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Topological protection breakdown: A route to frustrated ferroelectricity
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Phases manifesting topological patterns in functional systems, like ferroelectric and ferromagnetic vortex
superlattices, can manifest intricate and apparently ungovernable behavior, typical of frustrated nonergodic states
with high-dimensional energy landscapes. This is also the case for potassium-tantalate-niobate (KTN) crystals.
These transparent ferroelectrics manifest remarkable but little understood metastable domain patterns at optical
(micrometer and above) scales near the cubic-to-tetragonal structural phase transition. Here, we formulate the
topological breakdown model based on the competition between intrinsic scales of domain-domain collinear and
noncollinear interactions associated with polarization-charge screening. The model is able to explain observed
KTN mesoscopic domain patterns and phase diagram as a function of temperature and external electric field.
Findings include a precise set of sharp and broad percolative transitions that are experimentally verified,
validating our model. Our study identifies the central role played by competing topologically protected states,
identifying a fundamental link between topological protection and frustration that supports a hitherto unexplored
functional nonergodic arena.
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Disordered ferroelectric crystals can manifest history de-
pendence and frustrated behavior in proximity of their
structural phase transitions, features that affect response to
various degrees, becoming dominant in so-called relaxor
ferroelectrics [1–6]. The regime forms a modeling chal-
lenge, as conventional frustration mechanisms, including
Griffiths phases and glassy states, fail to fully account for
key experimental features [3,7]. In a subset of disordered
ferroelectrics, including solid solution of potassium-tantalate-
niobate (KTN), the complex relaxorlike behavior [3,5]
coincides with the emergence of domain ordering in the
form of ferroelectric superlattices or supercrystals [8]. These
patterns appear connected to built-in striations [9,10] or
engineered heterostructures [11,12], coupled to the reduc-
tion of volume polarization charge ∇ · p � 0, where p is
the spontaneous polarization field. The constraint introduces
closed-loop or flux-closure conditions, so that energeti-
cally preferred structures appear in the form of ferroelectric
topological defects [13,14]. These have topological protec-
tion, in that each domain in the pattern can be reoriented
only at the expense of modifying all the others [15]. The
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question naturally arises if there is a connection between these
topological features and the emergence of complexity-driven
frustrated behavior. In fact, the volume-charge screening
condition makes p topologically analogous to a magnetic in-
duction field, suggesting that domain-domain interaction can
also be governed, at the mesoscale, by effective interaction
terms that are typical of magnetic interaction. At present, no
effective domain interaction model has been proposed to take
into account both standard collinear dipole-dipole interaction
and effective magneticlike noncollinear interaction, leaving
the connection between closed-flux topologically protected
domain patterns and frustration largely unexplored.

We here formulate the topological breakdown model
(TBM) with the aim of identifying the role of effective
noncollinear interaction in determining complex mesoscopic
(from several micrometers to hundreds of micrometers) do-
main pattern behavior in systems supporting ferroelectric
superlattices. The model is based on the competition be-
tween intrinsic mesoscopic scales through both collinear
and noncollinear interactions that emerge geometrically from
discrete-inversion-symmetry-breaking and volume-charge-
screening flux-closure constraints [16,17]. Computational
analysis and real-space renormalization group techniques al-
low us to describe how ensembles of flux-closure patterns
and superlattices react to external stimuli. Predictions of the
domain pattern phase diagram versus temperature and versus
electric bias field identify a frustrated metastable phase that
is experimentally confirmed in near-transition KTN:Li using
percolation analyses. Our findings link directly topologically
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protected defects to frustration and expand our ability to de-
sign and control ferroelectric response.

I. THE TOPOLOGICAL PROTECTION BREAKDOWN
MODEL FOR FERROELECTRICS

We develop the TBM starting from the basic fact that the
elementary cell of ordinary ferroelectric perovskites (ABO3)
above TC exhibits a cubic symmetry. In the vicinity of TC , the
B ion features an atomic displacement along the fourfold axis,
leading to a discrete-inversion-symmetry breaking, which
induces a distorted electron distribution and spontaneous elec-
tric polarization [18]. We note that this picture holds for many
disordered perovskite ferroelectrics, such as KTN [19], but
may not apply to the class of relaxor ferroelectrics, such as
PMN, where well-defined structural transitions are not ob-
served [20,21]. Phenomenologically, below TC , a finite sample
relaxes into a pattern of different ferroelectric domains, meso-
scopic regions in which the polarization is parallel to a given
crystal axis. While each domain enucleates independently
with a specific macroscopic polarization p, as these grow,
regions with different spontaneous polarization meet, fusing
together or forming topological defects in the form of domain
walls. Based on Maxwell’s electrostatic equations, domains
arrange to allow the screening of volume polarization charge,
i.e., the minimization of ∇ · p [22]. This leads to two types
of defects [see Fig. 1(a)]: type (i) walls that separate two
domains with antiparallel polarization with pi = −p j and
type (ii) walls that form between orthogonal polarizations
pi · p j = 0. For a given starting close-packed multidomain
distribution, dynamics appear driven by domain dipole-dipole
interaction with the constraint that ∇ · p � 0 on the walls.
While dipole-dipole-like interaction, dominant across type (i)
defects, can be described through the paradigmatic Heisen-
berg model (HH ∝ Ji jpi · p j ), the interaction across type (ii)
walls is governed by polarization-charge screening, i.e., by
noncollinear interactions.

Peculiar phenomena involving noncollinear interaction
have been discussed in magnetic systems in the form of
magnetic topological defects [23], spin-orbit torques [24],
or magnetically driven ferroelectricity [25], and are associ-
ated with spin-orbit coupling [26]. In these, the so-called
Dzyaloshinskii-Moriya interaction (DMI) [27,28] under-
lies many chiral topological magnetic structures, such as
skyrmions, and leads to a strong impact on spin dynamics
[29]. However, its electric counterpart has rarely been con-
sidered. Still, recent first-principles simulations of perovskites
[30] have demonstrated that electric DMI might originate
from the existence of oxygen octahedral tiltings in combi-
nation with symmetry arguments [30]. This amounts to the
counterpart of the magnetic spin-current model [31]. Recent
experimental results have shown DMI-induced polar vortices
in single thin ferroelectric films [32]. In turn, DMI is rather
weak in many material systems and is typically accompa-
nied by a much stronger Heisenberg exchange coupling. The
empirical relevance of DMI to relaxor ferroelectrics is far
from established. We model noncollinear interactions by in-
troducing an energetic term HD ∝ Di j · (pi × p j ), which is
analogous to the DMI encountered in ferromagnetic systems
[29]. As recently discussed for ferroelectrics [30], this type
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FIG. 1. (a) Different types of defects: type (i) and type (ii), and
a flux-closure cell. (b) SC-tiling lattice and sketch of the energetic
constants. We highlight the anisotropy in the Dzyaloshinskii-Moriya
interaction. The upper left insets show a microscopic vortex, and
the lower inset is an experimental far-field imaging of an SC state
(right, see below). (c) Specific heat (C) vs the temporal resolution
parameter τ of 2D SC lattices of different sides L (see legend,
N = 4L2). Insets show the two possible ultraviolet cutoffs, �1 and
�2, the smallest scales showing translational invariance. The black
dashed line highlights the plateau at C = 1.

of interaction can arise from specific microscopic mecha-
nisms, such as oxygen octahedral tiltings or anisotropy at
mesoscopic scales [30,33]. In the TBM, it arises from the
charge-screening constraint. The term “breakdown” refers
here specifically to the loss of topological protection associ-
ated with flux-closure configurations. These configurations,
stabilized by the local constraint ∇ · p = 0, are dynamically
robust and can only be destroyed via coordinated, nonlocal
domain rearrangements, thus functionally mimicking topo-
logical defects in low-dimensional systems. The breakdown
occurs when thermal fluctuations or applied external fields
induce a transition from vortex-protected states to states with
extended or reoriented domains, inducing the collapse of this
protection mechanism.

The Hamiltonian can be thus written as H = HH + HD +
He, with HH representing the Heisenberg interaction, HD

the DMI interaction, and He the electrical alignment to the
external field, namely,

H = −
∑

〈i, j〉
Ji jpi · p j +

∑

〈i, j〉
Di j · (pi × p j ) −

∑

i

E · pi, (1)

where pi is the n-component spontaneous polarization dis-
tribution of the domain in the “ith” site with discrete values
pi = (±px,±py ), Ji j = JAi j are the elements of the N × N
adjacency matrix Â, with J the global coupling strength, and
Di j ∝ p × ei j , where ei j is the unit vector pointing from ith
site to jth site and p the polarization vector [31]. The last term
corresponds to an applied external field and is described, as
usual, as He = −∑

i E · pi.
A first-order parameter is taken to be the modulus |p|i

of the polarization in each direction P = 1
N

∑
i |p|i, where

i represents the sum over nodes, and |p| =
√

p2
x + p2

y . A
second-order parameter is taken to be v = 1

2N

∑
〈i, j〉

|pi×p j |
|pi||p j | , this

quantifying emergent rotational order in the system (i.e., vor-
texlike structures). This is an angular order parameter that
captures the angular ordering of the system. Note that, unlike
low-dimensional systems undergoing a continuous symme-
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try breaking, where the emergence of topological defects in
the form of vortices is expected as a direct consequence of
the Mermin-Wagner theorem [34,35], for the present discrete
symmetry case, vortexlike patterns are a direct consequence of
the DMI.

Dipole-dipole-like interaction is analyzed using the lat-
tice illustrated in Fig. 1(b), a 2D lattice based on a specific
underlying mesoscopic arrangement, known as supercrystals
(SCs), observed in a large variety of ferroelectrics [11,12,36]
and other functional materials [37]. Here, the elementary tri-
angular building block encompasses both type (i) and type
(ii) walls with their protected flux-closure patterns, while
the resulting structural geometry allows a nonvanishing DMI
interaction, excluded in structures that have bond-inversion
symmetry (such as square lattices [38]; see also the Supple-
mental Material [39]).

II. RESULTS

A. SC-tiling intrinsic scales

The intrinsic scales of the SC-tiling lattice are analyzed
using the recent framework proposed in Refs. [40–42] (see
Appendix A and the Supplemental Material [39]). The spec-
tral analysis of the SC lattice is based on the time-evolution
operator e−τ L̂ of the diffusion or heat equation, where L̂ =
D̂ − Â is the Laplacian operator, Â the adjacency matrix, and
D̂ the diagonal degree matrix [41]. Hence, one can define

the Laplacian density matrix ρ̂(τ ) = e−τ L̂

Tr(e−τ L̂ )
(see also Ap-

pendix A) to analyze the so-called lattice “heat capacity” [41]
as C(τ ) ≡ − dS

d log τ
, which describes the rate of information ac-

quired about the network or lattice structure during diffusion
dynamics at scale τ . In analogy with statistical physics, peaks
of C are associated with structural phase transitions. Thus, we
can analyze C at varying τ to investigate the lattice multiscale
organization.

Figure 1(c) shows the so-called specific heat (C, see
Appendix A) of the SC structure. Along with the plateau
that reflects the 2D nature of the lattice, as C = d

2 for
scale-invariant architectures [42], C presents two possible
small-scale modes or ultraviolet cutoffs (in the jargon of the
renormalization group), �1 and �2, independent of the sys-
tem size, plus a third peak at larger values of τ reflecting
the whole lattice scale. Compared to a regular 2D lattice
that only presents two peaks, here, the extra peak plays,
as discussed below, a key role in determining, altering, and
disrupting the phases and phase transitions of the system.
The presence of multiple characteristic topological scales (�1

and �2), each associated with a different type of interac-
tion (Heisenberg- versus DM-like), leads to frustration: if the
system cannot simultaneously minimize both energy terms
globally. As a consequence, domains settle into configurations
that are locally stable but globally incompatible—a hallmark
of frustrated systems. This manifests in metastability, slow
dynamics, and history-dependent responses (see below).

B. Phase diagram

Figure 2(a) shows the temperature phase diagram of the
system as a function of the ratio between the dipole-dipole

alignment interaction J and the DMI, D. Results are achieved
through extensive Monte Carlo simulations of the TBM, run-
ning Eq. (1) on top of the SC-tiling. In order to reach zero
local charge density, the constraint ∇ · p�1 = 0 is imposed
as the energy is minimized [see Fig. 1(b)], centering it on
each “plaquette” (the elementary protected cell �1) to avoid
nonphysical situations (see the Supplemental Material [39] for
case examples of microscopic configurations, resembling the
ice rule in spin-ice systems [43]). Inspection of the phase dia-
gram reveals two stable collective dynamical regimes: vortices
and ferroelectric phases. In particular, the microscopic scale
�1 now supports the existence of an ordered domain mosaic
of 2D protected vortex cores. Different types of bifurcation
lines separate the phases of the system. In particular, for low
temperatures, increasing the ratio J/D, a first-order phase
transition separates the vortex phase from the ferroelectric
one. Conversely, a second-order phase transition separates
the vortex phase from the paraelectric one. Interestingly, an
intermediate phase emerges between the ferroelectric and
paraelectric phases: A metastable, or frustrated, phase where
transient vortices prevent the system from reaching a global
order as in the ferroelectric or vortex phases, sequentially
changing the full system orientation (see Appendix B).

Figures 2(b) and 2(c) show order parameters as a function
of the temperature for the polarization P and vortex v for two
different values of the ratio J/D. Note that P and v correctly
detect the stable ordered phases. Insets show the anomalous
temporal fluctuations σ 2

P and σ 2
v , which exhibit a pronounced

peak located at the (N-dependent) transition point between
the different phases. In particular, the broad divergence of
σ 2

P is a hallmark of frustrated phases in statistical mechanics,
supporting the picture of broad criticallike regions [44,45],
and gives us a marker for the emergence of an intermediate
phase between the ferroelectric and the paraelectric ones (see
also Appendix B).

Findings are compared to experiments in SCs observed
in KTN:Li crystals (see also Appendixes C and D). This
material, which led to the first observation of wave replica-
symmetry breaking [46], has been developed by several
groups [47–50] as a lead-free optically transparent alterna-
tive to other commonly used perovskites [51]. Moreover,
compared to commercially available crystals, such as BTO
(Barium Titanate) [37] and STN (Strontium Barium Niobate)
[52], it has tunable properties with a room-temperature fer-
roelectric transition [8,53,54]. Fourier computational analysis
of the vortex phase (see also the Supplemental Material [39])
is found to match observed optical far-field results, as shown
in Fig. 2(d), in agreement with the previous SC models based
on an interlocked regular structure of spontaneous polariza-
tion [6,54,55]. The TBM model then provides a feasible
explanation to why the SC phase appears only in some spe-
cific materials, as the internal structure must be fine-tuned to
present a specific J/D ratio.

C. The effect of a bias electric field

Response to a bias electric field is analyzed theoretically
by adding the term He = −∑

i E · pi in Eq. (1). As reported
in Fig. 2(e), the temperature versus electric field phase dia-
gram presents a rich phenomenology. At low temperatures,
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FIG. 2. Topological symmetry breaking. (a) Temperature phase diagram of Eq. (1) computed using direct simulations on an SC lattice
with N = 1024 nodes (J = 1). Polarized states are computationally detected with the polarization order parameter P, while vortex phases are
detected through the vortex order parameter v. The metastable phase corresponds to the broad region of divergent polarization susceptibility
χP = Nσ 2

P . Polarization (P) and vortex (v) order parameters vs temperature for different lattice sizes (see legend, N = 4L2) for (b) J/D = 1.4
and (c) J/D = 0.8. Inset: Rescaled temporal variance χP = Nσ 2

P vs temperature T for different system sizes. The metastable phase also presents
characteristic temporal oscillations in the global system polarization (see Appendix B). (d) Top: Far-field imaging of an SC structure at T = TC

− 2 K. Bottom: Computational 2D Fourier transform of an ordered vortex phase (J/D = 0.8, T = 0.4, N = 1024). (e) Temperature phase
diagram of the model vs electric field E for J/D = 0.8 and N = 1024 nodes. The breakup of the vortex phase translates into the emergence of
a metastable phase where the ferroelectric and vortex domains naturally coexist. Polarization (P) and vortex (v) order parameters as a function
of the electric field for different lattice sizes [as in panels (b) and (c)] for (f) T = 0.4 and (g) T = 0.7. The peak in the system susceptibility
is indicated here as a vertical dashed line. Note how the critical field at low temperatures splits into two different phase transitions when T
increases, with naturally coexisting vortices and ferroelectric domains. All curves have been averaged over 102–103 independent realizations.

the vortex phase is separated from the ferroelectric phase by
a first-order phase transition, while the critical temperature Tp

gives rise to the paraelectric phase (dashed lines). Far below
this temperature, a different metastable or frustrated phase
emerges in contrast to the previous case. As before, the order
parameters (P and v) characterize the phase transitions as a
function of the external field, as shown in Figs. 2(f) and 2(g).

Cluster patterning is directly observed using laser light
cross-polarizer transmission microscopy [56] (see Ap-
pendix C for a detailed description of the experimental setup).
Specifically, light propagating in the SC structure becomes
depolarized and hence is able to pass through the crossed
polarizers [57]. Regions where no transmission is observed
identify where the SC either is not formed or has a defect,
such as in proximity of a domain wall. Basic phenomenology
and analysis are reported in Fig. 3, showing the transition from
light transmission, partial, to no light transmission as the SC
structure is caused to break down. Increasing the bias field
for a sample cooled to TC − 4.5 K, at Ec = 2.91 kV/cm the
crossed-polarizer image suddenly becomes opaque, indicating
SC breakup and an ensuing overall depolarized transmitted
beam [see Fig. 3(a)]. Polarization transmission images have
been selected to show the percolative nature of the observed
phenomena at three different temperatures below TC = 294 K,
and for different electric field values E , as shown in Fig. 3(b).
For temperatures up to TC − 3.5 K, the SC no longer manifests
sudden polarization changes. Transmission starts to decrease
along particular directions, oriented at 45° relative to the

crystal principal axes. Bias-induced distortions are found to
predominantly affect the SC structure along these inclined
paths, at the critical field value Ec = 2.81 kV/cm. Despite this,
light transmission remains evident in the overall image. A
different behavior is found at TC − 2.5 K. Specifically, while
analogous SC distortions appear along inclined paths, but at
a lower field, Ec = 2.5 kV/cm, as the bias is increased, the
darker regions are observed to expand along these specific
directions until they cover the entire transmitted image at
Ec = 2.86 kV/cm (see Appendix E), as seen at TC − 4.5 K.

The phase transition can be characterized through the usual
percolation order parameter P∞ = n∞/N , where n∞ is the
number of pixels belonging to the largest cluster and N is the
total number of pixels in the processed image [56]. The im-
ages are binarized by applying an arbitrary threshold intensity
θ . Each pixel in the image is classified into one of two states,
i.e., one or zero, based on whether its intensity is below or
above the threshold, respectively. Hence, the largest cluster of
light corresponds to the intensity in Fig. 3, with the electric
field E as the control parameter, showing a percolation phase
transition at some critical value Ec. We note that the proper
identification of the translational invariant “building blocks”
justifies the dynamical analysis of the system on a coarse-
grained scale that can potentially alter the system universality
class, as found when the system is biased with an electric field.

Figures 3(c)–3(e) show the percolation phase transition
for all three selected temperatures below TC and different
values of θ . Experimental results are fully compatible with
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FIG. 3. Direct imaging of SC ferroelectric clusters. Binarized crossed-polarizer transmission microscopy images for (a) TC − 4.5 K and
increasing electric field (0, 2.86, and 2.91 kV/cm, respectively, using θ = 25). Light transmission shows an abrupt transition at EC ≈ 2.9 kV/cm.
(b) Various conditions of temperature and bias electric field to enhance the critical point for the first two temperatures and the metastable region
for TC − 2.5 K (see images, with θ = 37, 37, and 35, respectively). Light intensity vs applied electric field (E ) for three different temperatures
and different threshold values (θ , see legend): (c) TC − 4.5 K. An abrupt phase transition is present at a field EC ≈ 2.9 kV/cm for a wide range
of θ values. (d) TC − 3.5 K. The abrupt transition changes its nature to a continuous one with EC ≈ 2.75 kV/cm. (e) TC − 2.5 K. The system
exhibits two different phase transitions at different critical fields, EC ≈ 2.5 kV/cm and EC ≈ 2.86 kV/cm (see also Appendix E).

numerical results reported in Figs. 2(e)–2(g). For temperatures
deep into the ferroelectric phase, TC − 4.5 K, and TC − 3.5 K,
the system shows a first-order phase transition that splits into
two phase transitions for TC − 2.5 K (at Ec = 2.5 and Ec =
2.86, respectively). Besides, the nature of the phase transitions
changes between Figs. 3(c) and 3(d), the latter being more
likely in the vicinity of some triple point. Note also how
the original first-order phase transition (orange dashed lines
in Fig. 2) shifts toward lower fields as expected from our
theoretical framework.

To establish whether the TBM actually supports a per-
colative phase transition, we analyzed each unit belonging to
the microscopic scale, �1, on a coarser scale: each block-
dipole now represents a node that either allows light to pass
(� = 1) or does not (� = 0). This embodies the idea that for
the KTN:Li, only the SC vortex phase allows complete light
transmission. The giant cluster P∞ characterizes the phase

transition, together with the susceptibility χ (h) =
∑

S S2P(S,h)∑
S SP(S,h) .

Here, the sum runs over all possible cluster sizes S for a given
field h in the system, P(S, h) being the cluster size probability
distribution, and discarding P∞, if it exists. Figure 4(a) shows
the percolation phase transition at low temperatures, which
confirms that an abrupt phase transition occurs at a specific
critical field Ec. Figure 4(b) illustrates the behavior in the
metastable phase, shedding light on two key properties: (1)
the phase transition in the metastable region is found to be

smoother and (2) susceptibility diverges throughout the entire
region. Figure 4(c) shows different states when the external
field increases. At low temperatures, labyrinthinelike struc-
tures form where ferroelectric domains start to aggregate,
giving rise to a giant cluster that spans the entire system at
a critical field EC . This leads to the frustrated phase, where
both the vortex and ferroelectric mesoscopic domains coexist
in an interlocked way, forming fractal patterns [see Fig. 4(c)].

Macroscopic response is analyzed in Fig. 5, where the
behavior of P∞ versus applied field is reported. The orange
loop refers to the temperature where frustration is absent,
leading to a strongly hysteretic response function typical of
a first-order transition. In contrast, a slim loop (violet loop)
emerges in the metastable phase, a signature of negligible hys-
teresis and marked nonlinearity. Characteristic discrete jumps
in polarization (see the enlarged inset in Fig. 5) are caused
by the depinning of finite domains, the so-called Barkhausen
jumps in hysteretic loops [7,58].

III. DISCUSSION

A knot in a string is a remarkably stable physical form of
information storage since it is topologically protected; that
is, it can only be erased by untangling it [59–62]. Knotlike
structures emerge naturally in the form of topological defects
in a wide variety of materials [63], such as liquid crystals [64],
fluids [65], ferromagnets [66,67], and ferroelectrics [13,14].
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(c)

FIG. 4. Percolation phase transition. P∞ as a function of the
applied field E for different system sizes (in the square lattice of
side L resulting from the coarse-graining process; see legend) for
(a) T = 0.4. Inset: χ vs E . Note the divergence at a specific point
as the system size increases. (b) T = 0.75. Inset: χ vs E . Note
the divergence of the entire metastable region as the system size
increases. (c) Configurations of simulated light transmission images.
From up to down, images show a vortex state (T = 0.4, E = 0.2),
the bifurcation line to the metastable phase (T = 0.5, E = 0.29),
and the metastable phase (T = 0.5, E = 0.3). For the sake of com-
parison, the inset shows an enlarged region of experimental light
transmission at TC − 2.5 K and E = 2.65 kV/cm.

This protection is responsible for the stability of intricate
low-dimensional topological polar structures (e.g., quadrant
domains [68], polar flux closures [16,69,70], and vortices
[71]) that, in recent years, have attracted significant attention
[11,12,72]. Analogous topologically protected patterns natu-
rally occur in a wide variety of systems [63], such as liquid
crystals [64], fluids [65], and ferromagnets [66,67]. Among
these, topologically protected ferromagnetic skyrmions [73]
have found applications in electromechanical and spintronic
devices for information storage [74] and logic [75].

At present, the potential of topological defects as noise-
resistant memory and processing elements is largely unex-
plored, especially because their behavior appears intimately
connected with an intriguing but little understood frustration
in the hosting material [15,76,77]. In some respects, frustra-
tion likens functional materials, such as ferroelectric crystals,
to the large class of information-driven phenomena, such as
memory effects [78], protein-folding mechanisms [79], brain
dynamics [45,80], and slow relaxation dynamics [81]. The
driving mechanism for frustration is commonly thought to
be an underlying disorder that can, for example, influence a
conventional phase transition by introducing competing in-
teraction terms between multiple components and lead to
frustration [4]. In ferroelectrics, complex behavior is typically

1
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FIG. 5. Slim-loop hysteresis. P∞ as a function of the applied
field E for different temperatures T = 0.4 (orange line) and T =
0.6 (violet line) for a lattice with L = 64 coarse-grained units.
The wide hysteretic behavior at low temperatures, characteristic
of the first-order phase transition, becomes a slim-loop hysteresis
cycle in the intermediate phase. The break of domain walls on
pinned sites originates the observed jumps in the hysteretic cycle,
that are shown in the zoomed insets. This gives rise to the well-known
Barkhausen noise.

attributed to alterations in what would normally be considered
a conventional paraelectric-ferroelectric structural phase tran-
sition caused by built-in compositional disorder. Disordered
ferroelectrics can be modeled as a system dominated by meso-
scopic polar nanoregions (PNRs), regions originally thought
to have randomly distributed dipole moments driven by ex-
change interaction [7,82,83], that have more recently been
shown to manifest a hierarchical structure with no sudden
boundaries [20]. Complex behavior could then be explained
as an analog of Griffiths phases theoretically predicted long
ago (but not yet experimentally found) for dilute ferromag-
netic systems [84]. This approach has been demonstrated to
be insufficient at temperatures lower than the Curie temper-
ature (TC) because it fails to consider PNR interaction [2].
The existence of a glassy state has also been proposed as
an alternative explanation [1,85]. Glassy approaches, in turn,
encounter difficulties in describing some of the basic observed
features, such as the occurrence of Barkhausen jumps dur-
ing the poling process, jumps that are incompatible with the
continuous and monotonous glassy reorientation of dipoles on
submicrometer length scales [7]. A complete understanding of
emergent relaxor behavior in disordered ferroelectrics remains
an open problem [86].

Our study suggests an altogether different picture. Here,
built-in disorder is relegated to generating the SC-tiling and
plays no direct role in the TBM. Yet, the approach is able
to reproduce the signature and hereto little understood com-
plex and nonergodic behavior of disordered ferroelectrics like
KTN.

Hence, the percolative transition typical of relaxor-like
perovskites [56,77,87] is predicted by the TBM at low tem-
peratures (below TC) as an abrupt phase transition that splits
into two critical electric fields with an intermediate behavior
that resembles that of the frustrated phase presented here
(as discussed in Figs. 3 and 4). We note that while the
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cubic-to-tetragonal transition model used here is a useful
paradigm for many perovskite ferroelectrics, other systems
like PMN and BTO may exhibit more complex or dis-
tinct symmetry-breaking behavior. Nonetheless, our model
captures the general interplay between discrete-inversion-
symmetry breaking and charge-screening-driven topology,
which remains relevant across a wide class of materials. More-
over, as discussed in Fig. 5, the TBM is able to describe
the anomalous hysteretic “slim-loop” behavior observed in
relaxor behavior, along with the characteristic Barkhausen
jumps [7]. Our results indicate that complexity-driven phe-
nomenology originates from the competition between the two
intrinsically different scales (�1 and �2) that arise not out
of disorder but geometrically, from the interaction terms of
Eq. (1), as discussed in Fig. 1, leading to local energetic
incompatibilities that persist even in the thermodynamic limit.

Hence, the interplay between the Heisenberg- and DMI-
like terms naturally introduces frustration into the system.
These two interactions, effective at different spatial scales,
cannot be simultaneously minimized. We want to emphasize
that other types of interactions, grounded in different topolog-
ical scales as supported by the SC lattice, may also lead to
similar effects. As a result, the system is unable to achieve a
globally ordered state, leading to the emergence of metastable
regimes characterized by local competition between polarized
and vortex domains. This frustration is intrinsic to the TBM
and forms the basis for the rich phase behavior discussed here.

The idea that exotic states with degenerate energy surfaces
and broad critical phenomena can arise from the breaking
of a regular structure of topologically protected states, i.e.,
the topological symmetry-breaking transition discussed in
Figs. 3 and 4, presents a route for future experiments and
applications. For example, in distinction to spin-glass sys-
tems, here the nonergodic metastable phase is characterized
by an intriguing state with localized regions of topologically
protected patterns, each pattern then forming a potentially
noise-resistant memory cell. Notably, a slight reduction in
accuracy enhances memory capacity while preserving a large
set of protected structures. This trade-off is particularly ad-
vantageous for machine learning purposes, where a larger
parameter space allows for encoding more information with-
out requiring perfect accuracy.

Finally, we note that the TBM addresses the issue of de-
scribing ferroelectric behavior dominated by compositional
disorder that leads to interacting mesoscopic domains rele-
vant to optical propagation. In this regime, structural analysis
and molecular dynamics simulations can prove challenging.
Indeed, the TBM is not intended to fully replace detailed
microscopic simulations, such as phase-field or ab initio
approaches. Rather, it provides a minimal and analytically
tractable framework to explore how competing mesoscopic
interactions and geometric constraints can produce complex,
nonergodic behavior. The simplicity of the model allows in-
sight into qualitative mechanisms that may remain hidden in
fully numerical treatments. Qualitatively, the TBM isolates
key mechanisms that can lead to complex domain phases in
functional materials. In line with efforts to formulate minimal
yet effective theories that capture essential physics with maxi-
mal simplicity [88], the TBM reveals that it is the competition
between effective dipole-dipole-like interactions and the in-

trinsic two-scale lattice geometry that drives the formation of
such intricate domain structures. While KTN:Li is used here
as a case study, the TBM is generic and applicable to other po-
lar materials with flux-closure behavior and competing dipolar
interactions that manifest superlattices. Future studies could
explore applications to, e.g., SBN or multiferroic materials.

IV. CONCLUSIONS

Concluding, we have introduced and experimentally
validated an explanatory framework for complex behavior
observed in disordered ferroelectric crystals that support
superlattices, such as KTN. Emergent phenomena are
found to be a consequence of the competition between two
basic topological defects that emerge from the spontaneous
breaking of discrete-inversion symmetry and volume-charge
screening: domain walls parallel to the principal crystal axes,
across which the polarization flips by 180°, and slanted at
45°, across which the polarization abruptly rotates by 90°
[16,17,89]. Frustration is then triggered by the interplay
between the two corresponding spatial scales, each with
its specific dipole-dipole interaction, a Heisenberg- and a
DM-like interaction. The mechanism leads to vortex and
metastable phases, depending on the ratio of the two underly-
ing interaction components. The application of the real-space
renormalization group methods to detect domain patterns re-
veals the existence of a frustrated percolation phase transition
that naturally includes depinning effects, i.e., domain wall
reorientation that results in the well-known Barkhausen jumps
and slim-loop hysteretic phenomena, when topologically pro-
tected states are broken. Our expansion of classical frustration
mechanisms, beyond spin-glass and Griffiths effects, opens
a route to explore the intriguing interplay between structure
and dynamics and how this can give rise to previously
unknown phases, potentially rising to a level the design and
development of innovative miniaturized noise-resistant high-
performance information and energy storage devices [90].
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APPENDIX A: STATISTICAL PHYSICS OF INFORMATION
NETWORK DIFFUSION

The Laplacian L̂ = D̂ − Â governs the diffusion dynam-
ics on any regular or heterogeneous structure through the
equation

ṡ(τ ) = −L̂s(τ ),

where s(τ ) represents, for instance, the information distri-
bution on the network nodes, D̂ is the degree matrix, and
Â is the structure’s adjacency matrix. The general solu-
tion for this equation is s(τ ) = e−τ L̂s(0). This leads to the

concept of Laplacian density matrix, ρ̂(τ ) = e−τ L̂

Tr(e−τ L̂ )
, which

makes it possible to analyze network structures in greater
detail [40,41], opening the door to a thorough analysis
through the introduction of the Laplacian entropy, S(τ ) =
− 1

log N ρ̂(τ ) log ρ̂(τ ), and the entropic susceptibility (or spe-
cific heat). The “canonical” description of heterogeneous
networks in analogy with statistical mechanics [40,41] is
rigorously supported because L̂ plays formally the role of a
Hermitian (lower-bounded) Hamiltonian, Z (τ ) is the partition
function, and τ is a control parameter akin to the inverse
temperature.

In particular, it is the temporal derivative of the entropy,
which has been denominated the heat capacity of a network
[41],

C(τ ) = − dS

d (log τ )
,

as the natural counterpart of the specific heat in classical
statistical mechanics. In particular, C is a detector of structural
transition points corresponding to the intrinsic characteristic
diffusion scales of the network [40,41]. Indeed, a pronounced
peak of C defines τ = τ ∗ and reveals the starting point of a
strong deceleration of the information diffusion, separating
regions sharing a rather homogeneous distribution of infor-
mation from the rest of the network. Finally, in the continuum
approximation of the Laplacian spectrum, it has been recently
proved that the exponent γ satisfies the following relation
[40,42]:

C1 = 
(γ + 2)


(γ + 1)
= γ + 1 = ds

2
,

where 
(z) is the Euler’s gamma function, and the plateau
corresponds to half of the spectral dimension ds of the network
or lattice [42].

APPENDIX B: EXPLORING THE METASTABLE PHASE

For completeness, we present numerical results for the
temporal evolution of the polarization order parameter P. Our
results reveal the existence of such a metastable regime placed
between the vortex and the ferroelectric phase. This is charac-
terized, as shown in Fig. 6, by broad quasiperiodic temporal
oscillations of P.

Anomalously large sampling times would be required
to extract good statistics for the actual mean values and
variances. This collective behavior is a straightforward man-
ifestation of the partial ordering of the system, being

1×106

FIG. 6. Temporal variability. Polarization order parameter (P) as
a function of time (in Monte Carlo steps). Different colors represent
different values of T (see legend). The broad variability characteriz-
ing the metastable phase wildly depends upon the initial conditions
for each realization. Parameters: J/D = 1.4 and L = 32.

reminiscent of other types of nonergodic behavior in struc-
tured systems [44,80] but with a completely different origin.

We also report different snapshots of the system config-
urations for multiple phases here to illustrate the emergent
order in the two-scale SC lattice. These snapshots have been
selected by varying the ratio J/D and the temperature T .
Figure 7(a) illustrates the vortex phase, while Figs. 7(b) and
7(c) show two metastable configurations corresponding to two
different temperatures on the phase diagram reported in the
previous sections.

APPENDIX C: EXPERIMENTAL SETUP

Laser light from a doubled 30 mW Nd:YAG laser (wave-
length λ = 2π/k0 = 532 nm) is made to propagate along the
z axis through the zero-cut KTN:Li crystal sandwiched in
between two crossed polarizers. The sample is biased by a
time-constant electric field E along the x axis. The crystal
temperature T is set by a current-controlled Peltier junction
in contact with one of the y facets. Light from the crystal
output facet is imaged using a movable spherical lens L1
(of focal length 50 mm) onto a CMOS camera. The cross-
polarizer technique implemented utilizes the birefringence of
polar clusters to alter the polarization state of light, allowing
optical observation of microscopic cluster dynamics at mi-
crometer scales. The experimental setup is illustrated in Fig. 8.

(c)Vortex Phase Metastable Phase Metastable Phase(b)(a)

FIG. 7. Snapshots of several domain arrangements for differ-
ent phases. (a) J/D = 0.8, T = 0.35, (b) J/D = 1.4, T = 0.5, and
(c) J/D = 1.4 T = 0.8. Parameter: L = 32.
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FIG. 8. Experimental setup. Scheme of the cross-polarizer trans-
mission microscopy setup used to resolve mesoscopic polarization
textures in KTN:Li.

APPENDIX D: MATERIAL

The sample is a zero-cut optical quality polished
lithium-enriched solid solution of potassium-tantalate-
niobate (KTN:Li) with an average composition
K0.964Li0.036Ta0.60Nb0.40O3. Its dimensions are 2.33(x) ×
1.96(y) × 2.03(z) mm3. The unit cell manifests random
substitutions, a compositional disorder that, as a consequence
of the structural flexibility typical of perovskites, leads to
locally modified polarizabilities and temperature-dependent
nanoscale dipolar structures (nanodisordered ferroelectricity).
The result is a modified ferroelectric behavior dominated by
the so-called PNRs, characterized by dielectric dispersion
and out-of-equilibrium behavior (relaxor ferroelectricity) [3].
In our present case, this disorder is itself not homogeneous,
manifesting a spatially periodic micrometric oscillation along

a specific crystal axis. This is because the sample is grown
into a bulk through the top-seeded method, a technique that
entails a slight time oscillation in the temperature of the
solidifying melt that, in turn, translates into an approximately
periodic 7.5 µm pattern along the growth (or pull) axis,
which causes in ferroelectrics an equally patterned TC . This
pattern conditions the nanoscale dipolar structures that,
at the room-temperature Curie point TC = 295 K, form
an orderly multidomain protected regular state, the SC
[6,8,56,57]. SCs are thought to originate in a regular lattice
of interlocked polarization vortices, a generalization of the
spontaneous polarization closed-flux vortex domain pattern
dominated by a triangular tiling, compatible with available
experimental results and phase-field simulations [6]. This
arrangement effectively screens the polarization charge and
elastic stress [8,91]. SC phase also manifests striking optical
properties, such as giant broadband refraction (GR) [53,55]
and constraint-free wavelength conversion [54].

APPENDIX E: PERCOLATION ANALYSIS
OF SC STRUCTURES

Basic phenomenology is reported in Fig. 9, where polar-
ization transmission images through the sample are shown for
various temperatures below TC = 294 K and different exter-
nal electric fields E . In pure depoled ferroelectrics, random
birefringence causes complete depolarization of propagating
optical fields, resulting from multiple interferences of ran-
domly scattered waves. In contrast, light propagating in an SC

External field

Te
m

pe
ra

tu
re

FIG. 9. Imaging of ferroelectric SC cluster dynamics. Crossed-polarizer transmission microscopy reveals the temperature- and field-
dependent breakdown of the SC phase in KTN:Li. The images highlight the emergence of percolative transitions and anisotropic distortions
aligned at 45° to the crystal axes, marking the onset of metastable vortex-ferroelectric coexistence predicted by the topological breakdown
model.
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suffers a GR, where waves travel along the principal axes of
the crystal without diffracting, remaining fully polarized for a
linear polarization along the SC principal axes [57]. The result
is that the transmitted light at the output will be a checker-
boardlike polarization pattern, with alternating orthogonally
polarized states (see Fig. 9 for E = 0). This naturally amounts
to a natural 3D orthographic projection, opening the possi-
bility of observing optically the microscopic details of SC
cluster dynamics even though it is taking place on the mi-
crometer scale in a full 3D volume [56]. Supporting the main
text, in Fig. 9, a more detailed phenomenology is reported,
where polarization transmission images through the sample
are shown for various temperatures below TC = 294 K and
different external electric fields E . The sudden transition at

TC − 4.5 K evolves into a much richer phenomenology, fully
compatible with our hypothesis of an emergent metastable
phase. In fact, for a temperature up to TC − 3.5 K, the SC does
not show any more sudden polarization changes. Crossed-
polarizer transmission starts to decrease along particular
directions, oriented at 45° relative to the crystal principal axes
(Ec = 2.81 kV/cm). Despite this, light transmission remains
evident in the overall image. Increasing temperature further
(TC − 2.5 K), SC distortions appear at a lower field, Ec =
2.5 kV/cm along the inclined paths, analogously to the previ-
ous case. As the bias field increases, the dark regions expand
along these specific directions until they cover the entire trans-
mitted image at Ec = 2.96 kV/cm, analogously to the case
at TC − 4.5 K.
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