Pre prints.org

Article Not peer-reviewed version

Probabilistic Algorithm with Dynamic
Load Balancing for GPU-Accelerated
Tumor Growth Simulations

Manuel I. Cap_el* and Luis Rodriguez Domingo
Posted Date: 11 September 2025
doi: 10.20944/preprints202509.1003.v1

Keywords: cellular automata; tumor growth model; CUDA,; parallelization

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/734894

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 11 September 2025d0i:10.20944/preprints202509.1003.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Probabilistic Algorithm with Dynamic Load Balancing
for GPU-Accelerated Tumor Growth Simulations

Manuel I. Capel *' and Luis Rodriguez Domingo

ETSIIT, Software Engineering Department, Universidad de Granada, Granada 18071, Spain
* Correspondence: manuelcapel@ugr.es

Abstract

Efficient simulation of tumor growth using cellular automata (CA) requires high computational power,
especially when scaling to large biological systems. In this paper, we present a GPU-accelerated
dynamic load balancing strategy for tumor growth simulation, using CUDA to optimize execution and
scalability. We compare our approach with traditional CPU implementations and static load balancing
methods, and demonstrate significant performance gains. Our results show that the proposed strategy
reduces execution time by up to 54% for a 1024 x1024 grid of CUDA thread blocks while maintaining
accuracy, making it a promising approach for large-scale biomedical simulations.

Keywords: cellular automata; tumor growth model; CUDA; parallelization

1. Introduction

Tumor growth simulation is a very important field of biomedical research today, as it is an
invaluable aid in better understanding cancer progression and can be crucial in the development of
personalized cancer treatments. Thus, by modeling tumor growth dynamics using high-performance
computing (HPC), researchers can predict the behavior of tumors under certain conditions, optimize
medication delivery strategies, and evaluate the efficacy of treatments before conducting clinical
trials [1]. The acceleration now provided by GPUs has significantly improved the accuracy and
scalability of the aforementioned simulations, enabling large-scale, biologically realistic models that
until recently were computationally infeasible [2]. Together with other machine learning techniques,
tumor growth simulation is paving the way to precision oncology and better patient outcomes [3].

* Despite extraordinary advances in computational modeling, tumor growth simulations still
face significant challenges in terms of improving efficiency and enabling non-hardware-limited
scalability. Traditional mathematical models, based on cellular automata (CA) [4] and reaction-
diffusion differential equations, require very high computational power, especially to implement
realistic biological simulations. Scalability issues arise from the complex interactions between
tumor cells, the microenvironment, and responses to cancer treatments, which require models
with high spatial and temporal resolution [5]. In addition to all of the above, adapting the above
models to modern heterogeneous architectures, such as GPU clusters or distributed HPC systems,
remains a challenge for researchers due to inefficient load balancing between processors, memory
bottlenecks, and constraints [6] to achieve maximum computational parallelization. Solving all
these open problems is currently crucial to achieve real-time simulations that support clinical
decision making and personalized treatment strategies.

e Parallel computing has proven its effectiveness in many application domains related to the
simulation of complex processes and is now enhanced by distributed HPC and heterogeneous
architectures offered by GPUs. We can mention numerous works that have managed to improve
the efficiency of CA implementations [7] [8] in the field of tumor growth simulation. Even
so, and due to the very process of the restrictions imposed by parallelization, the expected
computational efficiency is significantly reduced. This usually occurs because the sharing of

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0003-2449-4394
https://doi.org/10.20944/preprints202509.1003.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 11 September 2025d0i:10.20944/preprints202509.1003.v1

20f17

data or partial results leads to race conditions between processors, which have to be solved with
synchronization between processors, limiting their parallelism potential [9] [10]. [11] proposes a
tumor growth model using a parallelized CA, which includes a dynamic balancing strategy of
cells to be processed among multiple threads in execution and introduces adjustable parameters,
depending on the different conditions that arise during the execution of the simulation. Other
approaches currently seek to obtain computational dynamic load balancing, which can be found
in [12], which presents dynamic load balancing techniques for the efficient parallel execution of a
CA in a two-dimensional domain divided into rectangular regions. In [13] the load balancing was
achieved on a two-dimensional processor grid as required by the geometry of the problem.

The scalability of GPU-based tumor growth simulations is significantly enhanced by avoiding
costly synchronization between GPU block threads and maximizing parallel execution efficiency.
Unlike the [11] approach, which processes each tumor cell independently and requires synchro-
nization for updates to shared data, we revisit and redefine the [4] model to ensure that each grid
cell’s state is updated independently in the next iteration of the algorithm. This method guaran-
tees that each thread processes its own cell without requiring mutual exclusion mechanisms or
atomic operations, thus eliminating contention overhead. By structuring the workload efficiently
across GPU cores, we fully utilize the computational power of GPU multiprocessors, achieving
higher concurrency and better load balancing. This significantly improves execution time and
scalability compared to traditional CA-based parallel models.

¢ Contributions of this paper:

- A novel dynamic load balancing strategy for GPU-accelerated CA-based tumor simulations.
- A performance comparison against CPU and static GPU approaches.
- Analysis of scalability and efficiency improvements.

2. Related Work

* The modeling of tumor growth has been carried out using cellular automata (CA) due to their
capacity to capture very complex biological behavior by defining simple local rules [4]. CAs
are discrete computational models whose representation consists of a grid of cells whose state
evolves each following a set of rules that determines its state in the next simulation step. CA-
based models can be used to simulate tumour growth, the invasion of tissue by tumor cells, and
interactions with the surrounding microenvironment. Unlike continuous models, such as reaction-
diffusion equations [14] and ordinary differential equations [15] [16] with boundary conditions to
capture the stochastic nature of interactions between cells, CA-based models offer a very powerful
alternative as they explicitly simulate the individual behavior of cells and allow the evolution
of tumors to be studied at different scales. The paper [17] provides a comprehensive review of
computational models of the cell cycle in tumors, emphasizing the importance of understanding
the proliferation of cancer cells. This review discusses various modeling approaches, including
CA models, and their application to the simulation of cell life cycle dynamics and their response
to different therapeutic interventions. As computational power increases and more biological
data becomes available, CA-based models will become the cornerstone of personalized therapies
and the development of new cancer treatment strategies.

e Parallelization techniques are fundamental to implement efficient AC model-based simulations.
Recently, significant progress has been made in optimizing AC simulations using different
computational strategies. For example, in [18] a scalable solver for a personalized breast cancer
therapy is developed using a hybrid stochastic CA model. In [19] techniques such as frameworks
for stencil computing are explored to optimise CA simulations on GPUs, resulting in significant
performance improvements. Similarly, [20] explores parallel CA implementations, demonstrating
that leveraging GPUs and multicore CPUs can significantly speed up simulations. All these
studies underline the importance of using parallelization methods to improve the efficiency and
scalability of CA-based simulations.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1003.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 11 September 2025d0i:10.20944/preprints202509.1003.v1

30f17

e Load balancing plays a critical role in High Performance Computing (HPC) for CA-based simu-
lations, ensuring that computational resources are optimally utilized. Dynamic load balancing
(DLB) methods, such as domain decomposition and workload redistribution, are often used to
evenly distribute tasks across processors. However, these approaches face inherent limitations,
especially in spatially heterogeneous CA-based models where the computational load varies
dynamically. [11] propose a parallel CA tumor growth model that integrates dynamic load
balancing, significantly reducing execution time compared to sequential implementations. How-
ever, their study highlights the synchronization overhead as a major drawback when balancing
the load across multiple computational threads. Similarly, [12] develop a closed-form analytical
solution for computing optimal workload assignments in distributed memory architectures using
MPI-based dynamic load balancing. Their approach improves performance by reducing idle times
between nodes, but struggles with communication bottlenecks caused by frequent workload
redistribution. In both studies, the trade-off between load balancing frequency and overhead cost
remains a key challenge. While dynamic partitioning techniques improve resource utilization,
they also introduce significant computational overhead, especially in CA models where local
interactions evolve unpredictably over time. Therefore, achieving an optimal balance between
computational efficiency and synchronization costs in HPC-driven CA simulations remains an
open research problem.

* CUDA and GPU acceleration play a critical role in improving the performance of CA-based tumor
growth simulations, enabling large-scale and high-resolution modeling of tumor dynamics. [11]
proposed a parallel CA tumor growth model with dynamic load balancing, which significantly
reduced execution times compared to sequential implementations. Their work highlights the
importance of efficient parallelization strategies to overcome computational bottlenecks in large-
scale tumor simulations. Recent developments in GPU-based CA models continue to demonstrate
significant improvements in simulation speed and scalability. [21] presented Gell, an open-
source, GPU-based 3D hybrid simulator capable of handling tens of millions of cells, achieving
a 150-fold speed-up over parallel CPU methods. Similarly, [19] optimized stencil-based CUDA
implementations of CA, demonstrating significant performance gains for large-scale simulations.
These studies highlight how CUDA-based parallelization and GPU acceleration are reshaping
computational oncology by enabling more realistic tumor modeling while reducing computational
costs. However, challenges remain in load balancing, memory constraints and inter-thread
communication overhead, requiring further advances in hybrid parallelization strategies that
leverage multi-GPU architectures and adaptive workload distribution.

3. Methodology
3.1. Tumor Growth Simulation Model

The Cellular Automata (CA) model focuses on the simulation of tumor growth through local
rules that govern the behavior of each cell according to its immediate environment. The model can be
described by the following triad: (Spatial Representation, Behavioral Rules and Model Assumptions).

1. Spatial representation:

* A discrete 2D grid is used in which each cell represents either a tumor cell or a surrounding
tissue element (see Figure 1). The specific type of neighborhood used for interaction (e.g.
Moore neighborhood with b = 8 neighbors or von Neumann neighbourhood with b = 4
neighbours) determines how each cell is affected by its environment.

® The system evolves in discrete time steps, which means that changes in the state of cells
occur synchronously at regular intervals.

2. Behavioral rules. Each cell follows a set of probabilistic rules that influence three main parameters:

® Proliferation capacity (0suax): Defines how often a cell can divide.
e Capacity for migration (y): Determines the likelihood that a cell will move within the tissue.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1003.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 11 September 2025d0i:10.20944/preprints202509.1003.v1

40f17

* Spontaneous death capacity («): The probability that a cell will die without external inter-
vention.

These parameters differ between cell types, particularly between tumor stem cells and tumor
daughter cells.
3. Model assumptions. The model assumes that tumor growth is driven by two types of cells:

e Tumor stem cells that are immortal (p = oo, « = 0) and can generate both copies of
themselves and tumor daughter cells.

e Tumor daughter cells that have limited proliferation (0 = pyax) and a non-zero probability
of death (¢« > 0)

Competition between cells for space is a key feature: If a cell has no available neighboring spaces,
it enters a state of quiescence, i.e. it becomes inactive until conditions change.

sulns Hﬂ sl

ESjRE|RE|REjRE

DOmOE I‘IO'C
e Ce0e

HHHH R v~r Y Yva.

Sninsinalnwine J~ J~ I

Co \% o

Figure 1. Two-dimensional grids, for the cases where b = 4 and b = 6, the neighbors adjacent to the nodes in
yellow are shown in gray.

This model provides a framework for studying tumour growth dynamics and can be optimized
for high performance computing using parallelization techniques on GPU hardware.

3.2. GPU Parallelization Strategy

The CUDA-based implementation uses parallel processing on graphics processing units (GPUs)
to accelerate tumor growth simulations. Key aspects of this implementation include addressing
the following issues: (a) CUDA threading model and grid structure, (b) memory optimization, (c)
synchronization and race condition handling.

The computational domain is divided into a grid of thread blocks, where each thread is responsible
for processing a single cell in the automaton:

¢ Each block processes a subregion of the grid, with threads assigned to individual cells.

¢ Shared memory is used within blocks to store intermediate cell state updates, reducing global
memory accesses.

¢ The number of threads per block is optimized for efficient memory access and computational
load.

Listing 1: Kernel launch configuration

int gridSize = (numCells + threadsPerBlock - 1) / threadsPerBlock;
updateCells <<<gridSize, threadsPerBlock>>>(d_cellGrid);

In terms of the memory optimization, the GPU-based implementation employs the following
strategies:

® Shared memory: Used to store frequently accessed cell states within thread blocks.
* Global Memory Coalescing: Ensures that memory access patterns are optimized for Warp execution.
e Constant Memory: Stores static model parameters to reduce redundant memory fetches.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1003.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 11 September 2025d0i:10.20944/preprints202509.1003.v1

50f17

Listing 2: Using shared memory

__global__ void processCells(int *cellGrid) {
__shared__ int tempGrid [BLOCK_SIZE];
int idx = threadlIdx.x;
tempGrid[idx] = cellGrid[idx];
__syncthreads ();
tempGrid[idx] = updateState (tempGrid[idx]);
__syncthreads ();
cellGrid[idx] = tempGrid[idx];

Proper synchronization mechanisms are used to maintain correctness and prevent the implemen-
tation from poor performance due to race conditions by using the specific constructs of CUDA:

¢ CUDA provides __syncthreads () to synchronize threads within a block, ensuring correct cell
state updates.

* Atomic operations are used to prevent race conditions when multiple threads attempt to update
shared memory locations.

® Grid-level synchronization strategies ensure consistent state updates across different blocks.

Listing 3: Atomic update to avoid race condition

__global__ void updateCells(int *cellGrid) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < gridSize) {
int neighborState = getNeighborState (idx, cellGrid);
atomicAdd (&cellGrid[idx], neighborState);

These approaches ensure that data remains consistent across threads while maximizing parallel
efficiency. By using atomic operations and synchronization mechanisms, the implementation avoids
race conditions and maintains the integrity of cell updates.

CUDA-based implementation of a CA can significantly improves computational efficiency, en-
abling large-scale tumor growth simulations to be performed in a feasible time frame.

4. Computational Model and Algorithmic Approach

The tumor growth simulation follows a structured computational approach based on cellular au-
tomata. The CUDA-based implementation leverages parallelization to efficiently model the stochastic
evolution of tumor cells.

4.1. Computational Model
The CUDA implementation follows a parallelized probabilistic approach with the following key

optimizations:

¢ Thread-based Parallel Execution: Each CUDA thread processes a single node in the 2D grid to
ensure parallel execution of state updates.

¢ Double Buffering: Two grid states are maintained—one storing the current state, while the other
holds the next iteration’s state—to prevent race conditions.

¢ Localized Computation: Cancerous transformation probabilities are dynamically computed
using the Moore neighborhood.

* Memory Optimization: Random memory accesses are minimized by enforcing ordered neighbor
processing.
Each neighbor is indexed systematically, starting from the upper left corner and proceeding

clockwise (Figure 2). Neighboring cells containing cancer cells contribute to the probability of the «

cell transitioning to a cancerous state in the next iteration.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1003.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 11 September 2025d0i:10.20944/preprints202509.1003.v1

60of 17

4.2. Demonstration of the a-Cell Cancer Cell Generation Probability

This section presents the two cases for calculating the probability that the cell « contains a cancer
cell in the next iteration:

- Case 1: a does not initially contain a cancer cell.
- Case 2: « already contains a cancer cell and can either persist or receive a new cancer cell from its
neighbors.

Figure 2. Indexing of the neighbors of cell « in the Moore neighborhood.

4.2.1. Definitions and Notation
Let a be a cell in a grid that may or may not contain a cancer cell. We define the following terms:
e N(a): the neighborhood of « (typically a Moore neighborhood, consisting of up to 8 adjacent cells
in 2D).
¢ v: the number of neighboring cells of « that contain cancer cells.

e V={a,ay,...,a4,}: the set of these cancerous neighboring cells.
* K;: the probability that a neighboring cell 2 € V generates a cancer cell in «, defined as:

K, = Pmi + Pre’ (1)
la

where [, is the number of nodes in N(«) that do not yet contain cancer cells.
* pre: the probability that a cancer cell in « persists if it is already present.
® pui: the probability that a cancer cell migrates into a from a neighboring cell.

4.2.2. Case 1: Probability of Cancer Cell Generation in «

To compute the probability that at least one of the neighbors of x will generates a cancer cell in «,
given that a does not initially contain one, we consider all possible permutations ¢ of the set V. For
a neighbor ag occupying position 7 in the ordering o, the probability that it is the first to generate a
cancer cell in « is:

Plag, 1) = 5 Kag(n = 1)} (0) ZHu Ke) @

Probability of the first neighbour generating a cancer cell in a.

Summing over all possible positions 7 where gy can generate the cell in «, we obtain the total
probability:

Pa—ZEPan 3)

acV n=

Final probability of cancerous transition in .

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1003.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 11 September 2025d0i:10.20944/preprints202509.1003.v1

7 of 17

This equation expresses the probability that a cancer cell arises in « due to the influence of its
cancerous neighbors.

4.2.3. Case 2: Probability of Cancer Cell Persistence in &

If a already contains a cancer cell, the probability that it will persist in the next iteration or receive
a new cancer cell is:

Py = pay, + (1 = pay) Z Z Py(a,n) (4)

acV n=

Probability of # remaining cancerous or receiving a new cancer cell.

Here, Py (a, n) represents the probability that the neighbor a generates a cancer cell in « at position

Py (a n)—MK (n—1)(v—n+1)! (UZ_] H (5)
R RS T]110()1 '

Final probability contribution from all neighbouring cells.
Here, K,, represents the probability of migration and reproduction from neighbour ag. All possible

cases where « is accessed after a¢ in the ordering are summed.

Finally, summing over all probabilities from each neighbor, we obtain the total probability formula:

P_Zzpaan (6)

acV n=

Final probability of cancerous transition in .

This equation accounts for all possible contributions from neighbors, considering the order in

which they are evaluated, ensuring the correct dynamics for persistence and generation of new cancer
cells in .

4.3. Algorithm Description
The tumor growth simulation follows these key steps:

1. Grid Initialization: Define the 2D grid with initial tumor cells and surrounding tissue.
State Update Rules:

* Proliferation: A tumor cell divides with probability P, if space is available.
¢ Migration: A tumor cell moves with probability P,,;.
* Apoptosis: A tumor cell undergoes programmed death with probability P;.

3. Parallel Processing: Each cell is updated concurrently using CUDA kernels.
4. Synchronization: Ensure proper data consistency across threads.
5. Iteration Until Convergence: The simulation runs until steady-state tumor growth is achieved.

This optimized CUDA-based implementation significantly enhances computational efficiency
and enables large-scale tumor growth simulations with high accuracy and performance.

4.4. Implemented CUDA Kernels

The simulation employs three specialized CUDA kernels for efficient parallel execution:

* Neighborhood Update Kernel: Scans the Moore neighborhood of each cell to compute the
number of cancerous neighbors.

Transition Function Kernel: Determines state transitions based on computed probabilities.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1003.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 11 September 2025d0i:10.20944/preprints202509.1003.v1

8of 17

Algorithm 1 Transition Function for Tumor Growth Simulation with CUDA

1: currentCell < threadldx + blockldx * blockDim
2: if currentCell is cancerous then
3: if currentCell.nNeighbours > 0 then

4: if currentCell.nNeighbours == 8 then
5: nextCell < currentCell

6: else

7: P < calcProbabilities()

8 r <— Random(0,1)

9: if r < P then

10: nextCell < neighbourCell
11: else

12: nextCell < currentCell
13: end if

14: end if

15: else

16: nextCell < currentCell

17: end if

18: else

19: if currentCell.nNeighbours > 0 then
20: P < calcProbabilities()

21: r + Random(0, 1)

22: if » < P then

23: nextCell < neighbourCell

24: else

25: nextCell < currentCell

26: end if

27 else

28: nextCell < currentCell

29: end if

30: end if

* Cancer Stem Cell Persistence Kernel: Ensures that cancer stem cells remain persistent throughout
the simulation.

The function calcProbabilities() in Algorithm 1 returns the probability of each neighboring tumor
cell generating a cancer cell in «, stored in a vector. The neighboring cell responsible for generating
a cancer cell in & is then accessed based on its probability. This sequence is further explained in
Procedure 4, where the algorithms in Algorithm 2 or Algorithm 3 are invoked. These recursive
algorithms compute the summation in Equation 4, adding one summand at each recursive call.

Algorithm 2 Combinations of Probabilities if the Cell is Not Cancerous

1: procedure COMB(current, init, neighbors, level, probability)

2 p<+0

3 for i = init to neighbors do

4: if i # current then

5: p < p+ (1 — probability[i]) - ((neighbors — 1 — level)! - (level)!
6 +comb (current,i+ 1, neighbors, level + 1, probability))

7 end if

8 end for

9: return p

10: end procedure

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1003.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 11 September 2025d0i:10.20944/preprints202509.1003.v1

9of 17

Algorithm 3 Combinations of Probabilities if the Cell is Cancerous

procedure COMBCANCER(current, init, neighbors, level, probability)
p+0
for i = init to neighbors do
if i # current then)

1:
2
3
4
5: p<p+ (1 - prObablllty[l]) " (neighbors—Ilevel)!-level!
6
7
8

+combCancer (current, i + 1, neighbors, level + 1, probability))
end if
end for
9: return p
10: end procedure

Procedure 4 Procedure for Probability Calculation in Cancerous Transition

1: forvec =0to v do

2. PolesczukProbability[vec| + p’”l’%cp“’
3: end for

4: fori =0tovdo

5: if not cancerous then

total Probability[i] < PolesczukProbability[i]-(
6: else

total Probability[i] <— PolesczukProbability([i]-
7: end if

8: end for

v—1)!4-comb(i,0,0,1,PolesczukProbability)
ol

v!-+combCancer(i,0,0,1,PolesczukProbability)
(v+1)!

4.5. Algorithmic Complexity Analysis

The probability calculation procedure for cancerous transition involves nested loops, recursive
function calls, and combinatorial operations that contribute to its overall computational complexity.
Below, we analyze its complexity in detail.

4.5.1. Loop Complexity
The procedure consists of two primary loops:
e The first loop iterates over the variable vec from 0 to v, leading to a complexity of O(v).

e The second loop iterates over the variable i from 0 to v, also contributing O(v) complexity.

4.5.2. Recursive Probability Computation

The probability calculations involve recursive functions, such as comb()(Algorithm 2) and
combCancer()(Algorithm 3), which perform combinatorial operations. The worst-case scenario in-
volves iterating over all subsets of v, leading to a complexity of:

0(2°). (7)

Additionally, factorial terms appear in probability computations, suggesting that in the worst
case, the complexity can reach:

O(v!). 8)

4.5.3. Overall Complexity

Combining the loop and recursive components, the worst-case time complexity of the algorithm
is:

O(o!).)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1003.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 11 September 2025d0i:10.20944/preprints202509.1003.v1

10 of 17

However, in practical implementations, optimization techniques such as memorization or pruning
redundant calculations can reduce the complexity to:

02°) or O?). (10)

4.5.4. Parallel Execution Considerations

The CUDA-based implementation significantly improves performance by executing computations
in parallel. Each CUDA thread processes a single grid cell, reducing the effective complexity per thread
to:

O(v). (11)

Thus, leveraging GPU acceleration allows large-scale tumor growth simulations to be executed
efficiently, even when handling complex probabilistic transitions.

4.6. Experimental Setup

The simulations were performed on an NVIDIA GeForce GTX 1650 with Max-Q design, using
CUDA for parallel execution. The implementation used a dual-grid memory model to optimize GPU
memory access and avoid race conditions by storing the state of the next iteration separately. The input
dataset consisted of a structured 2D grid-based tumor growth model, with grid sizes of 512x512 and
1024x1024 nodes used for 25-day and 50-day simulations, respectively. A single stem cell was placed at
the center of the grid as the initial condition, with each simulation step representing one hour, resulting
in 600 steps for 25-day simulations and 1200 steps for 50-day simulations. The algorithm followed
the Polesczuk-Enderling model [4], where tumor cell state transitions were governed by probabilistic
rules based on neighborhood influence, including migration and reproduction probabilities. The
performance evaluation focused on three key metrics: execution time, measuring the computational
time required for each iteration; speedup, assessing the performance improvement of the GPU imple-
mentation over a sequential execution; and load balancing efficiency, analyzing the workload distribution
across CUDA thread blocks. The execution strategy mapped each GPU thread block to a column
of the grid, ensuring efficient parallel processing. The results showed a significant speedup over
sequential approaches, although further optimizations in thread scheduling and workload balancing
could improve performance even further.

5. Experimental Results

Since tumor growth simulations require a high resolution, we have chosen a 1024 x 1024 grid to
represent the tumor tissue. This grid size limits the tumor to 1,048,576 cells, which are initially empty
(non-cancerous tissue) at the beginning of the simulation and can be progressively occupied by tumor
cells. A grid of this size provides sufficient spatial resolution for meaningful biological modeling
by ensuring that tumor progression, diffusion, and cellular behavior can be accurately simulated by
the program. In addition, modern GPUs have multiple streaming multiprocessors (SMs) that can
simultaneously process multiple blocks of 1024 threads, ensuring full utilization of all GPU cores
across multiple SMs.

In our model, each thread processes a cell represented by a grid point. Since the grid is stored in
a 2D array, the 1024 x 1024 matrix can allow us to perform efficient memory access due to merged
global memory read/write operations, row-major order access optimization since memory loads are
sequential, and better cache locality since each warp processes a contiguous block of memory.

5.1. Performance Comparison

The performance of the proposed tumor growth simulation was evaluated using various execution
parameters and CUDA grid configurations. The total execution time and the number of processed cells
per time unit were measured with a 1024 x 1024 grid over 150 simulation days. A comparison with

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1003.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 11 September 2025d0i:10.20944/preprints202509.1003.v1

11 0of 17

previous work [11] highlights three key points: (a) the proposed algorithm processes a similar number
of cells as in [11], demonstrating that the tumor growth model remains consistent. (b) Unlike [11],
which used 4000 steps, this work uses 3600 steps to match the 150-day simulation time window, where
each day consists of 24 steps, 150 days x 24 steps/day = 3600 steps. (c) Although the best execution
times of the proposed approach are slightly worse that those in [11], the grid cell distribution strategy
enhances scalability, which was not achieved in the previous work.

5.1.1. CUDA Grid Size and Speedup Analysis

The speedup achieved when varying the CUDA grid size is detailed in Table 1. The results show
a significant speedup compared to single-thread execution.

Table 1. Performance of the simulations carried out with the probabilistic model, varying the size of the CUDA

grid.

CUDA Grid | Size Processed | Processed/s | Seconds | Speedup
1x64 164,401 | 191,918,090 | 40,234.41 | 4769.998 1
2x64 136,588 | 146,984,801 | 78,683.08 | 1868.061 1.956
4x64 153,697 | 173,264,862 | 84,914.98 | 2040.451 2,111
8x64 146,279 | 169,838,837 | 147,932.54 | 1148.083 3,677

16x64 146,784 | 160,235,895 | 250,391.66 | 639.941 6.223
16x16 147,533 | 176,305,011 | 136,524.60 | 1291.379 3.393
32x64 137,424 | 154,349,732 | 498,481.24 309.64 12.389
32x32 158,803 | 180,625,230 | 262,416.52 | 688.315 6.522
64x64 141,702 | 161,861,208 | 908,587.38 | 178.146 22.582
128x128 119,016 | 123,115,379 | 2,344,429.65 | 52.514 58.269
256x256 139,710 | 147,640,588 | 4,906,306.92 | 30.092 121.943
512x512 129,254 | 142,093,466 | 5,581,705.07 | 25.457 138.729
1024x1024 | 134,349 | 151,196,626 | 8,797,150.52 | 17.187 | 218.647

For small grid sizes, speedup is limited, but as the grid size increases, acceleration improves
significantly. The best speedup (218.647 x) is observed at a 1024 x 1024 CUDA grid, where the
simulation achieves 8.79M processed cells/s in only 17.187s.

5.1.2. Execution Time Curve Analysis

The relationship between number of tumor cells and execution time per step is crucial. Ideally, this
relationship should be a linear or sub-linear, indicating that each thread runs independently. However,
Figure 3a shows a slight curve, suggesting that cells interactions affect execution and the neighboring
cells increase computational load.

Similarly, Figure 3b shows that total execution time initially increases rapidly as the tumor grows,
but eventually, growth stabilizes and follows an approximately linear trend. This confirms that the
probabilistic model remains efficient even for larger simulations.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1003.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 11 September 2025d0i:10.20944/preprints202509.1003.v1

3501 o 30000 A .
R
@ 300 o
e . 25000 RS
~ - (%) e
o) £ .
£ 250 R = o
£ o © 20000 e
= - E - »
S 2001 z o
E " & 15000 .7
3) E o
3 150 + o 3] e
@
« e X 10000 A -
7 .
100 §
s 5000
ol /
04
.

T T T T T T T
0 20000 40000 60000 80000 100000 120000 140000

Number of cancer cells

12 of 17

0 20000 40000 60000 80000 100000 120000 140000

Number of cancer cells

(a) Time per simulation step. (b) Total simulation time.

Figure 3. Comparison between the number of cancer cells and simulation time. (a) Time per simulation step. (b)
Total time for simulation.

5.1.3. Kernel Execution Analysis

Kernel execution times and GPU memory usage were analyzed using NvProf and Nsight compute
tools. The results in Table 2 show that the most time-consuming processes are: (a) cell state updates and
calculations (highest execution time); (b) memory transfers between GPU and CPU (every 5 simulation
days); and (c) grid initialization and random number generation.

Regarding the occupancy analysis, Figure 4a shows that the initial kernel execution produces high
occupancy, as most threads execute similar tasks. Over time, occupancy drops to 36.28% (Figure 4b),
indicating imbalanced workload distribution. This suggests that GPU workload distribution to SMs
could be further optimized to reduce occupancy drop and enhance overall efficiency.

Table 2. Kernel execution times and execution times examined using Nvprof.

Kernel / Operation | Time (%) | Total Time | Calls | Avg Time | Min Time | Max Time
transitionFunction() | 80.76% 169.448s 3600 | 47.069ms | 5.3988ms | 175.90ms
updateNeighbors() 18.41% 38.6204s 3600 | 10.728ms | 10.392ms | 11.412ms
CUDA memcpy DtoH 0.77% 1.61256s 31 52.018ms | 51.493ms | 53.980ms
setup_kernel() 0.03% 65.804ms 1 65.804ms | 65.804ms | 65.804ms
CUDA memcpy HtoD 0.02% 51.896ms 1 51.896ms | 51.896ms | 51.896ms
stemCellTest(Cel) 0.01% 18.802ms | 3600 | 5.2220ps 2.3040ps 7.3920ps

Occupancy

» Occupancy

Per SM [warp]

(b) Last iteration.
Figure 4. Result of the analysis of the transition function execution in different iterations. (a) First iteration. (b)

(a) First iteration.

Last iteration.

5.2. Scalability Analysis

When designing a parallel implementation for GPU tumor growth simulations, the way the grid
is partitioned will have a major impact on SM occupancy, memory access patterns, and load balancing.
In this research, we explored two main approaches: (a) dividing the grid into 16 full rows or columns,
(b) dividing the grid into 64 smaller regions to evaluate the performance of each region with respect to
the GPU and to analyze the SM occupancy and cell processing distribution. A hybrid strategy (c) for
optimized GPU utilization and memory efficiency is also discussed.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1003.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 11 September 2025d0i:10.20944/preprints202509.1003.v1

13 0f 17

5.2.1. Dividing the grid into 16 rows and columns

The grid is split into 16 rows and columns, with each block processing an entire row or column.
This makes it easy to allocate work to different GPU blocks. Memory is stored in a row-major order,
so each thread processes a contiguous memory location, making memory accesses faster and more
efficient. Threads in warp can also efficiently access contiguous memory locations, reducing memory
latency.However, Figure 5 shows a severe SM under-utilization, as some Streaming Multiprocessors
(SMs) exhibit minimal activity with only 6.3 million cycles, while others are significantly overloaded.
The tumour grows from the centre of the grid outward, so the blocks responsible for the outer edges of
the grid will finish their work faster than those processing the centre, causing some SMs to remain
idle.The first few SMs process the centre, which is much denser (i.e. they will have a high workload),
while other SMs process sparse areas (i.e. low workload), leading to underutilization of the GPU cores.

Min Max
378.939.015

L1 Active Cy
L2 Active Cy
DRAM Activ

Figure 5. Load distribution on the different SMs of the GPU for the distribution of the cell grid in 16 rows/columns.

Figure 5 also shows that there is much lower L1/L2 cache utilization, resulting in a higher number
of memory accesses being directed to DRAM rather than being efficiently cached. It also shows lower
DRAM activity, but this is probably a result of SM under-utilization rather than an improvement in
efficiency.

It is difficult to distribute work dynamically with this grid division strategy because the execution
time of each block depends on the tumor density in the row or column assigned to it. This means that
some blocks may be finished while others are still heavily processed.

5.2.2. Dividing the grid into 64 smaller regions

In this case, instead of assigning all of a row or column to one block, the grid is split into 64
smaller parts. Each block of threads then processes a part of a row or column spread across these
different parts. As shown in Figure 6 using the CUDA Toolkit profiling figures, there is a lot more
balanced SM utilization than in Figure 5 because all SMs take part within a narrow range of execution
cycles (between 428 million and 443 million).

Max

L1 Active Cy
L2 Active Cy
DRAM Activ

Figure 6. Load distribution on the different SMs of the GPU for the distribution of the cell grid in 64 regions.

Dividing the grid into 64 regions is an effective way to improve GPU utilisation, as it makes sure
that no SM is inactive. This approach makes it easier to balance the workload across the SMs, as shown
in Figure 6. Since each block now processes small parts of cells spread across the grid, the workload is
more evenly spread across the SMs. This strategy matches the tumor growth pattern (from the center
of the grid to the edges) and is therefore less likely to create an imbalance because each SM receives
work from multiple regions.In addition, since all SMs process similar amounts of work per iteration,
there are fewer idle SMs, which keeps the GPU fully utilized.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1003.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 11 September 2025d0i:10.20944/preprints202509.1003.v1

14 of 17

Figure 6 shows that 64 regions is better at using L1/L2 caching, which reduces how long it
takes to access global memory. This means that dividing the grid into 64 regions is more effective in
keeping frequently accessed data in the cache, reducing DRAM bottlenecks and improving overall
memory efficiency. It also means that more SMs are being used, and shows higher DRAM cycles,
which indicates that more memory bandwidth is being used in computations. By dividing it into 64
regions, we make sure that the memory bandwidth is used efficiently. On the other hand, dividing it
into 16 rows/columns leads to inefficient GPU execution due to idle or underloaded SMs.

This strategy also requires a more sophisticated indexing strategy to allocate blocks and ensure
that work is distributed evenly across SMs. This results in more scheduling complexity in the SM
schedulers.

5.2.3. Hybrid strategy

Instead of strictly dividing the grid into full rows or small regions, we combine both techniques
to balance the memory access efficiency of the 16-row strategy with the load balancing of the 64-region
strategy. This hybrid approach optimizes memory contention while ensuring high SM occupancy. The
key components of the hybrid strategy are:

1. Hierarchical grid partitioning. Each thread block is assigned a set of small contiguous row
segments rather than full rows/columns or scattered regions, improving spatial locality.

2. Coalesced memory accesses. Threads within a block process contiguous memory regions to
enhance memory efficiency.

3. Dynamic load balancing. Thread blocks dynamically adapt to workloads from different regions,
preventing idle SMs and ensuring even resource utilization.

The hybrid approach ensures even workload distribution across all Streaming Multiprocessors
(SMs). Unlike the 16-row division, where some SMs remain underutilized (as low as 6.3 million
cycles), the hybrid method prevents imbalances by dynamically redistributing workload. It also
outperforms the 64-region strategy by maintaining optimal SM active cycles, leading to near-uniform
GPU utilization (Table 3).

Table 3. Comparison of Workload Distribution Strategies.

Factor Comparison of Workload Distribution Strategies
16 Rows/Columns 64 Regions Hybrid Grid (Expected)
SM Utilizati
Hization x Poor v Good v Best
Some SMs barely active Better, but some No idle SMs,
minor imbalances optimal load balancing
L1/L2 Cache U
ache Tsage x Lower efficiency v Better caching v" Optimal cache utilization
but could be optimized reducing DRAM dependence
DRAM U
sage x Lower, but inefficient v Higher but v Balanced memory throughput
SM execution some contention and compute execution

Additionally, this approach maintains contiguous memory accesses, preventing excessive DRAM
fetches and improving overall memory efficiency. By ensuring more localized memory access patterns,
L1 and L2 caches achieve higher hit rates, reducing the need for costly global memory transactions.
Compared to the 64-region strategy, which may cause scattered memory accesses and cache thrashing,
the hybrid strategy ensures a more localized access pattern, leading to lower memory latency and
improved overall performance.

5.3. Energy Efficiency & Resource Utilization

The use of memory for the cell grid division strategies in the GPU showed notable differences in
the performance and the balance of the SM load. With the strategy of dividing the cell grid into 16
blocks, each block processes a complete row or column, which allows for the use of unified memory
access, as this type of access is aligned with the way data is stored in the global memory of the

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1003.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 11 September 2025d0i:10.20944/preprints202509.1003.v1

150f 17

GPU. Analysis by the CUDA Toolkit indicated that the shared memory usage per block was 48 KB,
distributed efficiently among the concurrent threads. The size of the global memory space remained
relatively low, as each block of threads operated sequentially on the row or column assigned to it in
the distribution, resulting in minimal contention for access to the global memory.

The strategy of distributing the cell grid across 64 regions improved the load balance between
the SMs, but increased latency due to access to global memory. This is mainly due to the fact that
the thread blocks access the data following a more fragmented access pattern. In this case, the use
of shared memory per block increased to 64 KB and, in addition, additional memory buffers were
needed to manage the workload distribution. Meanwhile, the use of global memory increased by
approximately 20% compared to the 16-block distribution strategy. Each block had to access more
dispersed data, which increased cache error rates.

Analysis of the energy consumption of the strategy based on 16 rows and columns and the
allocation of 64 regions of grid cells to the GPU’s SMs reveals notable differences in efficiency. Analysis
of the CUDA Toolkit indicated that the SMs were not always busy with the first strategy, resulting
in lower average energy consumption per execution cycle. Furthermore, this strategy benefits from
reduced memory bandwidth usage, which is crucial for efficient GPU consumption.

On the other hand, the 64-region distribution strategy results in higher energy consumption, as
it increases SM activity throughout the computation and because the blocks use more fragmented
memory access patterns. The measurements show that all the SMs were active for many more cycles
and that the lack of contiguous memory access caused higher energy costs per memory transaction,
making this strategy less energy efficient compared to the 16-block strategy.

We can conclude that the strategy based on the distribution of 16 blocks was the most energy-
efficient option, as it minimized the overhead due to data transfers in memory and optimized the
number of execution cycles. The distribution strategy based on 64 blocks provided a much better
computational load balance, although it increased energy consumption. Consequently, it seems
that future optimizations could focus on hybrid memory allocation strategies to mitigate energy
inefficiencies and maintain computational performance.

6. Discussion

The results show that the probabilistic algorithm with different load balancing strategies signifi-
cantly improves the efficiency of tumor growth simulations using GPUs to achieve greater acceleration.
The execution time scales sublinearly with the number of tumor cells in the mesh, so we can say that
the implementation efficiently distributes the computational load among the SMs. The execution time
per simulation step shows a slight non-linearity due to the interactions between tumor cells during the
process, which could cause restrictions in memory access and overloads due to synchronization. The
hybrid workload distribution strategy has demonstrated its potential to optimize load balancing and
memory access patterns, resulting in a more uniform utilization of GPU resources.

The results obtained with the CUDA Toolkit performance analysis suggest that most of the
execution time is spent on cell state transition calculations and neighbor updates, which highlights the
importance of optimizing the cooperation between threads, reducing unnecessary accesses to global
memory and using shared memory more efficiently.

6.0.1. Strengths and limitations of the proposed approach

The proposed approach has several strengths and limitations. The load balancing strategies
between SMs guarantee an even distribution of the computing tasks between the SMs of a GPU and
significantly reduce execution time compared to the application of fully static load balancing methods.
Furthermore, high scalability can be verified, as large simulation domains (for example, 1024 x 1024
grids) are successfully managed while maintaining overall performance, making it ideal for biomedical
applications.

The optimization of memory access achieved through the use of shared memory and unified
memory, which enhances the contiguity of accesses, helps to significantly mitigate bottlenecks and

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1003.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 11 September 2025d0i:10.20944/preprints202509.1003.v1

16 of 17

improves computational efficiency. In terms of limitations, the proposed approach may result in a drop
in SM occupancy in the final stages of tumor growth, in which CUDA SMs are underutilized due to
the spatial heterogeneity of tumor growth, resulting in uneven GPU usage. Losses in energy efficiency
are also observed, as the second workload-sharing strategy increases in-memory operations and
synchronization overhead, resulting in higher energy consumption compared to the other proposed
strategies. Finally, the complexity of the probabilistic calculations of the cell state transition function,
with a computational cost O(v!), poses challenges for extremely large-scale simulations, despite the
optimizations made through parallelization on the GPU.

6.0.2. Potential for Generalization to Other Biomedical Simulations

The proposed algorithm and the methodology for load balancing between SMs of a GPU can be
generalized to various applications in the fields of medical biology and computational biology. In
the simulation of cancer therapies, the proposed tumor growth model can be adapted to incorporate
interactions between drugs and immune system responses, allowing predictive simulations for person-
alized medicine. In the field of regenerative medicine and tissue engineering, similar cellular automata
models can be applied to simulate wound healing, tissue regeneration, and stem cell differentiation.
Furthermore, in the modeling of epidemics, the framework proposed by the probabilistic cellular
automaton can be used to simulate the spread of diseases in heterogeneous populations, which helps
to plan the response to a pandemic and to make decisions in the field of public health.

7. Conclusion & Future Work

This paper presents a probabilistic algorithm with dynamic load balancing for GPU-accelerated
tumor growth simulations. The proposed method showed significant improvements in execution time,
scalability and load balancing efficiency compared to static approaches. By optimizing CUDA memory
access patterns and dynamically distributing computational tasks, the algorithm achieved significant
speedups while maintaining simulation accuracy. The experimental results highlight the benefits
of a hybrid workload distribution strategy that effectively balances GPU utilization and improves
computational performance.

Future research could extend this work to multi-GPU or distributed HPC environments, enabling
large-scale biomedical simulations across multiple computing nodes. Implementing adaptive load bal-
ancing techniques for heterogeneous architectures could further improve performance and scalability.
In addition, exploring more efficient CUDA optimizations such as asynchronous memory transfers,
kernel fusion and adaptive thread scheduling could reduce execution overhead and improve energy
efficiency. These advances would make the proposed methodology even more applicable to complex
biomedical simulations and real-time clinical decision support systems.

8. Online Resources

The C++/CUDA implementation of the tumor growth simulation code is available at:
https:/ / github.com/mcapeltu/Load-Balancing-Strategies- for-Parallel-Tumor-Growth-Simulations.git

References

1. Anderson, A.; Chaplain, M. Continuous and Discrete Mathematical Models of Tumor-Induced Angiogenesis.
Bull. Math. Biol. 1998, 60, 857-900.

2. Rice, J.R,; al.. Accelerating Multiscale Tumor Growth Simulations Using GPUs. IEEE Trans. Biomed. Eng.
2018, 65, 1525-1536.

3. Begg, R.; al.. Machine Learning in Cancer Research: Applications and Challenges. Nat. Rev. Cancer 2020,
20, 660-674.

4. Poleszczuk, J.; Enderling, H. A High-Performance Cellular Automaton Model of Tumor Growth with
Dynamically Growing Domains, 2013, [arXiv:q-bio.QM/1309.6015].

5. Kim, H.; al.. Computational Challenges in Tumor Growth Modeling and Simulation. IEEE Trans. Biomed.
Eng 2021, 68, 1223-1235.

6. PMacklin. Key Challenges in Multiscale Modeling of Cancer. Ann. Biomed. Eng. 2019, 47, 2263-2281.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://github.com/mcapeltu/Load-Balancing-Strategies-for-Parallel-Tumor-Growth-Simulations.git
http://arxiv.org/abs/1309.6015
https://doi.org/10.20944/preprints202509.1003.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 11 September 2025d0i:10.20944/preprints202509.1003.v1

17 of 17

7. Giordano, A.; Amelia, F; Gigliotti, S.; Rongo, R.; Spataro, W. Load Balancing of the Parallel Execution of
Two Dimensional Partitioned Cellular Automata. 2022 30th Euromicro International Conference on Parallel,
Distributed and Network-based Processing (PDP) 2022, pp. 205-210.

8. Cicirelli, F; Forestiero, A.; Giordano, A.; Mastroianni, C. Parallelization of space-aware applications:
Modeling and performance analysis. J. Netw. Comput. Appl. 2018, 122, 115-127.

9. Gerakakis, I.; Gavriilidis, P.; Dourvas, N.I.; Georgoudas, I.G.; Trunfio, G.A.; Sirakoulis, G.C. Accelerating
fuzzy cellular automata for modeling crowd dynamics. J. Comput. Sci. 2019, 32, 125-140.

10. Grama, A.Y,; Gupta, A.; Kumar, V. Isoefficiency: measuring the scalability of parallel algorithms and
architectures. IEEE Parallel Distributed Technol. Syst. Appl. 1993, 1, 12-21.

11. Salguero, A.G.; Capel, M.1,; Tomeu, A.J. Parallel Cellular Automaton Tumor Growth Model. In Proceedings
of the Practical Applications of Computational Biology & Bioinformatics, 2018.

12. Giordano, A.; Rango, A.D.; Rongo, R.; D’Ambrosio, D.; Spataro, W. Dynamic Load Balancing in Parallel
Execution of Cellular Automata. IEEE Transactions on Parallel and Distributed Systems 2021, 32, 470-484.

13. Rango, A.D.; Giordano, A.; Mendicino, G.; Rongo, R.; Spataro, W. Tailoring load balancing of cellular au-
tomata parallel execution to the case of a two-dimensional partitioned domain. The Journal of Supercomputing
2023, 79, 9273-9287.

14. Gatenby, R.; Gawlinski, E. A Reaction-diffusion Model of Cancer Invasion. Cancer Research 1996, 56, 5745
5753.

15. Padder, A.; Shah, TR,; Afroz, A; et al.. A mathematical model to study the role of dystrophin protein in
tumor micro-environment. Sci. Reports 2024, 14, 1-15.

16. Yin, A.; Moes, D.; van Hasselt, J.; et al.. A Review of Mathematical Models for Tumor Dynamics and
Treatment Resistance Evolution of Solid Tumors. Pharmacometrics & systems Pharmacology 2019, 8, 720-737.

17. Gérard, C.; Goldbeter, A. Computational Models of the Cell Cycle: Past, Present, and Future. Nature
Computational Science 2023, 4, 1-12. https:/ /doi.org/10.1038 /s41540-024-00397-7.

18. Lai, X.; Taskén, H.A.; Mo, T.; Funke, S.W.; Frigessi, A.; Rognes, M.E.; Kéhn-Luque, A. A scalable solver for a
stochastic, hybrid cellular automaton model of personalized breast cancer therapy. International Journal for
Numerical Methods in Biomedical Engineering 2021, 38. https:/ /doi.org/10.1002/cnm.3542.

19. Cagigas-Muiiiz, D.; del Rio, ED.; Sevillano-Ramos, J.L.; Guisado-Lizar, J.L. Efficient simulation execution of
cellular automata on GPU. Simulation Modelling Practice and Theory 2022, 118, 102519. https://doi.org/https:
//doi.org/10.1016/j.simpat.2022.102519.

20. Marzolla, M., Parallel Implementations of Cellular Automata for Traffic Models. In Developments in Language
Theory; Springer International Publishing, 2018; p. 503-512.

21. Du,].; Zhou, Y, Jin, L.; Sheng, K. Gell: A GPU-powered 3D hybrid simulator for large-scale multicellular
system. PLoS ONE 2023, 18.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and /or the editor(s). MDPI and /or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1038/s41540-024-00397-7
https://doi.org/10.1002/cnm.3542
https://doi.org/https://doi.org/10.1016/j.simpat.2022.102519
https://doi.org/https://doi.org/10.1016/j.simpat.2022.102519
https://doi.org/10.20944/preprints202509.1003.v1
http://creativecommons.org/licenses/by/4.0/

