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Abstract

The construction industry is a major contributor to global environmental impacts, par-
ticularly through the production and use of cement-based materials. In response to this
challenge, this study provides a comprehensive synthesis of recent advances in the in-
tegration of Life-Cycle Assessment (LCA) and Artificial Neural Networks (ANNSs) for
optimizing cementitious composites containing Supplementary Cementitious Materials
(SCMs). A total of 14 case studies specifically addressing this topic were identified, re-
viewed, and analyzed, spanning various binder compositions, ANN architectures, and
LCA frameworks. The findings highlight how hybrid ANN-LCA systems can accurately
predict mechanical performance while minimizing environmental burdens, supporting
the formulation of low-carbon, high-performance cementitious composites. The diverse
SCMs explored, including fly ash, slag, silica fume, waste glass powder, and rice husk ash,
demonstrate significant potential for reducing CO, emissions, energy consumption, and
raw material depletion. Furthermore, the systematic comparative matrix developed in this
work offers a valuable reference for researchers and practitioners aiming to implement
intelligent, eco-efficient mix designs. Overall, this study contributes to advancing digital
sustainability tools and reinforces the viability of ANN-LCA integration as a scalable
decision-support framework for green construction practices.

Keywords: artificial neural networks; cement sustainability; life-cycle assessment; low-carbon
designs; machine learning; supplementary cementitious materials

1. Introduction

Cementitious composites are construction materials composed primarily of hydraulic
cement (commonly Portland cement) combined with aggregates (i.e., sand and/or gravel),
water, and often fillers and other additives/admixtures to enhance performance [1,2]. These
composites, such as mortar and concrete (see Figure 1), are indispensable in the construction
industry due to their wide availability, adaptability, and excellent mechanical properties,
making them foundational to infrastructure development, urbanization, and economic
growth worldwide [3-5]. However, their environmental burdens are elevated because
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cement production is highly energy-intensive and responsible for approximately 5-7%
of global anthropogenic CO; emissions, mainly due to the calcination of limestone and
the combustion of fossil fuels [6-8]. In this regard, it is essential to redesign cementitious
composites to be more eco-friendly, thus mitigating the impacts of climate change and
safeguarding non-renewable resources [9,10]. A key strategy in achieving this sustainability
goal is the incorporation of Supplementary Cementitious Materials (SCMs), which include
industrial by-products like fly ash, silica fume, and ground granulated blast furnace slag,
as well as natural pozzolans and agricultural residues such as rice husk ash [11,12]. SCMs
not only partially replace cement, thus lowering air emissions (e.g., CO, NOy, SO,, CO,
dioxins, furans, and trace heavy metals, among others) and conserving virgin raw materials
but also often improve the durability and long-term strength of the composites when
properly engineered [13,14].

CONCRETE

Cement Water Fine aggregate Coarse aggregate

MORTAR

Cement Water Fine aggregate

Figure 1. Compositional differences between mortar and concrete.

Designing cementitious composites incorporating SCMs is inherently challenging due
to the complex interplay between mechanical performance and environmental impact,
where varying SCM dosages can either enhance or compromise compressive strength, dura-
bility, and sustainability outcomes [15,16]. Excessive SCM content may lower greenhouse
gas emissions by reducing clinker usage, but it can also degrade mechanical properties,
potentially increasing the total material required and offsetting environmental benefits,
whereas insufficient SCM use fails to capitalize on potential sustainability gains [17,18].
Thus, refining raw material dosages is essential to achieve a mixture design that balances
mechanical performance with potential environmental savings [19-21]. In this regard, the
Life-Cycle Assessment (LCA) methodology has become a widely adopted approach for
quantifying the environmental burdens of these materials, including (but not limited to) air
emissions, energy demand, and water use [4]. Nonetheless, identifying a replacement level
that simultaneously minimizes environmental detriments across multiple impact categories
while maintaining the required mechanical performance is complex, especially given the
variable nature of different SCMs and their physicochemical interactions with other raw
materials [7,22]. Whereas some well-established materials, such as slag or fly ash, have
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regulated limits to ensure performance and safety, defining the ideal proportions remains
a challenge for novel, innovative, or less standardized SCMs. To address this, Artificial
Neural Networks (ANNs) have gained prominence as powerful tools capable of modeling
nonlinear relationships and optimizing mix designs by learning from experimental data,
thereby facilitating the rapid identification of optimal SCM proportions that meet both
mechanical and environmental performance objectives [23,24].

Integrating LCA and ANNs for refining the inclusion of SCMs in sustainable cemen-
titious composites has become an emerging trend to address the complex challenge of
simultaneously improving environmental performance and mechanical properties [25,26].
While various case studies have been conducted to demonstrate the potential of this syn-
ergy [24,27,28], a unified framework or comprehensive synthesis is lacking, which hinders
the understanding of these isolated research efforts in a cohesive manner. The diversity
in methodologies, regional material variability, and inconsistent performance indicators
has led to a fragmented body of knowledge without a clear consensus. Therefore, this
literature review aims to systematically examine the current state-of-the-art related to
LCA-ANN integration in SCM-based cementitious composite mix optimization, uncover
gaps and methodological limitations, and provide a critical analysis that highlights both
the strengths and unresolved challenges in the field. Additionally, the present study makes
a novel contribution by linking SCM typologies with ANN applications, complemented
by an in-depth comparative LCA analysis. By outlining these contributions, this review
clarifies its added value and offers insights into future advancements in the design of
eco-friendly cementitious composites.

The novelty of this literature review lies in its systematic integration of LCA and
ANNSs within the context of SCMs, offering a comprehensive synthesis that has not been
achieved in previous studies. While earlier reviews have often addressed either the envi-
ronmental assessment of SCM-based cementitious composites or the predictive capabilities
of data-driven models in isolation, this work uniquely bridges these domains by critically
examining how ANN-based optimization can be directly coupled with LCA outcomes to
achieve eco-efficient mix designs. By developing a critical analysis that links diverse SCM
typologies with ANN applications across multiple case studies, this review not only consol-
idates fragmented research but also establishes a structured framework for evaluating the
dual objectives of performance and sustainability. This dual focus advances the field by clar-
ifying methodological inconsistencies, highlighting underexplored SCMs, and identifying
opportunities where intelligent modeling can accelerate the adoption of greener binders. As
such, this review contributes beyond the existing literature by transforming disparate find-
ings into a coherent decision-support perspective, thereby strengthening the role of digital
sustainability tools in guiding the design of next-generation cementitious composites.

The structure of the following sections of this manuscript is described below. Section 2
provides a detailed background to clarify essential concepts, including SCMs, LCA, and
ANN . In Section 3, the methodology employed to carry out this literature review is
explained, i.e., the “Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA)” guidelines. Section 4 presents in-depth analyses of each of the case studies
found in the existing state-of-the-art that focus on LCA—ANN integration in SCM-based
cementitious composite mix optimization. Subsequently, in Section 5, there is a comprehen-
sive critical discussion on the current state of knowledge, highlighting key findings and
emerging trends; comparing methodological approaches; examining theoretical perspec-
tives; identifying gaps and limitations in the literature; addressing conflicting evidence and
debates; and outlining the implications for practice, policy, and future research. Finally,
Section 6 summarizes the main conclusions of this investigation.
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2. Background

Presenting a clear background is essential to establish a common understanding of key
concepts such as SCMs, LCA, and ANNSs, which are fundamental to current research in eco-
friendly cementitious composites. These concepts encompass interdisciplinary knowledge
spanning the fields of materials science, environmental engineering, and computational
methods. Without a concise explanation, readers may struggle to grasp the scope, rele-
vance, and interconnection of the topics herein addressed. In this regard, a well-defined
background ensures that the technical discussion that follows is coherent, accessible, and
grounded in shared terminology.

2.1. SCMs

The field of SCM is recognized as broad and continuously evolving, representing
one of the principal research lines in the area of composite materials [29]. While several
SCMs are well-established in the literature for their proven performance and compatibil-
ity with cementitious composites, ongoing studies continue to explore novel materials,
leading to innovative approaches that expand the range of potential alternatives for con-
struction sector. In this context, Figure 2 presents a classification of commonly utilized
SCMs based on their source and function. As the concept indicates, SCMs are by-products
that are typically used as substitutes for cement binders within composites. Particularly,
in the case of concrete and mortar, they are most frequently employed as partial replace-
ments for ordinary Portland cement (OPC), aiming to address both technological and
environmental aspects [30].

Classification of commonly employed Supplementary Cementitious Materials (SCMs)

By their source / origin By their reaction / function
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Figure 2. Classification of Supplementary Cementitious Materials. Adapted from [30].

From a technical perspective, the incorporation of SCMs aims to improve the key
performance characteristics of cement-based materials, including fresh-state workability,
mechanical strength, and long-term durability. Moreover, from an environmental point
of view, the partial substitution of OPC with SCM positively contributes to reducing the
carbon footprint of construction materials [31]. On the one hand, considering that cement
production is responsible for high CO, emissions during the calcination of limestone and
high energy consumption during clinker production [32], the use of SCMs reduces the
clinker in the mixtures, thereby reducing the carbon footprint of cementitious materials.

On the other hand, SCM promotes the valorization of industrial, agricultural, and
other process-derived residues that would otherwise be disposed of as waste [33]. In this
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regard, SCMs support both performance enhancement and implementation of sustainable,
resource-efficient building practices.

22.LCA

LCA is the benchmark methodology for holistically quantifying the environmental
impacts of products and processes [34-36]. This approach relies on a systematic framework
standardized by ISO 14040 [37] and ISO 14044 [38], which evaluates the environmental
burdens associated with all stages of a product’s life-cycle, from raw material extraction,
processing, and manufacturing to distribution; use; and end-of-life treatment, including
disposal or recycling [39,40]. These ISO standards define four main phases: (1) goal and
scope definition, (2) Life-Cycle Inventory (LCI) analysis, (3) life-cycle impact assessment
(LCIA), and (4) interpretation. These phases are interconnected, as illustrated in Figure 3.

1

1
_____________________ 1 !
1 | 1
1| Input data || Output data | l :
: Materiqls and Emissions and :: Techniques used to |
1| energy inflows waste outflows | X 1
Iss==q========= s—————!| modelimpacts |!

System Description and
Boundaries

Data Source |

‘ Functional Unit |

1
] ! I
] ! |
[} 1
Lo @) . @ ® |
: ' | Goal and scope Inventory Impact assessment !
: ! Establishing the analysis (LCI) |_ | (LCIA) :
X 1 purpose and Compilation and Evaluation of potential |
! K Sframework quantification of data environmental effects :
] ! |
I L4 t 1
. 1
\ | © Interpretation !
| | Integration of results :
] ! I

1

_____________

Figure 3. Framework for LCA model construction: from data acquisition to data interpretation.
Adapted from [41].

The goal and scope definition phase is the initial and foundational step in any LCA
study. It specifies the purpose of the assessment; establishes the functional unit, a quantita-
tive reference that enables consistent comparisons across different systems; and delineates
the system boundaries. In the context of cementitious materials, the functional unit is
commonly defined as 1 ton (1 t) of cement or 1 cubic meter (1 m?) of concrete, providing a
standardized basis for evaluating environmental impacts.

The system boundaries determine which processes and life-cycle stages are included
in the analysis. Two widely adopted approaches are (i) cradle-to-gate, which covers all
stages from raw material extraction up to the point the product exits the manufacturing
facility, and (ii) cradle-to-grave, which extends the assessment to include downstream
processes such as transportation; construction (placement); use phase; and end-of-life
scenarios including demolition, disposal, or recycling. These boundary frameworks are
illustrated in Figure 4.
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Figure 4. Life-cycle process flow. Adapted from [2].

The LCI analysis phase involves systematic collection and quantification of all relevant
inputs (e.g., energy, raw materials, and water) and outputs (e.g., emissions, solid waste, and
wastewater) associated with each stage of the product’s life cycle. For cement incorporating
SCMs, this stage requires particular attention to the origin, processing, and transportation
of SCMs [8,29,42]. It is also essential to address the allocation of environmental burdens
when dealing with industrial by-products such as fly ash or blast furnace slag, in accordance
with ISO allocation principles [43—45].

At this point, the elementary flows characteristic of the cement systems under study
are defined. Table 1 summarizes the typical input and output flows reported in the literature
per ton of clinker, serving as a baseline for environmental modeling and comparison.
Table 1. Representative elementary flows per 1 ton of clinker.

Flow Typical Value Source/Description References
Thermal energy 3200-3800 MJ Rotary kilns; fossil/alternative fuels [46,47]
Electricity 90-120 kWh Grinding and homogenization processes [48,49]
Process emissions .
~520- 1 ~759 1
(CaCOs — CaO + CO,) 520-580 kg CO, Calcite content ~75% by mass [50,51]
NOy emissions 1.8-3.2kg Kiln temperatures > 1450 °C [52,53]
SO, emissions 0.4-2.1kg Sulfur content in fuel and raw materials [54,55]

These inventory flows are translated into potential environmental impacts through
characterization models, which quantify how specific emissions and resource uses con-
tribute to various impact categories. Commonly used models include those for global
warming potential (GWP), acidification, eutrophication, and resource depletion, among
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others [8,50,55]. For cementitious materials, the most relevant impact categories, based on
frequency of use in the literature and regulatory frameworks, are summarized in Table 2.
These categories serve as key indicators for evaluating and comparing the sustainability of
different binder compositions and production routes.

Table 2. Relevant LCA impact categories for clinker-based cementitious materials.

Impact Category Indicator (Unit) Typical Contribution from Clinker (%)  References
GWP (100y) kg CO,-eq 60-80% [48,49,51]

Cumulative Energy Demand MJ 70-85% [46,47]

Acidification Potential kg SO,-eq 40-60% [53,54]

Eutrophication Potential kg PO4>~-eq 20-40% [52,55]
Photochemical Ozone Formation kg CoHy-eq 30-50% [50]

Particulate Matter Formation kg PMjp-eq 50-70% [51,54]
Water Scarcity Footprint m? H,0-eq 5-20% [47]

Abiotic Depletion (Fossil) kg Sb-eq 70-90% [48,49]

Land Use Pt (points) 30-60% [53,55]

Recent studies have reported reductions of up to 77% in CO, emissions and 57%
in embodied energy when replacing ordinary Portland cement with optimized blends
of SCMs and recycled aggregates [8,29,42,56,57]. These results highlight the significant
environmental potential of alternative cementitious systems when properly designed.

Finally, the interpretation phase integrates the outcomes from previous stages to
support informed decision-making and identify opportunities for environmental improve-
ment. This includes conducting sensitivity and uncertainty analyses, which are essen-
tial for validating the robustness of the conclusions. The interpretation phase plays
a pivotal role in guiding the development of more sustainable construction materials
and technologies [5,36,58].

2.3. ANNs

Before focusing on ANNES, it is necessary to introduce more basic concepts, such as
artificial intelligence (AI), machine learning (ML), and deep learning (DL). First of all, Al
refers to the capability of machines/computers to imitate intelligent human behavior by
performing tasks such as learning, reasoning, problem-solving, and perception [59,60]. Al
encompasses several branches, including expert systems, natural language processing,
robotics, computer vision, evolutionary computation, and machine learning (ML), which
has become one of the most prominent [61,62]. ML is a branch of Al that enables sys-
tems to automatically learn patterns from data and improve their performance over time
without being explicitly programmed [63,64]. Within ML, there are further sub-branches
(e.g., supervised, unsupervised, reinforcement learning, and their mid-points) with their
canonical algorithms [65,66]. On the one hand, there are regressions, support vector ma-
chines, decision trees, random forests, gradient boosting machines, K-nearest neighbors,
and naive Bayes for supervised learning [67,68]. On the other hand, there are K-means
clustering, hierarchical clustering, principal component analysis, independent component
analysis, decomposing multivariate signals into additive subcomponents, and density-
based spatial clustering of applications with noise, all of which are used for unsupervised
learning [69,70]. Meanwhile, reinforcement learning encompasses algorithms such as Q-
learning, state—action—reward-state—action, and policy gradient methods [71,72]. Another
fundamental class of algorithms within ML, applicable across supervised, unsupervised,
and reinforcement learning paradigms (as well as their hybrids), is known as ANNs [73,74].
Thus, DL emerged as a specialized subfield of ML centered on the use of ANNSs [75,76].
Figure 5 illustrates the hierarchical relationship between Al, ML, and DL. In simple words,
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ANNSs can be defined as a set of computational models designed to simulate the way bio-
logical neurons process and transmit information [77,78]. ANNs consist of layers of simple,
interconnected processing units (the so-called neurons or nodes), where each unit trans-
forms input data using weighted connections and activation functions [79,80]. Through
iterative learning, ANNs adjust these weights to capture complex relationships within
data, enabling them to perform tasks such as classification, prediction, and pattern recog-
nition across various domains [81,82]. Their layered structure allows them to represent
both linear and nonlinear mappings between inputs and outputs, making them highly
versatile tools [83,84].

Al
ML

DL

Figure 5. Hierarchical relationship between Al, ML, and DL. Adapted from [60,85].

ANNSs can be classified in two main ways: (i) based on how they compute the error
during training, and (ii) based on their internal architecture, i.e., how information flows
through the network. Figures 6 and 7 depict those classification approaches. From the
error calculation perspective, there are two broad types: the traditional Data-Driven Neural
Networks (DDNNs) and the more contemporary Physics-Informed Neural Networks
(PINNS) [86]. DDNN:Ss rely solely on datasets and minimize a loss function derived from
the difference between predicted and observed data without incorporating knowledge of
the underlying physical systems [87,88]. In contrast, PINNs integrate physical laws, often
expressed as partial differential equations, directly into the loss function to ensure that the
network’s predictions obey known physical constraints, making them particularly valuable
for modeling scientific and engineering problems with limited data [§9-91]. Meanwhile,
classification by architecture yields seven commonly recognized types of ANNSs, each
specialized for different types of data and tasks, namely Feedforward Neural Networks
(FENNs), Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs),
Residual Neural Networks (ResNets), Transformer Neural Networks (TNNs), Graph Neural
Networks (GNNs), and Generative Adversarial Network (GANSs) [92,93]. FNNs are the
simplest type, where data flows unidirectionally from input to output through one or more
hidden layers [94,95]. RNNs introduce loops within the architecture to allow memory of
previous inputs, making them effective for sequential data [96,97]. CNNs apply filters
to local regions of input data, enabling them to detect spatial hierarchies and patterns,
which is ideal for image processing [98,99]. ResNets incorporate shortcut connections
that allow gradients to bypass certain layers, which helps to train very deep networks
without the vanishing gradient problem [100,101]. TNNSs replace recurrence with self-
attention mechanisms, enabling highly parallelizable models that excel in natural language
processing [102,103]. GNNs generalize the neural network concept to graph-structured
data, allowing nodes to aggregate information from their neighbors, and are used in
domains such as social networks and molecular modeling [104,105]. Finally, GANs consist
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of a generator and a discriminator that are trained in opposition; the generator learns to
produce realistic data while the discriminator learns to distinguish between real and fake
data, making GANs powerful tools for text creation, image synthesis, data augmentation,
and other generative tasks [106-108].

Physics-Informed Neural Network (PINN)

Data-Driven Neural Network (DDNN)

Physics-informed loss

[ |

ypredicted
Data-driven loss, g a a2
t—> e.g., MAE, MAPE, L=Ax f , | -dx
MSE, MSLE, etc. at’ dax’ ax?
ytrue

Total

loss

N Input neurons
Hidden neurons

W Output neurons

—— — —— —— — — — ——— — — — — — —— —

1
ean Absolute Error (MAE) =; }l=1|Ytrue,i — Ypredictea i|

N\

n

Il Mean Absolute Percentage Error (MAPE) =—3.:_;
I
I

Ytrue,i~Ypredicted i

Ytrue,i I
n 2 i

Mean Squared Error (MSE) =~ X1 (Virue,i — Ypredicted 1)

\ Mean Squared Logarithmic Error (MSLE) == 7 ; (In(1 + Ytrue,) — IN(L + Ypreaictea 1)) /

Figure 6. Comparative analysis of loss functions in DDNN and PINN. Adapted from [109,110].

Feedforward Neural Network (FNN) Recurrent Neural Network (RNN) Convolutional Neural Network (CNN) Residual Neural Network (ResNet)

—_—
/ [Convolution and pooling layers

. Y N . Fuu—-.

Transformer Neural Network (TNN) Graph Neural Network (GNN) Generative Adversarial Network (GAN)

vo l‘,—oGen—> FD

Self- Attentlon \
v4
Re.aea—o Dis
w—_

BN Input neurons
Hidden neurons
W Output neurons

V2 ‘v denotes vertex (node) in the graph Gen = Generator, FD = Fake Data, Dis = Discriminator

Figure 7. Simplified abstraction of information flows in the main types of ANNs. Adapted from: [111,112].

Although there are many subtypes of ANNS, it would be impractical to define them
all, as this is not the objective of this literature review. Nevertheless, there are some of them
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Shallow Neural Network (SNN)

that, due to their widespread use in the civil engineering sector, deserve mention. On the
one hand, there are Thermodynamics-based Artificial Neural Networks (TANNSs), a subset
of PINNs that compute errors based on physical principles governed by the laws of ther-
modynamics, such as energy balance and entropy production [113,114]. On the other hand,
it is also important to note that FNNSs can be further categorized based on the complexity
of their architecture, specifically in terms of the number of hidden layers and the activation
functions employed [115]. Thus, it is possible to list at least five subtypes of FNNs (see
Figure 8), namely Shallow Neural Networks (SNNs), Deep Neural Networks (DNNs),
Radial Basis Function Networks (RBFNs), Multilayer Perceptrons (MLPs), and Extreme
Learning Machines (ELMs) [116]. SNNs are composed of a single hidden layer that maps
inputs to outputs using nonlinear activation functions [117,118]. DNNs extend this struc-
ture by stacking multiple hidden layers with densely connected neurons (i.e., all possible
connections are established) to model complex hierarchical representations [41,119]. RBFNs
use a hidden layer of neurons with radial basis activation functions, typically Gaussian, to
approximate nonlinear functions based on distance from prototype centers [120,121]. MLPs
refer to fully connected FNNs with one or more hidden layers, commonly trained using
backpropagation [122,123]. Finally, ELMs are single-hidden-layer FNNs where the input
weights are randomly assigned and fixed, and only the output weights are learned through
a closed-form solution, enabling fast training [124,125].

It is essential to note that within the broader field of Al, including its ML-related
subfields, there is no universally accepted consensus on terminology or classification frame-
works. Even nowadays, there is a vigorous scientific debate about the precise definitions
of AI, ML, DL, and ANNs. Consequently, the descriptions and conceptual distinctions
presented herein should be understood as simplified abstractions intended to provide a
clear and accessible overview of the subject matter. Figures 5-8, in particular, are illustrative
models designed for explanatory purposes; they do not capture the full depth or complexity
of the underlying concepts. These topics remain subject to academic discussion and varying
interpretations across the literature. Readers seeking a more comprehensive or critical
perspective are encouraged to consult the following scholarly sources [62,126-134].

Deep Neural Network (DNN) Radial Basis Function Network (RBFN)
7N
Gaussiany,
%

BN Input neurons
Hidden neurons
N Output neurons

Figure 8. Simplified abstraction of the main subtypes of FNNs. Adapted from [135-137].
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3. Methodology

Figure 9 illustrates the workflow followed in the present research based on the selected
scope and objectives of this literature review, which focuses on state-of-the-art research
concerning cementitious composites incorporating SCMs designed through the integra-
tion of LCA and ANNSs. The PRISMA methodology was employed [138,139], insofar as
applicable, to guide the execution of this literature review. In this regard, a comprehensive
search was conducted in the Scopus, Web of Science, and Google Scholar databases to
identify academic sources that explore the intersection of SCMs, LCA, and ANN s for the
design of cementitious composites. In order to capture the full scope of relevant stud-
ies, multiple combinations of keywords were used, both in abbreviated and expanded
forms. These keywords included “Al”, “artificial intelligence”, “ANN”, “artificial neural

7vou

network”, “binder replacement”,

v

cement”, “concrete”, “design”, “DL”, “deep learning”,

”oou

“environmental impact”, “LCA”, “life-cycle assessment”, “low-carbon”,

V7a7i

“ML”, “machine learning”,

mix design”,
optimization”, “SCM”, “supplementary cementitious materi-
als”, and “sustainability”. This variety of search strings ensured the inclusion of studies
with different terminologies and indexing styles, improving the comprehensiveness of the
literature review.

1 Databases
= = =
-— -— -—
Scopus Web of Science Google Scholar

r
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Figure 9. Workflow, scope, and objective of this literature review.

Following a preliminary review of the records retrieved from database exploration,
a screening process was conducted, resulting in the selection of only 14 research arti-
cles that directly address the topic under investigation (see Figure 9). These studies
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are [20-22,24-28,140-144]. Although the number of obtained articles may appear low,
this is primarily due to the emerging nature of the topic, which lies at the intersection of
multiple disciplines, including materials science, environmental engineering, and com-
putational methods. It is essential to note that numerous other papers partially address
the relevant topics; however, they do not fully align with the specific scope and objec-
tives of this review and were, therefore, excluded from the final selection. For instance,
de Paula Salgado et al. [145] examined the capabilities of various ML-based algorithms
to optimize the incorporation of fly ash, limestone, and calcined clay as SCMs within a
cradle-to-practical-completion LCA approach. Nonetheless, Paula Salgado et al. [145] did
not include ANNs among the algorithms explored; hence, their case study falls beyond
the scope of this literature review. Another interesting example is presented in the work
of Tiimay Ates et al. [146] where the focus was on developing a sustainable cement-based
binder rather than designing a cementitious composite, such as mortar or concrete, which
places that investigation outside the defined objective of this review.

Although it is impractical to perform a comprehensive bibliographic analysis with
just 14 research articles, a superficial inspection can still provide preliminary insights into
the academic interest in the addressed topic. Figure 10, therefore, illustrates the temporal
growth pattern of academic outputs related to the design of cementitious composites
incorporating SCMs developed using an LCA-ANN integration framework. As shown in
the graph, this line of research began in 2021 with two publications and has experienced
a gradual increase, reaching four publications by mid-2025. It is essential to note that the
literature review was conducted up to June 20 (2025), and additional articles may still
be published later this year. The modest yet consistent rise in publications suggests a
growing but still nascent interest in this interdisciplinary approach, reflecting an emerging
recognition of sustainability-driven design tools in the construction materials field.

5

Number of references/publications (-)
w
1

T T T T T
2021 2022 2023 2024 2025
Year

Figure 10. Growth pattern of academic outputs over time.

4. Research Case Studies
4.1. Overview of Case Study Approaches

In this section, a comprehensive analysis of multiple case studies is presented to
illustrate the integration of LCA and ANNSs for optimizing cementitious composites in-
corporating SCMs. The selected studies span a wide range of SCMs, such as fly ash, slag,
silica fume, rice husk ash, and waste glass powder, and apply various ANN architectures,
including multilayer perceptrons, convolutional models, and hybrid machine learning
frameworks. Most investigations adopt a cradle-to-gate LCA perspective, with some ex-
tending to service life or hydration stages, and consistently report significant reductions
in GWP, in some cases exceeding 70%. ANN models are employed to predict mechanical



Materials 2025, 18, 4307

13 of 36

properties and environmental indicators, enabling data-driven mix design optimization
with minimal experimental effort. This review of cases highlights how the LCA-ANN
synergy supports informed decision-making in sustainable construction, demonstrat-
ing its versatility for reducing embodied emissions while maintaining or improving
structural performance.

A comparative reading of the reviewed studies reveals important divergences in both
the scope of LCA and the evaluation of ANN performance, which must be considered when
interpreting the collective findings. Regarding LCA, most case studies adopt attributional
cradle-to-gate boundaries [20,21,24], emphasizing impacts up to the production or mixing
stage. While this ensures methodological consistency and reduces data uncertainty, it omits
downstream phases such as transportation, service life, and end-of-life recycling. Notably,
Xing et al. (2023) [144] partially extended boundaries to account for recycled aggregate
scenarios, and Radwan et al. (2022) [142] included higher replacement levels within a
cradle-to-grave context. These examples illustrate how boundary definitions and allocation
choices may shift environmental comparisons, particularly when valorizing products.
Hence, future work should pursue harmonization of LCA boundaries and explore broader
system scopes to capture the full life cycle of SCM-based concretes.

On the ANN side, heterogeneity is equally pronounced. Several studies rely on straight-
forward feedforward or MLP architectures trained on experimental datasets [7,26,27], re-
porting accuracy through regression metrics such as R?, RMSE, or MAE. Others integrate
metaheuristic or hybrid approaches, such as cuckoo optimization [7], teaching—learning-
based optimization [21], or Taguchi-Grey Relational Analysis [25], to enhance predictive
robustness and generate Pareto-optimal solutions. While most models achieved high
predictive accuracy, differences in training data size, validation strategies, and reported
performance metrics complicate direct cross-study comparisons. Standardized benchmarks
for ANN evaluation, combined with transparent reporting of error metrics, would facilitate
comparability and strengthen confidence in Al-driven mix design frameworks.

4.2. In-Depth Analyses of Key Studies

The following subsection presents a detailed overview of the 14 case studies identified
through the literature review. Each investigation is described individually to highlight its
key features, specific methodologies, and contributions to the field.

It is worth noting that this literature review distinguishes between explicit and implicit
LCAs. On the one hand, explicit LCA refers to a structured and standardized analysis based
on recognized methodologies (e.g., ISO 14040 and ISO 14044 guidelines [37,38]) including
clearly defined system boundaries, functional units, and inventories. Conversely, implicit
LCA involves general estimations of environmental impacts without strictly following
formal LCA protocols, often using approximate data or simplified indicators.

4.2.1. Case Study 1: Boukhelf et al., 2023

The study by Boukhelf et al. [24] focuses on mortars incorporating various binders,
specifically exploring the environmental and mechanical impacts of using glass powder as
an SCM. Four types of mortars are evaluated: those based on ordinary Portland cement or
based on blast furnace cement, and either of these but partially replaced with glass powder
at a 50% mass ratio. The LCA conducted is explicit, using an attributional approach with
cradle-to-gate system boundaries. It comprehensively evaluates raw material inputs and
energy demands, highlighting substantial reductions in environmental impacts due to the
inclusion of glass powder. The ANN employed is an MLP regressor, which uses the heat
hydration test as the sole input to predict the different hydration modes of binders. The
LCA and ANN were integrated to assess and optimize binder formulations, enabling the
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classification of real-time hydration modes with minimal experimental inputs. The research
concludes that substituting traditional Portland cement with glass powder effectively
reduces environmental impacts, and the ANN model provides a practical and rapid tool for
predicting hydration behavior. The combined LCA-ANN framework advances sustainable
mix design by enabling efficient screening of eco-friendly binders.

4.2.2. Case Study 2: Faridmehr et al., 2021

The investigation by Faridmehr et al. [7] examines several SCMs (i.e., ground-
granulated blast furnace slag, fly ash, palm oil fly ash, and waste ceramic powder) for
producing both mortars and concretes. These materials were mixed in varying proportions,
and each of these SCMs was characterized in terms of chemical and physical properties.
The LCA performed was explicit, adopting a cradle-to-gate system boundary that was
extended to include mechanical and durability performance, thus incorporating service life
considerations. The functional unit was defined as per cubic meter of cementitious mate-
rial, and CO, emissions, along with embodied energy, were the primary environmental
impact categories. An FNN combined with a metaheuristic algorithm was assembled using
eight input parameters, including SCM proportions, oxide ratios, and age, to predict CO,
emissions and embodied energy as output variables. The ANN was optimized using the
cuckoo optimization algorithm, and its final weights and biases were utilized to design
mixes that targeted specific environmental and mechanical outcomes. This integration
of LCA with ANN modeling enabled the identification of optimized compositions with
reduced environmental burden and enhanced durability, demonstrating the potential for
intelligent mix design that reduces carbon footprint while ensuring structural integrity.

4.2.3. Case Study 3: Miao et al., 2025

The research by Miao et al. [22] explores the design and optimization of concrete
incorporating waste glass powder as an SCM. The waste glass powder is used as a partial
replacement for ordinary Portland cement, with replacement dosages reaching up to 50%
by mass of cementitious material. This investigation performs an implicit LCA using
an attributional approach, adopting (virtually) cradle-to-gate system boundaries with a
functional unit of 140.03 m3 of concrete. Environmental indicators assessed include abiotic
depletion, GWP, ozone depletion potential, acidification potential, eutrophication potential,
and photochemical ozone creation potential. This study combined a backpropagation neu-
ral network, a GAN, and other Al-based algorithms to optimize the mix design. The input
variables comprised the dosage of materials, particle sizes, and curing age, while the output
variables were slump, compressive strength, and total charge passed. The LCA-ANN
integration was achieved through a multi-objective optimization framework to generate
optimal mix designs that balance mechanical performance, durability, environmental im-
pact, and even production cost. The study concludes that glass powder concrete mixtures
with up to 50% cement replacement may deliver comparable strength and significantly
enhanced durability while reducing CO, emissions and costs.

4.2.4. Case Study 4: Mungle et al., 2024

The case study by Mungle et al. [20] analyzes concrete mixtures as the addressed
cementitious composite, aiming to enhance its strength while reducing environmental
impacts. It incorporates various SCMs, including fly ash, slag, silica fume, and metakaolin,
with replacement dosages ranging from 10% to 50% by weight of the mix. The research
explicitly employs LCA using an attributional approach with (practically) cradle-to-gate
boundaries; it considers GWP (in terms of equivalent CO, emissions) as the primary impact
category, with a functional unit based on 1 m? of concrete. A hybrid ANN system is adopted,
combining gradient boosting machines and CNNs for microstructural image analysis. The
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input variables included material ratios, curing conditions, and image features, and the
output variables focused on predicting compressive strength. The integration of LCA
and ANN is achieved through multi-objective optimization, balancing strength, cost, and
environmental performance by coupling predictive outputs with sustainability-related
impact functions. This LCA-ANN framework led to concrete mixtures achieving over
40 MPa of compressive strength with 20% CO, emission reduction and less than 10% cost
increase, highlighting a significant advancement in sustainable concrete design through
synergistic SCM optimization and intelligent data-driven modeling.

4.2.5. Case Study 5: Nasrollahpour et al., 2024

The study by Nasrollahpour et al. (2024) [21] presents a comprehensive approach to
optimizing alkali-activated concretes incorporating various SCMs, such as fly ash, slag,
and rice husk ash. The research integrates a cradle-to-gate LCA with an ANN optimization
to minimize environmental impacts while maintaining mechanical performance. The
functional unit is defined as 1 m® of concrete, and key impact categories assessed include
GWP, abiotic resource depletion, and energy consumption.

An FNN is trained using 91 experimental mix designs, incorporating 12 input vari-
ables (e.g., binder type, SCM dosage, NayO and SiO; molar ratios, and curing conditions)
and 4 outputs: compressive strength, CO, emissions, total energy use, and cumulative
cost. The ANN is embedded within a multi-objective optimization framework using the
Teaching-Learning-Based Optimization (TLBO) algorithm to generate Pareto-optimal so-
lutions balancing environmental and structural performance. The findings show that
mixes incorporating rice husk ash and slag can reduce CO; emissions by up to 53% and
energy use by 48%, while achieving target compressive strengths > 35 MPa. This study
exemplifies the synergy between ANN-based predictive modeling and LCA for sustainable
concrete design. The combined framework facilitates data-driven selection of optimal
binder combinations, enabling both low-carbon construction and performance reliability in
SCM-based concretes.

4.2.6. Case Study 6: Onyelowe et al., 2022a

The study by Onyelowe et al. (2022) [140] explores a data-driven optimization frame-
work for low-carbon geopolymer concrete incorporating several SCMs, including fly ash,
granulated blast furnace slag (GBFS), and waste glass powder. The researchers employed
an integrated methodology combining LCA and ANNs to evaluate and optimize the
environmental and structural performance of the mixes.

The LCA was conducted following a cradle-to-gate approach. Impact categories
included GWP, acidification potential, and embodied energy. The functional unit was
1m? of geopolymer concrete. An FNN model with backpropagation was trained on
60 experimental datasets using inputs such as SCM proportions, curing duration, alkaline
activator concentration, and binder ratio. The outputs modeled included compressive
strength, CO, emissions, and energy demand.

Optimization was achieved via multi-objective sensitivity analysis, highlighting op-
timal SCM blends (notably fly ash + GBFS) that reduced CO, emissions by up to 61%
compared to OPC-based mixes, while delivering compressive strengths exceeding 30 MPa.
Waste glass powder also showed promise in reducing environmental loads with mini-
mal compromise on mechanical performance. This study validates the application of
ANN-LCA coupling as an efficient decision-support tool in green concrete design. It
provides a robust framework for predicting performance outcomes and minimizing envi-
ronmental burdens associated with SCM-rich geopolymer systems.
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4.2.7. Case Study 7: Onyelowe et al., 2022b

The work by Onyelowe et al. (2022) [141] investigates a sustainable alternative to
Portland cement using alkali-activated binders that incorporate fly ash, slag, and cement
kiln dust (CKD). The study adopts a dual approach by combining an ANN-based pre-
dictive model with a cradle-to-gate LCA to evaluate both environmental and mechanical
performance of blended geopolymer concretes.

The ANN model was trained using 81 datasets, with 9 input parameters including
binder ratios, SCM percentages, molarity of sodium hydroxide, and curing conditions.
Output parameters were compressive strength, CO, emissions, and embodied energy. The
architecture used was an MLP with backpropagation, optimized for minimizing prediction
error and maximizing generalization.

For the LCA, the ISO 14040-compliant framework assessed impacts such as GWP,
cumulative energy demand, and acidification. The functional unit was 1 m? of concrete.
The results showed that replacing OPC with SCMs (notably CKD and slag) led to reductions
of 45-65% in GWP and significant declines in energy use, while achieving compressive
strengths above 30 MPa. The study demonstrates the effectiveness of the integrated
ANN-LCA approach for optimizing geopolymer concrete compositions. It provides a
scalable methodology to balance sustainability metrics with engineering performance,
emphasizing the viability of industrial by-products in low-carbon construction.

4.2.8. Case Study 8: Onyelowe et al., 2022c

In this study, Onyelowe et al. (2022) [28] present an integrated framework for optimiz-
ing geopolymer concrete mixes incorporating rice husk ash (RHA), fly ash, and GBFS as
SCMs. The research is aimed at developing eco-efficient concrete mixtures by combining
LCA with ANN modeling and optimization algorithms.

The LCA is conducted with cradle-to-gate boundaries and uses a functional unit of
1 m® of concrete. Environmental indicators include GWP, cumulative energy demand,
and acidification. The LCA results show that replacing OPC with a ternary blend of
RHA, fly ash, and GBFS can reduce GWP by up to 59%, depending on mix design and
curing conditions.

An MLP is used to model the compressive strength and environmental impacts of
75 different mix formulations. The model incorporates variables such as SCM percentages,
activator molarity, binder ratios, and curing regimes. Optimization is conducted using a
hybrid Artificial Bee Colony (ABC) algorithm, producing Pareto-optimal solutions that
balance environmental performance and mechanical strength. The study concludes that
geopolymer concrete with ternary SCM blends can achieve compressive strengths >35 MPa
while significantly reducing environmental impacts. The integrated ANN-LCA approach
proves effective for designing sustainable concrete systems with reduced reliance on Port-
land cement and enhanced valorization of agricultural and industrial wastes.

4.29. Case Study 9: Padavala et al., 2024

The research conducted by Padavala et al. (2024) [27] proposes an advanced frame-
work for optimizing concrete mixes incorporating fly ash and silica fume as SCMs, aiming to
reduce environmental impact while preserving high mechanical performance. The method-
ology integrates a comprehensive LCA with predictive ANN modeling and parametric
analysis, supporting data-driven decision-making in green concrete design.

The LCA is conducted under ISO 14044 standards, with cradle-to-gate boundaries
and a functional unit of 1 m® of concrete. Key impact categories include GWP, abiotic
resource depletion, and embodied energy. The incorporation of SCMs such as fly ash
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and silica fume led to a reduction of up to 63% in CO, emissions, relative to traditional
OPC-based concretes.

The predictive ANN model is based on an MLP architecture with backpropagation,
trained using experimental datasets comprising mix proportions, water/binder ratios, and
curing regimes. Outputs include compressive strength, split tensile strength, and envi-
ronmental indicators derived from the LCA. The study also performs sensitivity analysis
to identify the influence of individual variables on both performance and sustainability.
Through the integration of ANN predictions and LCA outputs, the authors identify optimal
mix designs that achieve compressive strengths over 40 MPa with significant environmental
savings. The research highlights how ANN-LCA coupling can facilitate the development
of low-carbon, high-performance concretes through the targeted use of SCMs.

4.2.10. Case Study 10: Radwan et al., 2022

The research work by Radwan et al. [142] examines the impact of replacing ordinary
Portland cement with SCM, specifically GGBFS and fly ash (FA), to improve both the
strength and environmental performance of the mixtures employed. The study considered
high replacement of OPC, specifically 50% and 70% by weight, along with different types of
SCM, including two sources of coal fly ash (FA-I and FA-II) and GGBS. This study explicitly
employs LCA, specifically a cradle-to-gate LCA analysis, to evaluate the environmental
performance of OPC blends production. It considers GWP as the primary impact indica-
tor, as it accounts for the highest impact contributed by cement blend production. The
functional unit for the LCA was based on one cubic meter of OPC mixture.

In addition, an FNN was adopted to predict the properties of the OPC blends, par-
ticularly their eco-mechanical performance. The input variables for the ANN included
the contents of OPC, GGBS, and fly ash. In contrast, the output variables focused on
predicting the eco-mechanical index, defined as the GWP per unit of 90-day compressive
strength (GWP/strength ratio). The integration of LCA and ANN is achieved through the
development of this prediction model for the eco-mechanical index.

The results obtained from the integrated LCA-ANN framework led to the follow-
ing key findings. Ternary OPC-GGBS—fly ash blends outperform binary blends when
appropriate SCM combinations were adopted. Fly ash improved workability due to its
morphology, compensating for the reduced flow associated with GGBS. Replacing OPC
at high volumes reduced early-age strength, particularly in OPC-FA blends, but ternary
mixtures with GGBS recovered strength at later ages. Blends with 50% OPC replacement
and 20-30% fly ash exhibited both optimal flow and strength performance. Moreover,
from an environmental standpoint, the control mixture yielded the highest impact, with
GWP values of 574 kg CO,»-eq/m?. In contrast, 50% and 70% OPC replacement reduced
GWP to approximately 380 and 273 kg CO,-eq/m?, respectively. The 70% ternary blends
with 10-20% fly ash showed the lowest GWP /strength ratio, achieving nearly 60% impact
reduction per unit strength. The ANN model reliably estimated compressive strength,
reaching a low mean square error (MSE) of 0.0997, which validates its use as a predictive
tool. Hence, the authors recommend the OPC-GGBS—fly ash ternary blends, with a fly ash
content limited to 20%, to meet enhanced mechanical and environmental performance.

4.2.11. Case Study 11: Rahman and Lu, 2024

The case study presented by Rahman and Lu [143] introduces EcoBlendNet, a PINN
developed to minimize the use of SCM in cement blends by estimating strength develop-
ment and carbon emissions during hydration. In contrast to conventional finite element or
machine learning-based models, EcoBlendNet incorporates experimental data and chemo-
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physical concepts of cement hydration, allowing for accurate, mesh-free analysis with
limited training data (as low as 5%).

For this work, three different mixtures were considered for the calibration of the tool:
moderate-heat Portland cement (MPC300), cement—fly ash (FA45), and cement-slag (5G80),
allowing EcoBlendNet to estimate key properties during the hydration process, such as
maturity, heat evolution, and strength development. Additionally, an implicit LCA was
conducted in this research, evaluating the environmental assessment of cement hydra-
tion, specifically focused on energy consumption and CO, emissions, addressing water
consumption and heat generation. The results indicated that SCM blends exhibit lower
early-age temperature peaks compared to conventional cement but achieve equivalent
compressive strengths after seven days. SCMs were also found to promote hydration with
increased capillary water availability and better reactant diffusion.

About environmental context, SCM use resulted in considerable emission reductions
through the incorporation of fly ash and slag, with FA45 and SG80 blends attaining av-
erage emission reductions of 36% and 63% for CO, and 33% and 73% for chemically
bound water, respectively, corresponding to emission reductions up to 700 kg CO»-eq/m3
and 950 kg CO,-eq/m?3 for fly ash and slag-based mixtures. These outcomes highlight
the model’s potential in estimating the eco-efficiency of SCMs while facilitating circular
economy applications through by-product valorization. Overall, EcoBlendNet presents a
high-performance predictive tool for sustainable concrete composition and is suitable for
informing material optimization while ensuring physical interpretability and accuracy.

4.2.12. Case Study 12: Rizwan et al., 2025

The research conducted by Rizwan et al. [26] explores the potential of sugarcane
bagasse ash (SCBA), a by-product of the sugar industry’s cogeneration process, as a sus-
tainable SCM in concrete. This study focuses on optimizing compressive strength and
evaluating environmental performance through an explicit LCA procedure. Thus, 4 ML-
based models were introduced, namely an ANN, a random tree, a random forest, and
gradient boosting machine. For this purpose, the addressed database contained 2616 en-
tries, including variables such as cement, SCBA, fly ash content, water-to-binder ratio,
aggregates, and superplasticizer.

Of all the analyzed models, the gradient boosting machine exhibited the optimum
predictive capability, facilitated by Shapley Additive Explanation (SHAP) values, which
highlighted the water-to-binder ratio and cement content as having a decisive influence.
The findings observed in the optimized mixtures exhibited a strength of as high as 40 MPa
using lower water-binder ratios (0.42-0.48) and a minimum use of cement, indicating that
SCBA has potential for matrix density enhancement at moderate use ratios.

Moreover, the LCA, particularly conducted on a cradle-to-gate basis in this research,
estimated the GWP and other emissions (i.e., SOy, CO, PM;g, and NOy), indicating a
significant reduction in environmental impacts compared to conventional concrete, with a
notable sensitivity to the water-binder ratio in particular. SCBA results from carbon-neutral
production and addresses local waste disposal issues; hence, its use would contribute to
emission reduction and support circular economy practices. Therefore, SCBA concrete
is proposed by the authors as a sustainable and technically viable alternative that offers
environmental benefits, as well as performance optimization and emission reduction, on a
sustainable construction path.

4.2.13. Case Study 13: Siddiq et al., 2025

The study proposed by Siddiq et al. [25] focuses on the development of fly-ash-based
geopolymer concrete (FA-GPC) as a sustainable alternative to conventional cement-based
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systems, aiming to optimize both mechanical performance and environmental outcomes.
The study is conducted using an integrated methodology that combines Taguchi-Grey
Relational Analysis (GRA) and ANN, trained on a dataset compiled from 83 studies
comprising over 1000 data values, including fly ash content, NaOH/Na,SiO;3 ratio, and
curing conditions. Additionally, a cradle-to-gate explicit LCA was conducted to quantify
environmental performance.

The optimized FA-GPC formulation achieved a compressive strength of 90.9 MPa
alongside a CO, emission reduction of 78%, decreasing from 252.09 to 55.0 kg/m3>. The
ANN model demonstrated high predictive capability for strength and emissions, with R?
values exceeding 0.95, confirming its robustness in estimating eco-mechanical performance.
In terms of the LCA, which accounted for emissions from raw material extraction, trans-
portation, and curing processes, the results projected an annual reduction of approximately
3,941 tons of CO; for construction projects utilizing 1,000 m3 of FA-GPC.

Moreover, Grey Relational Analysis revealed that molarity, heat-cure temperature,
5i0; content, and coarse aggregate had positive impacts on workability and compressive
strength. In contrast, increased concentrations of NaOH, NaySiO3, and Na/Al ratios
were unfavorable. In general, the research validates the suitability of FA-GPC as a high-
performance and low-pollution binder, thereby justifying industrial waste valorization,
emission reduction, and measures promoting a circular economy. The hybrid optimization
method proposed here presents a data-driven route to sustainable mix design for concrete.

4.2.14. Case Study 14: Xing et al., 2023

In this investigation, Xing et al. [144] evaluates different experimental mix designs
extracted from multiple scientific studies in the literature, to conduct a comprehensive anal-
ysis of their environmental behavior. The studies evaluate the environmental performance
of sustainable concrete mixtures with recycled aggregates (RA) and SCMs, specifically fly
ash, slag, and silica fume, to reduce the carbon footprint of traditional concrete produc-
tion. Employing a database of over 500 concrete mix designs compiled from the literature,
the researchers established an explicit LCA, based on the cradle-to-gate approach under
Australian conditions, encompassing the end-of-life scenarios for RA.

LCA results indicated that the incorporation of RA consistently reduced environmental
burdens, such as GWP and fossil fuel utilization, primarily due to avoided landfilling and
reduced transportation. Moreover, additional findings demonstrated that SCMs were more
effective than RA in reducing environmental impacts within a broader range of indicators,
including acidification, eutrophization, human toxicity, and ecotoxicity.

The dual use of RA and SCMs enhanced environmental performance and mechanical
concrete properties, offsetting potential performance losses due to RA. It also examined the
sensitivities of environmental impacts to SCM allocation scenarios, showing that assuming
SCMs were wastes (zero allocation) yielded the maximum environmental benefits. In
contrast, full allocation had the potential to counteract these perceived benefits, particularly
for silica fume, due to the energy-intensive production of ferrosilicon. Economic allocation
is the most recommended approach, yet it is subject to market variability. In addition, this
study examined the contribution of alternative fuels in cement production by benchmark-
ing German practices against Australian practices. Germany’s high substitution rate of
alternative fuels (approximately 70%) resulted in remarkable emissions reductions and
offered a potential strategy for carbon emissions reductions.

An MLP had also been developed to predict environmental impacts based on technical
mix parameters; however, improvement beyond that, e.g., individual SCMs, was recom-
mended to enhance the model’s accuracy. Overall, this research outlines a robust platform
for optimal sustainable concrete design by integrating LCA and ML models.
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5. Discussion

The integration of LCA methodology and ANN approaches for optimizing cementi-
tious composites incorporating SCMs constitutes a significant and recent research direction
in the field of sustainable building materials. As explained in the previous sections, this
combined methodological framework enables a systematic evaluation of both environmen-
tal and mechanical indicators’ performance, hence contributing to supporting progress
in two critical and pursued areas of the construction materials sector: (i) improvement of
technical performance and (ii) reduction in the environmental footprint.

In this line, this section provides an objective synthesis and evaluation of the evidence
collected from the fourteen selected case studies. Through comparative analysis, it identifies
convergences and divergences across methodologies, highlighting current limitations in
the literature, and explores trends and gaps. In addition, the practical implications of the
findings and essential directions for future research are discussed.

5.1. Summary of Key Findings

In order to facilitate a structured discussion, Table 3 summarizes key features of
each case study, including the types of SCMs used, the composite considered for the
study, ANN configurations, GWP reductions, compressive strength performance, and LCA
scope. This overview highlights the methodological diversity and practical relevance of
LCA/ANN frameworks in advancing sustainable and intelligent mix design for low-carbon
construction materials.

The systematic review of the fourteen selected case studies shows the growing im-
portance of integrating LCA and ANN when using SCM, with the aim of optimizing the
composites. In this line, a recurring finding observed in the case studies is the potential of
bringing these methodologies to improve mechanical strength and reduce carbon footprint
simultaneously, specifically GWP. For instance, ternary and binary blends, particularly
those incorporating fly ash, slag, or agricultural by-products (i.e., sugar cane bagasse ash),
displayed consistently enhanced “Eco-mechanical” indices when compared to conventional
cement mixtures. Moreover, the reviewed investigations highlight that predictive models
exhibit high reliability in estimating both compressive strength and emission metrics, even
in the presence of a limited training dataset.

In parallel, LCA applications reveal significant reductions in terms of carbon emissions
when increasing the replacement levels of OPC. It is worth noting that functional units
normalized to mechanical performance (i.e., MPa) are gaining interest as established and
accurate indicators of sustainability. Furthermore, in order to enhance the interpretability
and resilience of decision-making, hybrid frameworks are increasingly using multi-criteria
optimization techniques (i.e., Grey Relational Analysis) or explainability tools (e.g., SHAP
values). One of the more significant findings to emerge from this work is the technical
viability and environmental effectiveness of SCM in cement-based materials revealed
by the LCA-ANN framework, underscoring the potential of this integrated method-
ology to guide the research into the sustainable material development required in the
construction sector.
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Table 3. Case Study Overview: SCMs, ANN Architectures, LCA Approaches, and Key Findings.
SCMs Composite ANN-Based System BoundAry Optimization .1
Ref. Employed Considered Model LCA Type [Data Source] Objective Key Findings
Glass powder
. Cradle-to-Gate ) reduces impacts;
[24] Mortars with Glass Mortar MLP Explicit [previous Hydratlf)n.Mode ANN accurately
Powder . Prediction » .
literature] classifies hydration
behavior.
Slag, Fly Ash, Palm Cradle-to-Gate Minimize CO; and Optimized mixes
. . Mortar and . [Inventory of i showed lower
[7] Oil FA, Ceramic FNN Explicit Energy; Maximize . .
Powder concrete carbon and energy Strength emissions with
database] high durability.
Backpropagation Cradle-to-Gate Balance Cost, Gl.ass blends
- : Strength, achieved strong
[22] Glass Powder Concrete neural network, Implicit [previous -
GAN literature] Durability, and performance and
Impact lower costs.
. Cradle-to-Gate Mixtures > 40 MPa;
[20] Fly Ash, Slag, 5111.ca Concrete CNN Explicit [previous Strength-Cost- 20% less CO, with
Fume, Metakaolin ; Impact Tradeoff o .
literature] <10% cost rise.
. Cradle-to-Gate Minimize CO,, Up to 53% CO; cut
[21] Fly AIiISilélf lzgthce Concrete FNN Explicit [Ecoinvent Energy; Maintain with >35 MPa
database] Strength strength.
Cradle-to-Gate . Fly Ash + slag
[140] gll};gzsgzviﬁg GeC(())I; cc)?éireler FNN Explicit [previous Préc(l)lct S::?gth, optimal; >30 MPa,
literature] 2 8y 61% CO, cut.
Cradle-to-Gate Predict Strength S‘I:}Se:eséa?‘?orﬁ;?
[141] Fly Ash, Slag, CKD Concrete MLP Explicit [previous and Environmental with 45-65% GWP
literature] Impacts ?

cut.
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Table 3. Cont.

SCMs Composite ANN-Based System BoundAry Optimization .1
Ref Employed Considered Model LCA Type [Data Source] Objective Key Findings
Geopolvmer Cradle-to-Gate Pareto-optimal >35 MPa with
[28] RHA, Fly Ash, Slag CoIr)lcr}(; te MLP Explicit [Ecolnvent Environmental— GWP cut up to
database] Mechanical Mix 59%.
Flv Ash. Silica Cradle-to-Gate High Strength + Strength > 40 MPa
[27] y Furr,le Concrete MLP Explicit [previous Environmental with 63% CO,
literature] Saving reduction.
Fly Ash (FA-I Cradle-to-Gate Minimize 60% GWP cut; fly
[142] y ! Mortar FNN Explicit [Ecolnvent GWP/Strength ash enhances flow,
FA-II), GGBS .
database] Ratio strength recovery.
Temperature,
Equivalent Age, o o
Cradle-to-Gate Deoree of 63% CO, and 73%
[143] Fly Ash Concrete PINN Implicit [previous 8t water binding
. Hydration, and .
literature] . reduction.
Heat Generation
Rate
Cradle-to-Gate
Sugarcane Bagasse [Intergovernmental SHAP Up to 40 MPa,
[26] Ash (SCBA), Fly Concrete ANN Explicit panel on climate . strong emission
Interpretation .
Ash change reduction.
guidelines]
Fly AshIn Geopolymer . Cradle-tp “Gate Strength and 78% CO, reduction,
[25] Geopolymer concrete ANN Explicit [previous Emission 90 MPa streneth
concrete (FA-GPC) literature] Prediction st
Cradle-to-Gate
Fly Ash, Slag, . [National statistical ~ Impact Prediction RA + S.CM Synergy,
[144] -~ Concrete MLP Explicit . . allocation scenario
Silica Fume data from from Mix Design insights

Australia]
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5.2. Comparative Analysis of Methodologies

The reviewed studies employ diverse methodologies to integrate LCA and ANN for
optimizing SCM inclusion in cement composites. Most adopt an attributional cradle-to-gate
LCA framework, though system boundaries vary, with some extending to durability (Farid-
mehr et al., 2021) [7] or end-of-life scenarios (Xing et al., 2023) [144]. ANN architectures
also differ, ranging from MLP (Boukhelf et al., 2023) [24] to hybrid models combining
gradient boosting and CNNs (Mungle et al., 2024) [20]. Predictive inputs commonly in-
clude mix design proportions, curing conditions, and material properties, while outputs
focus on mechanical performance and environmental indicators. A key distinction lies
in optimization techniques: some studies use metaheuristic algorithms like cuckoo opti-
mization (Faridmehr et al., 2021) [7] or artificial bee colony (Onyelowe et al., 2022c) [28],
whereas others leverage multi-objective frameworks (Miao et al., 2025) [22]. The various
ways of combining these methodologies yield different results and performances, which
are summarized in Table 4. Despite variations, all methodologies converge on a shared

goal, i.e., balancing sustainability and performance through data-driven mix design.

Table 4. Performance of SCM-optimized cementitious composites.

Ref. Strength retention Environmental savings ANN model performance
Cement composites with 50% - .
glass powder exhibited a 28 to Srzl)jﬂzéhiinawlil)fil;s;tglov;g;r The model achieved very high
57% reduction in compressive lower C Opimissions %,or ? predictive accuracy (average
[24] strength at 90 days compared to Portland cemzent blends and u R? ~ 0.96), reliably identifying
conventional mortars; however, o . P hydration modes and closely
. to 80% reduction for slag-based . .
the strength continued to Ce O matching the experimental heat
. . blends, highlighting significant :
increase over time due to . . of hydration data.
. . environmental benefits.
pozzolanic reactions.
High-volume fly ash mixes
Cement composites with 30 to  reduced embodied carbon from .
o 3 . The neural network predicted
50% fly ash or slag replacement 436.8 kg CO,/m” (ordinary .
o o . embodied carbon and energy
maintained over 80/90% of their cement mortar) to . )
-d i t th at 45,5 ke CO,/m? and reduced with R” values above 0.97,
[7] 28-day compressive strength a KGN showing high accuracy in
later ages, compared to plain embodied energy from optimizine mixture desien for
cement mixes that showed 2793 MJ/m? to 881.2 MJ/m?, p both rgnechanical ancgl
faster strength decline in giving nearly 90% lower .
. . S o environmental performance.
aggressive environments. emissions and 68% lower
energy demand.
When glass powder
replacement increases from 10% A 32% decrease in the overall After swarm-based
to 50%, compressive strength environmental indicator and a hvperparameter tuning. the
falls to only 1.64%, and 18% drop in life-cycle material yperpara &t
[22] o . . ANN predicted compressive
optimized mixtures in the cost when glass powder 1 D2 .
o o strength with R“ values higher
Pareto set commonly lie in the replacement goes from 10% to than 0.94
30 to 60 MPa range (many top 50%. o
solutions 42 to 56 MPa).
Integrating SCMs and the
The SCM—optl.mlzed mixtures in optlmlzatlon0 routine ?esu.lted in e hybrid ensemble achieved
the study retain about 45 MPa at  a roughly 20% reduction in CO, an R2 score of approximatel
[20] 28 days and 55 MPa at 56 days, emissions, with reported PP y

outperforming the comparison
methods.

optimized mixes ranging from
270 to 280 kg CO,/m? of
concrete.

0.86 for predicting compressive
strength.
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Table 4. Cont.

Ref. Strength retention Environmental savings ANN model performance
With zeolite replacing ~25-30%  Relative to cement-only mixes,
of cement, unconfined zeolite-blended mixes reduce The best back-propagation
compressive strength reached the total weighted life-cycle model achieveg arI: R% ~ of
[21] 2.5 t0 2.8 MPa, and the impact by around 35%, 0.999 across 10 runs acc;atel
optimized replacement window including 34% lower ' redicting stren t,h values Y
of 30-45% maintained high human-health damage and 49% P & & '
strength. lower ecosystem damage.
SCM-opt1m1zed cemento SCM inclusion reduced CO, R? values greater than 0.95,
composites retan}ed over 90% of emissions by 25 to 40% and demonstrating high predictive
the compressive strength . .
[140] : energy consumption by around accuracy in strength and
compared to control mixes, even A . g .
. o) 1 20% relative to ordinary environmental performance
with up to 30% clinker ; o
Portland cement composites. estimation.
replacement.
SCM-optimized cement Incorporation of SCMs reduced izeicﬁxlil\;caccs;zze%v}iltl}%}ll{z
composites maintained embodied CO; emissions by \Ir)alues above 0.95 Zn d mean
[141] compressive strength within 90 approximately 20 to 35% squared errors .below 0.01 in
to 100% of control mixes while = compared to ordinary Portland qforecas tine streneth a‘n d
reducing clinker content. cement mixes. environmefri tal in?iicators
The optimal SCM mix reduced
the carbon footprint to 289.85 kg The proposed ANN model
€O, eq, which is approximately achieved R? scores higher than
SCM-optimized concrete with ~ 33% lower than that of ordinary 0.96. outperformine other Al
[28] rice husk ash achieved Portland cement concrete (386 te;:hrlli uteps and earl?er models
compressive strengths up to kg CO; eq), while also lowering dergons tratine excellent ’
104 MPa. the acidification potential to 0.66 predictive capgability for
kg SOZ. eq and wateBr compressive strength.
consumption to 5.77 m” per
cubic meter of concrete.
The SCM-optimized concrete . 2
(30% fly ash + 15% alccofine) Optimized mixes reduced the Th; ANI(\)T;OC hieved tR .V'alues
achieved the highest GWP and other impact \?al(iz:l,:ti(;n zrcllélo’f’:s tﬁmgeltgs:
[27] compressive strength, exceeding categories by over 30% firmin ! hich a urga ir’1
ordinary Portland cement compared to ordinary Portland <0 di t'g &1 accuracy
concrete by more than 20% at cement concrete. predic H,Ig cortrlllp ressive
28 days. StEngt.
SCM-optimized cement
composites with 50 to 70% Replacing 70% of cement with .
cement replacement achieved fly ash and slag reduced CO, S E?IZ/:E(I)\J g?%lgggg :nr(riiTRz
up to 24% higher 28-day and emissions by 380 kg/m? (63%), qvalue be tween.O 96 and 0.99
[142] 13% higher 90-day compressive giving the lowest global showine hish e;ccurac i'n ’
strength compared to binary warming potential per unit redic tirg1 e%o—mechan};cal
blends, with the best strength in the ternary mixes p e1§formance
performance when fly ash with 10-20% fly ash. P '
content was limited to 20-30%.
SCM-optimized cement
composites retained up to 95%  These mixes achieved up to 40% ezﬁiizzpofsgiﬁsgeggiel ¢
of compressive strength at reduction in GWP and 35% P
[143] nearly zero for both

28 days compared to control
mixes while reducing clinker
content.

lower embodied energy relative
to conventional cement.

compressive strength and
environmental indicators.
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Table 4. Cont.

Ref. Strength retention Environmental savings ANN model performance
comsggﬁcézgz’::ilj:(? gsg;egn(;y of LCA showed 25 to 40% The ANN achieved a prediction
[26] ‘o fefence compressive stren ° th reductions in CO, emissions accuracy above 95% (R% > 0.95)
pre 5 and energy demand compared  for compressive strength across
at 28 days while incorporating
high levels of SCMs to conventional mixes. different SCM combinations.
SCM-optimized cement Tﬂe (t)ggg‘l’/lzfjd?cl’ziii;h(lje 5ed The ANN model demonstrated
composites retained over 90% of Emissioris and sieni ficant2 high predictive accuracy with
[25] the compressive strength at decreases in ener & demand an R? above 0.95 for both
28 days while reducing clinker 8y ¢ strength and environmental
compared to conventional .
content. indicators.
cement.
SCM-optimized cement o
composites retained up to SCM_Optlm.lZEd cement o, The ANN model demonstrated
o : composites achieved up to 40% 2 .
90-100% of compressive L . R~ values above 0.95 with low
[144] reduction in CO, emissions and

strength compared to control
mixes even at high clinker
replacement levels.

energy demand relative to
conventional cement.

prediction errors, confirming
high accuracy in predicting.

5.3. Theoretical Perspectives and Frameworks

The studies are grounded in two complementary theoretical frameworks: environ-

mental systems analysis and ML-based predictive modeling. LCA provides a structured

approach to quantify impacts, typically focusing on GWP and energy-related quantities

(e.g., embodied energy), though some expand to broader indicators like acidification (Xing

et al., 2023) [144]. ANN models, often informed by physicochemical principles (Rahman

et al., 2024) [143], serve as surrogate models to bypass costly experimentation. Theoretical

integration occurs through multi-objective optimization, where Pareto fronts reconcile

conflicting goals (e.g., strength vs. CO, emissions). Notably, several studies embed circular

economy principles, valorizing industrial by-products (e.g., fly ash and slag) as SCMs.
Frameworks like EcoBlendNet by (Rahman et al., 2024) [143] further enhance interpretabil-
ity by incorporating domain knowledge, bridging the gap between empirical data and

theoretical hydration mechanics.

5.4. Gaps and Limitations in the Existing Literature

While the authors recognize that ANN are capable of solving complex problems,

including highly nonlinear problems by using interconnected computing elements [147],

in addition to the rising adoption observed in LCA-ANN models for the optimization of

SCM-based cementitious composites, several drawbacks persist in the current literature.

Among the common disadvantages is the lack of standard datasets and unified indicators of

performance, which impedes precise cross-comparisons between different studies, thereby

reducing the reproducibility of model outputs. Moreover, in many cases, the ANN models

are aimed towards specific given experimental conditions with limited external verification,

raising concerns among users of these methodologies.

Likewise, applications of LCA vary considerably in terms of the scope, inventory data,

allocation methods, and impact categories applied. While the cradle-to-gate approach

dominates the studies, the absence of standard functional units, in addition to geograph-

ical harmonization, further attenuates the comparability. Furthermore, the lack of data

regarding both region-specific SCM sources and end-of-life scenarios remains a significant

impediment in terms of a robust simulation of environmental repercussions.
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Another gap includes the null or limited integration of two essential columns in the
field of cement-based materials: (i) long-term durability parameters and (ii) service life
performance [148], both within ANN models and LCA assessments. Most studies are
focused on the short-term or the early age of mechanical properties, while disregarding
crucial parameters such as permeability, shrinkage, or resistance to carbonation, which have
a significant influence on environmental performance over the long term. Additionally,
whereas several case studies utilize hybrid SCM systems (e.g., ternary blends), relatively
few include comprehensive sensitivity or uncertainty analysis to establish robustness of
prediction. To conclude this section, ethical and practical considerations (i.e., economic
feasibility, resource accessibility, or social acceptability) are rarely addressed, serving as a
barrier to the transferability of results to real-life decision-making, a crucial attribute in the
academic field.

5.5. Trends and Emerging Themes

The detailed revision of the selected case studies reveals a persistent trend towards in-
tegrating LCA and ANN techniques as an implementation strategy for optimizing cementi-
tious materials by incorporating SCMs. Here, a noticeable trend away from single-objective
analysis (predominantly centered on strength or CO, emissions) can be observed towards
multi-objective systems, which are simultaneously capable of evaluating these two aspects
while incorporating additional variables (such as cement hydration, eutrophication, and
acidification). Here, the trend shows and reinforces the awareness of the highly complex
interdependencies that define the nature of sustainable material design, becoming critically
relevant when applied to the sector of cement-based materials, given the wide variety and
dispersity commonly found within their properties. Such heterogeneity is recognized as
an inherent characteristic of these materials, underscoring the need for robust, integrative
prediction and modeling techniques.

Furthermore, new trends suggest a shift away from purely empirical and data-driven
methods to hybridized approaches. Growing, workability, longevity, and long-term behav-
ior are increasingly incorporated into ANN models as part of the effort to capture real-world
applications better. The use of regionalized LCA inventories and context-adaptive SCM
availability also speaks to a trend towards local context and condition-based assessments of
sustainability. At the same time, the use of more complex artificial intelligence approaches
and feature selection techniques is emerging as a way to add the ability to provide better
transparency and interpretation of the predictive models. Overall, these trends indicate a
shift towards comprehensive, adaptive, and context-aware approaches, which align with
the objectives of the broader circular economy and the strategy of decarbonization.

5.6. Conflicting Evidence and Debates

While the studies collectively advocate for SCMs, debates persist regarding optimal
replacement levels and material combinations. For instance, Boukhelf et al. (2023) [24]
report successful 50% glass powder substitution, whereas Radwan et al. (2022) [143]
caution against early strength loss in high-volume fly ash mixes. Discrepancies also arise
in environmental impact allocation; for instance, Xing et al. (2023) [144] highlight how
assumptions (e.g., waste vs. economic allocation for SCMs) significantly alter LCA results.
Additionally, the efficacy of ANNs depends on dataset quality; Rizwan et al. (2025) [26]
note that gradient boosting outperforms ANNSs for certain predictions, suggesting no
universal “best” model. Geopolymer systems (Onyelowe et al., 2022a) [140] face scrutiny
over long-term durability and scalability, with some studies (Siddiq et al., 2025) [25]
reporting exceptional performance but others questioning industrial feasibility. These
conflicts underscore the need for standardized benchmarking and real-world validation.
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5.7. Implications for Practice and Policy

This literature review underscores actionable pathways for decarbonizing construction.
Basically, ANN-LCA integration enables rapid screening of low-carbon mix designs, with
studies like Padavala et al. (2024) [27] demonstrating 40 MPa concretes achieving 20%
CO; reductions. Policy-wise, findings support incentivizing SCM use (e.g., tax breaks for
fly ash adoption) and mandating LCA-based procurement criteria. Nevertheless, barriers
remain, including inconsistent SCM availability and the need for training in data-driven
design. Radwan et al. (2022) [143] advocate for ternary blends (OPC-slag—fly ash) as a
pragmatic compromise, while Rahman et al. (2024) [143] emphasize tools like EcoBlendNet
to guide specifications. For circular economy alignment, policies must address allocation
ambiguities (Xing et al., 2023) [144] and promote industrial symbiosis, ensuring waste-
derived SCMs are prioritized. Collectively, these investigations provide a blueprint for
transitioning to the production of eco-friendly cementitious composites, marrying technical
innovation with regulatory foresight.

In order to accelerate the adoption of LCA-ANN-driven optimization for the design
of sustainable cementitious composites with SCM inclusion, policymakers are strongly
advised to implement the following measures:

e Mandate LCA-based environmental declarations: Require construction material pro-
ducers to disclose carbon footprints and environmental impacts using standardized
cradle-to-gate LCA methodologies.

e  Update building codes for SCM inclusion: Revise regulations to allow higher SCM
replacement ratios in concrete mixes, provided ANN-validated performance meets
structural requirements.

o  Fund Al-driven material research: Establish grants and public—private partnerships
to develop ANN models for predicting SCM performance, focusing on industrial
by-products like fly ash, slag, and recycled glass.

e Introduce carbon pricing or tax incentives: Offer tax breaks or subsidies for manufactur-
ers using LCA-ANN-optimized low-carbon mixes, penalizing high-emission alternatives.

e Create open data repositories: Support centralized databases of material properties
and LCA results to improve ANN training and global benchmarking.

e  Promote industry-academia collaboration: Encourage joint initiatives between re-
searchers, tech firms, and construction companies to scale Al-based mix design tools.

e Standardize LCA allocation methods: Develop clear guidelines for environmental
impact accounting, particularly for waste-derived SCMs, to ensure consistency in
sustainability claims.

e Incentivize pilot projects: Fund real-world demonstrations of LCA-ANN-optimized
concretes to prove feasibility and encourage market adoption.

While the reviewed studies collectively demonstrate the potential of ANN-LCA frame-
works for sustainable concrete design, several practical challenges remain. First, industrial
implementation is constrained by the need for specialized expertise, high computational
demand, and integration with existing workflows, which limit adoption in practice [146].
Second, the accuracy of ANN predictions is often affected by data limitations; most studies
rely on relatively small or heterogeneous datasets, raising concerns about generalizability
and robustness across diverse conditions [115]. Third, regional variability in SCM sourcing
strongly influences LCA outcomes, as transportation distances, energy mixes, and alloca-
tion assumptions can significantly alter environmental benefits [43,144]. Addressing these
barriers will require methodological innovation, standardized datasets, and collaborative
efforts to contextualize results for specific geographical and industrial settings.
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5.8. Recommendations for Future Research

Future research should prioritize the creation of harmonized and comprehensive
datasets that integrate durability-related properties into the mechanical and environmental
performance of cementitious composites after the incorporation of SCMs, considering
long-term durability as one of the most persistent issues in the field [149]. Moreover, ex-
panding the LCA boundaries (e.g., cradle-to-grave) and including additional categories can
provide a more comprehensive understanding of SCM. In addition, an essential parameter
for ensuring comparability in these frameworks remains in addressing allocation issues
through harmonized and standardized methodologies.

Regarding the modelling approach, while the authors acknowledge the complexity
represented by this issue to be addressed, further research could enhance advanced hybrid
models trained on established, proven datasets. Additionally, based on both the method-
ologies and results obtained in the case studies analyzed for the present work, it can be
stated that ANN applications tend to focus on short-term mechanical properties, while
long-term durability parameters remain insufficiently addressed. Hence, for future work,
accelerated aging data (including aspects such as chloride penetration, carbonation depth,
and freeze-thaw cycles) should be used in an ANN to improve predictive reliability in the
mechanisms affecting the service life of these complex materials.

Furthermore, multivariate prediction frameworks capable of simultaneous eco-
mechanical optimization are needed to support practical mix design. Moreover, greater
attention should be paid to the regional adaptation of SCM strategies, especially in low-
carbon pathways aligned with circular economy principles. Finally, a key area for de-
velopment is that open-source tools and collaborative platforms could enhance model
transparency, benchmarking, and widespread adoption across industry and academia.
While recent studies demonstrate the promise of ANN-LCA integration, their practical
translation into broader scientific and industrial applications requires further refinement.
In particular, harmonized data standards, collaborative open-access datasets, and the inclu-
sion of economic considerations remain underdeveloped. Table 5 presents a synthesis of
these recommendations to guide future research directions.

Table 5. Key recommendations for advancing ANN-LCA research in cementitious systems.

Recommendation Area

Actions Impact

Data standardization
LCA-ANN studies

Establish common input/output
protocols (e.g., SCM proportions,
in curing conditions, compressive
strength, and CO, emissions) and
reporting guidelines (aligned with
ISO 14040/14044).

Improves comparability and
reproducibility across studies;
reduces methodological preferences.

Create shared repositories integrating

Development of open-access
SCM datasets

experimental results, material
characterizations, and regional
energy mixes, and encourage FAIR
principles (Findable, Accessible,
Interoperable, Reusable).

Enables robust ANN training,
reduces redundancy, and fosters
collaboration between academia and
industry.

Integration of economic and
financial-related assessments

Extend ANN-LCA frameworks to
include cost parameters (e.g.,
embodied energy cost, maintenance,
and service life), and combine
environmental and economic metrics
in multi-objective optimization.

Supports decision-making that
balances sustainability with financial
feasibility, increasing industry
uptake.
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6. Conclusions

The integration of ANNs and LCA represents a powerful methodological convergence
for advancing the sustainable design of cementitious composites. This review has system-
atically examined recent studies that implement ANN-LCA frameworks to optimize mix
design formulations containing SCMs. By analyzing diverse case studies with varying
materials, modeling strategies, and environmental scopes, this study distills key patterns,
performance metrics, and technical insights. The conclusions drawn below summarize the
core findings and implications for the scientific and engineering community:

e ANN-LCA integration enhances multi-objective optimization. The reviewed studies
demonstrate that combining ANNs with LCA enables the simultaneous optimization
of mechanical performance and environmental impact. This synergy facilitates agile
design of concrete mixes tailored to strength, cost, and carbon footprint criteria.

e  SCMs offer significant environmental benefits when properly optimized; materials
such as fly ash, slag, rice husk ash, and glass powder have shown reductions in GWP
ranging from 30% to 78%, depending on replacement ratios and process conditions,
without compromising compressive strength.

e  FNN and MLP architectures are the most commonly used; most studies employed
these simple but effective ANN structures trained on experimentally derived data.
It is important to highlight that further integration with optimization algorithms
(e.g., TLBO, cuckoo, and ABC) has shown enhanced predictive accuracy and a wide
diversity of possible solutions.

e  The cradle-to-gate LCA approach is predominant, but assumptions have a substantial
influence. The dominant use of cradle-to-gate attributional LCA ensures consistency,
yet system boundaries and allocation strategies significantly influence comparative
assessments, particularly when dealing with industrial waste valorization. Further
studies are needed to expand these approaches and incorporate the impacts of other
material life-cycle phases, such as in-use application.

e The ANN-LCA framework strengthens intelligent material design and supports a
circular economy. This integration not only enables the selection of mixes with lower
environmental impact and solid mechanical performance but also promotes the use
of industrial by-products. As a result, it contributes to the development of more
sustainable construction practices aligned with global climate goals and the pursuit of
carbon neutrality.

e  Policymakers are strongly advised to implement measures such as mandating LCA
disclosures, updating building codes for SCM use, funding Al-driven material re-
search, providing carbon incentives, standardizing LCA methods, supporting open
data, and promoting pilot projects and cross-sector collaboration to accelerate the adop-
tion of LCA-ANN integration for optimizing the design of sustainable cementitious
composites incorporating SCM.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

ANNs Artificial Neural Networks

CcO Carbon Monoxide

CO, Carbon Dioxide

CNNs Convolutional Neural Networks
DDNNs  Data-Driven Neural Networks
DL Deep Learning

DNNs Deep Neural Networks

ELMs Extreme Learning Machines

FNNs Feedforward Neural Networks
GANs Generative Adversarial Networks
GNNs Graph Neural Networks

GWP Global Warming Potential
LCA Life-Cycle Assessment

LCI Life-Cycle Inventory

LCIA Life-Cycle Impact Assessment
ML Machine Learning

MLPs Multilayer Perceptrons

NOy Nitrogen Oxides

OorC Ordinary Portland Cement

PINNs Physics-Informed Neural Networks

PRISMA  Preferred Reporting Items for Systematic Reviews and Meta-Analyses
RBFNs Radial Basis Function Networks

ResNets  Residual Neural Networks

RNNs Recurrent Neural Networks

SCMs Supplementary Cementitious Materials

SNNs Shallow Neural Networks

SO, Sulfur Dioxide

TANNs  Thermodynamics-Based Artificial Neural Networks
TNNs Transformer Neural Networks
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