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Resumen (en inglés)

The final goal of this project is the development of distribution theory in

order to give an answer to a classical problem: the existence of solution of partial

differential equations. We have decide to separate the text into three different

parts: a first chapter introducing distribution theory, a second one dedicated

to expose the fundamental tool that we will use and, finally, the third chapter

exclusively based on the proof of the Ehrenpreis-Malgrange theorem, which, under

certain conditions, grants the existence of such solution.

During Chapter 1: Distributions and Chapter 2: Fourier transform we will fo-

llow the same line as W. Rudin in his work Functional Analysis [12]. Of course, we

have not included proofs of all the results which appear in this project. We develop

those that, according to our criterion, are useful in order to the comprehension

of the concepts which are treated here. For this same reason, the proof of the

theorem which gives name to Chapter 3: Ehrenpreis-Malgrange theorem, belongs

to the paper A New Constructive Proof of the Malgrange-Ehrenpreis Theorem

wrote by P. Wagner about that same theorem published in The American

Mathematical Monthly [13].

Our main aim in the first chapter will be to find a space where we can sol-

ve our problem. The elements of such space should verify some basics rules of

calculus and let us, as possible, generalize the classical notions of function and

differentiability. We will obtain it after a bit of work.
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6 RESUMEN

In the first section from Chapter 1 we will fix once and for always a non-

empty open set Ω in Rn in order to define a topology in the vector space C∞(Ω)

of differentiable complex functions on Ω. As we will see, such topology makes it

into a Fréchet space with the Heine-Borel property such that Cauchy sequences

will converge. Then we will consider the union of all of the topological subspaces

that consist on complex differentiable functions whose support lies on a compact

subset K ⊂ Ω when we variate the compact set K in order obtain the collection

of differentiable functions whose support lies on Ω which will be denoted as D(Ω)

and its elements will be named as test functions. This set will be provided with

a new topology very similar to the one constructed before in order to consider

the topological dual space D′(Ω), the space of distributions that gives name to

the chapter. The main result on this first section will be a characterization of

the continuity of linear applications on D(Ω) which will allows us to work with

distributions without take into account their topological nature:

Proposition. Let Λ be a linear functional on D(Rn). The following conditions

are equivalent:

i) Λ ∈ D′(Ω).

ii) To every compact K ⊂ Ω there exist N ∈ N0 and C > 0 such that:

|Λφ| ≤ C||φ||N ∀φ ∈ D(Ω) : sop(φ) ⊂ K

where || · ||N is given by ||φ||N = máx
{
|Dαφ(x)| : x ∈ Ω, |α| ≤ N

}
.

At this point we can introduce the first example of a distribution that is not a

function in C∞(Ω): the famous Dirac measure δx0 centred in x0 ∈ Ω which maps

a function φ ∈ D(Ω) into the number φ(x0).

The problem of inducing classical calculus in this new space of distributions

will be addressed in the second section. We will first notice that it is possible to
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identify some of the elements of D′(Ω) with locally integrable complex functions

on Ω to continue defining a sort of derivative in D′(Ω) such that when we con-

sider the derivative of elements equivalent to functions we obtain the elements

equivalent to the derivative of those functions. Later, we will define the product

of functions and distributions and prove that we can find a sort of Leibniz’s rule

when we multiply functions and distributions to end stating some properties of

sequences of distributions and defining the usually called weak limit.

Proposition. Leibniz formula. Let Λ ∈ D′(Ω) and f ∈ C∞(Ω) be a distri-

bution and a function respectively. Then, the next equality holds for every multi-

index α ∈ Nn
0 :

Dα(fΛ) =
∑
β≤α

cαβ(Dα−βf)(DβΛ)

where cαβ ∈ Q are known numbers.

The next section treats about local properties of distributions. We start de-

fining when two distributions will be equal on an open set ω ⊂ Ω. As we will

see, that definition will allow us to describe a distribution globally from its local

behaviour. The proof of that needs from partitions of unity that we will have

constructed just before.

After generalize the notion of support of functions into our case, we will do the

same with convolutions. We first infer how should act convolution when factors

are a distribution and a test function in order to, after prove that some properties

of convolution of functions are still verifying, define, under certain hypothesis, the

convolution of two distributions. At this point we remark a pair of results that

will be useful later:

Proposition. Consider u, v, w ∈ D′(Rn).

i) If supp(u) or supp(v) is a compact set, then

u ∗ v = v ∗ u
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ii) If at least two of supp(u), supp(v) or supp(w) are compact sets, then

(u ∗ v) ∗ w = u ∗ (v ∗ w)

Corollary. Consider u, v, w ∈ D′(Rn) and fix a multi-index α ∈ Nn
0 . The next

statements hold:

i) Dαu = (Dαδ) ∗ u. In particular u = δ ∗ u

ii) If at least one of sop(u) or sop(v) are compact sets then

Dα(u ∗ v) = (Dαu) ∗ v = u ∗ (Dαv)

If in the first part of this work we constructed the space where we will solve

our problem, in Chapter 2 we will introduce the crux tool which we will use in

order to reach our target: the Fourier transform. We dedicate a first section to

remember how that transform acts over complex integrable functions in order to

generalize it to the space of distributions later.

After introduce, in a second section, a new space of functions, which will be

named the Schwarz class Sn, consisting on the usually called rapidly decreasing

functions. In this space Fourier transform will result to be a linear and continuous

bijection (whose inverse application is also continuous) from Sn into Sn (the

inversion theorem). Among the results we expose during this chapter we can

highlight the following one:

Theorem.

i) Sn is a Fréchet space.

ii) If P ∈ C[x1, ..., xn] is a polynomial, g ∈ Sn and α ∈ Nn
0 is a multi-index,

then the mappings

f → Pf f → gf f → Dαf
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are continuous linear mappings of Sn to Sn.

iii) If f ∈ Sn and P ∈ C[x1, ..., xn] is a polinomial, then:

F(P (D)f) = P (i(·))f̂ and

F(Pf) = P (i(·)) f̂

where (·) represents the n-dimensional variable.

We will dedicate the last section in this chapter to a very special kind of

distributions, usually called tempered distributions S ′n, which will be a sort of

topological dual space of Sn and, therefore, they will inherit the goods proper-

ties of Sn respect on Fourier transform. We will se that those distributions are

not but the elements in D′(Rn) which posse continuous extensions to Sn. The

first examples of those distributions may be distributions with compact support,

polynomials, measurable functions whose absolute value is majorized by some

polynomial and every function in Lp(Rn) with 1 ≤ p ≤ ∞. In the same line of

what we do with Fourier transform in Sn, we remark the next result:

Theorem.

i) The Fourier Transform is a linear continuous bijection of S ′n onto S ′n, of

period 4, whose inverse is also continuous.

ii) Si u ∈ S ′n and P ∈ C[x1, ..., xn] is a polynomial, then

F(P (D)u) = P (i(·))û and

F(Pu) = P (i(·)) û

In the third and last chapter we will reach the culminating point of this

project. As we will see, the Ehrenpreis-Malgrange theorem allows us to prove
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that, under certain hypothesis on v ∈ D′(Rn), we can find a solution in the

distribution sense to the problem:

P (D)u = v [∗]

We will first clarify the concept of fundamental solution, which will be the key

in order to reach our goal, since those special solutions will allows us to generate

the solutions of [∗]; to, finally, make the proof of the result that gives name to the

chapter. Before doing that, we will introduce a couple of technical lemmas. The

first one treats about solving a linear equation system consisting of a Vander-

monde matrix and certain vector from the canonical basis of Rn, whose proof will

be made through residue theorem. The second one will be a collection of three

formulas inferred from theorems, propositions, lemmas and corollaries dispersed

throughout the document. The last result in this project will be, as announced,

the Ehrenpreis-Malgrange theorem.

Theorem. Ehrenpreis-Malgrange. Let P ∈ C[x1, ..., xn] be a non constant

complex polynomial in n ∈ N real variables and v ∈ D′(Rn) with compact support.

Then the problem

P (D)u = v

has a solution E ∈ D′(Rn).

Instead of developing the classical proof, based on Hahn-Banach theorem;

the one we introduce here will be the constructive proof which P. Wagner

published in The American Mathematical Monthly [13] as we said before. Due

to this theorem highlights the utility of distribution theory in its application to

linear partial differential equations, already very early constructive proof were

found. The proof we will show consist on constructing the fundamental solution

as a sum of finitely many distributions.



Introducción

El objetivo del presente trabajo es el desarrollo de la teoŕıa de distribucio-

nes con el fin de dar respuesta a un problema clásico: la existencia de solución de

ecuaciones diferenciales en derivadas parciales. En lo referente a estructura hemos

decidido separar el escrito en tres partes diferenciadas: un primer caṕıtulo intro-

ductorio a la teoŕıa de distribuciones, un segundo tema en el que presentaremos la

herramienta fundamental que vamos a utilizar y, finalmente, el tercer caṕıtulo que

dedicaremos exclusivamente a la prueba del teorema de Ehrenpreis-Malgrange el

cual, bajo ciertas condiciones, garantiza la existencia de tal solución.

Como veremos más adelante la necesidad de la noción de distribución se basa

en una premisa muy simple: derivar las funciones que no son derivables. Una

motivación clásica consiste en pararse a analizar la conocida fórmula∫
]a,b[

u(x)v′(x) dx = ĺım
x→b

u(x)v(x)− ĺım
x→a

u(x)v(x)−
∫

]a,b[

v(x)u′(x) dx

donde a, b ∈ R con a < b y u, v :]a, b[→ R derivables y tales que u′v y v′u son

integrables. Si tomamos como v una función meseta, indefinidamente derivable y

de soporte compacto contenido en ]a, b[, la identidad anterior se convierte en:∫
]a,b[

u(x)v′(x) dx = −
∫

]a,b[

v(x)u′(x) dx

y vemos que salvo la integral, derivar u y multiplicar por v se traduce en derivar

v y hacer el producto por u. Si tomamos por definición de ser derivable que la

11
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integral del producto de u por la derivada de cualquier meseta v sea integrable,

tendremos una suerte de propiedad que verifica no sólo cualquier función derivable

sino otras muchas más. En tal caso podŕıamos redefinir la derivada de la función

u como aquella función u∗ que verifica:∫
]a,b[

u∗(x)φ(x) dx = −
∫

]a,b[

φ′(x)u(x) dx

para cualquier función meseta φ ∈ C∞]a, b[. A modo de ejemplo podemos consi-

derar el siguiente problema: encontrar una función f : R → R de forma que se

verifique la ecuación diferencial

f ′(x) = sgn(x) =

−1 si x < 0

+1 si x ≥ 0

entendida en el sentido anterior. Si tomamos f : R → R dada por f(x) = |x| =

abs(x) ∀x ∈ R y tomamos una meseta φ ∈ C∞(R) se tiene:∫
R
|x|φ′(x) dx =

∫
R+

xφ′(x) dx+

∫
R−
xφ′(x) dx =

−
∫
R+

φ(x) dx−
∫
R−
φ(x) dx = −

∫
R
φ(x)sgn(x) dx

y en cierta manera f parece ser una solución no derivable de la ecuación

propuesta. En vista de esto, da la impresión de que en este caso el problema

de encontrar una solución no radica tanto en la existencia de esta, sino más

bien en lo que nosotros entendemos por derivada. Enfocaremos el primer caṕıtulo

a dar rigor a esta forma de derivar, aunque no será este el punto de partida.

Comenzaremos dotando al conjunto de funciones indefinidamente derivables sobre

un abierto eucĺıdeo Ω ⊂ Rn de una topoloǵıa, la cual utilizaremos para definir una

nueva dentro de una colección de funciones meseta muy particulares. Al considerar

el dual topológico de este último, a cuyos elementos llamaremos distribuciones,

nos toparemos con la grata sorpresa de que, además de representantes de todas
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las funciones de C∞(Ω), podemos encontrar elementos que se llevan muy bien

no sólo con esta forma de derivar sino también con reglas clásicas del cálculo.

En el segundo caṕıtulo trataremos de extender la noción de transformada de

Fourier que conocemos para funciones integrables a este nuevo contexto para,

finalmente, comprobar en el último mediante el teorema de Ehrenpreis-Malgrange

que este espacio no sólo es el idóneo para plantear el problema, sino también para

resolverlo.

De alguna manera, lo expuesto aqúı nos recuerda a la construcción del cuerpo

complejo C. Part́ıamos del problema de encontrar una ráız de un polinomio con

coeficientes reales, que no siempre pod́ıamos resolver en R, y configurábamos un

ambiente nuevo en el que todas las ecuaciones tuviesen solución. Nuestro caso es

similar: partiendo del problema de encontrar las soluciones de una ecuación (di-

ferencial) desarrollaremos una nueva teoŕıa, que tendrá importancia en śı misma,

a partir de la cual podremos dar respuesta a nuestro problema.

En el desarrollo de los dos primeros caṕıtulos de este documento nos hemos

basado esencialmente en la obra de W. Rudin Functional Analysis [12],mientras

que la prueba del teorema que da nombre al tercero procede de un art́ıculo de P.

Wagner publicado en The American Mathematical Monthly [13].

Tal prueba, a diferencia de las pruebas clásicas, basadas en la aplicación del

teorema de Hahn-Banach, se trata de una demostración constructiva. Puesto que

este resultado pone de manifiesto la utilidad de la teoŕıa de distribuciones en

lo referente a su aplicación al campo de las ecuaciones diferenciales, ya desde

su publicación la comunidad matemática comenzó a buscar demostraciones que

permitiesen calcular la solución de forma expĺıcita. El prototipo de todas ellas

es la denominada ”escalera de Hörmander” que emplea particiones de la unidad

(ver [11]), no obstante la fórmula obtenida depende de los ceros del polinomio

y no es muy expĺıcita en este sentido. Será en 1994 cuando H. König publique
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una nueva prueba consistente en representar la solución fundamental integrando

la transformada de Fourier de ciertas funciones de módulo unidad (ver [6]). La

prueba que presentaremos aqúı consiste en una simplificación de este procedi-

miento, construyendo la solución buscada como suma finita de distribuciones.

Por último comentamos que no hemos incluido con detalle las demostracio-

nes de todos los resultados que aparecen en este escrito. Desarrollamos aqúı

únicamente las que, a nuestro criterio, son útiles para aprender a manejar los

conceptos con los que trabajamos. Por la misma razón nos hemos decantado por

la citada prueba de P. Wagner en lugar de la desarrollada por Rudin en el ya

mencionado libro.



Caṕıtulo 1

Distribuciones

La finalidad de este primer caṕıtulo no es otra que confeccionar un espacio

que pueda ser candidato a la resolución de nuestro problema. Los elementos de

tal conjunto, a los que llamaremos distribuciones, deberán respetar ciertas reglas

clásicas del cálculo y permitirnos generalizar, en la medida de lo posible, las

nociones tradicionales de función y diferenciabilidad.

Dado ∅ 6= Ω = Ω0 ⊆ Rn un dominio en Rn definiremos una topoloǵıa lo-

calmente convexa en el espacio vectorial C∞(Ω,C) en la cual las sucesiones de

Cauchy convergerán. Si ahora fijamos un compacto K ⊂ Ω podemos considerar

el subespacio de funciones derivables de soporte contenido en K en cual po-

dremos dotar de la topoloǵıa inducida. La unión de todos estos espacios nos

permite considerar un nuevo conjunto: el subespacio de funciones con sopor-

te compacto y contenido en Ω, al que denotaremos D(Ω), que será dotado de

una nueva topoloǵıa ı́ntimamente ligada a las anteriores y cuyo dual topológico,

D′(Ω) :=
{
φ : D(Ω)→ C : φ es lineal y continua

}
, será el conjunto buscado.

Posteriormente comprobaremos que, efectivamente, en D′(Ω) podemos encon-

trar una fotocopia de C∞(Ω) aśı como definir una nueva forma de derivar que

generaliza a la derivada clásica. Tras analizar detenidamente alguna que otra

15



16 CAPÍTULO 1. DISTRIBUCIONES

propiedad de las distribuciones, generalizaremos también el producto de convo-

lución, que, como veremos, será clave en la resolución de nuestro problema.

1.1. Funciones Test y Distribuciones

Dedicaremos esta primera sección a formalizar la construcción del espacio que

buscamos, no sin antes aclarar la notación que vamos a seguir. Fijado n ∈ N,

emplearemos el término multi-́ındice para referirnos a la n-upla

α = (α1, ..., αn)

de enteros no negativos αk para k ∈ [1, n] ∩ N. Tal n-upla tendrá asociada el

operador diferencial

Dα =
(

∂
∂x1

)α1

...
(

∂
∂xn

)αn
= Dα1

1 · · ·Dαn
n

de orden

|α| =
n∑
k=1

αk

siempre que tales derivadas parciales estén definidas. Además, entenderemos por

|α| = 0 que Dαf = f . Dados dos multi-́ındices α y β de n ∈ N componentes

definimos la suma de multi-́ındices como

α + β := (α1 + β1, ..., αn + βn)

y escribiremos β ≤ α cuando se verifique que βj ≤ αj ∀j ∈ [1, n] ∩ N. En tal

situación también podemos definir la diferencia de multi-́ındices mediante:

α− β := (α1 − β1, ..., αn − βn).

Teniendo en cuenta esto, fijado ∅ 6= Ω = Ω0 ⊆ Rn (donde Ω0 denota el interior

de Ω) diremos que una función f : Ω→ C es de clase C∞, lo cual denotaremos
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por f ∈ C∞(Ω), si Dαf ∈ C(Ω), esto es, si Dαf tiene sentido y es continua; para

todo multi-́ındice α.

Recordemos ahora que el Soporte de una función f : Ω → C se define

como

sop(f) :=
{
x ∈ Ω : f(x) 6= 0

}
donde hemos usado la barra superior para denotar la clausura o cierre del con-

junto.

Por último, comentamos que si x ∈ Rn y α es un multi-indice, escribiremos

xα para referirnos a la expresión:

xα := xα1
1 · · · xαnn .

Una topoloǵıa para C∞(Ω)

Consideremos ahora un subconjunto compacto K ⊂ Rn. Definimos el con-

junto DK como la colección de funciones de clase C∞ cuyo soporte se encuentra

contenido en K:

DK :=
{
f ∈ C∞(Rn) : sop(f) ⊂ K

}
y notemos que si K ⊂ Ω el conjunto DK puede identificarse con un subespacio

de C∞(Ω).

Nuestro objetivo es dotar a C∞(Ω) de una topoloǵıa que, como veremos, estará

ı́ntimamente ligada con la noción de convergencia uniforme.

Teorema 1.1.1. En el espacio vectorial C∞(Ω) podemos definir una topoloǵıa

localmente convexa τ̃ verificando:

i) El espacio topológico (C∞(Ω), τ̃) es un espacio de Fréchet, esto es, la topo-

loǵıa τ̃ , además de ser localmente convexa, está inducida por una métrica

completa e invariante por traslaciones.
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ii) En (C∞(Ω), τ̃) se cumple la propiedad de Heine-Borel.

iii) Para cada compacto K ⊂ Ω, el subespacio DK es un cerrado en τ̃ .

Demostración. Comenzamos tomando una sucesión de subconjuntos compactos

de Ω
{
Ki

}
i∈N tal que Ki ⊂ Ki+1 y Ω =

⋃
i∈N

Ki y, fijado N ∈ N, definimos

seminormas pN en C∞(Ω) por

pN(f) := máx
{
|Dαf(x)| : x ∈ KN , |α| ≤ N

}
, f ∈ C∞(Ω). (1.1)

Tal colección define una topoloǵıa τ̃ en C∞(Ω) que será metrizable, localmente

convexa e invariante por traslaciones (ver 1.37 y 1.38 (c) en [12]) y que viene

determinada por la base de entornos centrada en cero definida por:

β̃ :=
{
VN :=

{
f ∈ C∞(Ω) : pN(f) <

1

N

}
: N ∈ N

}
.

Para entender cómo funciona esta topoloǵıa resulta imprescindible relacionarla

con la noción de convergencia. Sean f ∈ C∞(Ω) y
{
fn
}
n∈N ⊂ C

∞(Ω) una sucesión

de funciones convergiendo a f en la topoloǵıa τ̃ . Entonces:

fn
τ̃→ f ⇐⇒ ∀VN ∈ β̃ ∃ n0 ∈ N : ∀n > n0 fn − f ∈ VN ⇐⇒

⇐⇒ ∀N ∈ N ∃ n0 ∈ N : ∀n > n0 pN(fn − f) <
1

N
⇐⇒

⇐⇒ ∀N ∈ N ∃ n0 ∈ N : ∀n > n0 máx
{
|Dα(fn−f)(x)| : x ∈ KN , |α| ≤ N

}
<

1

N
,

que es precisamente la convergencia uniforme sobre compactos de Ω de
{
Dα(fn)

}
n∈N

a Dα(f) para todo α multi-́ındice de orden |α| ∈ N0.

Como consecuencia inmediata destacamos un hecho que nos será útil en lo

sucesivo: puesto que (C∞(Ω), τ̃) es un espacio métrico, la continuidad de funciones

está caracterizada mediante sucesiones y dado x0 ∈ Ω la aplicación φx0 : C∞(Ω)→

R definida por φ(f) = f(x0) ∀f ∈ C∞(Ω) es continua en esta topoloǵıa.
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Con esto presente, comprobar que los DK son cerrados en τ̃ no es complica-

do, pues estos conjuntos no son más que la intersección de los núcleos de estas

aplicaciones, para x variando en el complementario de K:

DK =
{
f ∈ C∞(Ω) : f(x) = 0 ∀x ∈ Ω \K

}
=

=
⋂

x∈Ω\K

{
f ∈ C∞(Ω) : f(x) = 0

}
=

⋂
x∈Ω\K

ker(φx).

Para probar la complitud, tomamos una sucesión de Cauchy
{
fn
}
n∈N en

(C∞(Ω), τ̃). Fijado N ∈ N, encontramos n0 ∈ N tal que para p, q > n0 se tie-

ne fp − fq ∈ VN . En tal caso, |Dαfp(x)−Dαfq(x)| < 1/N ∀x ∈ KN siempre que

|α| ≤ N , por lo que cada
{
Dαfn

}
n∈N converge uniformemente en subconjuntos

compactos de Ω a una función gα (¡es equivalente!). Como sabemos que si una su-

cesión de funciones
{
fn
}
n∈N de clase C1 converge uniformemente sobre compactos

a una función h y la sucesión de derivadas
{
h′n
}
n∈N converge de la misma forma

a otra función h̃ se tiene h de clase C1 y h′ = h̃; es inmediato que g0 ∈ C∞(Ω) y

gα = Dαg0, por lo que
{
fn
}
n∈N → g en la topoloǵıa τ̃ de C∞(Ω).

Esto concluye la prueba de que tanto (C∞(Ω), τ̃) como DK con la topoloǵıa

inducida τ̃ |DK son espacios de Fréchet.

A continuación comprobamos que (C∞(Ω), τ̃) verifica la propiedad de Heine-

Borel. Supongamos entonces que E ⊂ C∞(Ω) es cerrado y acotado. Como E es

un subconjunto de un espacio métrico, basta ver que toda sucesión de elementos

de E admite una parcial convergente. Puesto que la acotación de E equivale a:

∃MN > 0 : pN(f) ≤MN ∀N ∈ N, ∀f ∈ E

podemos usar las desigualdades |Dαf(x)| ≤ MN∀x ∈ KN , |α| ≤ N para deducir

la equicontinuidad de
{
Dβf : f ∈ E

}
en KN−1 para |β| ≤ N − 1. Usando el

teorema de Ascoĺı-Arcelá y el proceso de diagonalización de Cantor(Apendix A

de [12]), para cada sucesión de elementos de E encontramos una parcial
{
fm
}
m∈N
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para la que
{
Dβfm

}
m∈N converge uniformemente en subconjuntos compactos de

Ω para todo multi-́ındice β, por lo que
{
fm
}

converge en la topoloǵıa de C∞(Ω),

como buscábamos.

Por último observemos que, al trabajar con espacios de dimensión infinita,

la propiedad de Heine-Borel implica que tanto C∞(Ω) como DK no pueden ser

espacios normados (Teorema de Riesz ).

Nota. En lo que resta de documento haremos el abuso de notación estándar e

identificaremos el espacio topológico (C∞(Ω), τ̃) con C∞(Ω).

Finalmente, resaltamos en una proposición la caracterización de la convergen-

cia en esta topoloǵıa usada en la demostración anterior.

Proposición 1.1.2. Sean fn ∈ C∞(Ω) y f ∈ C∞(Ω). Equivalen:

i) fn
τ̃→ f .

ii) La sucesión
{
Dα(fn)

}
n∈N converge uniformemente sobre compactos de Ω a

Dα(f) para todo milti-́ındice α ∈ Nn
0 .

El espacio de las Funciones Test

Al igual que antes, tomemos ∅ 6= Ω = Ω0 ⊂ Rn y para cada K ⊂ Ω compacto

consideremos el conjunto DK asociado. Definimos el conjunto de Funciones

Test (sobre Ω) como la unión de todos estos DK :

D(Ω) =
⋃

K comp. de Ω

DK

Es muy fácil comprobar que D(Ω) es un espacio vectorial bajo las operaciones

usuales de suma y producto por escalares sobre funciones complejas. Además, es

claro que:

φ ∈ D(Ω)⇐⇒ φ ∈ C∞(Ω) y sop(φ) ⊂ Ω es compacto
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Consideremos ahora las normas

||φ||N := máx
{
|Dαφ(x)| : x ∈ Ω, |α| ≤ N

}
para φ ∈ D(Ω), N ∈ N0 (1.2)

La propia definición de éstas nos sugiere la idea de que las restricciones de

tales normas a un DK inducirá la misma topoloǵıa en DK que las seminormas pN

definidas en la fórmula 1.1 a partir de cierta sucesión de compactos
{
KN

}
N∈N. En

efecto, dado K ⊂ Ω compacto podemos encontrar N0 ∈ N tal que K ⊂ KN ∀N ≥

N0. Además, si N ≥ N0 se tiene ||φ||N = pN(φ) ∀φ ∈ DK . Por otro lado, puesto

que

||φ||N ≤ ||φ||N+1 y pN(φ) ≤ pN+1(φ)

la topoloǵıa que induce cada familia de seminormas no depende del primer valor

de N , esto es, del menor compacto de la sucesión,(basta comprobar que cada

par de topoloǵıa tiene los mismos abiertos) por lo que concluimos que ambas

topoloǵıas de DK coinciden y una base de entornos centrada en cero será:

Vn :=
{
φ ∈ DK : ||φ||N < 1

N

}
, N ∈ N.

Nota 1.1.3. Estas normas definidas en la fórmula 1.2 definen una topoloǵıa

metrizable localmente convexa en D(Ω), sin embargo tal topoloǵıa no es completa.

Basta tomar Ω = R y φ ∈ D(R) tal que

sop(f) ⊂ [0, 1] , φ(x) > 0∀x ∈]0, 1[.

Definiendo, para m ∈ N

ψm(x) :=
m∑
k=1

1
k
φ(x− k)

tenemos que {ψm} es una sucesión de Cauchy en esta topoloǵıa, pero su ĺımite

no tiene soporte compacto y por tanto no puede ser un elemento de D(R). Para

convencerse de esto, basta ver la forma de, por ejemplo, la función ψ20 obtenida
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a partir de φ(t) := h(4 ∗ t − 2) ∀t ∈ R donde h ∈ C∞(R) es la función meseta

definida en el apéndice A. Los grafos de φ y ψ20 están recogidos en la figura 1.1
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0.2

0.4

0.6
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(a) Grafo de φ

5 10 15 20
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0.3

0.4

(b) Grafo de ψ20

Figura 1.1: Grafos

A continuación definiremos una topoloǵıa τ en D(Ω) localmente convexa en

la que toda sucesión de Cauchy śı converje, aunque a cambio, sacrificaremos que

tal topoloǵıa sea metrizable.

Teorema 1.1.4. Sea K ⊂ Ω un subconjunto compacto de una abierto no vaćıo

Ω ⊂ Rn y denotemos por τK a la topoloǵıa inducida por C∞(Ω) (definida en la

sección 1.1) en DK τ̃ |K y llamemos β al conjunto formado por los subconjuntos

W ⊂ D(Ω) convexos y equilibrados tales que DK ∩W ∈ τK ∀K ⊂ Ω:

β :=
{
W ⊂ D(Ω) : W convexo y equilibrado con DK ∩W ∈ τK ∀K ⊂ Ω

}
.

Entonces el conjunto

τ :=
{⋃

φ+W : φ ∈ D(Ω), W ∈ β
}

verifica:

i) τ es una topoloǵıa en D(Ω) y β una base de entornos centrada en cero para

τ .

ii) τ hace de D(Ω) un espacio vectorial topológico localmente convexo.

Nota 1.1.5. Una demostración de esto puede encontrarse en 6.4 de [12].
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Nota 1.1.6. Un conjunto W de un espacio vectorial V se dice equilibrado

si ∀α ∈ K : |α| ≤ 1 se tiene que αW ⊂ W .

Nota 1.1.7. En lo sucesivo identificaremos el espacio topológico (D(Ω), τ) con

el conjunto D(Ω).

Sin más objetivo que facilitar el trabajo con la topoloǵıa τ recién definida

comprobamos el siguiente resultado.

Proposición 1.1.8.

i) Un subconjunto convexo y equilibrado V ⊂ D(Ω) es abierto si y sólo si

V ∈ β.

ii) La topoloǵıa τK de DK ⊂ D(Ω) coincide con la topoloǵıa inducida por τ en

DK.

iii) Si E ⊂ D(Ω) está acotado existen K ⊂ Ω compacto tal que E ⊂ DK y una

sucesión
{
MN

}
N∈N0

tal que ∀φ ∈ E se verifica:

||φ||N ≤MN , ∀N ∈ N0.

iv) D(Ω) tiene la propiedad de Heine-Borel.

v) Si
{
φp
}
p∈N es una sucesión de Cauchy en D(Ω), entonces existe K ⊂ Ω

compacto tal que φp ∈ DK, ∀p ∈ N y además:

ĺım
p,q→∞

||φp − φq||N = 0, ∀N ∈ N0.

vi) Si
{
φp
}
p∈N → 0 en D(Ω) existe K ⊂ Ω compacto tal que sop(φp) ⊂ K, ∀p ∈

N y para cada multi-́ındice α se tiene
{
Dαφp

}
p∈N → 0 uniformemente.

vii) En D(Ω) toda sucesión de Cauchy converge.
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Demostración.

i) Puesto que β ⊂ τ basta comprobar que si V ⊂ D(Ω) es convexo, equilibrado

y abierto (en D(Ω)), entonces DK ∩ V ∈ τk ∀K ⊂ Ω compacto. Probemos que es

entorno de todos sus puntos. Sea φ ∈ DK ∩ V . Como φ ∈ V ∈ τ encontramos

W ∈ β : φ+W ⊂ V . En tal caso φ+DK ∩W ⊂ φ+DK ∩ V como buscábamos

(notemos que φ + DK ∩W es abierto de DK por tener este último la topoloǵıa

inducida por el espacio de Frechet C∞(Ω)).

ii) Queremos ver si τK = τ |DK para K ⊂ Ω compacto. Probamos la doble

inclusión. Supongamos primero O ∈ τ |DK . Entonces existe E ∈ τ tal que O =

DK∩E. Para φ ∈ O, por ser E ∈ τ , encontramos W ∈ β de forma que φ+W ⊂ E.

Teniendo en cuenta que φ+W∩DK ⊂ DK concluimos φ+W∩DK ⊂ O. Escojamos

ahora E ∈ τK y veamos que existe V ∈ τ : E = DK ∩ V . Por definición de τK ,

para φ ∈ E encontramos N ∈ N, δ > 0 de forma que
{
ψ ∈ DK : ||ψ − φ||N < δ

}
.

Tomando Wφ =
{
ψ ∈ D(Ω) : ||ψ||N ≤ δ

}
se tiene Wφ ∈ β y DK ∩ (φ + Wφ) =

φ+ (DK ∩Wφ) ⊂ E y basta tomar V =
⋃
φ∈E

φ+W .

iii) Lo hacemos por contrarrećıproco. Sea E ⊂ D(Ω) : E * DK ∀K ⊂ Ω

compacto. Usando el recubrimiento por compactos definido en la demostración

de 1.1.1 encontramos una sucesión
{
φm
}

de elementos de E y otra
{
xm
}

de

elementos de Ω tales que φm(xm) 6= 0 ∀m ∈ N y
{
xn
}

no tiene ĺımite en Ω

(de tenerlo podŕıamos encontrar un compacto conteniendo a los elementos de la

sucesión). Consideremos el conjunto

W =
{
φ ∈ D(Ω) : |φ(xm)| < m−1|φm(xm)|

}
Como cada compacto K ⊂ Ω sólo contiene un número finito de elementos de{
xm
}

, DK ∩W ∈ τK y W ∈ β. Como φm /∈ mW , ningún múltiplo de W pue-

de contener a E y este no es acotado (en el sentido de los espacios vectoriales
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topológicos, ver nota 1.1.9), como buscábamos. Para concluir la prueba de este

apartado, escojamos E ⊂ D(Ω) acotado. Por ii), E es acotado en algún DK y por

tanto

sup
{
||φ||N : φ ∈ E

}
<∞ ∀N ∈ N0.

iv) Es consecuencia de aplicar iii), pues DK tiene la propiedad de Heine-Borel.

v) Dado que toda sucesión de Cauchy es acotada (ver Teorema 1.29 de [12])

iii) nos dice que cada sucesión de Cauchy
{
φm
}
m∈N de D(Ω) está contenida en

algún DK . Por ii)
{
φm
}

es también una sucesión de Cauchy en τk.

vi) Es una reformulación de vi).

vii) Consecuencia directa de ii), v) y la complitud de DK .

Nota 1.1.9. Sobre la acotación de conjuntos.

i) Espacios vectoriales topológicos. Sea (X, τ) e.v.t. E ⊂ X se dice

acotado si ∀V ∈ U τ0 ∃s > 0 : E ⊂ tV ∀t > s.

ii) Espacios métricos. Sea (M,d) e.m. E ⊂ M se dice acotado si ∃K >

0 : d(x, y) < K ∀x, y ∈ E.

A continuación probaremos una caracterización de la continuidad de aplicacio-

nes lineales de dominio D(Ω) cuyo codominio es un espacio tolopógico localmente

convexo arbitrario. Un vistazo rápido al enunciado bastará para recordarnos a la

que tenemos para aplicaciones lineales entre espacios normados.

Nota 1.1.10. Daremos por conocido que en un espacio vectorial topológico V

sobre un cuerpo K son equivalentes:

1. E ⊂ V está acotado.

2. Si
{
xn
}
n∈N es una sucesión en E y

{
αn
}
n∈N → 0 es una sucesión en K

convergiendo a cero, entonces
{
xnαn

}
n∈N → 0.
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Nota 1.1.11. También usaremos que para toda sucesión
{
xn
}
n∈N → 0 en un

espacio vectorial topológico metrizable existe una sucesión
{
γn
}
n∈N → ∞ de es-

calares positivos tal que
{
xnγn

}
n∈N → 0.

Teorema 1.1.12. Caracterización de Continuidad. Sea Y un espacio to-

pológico localmente convexo y Λ : D(Ω) → Y una aplicación lineal. Son equiva-

lentes:

i) Λ es continua.

ii) Λ es acotada, esto es, lleva conjuntos acotados en conjuntos acotados.

iii) Si
{
φm
}
→ 0 en D(Ω) entonces

{
Λφm

}
→ 0 en Y .

iv) Para todo K ⊂ Ω compacto, la restricción de Λ a DK es continua.

Demostración.

i) → ii). Supongamos Λ continua y tomemos E ⊂ D(Ω) acotado. Conside-

remos W ∈ UY0 un entorno de cero en Y . Puesto que Λ es continua y Λ0 = 0

encontramos un entorno V ∈ UD(Ω)
0 de forma que Λ(V ) ⊂ W . La acotación de E

nos da un t ∈ R tal que E ⊂ tV , por lo que

Λ(E) ⊂ Λ(tV ) = tΛ(V ) ⊂ tW .

ii)→ iii). Supongamos que Λ es acotada y que
{
φm
}
→ 0 en D(Ω). Aplicando

la proposición 1.1.8 encontramos K ⊂ Ω tal que
{
φm
}
→ 0 en DK de forma que

la restricción de Λ a tal DK es acotada. Como
{
φm
}
→ 0, en particular está

acotada y, puesto que Λ es acotada, la sucesión
{

Λφm
}

estará acotada. Usando la

nota 1.1.11 (en DK) encontramos una sucesión
{
γm
}
→∞ de escalares positivos

tal que
{
γmφm

}
→ 0. En tal caso la sucesión

{
Λ(γmφm)

}
también está acotada

y usando la nota 1.1.10 con E =
{

Λ(γmφm): m ∈ N
}

y αn = γ−1
n concluimos que
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Λ(φm)

}
=
{
γ−1
m Λ(γmφm)

}
→ 0

como buscábamos.

iii) → iv). Tomemos
{
φm
}
→ 0 en DK . Usando ii) de la proposición 1.1.8

tenemos
{
φm
}
→ 0 en D(Ω). Utilizando iii)

{
Λφm

}
→ 0 en Y y como DK es

metrizable conluimos iv).

iv) → i). Sea U ∈ UY0 convexo y equilibrado. Entonces V := Λ−1(U) es

convexo y equilibrado. Por i) de la proposición 1.1.8

V ∈ τ ⇐⇒ DK ∩ V ∈ τK ∀DK ⊂ D(Ω).

por lo que i) y iv) son equivalentes.

Corolario 1.1.13. Fijado un multi-́ındice α el operador Dα : D(Ω)→ D(Ω) es

una aplicación continua.

Demostración. Basta darse cuenta de que ||Dαφ||N ≤ ||φ||N+|α| ∀N ∈ N0, por lo

que Dα es continuo en cada DK .

El concepto de Distribución

Definición 1.1.14. Distribución Diremos que un funcional lineal en D(Ω) es

una distribución en Ω si es cont́ınuo en la topoloǵıa de D(Ω). Al conjunto de

todas las distribuciones en Ω lo denotaremos D′(Ω).

Comenzamos esta, tan breve como trascendente, sección enunciando la que

será la definición en torno a la que girará el resto de este escrito. A continuación

reenunciamos el teorema 1.1.12 desde el el punto de vista de las distribuciones,

obteniendo aśı una caracterización.

Proposición 1.1.15. Caracterización de Distribuciones. Sea Λ un funcio-

nal lineal en D(Ω). Son equivalentes:
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i) Λ ∈ D′(Ω).

ii) Para todo K ⊂ Ω compacto existen N ∈ N0 y C > 0 tales que:

|Λφ| ≤ C||φ||N ∀φ ∈ DK . (1.3)

Diremos que Λ es una distribución de orden N ∈ N0 si N ∈ N0 es el

mı́nimo entero no negativo para el cual la desigualdad 1.3 se verifica para todo

K ⊂ Ω compacto. Caso de no existir tal N diremos que Λ es una distribución

de orden infinito.

Introducimos ahora el primer ejemplo de distribución, cuya importancia, como

veremos más adelante, será vital para alcanzar nuestro objetivo.

Definición 1.1.16. Medida de Dirac en RN . Dado x ∈ Ω definimos la

aplicación lineal δx : D(Ω)→ K como la aplicación que nos lleva cada φ ∈ D(Ω)

en el escalar φ(x):

δx(φ) := φ(x)

Cuando x=0 a la aplicación δ := δ0 se la llama Medida de Dirac en RN .

Notemos que la caracterización de la proposición 1.1.15 nos asegura que δx es

una distribución de orden 0.

Como conclusión a esta sección vamos a aclarar las propiedades de la topolǵıa

de D(Ω) que tenemos pendientes. En primer lugar fijemos K ⊂ Ω compacto, y

expresemos DK en la forma:

DK =
⋂

x∈Ω\K
Ker(δx).

Usando esta identidad y el apartado ii) de la proposición 1.1.8 junto con el hecho

de que en un espacio vectorial topológico cualquier subespacio que sea espacio de

Fréchet es un cerrado (ver 1.27 de [12] ) concluimos que DK es un subespacio
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cerrado de D(Ω). Además DK tiene interior vaćıo en la topoloǵıa de D(Ω). Usan-

do el recubrimiento numerable por compactos de Ω
{
Kn

}
n∈N introducido en la

sección 1.1 tenemos

D(Ω) =
⋃
n∈N
DKn

y D(Ω) es de primera categoŕıa en śı mismo. Puesto que toda sucesión de Cauchy

enD(Ω) converge, el Teorema de Baire nos dice queD(Ω) no puede ser metrizable.

1.2. Cálculo en Distribuciones

En esta segunda sección abordaremos el problema de inducir el cálculo de Rn

en el espacio D′(Ω) recién definido. Comenzaremos viendo que podemos identi-

ficar de forma razonable ciertos elementos de D′(Ω) con funciones de C∞(Ω) y

continuaremos definiendo una derivada en D′(Ω) de forma que cuando derivemos

elementos equivalentes a funciones obtengamos el elemento equivalente a la deri-

vada de la función. Posteriormente comprobaremos que la regla del producto se

lleva medianamente bien con esta redefinición de derivada, finalizando la sección

con algunas propiedades sobre sucesiones de distribuciones.

Funciones vistas como Distribuciones

Supongamos f : Ω → R una función localmente integrable. Consideremos el

funcional lineal en D(Ω) definido por

Λf (φ) :=

∫
Ω

φ(x)f(x)dx ∀φ ∈ D(Ω). (1.4)

Puesto que ∃K ⊂ Ω compacto : φ ∈ DK , se tiene:

|Λf (φ)| ≤
(∫

K
|f |
)
· ||φ||0
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y la proposición 1.1.15 garantiza que Λf ∈ D′(Ω).

En adelante abusaremos del lenguaje y llamaremos funciones a estas distri-

buciones, pues, en vista de la relación 1.4 parece más que razonable identificar la

distribución Λf con f .

Hacemos ahora lo propio con medidas de Borel complejas sobre Ω y medidas

positivas sobre Ω localmente finitas. Llamemos µ a una medida de esta ı́ndole y

definamos la distribución:

Λµ(φ) =

∫
Ω

φ dµ ∀φ ∈ D(Ω). (1.5)

la cual identificaremos con µ.

Derivación de Distribuciones

Sea α un multi-́ındice y Λ ∈ D′(Ω) una distribución. Motivados por la fórmula

de Green, versión en dimensión arbitraria de la fórmula de integración por partes

para funciones de una variable, definimos la derivada α-ésima como el funcional

lineal en D(Ω):

(DαΛ)(φ) := (−1)|α|Λ(Dαφ) ∀φ ∈ D(Ω). (1.6)

Siempre que |Λφ| ≤ C||φ||N ∀φ ∈ DK , pues en estas condiciones se tiene

|(DαΛ)(φ)| ≤ C||Dαφ||N ≤ C||φ||N+|α|

y por la caracterización 1.1.15 Dα ∈ D′(Ω).

Notemos ahora que fijada una distribución Λ y dos multi-́ındices α y β se

tiene:

DαDβΛ = Dα+βΛ = DβDαΛ

puesto que Dα y Dβ conmutan sobre funciones de clase C∞.
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Derivada de una función vista como distribución

A continuación vamos a intentar convencernos de que hemos hecho bien en

llamar función a la distribución Λf asociada a la función localmente integrable f .

El problema que abordamos es claro: cuando Dαf exista en el sentido clásico y

tanto f como Dαf sean locamente integrables en Ω, se debe verificar que

ΛDαf = DαΛf .

No obstante, a poco que se piense esta última igualdad equivale a que ∀φ ∈ D(Ω)

se tenga:

(−1)|α|
∫

Ω
f(x)(Dαφ)(x) dx =

∫
Ω

(Dαf)(x)φ(x) dx

lo cual es fácil de comprobar cuando f tiene derivadas parciales continuas de

orden menor o igual que N ∈ N, esto es, f ∈ CN(Ω); y |α| ≤ N .

Producto de funciones y distribuciones

Sean Λ ∈ D′(Ω) y f ∈ C∞(Ω). Definimos la distribución producto de f

y Λ, que denotaremos fΛ como:

(fΛ)(Φ) := Λ(fφ) ∀φ ∈ D(Ω). (1.7)

En primer lugar, notemos que la fórmula 1.7 tiene perfecto sentido, pues, para

φ ∈ D(Ω), tenemos fφ ∈ D(Ω). Otro detalle a tener en cuenta podŕıa ser que Λf

y fΛ, contrariamente a lo que podŕıa sugerir la notación; son objetos matemáticos

distintos: mientras que el primero es un escalar, el segundo es una distribución.

Para comprobar esto último, nos basaremos en la fórmula de Leibniz para el

producto de funciones:

Dα(fg) =
∑
β≤α

cαβ(Dα−βf)(Dβg), ∀f, g ∈ C∞(Ω). (1.8)
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Donde los cαβ son escalares conocidos pero irrelevantes para probar lo que bus-

camos. Como Λ ∈ D′(Ω) para cada compacto K ⊂ Ω encontramos C > 0, N ∈

N0 : |Λ(φ)| ≤ C||φ||N ∀φ ∈ D(Ω). Utilizando la fórmula de Leibniz para funcio-

nes 1.8 podemos encontrar C̃ > 0 (dependiente de f , K y N) tal que ||fφ||N ≤

C̃||φ||N ∀φ ∈ DK . Puesto que en tal caso |(fΛ)(φ)| ≤ CC̃||φ||N ∀φ ∈ DK , sólo

queda aplicar el teorema 1.1.15.

Con el fin de adaptar al caso que nos ocupa esta fórmula probamos el siguiente

resultado:

Proposición 1.2.1. Fórmula de Leibniz. Sean Λ ∈ D′(Ω) una distribución

y f ∈ C∞(Ω) una función. Para todo multi-́ındice α se tiene:

Dα(fΛ) =
∑
β≤α

cαβ(Dα−βf)(DβΛ) (1.9)

Demostración. Comenzamos la prueba fijando u ∈ Rn y definiendo hu : Rn → R

mediante hu(x) := exp(u · x), ∀x ∈ Rn, que verifica Dαhu = uαhu. Aplicando la

fórmula de Leibniz para funciones a f = hu, g = hv obtenemos:

(u+ v)α =
∑
β≤α

cαβu
α−βvβ u, v ∈ Rn.

En particular:

uα = (v + (−v + u))α =
∑
β≤α

cαβv
α−β(−v + u)β =

=
∑
β≤α

cαβv
α−β

∑
γ≤β

cβγ(−1)|β−γ|vβ−γuγ =

=
∑
γ≤α

(−1)|γ|vα−γuγ
∑

γ≤β≤α

(−1)|β|cαβcβγ.

Donde hemos usado que (−1)|β−γ| = (−1)
∑n
k=1 βk−γk = (−1)

∑n
k=1 βk−

∑n
k=1 γk =

(−1)|β|(−1)−|γ| = (−1)|β|(−1)|γ| para β y γ multi-́ındices con |γ| ≤ |β|. Si ahora
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comparamos los eslabones primero y último obtenemos:

∑
γ≤β≤α

(−1)|β|cαβcβγ =

(−1)|α| si γ = α

0 en otro caso
,

que usado junto a la fórmula de Leibniz para funciones aplicada a Dβ(Dα−βfφ)

nos da la igualdad:

∑
β≤α

(−1)|β|cαβD
β(φDα−βf) =

∑
β≤α

(−1)|β|cαβ
∑
γ≤β

cβγ(D
α−γf)(Dγφ) =

=
∑
γ≤α

(Dα−γf)(Dγφ)
∑

γ≤β≤α

(−1)|β|cαβcβγ = (−1)|α|fDαφ.

Finalizamos fijando φ ∈ D(Ω) y operando:

Dα(fΛ)(φ) = (−1)|α|(fΛ)(Dαφ) = (−1)|α|Λ(fDαφ) =∑
β≤α

(−1)|β|cαβΛ(Dβ(φDα−βf)) =
∑
β≤α

cαβ(DβΛ)(φDα−βf) =

=
∑
β≤α

cαβ((Dα−βf)(DβΛ))(φ)

como buscábamos.

Sucesiones de distribuciones y ĺımite débil

En este punto es importante recordar cómo funcionan las topoloǵıas débiles

en un espacio vectorial X 6= ∅ dotado de una topoloǵıa τ . Dada una familia

F :=
{
fk : (X, τ)→ (Xk, τk) : (Xk, τk) esp. top. y fk ap. lineal, k ∈ N

}
diremos que τF es la topoloǵıa inicial en X para F si es la topoloǵıa menos

fina (con menos abiertos) que hace continuas a todas las fk.

Llamamos topoloǵıa débil de (X, τ) a la topoloǵıa inicial w(X) = τX∗ en

X para F = X∗. Por otro lado, notemos que para x ∈ X podemos considerar el



34 CAPÍTULO 1. DISTRIBUCIONES

funcional lineal y continuo, llamado usualmente inyección canónica en el bidual,

Jx : X∗ → R definido por Jx(f) := f(x), ∀f ∈ X∗ y definir la topoloǵıa débil*

w∗(X) en X∗ como la topoloǵıa inicial en X∗ para F :=
{
Jx : X∗ → R : x ∈ X

}
.

Puesto que D′(Ω) es el conjunto de todas las aplicaciones lineales y continuas

de D(Ω), podemos considerar la topoloǵıa débil* en D′(Ω) inducida por D(Ω),

que lo convierte, véase Sección 3.14 de [12], en un espacio localmente convexo.

Una vez aclarado esto, diremos que una sucesión de distribuciones sobre Ω{
Λk

}
k∈N converge a la distribución Λ ∈ D′(Ω), hecho que notaremos por

{
Λk

}
→

Λ, si
{

Λk

}
converge a Λ en la topoloǵıa débil* de D′(Ω), es decir, si:

ĺım
k→∞

Λkφ = Λφ ∀φ ∈ D(Ω).

Enfatizamos que, en particular, si
{
fk
}
k∈N es una sucesión de funciones localmente

integrables, diremos que
{
fk
}

converge a la distribución Λ ∈ D′(Ω) (en el sentido

de las distribuciones) cuando

ĺım
k→∞

∫
Ω

φ(x)fk(x)dx = Λ(φ) ∀φ ∈ D(Ω).

A modo de ejemplo, para ilustrar lo ‘fácil’ que resulta converger en este sentido,

citamos las siguientes proposiciones:

Proposición 1.2.2. Sean Λk ∈ D′(Ω) ∀k ∈ N tales que para cada φ ∈ D(Ω)

existe ĺımk→∞ ΛK(φ). Entonces la aplicación Λ : D(Ω)→ R definida por

Λ(φ) = ĺım
k→∞

ΛK(φ) ∀φ ∈ D(Ω)

es lineal y continua (Λ ∈ D′(Ω)) y para todo multi-́ındice α se tiene que:

DαΛk
D′(Ω)→ DαΛ.

Demostración. Sea un compacto K ⊂ Ω. Puesto que Λ(φ) = ĺımk→∞ Λk(φ) existe

para toda φ ∈ DK , y dado que DK es espacio de Fréchet, el teorema de Banach-

Steinhaus (ver Teorema 2.8 de [12]) implica que la restricción de Λ a DK es
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continua. Aplicando el teorema 1.1.12 obtenemos la continuidad de Λ y como la

linealidad es clara concluimos que Λ ∈ D′(Ω). En tal caso:

(DαΛ)(φ) = (−1)|α|Λ(Dαφ) = (−1)|α| ĺım
k→∞

Λk(D
αφ) = ĺım

k→∞
(DαΛk)(φ).

Proposición 1.2.3. Consideremos Λk ∈ D′(Ω) ∀k ∈ N y gk ∈ C∞(Ω) ∀k ∈ N

tales que
{

Λk

}
→ Λ ∈ D′(Ω) en sentido D′(Ω) y

{
gk
}
→ g ∈ C∞(Ω) en el sentido

C∞(Ω). Entonces {
gkΛk

}
→ gΛ.

Demostración. La prueba es consecuencia del Teorema 2.17 de [12].

1.3. Distribuciones a nivel local

Sean Λ1, Λ2 ∈ D′(Ω) dado un abierto no vaćıo ∅ 6= ω = ω0 ⊂ Ω diremos que

Λ1 y Λ2 son localmente iguales sobre ω, afirmación que notaremos por Λ1 = Λ2

en ω, si

Λ1(φ) = Λ2(φ) ∀φ ∈ D(ω).

Esta definición nos permite estudiar distribuciones a nivel local y, como veremos,

describir globalmente una distribución a partir de su comportamiento local. Pre-

viamente, demostramos un lema sobre particiones de la unidad que nos será útil

en el futuro.

Lema 1.3.1 (Existencia de particiones de la unidad en Ω). Sea Γ ⊂ τRn

una colección de abiertos eucĺıdeos cuya unión es Ω (en adelante, a un subconjunto

Γ de estas caracteŕısticas lo llamaremos recubrimiento por abiertos de Ω). En-

tonces existe una sucesión
{
ψk
}
⊂ D(Ω) de funciones test tal que 0 ≤ ψk ∀k ∈ N

verificando:
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i) Para todo k ∈ N existe ω ⊂ Γ tal que sop(ψk) ⊂ ω.

ii)
∑∞

k=0 ψk(x) = 1 para todo x ∈ Ω.

iii) Para todo compacto K ⊂ Ω existe n0 ∈ N y un abierto W = W 0 ⊃ K tal

que
∑n0

k=1 ψk(x) = 1 ∀x ∈ W .

Notemos que de ii) y iii) se deduce que cada punto de Ω tiene un entorno que

sólo interseca con un número finito de sopφk. Por esto, a una tal colección{
ψk
}
⊂ D(Ω) la llamaremos partición de la unidad localmente finita

subordinada al recubrimiento Γ.

Demostración. Sea S ⊂ Ω un subconjunto denso y numerable de Ω. Tomemos

ahora la sucesión
{
B(pk, rk)

}
de todas las bolas cerradas de centro pk ∈ S y

r ∈ Q ∩ R+ y tal que existe ω ∈ Γ verificando B(pk, rk) ⊂ ω. En tal caso,

podemos expresar

Ω =
⋃

B(pk, rk/2).

Utilizando la función meseta estándar definida en el apéndice A, encontramos

funciones φk ∈ D(Ω) tales que 0 ≤ φk ≤ 1 verificando:

φk|B(pk,rk/2) = 1 y φk|Ω\B(pk,rk) = 0.

Definimos ahora por inducción la sucesión de funciones test en Ω
{
ψk
}

dada

por:

ψ1 = φ1

ψk+1 := φk+1

k∏
j=1

(1− φj) ∀k ∈ N \ {1} .

Comprobemos que esta sucesión es la que buscamos. Puesto que fuera de
{
B(pk, rk)

}
φk se anula, tomando como ω el abierto en el que hemos exigido que esté

{
B(pk, rk)

}
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cuando hemos definido la sucesión de bolas cerradas concluimos trivialmente i).

Por inducción podemos comprobar fácilmente que

k∑
j=1

ψj = 1−
k∏
j=1

(1− ψj) ∀k ∈ N

Usando que φk|B(pk,rk/2) = 1 se deduce que

m∑
j=1

ψj(x) = 1 ∀x ∈
m⋃
j=1

B(pj, rj/2)

lo que nos da ii). Por último, si K ⊂ Ω compacto, encontramos un número finito

m de bolas abiertas de la forma B(pk, rk/2) que lo contienen (recordemos que

éstas recubŕıan todo Ω) y K ⊂ ∪mk=1B(pk, rk/2), de donde, junto con la última

ecuación, concluimos iii).

Teorema 1.3.2. Sea Γ un recubrimiento por abiertos de ∅ 6= Ω = Ω0 ⊂ R y

supongamos que para cada ω ∈ Γ tenemos una distribución Λω ∈ D′(ω) de forma

que

Λω′ = Λω′′ en ω′ ∩ ω′′ ∀ω′ ∩ ω′′ 6= ∅.

Entonces existe una única distribución Λ ∈ D′(Ω) tal que

Λ = Λω en ω ∀ω ∈ Γ.

Demostración. Sea
{
ψk
}
⊂ D(Ω) una partición de la unidad asociada a Γ cons-

truida como en el Lema anterior y consideremos un abierto ωk ∈ Γ tal que

sop(ψk) ⊂ ωk. En tal caso, dada φ ∈ D(Ω) podemos escribir φ = φ
∑

k∈N ψk =∑
k∈N φψk que es una suma finita, pues sop(φ) es compacto. Puesto que además

hemos tomado ψk de forma que sop(ψkφ) ⊂ sop(ψk) ⊂ ωk ∀φ ∈ D(Ω) podemos

definir la aplicación Λ : D(Ω)→ R mediante

Λ(φ) =
∞∑
k=1

Λωk(ψkφ),
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que es claramente lineal. Veamos que Λ es continua. Sea
{
φk
}
k∈N ⊂ D(Ω) una

sucesión de funciones test tal que
{
φk
}
→ 0 en la topoloǵıa de D(Ω). Como para

cada j ∈ N encontramos Kj ⊂ Ω compacto y tal que sop(φj) ⊂ Kj, usando iii)

del lema 1.3.1 encontramos mj ∈ N y Wj ⊃ Kj tal que

m∑
k=1

ψk = 1 ∀x ∈ Wj

por lo que para j ∈ N se tiene:

Λ(φj) =

mj∑
j=1

Λωk(ψkφj).

Cuando j → ∞ tenemos
{
φkφj

}
→ 0 en D(Ω) y la continuidad de los Λωk nos

da Λ(φj)→ 0. Usando la caracterización 1.1.12 concluimos que Λ ∈ D′(Ω).

Veamos que la distribución Λ es la que buscamos. Tomemos φ ∈ D(ω) con

ω ∈ Γ. Entonces para j ∈ N se tiene ψjφ ∈ D(ωj ∩ω). Como Λω′ = Λω′ en ω′∩ω′′

para cualesquiera ω′, ω′′ ∈ Γ tenemos Λωj(ψjφ) = Λω(ψjφ) para todo j ∈ N y

Λ(φ) =
∞∑
j=1

Λωj(ψjφ) =
∞∑
j=1

Λω(ψjφ) = Λω(
∞∑
j=1

ψjφ) = Λω(φ),

como buscábamos. Por último comprobamos la unicidad tomando Λ ∈ D′(Ω) tal

que Λ = Λω en ω para todo ω ∈ Γ. En tal caso, para φ ∈ D(Ω) debe verificarse

que

Λ(φ) = Λ(
∞∑
k=1

ψkφ) =
∞∑
k=1

Λ(ψkφ) =
∞∑
k=1

Λωk(ψkφ) = Λ(φ).

1.4. Soporte de Distribuciones

Orientamos esta sección a generalizar el concepto de soporte de una función.

Supongamos Λ ∈ D′(Ω). Diremos que Λ se anula en un abierto ∅ 6= ω = ω0 ⊂ Ω
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si Λ(φ) = 0 ∀φ ∈ D(ω). Sea Γ =
{
ω ⊂ Ω : Λ(φ) = 0 ∀φ ∈ D(ω)

}
y denotemos

por W a la unión de todos los ω donde Λ se anula, esto es, W =
⋃
ω∈Γ ω; definimos

el Soporte de la distribución Λ como el complementario de W en Ω. Veamos

que además Λ se anula en W . Sea
{
ψk
}
k∈N una partición de la unidad localmente

finita asociada al recubrimiento Γ de W . En tal caso, para φ ∈ D(W ), se tiene:

Λ(φ) = Λ(
∑
k∈N

ψkφ) =
∑
k∈N

Λ(ψkφ) = 0,

donde hemos usado que sop(φ) es compacto (y la serie es una suma finita) y que

sop(ψkφ) ⊆ sop(ψk) ⊂ ωk ∈ Γ ∀k ∈ N. A la hora de manejarnos con este nuevo

concepto, el siguiente resultado, cuya prueba se encuentra en 6.24 de [12]; nos

será útil:

Proposición 1.4.1. Sea Λ ∈ D′(Ω). Se verifica:

i) Si para φ ∈ D(Ω) se tiene sop(φ) ∩ sop(Λ) = ∅, entonces Λ(φ) = 0.

ii) Si sop(Λ) = ∅ entonces Λ = 0.

iii) Sea ψ ∈ C∞(Ω) de forma que existe Ω ⊃ V = V 0 ⊃ sop(Λ) y tal que

ψ(x) = 1 ∀x ∈ V . Entonces ψΛ = Λ.

iv) Si sop(Λ) es un compacto de Ω, entonces Λ tiene orden finito; de hecho

existen C > 0 N ∈ N0 tal que |Λ(φ)| ≤ C||φ||N ∀φ ∈ D(Ω). Además, Λ

se puede extender de forma única a un funcional lineal y continuo sobre

C∞(Ω).

1.5. Convolución

Dedicaremos esta última sección del caṕıtulo a generalizar la definición de

producto de convolución al conjunto de las distribuciones sobre un abierto Ω ⊂
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Rn. Comenzaremos deduciendo cómo actuaŕıa la convolución cuando sus factores

son una distribución y una función test para después, tras comprobar que ciertas

propiedades del producto de convolución de funciones se mantienen, definir la

convolución de dos distribuciones, aunque bajo ciertas hipótesis.

Comenzamos recordando que para u, v : Rn → C la Convolución de u y v

(u ∗ v) : Rn → C se define por:

(u ∗ v)(x) =

∫
Rn
u(y) · v(x− y)dy ∀x ∈ Rn.

siempre que tal integral esté definida, al menos, para casi todo punto x ∈ Rn.

Sea u : Rn → R una función y fijemos x ∈ Rn. Definimos (τx(u)), ũ : Rn → R

por:

(τxu)(y) = u(y − x) ∀y ∈ Rn

ũ(y) = u(−y) ∀y ∈ Rn.

Puesto que

(τxũ)(y) = ũ(y − x) = u(x− y),

se tiene

(u ∗ v)(x) =

∫
Rn
u(y)(τxũ)(y)dy.

de donde intuimos que la definición natural de Convolución de la función

test φ ∈ D(Rn) y la distribución u ∈ D′(Rn), (u ∗ φ) : Rn → C, debeŕıa ser

la función sobre Ω:

(u ∗ φ)(x) = u(τxφ̃) ∀x ∈ Rn,

pues basta darse cuenta de que estas dos últimas expresiones coinciden para

funciones u : Rn → C localmente integrables.
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Por otro lado, si buscamos conseguir que la relación para funciones localmente

integrables dada por∫
Rn

(τxu)(y)v(y)dy =

∫
Rn
u(y)(τ−xv)(y)dy

siga siendo válida, podemos definir la traslación de la distribución u ∈ D′(Rn)

respecto a x ∈ Rn (τxu) : D(Rn)→ D′(Rn) mediante:

(τxu)(φ) = u(τ−xφ) ∀φ ∈ D(Rn).

Nota. Para comprobar que (τxu) es una distribución basta usar la caracteriza-

ción de la continuidad por sucesiones.

En la siguiente proposición enunciamos algunas propiedades de este producto

recién definido. Probaremos aqúı las dos primeras mientras que la prueba de la

tercera puede consultarse en 6.30.c de [12].

Proposición 1.5.1. Sean u ∈ D′(Rn), φ, ψ ∈ D(Rn). Entonces se verifican:

i) τx(u ∗ φ) = (τxu) ∗ φ = u ∗ (τxφ) ∀x ∈ Rn.

ii) u ∗ φ ∈ C∞(Ω) y

Dα(u ∗ φ) = (Dαu) ∗ φ = u ∗ (Dαφ), ∀α ∈ Nn
0 .

iii) u ∗ (φ ∗ ψ) = (u ∗ φ) ∗ ψ.

Demostración.

i) Fijemos y ∈ Rn. Sin más que operar:

τx(u ∗ φ)(y) = u ∗ φ(y − x) = u(τy−xφ̃)

(τxu) ∗ φ(y) = τxu(τyφ̃) = u(τy−xφ̃)

u ∗ (τxφ)(y) = u(τy τ̃xφ) = u(τyφ(x− ·)) = u(x− y − ·) = u(τy−xφ̃).
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ii) Aplicando u a la identidad

τx(D̃αφ) = (−1)|α|Dατxφ̃

obtenemos

(u ∗ (Dαφ))(x) = ((Dαu) ∗ φ)(x),

que es parte de ii). Para comprobar el resto tomamos e ∈ Sn−1 y para r > 0

definimos ξr = r−1(τ0 − τre). Aplicando i):

ξr(u ∗ φ) = u ∗ (ξrφ).

Si hacemos r → 0, ξrφ
D(Rn)−→ Deφ y en consecuencia

τxξ̃rφ
D(Rn)−→ τxD̃eφ, ∀x ∈ Rn

y

ĺım
r→0

u ∗ (ξrφ) = u ∗ (Deφ)(x)

Por lo que De(u ∗ φ) = u ∗ (Deφ) y sólo queda iterar para obtener ii).

Usando esta nueva definición de convolución no es dif́ıcil comprobar que toda

distribución puede verse como ĺımite (en la topoloǵıa de D′(Ω)) de una sucesión

de funciones diferenciables.

Proposición 1.5.2. Sea
{
hj
}
j∈N una sucesión de funciones verificando:

hj(x) = jnh(jx), ∀x ∈ Rn, ∀j ∈ N

para cierta h ∈ D(Rn) tal que h ≥ y
∫
Rn h(x)dx = 1. Si φ ∈ D(Rn) y u ∈ D′(Rn),

entonces:

i) ĺım
j→∞

φ ∗ hj
D(Rn)

= φ.

ii) ĺım
j→∞

u ∗ hj
D′(Rn)

= u.
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Demostración. Comencemos tomando K ⊂ Rn compacto. En tal caso

φ ∗ hj(x) =

∫
Rn
φ(y)hj(x− y)dy =

∫
Rn
φ(y)jnh(j(x− y))dy =

=

∫
Rn
φ(−yj−1 + x)h(y)dy.

Como h y φ tienen soporte compacto, podemos aplicar el teorema de la convergen-

cia dominada y concluir que φ ∗ hj converge uniformemente a φ sobre compactos

de Rn. Haciendo lo propio con Dαφ concluimos i). Usando lo que acabamos de

comprobar junto con iii) de 1.5.1 y la continuidad de u sobre D(Ω):

u(φ̃) = (u ∗ φ)(0) = ĺım
j→0

u ∗ (hj ∗ φ)(0) = ĺım
j→0

(u ∗ hj) ∗ φ(0) = ĺım
j→0

u ∗ hj(φ̃)

Donde φ ∈ D(Ω) es arbitraria. Usando la caracterización de convergencia en la

topoloǵıa débil* obtenemos ii).

El siguiente resultado recoge una propiedad clave del producto objeto de es-

tudio.

Teorema 1.5.3. Sean u ∈ D′(Rn) y L : D(Rn) → C∞(Rn) definida por Lφ =

u ∗ φ, ∀φ ∈ D(Rn). Entonces L es una aplicación lineal y continua verificando:

τxL = Lτx ∀x ∈ Rn. (1.10)

Rećıprocamente, si L : D(Rn) → C∞(Rn) es lineal, continua y verifica τxL =

Lτx ∀x ∈ Rn. existe u ∈ D′(Rn) tal que Lφ = u ∗ φ ∀φ ∈ D(Rn). Además tal

u ∈ D′(Rn) es única.

Demostración. Por 1.5.1 τx(u ∗φ) = u ∗ τx. Para comprobar la continuidad basta

ver que al restringirnos a cada compacto K ⊂ Rn la aplicación L : DK → C∞(Ω)

es continua. Como ambos son espacios de Frechet podemos aplicar el teorema de

la gráfica cerrada (consultar Teorema 2.15 de [12]). Supongamos pues que
{
φj
}
j∈N
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es una sucesión de funciones en DK convergiendo a φ ∈ DK y que
{
u∗φj

}
→ f ∈

C∞(Ω) y veamos que f = u ∗ φ. Fijado x ∈ Rn se tiene
{
τxφ̃j

}
→ τxφ̃ en D(Ω) y

f(x) = ĺım
j→∞

u(τxφ̃j) = u(τxφ̃) = u ∗ φ(x).

Para probar el rećıproco definamos u : D(Ω) → R por u(φ) = (Lφ̃)(0), ∀φ ∈

D(Ω). La continuidad de u deriva de que tanto la aplicación φ → φ̃ como la

evaluación en cero son aplicaciones continuas. Por tanto u ∈ D′(Ω) y

(Lφ)(x) = τ−x(Lφ)(0) = L(τ−xφ)(0) = u(τ̃−xφ) = u(τxφ̃) = u ∗ φ(x).

Vemos la unicidad supongamos u1, u2 ∈ D′(Ω) tales que L(φ) = u1 ∗ φ = u2 ∗

φ ∀φ ∈ D(Ω). Entonces (u1 − u2) ∗ φ = 0 ∀φ ∈ D(Ω), por lo que

(u1 − u2)(φ̃) = (u1 − u2) ∗ φ(0) = 0 ∀ φ ∈ D(Ω)

y u1 = u2 en Rn.

Supongamos ahora u ∈ D′(Rn) con soporte compacto. Por la proposición

1.4.1 podemos extender de forma única a u para que esta sea un funcional lineal

y continuo sobre C∞(Rn). En estas condiciones podemos definir la convolución

de u ∈ D′(Rn) con soporte compacto y φ ∈ C∞(Rn) mediante la fórmula:

(u ∗ φ)(x) = u(τxφ̃) ∀x ∈ Rn

Al igual que antes, el siguiente resultado, de prueba desarrollada con detalle en

6.35 de [12]; sigue siendo cierto.

Proposición 1.5.4. Sea u ∈ D′(Rn) con soporte compacto y φ ∈ C∞(Rn).

Entonces:

i) τx(u ∗ φ) = (τxu) ∗ φ = u ∗ (τxφ) ∀x ∈ Rn.
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ii) u ∗ φ ∈ C∞(Ω) y

Dα(u ∗ φ) = (Dαu) ∗ φ = u ∗ (Dαφ), ∀α ∈ Nn
0 .

Si además ψ ∈ D(Rn):

iii) u ∗ ψ ∈ D(Rn)

iv) u ∗ (φ ∗ ψ) = (u ∗ φ) ∗ ψ = (u ∗ ψ) ∗ φ.

Para acabar la sección desarrollaremos la prometida definición de convolu-

ción de distribuciones (cuando al menos una tiene soporte compacto) enunciando

finalmente un resultado que nos será útil más tarde.

Sean u, v ∈ D′(Rn), con sop(u) o sop(v) compacto en Rn. Definimos L :

D(Rn)→ C∞(Rn) mediante

Lφ = u ∗ (v ∗ φ), ∀φ ∈ D(Rn).

Comprobemos que está bien definido. Si v tiene soporte compacto entonces v ∗

φ ∈ D(Rn) y Lφ ∈ C∞(Rn). Por otro lado, si el compacto es sopu v ∗ φ ∈

C∞(Rn) y Lφ ∈ C∞(Rn). Notemos que además τxL = Lτx ∀x ∈ Rn. En estas

condiciones definimos la convolución de las distribuciones u, v ∈ D′(Rn)

de, al menos una, soporte compacto como la distribución u∗v : D(Rn)→ R

definida por

u ∗ v(φ) = Lφ̃(0) = u ∗ (v ∗ φ̃)(0).

Antes de proseguir comprobemos que, en efecto, u ∗ v es una distribución. Consi-

deremos φj
D(Rn)→ 0. Puesto que la convolución de distribuciones y funciones test es

continua se tiene v∗φ̃j
C∞(Rn)→ 0. Si sopv es compacto tenemos v∗φ̃j

D(Rn)→ 0 y usan-

do de nuevo la continuidad de la convolución de distribuciones y funciones test

obtenemos lo que buscábamos. Si por el contrario sopu compacto basta recordar

que la extensión de u a C∞(Rn) que hemos tomado para definir la convolución de
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distribuciones de soporte compacto y funciones derivables es continua. Por último

notemos que, por la prueba de 1.5.3, la distribución u ∗ v y la aplicación L están

relacionadas por la fórmula

Lφ = (u ∗ v) ∗ φ, ∀φ ∈ D(Rn)

es decir, u ∗ v ∈ D′(Rn) está caracterizada por:

(u ∗ v) ∗ φ = u ∗ (v ∗ φ), ∀φ ∈ D(Rn).

A continuación enunciamos algunas propiedades, cuya prueba puede encontrarse

en 6.37 de [12].

Proposición 1.5.5. Sean u, v, w ∈ D′(Rn).

i) Si sop(u) o sop(v) es compacto entonces u ∗ v = v ∗ u.

ii) Si sop(u) o sop(v) es compacto entonces sop(u ∗ v) ⊂ sop(u) + sop(v).

iii) Si al menos dos de sop(u), sop(v) o sop(w) son compactos, entonces (u ∗

v) ∗ w = u ∗ (v ∗ w).

Para finalizar el caṕıtulo comprobaremos, prácticamente a modo de ejemplo,

ciertas particularidades de la medida de Dirac.

Corolario 1.5.6. Sean u, v, w ∈ D′(Rn).

i) Si δ es la medida de Dirac y α ∈ N0, entonces Dαu = (Dαδ) ∗ u. En particular

u = δ ∗ u.

ii) Si al menos uno de sop(u) o sop(v) es compacto entonces Dα(u ∗ v) = (Dαu) ∗

v = u ∗ (Dαv).

Demostración.
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i) Notemos que para φ ∈ D(Rn)

δ ∗ φ(x) = δ(τxφ̃) = φ̃(−x) = φ(x), ∀x ∈ Rn.

Por ii) de la proposición 1.5.1 y iii) de la 1.5.5:

(Dαu) ∗ φ = u ∗ (Dαφ) = u ∗Dα(δ ∗ φ) = u ∗Dαδ ∗ φ

ii) Es consecuencia de i) de y de iii) y i) de la proposición 1.5.5:

Dα(u ∗ v) = Dαδ ∗ (u ∗ v) = ((Dαδ) ∗ u) ∗ v = Dαu ∗ v

y

((Dαδ) ∗ u) ∗ v = (u ∗ (Dαδ)) ∗ v = u ∗ ((Dαδ) ∗ v) = u ∗ (Dαv).
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Caṕıtulo 2

Transformada de Fourier

Si bien a lo largo del caṕıtulo anterior desarrollamos el conjunto donde re-

solveremos nuestro problema, en esta segunda parte del trabajo introduciremos

una herramienta clave para alcanzar nuestro objetivo: la transformada de Fourier.

Dedicaremos una primera sección a recordar cómo actuaba esta aplicación sobre

funciones complejas para después generalizar la misma al conjunto de las distri-

buciones. Tras introducir en el segundo apartado un nuevo espacio de funciones,

al que denominaremos Clase de Schwarz Sn y en el que la transformada de

Fourier resultará ser una biyección lineal y continua de Sn en Sn, dedicaremos la

última sección a un tipo muy particular de distribuciones, que llamaremos tem-

peradas y que resultarán ser los elementos de una suerte de dual topológico de

Sn; cuya caracteŕıstica esencial es llevarse especialmente bien con la transformada

de Fourier.

Comenzamos este caṕıtulo aclarando la notación que seguiremos a lo largo del

mismo. En adelante denominaremos Medida de Lebesgue en Rn Normali-

zada a la medida mn definida por

dmn(x) = (2π)−n/2dx.

49
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Notemos que esto permite redefinir los espacios Lp, aśı como sus correspondientes

normas, y el producto de convolución usando esta nueva medida en lugar de la

estándar.

Por comodidad, para t ∈ Rn definimos una especie de Exponencial Gene-

ralizada mediante:

et(x) = exp(i(x · t)) = exp(i
n∑
j=1

tjxj), ∀x ∈ Rn.

Unas sencillas operaciones nos permiten comprobar que

et(x+ y) = et(x)et(y), ∀x, y ∈ Rn

y et resulta ser un homomorfismo del grupo aditivo de Rn en el grupo multi-

plicativo de los complejos de norma unidad. Notemos que trivialmente et(x) =

ex(t), ∀x, t ∈ Rn.

Para acabar este apartado sobre notaciones comentamos qué entenderemos

por operadores diferenciales. Si α ∈ N0 es un multi-́ındice definimos, para simpli-

ficar la notación, el operador Dα mediante

Dα = (i)−|α|Dα =

(
1

i

∂

∂x1

)α1

· · ·
(

1

i

∂

∂xn

)αn
Notemos que ahora, para α ∈ N0 multi-́ındice y t ∈ Rn:

Dαet = tαet.

Sea ahora P ∈ P [Cn] un polinomio de n variables de coeficientes complejos, esto

es,

P (ξ) =
∑
α∈A

cαξ
α =

∑
α∈A

cαξ
α1
1 · · · ξαnn , ∀ξ ∈ Cn

donde a ⊂ Nn
0 es una familia de multi-́ındices y cα ∈ C ∀α ∈ A. Definimos los

operadores diferenciales (que actuarán sobre funciones infinitamente derivables)
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P (D) y P (−D) mediante

P (D) =
∑
α∈A

cαDα y

P (−D) =
∑
α∈A

(−1)|α|cαDα

y conviene darse cuenta de que P (D)et = P (t)et, ∀t ∈ Rn.

2.1. Transformada de Fourier para funciones in-

tegrables

Recordemos ahora la definición de transformada de Fourier de una función.

Para f ∈ L1(Rn) definimos su Transformada de Fourier como la función

f̂ : Rn → R dada por:

f̂(t) =

∫
Rn
fe−tdmn ∀t ∈ Rn.

En ocasiones abusaremos del lenguaje y llamaremos también transformada de

Fourier a la aplicación que lleva f en f̂ , que denotaremos por F . Notemos también

que

(f ∗ et)(0) =

∫
Rn
f(x)et(−x)dmnx =

∫
Rn
f(x)e−t(x)dmnx = f̂ .

Teniendo en cuenta la nueva notación, aplicando los teoremas de Fubini, del

cambio de variable y operando obtenemos algunas propiedades básicas que reco-

pilamos en el siguiente enunciado.

Proposición 2.1.1. Sean f, g ∈ L1(Rn). Para x ∈ Rn fijo se tiene:

i) (τxf )̂ = e−xf̂

ii) (exf )̂ = τxf̂
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iii) f̂ ∗ g = f̂ ĝ

iv) Si λ > 0 y tomamos h : Rn → C dad por h(x) = f(x/λ), ∀x ∈ Rn,

entonces ĥ(t) = λnf̂(λt).

2.2. La clase de Schwarz

En esta sección introduciremos un tipo muy particular de funciones integrables

que conformarán un espacio idóneo para trabajar con la transformada de Fourier

definida en la sección anterior.

Se dice que una función f ∈ C∞(Rn) es rápidamente decreciente si

sup
|α|<N

{
sup
x∈Rn

{
(1 + |x|2)N |Dαf(x)|

}}
<∞ ∀N ∈ N0.

Notemos que el hecho de que una función f ∈ C∞(Rn) sea rápidamente decreciente

equivale a que las funciones P ·Dαf estén acotadas para todo polinomio P y todo

multi-́ındice α ∈ N por una cota común. Además si f ∈ C∞(Ω) es rápidamente

decreciente P un polinomio de variable real n dimensional y coeficientes complejos

y N ∈ N0 se tiene que |P (1 + | · |2)NDαf | es una función acotada para α ∈ Nn
0

multi-́ındice tal que |α| ≤ N , por lo que PDαf ∈ L1(Rn).

Definimos la Clase (o espacio) de Schwarz como el conjunto formado

por todas las funciones rápidamente decrecientes. Esto es:

Sn =
{
f ∈ C∞(Rn) : sup

|α|<N

{
sup
x∈Rn

{
(1 + |x|2)N |Dαf(x)|

}}
<∞ ∀N ∈ N0

}
Es inmediato comprobar que Sn es un espacio vectorial. Además, para cada N ∈

N0, la aplicación | · | : Sn → R definida por:

|f |N = sup
|α|<N

{
sup
x∈Rn

{
(1 + |x|2)N |Dαf(x)|

}}
∀f ∈ Sn

es una norma en Sn, por lo que podemos usar 1.37 de [12] y concluir que la familia

de normas aśı definidas hacen de Sn un espacio vectorial topológico localmente
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convexo. El siguiente resultado recoge algunas propiedades que nos serán útiles

más adelante. La prueba del mismo puede encontrarse en Teorema 7.4 de [12].

Teorema 2.2.1.

i) Sn es un espacio de Fréchet.

ii) Si p ∈ P [Rn, C] es un polinomio, g ∈ Sn y α ∈ Nn
0 multi-́ındice las aplica-

ciones

f → Pf

f → gf

f → Dαf

son aplicaciones lineales y continuas de Sn en Sn.

iii) Si f ∈ Sn y P ∈ P [Rn,C]

(P (D)f )̂ = P f̂

(Pf )̂ = P (−D)f̂

iv) La transformada de Fourier es una aplicación lineal y continua de Sn en

Sn.

Antes de enunciar el teorema de inversión, el cual será el resultado más tras-

cendental de esta sección, desarrollamos a modo del lema un ejercicio de cálculo

de la transformada de Fourier de cierta función conocida.

Lema 2.2.2. Supongamos φn ∈ C∞(Rn) definida por φn(x) = e
−|x|2

2 ∀x ∈ Rn.

Entonces φn ∈ Sn, φ̂n = φn y

φn(0) =

∫
Rn
φ̂ndmn.
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Demostración. El hecho de que φn ∈ Sn ∀n ∈ N es obvio. Usando la prime-

ra identidad de iii) del teorema 2.2.1 vemos que tanto φ̃1 como φ1 verifican la

ecuación diferencial:

y(x) + xy′(x) = 0.

Además

φ̃1(0) =

∫
R
φ1 dmn =

1√
2π

∫ +∞

−∞
e
−1
2
x2 dx = 1 = φ1(0).

y por unicidad φ̃1 = φ1. Puesto que

φn(x) =
n∏
k=1

φ1(xk) ∀x = (x1, ..., xn) ∈ Rn

tendremos

φ̃n(x) =
n∏
k=1

φ̃1(xk) ∀x = (x1, ..., xn) ∈ Rn

y φn = φ̃n ∀n ∈ N. Ahora la igualdad del enunciado es clara.

El siguiente teorema pone de manifiesto la bondad del espacio Sn respecto a

la transformada de Fourier, que será crucial para extender tal herramienta, en la

medida de lo posible, al espacio de las distribuciones. La prueba se encuentra en

7.6 de [12].

Teorema 2.2.3. Teorema de Inversión.

i) Si g ∈ Sn g(x) =
∫
Rn ĝexdmn ∀x ∈ Rn.

ii) La transformada de Fourier es una aplicación lineal, continua y biyectiva

de inversa continua.

iii) Si f, f̂ ∈ L1(Rn) y f0(x) =
∫
Rn f̂ exdmn ∀x ∈ Rn se tiene que f = f0 casi

por doquier.
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Como consecuencia directa tenemos el siguiente resultado.

Corolario 2.2.4. Sean f, g ∈ Sn. Se tiene:

i) f ∗ g ∈ Sn

ii) f̂ g = f̂ ∗ ĝ

Demostración. Puesto que f̂ , ĝ ∈ Sn por iii) de la proposición 2.1.1 tenemos

F(f̂ ∗ ĝ) = F(F(f))F(F(g)) = f̃ g̃ = f̃ g = F(F(fg))

y basta aplicar F−1 para concluir ii). Usando ahora que fg ∈ Sn tenemos por lo

recién comprobado que f̂ ∗ ĝ ∈ Sn, pues la transformada de Fourier lleva funciones

de Sn en funciones de Sn.

Para finalizar el presente apartado enunciamos un resultado clásico que po-

demos deducir de lo desarrollado en esta sección.

Teorema 2.2.5. Plancherel. La transformada de Fourier define una isometŕıa

lineal de L2(Rn) en L2(Rn).

2.3. Distribuciones Temperadas

Dedicaremos esta última sección del caṕıtulo a adaptar los conceptos desarro-

llados en las dos primeras al espacio de las distribuciones. Comprobaremos que

podemos ver el dual topológico de Sn como un subconjunto de D′(Rn), duali-

dad que aprovecharemos para extender la transformada de Fourier a este nuevo

conjunto cuyos elementos dan nombre a este apartado. Dedicaremos el resto de

sección a ver que determinadas propiedades de esta transformada siguen siendo

ciertas en el conjunto de distribuciones temperadas.
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El siguiente resultado, de prueba incluida en Theorem 7.10 de [12], pone de

manifiesto que la relación entre los espacios Sn y D(Rn) es más estrecha aun de

lo que a priori pudiera parecer.

Proposición 2.3.1. D(Rn) es un espacio denso en Sn Además la aplicación

inclusión de D(Rn) en Sn es continua.

Consideremos ahora una aplicación L : Sn → R. Si denotamos a la aplicación

inclusión por i : D(Rn)→ Sn tenemos que la aplicación uL = L ◦ i : D(Rn)→ Rn

es un funcional lineal y continuo y por tanto uL ∈ D′(Rn). Notemos que además,

por densidad, dos aplicaciones L1, L2 : Sn → R no pueden generar, por este

método, el mismo funcional u : D(Rn) → R. Tenemos aśı una fotocopia de

S ′n dentro de D′(Rn). A los elementos de este nuevo conjunto, al que también

denotaremos por S ′n, los denominaremos Distribuciones Temperadas.

Nota. Es conveniente darse cuenta de que los elementos de S ′n son las distribu-

ciones de D′(Rn) que tienen una extensión continua a Sn.

Como ejemplo de distribución temperada tenemos todas las distribuciones

con soporte compacto. Si u ∈ D′(Ω) de soporte compacto, podemos encontrar

ψ : Ω → R con Ω = Ω0 ⊂ Rn de forma que sop(u) ⊂ Ω y ψ(x) = 1 ∀x ∈ Ω.

Definimos u∗ : Sn → Rn por u∗(f) = u(ψf) ∀f ∈ Sn. Si fj → 0 en Sn entonces

Dαfj → 0 uniformemente, Dα(ψfj)→ 0 uniformemente y ψfj → 0 en D(Rn). En

tal caso u∗ es continua en Sn y puesto que u∗(φ) = u(φ), ∀φ ∈ D(Rn) tenemos

que u∗ es extensión de u. También son ejemplos de distribuciones temperadas

los polinomios, las funciones medibles cuyo valor absoluto está acotado por un

polinomio y toda función g ∈  Lp(Rn) con 1 ≤ p ≤ ∞ como se deduce de la

siguiente proposición:

Proposición 2.3.2. Sean p ≥ 1 N ∈ N0 y g : Rn → R una función medible
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verificando

C :=

∫
Rn
|(1 + |x|2)−Ng(x)|pdmnx <∞.

Entonces g es una distribución temperada.

Demostración. Supongamos primero p > 1 y consideramos la distribución Λ ∈

D′(Ω) dada por Λf =
∫
Rn fg dmn. Tomemos q > 0 tal que 1

p
+ 1

q
= 1. Aplicando

la desigualdad de Holder:

|Λf | ≤ C
1
p (

∫
Rn

(1 + |x|2)Nq|f(x)|dm)
1
q

Tomemos ahora M > 0 de forma que

B =

∫
Rn

(1 + |x|2)(N−m)q dmnx <∞.

Entonces

|Λf | ≤ C
1
p (

∫
Rn

(1 + |x|2)(N−M)q(1 + |x|2)Mq|f(x)|q dmnx)
1
q ≤

≤ C
1
p sup
x∈Rn

{
(1 + |x|2)M |f(x)|

}
B

1
q

y Λ es continua en Sn. Ahora el caso p = 1 es claro.

La prueba de la siguiente proposición es consecuencia inmediata de las defi-

niciones y de ii) del teorema 2.2.1.

Proposición 2.3.3. Sean g ∈ Sn, u ∈ S ′n y P ∈ P [Rn,C]. Para todo α ∈ Nn
0

multi-́ındice se tiene que las distribuciones Dαu, Pu y gu son temperadas.

En este punto estamos en condiciones de generalizar la transformada de Fou-

rier a nuestro caso. Para u ∈ S ′n definimos la Transformada de Fourier de

la distribución temperada u como la distribución Fu : Sn → R dada por

Fu(φ) = û(φ) = u(φ̂) ∀φ ∈ Sn
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Notemos que, puesto que la aplicación φ→ φ̂ es una aplicación lineal y continua

de Sn en Sn la transformada recién definida es en efecto un elemento de S ′n.

Comprobemos que además la transformada de funciones f ∈ L1(Rn) coincide con

la transformada de la distribución uf asociada:

ûf (φ) = uf (φ̂) =

∫
Rn
fφ̂dmn =

=

∫
Rn
f(x)

∫
Rn
φ(y)e−x(y) dmny dmnx =

=

∫
Rn
φ(y)

∫
Rn
f(x)e−y(x) dmnx dmny =

=

∫
Rn
φf̂ dmn.

Continuamos enunciando el resultado equivalente al teorema de inversión enun-

ciado en la sección anterior.

Teorema 2.3.4.

i) La transformada de Fourier es una aplicación lineal, continua de y biyectiva

S ′n en S ′n de inversa continua.

ii) Si u ∈ S ′n y P ∈ P [Rn,C] entonces:

P̂ (D)u = Pû

P̂u = P (−D)û.

Nota. La topoloǵıa que consideramos en S ′n es la topoloǵıa débil* inducida por

Sn. Además, si denotamos por F : S ′n → S ′n a la aplicación Fu = û tenemos

F4u = u y F−1u = F3u.

Lema 2.3.5. Sea P ∈ P [Rn,C] un polinomio y δ la medida de Dirac. Se tiene:

i) 1̂ = δ y δ̂ = 1
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ii) P̂ (D)δ = P y P̂ = P (−D)δ

iii) Sea u ∈ S ′n y consideremos ũ determinada por ũ(φ) = u(φ̃). Entonces ̂̂u = ũ.

iv) δ̃ = δ

Demostración. Comenzamos fijando φ ∈ D(Rn) y u ∈ S ′n. Notemos que ii) es

consecuencia directa del teorema 2.3.4. Operamos para comprobar las demás

igualdades.

1̂(φ) =

∫
Rn
φ̂ dmn = φ(0) = δ(φ)

δ̂(φ) = δ(φ̂) = φ̂(0) = 1(φ)

donde hemos empleado el teorema de inversión 2.2.3. Por otro lado

F2u(φ) = u(F2(φ)) = u(φ̃) = ũ(φ) y

δ̃(φ) = δ(φ̃) = φ(0) = δ(φ).

Definimos la convolución de la distribución temperada u ∈ S ′n y la

función rápidamente decreciente φ ∈ Sn por

(u ∗ φ)(x) = u(τxφ̃) ∀x ∈ Rn.

Destacamos por su relevancia en operaciones posteriores un último resultado. Su

prueba se encuentra en Theorem 7.19 [12].

Teorema 2.3.6. Sean φ ∈ Sn y u ∈ S ′n. Entonces:

i) u ∗ φ ∈ C∞(Rn) y

Dα(u ∗ φ) = (Dα) ∗ φ = u ∗ (Dαφ) α ∈ Nn
0 .
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ii) u ∗ φ es una distribución temperada.

iii) û ∗ φ = φ̂û.

iv) (u ∗ φ) ∗ ψ = u ∗ (φ ∗ ψ) ∀ψ ∈ Sn.

v) û ∗ φ̂ = φ̂u.



Caṕıtulo 3

Teorema de

Ehrenpreis-Malgrange

En este caṕıtulo llegaremos al punto culminante del trabajo. Como veremos

más adelante, el teorema de Ehrenpreis-Malgrange afirma que para cualquier

operador diferencial en derivadas parciales no idénticamente nulo y de coeficientes

complejos constantes P ∈ C[∂1, ..., ∂n] fijada v ∈ D′(Rn) con soporte compacto

podemos encontrar una distribución E ∈ D′(Rn) que sea solución del problema

P (D)u = v [∗].

Comenzaremos aclarando el concepto de solución fundamental, en el cual nos

apoyaremos fuertemente para alcanzar nuestro objetivo. Una vez entendido esto

veremos cómo estas soluciones especiales nos permiten generar las (que no tienen

por qué ser únicas) de [∗] para finalmente, tras alguna que otra consideración

previa, desarrollar la demostración del teorema.
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62 CAPÍTULO 3. TEOREMA DE EHRENPREIS-MALGRANGE

3.1. Soluciones fundamentales

En lo que respecta a los operadores diferenciales, durante este último caṕıtulo

utilizaremos la notación estándar en lugar de la que utilizamos a lo largo del

caṕıtulo anterior con el objetivo de simplificar la notación. Aśı dado P ∈ C[x1, ..., xn]

de la forma P (x) =
∑
cαx

α, x = (x1, ..., xn) ∈ Rn con cα ∈ C para todo α ∈ Nn
0

multi-́ındice llamaremos operador diferencial asociado a P al operador

P (D) =
∑
cαD

α. Además si P es un polinomio de grado m ∈ N0 denotaremos

por Pm a la parte principal de P :

Pm(x) =
∑
|α|=m

cαx
α, x ∈ Rn.

y llamaremos polinomio conjugado asociado a P al polinomio

P (x) =
∑

cαx
α, ∀x ∈ Rn

que verifica P (z) = P (z) ∀z ∈ Cn. Como último comentario en lo que a no-

tación se refiere recordamos que, dada φ ∈ D(Rn) hab́ıamos definido φ̃(x) =

φ(−x), ∀x ∈ Rn. Para una distribución T ∈ D′(Rn) escribiremos T̃ para denotar

a la distribución que actúa de la forma

T̃ (φ) = T (φ̃) ∀φ ∈ D(Rn)

Como es natural, diremos que una distribución E ∈ D′(Rn) es una solución de

[∗] cuando para toda φ ∈ D(Rn) se tenga la igualdad

(P (D)E)(φ) = v(φ).

Cuando E sea una solución de [∗] para v = δ, donde δ denota la medida de Dirac

introducida en la definición 1.1.16, diremos que E es una solución fundamen-

tal para el operador P (D). Comprobemos a continuación que, conocida una

solución fundamental E0 para P (D) una solución de [∗] vendrá dada por E0 ∗ v.
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En efecto, aplicando el corolario 1.5.6, que nos permite introducir la derivada en

la convolución aśı como utilizar que la medida δ hace de neutro para tal producto:

P (D)(E0 ∗ v) = (P (D)E0) ∗ v = δ ∗ v = v.

Por lo que nuestro problema se reduce a probar que siempre podemos encontrar

una solución fundamental asociada a un operador P (D) dado.

Para finalizar esta sección exponemos un par de lemas técnicos que nos ayu-

darán en el apartado final.

Lema 3.1.1. Sea m ∈ N y consideremos λ0, ..., λm ∈ C números complejos

distintos. Entonces la única solución del sistema de ecuaciones

m∑
j=0

ajλ
k
j =

0 si k ∈ [0,m− 1] ∩ N0

1 si k = m

viene dada por aj =
∏m

k=0,k 6=j (λj − λk)−1.

Demostración. Como los λ0, ..., λm ∈ C son diferentes el determinante de Van-

dermonde no se anula y existe una única solución (a0, ..., am) ∈ Cm+1 del sistema.

Definamos q : C→ C de la forma

q(z) =
m∏
j=0

(z − λj), ∀z ∈ C.

Notemos que puesto que q tiene un número finito de ceros, en concreto m + 1,

podemos tomar N0 ∈ N suficientemente grande de forma que todos ellos estén

contenidos en la bola abierta centrada en el origen y de radio N0. Si ahora apli-

camos el teorema de los residuos:∫
|z|=N0

zk

q(z)
dz = 2πi

m∑
j=0

ĺım
z→λj

(z − λj)
zk

q(z)
= 2πi

m∑
j=0

λkj
q′(λj)
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para k ∈ [0,m] ∩ N0. Como tal identidad es válida para todo N ≥ N0 se tiene:

m∑
j=0

λkj
q′(λj)

=
1

2πi

∫
|z|=N0

zk

q(z)
dz = ĺım

N→∞

1

2πi

∫
|z|=N

zk

q(z)
dz =

= ĺım
N→∞

1

2πi

∫ 2π

0

(Neit)k

q(Neit)
Ni dt =

0 si k < m

1 si k = m

Puesto que q′(λj) =
∏m

k=0,k 6=j (λj − λk) la prueba queda completada.

Lema 3.1.2. Sean ζ ∈ Cn, T ∈ D′(Rn), y S ∈ S ′n. Se verifica:

i) P (D)(eζ(·)T ) = eζ(·)(P (D + ζ)T ).

ii) P (D)F−1S = F−1(P (i(·))S).

ii) eζ(·)P (−D + ζ) = P (−D + 2ζ)(eζ(·)δ)

donde hemos utilizado (·) para denotar a la variable n-dimensional y F para

indicar la transformada de Fourier.

Demostración. Tanto la prueba de i) como la de ii) y iii) se basan en sendas ca-

denas de igualdades. Notemos que, por linealidad, es suficiente probar la igualdad

para ciertos monomios de P . Fijado α ∈ Nn
0 multi-́ındice:

eζ(·)((D + ζ)αT ) = eζ(·)

(∑
β≤α

cαβζ
βDα−β

)
T =

∑
β≤α

cαβζ
βeζ(·)Dα−βT =

=
∑
β≤α

cαβD
βeζ(·)Dα−βT = Dα(eζ(·)T ).

Donde hemos usado el binomio de Newton y la fórmula de Leibniz para producto

de funciones y distribuciones desarrollada en 1.2.1. Para la segunda identidad

utilizaremos el teorema 2.2.1 teniendo en cuenta el cambio de notación. Concre-

tamente, si fijamos φ ∈ Sn y α ∈ Nn
0 multi-́ındice y aplicamos que F(Dαφ) =
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(i(·))αFφ se tiene:

Dα(F−1S)(φ) = (−1)|α|F−1S(Dαφ) = (−1)|α|F3S(Dαφ) =

= (−1)|α|S(F3Dαφ) = (−1)|α|S(FD̃αφ) = S(FDαφ̃) =

= S((i(·))αF φ̃) = ((i(·))αS)(F φ̃) = ((i(·))αS)(F−1φ) =

= F−1(((i(·))αS))(φ).

Utilizaremos i) para probar la última identidad. Si fijamos φ ∈ D(Rn) y operamos:

eζ(·)(−D + ζ)αδ(φ) = (−1)|α|eζ(·)(D − ζ)αδ(φ) = (−1)|α|e2ζ(·)e−ζ(·)(D − ζ)αδ(φ) =

i)
= (−1)|α|e2ζ(·)Dα(e−ζ(·)δ)(φ) = (−1)|α|Dα(e−ζ(·)δ)(e2ζ(·)φ) = (e−ζ(·)δ)(Dα(e2ζ(·)φ)) =

= (e−ζ(·)δ)

(∑
β≤α

cαβD
α−β(e2ζ(·))Dβ(φ)

)
= (e−ζ(·)δ)

(
e2ζ(·)

∑
β≤α

cαβ(2ζ)α−βDβ(φ)

)
=

= (eζ(·)δ)

(∑
β≤α

cαβ(2ζ)α−βDβ(φ)

)
=
∑
β≤α

cαβ(2ζ)α−β(eζ(·)δ)
(
Dβ(φ)

)
=

∑
β≤α

cαβ(2ζ)α−β(−1)βDβ(eζ(·)δ)(φ) = (2ζ −D)α(eζ(·)δ)(φ).

3.2. Teorema de Ehrenpreis-Malgrange.

Teorema 3.2.1. Ehrenpreis-Malgrange Sean P ∈ C[x1, ..., xn] un polinomio

en Rn no idénticamente nulo y v ∈ D′(Rn) una distribución con soporte compacto.

Entonces el problema

P (D)u = v [∗]

admite una solución E ∈ D′(Rn).

Demostración. El razonamiento usado en la sección anterior nos permite simplifi-

car nuestro problema a encontrar una solución fundamental para el operador dife-

rencial P (D). Puesto que P no es idénticamente nulo podemos encontrar η ∈ Rn
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tal que Pm(η) 6= 0 donde m ∈ N es el grado de P . Escojamos también números

reales λ0, ..., λm ∈ R distintos entre śı para definir aj =
∏m

k=0,k 6=j(λj − λk)
−1 y

consideremos la distribución

E0 =
1

Pm(2η)

m∑
j=0

aje
λjη(·)F−1

(
P (i(··) + λjη)

P (i(··) + λjη)

)

donde hemos usado la notación (·) y (··) para referirnos a las dos variables n

dimensionales distintas entre śı que manejamos. El resto de la prueba consistirá

en demostrar que E0 es la solución fundamental que buscamos. Puesto que para

λ ∈ R fijo el conjunto N =
{
ζ ∈ Rn : P (iζ + λη) = 0

}
es de medida nula en Rn

tenemos

S(·) =
P (i(·) + λη)

P (i(·) + λη)
∈ L∞(Rn) ⊂ S ′n

y E0 está bien definida. Aplicando sucesivamente i) y ii) del lema 3.1.2:

P (D)(eζ(·)F−1S) = eζ(·)P (D + ζ)F−1S = eζ(·)F−1(P (i(··) + ζ)S)

para ζ ∈ Rn fija. Sustituyendo:

P (D)

(
eλη(·)F−1

(
P (i(··) + λη)

P (i(··) + λη)

))
= eλη(·)F−1(P (i(··) + λη)).

Puesto que además por el lema 2.3.5 tenemos F(p(D)δ) = p(i(·)) para todo

polinomio p ∈ C[x1, ..., xn] se tiene:

F−1(P (i(··) + λη)) = F−1(P (−i(··) + λη)) = P (−D + λη)δ

de donde, usando primero el lema 3.1.2 y el hecho de que eλη(·)δ = δ, deducimos

que :

P (D)

(
eλη(·)F−1

(
P (i(··) + λη)

P (i(··) + λη)

))
= eλη(·)P (−D + λη)δ =

= P (−D + 2λη)(eλη(·)δ) = P (−D + 2λη)(δ) = λmPm(2η)δ +
m−1∑
k=0

λkTk
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para ciertas distribuciones Tk ∈ D′(Rn). Por nuestra elección de los coeficien-

tes a0, ..., am, basta aplicar el lema 3.1.1 para concluir que E0 es una solución

fundamental para el operador P (D).
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Apéndice A

Apéndice: Una función meseta en

R

En esta sección construiremos una función h ∈ C∞(R) con soporte contenido

en el intervalo [−2, 2], simétrica y tal que h(t) = 1∀t ∈] − 1, 1[. Partimos de la

función f : R→ R definida por

f(t) :=


e−

1
t si t > 0

0 si t ≤ 0

No es dif́ıcil comprobar que f ∈ C∞(R), pues es suficiente comprobar que y su

gráfica será de la forma que aparece en la figura A.1.

Definimos ahora g : R→ R por

g(t) := f(t)
f(t)+f(1−t) ∀t ∈ R

una función de clase C∞ cuyo grafo representamos también en la figura A.1. Por

último tomamos h : R→ R dada por

h(t) := g(t+ 2) · g(2− t) ∀t ∈ R
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que será la función de clase C∞ que buscábamos.

0 20 40 60 80
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(a) Grafo de f
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(b) Grafo de g
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(c) Grafo de h

Figura A.1: Grafos
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