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Abstract A lower bound of the total co-channel interference is proposed for the
channel allocation problem when applied to a reduced set of nodes. The rest of
the network nodes remain unaffected. This bound is independent of the particular
channel allocation algorithm employed and no assumptions are made about the
propagation model or the deployment scenario. Assuming that the bound is tight
to the interference generated by the optimal channel allocation, its computation
may help, for example, to estimate the minimum set of nodes for which channel al-
location performs nearly-optimal while minimizing node reconfigurations. Another
example of usage is the estimation of the minimum number of channels required
for a given performance. The tightness of the proposed bound is evaluated through
simulations, with a difference lower than 1% in the conducted simulations. In ad-
dition, a sample use case -adaptive local channel allocation- is also provided.

Keywords Spectrum etiquette - Channel allocation - Interference - Max k-cut

1 Introduction

The exponential mobile data traffic increase [1] and the unprecedent growth in
Wi-Fi hotspots [2] have accentuated the spectrum shortage in both licensed and
unlicensed bands. This growing scarcity of the available spectrum demands an
efficient channel assignment to increase spectrum utilization while avoiding inter-
ference among closely located nodes.

In this paper we derive a lower bound of the total co-channel interference when
channel allocation is performed in a reduced set of network nodes. The rest of the
network nodes remain unaffected. Notably, the obtained bound is independent of
the particular channel allocation algorithm employed. Our simulations show (see
Sect. 6) that the proposed computation is very tight to the total interference with
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optimal channel allocation. Thus, it may be used to estimate how far any channel
allocation algorithm is from the optimal solution. Additionally, it may be used
to calculate the minimum number of nodes so that channel allocation performs
nearly-optimal. Another example is the estimation of the minimum number of
channels required in a certain region to achieve a given performance.

It is noteworthy that, as the problem of channel allocation has been formulated
taking into account interference measurements (see Sect. 3), no complex perfor-
mance metrics or Radio Environment Maps [3] are required for its application.

Althought our system model makes no assumptions about the particular sce-
nario, path loss model or radio technology, we compare our theoretical lower bound
to the aggregated co-channel interference achieved by the optimal channel assign-
ment in a dual stripe scenario [4] (typical scenario for small cell deployments).
Simulation results show that the derived lower bound is very tight. Additionally,
it is also shown that, when a new node is deployed, the optimal local channel allo-
cation -applied to a small set of nodes- produces marginal degradation compared
to the optimal global channel allocation -applied to the whole network-.

Finally, a sample use case -adaptive local channel allocation- is presented and
evaluated as an example of using the proposed interference bound. When a new
node is deployed, we utilize the channel allocation proposed in [5] but only per-
formed over a small set of nodes. The size of this set is dynamically computed
based on our proposed bound. The previous conclusion for optimal channel allo-
cation also holds in this case, i.e. the performance of both global and local channel
allocation procedures are very similar.

To the best of our knowledge, there are no other works that propose a lower
bound of the aggregated co-channel interference for local channel allocation. Thus,
we believe that our proposal is novel and may be helpful 1) to assess the optimality
of existing or new channel allocation solutions when applied to a restricted region,
and 2) to produce an online feedback that can be incorporated to improve those
solutions.

The rest of the paper is organized as follows. Sect. 2 presents the system model.
The local channel allocation problem is formulated in Sect. 3. Sect. 4 summarizes
the related work. Sect. 5 explains how a lower bound of the total co-channel inter-
ference for the aforementioned problem is derived. Sect. 6 evaluates the tightness
of the bound and analyzes the performance of a sample use case. The paper is
concluded in Sect. 7.

2 System Model

Let us consider a network which consists of a set R = {1,...,7} of nodes. We
do not assume any particular network topology or technology, e.g. set R may be
composed of independent Wi-Fi access points, small cells managed by the same
operator, or nodes pertaining to a cognitive radio network.

Let us denote the set of available channels for transmission as K = {1, ..., k}.
Binary vector €; = {®i1, ..., Tif, ..., acik}T represents the channel allocation of node
i, where z;¢ € {0, 1} indicates whether node 4 is using channel f or not.

We assume that nodes can listen to the environment, determine the interference
temperature of the channels and estimate their neighbors’ interference contribu-
tions. See definition of interference temperature in [6]. With these contributions,
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node i can estimate the aggregated level of received interference I;, which is math-
ematically described as:

Ii:ZP-Gij-fiT-fj (1)
VjER
JFi
where P is the transmission power, G;; is the link gain from node 4 to node j, and
the scalar product &;* -¢; equals one if nodes ¢ and j transmit on the same channel
and zero otherwise. G;; includes the effect of both path loss and shadowing. For
simplicity reasons, we assume that G;; is equal to G;;. The aggregated level of
received interference I; is used as an estimation of the co-channel interference that
the remaining nodes generate to the coverage area of the i-th node.

Based on the interference temperature measurements, nodes decide on the
transmission channel. By distributively selecting a transmitting frequency, the
radios effectively construct a channel reuse distribution map with reduced co-
channel interference.

The considered system model makes no assumptions about the propagation
model or the deployment scenario at all. However, our performance evaluation
employs the path loss model and the dual stripe scenario defined in [4], as a
typical environment for small cell deployment.

3 Problem Formulation: Local Channel Allocation

We formulate the channel allocation problem as an optimization problem to min-
imize the overall system interference, since this metric has a major impact on
throughput and coverage. We assume that each node utilizes one radio, which is
applicable to many wireless technologies such as IEEE 802.11, UMTS/HSPA or
LTE. In addition, the problem may be generalized to several radios by adding
several co-located nodes with one radio.

Whenever a new node n turns on !, the interference suffered by any node 4 can
be estimated using Eq. (1). The total co-channel interference in the system can be
expressed as:

CI:ZL':Z ZP'Gij’fiT’szz' Z P'Gij’fiT’fj (2)

VieR Vi€ERVjJER v(i,j)ER
J#i 1<y

assuming that Gj; - z T Z; = Gy - ij - Ti.
A channel allocation problem can be formulated as the minimization of the
total co-channel interference C1I:

L Although we argue that channel allocation is triggered by a new node being turned on, it
is only an example and the problem formulation makes no assumptions about when channel
allocation is executed.
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. — T —
B2 B POyl
V(i,5)ER
i<j
) ®)
subject to Z xif = 1,255 € {0,1}
f=1

Hereafter, we denote CT© the total co-channel interference achieved by the op-
timal solution of problem (3). We denote problem (3) as global channel allocation.

The minimization problem (3) implies that the deployment of a new node
n causes the execution of channel allocation over all previously deployed nodes.
Thus, the channel allocation of the new node n will affect its neighbors, which, in
turn, may affect their neighbors, and so forth, propagating the changes.

For this reason, we propose a new optimization problem in which only a reduced
set of nodes M = {1,..,m}, M C R, as well as the new node are subject to
change their channels. Additionally, only the network nodes belonging to a set
S ={1,..s}, S C R, are considered as potential interferers. The remaining nodes
€ R\ S (i.e. that belongs to set R but not to set S) are considered to have a
negligible interference impact and are therefore ignored:

3 L. _.T, .
2 X PGya )
V(i,j)€eS
i<y
) @)
subject to Z%‘f =1,z € {0,1}
f=1

where N = M U {n}?. We assume that set M is composed by the |M| nodes with
the highest Gni, which are the |M| nodes that could potentially interfere most
to the new node n. Accordingly, we assume that set S is composed by all the
nodes for which the product P - G,; does not exceed a certain margin below the
noise floor. Hereafter, we denote C'I ]?f, s the total co-channel interference achieved
by the optimal solution of problem (4). We denote problem (4) as local channel
allocation.

As in the case of problem (3), problem (4) is also a non-linear optimization
problem which cannot be solved in polynomial time unless P=NP [7]. Problem (4)
can be solved by exhaustive search if set N is small enough, although not in real
time due to its computational complexity.

4 Related work

The literature on channel allocation in wireless and mobile networks is abun-
dant. [8] and [9] give comprehensive surveys on this topic. Among others, several

2 Although we argue that only the new node and the most interfering nodes are subject to
modify their channels, this is only a typical scenario explained for the sake of readability. The
problem formulation requires no assumptions about the nodes belonging to sets N and S.
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heuristic solutions using local search, tabu search, simulated annealing, genetic
algorithms, neural networks, graph theory, and game theory have been proposed
to solve this problem.

Algorithms based on local search methods start with an initial solution and
try to find better solutions by iteratively doing small moves. For example, in [10]
the authors utilize a centralized stochastic local search algorithm to find a channel
assignment that minimizes the network interference in wireless mesh networks.
For that purpose they developed their algorithm on top of Kangaroo, a constraint-
based local search system. The interface constraint ensures that the number of
channels assigned to a node does not exceed the number of radios available. The
network interference is the number of interfering pairs of links in the channel
assignment. The local search tries to minimize the violation of interface constraints
or minimize the network interference. Since a binary interference model is used,
the performance is only computed in terms of active radio interfaces per node and
no other performance indicators -such as interference levels or system throughput-
are computed.

Standard local search solutions only allow moves that produce improvements.
In order to achieve better local optima, other strategies allow worsening moves.

For example, tabu search allows non-improving moves by modifying the possi-
ble new solutions (neighborhood) from the current solution. To avoid cycling, the
solutions selected in the last iterations are declared tabu solutions and cannot be
selected again. In [11], the authors present a tabu search algorithm for dynamic
spectrum allocation in cellular networks, with the objective of maximizing the
operator’s reward. Revenue is modeled as a function of the achieved throughput,
and cost is proportional to the bandwidth of the spectrum leased to a spectrum
broker. A solution is feasible if each cell has at least one frequency block. Starting
from an initial solution, a neighbor solution that maximizes the reward is selected
and added to the tabu list, so it is not used in next iterations. Although results are
sound, new cell deployments may lead to the reconfiguration of the whole network.

Simulated annealing (SA) also allows for worsening moves, accepting a new
solution if it is an improvement move or with a certain probability. This probabil-
ity depends on the value of the solution and on a temperature parameter, which
decreases (cooling) in each iteration. In [12] the authors propose a simulated an-
nealing algorithm with a utility function that computes the average effective chan-
nel utilization (ECU) of the access point (AP) divided by the number of users
connected. The objective of this utility function is to minimize the co-channel in-
terference between APs. This work assumes a constant temperature function that
decreases after reaching a steady-state. In order to reduce complexity, the Gibbs
sampling technique is used to convert the global optimization problem to a series
of local optimization problems. The co-channel interference model assumes that
two APs interfere each other if they utilize the same channel and they are within
their interference range, i.e. the distance between them is lower than a predefined
threshold. Therefore, realistic interference levels between APs are not considered
and the performance is only evaluated as the average ECU of different variations
of the algorithm.

Genetic algorithms start with a whole set of solutions (generation), and itera-
tively builds new generations by recombination and mutations of solutions (chro-
mosomes) from the previous generation. [13] presents two evolutionary algorithms
to solve the channel assignment problem for IEEE 802.11ac networks. The first
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algorithm assumes that each gene i represents the channel assigned to the access
point i, and one individual is a candidate solution of the channels to be assigned
to the APs. Selection is performed using binary tournament and elitism, ensuring
that the best individual is within the population at each generation. The second
is a differential evolution algorithm, which generates mutant vectors using the
weighted difference of random individuals from the population. Results show that
the achieved aggregated interference is low compared to some reference solutions.
However, this work does not consider dynamic situations in which access points
may appear or dissapear from the network.

Artificial neural networks generate new solutions by emulating the behavior of
a grid of neurons which try to minimize the objective of the problem (energy func-
tion). In these networks, the neurons are connected (synapses) using a set of given
weights, and their states change dynamically depending on their neighbor states
and these weights. As an example, [14] presents a solution based on competitive
Hopfield neural networks for the frequency assignment problem in satellite com-
munications. This work assumes that the frequency band is divided into a number
of segments so that every carrier can be described as a collection of consecutive
unit segments. Then, the N-carrier M-segment assignment problem is mapped
onto a 2-dimensional neural network with N x M neurons. In this case the energy
function is defined to represent the constraints of the segments between satellite
systems. Additionally, stochastics dynamics are introduced in order to help the
network escape from local optima. The performance evaluation shows that the
largest and the total interference levels decrease through the different iterations.
However, the scenario proposed in this work is very restrictive since it is composed
by only two satellite systems, and the frequency assignment of the first system is
fixed.

Graph coloring approaches are mainly based on variations of the maz k-cut
problem, in which network nodes (vertices) are linked by edges. These edges may
include a weight, which is related to the co-channel interference between nodes (or
to another performance metric). The objective of this problem is to partition the
graph so that the aggregated weight of the edges that cross different partitions is
maximized. This maximization is equivalent to the minimization of the aggregated
weight of the internal edges, which represents the co-channel interference between
nodes. [15] includes a survey of graph-based models and algorithms applied to
the channel allocation problem. One solution within this category is presented in
[16], which proposes a dynamic channel assignment for femtocells networks. This
work first uses a graph coloring algorithm to group femtocell access points (FAPs)
and then dynamically assigns channels according to the channel state of femtocell
user equipments (FUEs). The interference graph is constructed by adding an edge
between FAPs if the ratio between the received power and the interference is lower
than a given threshold I};. The graph coloring algorithm utilize the saturation
degree of a vertex (number of different colors adjacent to the vertex). Based on
this coloring algorithm, the femtocell network controller (FNC) clusters FAPs into
groups. Then another algorithm assigns spare channels to those FAPs with highest
interference. Results are given in terms of FUE throughput for different values of
Iy, and FUE traffic load. These results highly depend on the threshold used to
compute the interference graph, whose optimization depends on the scenario and
the propagation model.
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Game theoretical solutions assume that network nodes are the players who are
trying to maximize their benefit, e.g. to minimize their co-channel interference.
Their strategies consist in selecting the best channel for that purpose. There are
different kind of games (e.g. based on cooperative and non-cooperative strategies)
and they iterate until some kind of equilibrium (e.g. Nash -no possible improve-
ments due to unilateral decisions- or Pareto -no possible improvements without
worsening other players- equilibria) is reached. [17] presents an extensive overview
about game theory applied to the spectrum sharing problem. One of these solu-
tions [5] is explained in Sect. 6.4, which is used as the basis for our sample use
case.

Although these approaches are very interesting, to the best of our knowledge,
none of the existing works compare the current aggregated co-channel interference
to a theoretical lower bound in order to iteratively improve the channel assignment.

5 A Lower Bound of the Total Co-Channel Interference

In this section we derive a lower bound of the total co-channel interference for the
optimization problems (3) and (4).

5.1 Lower Bound for Global Channel Allocation

It is known that the minimization problem (3) is equivalent to the maz k-cut
problem in graph theory [16]. Let us consider an undirected weighted graph G =
(V, E) where the vertex set V' = {1, ..., 7} represents the set of nodes R = {1, ..., r},
and each edge (i,7) € E has a weight w;; = P - Gi; = P - Gj; = wj;. Note that
G = (V, E) is a fully interconnected graph because there exists an associated weight
wij Vi,j € R.

Let us define the External Weight of a given channel assignment for graph G as
the sum of the weights of all edges with their endpoints in different channels. The
mazx k-cut problem aims at finding a partition of the vertex set V into k subsets
(i.e. channels) such that External Weight is maximized [18]. This is equivalent to
partition V into k subsets such that the sum of the weights of all edges with their
endpoints in the same partitions is minimized (i.e. problem (3)). The maz k-cut
problem is mathematically formulated in [18] as the following integer program:

k—1 _T  _
gilj{;?gRP s Z P-Gij-(1—-y ~yj)}
v(i,j)ER (5)
1<J

subject to 7; € {a1, dz, ..., }Vj

where a; are the vertices of an equilateral simplex o in R*~! with centroid c; = 0
and scaled so that |@;| = 1. The vectors d1, dz, ..., d fulfill the property @;7 - @; =
—1/(k — 1),¥i # j. Note that the factor (1 — ¢;T - 9;) contributes to the sum if
nodes ¢, j are allocated different channels:

_ _ 0 ify_i:y_j
g gi=q % o7 (6)
! e Hgi# g
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Let us express the External Weight of the optimal solution as:

k-1 7 _
EWO:?’T Y. PGy-(—-g" ) (7)
V(i,j)ER,i<j
Additionally, let us define the Total Weight of graph G as the sum of the weights
of all edges (i,7) € E. The total weight can be calculated as:

TW=2 Y PGy (8)
V(i,j)ER,i<j

TW is the sum of the co-channel interference and the external weight for any
given solution, e.g. TW = EW® + CI°.

To solve problem (5), the authors in [18] propose the following positive SemiDef-
inite Program (SDP) relaxation which can be computed in polynomial time:

k—1 T
S ra )
v(i,4)€R
i ©)
subject to 0; € Sp—1,Sn—1 = {0 € R" : [7| = 1}

Gy > —1/(k = 1)Vi # j

where the products 7; 7 - v; can be replaced by the components Y;; of a positive
semidefinite matrix Y. Due to the relaxation in the SDP program, the solution of
(9) provides an upper bound of the External Weight EW™, i.e.:

EW*:2~L;1- Yo PGy (15" ) > EWC (10)
V(i,j)ER
1<
Upper bound EW™ can be used to obtain a lower bound of the co-channel
interference in the optimization problem (3):

CI* =TW — EW* <TW — EW® = CI° (11)

Results in Section 6 show that CI* lower bound is tight compared to the
optimal solution of problem (3).

5.2 Lower Bound for Local Channel Allocation (Problem (4))

Next, we derive the lower bound for the optimization problem (4). The derivation
includes additional constrains to the SDP program (9) so channels modifications
are restricted to the local set of nodes € N. Additionally, only the nodes belonging
to set S are considered as potential interferers.

First, we identify that two nodes € S\ N (i.e. that belongs to set S but not
to set V) that are allocated the same channel do not contribute to the External
Weight if their associated vectors have an angle separation equal to zero. This
imposes the first set of constraints:
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Vi,je S\N|&" &5 =1=g" -gj=1 (12)

Second, the maximum contribution to the External Weight of two nodes be-
longing to S \ N with different channel allocation occurs when their associated
vectors have a scalar product equal to —1/(k — 1). This imposes the second set of
constraints:

Vi,je S\N|z:" @ =0=3" g5 =—-1/(k—1) (13)

Third, we only consider nodes € S as potential interferers, i.e. that can con-
tribute to the External and Internal Weights. Hereafter we respectively denote
TWn,s, EWn,s and Cly, s the Total Weight, the External Weight and the ag-
gregated Co-channel Interference of problem (4).

Hence, we reformulate the SemiDefinite Program (9) by including the con-
straints (12) and (13) and considering sets S and N

k—1 T
B O MR
V(i,5)€S
i<j
subject to 7; € Sp—1,S,—1 = {0 € R" : 7] =1}

o0 > —1/(k—1)Vi,j €N
o vy =1,Yi,j € S\N|z:" -5 =1
a5 = —1/(k=1).¥ij € S\N|&" - =0

(14)

As in the case of (9), the solution to the SDP program (14) provides an upper
bound of the External Weight EWy, i.e:

EWE7S:2-%~ > P-Gy-(-v"v)>EWRs (15)

V(i,j)€S
1<j

where EW]{?’S is the External Weight of the optimal solution of problem (4).
EWR s can be used to obtain a lower bound of the co-channel interference in the
optimization problem (4):

Clys =TWn,s — EWx s <TWns — EWR.s = CIy s (16)

Results in Sect. 6 show that CI} g lower bound is tight -with a difference lower
than 1%- compared to the optimal solution of problem (4).
6 Performance evaluation
6.1 Simulation setup
We have implemented a static network simulator in MATLAB that computes the

path loss and the interference between nodes in order to evaluate the tightness
of the proposed lower bounds of the total co-channel interference. Without loss
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of generality, the deployment scenario is the dual stripe model defined in [4]. We
have selected 15 apartments per stripe, thus totaling 60 apartments. The path loss
follows the model defined in [4]. A single node is located inside each apartment
with a deployment ratio of 66%, which accounts for 40 nodes. The product P - G;;
is computed V(i,7) € R, where P=100 mW. Given a node n, set S is composed by
all the nodes for which the product P - G; is at maximum 10 dB below the noise
floor (-110dBm).

Unless otherwise stated, each simulation starts with a clean deployment and
nodes are switched on, one by one, in a random empty apartment. Each time
a new node is deployed, set IV is derived and channel allocation is performed.
Several simulation campaigns have been carried out with different objectives. 50
snapshots have been simulated for each case and results have been averaged over
all snapshots.

6.2 Evaluation of the lower bound CI*

The purpose of this set of simulations is to evaluate the tightness of the lower
bound CI™ of the optimization problem (3), i.e. assuming that all nodes may
reconfigure their channels.

Due to the NP-hardness of problem (3), it is not feasible to compute the op-
timal channel allocation through exhaustive search by testing all possible channel
combinations in all the nodes. For that reason, we compute the optimal channel
allocation of problem (4) instead, i.e. assuming that only a reduced set of neigh-
bor nodes may reconfigure their channels. Since the channel combination space
is reduced, it is possible -although not in real time- to find the optimal solution
CIJQLS. In this case, |N| remains constant during the simulation.

Fig. 1 presents the lower bound CT* and the normalized optimal co-channel
interference (CI]?T, s/TWn,s) for all 50 snapshots with 3 channels, considering
sets M (i.e. not including the node being deployed) of sizes from 0 to 6. Results
show that, when |M] is 4 or 6, CIJ?,’S is very close to CT*. Since CT* < CI° <
Clg’S,VN, CI€ is also very close to both CI* and CI]?,,S‘ We have observed a
similar trend for the case of 5 channels.

Thus, we can conclude that 1) the lower bound in Eq. (11) is tight to the
interference with the optimal solution, i.e. CI* ~ CI°, and 2) the optimal channel
allocation over a small set of nodes produces low degradation compared to the
optimal channel allocation over the whole network, i.e. CIJQLS ~ CI°.

6.3 Evaluation of the lower bound CIy s

The aim of this experiment is to evaluate the tightness of the proposed lower
bound of the total co-channel interference when channel allocation is carried out
in a reduced set of nodes. The conducted simulations vary |M| from 1 to 8 and
|K| (available channels) from 2 to 5.

For every network instance, the experiment starts with an initial deployment
where a random channel is allocated to all nodes except the new node n. Once the
initial allocation is completed, the new node is turned on and an optimal channel
allocation is applied to this node and a reduced number of neighbor nodes by
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Fig. 1 Normalized optimal co-channel interference CI]Q s/TWn s Vs lower bound CI*/TW
using k = 3 channels.
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Fig. 2 Optimal allocation CIJQ s/TWn,s Vs lower bound CIy; o/TWi,s.

means of an exhaustive search. allowing us to compute C'I 1?,7 5. The lower bound of
the total co-channel interference CIy g is calculated by solving the SDP program
presented in (14).

Fig. 2 shows that the lower bound nearly superimpose on the optimal co-
channel interference, i.e. CIy g = CI]?,,S. The difference is lower than 1% for all
the conducted simulations.
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6.4 Use case: adaptive local channel allocation

This set of simulations is intended to evaluate a sample use case for the lower bound
C1I} s. With this objective, we propose an adaptive strategy to compute the region
over which we shall apply channel allocation. This strategy is independent of the
particular channel allocation algorithm employed.

Whenever a new node n is to be deployed, the algorithm starts by selecting
the set of nodes S = {1, ..s}, S C R, for which the product P-Gn; does not exceed
a given margin below the noise floor. Next, nodes € S are sorted by descending
G, i-e. from higher to lower link gain. The resulting set S fulfills Vi, ] € 3, i <
j= G > G’n;. Then, the algorithm computes the lower bound of the co-channel
interference CIy,,,, s considering mazy number of nodes. This is performed
using the SDP program with constraints explained in Section 5. After that, it
computes the lower bound CIy g considering fewer nodes, starting from miny
nodes € S and increasing by incy. At each step, the calculated CI} g is compared
to Cl}, 0z, s- If the increase between them is lower than a predefined threshold,
then the current number of nodes is selected. Although nodes are selected using
a simple and intuitive criterion -based on potential interference-, this algorithm
illustrates that local channel allocation in small regions may achieve near optimal
performance. More complex criteria for neighborhood selection are left for further
study.

Due to its good performance, we combined this adaptive strategy with the
channel allocation proposed by Comaniciu [5]. Based on that work, we utilize a
normal form game defined as I' = {S,{Xi}ics,{Ui}ics}, where S is the finite
set of players (nodes), z; is the set of strategies associated to player ¢ (channel
selection), z_; is the current strategy profile of its opponents, and U; : S — R is
the set of utility functions that the players associate with their strategies:

Ui(zi,o—i) = = P-Gij - f(wi,z;)
i
JjeS

. {0, if 7 £ 7

where f(zi,z;) = &L ST = o -
1, ifz; =a;

(17)

This utility function is a particular case of Comaniciu’s, who demonstrated
that the proposed game converges to Nash equilibrium by following a best response
dynamic. In order to apply this game to a reduced set of nodes, we utilize the same
utility function (i.e. considering the interference from/to all nodes) but only nodes
in set N were allowed to change their strategy (channel).

This use case is evaluated by executing a set of simulations with miny = 0,
maxzy = 10, incy = 2, and threshold = 5%.

Fig. 3 shows that the co-channel interference using this strategy is similar to
that of global channel allocation (problem (3)). Notice that the highest degrada-
tion, with 7 channels, produces an increase of the normalized co-channel interfer-
ence from 3.6e-5 to 7.3e-3 meaning that it grows 10log10(7.3 105/3.6 105) = 3.1
dB. Additionally, it achieves significant less interference compared to a random
channel assignment for the new node (from 4.5 to 40.9 dB for 2 to 8 channels,
respectively). Moreover, the number of reconfigurations is very low: on average,
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Fig. 3 Comparison of the adaptive solution and other approaches.

less than 0.35 nodes have to change their channels when a new node is deployed,
compared to 9.7 nodes in the case of problem (3).

7 Conclusion

In this paper, we have presented a lower bound of the total co-channel interference
when channel allocation problem is performed in a reduced set of nodes instead
of the whole network. Our lower bound makes no assumptions about scenarios,
path loss models or radio technologies and is independent of the particular channel
allocation algorithm employed. The bound may be used to estimate the optimality
of any solution and, additionally, may be incorporated as an online feedback to
improve existing or new channel assignment solutions.

Simulation results have revealed that the proposed lower bound is very tight to
the interference of the optimal channel allocation. It is also shown that the optimal
channel allocation over a small set of nodes produces similar results compared to
the optimal global channel allocation, with a difference lower than 1% in the
conducted simulations.

A sample use case -adaptive local channel allocation- has been devised and eval-
uated by means of simulations. In this sample algorithm, we compute in real time
-based on our proposed interference bound- the region in which channel allocation
will be applied. This allows operators to reduce the number of node reconfigura-
tions. Results show that the achieved co-channel interference is similar to that of
a global channel allocation in which all network nodes may be reconfigured, with
a degradation of 3.1 dB in the worst case.
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