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Due to its reasonable properties, the Kulisch and Miranker binary relation on the family of all 
closed and bounded real intervals has attracted the attention of many researchers, especially in 
the field of Computation. However, it is not total, so there are intervals that are not comparable. 
To face this problem, Bustince et al. introduced the notion of admissible order, which is coherent to 
the Kulisch and Miranker binary relation. Due to its technical construction, most of the examples 
of admissible orders are defined by only employing the extremes of such intervals. In this paper 
we introduce a non-countable family of admissible orders in the set of all closed and bounded 
subintervals contained in a concrete closed and bounded real interval. The approach is novel in 
two senses: on the one hand, due to the mathematical objects that are involved (a dense sequence 
and a family of continuous functions); and, on the other hand, we do not handle the intervals 
through their extremes, but only by their interior points.

1. Introduction

Autonomous systems are characterized by the ability of making decisions in any context. However, teaching them to make decisions 
is a very complicated task, especially when the circumstances in which they may find themselves are very diverse (consider, for 
example, the case of autonomous driving). Usually, these systems have sensors that provide a finite number of input parameters, and 
the system makes a decision based on the values it receives. In the decision-making process, one of the main tasks is to compare the 
real values that are handled, and for this the usual order of real numbers is used. One of the current problems that arise in Computing 
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is the comparison of quantities whose order is not clearly determined at the human level, that is, different people would give rise 
to distinct orderings. These comparisons are crucial in the field of Decision Making, but they are not always according to human 
intuition. One of the families in which this difficulty can be most clearly seen is the class of all real intervals.

An interval is a non-empty continuum set of real numbers, that is, a set enjoying the following property: if it contains two distinct 
numbers, then it also contains all the real numbers that are placed in the real line between them. When it is bounded, two real numbers 
(its infimum and its supremum) almost determine the interval. If such values additionally belong to the interval, the continuum set is 
called a closed and bounded interval. These real subsets are completely characterized by their two extremes: minimum and maximum.

Closed and bounded intervals have a dual nature (see [1, Preface]): on the one hand, they can be seen as sets, so they can be 
compared sometimes through the binary relation given by the inclusion of sets; on the other hand, they can be interpreted as numbers 
(for instance, points of the complex plane), and, in this case, they can be compared through the natural order of their endpoints (this 
procedure has received several names in the literature, e.g. Kulisch-Miranker order, component-wise or product order, see [2]). Both 
comparison methodologies inevitably carry the same drawback: its is easy to find examples of intervals that are incomparable. As we 
have commented before, when two mathematical objects are incomparable, maybe a decision cannot be made, and this could be a 
problem in several contexts.

The previous considerations show that it is desirable to work with an order in which all elements are comparable to each other. 
This property is known as totality, or even linearity (since it makes it possible to imagine that the elements of the set are arranged as 
if in a straight line). Some studies making use of total orders are [3--9].

The Kulisch-Miranker order satisfies good properties when the intervals to be ordered are indeed comparable. However, it is not 
total. In the family 𝐿([0,1]) of all closed subintervals of [0,1], Bustince et al. introduced in [10] the notion of admissible order as that 
order that, inheriting the good properties of the underlying order (considered when the intervals are comparable), also verifies the 
property of totality. Admissible orders are, so to speak, total orders that fill in the gaps left by the orders that the researcher wishes 
to consider. Some applications of this class to real-world problems can be found on [2,11--14].

Although admissible orders solve the problem of the absence of totality, in practice there are currently not enough examples to 
apply them in concrete contexts. Moreover, the known cases of admissible orders make decisive use of the extremes of the intervals, 
i.e. they are defined in terms of such extremes. The main aim of this paper is to face these problems: on the one hand, we introduce a 
large (in fact, a uncountable) class of admissible orders on an arbitrary set 𝐿([𝑎, 𝑏]) based on a dense sequence and on an appropriate 
family of continuous and surjective functions; on the other hand, considering intervals from the perspective of sets, we show that 
such a class is not based on the aggregation of the extremes of the intervals, i.e. we can work on this set by avoiding the extremes of 
the intervals.

This article is organized as follows. In Section 2, some basic notions about binary relations, intervals and functions are reviewed. 
The third section is devoted to the introduction of the announced class of admissible orders on 𝐿([𝑎, 𝑏]). Later, we describe a concrete 
family of continuous and surjective functions, which gives way to an uncountable family of examples of admissible orders in the 
fourth section. Finally, in the last section, we give some concluding remarks and comment on some prospective work.

2. Preliminaries

Let ℕ be the set of all positive integers and let ℝ be the set of all real numbers. This set (and each of its subsets) will always be 
endowed with its usual topology (generated by the Euclidean metric 𝑑(𝑡, 𝑠) = |𝑡− 𝑠| for all 𝑡, 𝑠 ∈ ℝ). For general notions related to 
topology (like closedness, boundedness, convergence, etc.), see [15--17]. For instance, a set 𝑋 ⊆ℝ is closed if it contains the limit of 
any convergent sequence whose terms belong to 𝑋.

2.1. Binary relations

Henceforth let 𝑋 be a non-empty set. A binary relation on 𝑋 is a non-empty subset  ⊆ 𝑋 ×𝑋. For simplicity, if (𝑥, 𝑦) ∈, we 
denote it by 𝑥 ⪯ 𝑦, and we will say that ``⪯'' is the binary relation. In particular, we highlight that we denote by ``⪯'' to an arbitrary 
binary relation (with no additional properties). We will say that 𝑥 and 𝑦 are ⪯-comparable (or ⪯-related) if 𝑥 ⪯ 𝑦 or 𝑦 ⪯ 𝑥 (or both). 
A binary relation ⪯ on 𝑋 is:

• reflexive if 𝑥 ⪯ 𝑥 for all 𝑥 ∈𝑋;

• antisymmetric if, given 𝑥, 𝑦 ∈𝑋, we can deduce 𝑥= 𝑦 from 𝑥 ⪯ 𝑦 and 𝑦⪯ 𝑥;

• transitive if, given 𝑥, 𝑦, 𝑧 ∈𝑋, we can deduce 𝑥⪯ 𝑧 from 𝑥 ⪯ 𝑦 and 𝑦 ⪯ 𝑧;

• total if 𝑥 ⪯ 𝑦 or 𝑦 ⪯ 𝑥 for all 𝑥, 𝑦 ∈𝑋 (each two points of 𝑋 are ⪯-comparable).

Notice that each total binary relation is necessarily reflexive. A binary relation is an order if it is reflexive, antisymmetric and 
transitive (see [18--22]).

2.2. Intervals

A real interval is a non-empty subset 𝐼 ⊆ ℝ verifying the following property: given 𝑡, 𝑠 ∈ 𝐼 with 𝑡 < 𝑠, if 𝑟 ∈ ℝ satisfies 𝑡 < 𝑟 and 
𝑟 < 𝑠, then 𝑟 ∈ 𝐼 , where < denotes the usual order in the real line. In other words, 𝐼 is an interval when it contains all the real 
numbers that are placed between any two of its elements. Among all types of intervals, throughout this manuscript, we will only 
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consider closed and bounded intervals, which are of the form [𝑎, 𝑏] = {𝑡 ∈ ℝ ∶ 𝑎 ≤ 𝑡 ≤ 𝑏}, where 𝑎, 𝑏 ∈ ℝ satisfy 𝑎 ≤ 𝑏. The numbers 𝑎
and 𝑏 are called the (lower and upper) extremes (or endpoints) of the interval. A singleton is an interval reduced to a single point, that 
is, [𝑎, 𝑎] = {𝑎}.

Given an interval 𝐼 ⊆ℝ, let 𝐿(𝐼) denote the family of all closed and bounded intervals of ℝ contained on 𝐼 . To fix the notation, 
throughout this manuscript, we will always denote by 𝐴 to an interval [𝑎, 𝑏], where 𝑎, 𝑏 ∈ ℝ satisfy 𝑎 < 𝑏 (in particular, 𝐴 is not a 
singleton). Hence:

𝐿(𝐴) = { 𝑋 ⊂ℝ ∶𝑋 is a closed and bounded interval and 𝑋 ⊆𝐴 }.

In this family, Kulisch and Miranker [2,23] introduced the binary relation ≤𝐿 on 𝐿(𝐴) (that can be similarly considered on 𝐿(ℝ)) 
given, for 𝑋 = [ 𝑥,𝑥 ], 𝑌 = [ 𝑦, 𝑦 ] ∈𝐿(𝐴),

𝑋 ≤𝐿 𝑌 when 𝑥 ≤ 𝑦 and 𝑥≤ 𝑦. (1)

The binary relation ≤𝐿 is an order on 𝐿(𝐴), known as the point order or the pointwise order. However, it is not total on 𝐿(𝐴).
Closed and bounded subsets of ℝ are compact, and this property guarantees the following result.

Proposition 2.1. The following properties hold.

1. Every closed and bounded interval has absolute minimum and absolute maximum.

2. If {𝑡𝑛}𝑛∈ℕ is a sequence contained on a bounded and closed interval, then {𝑡𝑛}𝑛∈ℕ has a convergent subsequence, and its limit also belongs 
to such an interval.

2.3. Real functions of real variable

Let 𝐷,𝐶 ⊆ ℝ be non-empty subsets of ℝ and let 𝑓 ∶𝐷→ 𝐶 be a function. The image of 𝑓 is the set 𝑓 (𝐷) = {𝑓 (𝑡) ∶ 𝑡 ∈𝐷} ⊆ ℝ. 
Any function 𝑓 ∶𝐷→ 𝐶 is surjective if and only if its image 𝑓 (𝐷) and its codomain 𝐶 coincide, 𝑓 (𝐷) = 𝐶 . Analogously, a function 
𝑓 ∶𝑋 → 𝑌 is bijective if it is surjective and injective.

Let 𝐼 ⊆ ℝ be an interval and let 𝑓 ∶ 𝐼 → ℝ be a function. We say that 𝑓 is increasing (respectively, strictly increasing, decreasing, 
strictly decreasing) on 𝐼 if 𝑓 (𝑡) ≤ 𝑓 (𝑠) (respectively, 𝑓 (𝑡) < 𝑓 (𝑠), 𝑓 (𝑡) ≥ 𝑓 (𝑠), 𝑓 (𝑡) > 𝑓 (𝑠)) for all 𝑡, 𝑠 ∈ 𝐼 such that 𝑡 < 𝑠. The function 
𝑓 is monotone if it is increasing or decreasing. Given two intervals 𝑋,𝑌 ∈𝐿(ℝ), a function 𝑓 ∶𝑋 → 𝑌 is an homeomorphism (from 𝑋
onto 𝑌 ) if it is continuous and bijective from 𝑋 onto 𝑌 , and its inverse function 𝑓−1 ∶ 𝑌 →𝑋 is also continuous. An automorphism 
of 𝑋 is an homeomorphism from 𝑋 onto 𝑋. It is easy to show that any two closed and bounded intervals that are not singletons are 
homeomorphic, and similarly any two singletons of ℝ are so.

The following is a famous result in Analysis which states that continuous functions preserve the closed and bounded character of 
intervals.

Theorem 2.2. (Intermediate value theorem) If 𝑓 ∶𝐴→ℝ is a continuous function in the interval 𝐴= [𝑎, 𝑏], then its image 𝑓 (𝐴) is also 
a closed and bounded interval of ℝ (including 𝑓 (𝑎) and 𝑓 (𝑏)).

In other words, if 𝐴 ∈𝐿(ℝ), then 𝑓 (𝐴) ∈𝐿(ℝ).
A function 𝑓 ∶ 𝐼 → ℝ is a�ine if there are 𝑚,𝑛 ∈ ℝ such that 𝑓 (𝑡) = 𝑚𝑡 + 𝑛 for all 𝑡 ∈ 𝐼 , and 𝑓 is constant when 𝑓 is a�ine and 

𝑚 = 0. A�ine functions defined on intervals satisfy several well-known properties.

Proposition 2.3. If 𝑓 ∶𝐴→ℝ is a function on the interval 𝐴= [𝑎, 𝑏], then 𝑓 is a�ine if and only if

𝑓 (𝑡) = 𝑓 (𝑏) 
𝑏− 𝑎

(𝑡− 𝑎) + 𝑓 (𝑎) 
𝑏− 𝑎

(𝑏− 𝑡) for all 𝑡 ∈𝐴.

Immediately we deduce the following consequence.

Proposition 2.4. If 𝑓, 𝑔 ∶𝐴→ℝ are a�ine functions on the interval 𝐴= [𝑎, 𝑏], then 𝑓 ≤ 𝑔 if and only if 𝑓 (𝑎) ≤ 𝑔(𝑎) and 𝑓 (𝑏) ≤ 𝑔(𝑏).

When the function is a�ine, Theorem 2.2 can gain new properties as stated in the next result.

Corollary 2.5. If 𝑓 ∶ 𝐴 → ℝ is an a�ine function, then 𝑓 is monotone, continuous and differentiable on 𝐴. In fact, 𝑓 is constant (re
spectively, strictly increasing, strictly decreasing) on 𝐴 if and only if 𝑓 (𝑎) = 𝑓 (𝑏) (respectively, 𝑓 (𝑎) < 𝑓 (𝑏), 𝑓 (𝑎) > 𝑓 (𝑏)). Furthermore, its 
image 𝑓 (𝐴) is the set of all 𝑡 ∈ ℝ verifying 𝑡 ≥min{𝑓 (𝑎), 𝑓 (𝑏)} and 𝑡 ≤max{𝑓 (𝑎), 𝑓 (𝑏)} (in other words, the closed and bounded interval 
[𝑚𝑖𝑛{𝑓 (𝑎), 𝑓 (𝑏)},𝑚𝑎𝑥{𝑓 (𝑎), 𝑓 (𝑏)}]).
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Fig. 1. Enumeration of rational numbers. 

2.4. Dense sequences on intervals

Given 𝑋 ∈𝐿(ℝ), a sequence {𝑠𝑛} of real numbers is dense on 𝑋 if {𝑠𝑛 ∶ 𝑛 ∈ℕ} ⊆𝑋 and, for all 𝑥 ∈𝑋 and all 𝜀 > 0, there is 𝑛0 ∈ℕ
such that |||𝑥− 𝑠𝑛0

||| < 𝜀.

Example 2.6. The set ℚ of all rational numbers can be enumerated following the algorithm detailed in Fig. 1, giving place to a 
bijective function 𝜚 ∶ℕ→ℚ.

As a result, the sequence {𝑠𝑛} defined by 𝑠𝑛 = max(min(𝜚(𝑛), 𝑏), 𝑎) for all 𝑛 ∈ ℝ is a dense sequence on 𝐴. In particular, all real 
intervals admit a dense sequence.

Example 2.7. In [24], two examples of upper dense sequences on (0,1] were introduced. Adding the value 0, we would find two 
dense sequences on [0,1].

Proposition 2.8. If {𝑠𝑛} is dense on 𝐴 and 𝑓 ∶𝐴→ℝ is continuous, then {𝑓 (𝑠𝑛)} is dense on 𝑓 (𝐴) ∈𝐿(ℝ).

Proof. By Theorem 2.2, 𝑓 (𝐴) ∈𝐿(ℝ). Let 𝑦0 ∈ 𝑓 (𝐴) and 𝜀 > 0 be arbitrary. Let 𝑥0 ∈𝐴 be such that 𝑓 (𝑥0) = 𝑦0. Since 𝑓 is continuous 
at 𝑥0 and 𝜀 > 0, there is 𝛿 > 0 such that if 𝑥 ∈𝐴 and ||𝑥0 − 𝑥|| < 𝛿, then ||𝑓 (𝑥0) − 𝑓 (𝑥)|| < 𝜀. As {𝑠𝑛} is dense on 𝐴, there is 𝑛0 ∈ℕ such 
that |||𝑥0 − 𝑠𝑛0

||| < 𝛿. In particular, 𝑓 (𝑠𝑛0 ) is a term of the sequence {𝑓 (𝑠𝑛)} such that |||𝑦0 − 𝑓 (𝑠𝑛0 )
||| = |||𝑓 (𝑥0) − 𝑓 (𝑠𝑛0 )

||| < 𝜀. □

3. Admissible orders on 𝑳(𝑨)

The binary relation ≤𝐿 on 𝐿(𝐴) described in (1) is explicitly defined by using the extremes of the intervals involved. However, one 
of the main aims of this manuscript is to show that we can work on 𝐿(𝐴) without using the extremes of the intervals. Consequently, 
given 𝑋 ∈𝐿(𝐴), we will prefer to talk about its infimum and its supremum (whose existence is guaranteed because 𝑋 is bounded on 
ℝ) rather than its minimum and its maximum (which are its extremes). For this we will make a double assumption: (1) on the one 
hand, given 𝑡, 𝑠 ∈ℝ, we will always know whether 𝑡 < 𝑠, 𝑡 = 𝑠 or 𝑡 > 𝑠; and (2) on the other hand, for any 𝑡 ∈ 𝐴 and any 𝑋 ∈ 𝐿(𝐴), 
we will always know whether 𝑡 ∈𝑋 or 𝑡 ∉𝑋. From this point of view, we can work with intervals by comparing points. A first result 
in this line is the following characterization of the binary relation ≤𝐿 on 𝐿(𝐴).

Lemma 3.1. Two intervals 𝑋,𝑌 ∈𝐿(𝐴) satisfy 𝑋 ≤𝐿 𝑌 if and only if the following two properties hold:

(𝐿1) for all 𝑥 ∈𝑋, there is 𝑦∈ 𝑌 such that 𝑥≤ 𝑦;

(𝐿2) for all 𝑦 ∈ 𝑌 , there is 𝑥∈𝑋 such that 𝑥≤ 𝑦.

3.1. Admissible orders on 𝐿(𝐴)

The order ≤𝐿 verifies many properties that human intuition would suggest when ordering real quantities. However, it is not total, 
and this is its big problem: if we cannot decide whether 𝑋 ≤𝐿 𝑌 or 𝑌 ≤𝐿 𝑋, an important decision (related to the order) might not 
be made. To deal with this problem, we introduce the following notion.
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Definition 3.2. (Bustince et al. [10]) An order ⪯ on 𝐿(𝐴) is admissible when it is total and it refines ≤𝐿 (that is, it can be deduced 
that 𝑋 ⪯ 𝑌 for all 𝑋,𝑌 ∈𝐿(𝐴) such that 𝑋 ≤𝐿 𝑌 ).

It is not easy to give examples of admissible orders on 𝐿(𝐴). At least, almost all of them were introduced from a theoretical point of 
view (see [10]). Furthermore, such constructions often made use of the extremes of the intervals through fusion functions. The main 
aim of this manuscript is to show that, in fact, 𝐿(𝐴) can indeed be endowed with a large (more precisely, a non-countable) family of 
admissible orders. Such a class will depend on both a dense sequence on 𝐴 and a family of suitable functions, so we introduce the 
second component in the next subsection.

3.2. Some families of functions

In this subsection we describe one of the main tools we will be using in this manuscript. From now on, suppose that for each 
𝑋 ∈ 𝐿(𝐴) a function ℎ𝑋 ∶ 𝐴→ 𝑋 is known, and let the family of such functions be denoted by  = {ℎ𝑋 ∶ 𝐴→ 𝑋}𝑋∈𝐿(𝐴). Before 
studying  , we introduce a result in which the closedness of the intervals is crucial.

Proposition 3.3. Given 𝑋,𝑌 ∈𝐿(𝐴), if there is a sequence which is dense on both 𝑋 and 𝑌 , then 𝑋 = 𝑌 .

Proof. Let {𝑠𝑛} be a sequence which is dense on both 𝑋 and 𝑌 . By definition, {𝑠𝑛 ∶ 𝑛 ∈ ℕ} ⊆ 𝑋 ∩ 𝑌 . Reasoning by contradiction, 
suppose that there is 𝑥0 ∈ 𝑋⟍𝑌 . Let consider the function ℎ ∶ 𝑌 → ℝ defined by ℎ(𝑦) = ||𝑦− 𝑥0|| for all 𝑦 ∈ 𝑌 . This function is 
continuous and it is defined on 𝑌 ∈ 𝐿(𝐴). By Theorem 2.2, ℎ(𝑌 ) ∈ 𝐿(ℝ). But as ℎ(𝑦) > 0 for each 𝑦 ∈ 𝑌 and ℎ(𝑌 ) has absolute 
minimum, there is 𝜀0 > 0 such that ||𝑦− 𝑥0|| > 𝜀0 for all 𝑦 ∈ 𝑌 . Since {𝑠𝑛} is dense on 𝑋, there is 𝑛0 ∈ ℕ such that |||𝑥0 − 𝑠𝑛0

||| < 𝜀0. 

However, as 𝑠𝑛0 ∈ {𝑠𝑛 ∶ 𝑛 ∈ℕ} ⊆ 𝑌 , the term 𝑠𝑛0 ∈ 𝑌 satisfies |||𝑥0 − 𝑠𝑛0
||| < 𝜀0, which contradicts that ||𝑦− 𝑥0|| > 𝜀0 for all 𝑦 ∈ 𝑌 . □

Remark 3.4. From the contrapositive of Proposition 3.3, we have that if 𝑋 ≠ 𝑌 , then there is no common dense sequence. A direct 
consequence of this is that for each 𝑋,𝑌 ∈𝐿(𝐴) the set of dense sequences on 𝑋 and 𝑌 , respectively, are either equal or disjoint.

Although the previous statement seems to be irrelevant, it is the key to proving that, under the continuity of functions, a set of 
interest is not empty.

Lemma 3.5. Let  = {ℎ𝑋 ∶𝐴→𝑋}𝑋∈𝐿(𝐴) be a family of continuous and surjective functions and let {𝑠𝑛} be a dense sequence on 𝐴. Then, 
given two different 𝑋,𝑌 ∈𝐿(𝐴), the set { 𝑛 ∈ℕ ∶ ℎ𝑋 (𝑠𝑛) ≠ ℎ𝑌 (𝑠𝑛) } is not empty.

Proof. By contradiction, suppose that the above mentioned set is empty, i.e. ℎ𝑋 (𝑠𝑛) = ℎ𝑌 (𝑠𝑛) for all 𝑛 ∈ℕ. So the sequences {ℎ𝑋 (𝑠𝑛)}
and {ℎ𝑌 (𝑠𝑛)} are equal. By Proposition 2.8, since ℎ𝑋 ∶𝐴→𝑋 is continuous and surjective, the sequence {ℎ𝑋 (𝑠𝑛)} is dense on ℎ𝑋 (𝐴) =
𝑋, and similarly, {ℎ𝑌 (𝑠𝑛)} is dense on ℎ𝑌 (𝐴) = 𝑌 . So there is a common sequence which is dense on 𝑋 and on 𝑌 . Proposition 3.3

guarantees that 𝑋 = 𝑌 , which contradicts that 𝑋 and 𝑌 are different. □

Since the set { 𝑛 ∈ ℕ ∶ ℎ𝑋 (𝑠𝑛) ≠ ℎ𝑌 (𝑠𝑛) } is not empty, it has an absolute minimum. For convenience, given two different 𝑋,𝑌 ∈
𝐿(𝐴), we denote it by:

𝑗0(𝑋,𝑌 ) = min
(
{ 𝑛 ∈ ℕ ∶ ℎ𝑋 (𝑠𝑛) ≠ ℎ𝑌 (𝑠𝑛) }

)
.

Its existence is guaranteed by Lemma 3.5 if  = {ℎ𝑋 ∶ 𝐴→𝑋}𝑋∈𝐿(𝐴) is a family of continuous and surjective functions. Note that 
the value of 𝑗0(𝑋,𝑌 ) depends directly on both the family  and the dense sequence {𝑠𝑛}, but we avoid complicating the notation. 
Also by definition,{

∙ ℎ𝑋 (𝑠𝑛) = ℎ𝑌 (𝑠𝑛) for all 𝑛 ∈ {1,2,… , 𝑗0(𝑋,𝑌 ) − 1}, and 
∙ ℎ𝑋 (𝑠𝑗0(𝑋,𝑌 )) ≠ ℎ𝑌 (𝑠𝑗0(𝑋,𝑌 )). 

(2)

3.3. The binary relation ⪯


on 𝐿(𝐴)

In the following definition, we introduce the binary relation ⪯


on 𝐿(𝐴).

Definition 3.6. Let  = {𝑠𝑛} be a dense sequence on 𝐴 and let  = {ℎ𝑋 ∶ 𝐴→𝑋}𝑋∈𝐿(𝐴) be a family of continuous and surjective 
functions. Given 𝑋,𝑌 ∈𝐿(𝐴), we will write 𝑋 ⪯


𝑌 if either 𝑋 = 𝑌 or ℎ𝑋 (𝑠𝑗0(𝑋,𝑌 )) < ℎ𝑌 (𝑠𝑗0(𝑋,𝑌 )).

Notice that, when 𝑋 ⪯

𝑌 , using (2), in general,

ℎ𝑋 (𝑠𝑛) ≤ ℎ𝑌 (𝑠𝑛) for all 𝑛 ∈ {1,2,… , 𝑗0(𝑋,𝑌 )}. (3)

Firstly we check that the binary relation ⪯


is a total order.
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Theorem 3.7. If  = {𝑠𝑛} is a dense sequence on 𝐴 and  = {ℎ𝑋 ∶𝐴→𝑋}𝑋∈𝐿(𝐴) is a family of continuous and surjective functions, then 
the binary relation ⪯


is a total order on 𝐿(𝐴).

Proof. Reflexivity is included in the definition. The antisymmetry and the totality follows from the fact that if 𝑋 ≠ 𝑌 , then 
ℎ𝑋 (𝑠𝑗0(𝑋,𝑌 )) ≠ ℎ𝑌 (𝑠𝑗0(𝑋,𝑌 )), and it necessarily holds that either ℎ𝑋 (𝑠𝑗0(𝑋,𝑌 )) < ℎ𝑌 (𝑠𝑗0(𝑋,𝑌 )) or ℎ𝑋 (𝑠𝑗0(𝑋,𝑌 )) > ℎ𝑌 (𝑠𝑗0(𝑋,𝑌 )). Let us prove 
the transitivity. Let 𝑋,𝑌 ,𝑍 ∈ 𝐿(𝐴) be such that 𝑋 ⪯


𝑌 and 𝑌 ⪯


𝑍 . If 𝑋 = 𝑌 or 𝑌 =𝑍 , then 𝑋 ⪯


𝑍 . Suppose that 𝑋 ≠ 𝑌 and 

𝑌 ≠𝑍 . Then:{
∙ ℎ𝑋 (𝑠𝑛) = ℎ𝑌 (𝑠𝑛) for all 𝑛 ∈ {1,2,… , 𝑗0(𝑋,𝑌 ) − 1}, and ℎ𝑋 (𝑠𝑗0(𝑋,𝑌 )) < ℎ𝑌 (𝑠𝑗0(𝑋,𝑌 )); 
∙ ℎ𝑌 (𝑠𝑛) = ℎ𝑍 (𝑠𝑛) for all 𝑛 ∈ {1,2,… , 𝑗0(𝑌 ,𝑍) − 1}, and ℎ𝑌 (𝑠𝑗0(𝑌 ,𝑍)) < ℎ𝑍 (𝑠𝑗0(𝑌 ,𝑍)). 

In particular, using (3),{
∙ ℎ𝑋 (𝑠𝑛) ≤ ℎ𝑌 (𝑠𝑛) for all 𝑛 ∈ {1,2,… , 𝑗0(𝑋,𝑌 )}; 
∙ ℎ𝑌 (𝑠𝑛) ≤ ℎ𝑍 (𝑠𝑛) for all 𝑛 ∈ {1,2,… , 𝑗0(𝑌 ,𝑍)}. (4)

Let 𝑗0 = min{𝑗0(𝑋,𝑌 ), 𝑗0(𝑌 ,𝑍)}. If 𝑗0 = 𝑗0(𝑋,𝑌 ) ≤ 𝑗0(𝑌 ,𝑍), then, using (4),

ℎ𝑋 (𝑠𝑛) = ℎ𝑌 (𝑠𝑛) = ℎ𝑍 (𝑠𝑛) for all 𝑛 ∈ {1,2,… , 𝑗0 − 1}, and

ℎ𝑋 (𝑠𝑗0 ) = ℎ𝑋 (𝑠𝑗0(𝑋,𝑌 )) < ℎ𝑌 (𝑠𝑗0(𝑋,𝑌 )) ≤ ℎ𝑍 (𝑠𝑗0(𝑋,𝑌 )) = ℎ𝑍 (𝑠𝑗0 ).

Hence, ℎ𝑋 (𝑠𝑗0 ) < ℎ𝑍 (𝑠𝑗0 ), so 𝑋 ⪯

𝑍 . On the contrary case, if 𝑗0 = 𝑗0(𝑌 ,𝑍) < 𝑗0(𝑋,𝑌 ), then

ℎ𝑋 (𝑠𝑛) = ℎ𝑌 (𝑠𝑛) = ℎ𝑍 (𝑠𝑛) for all 𝑛 ∈ {1,2,… , 𝑗0 − 1}, and

ℎ𝑋 (𝑠𝑗0 ) = ℎ𝑋 (𝑠𝑗0(𝑌 ,𝑍)) = ℎ𝑌 (𝑠𝑗0(𝑌 ,𝑍)) < ℎ𝑍 (𝑠𝑗0(𝑌 ,𝑍)) = ℎ𝑍 (𝑠𝑗0 ).

So we also deduce that 𝑋 ⪯

𝑍 . □

An additional property on the functions of the family completes the admissibility.

Theorem 3.8. Let  = {𝑠𝑛} be a dense sequence on 𝐴 and let  = {ℎ𝑋 ∶𝐴→𝑋}𝑋∈𝐿(𝐴) be a family of continuous and surjective functions. 
Suppose that

ℎ𝑋 ≤ ℎ𝑌 for all 𝑋,𝑌 ∈𝐿(𝐴) such that 𝑋 ≤𝐿 𝑌 . (5)

Then, the binary relation ⪯


is an admissible order on 𝐿(𝐴).

Proof. Theorem 3.7 guarantees that ⪯


is a total order on 𝐿(𝐴). To prove that ⪯


refines ≤𝐿, let 𝑋,𝑌 ∈𝐿(𝐴) be such that 𝑋 ≤𝐿 𝑌 . By 
hypothesis, ℎ𝑋 ≤ ℎ𝑌 . Since, when 𝑋 ≠ 𝑌 , ℎ𝑋 (𝑠𝑗0(𝑋,𝑌 )) ≠ ℎ𝑌 (𝑠𝑗0(𝑋,𝑌 )) by definition of 𝑗0(𝑋,𝑌 ), then it necessarily holds ℎ𝑋 (𝑠𝑗0(𝑋,𝑌 )) <
ℎ𝑌 (𝑠𝑗0(𝑋,𝑌 )). Hence 𝑋 ⪯


𝑌 , so ⪯


is an admissible order on 𝐿(𝐴). □

The next corollary shows that each automorphism of 𝐴 generates a new family of functions, which can give rise to new families 
of admissible orders on 𝐿(𝐴).

Corollary 3.9. Let  = {𝑠𝑛} be a dense sequence on 𝐴 and let  = {ℎ𝑋 ∶𝐴→𝑋}𝑋∈𝐿(𝐴) be a family of continuous and surjective functions 
fulfilling (5). Let 𝜚 ∶ 𝐴→ 𝐴 be an increasing automorphism of 𝐴. Then 𝜚 = {ℎ𝑋 ◦ 𝜚 ∶ 𝐴→𝑋}𝑋∈𝐿(𝐴) is a new family of continuous and 
surjective functions satisfying (5) and the binary relation ⪯𝜚


is an admissible order on 𝐿(𝐴).

4. A notable family of admissible orders on 𝑳(𝑨)

Theorem 3.8 gives a large family of admissible orders on 𝐿(𝐴) if  = {𝑠𝑛} is a dense sequence on 𝐴 and  = {ℎ𝑋 ∶𝐴→𝑋}𝑋∈𝐿(𝐴)
is a family of continuous and surjective functions satisfying the property (5). In this section we show a concrete family, verifying all 
hypotheses and avoiding the use of the extremes of the intervals.

The first step in this construction is the following result.

Theorem 4.1. Given 𝑋 ∈𝐿(𝐴), with 𝐴 = [𝑎, 𝑏], let 𝑀𝑋 = {(𝑚,𝑘) ∈ [0,1] ×𝑋 ∶ 𝑘+𝑚(𝑏− 𝑎) ∈𝑋}. Then, the following properties hold.

1. The set 𝑀𝑋 is not empty, and 𝑀𝑋 ⊆𝑀𝐴.

2. The set 𝑀1
𝑋
= {𝑚 ∈ [0,1]: there is 𝑘∈𝑋 with (𝑚,𝑘) ∈𝑀𝑋} is an interval of 𝐿([0,1]). In particular, sup𝑀1

𝑋
∈𝑀1

𝑋
.

3. For each 𝑚∈𝑀1
𝑋

, the set 𝐾𝑋,𝑚 = {𝑘 ∈𝑋 ∶ (𝑚,𝑘) ∈𝑀𝑋} is an interval of 𝐿(𝑋) and verifies the following property:

if 𝑘 ∈𝐾𝑋,𝑚 and 𝑘′ ∈𝑋 are such that 𝑘′ ≤ 𝑘, then 𝑘′ ∈𝐾𝑋,𝑚. (6)
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In particular, the infimum of 𝐾𝑋,𝑚 is the infimum of 𝑋.

4. If 𝑚𝑋 = sup𝑀1
𝑋

, then the interval 𝐾𝑋,𝑚𝑋
is the singleton containing the infimum of 𝑋.

Proof. Item (1) The set 𝑀𝑋 is not empty because if 𝑘0 ∈𝑋, then (0, 𝑘0) ∈𝑀𝑋 . Furthermore, since 𝑋 ⊆𝐴, then it is straightforward 
that 𝑀𝑋 ⊆𝑀𝐴.

Item (2) The first item shows that 0 ∈𝑀1
𝑋

, so 𝑀1
𝑋

is not empty (and 0 is, in fact, its infimum). Let us prove that 𝑀1
𝑋

is an interval. 
Let 𝑚1,𝑚2 ∈𝑀1

𝑋
be two values such that 𝑚1 < 𝑚2, and let 𝑚0 ∈ [0,1] be a number such that 𝑚1 < 𝑚0 and 𝑚0 < 𝑚2. We claim that 

𝑚0 ∈𝑀1
𝑋

. To prove it, let 𝑘1, 𝑘2 ∈𝑋 be such that 𝑘1 +𝑚1(𝑏− 𝑎) ∈𝑋 and 𝑘2 +𝑚2(𝑏− 𝑎) ∈𝑋. Let 𝑘0 = min{𝑘1, 𝑘2}. Clearly 𝑘0 ∈𝑋. 
Moreover, 𝑘0 ≤ 𝑘0 +𝑚0(𝑏− 𝑎) ≤ 𝑘2 +𝑚2(𝑏− 𝑎). As 𝑘0 ∈𝑋, 𝑘2 +𝑚2(𝑏− 𝑎) ∈𝑋 and 𝑋 is an interval, then 𝑘0 +𝑚0(𝑏− 𝑎) ∈𝑋. Hence 
(𝑚0, 𝑘0) ∈𝑀𝑋 , which means that 𝑚0 ∈𝑀1

𝑋
and proves that 𝑀1

𝑋
is an interval.

Since 𝑀1
𝑋
⊆ [0,1], then it is bounded from above. We check that is supremum 𝑚𝑋 = sup𝑀1

𝑋
∈ [0,1] also belongs to 𝑀1

𝑋
. If 

𝑀1
𝑋
= {0}, this property is obvious. In other case, there is an strictly increasing sequence {𝑚𝑛} ⊆ 𝑀1

𝑋
converging to 𝑚𝑋 . Hence 

𝑚𝑛 < 𝑚𝑛+1 ≤ 𝑚𝑋 for all 𝑛 ∈ ℕ and {𝑚𝑛}→ 𝑚𝑋 . By definition, there is a sequence {𝑘𝑛} such that 𝑘𝑛 ∈𝑋 and 𝑘𝑛 +𝑚𝑛(𝑏 − 𝑎) ∈𝑋 for 
all 𝑛 ∈ ℕ. Since {𝑘𝑛} ⊂𝑋 and 𝑋 is closed and bounded, item 2 of Proposition 2.1 guarantees the existence of a partial subsequence 
{𝑘𝜎(𝑛)} converging to a point 𝑘′ ∈𝑋. Therefore, {𝑘𝜎(𝑛) +𝑚𝜎(𝑛)(𝑏− 𝑎)} ⊂𝑋 is a sequence of points of 𝑋 convergent to

lim 
𝑛→+∞

(
𝑘𝜎(𝑛) +𝑚𝜎(𝑛)(𝑏− 𝑎)

)
= 𝑘′ +𝑚𝑋 (𝑏− 𝑎).

As 𝑋 is closed, then 𝑘′ +𝑚𝑋 (𝑏− 𝑎) ∈𝑋, so (𝑚𝑋,𝑘
′) ∈𝑀𝑋 , which concludes that 𝑚𝑋 ∈𝑀1

𝑋
.

Item (3) Let 𝑚∈𝑀1
𝑋

be arbitrary. By definition, there is 𝑘 ∈𝑋 such that (𝑚,𝑘) ∈𝑀𝑋 . Hence 𝑘 ∈𝐾𝑋,𝑚, which proves that 𝐾𝑋,𝑚 is 
not empty. Notice that 𝐾𝑋,𝑚 ⊆ 𝑋 because if 𝑘 ∈𝑀𝑋,𝑚, then (𝑚,𝑘) ∈𝑀𝑋 , so 𝑘 ∈𝑋. Hence 𝐾𝑋,𝑚 is bounded. To prove that 𝐾𝑋,𝑚 is an 
interval, let 𝑘1, 𝑘2 ∈𝐾𝑋,𝑚 be such that 𝑘1 < 𝑘2, and let 𝑘0 ∈𝑋 such that 𝑘1 < 𝑘0 and 𝑘0 < 𝑘2. Since 𝑘1, 𝑘2 ∈𝐾𝑋,𝑚, then (𝑚,𝑘1) ∈𝑀𝑋

and (𝑚,𝑘2) ∈𝑀𝑋 , so 𝑘1, 𝑘2 ∈𝑋, 𝑘1 +𝑚(𝑏− 𝑎) ∈𝑋 and 𝑘2 +𝑚(𝑏− 𝑎) ∈𝑋. Having in mind that 𝑋 is an interval and 𝑘1, 𝑘2 ∈𝑋, the 
intermediate value 𝑘0 ∈𝑋. In fact, 𝑘0 ≤ 𝑘0 + 𝑚(𝑏 − 𝑎) ≤ 𝑘2 + 𝑚(𝑏 − 𝑎). Since 𝑘0 ∈𝑋, 𝑘2 + 𝑚(𝑏 − 𝑎) ∈𝑋 and 𝑋 is an interval, then 
𝑘0 + 𝑚(𝑏 − 𝑎) ∈ 𝑋. Hence 𝑘0 ∈ 𝐾𝑋,𝑚, which concludes that 𝐾𝑋,𝑚 is an interval. Property (6) is apparent because if 𝑘 ∈ 𝐾𝑋,𝑚 and 
𝑘′ ∈𝑋 are such that 𝑘′ ≤ 𝑘, then 𝑘′ ≤ 𝑘′ +𝑚(𝑏 − 𝑎) ≤ 𝑘+𝑚(𝑏 − 𝑎) ∈𝑋, so 𝑘′ +𝑚(𝑏− 𝑎) and consequently 𝑘′ ∈𝐾𝑋,𝑚. This property 
guarantees that 𝐾𝑋,𝑚 has an infimum, and that infimum is the infimum of 𝑋. To conclude that 𝐾𝑋,𝑚 ∈𝐿(𝑋), it only remains to show 
that the supremum 𝑘𝑋 = sup𝐾𝑋,𝑚 also belongs to 𝐾𝑋,𝑚. If 𝐾𝑋,𝑚 is a singleton, this property is obvious. Suppose that 𝐾𝑋,𝑚 is not 
a singleton. Hence there is a strictly increasing sequence {𝑘𝑛} ⊂ 𝐾𝑋,𝑚 converging to 𝑘𝑋 . As {𝑘𝑛} ⊂ 𝐾𝑋,𝑚 ⊆ 𝑋 and 𝑋 is closed, its 
limit 𝑘𝑋 ∈𝑋. Furthermore, as 𝑘𝑛 +𝑚(𝑏− 𝑎) ∈𝑋 for all 𝑛 ∈ ℕ, then its limit 𝑘𝑋 +𝑚(𝑏− 𝑎) ∈𝑋. Therefore 𝑘𝑋 ∈𝐾𝑋,𝑚, and such set 
is closed.

Item (4) Suppose, by contradiction, that there are 𝑘1, 𝑘2 ∈ 𝐾𝑋,𝑚𝑋
such that 𝑘1 < 𝑘2. Hence 𝑘2 + 𝑚𝑋 (𝑏 − 𝑎) ∈ 𝑋. Let define 

𝑚′ =𝑚𝑋 + (𝑘2 − 𝑘1)∕(𝑏− 𝑎). Since 𝑚′ >𝑚𝑋 and 𝑚𝑋 is the supremum of 𝑀1
𝑋

, then 𝑚′ ∉𝑀1
𝑋

. However, 𝑘1 ∈𝑋 and

𝑘1 +𝑚′(𝑏− 𝑎) = 𝑘1 +
(
𝑚𝑋 +

𝑘2 − 𝑘1
𝑏− 𝑎 

)
(𝑏− 𝑎) = 𝑘1 +𝑚𝑋 (𝑏− 𝑎) + 𝑘2 − 𝑘1 = 𝑘2 +𝑚𝑋 (𝑏− 𝑎) ∈𝑋.

Therefore, 𝑚′ ∈𝑀1
𝑋

, which contradicts the fact that 𝑚′ ∉𝑀1
𝑋

. As item 3 guarantees that the infimum of 𝑋 belongs to 𝐾𝑋,𝑚𝑋
, then 

such singleton is {inf 𝑋}. □

Remark 4.2. If we know the endpoints of 𝑋, for example 𝑋 = [𝑐, 𝑑] ⊆ [𝑎, 𝑏], then 𝑀1
𝑋

is the interval [0, 𝑑−𝑐
𝑏−𝑎 ] and therefore 𝑚𝑋 = 𝑑−𝑐

𝑏−𝑎 . 
However, since we do not treat the intervals by their endpoints, but only by their interior points, this way of obtaining 𝑚𝑋 does not 
follow this principle. On the other hand, considering the dense sequence  ′ = {𝑠′

𝑛
} of 𝑋, generated from the sequence  of 𝐴, the 

function 𝜚 in Example 2.6 and 𝑀 ′1
𝑋
= ∪𝑗∈ℕ{𝜚(𝑖) ∶ 𝑠′𝑗 +𝜚(𝑖)(𝑏−𝑎) ∈𝑋}, then 𝑚𝑋 = sup𝑀 ′1

𝑋
which would be an infinitary computation 

of 𝑚𝑋 in the sense of [25]. The infinitary computation of 𝑘𝑋 is analogous.

The previous result is the basis for considering the following family of functions. Given (𝑚,𝑘) ∈𝑀𝑋 , let consider the function 
𝜄𝑚,𝑘 ∶𝐴→ℝ defined as

𝜄𝑚,𝑘(𝑡) = 𝑘+𝑚(𝑡− 𝑎) for all 𝑡 ∈𝐴. (7)

Clearly, the function 𝜄𝑚,𝑘 is an increasing a�ine function. As a consequence, Corollary 2.5 guarantees that its image 𝜄𝑚,𝑘(𝐴) ∈ 𝐿(ℝ)
is the closed and bounded interval of ℝ that includes all the real numbers between 𝜄𝑚,𝑘(𝑎) = 𝑘 and 𝜄𝑚,𝑘(𝑏) = 𝑘 + 𝑚(𝑏 − 𝑎). Since 
𝜄𝑚,𝑘(𝑎) = 𝑘 ∈𝑋, 𝜄𝑚,𝑘(𝑏) = 𝑘+𝑚(𝑏− 𝑎) ∈𝑋 and 𝑋 is an interval, then

𝜄𝑚,𝑘(𝐴)= [𝑎, 𝑘+𝑚(𝑏− 𝑎)] ⊆𝑋.

Thus, for each 𝑋 ∈𝐿(𝐴), we have a bivariate family of continuous surjective functions given by{
𝜄𝑚,𝑘 ∶𝐴→ [𝑎, 𝑘+𝑚(𝑏− 𝑎)] ∶ (𝑚,𝑘) ∈𝑀𝑋

}
.

From now, we will use 𝜄𝑚,𝑘 ∶ 𝐴→ 𝜄𝑚,𝑘(𝐴) instead of 𝜄𝑚,𝑘 ∶ 𝐴→ [𝑎, 𝑘 + 𝑚(𝑏 − 𝑎)]. When 𝑚 = 0, 𝜄0,𝑘(𝐴) is the singleton {𝑘}. Then, 
any singleton {𝑘} ⊂𝑋 can be obtained as 𝜄0,𝑘(𝐴). Next, suppose that 𝑚 > 0. In this case, 𝜄𝑚,𝑘 is strictly increasing (its first derivative is 
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𝑚> 0). Then 𝜄𝑚,𝑘 ∶𝐴→ 𝜄𝑚,𝑘(𝐴) is continuous and bijective. In fact, as 𝜄𝑚,𝑘 is a polynomial of degree exactly one, then 𝜄−1
𝑚,𝑘

∶ 𝜄𝑚,𝑘(𝐴)→𝐴

is also a polynomial of degree one, which is a new a�ine function. It is therefore continuous, so we have deduced the following 
statement.

Proposition 4.3. Given 𝑋 ∈𝐿(𝐴) and (𝑚,𝑘) ∈𝑀𝑋 , the image 𝜄𝑚,𝑘(𝐴) ∈𝐿(𝑋) and the function 𝜄𝑚,𝑘 ∶𝐴→ 𝜄𝑚,𝑘(𝐴) is continuous. Further

more, if 𝑚 = 0, then 𝜄𝑚,𝑘(𝐴) is a singleton and 𝜄𝑚,𝑘 ∶ 𝐴→ 𝜄𝑚,𝑘(𝐴) is constant, and if 𝑚 > 0, the function 𝜄𝑚,𝑘 ∶ 𝐴→ 𝜄𝑚,𝑘(𝐴) is an strictly 
increasing homeomorphism from 𝐴 onto 𝜄𝑚,𝑘(𝐴).

In a particular case, the interval 𝜄𝑚,𝑘(𝐴) coincides with 𝑋.

Lemma 4.4. Using the notation of Theorem 4.1, given 𝑋 ∈ 𝐿(𝐴), let 𝑚𝑋 = sup𝑀1
𝑋

and let 𝑘𝑋 be the unique element of 𝐾𝑋,𝑚𝑋
. Then 

𝜄𝑚𝑋 ,𝑘𝑋
(𝐴) =𝑋.

Proof. Proposition 4.3 guarantees that 𝜄𝑚𝑋 ,𝑘𝑋
(𝐴) ∈ 𝐿(𝑋), so 𝜄𝑚𝑋 ,𝑘𝑋

(𝐴) ⊆ 𝑋. We prove the contrary inclusion by contradiction, 
assuming that there is 𝑥0 ∈𝑋⟍𝜄𝑚𝑋 ,𝑘𝑋

(𝐴). Theorem 4.1 states that 𝑚𝑋 = sup𝑀1
𝑋
∈𝑀1

𝑋
and 𝐾𝑋,𝑚𝑋

= {𝑘𝑋}. Hence 𝜄𝑚𝑋,𝑘𝑋
(𝑎) = 𝑘𝑋 ∈𝑋

and 𝜄𝑚𝑋,𝑘𝑋
(𝑏) = 𝑘𝑋 +𝑚𝑋 (𝑏−𝑎) ∈𝑋. If 𝑘𝑋 ≤ 𝑥0 and 𝑥0 ≤ 𝑘𝑋 +𝑚𝑋 (𝑏−𝑎), as 𝜄𝑚𝑋,𝑘𝑋

(𝐴) is an interval containing 𝑘𝑋 and 𝑘𝑋 +𝑚𝑋 (𝑏−𝑎), 
then 𝑥0 ∈ 𝜄𝑚𝑋 ,𝑘𝑋

(𝐴), which contradicts the fact that 𝑥0 ∉ 𝜄𝑚𝑋 ,𝑘𝑋
(𝐴). Hence either 𝑥0 < 𝑘𝑋 or 𝑥0 > 𝑘𝑋 +𝑚𝑋 (𝑏− 𝑎).

• If 𝑥0 < 𝑘𝑋 , property (6) guarantees that 𝑥0 ∈𝐾𝑋,𝑚𝑋
= {𝑘𝑋}, which is false.

• Suppose that 𝑥0 > 𝑘𝑋 +𝑚𝑋 (𝑏− 𝑎). Let define 𝑚′ = (𝑥0 − 𝑘𝑋 )∕(𝑏− 𝑎) > 0. Notice that 𝑘𝑋 ∈𝑋 and

𝑘𝑋 +𝑚′(𝑏− 𝑎) = 𝑘𝑋 +
𝑥0 − 𝑘𝑋

𝑏− 𝑎 
(𝑏− 𝑎) = 𝑘𝑋 + 𝑥0 − 𝑘𝑋 = 𝑥0 ∈𝑋.

Hence (𝑚,𝑘𝑋 ) ∈𝑀𝑋 . Therefore 𝑚 ∈𝑀1
𝑋

, so 𝑚 ≤ sup𝑀1
𝑋
=𝑚𝑋 . However,

𝑥0 > 𝑘𝑋 +𝑚𝑋 (𝑏− 𝑎) ⇒ 𝑚 =
𝑥0 − 𝑘𝑋

𝑏− 𝑎 
>𝑚𝑋.

This contradiction concludes that 𝜄𝑚𝑋 ,𝑘𝑋
(𝐴) =𝑋. □

In the next result, we show that any interval of 𝐿(𝐴) is of the type 𝜄𝑚,𝑘(𝐴).

Corollary 4.5. 𝐿(𝐴) =
{
𝜄𝑚,𝑘(𝐴) ∶ (𝑚,𝑘) ∈𝑀𝐴

}
.

Proof. If (𝑚,𝑘) ∈𝑀𝐴, Proposition 4.3 guarantees that 𝜄𝑚,𝑘(𝐴) ∈𝐿(𝐴). Conversely, given an arbitrary 𝑋 ∈𝐿(𝐴), there is (𝑚𝑋,𝑘𝑋 ) ∈
𝑀𝑋 such that 𝜄𝑚𝑋 ,𝑘𝑋

(𝐴) =𝑋. Since 𝑀𝑋 ⊆𝑀𝐴, the equality is proven. □

Given 𝑋 ∈𝐿(𝐴), the function 𝜄𝑚𝑋 ,𝑘𝑋
∶𝐴→ 𝜄𝑚𝑋 ,𝑘𝑋

(𝐴) =𝑋 will be of particular importance, so we will denote it in a special way. 
From now on, given 𝑋 ∈𝐿(𝐴), we denote by 𝜄𝑋 ∶𝐴→𝑋 the function 𝜄𝑚𝑋 ,𝑘𝑋

, where 𝑚𝑋 = sup𝑀1
𝑋

and 𝑘𝑋 is the unique element of 
𝐾𝑋,𝑚𝑋

.

Proposition 4.6. The function 𝜄𝐴 ∶𝐴→𝐴 is the identity mapping on 𝐴.

Proof. Since 𝐴 = [𝑎, 𝑏] and 𝑎 + 1 ⋅ (𝑏 − 𝑎) = 𝑏, then (1, 𝑎) ∈𝑀𝐴. Hence 𝑚𝐴 = sup𝑀1
𝐴
= 1 and 𝐾𝐴,𝑚𝐴

= {𝑎}. Therefore, for all 𝑡 ∈ 𝐴, 
𝜄𝐴(𝑡) = 𝑎+ (𝑡− 𝑎) = 𝑡. □

Theorem 4.7. Given 𝑋 ∈ 𝐿(𝐴), the function 𝜄𝑋 ∶ 𝐴→𝑋 is a�ine and continuous. If 𝑋 is a singleton, then 𝜄𝑋 is constant, and if 𝑋 is not 
a singleton, 𝜄𝑋 ∶𝐴→𝑋 is an strictly increasing homeomorphism from 𝐴 onto 𝜄𝑋 (𝐴) =𝑋. In any case, 𝜄𝑋 ∶𝐴→𝑋 is surjective.

Furthermore, given 𝑋,𝑌 ∈𝐿(𝐴) it holds that 𝑋 ≤𝐿 𝑌 if and only if 𝜄𝑋 ≤ 𝜄𝑌 .

Proof. The first part follows from Proposition 4.3 and Lemma 4.4. The second part follows from Proposition 2.4, since the values 
𝜄𝑋 (𝑎) and 𝜄𝑋 (𝑏) are the extremes of 𝜄𝑋 (𝐴) =𝑋. □

From Theorems 3.8 and 4.7 we get one of the aims of the manuscript.

Corollary 4.8. If  = {𝑠𝑛} is a dense sequence on 𝐴 and  𝜄 is the family {𝜄𝑋 ∶𝐴→𝑋}𝑋∈𝐿(𝐴), then the binary relation ⪯ 𝜄


is an admissible 

order on 𝐿(𝐴).

Next, we show that suitably distinct dense sequences give rise to distinct admissible orders.
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Fig. 2. Graphic representation of intervals 𝑋𝛼 = [ 3− 𝛼,3+ 𝛼 ] and 𝑌 = [ 2,5 ] of Example 4.11. (For interpretation of the colours in the figure(s), the reader is referred 
to the web version of this article.)

Theorem 4.9. Let  = {𝑠𝑛} and  ′ = {𝑠′
𝑛
} be dense sequences on 𝐴 such that 𝑠1 ≠ 𝑠′1, and let 𝑋 be the singleton {(𝑠1 + 𝑠′1)∕2}. Then 

𝐴 ⪯ 𝜄


𝑋, 𝑋 ⪯ 𝜄

′ 𝐴 and 𝑋 ≠𝐴. In particular, the admissible orders ⪯ 𝜄


and ⪯ 𝜄

′ are distinct.

Proof. Let denote 𝑥0 = (𝑠1 + 𝑠′1)∕2 and 𝑋 = {𝑥0}. Clearly 𝑠1 < 𝑥0 < 𝑠′1 and 𝑋 ≠𝐴. Since  ⊂𝐴 and  ′ ⊂𝐴, then 𝑠1 ∈𝐴 and 𝑠′1 ∈𝐴. 
As 𝐴 is an interval, then 𝑥0 ∈𝐴, so 𝑋 ∈𝐿(𝐴). As 𝑋 is a singleton, 𝜄𝑋 ∶𝐴→𝑋 is constant, so

𝜄𝑋 (𝑡) = 𝑥0 for all 𝑡 ∈𝐴.

Proposition 4.6 says that 𝜄𝐴 ∶𝐴→𝐴 is the identity mapping on 𝐴. Hence

𝜄𝐴(𝑠1) = 𝑠1 < 𝑥0 = 𝜄𝑋 (𝑠1).

By definition, 𝐴 ⪯ 𝜄


𝑋. However, as

𝜄𝑋 (𝑠′1) = 𝑥0 < 𝑠′1 = 𝜄𝐴(𝑠′1),

then 𝑋 ⪯ 𝜄

′ 𝐴. Therefore, ⪯ 𝜄


and ⪯ 𝜄

′ are distinct admissible orders because they are antisymmetric (if ⪯ 𝜄


and ⪯ 𝜄

′ would be equal, 
from 𝐴 ⪯ 𝜄


𝑋 and 𝑋 ⪯ 𝜄


𝐴 we could deduce that 𝑋 =𝐴, which is false). □

The previous result finally proves the existence of a non-countable family of admissible orders of the type ⪯ 𝜄


taking into account 

the following property.

Proposition 4.10. Given a dense sequence  = {𝑠𝑛} on 𝐴 and a point 𝑡∈𝐴, let 𝑡 = {𝑠𝑡
𝑛
} be the sequence defined, for all 𝑛∈ℕ, by:

𝑠𝑡
𝑛
=
{

𝑡, if 𝑛 = 1, 
𝑠𝑛−1, if 𝑛 > 1. 

Then 𝑡 is also dense in 𝐴. Furthermore, if 𝑡1, 𝑡2 ∈𝐴 are distinct, then the first terms of 𝑡1
and 𝑡2

are distinct.

The previous result shows a family {𝑡}𝑡∈𝐴 of dense sequences on 𝐴 whose first terms are distinct for different indices. Then 
{⪯ 𝜄

𝑡
}𝑡∈𝐴 is a non-countable family of admissible orders on 𝐿(𝐴).

Let us show next how the admissible order ⪯


works when it is applied to some intervals. So far, we have been dealing with 
intervals without having to name them by their endpoints. However, in the following examples, for convenience, we will denote 
them by their endpoints.

Example 4.11. Let us consider the universe interval 𝐴 = [0,6]. Given 𝛼 ∈ [0,3], let 𝑋𝛼 be the interval [3 − 𝛼,3 + 𝛼], and let call 
𝑌 = [2,5]. Fig. 2 represents the interval 𝑌 in red color, and the interval 𝑋𝛼 in blue color for 𝛼 ∈ [0,1], in green color for 𝛼 ∈ [1,2], 
and in magenta color for 𝛼 ∈ [2,3].

If 𝛼 ∈ [1,2], then 3 − 𝛼 ≤ 2 and 3 + 𝛼 ≤ 5. Then 𝑋𝛼 ≤𝐿 𝑌 . In this case, the admissibility of the order (recall Theorem 3.8) 
guarantees that 𝑋𝛼 ⪯


𝑌 whatever the sequence  and the family  (provided that  = {𝑠𝑛} is a dense sequence on [0,6] and 

 = {ℎ𝑋 ∶ [0,6]→𝑋}𝑋∈𝐿([0,6]) is a family of continuous and surjective functions satisfying (5)). When 𝛼 ∈ [0,1)∪ (2,3], the intervals 
𝑋𝛼 and 𝑌 are not ≤𝐿-comparable, so this order cannot decide what interval is the lesser one. The great advantage of the admissible 
order ⪯


is that it will always be able to decide what interval is the lesser one (because they are distinct). The keys of the criterion 

will be the dense sequence  and the family  .

Suppose that  is the family  𝜄 = {𝜄𝑋 ∶ [0,6]→𝑋}𝑋∈𝐿([0,6]). Associated to 𝑌 = [2,5], it can be checked that 𝑚𝑌 = 1∕2 and 𝑘𝑌 = 2. 
Therefore 𝜄𝑌 ∶ [0,6]→ 𝑌 is the function given, for each 𝑡 ∈ [0,6], by:

𝜄𝑌 (𝑡) = 𝜄𝑚𝑌 ,𝑘𝑌
(𝑡) = 𝑘𝑌 +𝑚𝑌 (𝑡− 𝑎) = 2 + 1

2
(𝑡− 0) = 𝑡+ 4

2 
.
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Given 𝛼 ∈ [0,3], we similarly can compute that 𝜄𝑋𝛼
(𝑡) = (9 − 3𝛼 + 𝛼𝑡)∕3 for all 𝑡 ∈ [0,6]. When 𝛼 ≠ 1.5, the unique point where 

𝜄𝑌 (𝑡) = 𝜄𝑋𝛼
(𝑡) is 𝑡 = 6(1 − 𝛼)∕(3 − 2𝛼).

Suppose that 𝛼 ∈ [0,1)∪ (2,3], and let  = {𝑠1, 𝑠2, 𝑠3,…} be a dense sequence in [0,6] such that 𝑠1 = 6(1−𝛼)∕(3−2𝛼) and 𝑠2 ≠ 𝑠1. 
Then 𝑠1 ∈ (0,2] ∪ [4,6) ⊂ [0,6] =𝐴. In this case, note that the first point of the sequence is not enough to ⪯ 𝜄


-compare the intervals 

𝑋𝛼 and 𝑌 because 𝜄𝑋𝛼
(𝑠1) = 𝜄𝑌 (𝑠1). Precisely, 𝑠1 is the unique point where this equality holds. But, as 𝑠2 ≠ 𝑠1, then necessarily either 

𝜄𝑋𝛼
(𝑠2) < 𝜄𝑌 (𝑠2) or 𝜄𝑋𝛼

(𝑠2) > 𝜄𝑌 (𝑠2). In the first case, 𝑋𝛼 ≺
 𝜄


𝑌 , and, in the second case, 𝑌 ≺ 𝜄


𝑋𝛼 . To decide what is the case, we 

observe that, given 𝑡 ∈ [0,6]:

𝜄𝑌 (𝑡) < 𝜄𝑋𝛼
(𝑡) ⇔ (3 − 2𝛼)𝑡 < 6(1 − 𝛼).

Therefore, the criterion to compare 𝑋𝛼 and 𝑌 by ⪯ 𝜄


is the following one:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∙ if 𝛼 ∈ [0,1), 

{
𝑌 ≺ 𝜄


𝑋𝛼 if 𝑠2 < 𝑠1,

𝑋𝛼 ≺
 𝜄


𝑌 if 𝑠2 > 𝑠1;

∙ if 𝛼 ∈ (2,3], 

{
𝑌 ≺ 𝜄


𝑋𝛼 if 𝑠2 > 𝑠1,

𝑋𝛼 ≺
 𝜄


𝑌 if 𝑠2 < 𝑠1.

In any case, the intervals 𝑋𝛼 and 𝑌 are ⪯ 𝜄


-comparable.

Example 4.12. In general, the first terms of the sequence  = {𝑠1, 𝑠2, 𝑠3,…} are sufficient to determine the ordering by ⪯


of two 
intervals 𝑋 and 𝑌 . However, when the functions of the family  take often the same value, then it could be necessary to appeal to 
advanced terms of the sequence  . This is the case in this example. Suppose that 𝐴 = [0,6] and let 𝜀0 ∈ (0,1) be a very small positive 
real number (for instance, 𝜀0 = 10−10). Let  = {ℎ𝑋 ∶ [0,6] → 𝑋}𝑋∈𝐿([0,6]) be a family of functions such that, for each 𝑋 = [𝑐, 𝑑]
verifying 0 ≤ 𝑐 ≤ 3 ≤ 𝑑 ≤ 6, the function ℎ𝑋 is defined, for each 𝑡 ∈ [0,6], by:

Fig. 3. Definition and graphic representation of some functions ℎ𝑋 of Example 4.12. 

The function ℎ𝑋 takes the value 3 in the interval [𝜀0,6 − 𝜀0] (see Fig. 3), which is near to be the whole interval [0,6]. Then, for 
intervals 𝑋 = [1,5] and 𝑌 = [2,4], it is reasonable to find that ℎ𝑋 (𝑠𝑛) = ℎ𝑌 (𝑠𝑛) for a large number of terms {𝑠1, 𝑠2,… , 𝑠𝑛0

}. In this 
case, it would be necessary to determine the first term 𝑠𝑚0

of the sequence  such that 𝑠𝑚0
∈ [0, 𝜀0) ∪ (6− 𝜀0,6] before comparing the 

intervals 𝑋 and 𝑌 through the order ⪯


.

5. Interval valued orders in brain–computer interface classification

This section offers a brain–computer interface (BCI) example that contrasts the conventional admissible order on intervals with the 
one proposed in this work inside an interval–valued Sugeno (IV–Sugeno) fusion scheme. Although limited in scope, the experiment 
is intended as an open work that can be extended with additional datasets, orders or fusion functions.

The dataset used in the experiment consists of ten stroke volunteers producing forty unseen trials of six–second electroencephalo

gram (EEG) windows recorded while left-- or right–hand grasp movements are made. Every signal was band–pass filtered into four 
overlapping 𝜇∕𝛽 ranges (6--10, 8--15, 14--28 and 24--35 Hz). Per band, the first two principal components were retained and sum

marised by five descriptive statistics (mean, minimum, maximum, 0.15-- and 0.85--quantiles), yielding a ten-dimensional feature 
vector. Three probabilistic models, 𝑘--nearest neighbours (𝑘-NN), support–vector machines (SVM) and Gaussian processes (GP) are 
applied to each vector, producing nine posterior probabilities for the left class. The interval 𝑋left

𝑏
= [min𝑝,max𝑝] was formed per 

band; the complementary interval 𝑋right

𝑏
was obtained analogously. Repeating this procedure across the four bands delivered four 

left intervals and four right intervals for every trial.
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5.1. Overview of the IV-Sugeno fusion

The four intervals of a given label are fused by an IV–Sugeno integral 𝑆𝑚,𝐻,𝐺(𝑥1, 𝑥2, 𝑥3, 𝑥4) =𝐺(𝐻(𝑥(1),𝑚(𝐴(1)),… ,𝐻(𝑥(4),𝑚(𝐴(4)))
that employs the uniform fuzzy measure 𝑚(𝑈 ) = |𝑈 |∕𝑁 , the arithmetic mean 𝐺 as outer aggregator and the bivariate mapping 
𝐻(𝑎, 𝑏) = 𝑎2𝑏 + 𝑎(1 − 𝑏), and where (𝑥(1),… , 𝑥(4)) is an increasing reordering of (𝑥1, 𝑥2, 𝑥3, 𝑥4) and 𝐴(𝑖) = {(𝑖),… ,4} for every 𝑖 ∈
{1,… ,4}. The fusion requires (i) sorting the four band intervals, (ii) applying a local function 𝑓 to each ordered pair {interval, 
measure}, and (iii) aggregating the four outputs with 𝐺. Replacing the sorting step with a different total order leaves the rest of the 
pipeline unchanged.

5.2. Pseudocode of the complete decision rule

Algorithm 1: IV–Sugeno decision rule with interior ordering (single module).

Input: Feature vectors 𝐯𝑏 for the four bands (𝑏= 1..4)

Output: Predicted label 𝑐 ∈ {lef t, right}

1 Step 1: Build band-wise probability intervals; 
2 Initialize two empty lists L_left, L_right; 
3 for 𝑏← 1 to 4 do

4 Obtain nine characteristics 𝑝𝓁
𝑏,1..9 for left and right using trained classifiers (K-NN, SVM and GP); 

5 𝑋𝓁
𝑏
← [min𝑖 𝑝𝓁𝑏,𝑖, max𝑖 𝑝𝓁𝑏,𝑖]; 

6 𝑋𝑟
𝑏
← [min𝑖(1 − 𝑝𝓁

𝑏,𝑖
), max𝑖(1 − 𝑝𝓁

𝑏,𝑖
)]; 

7 Append 𝑋𝓁
𝑏

to L_left; append 𝑋𝑟
𝑏

to L_right; 
8 end 
9 Step 2: Fuse the four intervals of each label with IV–Sugeno; 

10 foreach label ∈ {L_left, L_right} do

11 Let 𝑘← 4 and rename the current list as 𝐿[1..𝑘]; 
12 for 𝑖← 1 to 𝑘− 1 do

13 for 𝑗 ← 1 to 𝑘− 𝑖 do

14 Compare 𝐿[𝑗] and 𝐿[𝑗 + 1] by scanning 𝑆 ; 
15 Find first 𝑡𝑚 with ℎ𝐿[𝑗](𝑡𝑚) ≠ ℎ𝐿[𝑗+1](𝑡𝑚); 
16 if ℎ𝐿[𝑗](𝑡𝑚) > ℎ𝐿[𝑗+1](𝑡𝑚) then

17 Swap 𝐿[𝑗],𝐿[𝑗 + 1]; 
18 end 
19 end 
20 end 
21 for 𝑖← 1 to 𝑘 do

22 𝜇𝑖 ← (𝑘− 𝑖+ 1)∕𝑘; 
23 𝑔𝑖 ←𝐻(𝐿[𝑖], 𝜇𝑖) where 𝐻(𝑎, 𝑏) = 𝑎2𝑏+ 𝑎(1 − 𝑏); 
24 end 
25 𝑌 label ←𝐺(𝑔1,… , 𝑔𝑘) ; // 𝐺 = arithmetic mean
26 end 
27 Step 3: Final comparison of the two fused intervals; 
28 Scan 𝑆 until first 𝑡𝑚 with ℎ𝑌 𝓁 (𝑡𝑚) ≠ ℎ𝑌 𝑟 (𝑡𝑚); 
29 if ℎ𝑌 𝓁 (𝑡𝑚) < ℎ𝑌 𝑟 (𝑡𝑚) then

30 𝑐← lef t; 
31 end 
32 else

33 𝑐← right; 
34 end 
35 return 𝑐; 

5.3. Complexity analysis

Building the four band intervals (lines 3--8) is 𝑂(𝑘) with 𝑘 = 4. The two bubble sorts (for left and right classes) in lines 13--19 
dominate: each needs 𝑘(𝑘 − 1)∕2 comparisons and every comparison scans the 𝑛-point sequence 𝑆 . The fusion step, therefore, costs 
2 𝑂(𝑘2𝑛). Computing the four 𝑔𝑖 values (lines 22--24) is 𝑂(𝑘) and the final interval comparison (lines 28--32) adds 𝑂(𝑛).

Putting everything together, a single trial costs

𝑇trial(𝑘, 𝑛) = 2 𝑂(𝑘2𝑛) +𝑂(𝑛) +𝑂(𝑘) =𝑂(𝑘2𝑛).

The order proposed in this work injects only a linear factor in the length of the dense sequence while preserving the overall 𝑂(𝑘2𝑛)
character of the pipeline; it can therefore be adopted without jeopardising throughput in larger-scale or online experiments.
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Table 1
Correct classifications per participant (40 trials each).

Participant admissible order order without extremes 
1 28 22 
2 18 16 
3 23 23 
4 26 24 
5 20 18 
6 7 12 
7 31 28 
8 25 23 
9 31 30 
10 36 12 

5.4. Results and discussion

Improvements appear for subject 6, whose probability interval contain noisy extremes: discarding the bounds adds five correct 
predictions. In the case of subject 3 the results remain equal with both types of order. Conversely, subjects 1, 4 and 7 lose up to six 
hits each, indicating that for them, the end points of the fused intervals carry meaningful evidence (Table 1).

The example confirms that changing the total order on intervals is a lightweight but influential modification. The order without 
the extremes adds a linear factor in the sequence length yet remains computationally modest. Although overall accuracy dropped in 
this dataset, performance gains for specific users underline the value of using the proposed order to individual uncertainty profiles. 
The current pipeline, therefore, serves as a flexible starting point for future studies that, enlarge the number of information sources, 
or deploy the method in online BCI sessions.

6. Final remarks and prospect works

Admissible orders, recently introduced by Bustince et al. in [10], are examples of orders that satisfy reasonable properties from 
a human point of view. At present, however, a sufficiently large family of such orders had not been introduced to work on concrete 
applications. In this paper, based on a dense sequence and on a family of continuous and surjective functions, we have introduced a 
large class of admissible orders that generalize and extend the Kulisch and Miranker partial order. Furthermore, we have shown that 
this family can be considered by avoiding the use of the extremes of the intervals.

This line of research can be developed by using this family of admissible orders on real, closed and bounded intervals in concrete 
applications. In particular, the application of the proposed admissible order in BCI is important, as it opens a line of research for other 
applications, such as in social network analysis, as done in [26]. The idea would be to use and compare this IV-Sugeno fusion function 
with other classes of IV-Sugeno fusion functions, such as [26,27], but based on the admissible order ⪯


. We can also investigate other 

families of admissible orders defined without using interval limits.
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