(z) =1 para todo x € Q.

iii) Para todo compacto K C Q existe ng € N y un abierto W = W° > K tal
que > 0 Yp(z) =1 Ve e W.

Notemos que de i) y iii) se deduce que cada punto de ) tiene un entorno que
solo interseca con un numero finito de sopoy. Por esto, a una tal coleccion
{¢r} € D(Q) la llamaremos PARTICION DE LA UNIDAD LOCALMENTE FINITA

SUBORDINADA AL RECUBRIMIENTO I

Demostracion. Sea S C €2 un subconjunto denso y numerable de €. Tomemos
ahora la sucesién {E(pk,rk)} de todas las bolas cerradas de centro p, € Sy
r € QN RY y tal que existe w € I' verificando B(py,7x) C w. En tal caso,

podemos expresar
Q = U B(pk, rk/2)

Utilizando la funcién meseta estandar definida en el apéndice [A] encontramos

funciones ¢ € D(Q) tales que 0 < ¢ < 1 verificando:

¢k|B(kaTk/2) =1ly ¢k|9\§(mﬂ”k) =0.

Definimos ahora por induccién la sucesion de funciones test en €2 {1/%} dada

por:

Y1 =
k

Urpr = dper [ [ (1= ¢5) Ve € N\ {1}

J=1

Comprobemos que esta sucesion es la que buscamos. Puesto que fuera de {E(pk, rk)}

¢ se anula, tomando como w el abierto en el que hemos exigido que esté {E(pk, rk)}
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cuando hemos definido la sucesién de bolas cerradas concluimos trivialmente 7).
Por induccion podemos comprobar facilmente que

k

k
Y ods=1-[[0-v)vkeN
j=1

J=1

Usando que ¢y p(p,,r./2) = 1 se deduce que

ij(x) =1Vz e | JB(p;r;/2)

j=1
lo que nos da ). Por dltimo, si K C §2 compacto, encontramos un ntimero finito
m de bolas abiertas de la forma B(pg,7/2) que lo contienen (recordemos que
éstas recubrian todo Q) y K C U, B(pk,7/2), de donde, junto con la ultima

ecuacién, concluimos ii). O

Teorema 1.3.2. Sea I' un recubrimiento por abiertos de ) # Q = Q° C R y
supongamos que para cada w € T' tenemos una distribucion A, € D'(w) de forma
que

Ay = Ay en ' N V' NW' # 0.

Entonces eziste una unica distribucion A € D'(Y) tal que
A=A, enwVweT.

Demostracion. Sea {¢y} C D(Q) una particién de la unidad asociada a I' cons-
truida como en el Lema anterior y consideremos un abierto w, € I' tal que
sop(¢x) C wy. En tal caso, dada ¢ € D(£2) podemos escribir ¢ = ¢ >, Vi =
Y ken Pk que es una suma finita, pues sop(¢) es compacto. Puesto que ademéds
hemos tomado v, de forma que sop(¢x¢) C sop(x) C wr V¢ € D(2) podemos
definir la aplicaciéon A : D(Q2) — R mediante

A(@) =Y A (10),

k=1
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que es claramente lineal. Veamos que A es continua. Sea {¢k}keN C D(Q) una
sucesién de funciones test tal que {gbk} — 0 en la topologia de D(€2). Como para
cada j € N encontramos K; C 2 compacto y tal que sop(¢;) C K, usando iii)
del lema encontramos m; € Ny W; D K tal que

Zl/)k =1Vzx e Wj
k=1

por lo que para j € N se tiene:
m;
=) A (U0).
j=1

Cuando j — oo tenemos {¢d;} — 0 en D(Q2) y la continuidad de los A, nos

da A(¢;) — 0. Usando la caracterizacion concluimos que A € D'(Q).
Veamos que la distribucién A es la que buscamos. Tomemos ¢ € D(w) con

w € I'. Entonces para j € N se tiene ¢;¢ € D(w; Nw). Como A, = A, en w' Nw”

para cualesquiera w’, w” € I' tenemos A, (¥;¢) = A, (¥;¢) para todo j € Ny
= > 0) = A0 Z%
j=1 J=1
como buscdbamos. Por tltimo comprobamos la unicidad tomando A € D'(€) tal

que A = A, en w para todo w € I'. En tal caso, para ¢ € D(£2) debe verificarse

que

Zwm = AWd) = Y Ay, (Vid) = A@).
k=1 k=1 k=1

1.4. Soporte de Distribuciones

Orientamos esta seccion a generalizar el concepto de soporte de una funcion.

Supongamos A € D'(Q). Diremos que A SE ANULA en un abierto ) # w = w® C
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si A(¢) = 0V¢ € D(w). SeaI' = {w C Q: A(¢) = 0V¢ € D(w)} y denotemos
por W a la unién de todos los w donde A se anula, esto es, W = | J, . w; definimos
el SOPORTE DE LA DISTRIBUCION A como el complementario de W en ). Veamos
que ademas A se anula en W. Sea {¢k} pen una particion de la unidad localmente
finita asociada al recubrimiento I' de WW. En tal caso, para ¢ € D(W), se tiene:

A@) = AD wkd) = > A(no) =0,

keN keN

donde hemos usado que sop(¢) es compacto (y la serie es una suma finita) y que
sop(¢¥rp) C sop(r) C wy € I' VE € N. A la hora de manejarnos con este nuevo
concepto, el siguiente resultado, cuya prueba se encuentra en 6.24 de [12]; nos

sera util:

Proposicion 1.4.1. Sea A € D'(Q2). Se verifica:
i) Si para ¢ € D(Q) se tiene sop(¢) N sop(A) = 0, entonces A(p) = 0.
ii) Si sop(A) =0 entonces A = 0.

iii) Sea 1 € C>®(Q) de forma que existe @ DV = V® D sop(A) y tal que
Y(x) =1Vr € V. Entonces YA = A.

iv) Si sop(A) es un compacto de 2, entonces A tiene orden finito; de hecho
existen C' > 0 N € Ny tal que |A(¢)| < C||o||n Yo € D(R2). Ademds, A
se puede extender de forma unica a un funcional lineal y continuo sobre

C>(9).

1.5. Convolucion

Dedicaremos esta tltima seccién del capitulo a generalizar la definicién de

producto de convolucién al conjunto de las distribuciones sobre un abierto €2 C
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R™. Comenzaremos deduciendo cémo actuaria la convolucién cuando sus factores
son una distribucién y una funciéon test para después, tras comprobar que ciertas
propiedades del producto de convolucién de funciones se mantienen, definir la
convolucién de dos distribuciones, aunque bajo ciertas hipotesis.

Comenzamos recordando que para u,v : R” — C la CONVOLUCION de u y v

(u*v): R" — C se define por:

(u*xv)(x) = /n u(y) - v(r —y)dy Yo € R™.

siempre que tal integral esté definida, al menos, para casi todo punto x € R".

Sea u : R™ — R una funcién y fijemos = € R™. Definimos (7,(u)), 4 : R” — R

por:
(zu)(y) = uly — ) ¥y € R
i(y) = u(—y) vy € R".
Puesto que
(20)(y) = Ay — z) = u(z —y),
se tiene

(wx0)@) = [ ulw)(ma))dy

de donde intuimos que la definicién natural de CONVOLUCION DE LA FUNCION
TEST ¢ € D(R") Y LA DISTRIBUCION u € D'(R"™), (u* ¢) : R® — C, deberfa ser

la funcion sobre 2:

(ux ¢)(x) = u(r,0) Yz € R",

pues basta darse cuenta de que estas dos tiltimas expresiones coinciden para

funciones u : R” — C localmente integrables.
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Por otro lado, si buscamos conseguir que la relacion para funciones localmente

integrables dada por

| cawrwds = [ )i wiy

siga siendo vélida, podemos definir la traslacién de la distribucién v € D'(R")

respecto a © € R" (1,u) : D(R") — D'(R") mediante:

(T2u)(¢) = u(T-20) Vo € D(R").

Nota. Para comprobar que (T,u) es una distribucion basta usar la caracteriza-

cion de la continuidad por sucesiones.

En la siguiente proposicién enunciamos algunas propiedades de este producto
recién definido. Probaremos aqui las dos primeras mientras que la prueba de la

tercera puede consultarse en 6.30.c de [12].
Proposicién 1.5.1. Sean u € D'(R"), ¢, ¢ € D(R"). Entonces se verifican:
i) To(ux @) = (Tyu) x ¢ = ux (1,0) Vo € R".
i) uxp € C®(Q) y

D%(ux*¢) = (D) * ¢ =ux (D), Va e Nj.

Demostracion.

i) Fijemos y € R". Sin més que operar:

7o 0)(y) = wx Oy — x) = w(7y29)

(ra) * $(y) = Tou(ryd) = u(7y-20)
wk (7:0)(y) = ulry7:0) = ulnd(x =) = ulz =y =) = u(ry—s0).
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ii) Aplicando u a la identidad
7.(D%¢) = (-1) D7, ¢

obtenemos
(ux (D%9))(x) = ((D%u) * ¢) (),
que es parte de ii). Para comprobar el resto tomamos ¢ € S"~! y para r > 0

definimos &, = r~! (79 — 7). Aplicando 4):

. D(R™ .
Si hacemos r — 0, &,.¢ (—>) D.¢ y en consecuencia

Txé% Dg) Tx@, Vo € R"
y
lim ux (6,6) = u s (D,0)(2)
Por lo que D.(u * ¢) = ux (D.¢) y s6lo queda iterar para obtener ). O

Usando esta nueva definicién de convoluciéon no es dificil comprobar que toda
distribucién puede verse como limite (en la topologia de D’(€2)) de una sucesién

de funciones diferenciables.

Proposicién 1.5.2. Sea {hj }jeN una sucesion de funciones verificando:
hi(z) = j"h(jz), Ve e R", VjeN

para cierta h € D(R™) tal que h > y [, h(z)dz = 1. Si ¢ € D(R™) y u € D'(R"),

entonces:
o, D(R™)
i) im ¢xh; =" ¢.
J—00
i) Hmusxh; D&y,

Jj—o0
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Demostracion. Comencemos tomando K C R™ compacto. En tal caso

¢ x hj(z) = - o(y)hi(x —y)dy = . o(y)i"h(j(z —y))dy =
= /. O(—yj ="+ x)h(y)dy.

Como h y ¢ tienen soporte compacto, podemos aplicar el teorema de la convergen-
cia dominada y concluir que ¢ * h; converge uniformemente a ¢ sobre compactos

de R". Haciendo lo propio con D*¢ concluimos i). Usando lo que acabamos de

comprobar junto con i) de y la continuidad de u sobre D({2):

w(p) = (u*¢)(0) = lHmu * (hj * ¢)(0) = Hm(u * h;) * ¢(0) = limu * h;(¢)

7—0 7—0 7—0

Donde ¢ € D(Q2) es arbitraria. Usando la caracterizacién de convergencia en la

topologia débil* obtenemos ). O

El siguiente resultado recoge una propiedad clave del producto objeto de es-

tudio.

Teorema 1.5.3. Sean u € D'(R") y L : D(R") — C*(R"™) definida por L¢ =

ux ¢, Vo € D(R™). Entonces L es una aplicacion lineal y continua verificando:
7.L = L1, Yr e R". (1.10)

Reciprocamente, si L : D(R") — C>®(R™) es lineal, continua y verifica 1,L =
Lt, Vx € R". ezxiste u € D'(R"™) tal que Lé = ux ¢ Vo € D(R™). Ademds tal

u € D'(R™) es unica.

Demostracion. Por T.(u* ¢) = u* 7,. Para comprobar la continuidad basta
ver que al restringirnos a cada compacto K C R" la aplicacién L : D — C*()
es continua. Como ambos son espacios de Frechet podemos aplicar el teorema de

la grafica cerrada (consultar Teorema 2.15 de [12]). Supongamos pues que {¢j }jeN
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es una sucesion de funciones en Dy convergiendo a ¢ € Dy v que {u * (ﬁ]} — fe

C>(Q) y veamos que f = u * ¢. Fijado = € R™ se tiene {qugj} — Txg en D(Q) y
flz) = jlir(r)lo u(rxgg]) = u(ng) =u* @(x).

Para probar el reciproco definamos u : D(2) — R por u(¢) = (qu)(O), Yo €

D(Q2). La continuidad de u deriva de que tanto la aplicacién ¢ — gg como la

evaluacién en cero son aplicaciones continuas. Por tanto u € D'(Q2) y

(Lg)(x) = 7-a(L$)(0) = L(T—20)(0) = u(T—20) = u(7.) = u * ¢(a).
Vemos la unicidad supongamos uy, uy € D'(Q2) tales que L(¢) = uy % ¢ = ug *

¢ Vo € D(Q). Entonces (u; —ug) * ¢ =0 Vo € D(Q), por lo que

(ur —ug)(¢) = (w1 — uz) * ¢(0) = 0V ¢ € D(Q)

y U = ug en R”.

]

Supongamos ahora u € D'(R™) con soporte compacto. Por la proposicién
podemos extender de forma tnica a u para que esta sea un funcional lineal
y continuo sobre C*°(R"). En estas condiciones podemos definir la CONVOLUCION

DE u € D'(R™) CON SOPORTE COMPACTO Y ¢ € C*(R") mediante la férmula:
(u* @)(z) = u(r,¢) Yz € R"

Al igual que antes, el siguiente resultado, de prueba desarrollada con detalle en

6.35 de [12]; sigue siendo cierto.

Proposicién 1.5.4. Sea u € D'(R™) con soporte compacto y ¢ € C®(R").

Entonces:

i) To(ux @) = (Tpu) x ¢ = ux (1,0) Vo € R".
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i) ux ¢ € C(Q) y
D®(u* @) = (D) % ¢ = u * (D), Va € NI
Si ademds 1 € D(R™):
iii) u* vy € D(R™)
w) ux(¢x1p) = (uxg)x ¢ = (u*xv)*o.

Para acabar la seccién desarrollaremos la prometida definicion de convolu-
ci6én de distribuciones (cuando al menos una tiene soporte compacto) enunciando
finalmente un resultado que nos sera 1util méas tarde.

Sean w,v € D'(R"), con sop(u) o sop(v) compacto en R". Definimos L :

D(R™) — C*°(R"™) mediante
Lo =ux(vx¢), Vo€ DR").

Comprobemos que esta bien definido. Si v tiene soporte compacto entonces v *
¢ € DR") y Lp € C*(R"). Por otro lado, si el compacto es sopu v * ¢ €
C*(R") y Ly € C*(R"). Notemos que ademés 7,L = L7, Vr € R™. En estas
condiciones definimos la CONVOLUCION DE LAS DISTRIBUCIONES u,v € D'(R")
DE, AL MENOS UNA, SOPORTE COMPACTO como la distribucion uxv : D(R") — R

definida por

ux v(¢) = Lp(0) = u* (v @) (0).
Antes de proseguir comprobemos que, en efecto, u * v es una distribucién. Consi-
deremos ¢; D(En) 0. Puesto que la convolucion de distribuciones y funciones test es
continua se tiene u*@ coogs R 0. Si sopv es compacto tenemos v*gj D(LR;) 0 y usan-
do de nuevo la continuidad de la convolucién de distribuciones y funciones test
obtenemos lo que buscabamos. Si por el contrario sopu compacto basta recordar

que la extensién de u a C*°(R™) que hemos tomado para definir la convolucién de
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distribuciones de soporte compacto y funciones derivables es continua. Por tltimo
notemos que, por la prueba de[1.5.3] la distribucion u * v y la aplicacion L estan

relacionadas por la formula
Lo = (ux*xv) ¢, Vo € D(R")
es decir, u x v € D'(R™) esta caracterizada por:
(uxv)xp=ux(v*ep), Vo€ DIR").

A continuacién enunciamos algunas propiedades, cuya prueba puede encontrarse

en 6.37 de [12].
Proposicién 1.5.5. Sean u,v,w € D'(R").
i) Si sop(u) o sop(v) es compacto entonces u* v = v * u.
i) Si sop(u) o sop(v) es compacto entonces sop(u * v) C sop(u) + sop(v).

iii) Si al menos dos de sop(u), sop(v) o sop(w) son compactos, entonces (u *

V) kw =ux (vxw).

Para finalizar el capitulo comprobaremos, practicamente a modo de ejemplo,

ciertas particularidades de la medida de Dirac.

Corolario 1.5.6. Sean u,v,w € D'(R").

i) Si 0 es la medida de Dirac y o € Ny, entonces D*u = (D) * u. En particular

U =0 *u.

i) Si al menos uno de sop(u) o sop(v) es compacto entonces D*(uxv) = (D%u) %

v =ux* (D).

Demostracion.
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i) Notemos que para ¢ € D(R")
0% §(x) = 8(7.0) = o(—x) = 6(x), Vx € R".
Por i) de la proposicién y 1) de la
(D) % ¢ = ux (D) = u D*(§ % ¢) = ux D * ¢

it) Es consecuencia de i) de y de iii) y i) de la proposicién [L.5.5}

D%uxv) =D (u*xv) = ((D) *u) *v =D *v

(DY) x u) x v = (ux* (D)) x v =wux (D) *v) = ux* (D).
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Capitulo 2

Transformada de Fourier

Si bien a lo largo del capitulo anterior desarrollamos el conjunto donde re-
solveremos nuestro problema, en esta segunda parte del trabajo introduciremos
una herramienta clave para alcanzar nuestro objetivo: la transformada de Fourier.
Dedicaremos una primera seccién a recordar cémo actuaba esta aplicacion sobre
funciones complejas para después generalizar la misma al conjunto de las distri-
buciones. Tras introducir en el segundo apartado un nuevo espacio de funciones,
al que denominaremos CLASE DE SCHWARZ §,, v en el que la transformada de
Fourier resultara ser una biyeccién lineal y continua de S, en S,,, dedicaremos la
ultima seccién a un tipo muy particular de distribuciones, que llamaremos tem-
peradas y que resultaran ser los elementos de una suerte de dual topoldgico de
S,; cuya caracteristica esencial es llevarse especialmente bien con la transformada

de Fourier.

Comenzamos este capitulo aclarando la notacién que seguiremos a lo largo del
mismo. En adelante denominaremos MEDIDA DE LEBESGUE EN R"™ NORMALI-

ZADA a la medida m,, definida por

dmy,(z) = (21) ™" 2dx.

49
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Notemos que esto permite redefinir los espacios L,, asi como sus correspondientes
normas, y el producto de convolucién usando esta nueva medida en lugar de la
estandar.

Por comodidad, para t € R™ definimos una especie de EXPONENCIAL GENE-

RALIZADA mediante:
er(x) = exp(i(z - 1)) = exp(i Y _t;x;), Vo € R™.
Jj=1

Unas sencillas operaciones nos permiten comprobar que
Gt(l‘ + y) = et(x)et(y)a \V/,I’, Yy e R™

y e; resulta ser un homomorfismo del grupo aditivo de R™ en el grupo multi-
plicativo de los complejos de norma unidad. Notemos que trivialmente e;(z) =
e.(t), Vo, t € R™

Para acabar este apartado sobre notaciones comentamos qué entenderemos
por operadores diferenciales. Si a € Ny es un multi-indice definimos, para simpli-

ficar la notacion, el operador D, mediante

b (1N /1 8\
D=0 = (G5 ) ()

Notemos que ahora, para o € Ny multi-indice y t € R™:

Daet = taet.

Sea ahora P € P [C"] un polinomio de n variables de coeficientes complejos, esto

es,

PE) =) cal™ =D calft - €0, VEEC

acA a€cA

donde a C Nj es una familia de multi-indices y ¢, € C Va € A. Definimos los

operadores diferenciales (que actuardn sobre funciones infinitamente derivables)
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P(D) y P(—D) mediante

P(D)=) cuDay

a€cA

P(-D) =Y (~1)*lc,D,

a€A

y conviene darse cuenta de que P(D)e; = P(t)e;, Vt € R™.

2.1. Transformada de Fourier para funciones in-
tegrables

Recordemos ahora la definiciéon de transformada de Fourier de una funcién.
Para f € L'(R") definimos su TRANSFORMADA DE FOURIER como la funcién
f : R™ — R dada por:

f(t) = fe_dm, VteR".
RTL
En ocasiones abusaremos del lenguaje y llamaremos también transformada de
Fourier a la aplicacion que lleva f en f , que denotaremos por F. Notemos también

que

A

(fxe)(0) = f(@)e(—x)dm,x = (x)e_t(z)dm,x = f.

R” R”
Teniendo en cuenta la nueva notacién, aplicando los teoremas de Fubini, del

cambio de variable y operando obtenemos algunas propiedades basicas que reco-

pilamos en el siguiente enunciado.
Proposicién 2.1.1. Sean f,g € L*(R"). Para v € R™ fijo se tiene:
i) (of)=eof

ii) (eof) = 7of
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iii) fxg=fg

i) Si A > 0 y tomamos h : R" — C dad por h(x) = f(z/N), Vo € R,
entonces h(t) = A" f(\t).

2.2. La clase de Schwarz

En esta seccion introduciremos un tipo muy particular de funciones integrables
que conformaran un espacio idéneo para trabajar con la transformada de Fourier
definida en la secciéon anterior.

Se dice que una funcién f € C*°(R™) es RAPIDAMENTE DECRECIENTE si

sup { sup {(1+ [z[*)V|D*f(2)|}} < 0o VN € N,.

la|<N  z€R"™

Notemos que el hecho de que una funcién f € C*(R") sea rapidamente decreciente
equivale a que las funciones P- D® f estén acotadas para todo polinomio P y todo
multi-indice @ € N por una cota comin. Ademads si f € C>(Q2) es rdpidamente
decreciente P un polinomio de variable real n dimensional y coeficientes complejos
y N € Ny se tiene que |P(1+ |- )Y Df| es una funcién acotada para o € N
multi-indice tal que |o| < N, por lo que PDf € L*(R"™).

Definimos la CLASE (O ESPACIO) DE SCHWARZ como el conjunto formado

por todas las funciones rapidamente decrecientes. Esto es:

S, ={f€C®R") : sup {sup {(1+|z])V|D*f(z)|}} <oo VN €Ny}
la|<N — zeR™
Es inmediato comprobar que S,, es un espacio vectorial. Ademds, para cada N €
Ny, la aplicacién | - | : S,, — R definida por:
[flx = sup { sup {(1+[«[)"|D*f(2)[}} Vf €S,
la|<N zeR™

es una norma en S, por lo que podemos usar 1.37 de [12] y concluir que la familia

de normas asi definidas hacen de S,, un espacio vectorial topoldgico localmente



2.2. LA CLASE DE SCHWARZ 53

convexo. El siguiente resultado recoge algunas propiedades que nos seran ttiles

mas adelante. La prueba del mismo puede encontrarse en Teorema 7.4 de [12].

Teorema 2.2.1.

i) S, es un espacio de Fréchet.

it) Si p € P[R",C] es un polinomio, g € S,, y o € Ny multi-indice las aplica-

ciones

f—=Pf

f—af
f—=Df

son aplicaciones lineales y continuas de S,, en S,.
i) Si f €S, yPePR"C]|

(P(D)fy= Pf
(Pfy=P(-D)f

i) La transformada de Fourier es una aplicacion lineal y continua de S, en

S,

Antes de enunciar el teorema de inversion, el cual serd el resultado mas tras-
cendental de esta seccion, desarrollamos a modo del lema un ejercicio de calculo

de la transformada de Fourier de cierta funcién conocida.

2
Lema 2.2.2. Supongamos ¢, € C*(R"™) definida por ¢,(x) = e 55 va e R™

Entonces ¢n € Sp, on = bn y

R?’L
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Demostracion. El hecho de que ¢, € S, Vn € N es obvio. Usando la prime-
ra identidad de i) del teorema vemos que tanto qz?l como ¢; verifican la

ecuacion diferencial:
y(x) + zy'(x) = 0.

Adems4s

/dn dmn:f/+w 5 dr =1 = ¢,(0).

y por unicidad (;51 ¢1. Puesto que

I
—=

Pn () ¢1(zy) Vo= (z1,..,2,) ER"
k=1
tendremos
IO I_IGZ~5 (zx) Vo= (21,...,7,) €R"
k=1
v & = &, ¥Yn € N. Ahora la igualdad del enunciado es clara. O

El siguiente teorema pone de manifiesto la bondad del espacio S,, respecto a
la transformada de Fourier, que sera crucial para extender tal herramienta, en la

medida de lo posible, al espacio de las distribuciones. La prueba se encuentra en

7.6 de [12].

Teorema 2.2.3. Teorema de Inversion.

i) SigeS, g(x) = [pn geadm, Vr e R™

it) La transformada de Fourier es una aplicacion lineal, continua y biyectiva

de inversa continua.

iii) Si f.fe LY(R") y fo(x fRn feq.dm, Yz € R™ se tiene que f = fy casi

por doquier.
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Como consecuencia directa tenemos el siguiente resultado.
Corolario 2.2.4. Sean f,g € S,,. Se tiene:
i) [xg €S,
i) fg=f*g

Demostracion. Puesto que f, g € S, por iii) de la proposicién tenemos
F(f*9) = F(FUNF(F9) = fa = fg = F(F(f9))

y basta aplicar F~! para concluir ). Usando ahora que fg € S, tenemos por lo

recién comprobado que f xg € Sy, pues la transformada de Fourier lleva funciones

de S,, en funciones de S,,. O

Para finalizar el presente apartado enunciamos un resultado clasico que po-

demos deducir de lo desarrollado en esta seccion.

Teorema 2.2.5. Plancherel. La transformada de Fourier define una isometria

lineal de L*(R™) en L*(R™).

2.3. Distribuciones Temperadas

Dedicaremos esta tultima seccién del capitulo a adaptar los conceptos desarro-
llados en las dos primeras al espacio de las distribuciones. Comprobaremos que
podemos ver el dual topolégico de S,, como un subconjunto de D'(R"), duali-
dad que aprovecharemos para extender la transformada de Fourier a este nuevo
conjunto cuyos elementos dan nombre a este apartado. Dedicaremos el resto de
seccion a ver que determinadas propiedades de esta transformada siguen siendo

ciertas en el conjunto de distribuciones temperadas.
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El siguiente resultado, de prueba incluida en Theorem 7.10 de [12], pone de
manifiesto que la relacién entre los espacios S, y D(R") es més estrecha aun de

lo que a priori pudiera parecer.

Proposicién 2.3.1. D(R™) es un espacio denso en S, Ademds la aplicacion

inclusion de D(R") en S, es continua.

Consideremos ahora una aplicacién L : S, — R. Si denotamos a la aplicacion
inclusién por i : D(R™) — §,, tenemos que la aplicacién vy, = Loi: D(R™) — R
es un funcional lineal y continuo y por tanto u; € D'(R™). Notemos que ademsés,
por densidad, dos aplicaciones Li,Ls : S, — R no pueden generar, por este
método, el mismo funcional u : D(R") — R. Tenemos asi una fotocopia de
S! dentro de D'(R™). A los elementos de este nuevo conjunto, al que también

denotaremos por S, los denominaremos DISTRIBUCIONES TEMPERADAS.

Nota. Es conveniente darse cuenta de que los elementos de S,, son las distribu-

ciones de D'(R™) que tienen una extension continua a S,.

Como ejemplo de distribucién temperada tenemos todas las distribuciones
con soporte compacto. Si u € D'(2) de soporte compacto, podemos encontrar
Y :Q — Recon Q=0 C R" de forma que sop(u) C Qy ¢(z) = 1Ve € Q.
Definimos u* : S,, — R” por v*(f) = uw(yf) Vf € S,. Si fj = 0 en S, entonces
D* f; — 0 uniformemente, D%(¢f;) — 0 uniformemente y ¢ f; — 0 en D(R™). En
tal caso u* es continua en S, y puesto que u*(¢) = u(¢), Vo € D(R") tenemos
que u* es extension de u. También son ejemplos de distribuciones temperadas
los polinomios, las funciones medibles cuyo valor absoluto esta acotado por un
polinomio y toda funcién g € LP(R™) con 1 < p < oo como se deduce de la

siguiente proposicion:

Proposicién 2.3.2. Sean p > 1 N € Ny y g : R" — R wuna funcion medible
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verificando

C:= |(14 |2*) "N g(z)|Pdm,x < co.
Rn

Entonces g es una distribucion temperada.

Demostracion. Supongamos primero p > 1 y consideramos la distribucion A €
D'(Q) dada por Af = [g. fg dm,. Tomemos ¢ > 0 tal que ]lj + % = 1. Aplicando
la desigualdad de Holder:

Q=

Af] < O / (1+ |2)Ve| f () [dim)

n

Tomemos ahora M > 0 de forma que
B= / (1 + |2)N=™4 dm,x < co.

Entonces

n

AFLS CH([ (o OV LY@ dm) <
1 1
< C% sup {(1+ o)1)} B
TER™
y A es continua en S,. Ahora el caso p = 1 es claro. O

La prueba de la siguiente proposicién es consecuencia inmediata de las defi-

niciones y de ii) del teorema [2.2.1{

Proposicién 2.3.3. Sean g € S,,, u € S, y P € P[R",C]. Para todo o € N}

multi-indice se tiene que las distribuciones D*u, Pu y gu son temperadas.

En este punto estamos en condiciones de generalizar la transformada de Fou-
rier a nuestro caso. Para u € S/, definimos la TRANSFORMADA DE FOURIER DE

LA DISTRIBUCION TEMPERADA u como la distribucién Fu : S, — R dada por

Fu(¢) = i(¢) = u(d) Yo €S,
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Notemos que, puesto que la aplicacion ¢ — ngS es una aplicacion lineal y continua
de S, en S, la transformada recién definida es en efecto un elemento de S),.
Comprobemos que adem4s la transformada de funciones f € L'(R™) coincide con

la transformada de la distribucién uy asociada:
Up () = us(d) = s fodm,, =
_ / 1) [ 6(0)e-a(o) dmoy dmye =
B /n o) o f(x)e_y(x) dm,x dm,y =
= | ¢f dm,.
Rn

Continuamos enunciando el resultado equivalente al teorema de inversién enun-

ciado en la seccién anterior.

Teorema 2.3.4.

i) La transformada de Fourier es una aplicacion lineal, continua de y biyectiva

S, en S, de inversa continua.

ii) Siue S, yP e PR C| entonces:

Nota. La topologia que consideramos en S!, es la topologia débil* inducida por
S,. Ademds, si denotamos por F : S, — S, a la aplicacion Fu = G tenemos

Fru=uy Flu= Fu.
Lema 2.3.5. Sea P € P[R",C] un polinomio y ¢ la medida de Dirac. Se tiene:

i)i=0yd=1
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— ~

i) P(D)§ =P y P =P(-D)5

iii) Seaw € S y consideremos u determinada por u(¢p) = u(¢). Entonces o=
v) =20

Demostracion. Comenzamos fijando ¢ € D(R") y u € S;,. Notemos que i) es
consecuencia directa del teorema [2.3.4, Operamos para comprobar las demads

igualdades.

1(6) = [ b dm, = 0(0) = 5(0)

~

0(¢) = 3(3) = (0) = 1(9)

donde hemos empleado el teorema de inversion [2.2.3, Por otro lado

Fru(¢) = u(F*(9)) = u(9) = a(¢) ¥

6(¢) = 6(¢) = ¢(0) = d(¢).
O

Definimos la CONVOLUCION DE LA DISTRIBUCION TEMPERADA u € S/, Y LA

FUNCION RAPIDAMENTE DECRECIENTE ¢ € S,, por
(ux* @)(x) = u(r,¢) Yz € R™

Destacamos por su relevancia en operaciones posteriores un iltimo resultado. Su

prueba se encuentra en Theorem 7.19 [12].
Teorema 2.3.6. Sean ¢ € S, y u € S). Entonces:
i) uxpeCeRY) y

D¥(ux*¢) = (D) x ¢ =ux* (D) a € Nj.
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i) ux ¢ es una distribucion temperada.
iii) ux = .

w) (ux @)« =ux(dpx1h) Y €S,.



Capitulo 3

Teorema de

Ehrenpreis-Malgrange

En este capitulo llegaremos al punto culminante del trabajo. Como veremos
mas adelante, el teorema de Ehrenpreis-Malgrange afirma que para cualquier
operador diferencial en derivadas parciales no idénticamente nulo y de coeficientes
complejos constantes P € C[0y, ..., d,] fijada v € D'(R™) con soporte compacto

podemos encontrar una distribucién £ € D'(R™) que sea solucién del problema
PDyu=v [

Comenzaremos aclarando el concepto de solucion fundamental, en el cual nos
apoyaremos fuertemente para alcanzar nuestro objetivo. Una vez entendido esto
veremos cémo estas soluciones especiales nos permiten generar las (que no tienen
por qué ser unicas) de [x| para finalmente, tras alguna que otra consideracion

previa, desarrollar la demostracién del teorema.
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3.1. Soluciones fundamentales

En lo que respecta a los operadores diferenciales, durante este tltimo capitulo
utilizaremos la notacion estandar en lugar de la que utilizamos a lo largo del
capitulo anterior con el objetivo de simplificar la notacién. Asi dado P € Clzy, ..., x,]
de la forma P(z) = > co2®, o = (21, ...,2,) € R" con ¢, € C para todo o € N
multi-indice llamaremos OPERADOR DIFERENCIAL ASOCIADO A P al operador
P(D) =Y ¢, D Ademads si P es un polinomio de grado m € Ny denotaremos

por P,, a la PARTE PRINCIPAL DE P:

y llamaremos polinomio conjugado asociado a P al polinomio
P(x) = Z@xa, Vr e R"

que verifica P(z) = P(z) ¥z € C". Como tltimo comentario en lo que a no-
tacién se refiere recordamos que, dada ¢ € D(R™) habfamos definido ¢(z) =
¢(—x), Yz € R™. Para una distribucién T € D'(R") escribiremos T para denotar

a la distribucién que actia de la forma
T(¢) =T(¢) VYo € D(R")

Como es natural, diremos que una distribuciéon E € D'(R™) es una solucién de

[*] cuando para toda ¢ € D(R") se tenga la igualdad

Cuando E sea una solucién de [x] para v = ¢, donde ¢ denota la medida de Dirac
introducida en la definicién [1.1.16, diremos que F es una SOLUCION FUNDAMEN-
TAL PARA EL OPERADOR P (D). Comprobemos a continuacién que, conocida una

solucién fundamental Ey para P(D) una solucién de [*] vendra dada por Ey * v.
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En efecto, aplicando el corolario [1.5.6 que nos permite introducir la derivada en

la convolucién asi como utilizar que la medida 0 hace de neutro para tal producto:
P(D)(Ey*v) = (P(D)Ey) *v=20%v=n.

Por lo que nuestro problema se reduce a probar que siempre podemos encontrar
una solucién fundamental asociada a un operador P(D) dado.
Para finalizar esta seccién exponemos un par de lemas técnicos que nos ayu-

daran en el apartado final.

Lema 3.1.1. Sea m € N y consideremos A, ..., A\, € C numeros complejos

distintos. Entonces la unica solucion del sistema de ecuaciones

sikG[O,m—l]ﬂNo

e 0
> =
§=0 1

stk=m

viene dada por a; = [[;g ey (N — M)

Demostracion. Como los Ag, ..., A, € C son diferentes el determinante de Van-
dermonde no se anula y existe una tnica solucién (ay, ..., a,,) € C™*! del sistema.

Definamos ¢ : C — C de la forma

q(z) = H (z—Aj), VzeC.

J

Notemos que puesto que ¢ tiene un ntimero finito de ceros, en concreto m + 1,
podemos tomar Ny € N suficientemente grande de forma que todos ellos estén
contenidos en la bola abierta centrada en el origen y de radio Ny. Si ahora apli-
camos el teorema de los residuos:

m

Zk Zk: m )\?
—— dz = 273 lim (z — \;)—— = 2m1¢
/|zN0 q(z) s za/\j( ])q(Z) Z .
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para k € [0, m] N Ny. Como tal identidad es vélida para todo N > Nj se tiene:

m k 1 k
Z/ / Z—dz:h'm—,/ Z—dz:
p ey " omi 2l=No 4(2) N—o0 20 Ji,1—n q(2)

1 (% (Nett 0 stk <m
TN I Qc\ L
N—oo 2mi J, q(Nett) 1 Sik=m
Puesto que ¢'(A;) = [} 1z, (Aj — Ax) la prueba queda completada. O

Lema 3.1.2. Sean ( € C", T € D'(R"), y S € S,,. Se verifica:
i) P(D)(e$OT) = e¢O(P(D 4 O)T).
i) P(D)F~'S = FY(P(i(-))S).
i) e¢OP(=D + () = P(=D + 2¢)(e1)6)

donde hemos utilizado (-) para denotar a la variable n-dimensional y F para

indicar la transformada de Fourier.

Demostracion. Tanto la prueba de i) como la de 4i) y 7ii) se basan en sendas ca-
denas de igualdades. Notemos que, por linealidad, es suficiente probar la igualdad

para ciertos monomios de P. Fijado o € Nj multi-indice:

(D +¢)°T) = V) (Zc 5CP D™ 5) T = anrBCBeC(')DO‘*BT =

BLa BLa
= Z oDV DT = D (eS0T,
B<a
Donde hemos usado el binomio de Newton y la formula de Leibniz para producto
de funciones y distribuciones desarrollada en [1.2.1] Para la segunda identidad
utilizaremos el teorema 2.2.1] teniendo en cuenta el cambio de notacién. Concre-

tamente, si fijamos ¢ € S, y a € Nj multi-indice y aplicamos que F(D%p) =
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(i(+))*F¢ se tiene:

DUF18)(9) = (~1) I F1S(D) = (-1) I F*S(D¢) =
= (-D)IS(F*Dg) = (-1 S(FDp) = S(FD¢) =
= S((i())"F9) = ((())"S)F) = ((()"S)(F¢) =

= FH(G0))"9))(©).

Utilizaremos ) para probar la tltima identidad. Si fijamos ¢ € D(R™) y operamos:
“O(=D +)"0(¢) = (=1)e< (D = ()*3(¢) = (- 1)'“'62“')@—“)(19 = 0)"0(¢) =
2 (~)I0 D (e 508)(0) = (<11 D (e <O8)(e00) = (V) (D" (e00)) =

— (efC(-)é) <Z CagDaﬁ(eZC('))Dﬁ((]ﬁ)) *C )5 < ZC (20)* BDﬁ ¢)> _

BLa B<a

= (¢<05) (Z caﬁ@oa%w) = 3 anl20)H(e08) (D(9)) =

B« B<La

Y cap(20) (=1 DP(V5)(9) = (2¢ — D) (£V5)(9)-

B

3.2. Teorema de Ehrenpreis-Malgrange.

Teorema 3.2.1. Ehrenpreis-Malgrange Sean P € C|xy, ..., x,] un polinomio
en R™ no idénticamente nulo y v € D'(R™) una distribucion con soporte compacto.
Entonces el problema

PDu=v  [¥

admite una solucion E € D'(R™).

Demostracion. El razonamiento usado en la seccion anterior nos permite simplifi-
car nuestro problema a encontrar una solucion fundamental para el operador dife-

rencial P(D). Puesto que P no es idénticamente nulo podemos encontrar n € R”
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tal que P, (n) # 0 donde m € N es el grado de P. Escojamos también niimeros
reales Ao, ..., A, € R distintos entre si para definir a; = [[[L,,;(\ — M)~y
consideremos la distribucion

_ 1 - a0 F1 P(i(-) + Ajn)
Fo P.,(2n) ; ’ d (P(i(--)+km))

donde hemos usado la notacién (+) y (:-) para referirnos a las dos variables n
dimensionales distintas entre si que manejamos. El resto de la prueba consistira
en demostrar que Ej es la solucién fundamental que buscamos. Puesto que para
A € R fijo el conjunto N = {Q eR™: P(iC+ \n) = O} es de medida nula en R"

tenemos

P(i(-) +An

st - POTED
(i(-) + An)

y Ey esta bien definida. Aplicando sucesivamente i) y i) del lema (3.1.2;

€ L*(R") C S,

P(D)(eVF18) = efOP(D 4 ) F 18 = SO FL(P(i(-) + ¢)S)

para ¢ € R” fija. Sustituyendo:

P(D) (W“fl (%)) = MO FYP>(-) + Ap)).

Puesto que ademéds por el lema tenemos F(p(D)Jd) = p(i(-)) para todo

polinomio p € Cl[zy, ..., x,] se tiene:
FHPG(-) + M) = FH(P(=i(-) + M) = P(=D + M)d

de donde, usando primero el lema y el hecho de que e*)§ = §, deducimos

que :

P(D) (Mf—l (—P(?(j) . ””)) — MOB(-D 4 )i =

m—1
= P(=D + 2Xp)(e"V5) = P(=D + 2)n)(8) = "B, (20)6 + Y T3,
k=0
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para ciertas distribuciones T € D’(R"™). Por nuestra eleccién de los coeficien-
tes aop, ..., a,,, basta aplicar el lema para concluir que Fy es una solucion

fundamental para el operador P(D).
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Apéndice A

Apéndice: Una funcién meseta en

R

En esta seccién construiremos una funcién A € C*(R) con soporte contenido
en el intervalo [—2,2], simétrica y tal que h(t) = 1Vt €] — 1,1[. Partimos de la
funcién f : R — R definida por

sit>0

0 sit <0

No es dificil comprobar que f € C*®(R), pues es suficiente comprobar que y su
grafica serd de la forma que aparece en la figura [A.]

Definimos ahora g : R — R por

._ f(®)

una funcién de clase C* cuyo grafo representamos también en la figura Por

ultimo tomamos h : R — R dada por

h(t) :=g(t+2)-g(2—1t)VteR
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que sera la funcion de clase C* que buscabamos.

(a) Grafo de f (b) Grafo de g

(c) Grafo de h

Figura A.1: Grafos
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