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Abstract

The concept of a genome signature broadly refers to characteristic patterns in DNA se-
quences that enable the identification and comparison of species or individuals, often
without requiring sequence alignment. Such signatures have applications ranging from
forensic identification of individuals to cancer genomics. In comparative genomics and
evolutionary biology, genome signatures typically rely on statistical properties of DNA that
are species-specific and carry phylogenetic information reflecting evolutionary relation-
ships. We propose a novel genome signature based on the compositional structure of DNA,
defined by the distributions of strong/weak, purine/pyrimidine, and keto/amino ratios
across DNA segments identified through entropic segmentation. We observe that these ratio
distributions are similar among closely related species but differ markedly between distant
ones. To quantify these differences, we employ the Jensen-Shannon distance—a symmetric
and robust measure of distributional dissimilarity—to define a genome-to-genome distance
metric, termed Segment Compositional Distance (D). Our results demonstrate a clear
correlation between D and species divergence times, and also that this metric captures a
strong phylogenetic signal. Our method employs a genome-wide approach rather than
tracking specific mutations; thus, D offers a coarse-grained perspective on genome com-
positional evolution, contributing to the ongoing discussion surrounding the molecular
clock hypothesis.

Keywords: entropic segmentation; Jensen-Shannon divergence; genome signatures;
comparative genomics; genome compositional evolution; large-scale evolutionary patterns

1. Introduction

Genome signatures refer to unique, identifiable patterns found within the sequence of
nucleotides (DNA or RNA) that are characteristic of a particular species or organism. The
concept of genome signatures was first introduced by Karlin et al. [1], who observed that
certain nucleotide patterns could serve as markers for distinguishing different genomes. In
general, these signatures can be derived not only from nucleotide composition [1] but also
from various genomic features, such as k-mer frequencies (subsequences of length k within
a genome) [2,3], codon usage [4], and sequence motifs [5]. Genomic signatures have been
shown to possess significant biological relevance, capturing more than just compositional
statistics. For example, Dick et al. [6] emphasizes how patterns such as oligonucleotide
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usage reflect evolutionary and functional processes within genomes. Galperin [7] further
highlights how these signatures are shaped by selective pressures and genomic organiza-
tion, providing a link between compositional features and biological function. Together,
these studies underscore the value of genome signatures as meaningful descriptors of the
evolutionary and structural characteristics of genomes.

The study of genome signatures has become an invaluable tool for a variety of bio-
logical applications, including phylogenetic analysis [2,8], microbial taxonomy [9,10], and
functional genomics [1,4]. By examining the genome signatures of organisms, researchers
can infer evolutionary relationships [2], identify new microorganisms [10], and predict
gene functions based on conserved sequence patterns [1]. As genomic technologies and
computational methods continue to advance, the use of genome signatures is expected to
play an increasingly prominent role in understanding genomic diversity and complexity
across the tree of life [8,11].

Differences in genomic signatures have long been employed as a basis for measuring
evolutionary divergence between species and have been used to quantify genomic distances
and infer phylogenetic relationships [2,9,10]. Such approaches are particularly valuable
when traditional alignment-based methods are infeasible due to high sequence divergence
or genome rearrangements. As a result, alignment-free methods that exploit genome
signatures have gained popularity in comparative genomics and microbial taxonomy for
assessing evolutionary relatedness across a wide range of organisms [8,11].

Most genome signatures proposed to date rely on global properties of the genome,
such as overall nucleotide or k-mer composition, or motif distribution patterns (see [12]
for a recent review). In contrast, we propose a novel type of genome signature that
captures the large-scale structure of genomic heterogeneity. To achieve this, we first seg-
ment the genome into compositionally homogeneous regions [13,14], thereby uncovering
its underlying compositional organization. Once the sequence is partitioned into these
homogeneous segments, using the Jensen-Shannon divergence as a measure of hetero-
geneity [15], we construct the signature by computing statistical descriptors based on their
properties—such as length, composition, and distribution—providing a more structured
and spatially informed characterization of the genome. As we will show later, histograms of
nucleotide compositional biases across genomic segments emerge as particularly effective
candidates for species-specific signatures, showing marked differences between distantly
related organisms. To quantify the dissimilarity between these histograms, we use the
Jensen—Shannon distance—a symmetric, robust, and mathematically sound metric derived
from the Jensen-Shannon divergence. This approach captures large-scale compositional
variation in genomes and provides a meaningful, alignment-free method for assessing
species divergence.

The remainder of the paper is structured as follows: In Section 2, we describe the
procedure for segmenting DNA sequences and discuss the suitability of the heuristic
algorithm proposed in [13]. Section 3 introduces the compositional landscape (This term
is used here to describe the distribution of compositional features along the genome,
analogous to the genomic landscape which refers to the distribution of genes or other
genomic elements.) based on histograms of segment composition. In Section 4, we define
an entropic distance measure between compositional landscapes—Segment Compositional
Distance—which serves as a metric for quantifying compositional divergence between
species. Section 5 examines the correlation between Segment Compositional Distance and
species divergence times, demonstrates its phylogenetic signal, and explores its application
in phylogenetic tree reconstruction. Finally, Sections 6 and 7 summarize and discuss the
findings of the paper.



Entropy 2025, 27,1019

30f18

2. DNA Sequence Segmentation

Due to the widespread spatial variability in nucleotide composition observed in most
genomes [16], identifying compositionally homogeneous regions within DNA sequences is
essential for understanding genomic architecture [17]. This task is fundamental in computa-
tional molecular biology [18], as it enables researchers to explore the large-scale organization
of the genome content [19,20]. In simpler DNA sequences—such as those dominated by
coding regions in prokaryotes, which lack long-range correlations—compositional domains
can be readily identified [21]. However, in eukaryotic genomes characterized by complex
long-range correlations and the absence of a typical patch length, the identification of
such homogeneous segments becomes considerably more difficult [22,23]. To address this
challenge, a statistical methodology that can estimate the locations of compositionally
distinct boundaries with defined statistical confidence is required.

A widely used method is a heuristic, iterative segmentation algorithm [13,24,25],
which partitions a DNA sequence, with a given statistical confidence, into non-overlapping,
compositionally homogeneous domains. The main advantage of this algorithm is that it
does not rely on any prior assumptions about segment size. In contrast, methods based on
moving windows or fixed-size windows typically require additional analysis or filtering
steps to account for window size limitations.

In brief, the segmentation algorithm can be described as follows:

1. Given a DNA sequence of length N, S = {by,b,,..., by}, where b; € {A,C,T,G},
the algorithm slides a cursor along the sequence and computes at each position
i =1,...,N—1 a divergence measure between the left Sy = {by,by,...,b;} and
right Sp = {b;,1,...,by} subsequences. The Jensen-Shannon divergence (JSD) is
commonly used for this purpose because it is well-suited to symbolic data [14,15]:

) = _[n 2
d(i) = H(S) [NH(Sl) + NH(SZ)}, (1)
where n; =i and np = N — i are the lengths of S; and Sy, respectively, S is the full
sequence (N = 11 + ny), and H(-) is the Shannon entropy of nucleotide frequencies:

H(S)=—- ), filog,f; 2)

je{ACT,G}

where f; is the frequency of nucleotide j in the corresponding subsequence.

2. Identify the position imax that maximizes the divergence between the left and right
subsequences. The position imax is considered a candidate split point where the se-
quence may be divided, provided that the corresponding divergence, dmax = d(imax),
is statistically significant.

3. Next, assess the statistical significance of dmax. This significance represents the
probability that such a divergence could not be obtained from a random sequence
Sy, i.e., the probability that the null hypothesis of a homogeneous sequence does not
hold. To this end, consider the cumulative distribution function:

P(x) = Prob{max[d(i)] < x| So(N)}, ©)

which represents the probability that the maximum value of the Jensen-Shannon
divergence, computed over all possible split positions, is less than or equal to x when
segmenting a random nucleotide sequence Sy of length N. For details on how to
obtain P(x), see [14]. In mathematics,

p(dmax) =1- P(dmax) (4)
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is called a p-value. It can be interpreted as the probability that the null hypothesis
(Hp) is true. In our case, Hy is that the observed dmax can be obtained in a sequence Sy
of random nucleotides. We reject Hj if the p-value is smaller than a given threshold
po (usually 0.05), thus accepting the alternative hypothesis H; that the observed dmax
is higher than it could be expected to occur within a random i.i.d. sequence. The
acceptance of the alternative hypothesis H; entails the acceptance of imax as a change
point, i.e., the series is cut at position imax into two segments. If Hy is not rejected, the
sequence remains uncut.

4.  If the sequence is split, the same procedure is recursively applied to each resulting
subsequence.

5. The recursion terminates when no further significant change points are detected. The
sequence is then said to be segmented at a significance level of s = 1 — py. For example,
if py = 0.05, we say that the sequence S is segmented at 0.95 or 95% significance level.

The parameter s defines the statistical threshold for determining whether the difference
between segments is meaningful under the null hypothesis that the sequence is random and
iid. or not. By adjusting this parameter, it is possible to explore the underlying distribution
of segment lengths and nucleotide compositions with varying degrees of resolution [25].
This flexibility helps satisfy a central requirement of a complexity measure [26]. Using a
random i.i.d. sequence as the null hypothesis effectively sets a baseline for identifying
homogeneity. In essence, a sequence is considered compositionally heterogeneous—and
thus in need of segmentation—when the compositional differences exceed those expected
under the i.i.d. model.

In fact, based on this segmentation approach, a complexity measure was proposed in
1998 [27], and it has recently been applied to various biological systems. Notably, it was
used to study the evolution of Cyanobacteria, revealing compositional shifts consistent
with progressive evolution in ancient lineages [28]. It was also applied to the genome of
SARS-CoV-2, where a temporal decrease in compositional complexity was observed as the
virus adapted to the human host [29]. These studies highlight the utility of compositional
segmentation as a powerful tool for uncovering evolutionary signals embedded within
genomic sequences.

The segmentation procedure described above is computationally efficient, with a
runtime proportional to O(Nlog(m — 1)), where N is the length of the sequence and m is
the number of resulting segments (m — 1 cuts). However, it is heuristic in nature, meaning
it does not guarantee identification of the optimal set of segments that fully satisfy the
statistical significance criteria. As a result, segments identified as homogeneous by the
algorithm may still contain internal heterogeneities. This limitation can be addressed using
dynamic programming, which yields optimal algorithms with a runtime of O(N?) [25,30].
Nevertheless, this approach is not a panacea, as it requires prior knowledge of the number
of segments present in the sequence. In fact, it has been shown [31,32] that when the initial
estimate of the number of segments is inaccurate, the heuristic algorithm can outperform
the optimal one.

Having this in mind, the optimal segmentation algorithm is not always the best prac-
tical choice. Although it guarantees the most statistically significant partitioning of a
sequence, its computational cost—proportional to O(N?)—can become prohibitive, es-
pecially when dealing with long sequences such as complete genomes. In contrast, our
heuristic algorithm, while not guaranteeing optimality, has demonstrated strong practical
performance in multiple genomic studies, and independent evaluations have shown that it
performs remarkably well in practice [18,32]. Although the lack of optimality could lead
to the presence of residual internal heterogeneities in some segments, which may slightly
blur the compositional landscape, this effect is mitigated by the statistical aggregation of
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segment properties into histograms. Since our genome signature is based on the distribu-
tion of compositional features across many segments, rather than on individual segment
boundaries, the method remains robust to minor segmentation inaccuracies. In addition,
its efficiency—with a runtime of O(N log m)—makes it particularly suitable for large-scale
genomic analyses; thus, given the size of the sequences we aim to analyze, the trade-off
between computational efficiency and segmentation precision clearly favors our approach.

3. Compositional Landscape of the Genome

Once a genome is segmented at a significance level s into a set of m non-overlapping
segments {S1, Sy, ..., Sm}, each segment S; can be characterized by a chosen compositional
property. The distribution of the selected property across the segments defines what we
refer to as the compositional landscape of the genome—a genome-wide profile that reflects
how that property varies along the sequence. This landscape serves as a compact statistical
representation—or signature—of the genome.

In this work, we focus specifically on nucleotide compositional profiles based on the
skews of single-base groupings: strong/weak nucleotide ratios (GC/AT ratios, usually
known as G+C content), purine/pyrimidine ratios (A+G/C+T) and keto/amino ratios
(G+T/A+C), each capturing distinct chemical or structural properties of DNA sequences.
Among these three, G+C content shows the strongest and most well-documented asso-
ciations with key biological features, including gene density [33], codon usage bias [34],
replication timing [35], and thermal stability [36]. In addition, the G+C compositional
landscape tends to exhibit higher species specificity than landscapes defined by other base
groupings. As an illustrative example, segmental G+C, A+G, and G+T values are shown
for several species in Figure 1. The species specificity of G+C content distributions becomes
even more apparent in Figure 2, which focuses on mammals and shows that species within
the same taxonomic Order exhibit strikingly similar histograms.

[ (a) Homo sapiens G+C (strong) [ (b) Xenopus tropicalis [ (c) Alligator mississippiensis
[ A+G (purines)
6F G+T (keto) L L
G+C (strong) G+C (strong)
at [0 A+G (purines) L [0 A+G (purines)
G+T (keto) G+T (keto)
| m’hﬁ%ﬂ-ﬁm ‘ 7 H
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Figure 1. Histograms of the percentage content of strong bases (G+C), purine bases (A+G), and
keto bases (G+T) for the segments obtained through segmentation at a significance level of s = 0.95,
applied to the complete genomes of several species across the tree of life: human (a), western clawed
frog (b), American alligator (c), chicken (d), zebrafish (e), fruit fly (f), starfish (g), Asian rice (h), and
baker’s yeast (i). Histograms were computed using 50 bins in all cases. For all three groupings the
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histograms reveal clear differences among species, although G+C distributions appear to be more
species-specific. This species specificity of G+C histograms arises in part from the natural asymmetry
in C+G content across genomes, which reflects local compositional biases and genomic architecture.
In contrast, the A+G and G+T histograms are more symmetric and show less variability across
species due to the approximate balance of purines and pyrimidines (A+G ~ T+C) imposed by
Chargaff’s second rule. This rule, together with base-pairing principles, also leads to an approximate
balance of keto and amino bases (G+T ~ A+C), centering both histograms around 50% and reducing
species-specific variability.

(a) Homo sapiens (b) Gorilla gorilla (c) Pan troglodytes
3f L L
, n
1 MM
g0
g (d) Felis catus (e) Canis lupus (f) Mustela putorius
o °f [ [
-~ i
R - I o m
<, n b Mo
(7] L]
N
f'_U 1
£
_
2° - -
(g) Rattus el (h) Mus . (i) Cricetulus
3[ norvegicus r musculus 1] [ griseus  ||l/¢
2
1f
% 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Segment G+C composition (%)
Figure 2. Histograms of G+C composition of the segments obtained by segmenting ats = 0.95

significance level the complete genomes of three primates: human (a), gorilla (b), and chimpanzee (c);
three carnivores: cat (d), dog (e), and polecat (f); and three rodents: rat (g), mouse (h), and Chinese
hamster (i). Note that all histograms in the same row, which correspond to closely related species in
terms of evolutionary divergence time [37,38], look quite similar to each other.

However, it is important to note that features with strong functional associations are
not always the most informative from a phylogenetic perspective. For this reason, we con-
sider all three compositional landscapes in our analysis, rather than focusing exclusively on
G+C content. In fact, as we will show later, the purine fractions yield stronger phylogenetic
signals than G+C content in our framework.

4. Segment Compositional Distance

Having established that histograms derived from compositional segmentation are
species-specific and reflect evolutionary proximity, we now seek a quantitative means of
comparing them across organisms. Specifically, we aim to extract a numerical index that
captures the dissimilarity between compositional landscapes—an index that could serve
as a proxy for evolutionary distance or genomic relatedness, especially in contexts where
traditional sequence alignment is impractical.

To this end, we reuse the Jensen-Shannon divergence (JSD), the same statistical mea-
sure employed during segmentation to detect compositional shifts within genomes. To
be precise, we use its square root, which has all the properties of a metric. Here, JSD is
applied at a higher level: to compare the empirical G+C, A+G, or G+T content distributions
obtained from different species. This results in a distance matrix that encapsulates pair-
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wise compositional differences, providing a compact and alignment-free representation of
genomic divergence grounded in large-scale compositional structure.

To formalize this approach, we define the G+C Segment Compositional Distance, denoted
as Dgc, as a measure of genomic dissimilarity or divergence between two organisms based
on their compositional landscapes. Specifically, let us consider two genomes, indexed by
A and B, each segmented at significance level s into compositional segments. From these
segments, we construct n-bin normalized histograms of G+C content, denoted by probabil-
ity distributions P = (p1, p2,. .., pn) and Q = (41,42, - - -, gn), respectively, where each bin
corresponds to a G+C content interval and p; (resp. g;) represents the fraction of segments
of genome A (resp. B) whose G+C content falls within bin i. These histograms satisfy

n n
Yri=1 Yq=1 piq>0 Vi
i=1 ‘

The Shannon entropy of a discrete distribution P is defined as
n
H(P) = =} pilog, pi,
i=1

where 0log0 = 0.
The Jensen—Shannon divergence between P and Q is then given by

_g(PEQ) gyt
1(p,) = (P52 - JH(P) - 3H©),
where the distribution (P + Q) /2 is defined component-wise as
P+Q\ _ pita
2 ), 2

We define the G+C Segment Compositional Distance between genomes A and B as

DGc(A,B) = d(P,Q)

This measure is symmetric, bounded between 0 and log, 2 = 1, satisfies the trian-
gle inequality, and quantifies the dissimilarity between the G+C content compositional
landscapes of the two genomes. A value of D¢ (A, B) = 0 indicates identical G+C con-
tent distributions, while larger values reflect greater compositional divergence. Note that
Dgc(A,B) = 0 does not imply that the full DNA sequence of A is identical to that of B.
The symmetry of Dgc makes it particularly well-suited for constructing distance matrices
used in comparative analyses.

The method just described for G+C content applies identically when using alternative
base groupings such as A+G (purine content) or G+T (keto content), leading to the defini-
tions of Dry and Dk, respectively. In what follows, we use the generic notation D to refer
to any of the three measures Dgc, Dry, or Dk, depending on context.

It is important to note that the Segment Compositional Distance D is robust with
respect to the number of bins used in the histogram construction. Although the choice
of number of bins affects the granularity of the compositional landscape, our analyses
show that the overall phylogenetic signal and divergence patterns remain consistent across
a wide range of binning schemes. This robustness is further supported by the results
in Section 5, where phylogenetic signal metrics are shown to be stable across different
numbers of bins.
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5. Results

In Figure 2, visual inspection of the content histograms suggested that species within
the same mammalian Order (primates, carnivores, or rodents) exhibit more similar compo-
sitional patterns compared to those from different groups.

To quantitatively evaluate this observation, we computed the Segment Compositional
Distance (D) for all species pairs in a representative set from the three mammalian Orders
(Table 1, Figure 3a—c). Using both the Mann-Whitney U test and Welch’s ¢-test, we found
that D values within taxonomic groups are significantly smaller than those between groups
(p < 10710). This indicates that species within the same group (primates, carnivores, or
rodents) have consistently lower pairwise D values than species from different groups.

Within-group vs
Between-group divergence
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Figure 3. (a—c): Box-and-whisker plots showing the distributions of D¢, Dry, and Dk values,
respectively, for comparisons within and between mammalian Orders. “Within-Order” comparisons
include species from the same taxonomic group (primates, carnivores, or rodents), while “between-
Order” comparisons involve species from different groups. Boxes represent interquartile ranges (IQR),
horizontal lines indicate medians, and outliers are shown as individual points. Segment compositional
distances are consistently higher for between-Order comparisons. Both Mann-Whitney U tests and
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Welch’s t tests yielded statistically significant differences in all cases (p < 10719, (d-f): Relationship
between segment compositional distances—D¢¢, Dry, and Dk, respectively—and evolutionary
divergence time (AT), defined as the estimated time since the most recent common ancestor, among
the same set of mammalian species shown in Figure 2. Each point represents a pairwise comparison
between species. D was calculated from segment content histograms (50 bins; significance level
s = 0.95). AT (in millions of years) was obtained from https:/ /www.timetree.org [38] (accessed on 22
May 2025). Solid gray lines indicate linear fits to the data.

Table 1. Example species from three mammalian Orders (primates, carnivores, and rodents) used
to illustrate that Segment Compositional Distance (D) values between species of different Orders is
greater than D values within the same Order.

Primates Carnivores Rodents
Callithrix jacchus Canis lupus Cavia porcellus
Carlito syrichta Felis catus Cricetulus griseus
Chlorocebus sabaeus Mustela putorius Dipodomys ordii
Gorilla gorilla Neomonachus schauinslandi Mus musculus
Homo sapiens Rattus norvegicus
Macaca fascicularis

Macaca mulatta
Nasalis larvatus
Nomascus leucogenys
Otolemur garnettii
Pan paniscus
Pan troglodytes
Papio anubis
Pongo abelii

This confirms our hypothesis that D would be lower within taxonomic Orders and
higher between them. This pattern is consistent with expectations from evolutionary theory
and supported by previous studies [39] that describe mechanisms by which compositional
differences accumulate between genomes. These include lineage-specific differences in
mutation biases, DNA repair efficiency, transposable element activity, and selection on
codon usage or gene regulation. Such processes shape local sequence composition over
time, leading to more similar compositional patterns in closely related species due to their
shared evolutionary history, and increasingly divergent patterns as phylogenetic distance
increases. Hence, segment compositional distance reflects both evolutionary time and the
cumulative action of genome-shaping processes.

In addition, we examined the relationship between D and divergence time, finding
a strong and statistically significant positive correlation. The Pearson correlation coeffi-
cient (Figure 3d—f, r = 0.868, 0.837, and 0.880 for Dgc, Pry, and Dy, respectively with
p < 10719 indicates a strong linear association, suggesting that D increases with diver-
gence time between species. The Spearman rank correlation coefficient, p = 0.954,0.956,
and 0.899 for Dgc, Dry, and Dk, respectively (p < 1040), reveals an even stronger
monotonic relationship, implying that the rank ordering of species pairs by divergence
time closely mirrors their ordering by segment compositional distance. Together, these find-
ings provides quantitative support for the time-dependent accumulation of compositional
differences across mammalian genomes. Rather than merely reflecting taxonomic grouping,
D appears to scale with evolutionary time, consistent with molecular clock-like behavior
observed in genomic divergence rates [40]. The agreement with divergence estimates from
TimeTree [37] further reinforces the reliability of this pattern. Our results also suggest that
segment compositional distance is not only shaped by lineage-specific mechanisms, but also
retains a measurable signature of evolutionary distance, making it a useful complement to
more traditional phylogenetic markers.
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Now, we extend our analysis to focus on the evolutionary trajectory of segment com-
positional distance from the perspective of a single species, Homo sapiens. Specifically, we
calculated D values between the human genome and a broad set of mammalian species
spanning multiple Orders and divergence times. This species-centered approach provides
several advantages: first, Homo sapiens represents a well-annotated, high-quality reference
genome commonly used in comparative genomics studies [41-43]; second, anchoring com-
parisons to a single reference enables a clearer assessment of how segment compositional
distance accumulates as a function of evolutionary distance. Understanding this relation-
ship is important to characterize the temporal dynamics of segment compositional distance,
which may exhibit linear or nonlinear trends over long evolutionary timescales [39,40].
Therefore, this focused analysis complements our broader inter- and intra-Order compar-
isons by revealing the rate and pattern of compositional change in relation to divergence
time from a fixed genomic baseline.

We observe a strong correlation between the Segment Compositional Distance and
divergence time for all nucleotide groupings—Dgc, Dry, and Dk (Figure 4). This finding
supports our initial hypothesis that compositional landscapes provide a robust descriptor of
genome-wide divergence and are suitable candidates for capturing large-scale evolutionary
trends across mammalian genomes. It further suggests that D carries a phylogenetic signal
and can serve as a quantitative proxy for evolutionary distance.
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Figure 4. Plots of Segment Compositional Distance between Homo sapiens and the mammalian species
listed in Table 2 from sequence segmentation at significance level s = 0.95 and for 50-bin histograms,
as a function of species divergence time (AT). (a) Dgc, (b) Dry, and (c) Dgpr. The solid lines in
each panel represent the linear fits to the data. In all three cases we obtain strong and statistically
significant lineal correlations.

Phylogenetic signal is the tendency for closely related species to display similar
trait values (i.e., a specific characteristic or feature of an organism) as a consequence
of their phylogenetic proximity [44]. To determine the phylogenetic signal of Segment
Compositional Distance, we used three symmetric matrices of pairwise distances of the
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species listed in Table 2, including Homo sapiens, corresponding to D¢, Dry, and Dxp.
These matrices reflect the entire compositional divergence between genomes, corresponding
to strong/weak, purine-pyrimidine and keto-amino skews, respectively. Divergence times
were incorporated from a calibrated, ultrametric phylogenetic tree downloaded from
https:/ /www.timetree.org [37,38] (accessed on 22 May 2025).

To obtain the phylogenetic signal, we first need to reduce each distance matrix to a trait
vector that assigns a single number to each species. In doing so, we used Multidimensional
Scaling (MDS), thus reducing each distance matrix to a single axis [45,46]. Finally, we used
the phylosignal R package [44] to compute five indexes of phylogenetic signal (Table 3):
Aboubheif’s Cyean [47], Moran’s I index [48,49], Blomberg’s K and K* [50,51], and Page’s
A [52].

Table 2. Divergence time (AT) between Homo sapiens and other mammalian species obtained from

https:/ /www.timetree.org (accessed on 22 May 2025). [38].

Scientific Name (Common Name) AT (My) Order
Balaenoptera acutorostrata (Minke whale) 94 Cetartiodactyla
Bison bison (American bison) 94 Cetartiodactyla
Callithrix jacchus (Common marmoset) 42 Primates

Canis lupus (Gray wolf) 94 Carnivora
Carlito syrichta (Philippine tarsier) 68 Primates

Cavia porcellus (Guinea pig) 87 Rodentia
Chlorocebus sabaeus (Green monkey) 28 Primates
Cricetulus griseus (Chinese hamster) 87 Rodentia
Dasypus novemcinctus (Nine-banded armadillo) 99 Cingulata
Dipodomys ordii (Ord’s kangaroo rat) 87 Rodentia
Equus caballus (Horse) 94 Perissodactyla
Erinaceus europaeus (European hedgehog) 94 Eulipotyphla
Felis catus (Cat) 94 Carnivora
Galeopterus variegatus (Sunda flying lemur) 79 Dermoptera
Gorilla gorilla (Gorilla) 8 Primates
Loxodonta africana (African elephant) 99 Proboscidea
Macaca fascicularis (Crab-eating macaque) 28 Primates
Macaca mulatta (Rhesus macaque) 28 Primates
Monodelphis domestica (Gray short-tailed opossum) 160 Didelphimorphia
Mus musculus (House mouse) 87 Rodentia
Mustela putorius (Ferret) 94 Carnivora
Muyotis lucifugus (Little brown bat) 94 Chiroptera
Nasalis larvatus (Proboscis monkey) 28 Primates
Neomonachus schauinslandi (Hawaiian monk seal) 94 Carnivora
Nomascus leucogenys (Northern white-cheeked gibbon) 19 Primates
Ochotona princeps (American pika) 87 Lagomorpha
Ornithorhynchus anatinus (Platypus) 180 Monotremata
Otolemur garnettii (Small-eared galago) 73 Primates

Owis orientalis (Mouflon) 94 Cetartiodactyla
Pan paniscus (Bonobo) 6 Primates

Pan troglodytes (Chimpanzee) 6 Primates

Papio anubis (Olive baboon) 28 Primates

Pongo abelii (Sumatran orangutan) 15 Primates
Procavia capensis (Rock hyrax) 99 Hyracoidea
Rattus norvegicus (Norway rat) 87 Rodentia
Sarcophilus harrisii (Tasmanian devil) 160 Dasyuromorphia
Sorex araneus (Common shrew) 94 Eulipotyphla
Sus scrofa (Pig) 94 Cetartiodactyla
Tupaia glis (Tree shrew) 84 Scandentia
Tursiops truncatus (Bottlenose dolphin) 94 Cetartiodactyla
Vicugna pacos (Alpaca) 94 Cetartiodactyla

Table 3 shows significant values for all the indexes of phylogenetic signal, save for
Moran’s I in some cases. It is noteworthy that the phylogenetic signal index values were
higher on average for Dy than for Dgc, indicating greater functional constraints for GC
nucleotide grouping. This is consistent with the known biological significance of spatial
variations in GC composition across the genome [16,53-58]. Overall, these results indicate
that D exhibits a strong phylogenetic signal, making it a meaningful distance measure
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for studying the evolution of genome compositional structure. This result remain fairly
consistent across different numbers of bins, slightly increasing the values of all indexes for
a higher number of bins. However, choosing a large number of bins may not be appropriate
in all cases, particularly when applying this measure to a genome composed of a small
number of segments. In such cases, using too many bins could result in sparsely filled
histograms and unreliable estimates of compositional distances.

To further evaluate the biological relevance of the Segment Compositional Distance,
we constructed a phylogenetic tree using the distance values as input. The goal of this
analysis is to assess whether the proposed measure captures meaningful evolutionary
relationships among species, beyond simple pairwise correlations. This is typically done
using a phylogenetic tree—a branching diagram that represents the inferred evolutionary
relationships among a set of organisms, based on genetic or genomic similarity.

Table 3. Phylogenetic signal statistics of Segment Compositional Distance for the set of mammals
listed in Table 2, including Homo sapiens. We computed five indices for each nucleotide grouping
(Dgc, DRy, and Dky), obtained from segmentations at s = 0.95 and across different values of the
numbers of bins used in the discretization of the histograms.

# of Bins D Abouheif’s Cyeqn Moran’s I Blomberg K  Blomberg K* Pagel’s A
Dgc 0.5774 *** NS 1.7055 *** 1.6440 *** 1.0416 ***

50 Dry 0.5751 *** 0.0848 *** 2.0579 *** 1.8757 *** 1.0420 ***
Dkm 0.2295 * NS 1.3052 *** 1.2795 *** 1.0418 ***

Dge 0.5779 *** NS 1.7018 *** 1.6450 *** 1.0416 ***

100 Dry 0.5903 *** 0.0906 *** 2.1290 *** 1.9236 *** 1.0420 ***
Dxm 0.2448 ** NS 1.3141 **+ 1.2971 *** 1.0418 ***

Dge 0.5799 *** 0.0073 * 1.7010 *** 1.6473 *** 1.0416 ***

200 Dry 0.6025 *** 0.0952 *** 2.1831 *** 1.9656 *** 1.0420 ***
Dxm 0.2543 * NS 1.3192 *** 1.3073 *** 1.0418 ***

Dgce 0.5831 *** NS 1.6993 *** 1.6500 *** 1.0416 ***

500 Dry 0.6213 *** 0.0988 *** 2.2255 *** 2.0161 *** 1.0420 ***
Dxm 0.2730 ** 0.0098 * 1.3332 *** 1.3266 *** 1.0418 ***

*** p < 0.001;**0.001 < p < 0.01;*0.01 < p < 0.05;NS p > 0.05.

A well-structured tree that reflects established taxonomic groupings indicates that the
distance metric encodes a robust phylogenetic signal. This analysis, conducted on the same
group of mammalian species listed in Table 2, is presented in Figure 5. The resulting tree
reveals several biologically consistent groupings: all primates cluster together, as do all
carnivores, while rodents form a cluster with the notable exception of Cavia porcellus (Guinea
pig), which appears separated from the main rodent clade. Interestingly, this divergence
corresponds to its relatively early evolutionary split from other rodent lineages in the
dataset. These observations support the utility of the Segment Compositional Distance in
capturing large-scale evolutionary patterns across mammalian genomes.
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Figure 5. Phylogenetic tree constructed using the Segment Compositional Distance among all
mammalian species listed in Table 2. Pairwise distances were computed from 50-bin histograms of
Purine content (Dry), obtained through significance-based sequence segmentation (s = 0.95). The
resulting topology reveals coherent taxonomic groupings (see main text), supporting the ability
of the Segment Compositional Distance to reflect evolutionary relationships based on large-scale
genome composition.

6. Discussion

Our analyses across a representative set of mammalian genomes (Table 2) reveal that D
correlates strongly with divergence time (Figure 4) and that D carries a strong phylogenetic
signal (Table 3). These findings demonstrate that our method recovers a phylogenetic signal
that reflects evolutionary relationships with high consistency, without relying on sequence
alignment or gene annotation.

This result is particularly relevant in the context of the long-standing debate over
the molecular clock hypothesis. Originally proposed by Zuckerkandl and Pauling in the
1960s [59], the molecular clock posits that genetic changes accumulate at an approximately
constant rate over time. However, subsequent work has shown that evolutionary rates vary
substantially across genes, lineages, and genomic regions due to differences in mutation
rates, selective pressures, generation times, and DNA repair mechanisms [60-62]. As a
result, the concept of a universal clock has largely been replaced by models that incorporate
rate heterogeneity, such as relaxed clock models in Bayesian phylogenetics [63].

Our approach provides an alternative perspective: while we do not assume a constant
substitution rate, the segment compositional distance still exhibits a strong, approximately
linear relationship with divergence time. This suggests that the large-scale compositional
structure of the genome evolves in a statistically regular manner over long timescales,
despite local heterogeneities. Because D is derived from genome-wide features rather than
individual mutations, it inherently averages over localized rate variation and is less sensi-
tive to the stochasticity that affects gene-level analyses. In this sense, our method recovers
a “relaxed-clock” [63] behavior without requiring explicit modeling of rate variation. Thus,
our method can be interpreted as a coarse-graining of the evolutionary process, capturing
stable, long-term trends in genomic composition that go beyond local rate fluctuations.
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Furthermore, the observed phylogenetic consistency in trees constructed from pair-
wise Dry values (Figure 5) reinforces the notion that segmental composition reflects deep
evolutionary history. An interesting observation in our phylogenetic analysis is the place-
ment of Cavia porcellus outside the main rodent cluster. The fact that this pattern aligns
with their early divergence from other rodent lineages may indicate a genuine evolution-
ary signal rather than a methodological artifact. However, this intriguing pattern could
also be influenced by the faster evolutionary rates commonly observed in rodents. Duret
and Galtier [64] showed that rodents tend to accumulate substitutions more rapidly than
other mammalian Orders, which has been attributed to shorter generation times, higher
metabolic rates, and larger effective population sizes. These factors can result in accelerated
genome-wide changes, including shifts in base composition, and may cause compositional
distances such as D to increase disproportionately over time. Because D captures large-scale
divergence in the nucleotide groupings content landscape rather than specific substitutions,
it may be especially sensitive to such rate effects when applied to lineages with unusual
compositional dynamics. In particular, Cavia porcellus has been reported to have a highly
rearranged and compositionally atypical genome [65,66], which may further accentuate
its distance from other rodents in an alignment-free framework. Although our method
does not rely on substitution models or assume a molecular clock, these results highlight
the importance of considering lineage-specific evolutionary dynamics when interpreting
phylogenetic signal from compositional data.

It is worth noting that the results presented here are practically unaffected by the
specific choice of the number of histogram bins or the segmentation significance level.
While the paper explicitly demonstrates the consistency of the phylogenetic signal across
different binning schemes (see Table 3), similar robustness was observed for a range of
segmentation thresholds.

From its definition, it follows that D requires only raw genomic sequences and operates
without the need for sequence alignment. This makes it applicable to fragmented assemblies
or highly divergent genomes where traditional phylogenetic methods may fail. Although
high-quality genome assemblies naturally yield more reliable results, the method performs
reasonably well even with incomplete or lower-quality sequences. To illustrate this, we
applied D to three human genome assemblies of varying quality: GRCh37.p13 (low quality),
GRCh38.p14 (medium quality), and T2T-CHM13v2.0 (telomere-to-telomere, high quality).
In all cases, the distances between these assemblies were significantly smaller than the
distances between T2T-CHM13v2.0 and the closest non-human primates. This confirms
that while optimal results are achieved with high-quality assemblies (without annotations),
D remains stable and informative across a range of sequencing qualities. This, together
with its robustness, makes D a promising tool for detecting evolutionary patterns based on
genome-wide compositional structure.

7. Conclusions

We have introduced a novel alignment-free method for quantifying genome divergence
based on the segment compositional landscape of DNA sequences. This approach involves
entropic segmentation of genomic sequences into compositionally homogeneous domains,
followed by the construction of species-specific histograms of nucleotide groupings content.
The dissimilarity between these histograms, measured using the Jensen-Shannon distance
(the square root of the Jensen-Shannon divergence), defines the Segment Compositional
Distance (D), a symmetric and robust distance that captures large-scale genomic structure
will all desirable properties of a measure of genomic divergence.

Our analyses across a wide range of mammalian genomes demonstrate that this mea-
sure captures biologically meaningful patterns of evolutionary divergence. We observed
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a strong correlation between D and divergence time, both across and within taxonomic
Orders, and also find that the measure retains a clear phylogenetic signal. Furthermore,
phylogenetic trees constructed from pairwise distances based on D reveal coherent tax-
onomic groupings consistent with established evolutionary relationships. Although it
might seem intuitive that closely related organisms exhibit similar genomic compositions,
our method provides a structured, quantitative framework to capture and compare how
compositional features (e.g., G+C or purine content) are distributed across the genome. This
is not a trivial observation: similarity in nucleotide content distributions reflects not only
sequence similarity, but also higher-order genomic organization that may not be evident
through direct sequence comparison.

Apart from the usefulness of the genome signature D as a measure of distance between
genomes, the analysis of compositional landscapes itself enables the identification of
regions with distinct nucleotide usage, which may correspond to functional domains,
horizontal gene transfer events, or evolutionary signatures. This approach can support
genome annotation, the detection of genomic islands, and the exploration of DNA structural
organization across species. By providing a scalable and statistically grounded framework,
our method contributes to the broader effort of interpreting genomic complexity and
variability in both model and non-model organisms.

Taken together, our results establish the Segment Compositional Distance as a compu-
tationally efficient and biologically meaningful tool for large-scale comparative genomics.
It is particularly well-suited for phylogenetic analysis in cases where sequence alignment is
unreliable or infeasible, and may also be useful in the study of genome evolution, taxonomy,
and biodiversity through a compositional lens.

8. Material and Methods

*  Genome sequences used in this study were retrieved from the National Center for
Biotechnology Information (NCBI) Genome database, a public repository for genome
data https://www.ncbinlm.nih.gov/datasets/genome (accessed during March and
April 2025). We navigated to the “Eukaryotes” section and then filtered by “Mammalia”
to find links to the various available genome assemblies.

* Implementation details, source code, and pre-compiled binaries of the segmentation
program are available at https://github.com/idedis/scc (accessed on 22 May 2025).

¢ The Python scripts, wrapper code for the scc executable, histograms, matrices of
Segment Compositional Distance, and time divergence between species (retrieved
from https://www.timetree.org (accessed on 22 May 2025)) are openly available at
https:/ /github.com/idedis/genome-divergence (accessed on 22 May 2025).

e All graphs in this article were produced using Python’s Matplotlib library (ver.
3.10.3). Phylogenetic trees were visualized with the Bio.Phylo module (ver. 1.8.0)
from Biopython (ver. 1.85), which integrates with Matplotlib for tree rendering.
Statistical calculations and clustering procedures were carried out using Python’s
SciPy library (ver. 1.15.3).

e To perform multidimensional scaling (MDS) and evaluate phylogenetic signals in
our data, we used the statistical computing environment R (ver. 4.3.4) along with
several dedicated phylogenetic packages. Specifically, we employed the libraries ape
(ver. 5.8.1), phytools (ver. 2.4.4), geiger (ver. 2.0.11), and phylobase (ver. 0.8.12) for
phylogenetic data handling and manipulation. The phylosignal (ver. 1.3.1) package
was used to compute various indices of phylogenetic signal, including Abouheif’s
Ciean, Moran’s I, Blomberg’s K and K*, and Pagel’s A, providing a quantitative
assessment of trait similarity as a function of phylogenetic relatedness.
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¢ To accelerate the segmentation and computation of genome histograms, we employed
the application GNU Parallel [67] (ver. 20231122), which enabled parallel execution
of tasks.

¢  The authors used Al-assisted tools (ChatGPT, OpenAl) to help refine the English in
parts of the manuscript.
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