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HIGHLIGHTS

« Parametric Finite Discrete Element Methods allow accurate study of masonry structures.
« Block contact and friction are necessary for the new inverse problem of damage location.
« Combination of Finite-Discrete and Genetic methods has not been applied to masonry.

« Random noise must modify initial numerical data to simulate real structural results.

« Finding 1 or 2 blocks is accurate in most cases although dependent on noise.
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ABSTRACT

Thousands of masonry structures are part of the international railway and road networks, with some remaining
in use for up to two centuries. Given increasing operational demands in both traffic weight and speeds, devel-
oping effective damage detection techniques becomes essential for their proper maintenance. Currently, damage
assessment is performed primarily in situ, involving a high costs. Therefore, a numerical tool based on an inverse
problem for damage detection from a series of indirect and/or permanent measurements is necessary. As a first
step, this paper presents a numerical approach that combines finite and discrete element methods with genetic
algorithms to identify the position of one or two missing blocks in a one-span masonry bridge. Field measure-
ments are replaced with a displacement set from a two—dimensional FemDem mesh considering missing blocks.
These numerical distributions are sampled at a limited number of control nodes and are perturbed with statistical
noise to simulate the variations in the actual measurements. The results are compared with a small population of
new numerical cases generated by the genetic algorithm. With appropriate noise levels, it is demonstrated that

the method can find the missing locations automatically and accurately identify the missing locations.

1. Introduction

Masonry arches made out of adobe bricks can be traced back to 3000
years BC in ancient cultures [1]; the advantage of this particular geome-
try is that it transforms the bending stresses of straight beams into purely
compressive stresses. During Roman times, the application of arches
evolved from habitational buildings to infrastructures such as bridges
and aqueducts or even domes in their three-dimensional (3D) version.
The preferred materials became, as they are today, fired brick or stone.

Among the infrastructures, the masonry bridge is one of the oldest
structural typologies due to its ease of construction, the availability of
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rock material in the surrounding areas, and the high capacity of the
stone to work under compression. Thus, these structures present high
resistance and stiffness, and they have a significant durability that has
permitted their survival over centuries. Nowadays, a vast structural her-
itage needs to be preserved, and many of these bridges are still in service:
there could be over 22,000 in Europe alone, and even more in other
continents.

Most functioning masonry bridges are part of public transportation
systems, constructed between the 19" and mid-20%" centuries. Adapting
them to new structural operational conditions is necessary since they

Received 30 September 2024; Received in revised form 16 September 2025; Accepted 21 September 2025

Available online 3 October 2025

2352-0124/© 2025 The Author(s). Published by Elsevier Ltd on behalf of Institution of Structural Engineers. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).


http://www.sciencedirect.com/science/journal/2352-0124
https://www.elsevier.com/locate/ISTRUC
https://orcid.org/0000-0001-6213-9591
mailto:rbravo@ugr.es
https://doi.org/10.1016/j.istruc.2025.110279
https://doi.org/10.1016/j.istruc.2025.110279
http://creativecommons.org/licenses/by/4.0/

R. Bravo and J.L. Pérez-Aparicio

support axial loads higher than initially predicted; therefore, new and
more accurate tools are required for their analysis.

Since masonry bridges are composed of stones or bricks glued by
mortar or directly in contact, they are internally discontinuous struc-
tures, [2]. Contact provides the structure’s overall stability; as a con-
sequence, complex nonlinear and discontinuous behavior appears as
explained in [3]. Early efforts to investigate the behavior of arches can
be traced back to the first experimental studies of the Roman architect
Vitruvius in the 1st century B.C. [4]. Many years later, the Renaissance
engineer and artist Leonardo da Vinci [5] focused on stability analysis
to design a 240 m single-span masonry bridge (without mortar) over
the Golden Horn, Istanbul.

Comprehensive graphical methods were developed in the XIX cen-
tury [6] for calculating discontinuous structures. Later, semiempirical
methods [7], analytical formulations [8], or methods based on linear and
nonlinear elasticity [9] emerged. These methods can often accurately
model the nonlinear behavior, but only apply to the simplest geometries
and loads. Therefore, there is a need to consider advanced techniques
that account for the masonry’s inherent structural discontinuous nature.

The Discrete Element Method (DEM) [10] is a numerical tool capa-
ble of calculating the response of multibody systems interacting through
contact and friction, and it was first implemented in the 1970 s. DEM
modelling of masonry structures is of natural and immediate application
[11,12]. Moreover, applying DEM to analyze a wide range of historical
masonry structures is possible thanks to the current increase in com-
putational capabilities. These structures include walls [13-16], arches
[17,18], masonry columns [19], buildings under static and dynamic
regimes [20] or domes in 3D static/dynamic situations [21].

Methods similar to DEM, such as Non-Smooth Contact Dynamics,
have been published in [22]; however, their application requires a sig-
nificantly high computational cost. The Finite Element Method (FEM)
is an alternative, but inserting interfaces for the contact between blocks
makes it less competitive, [23-25]. Despite the suitability of DEM to rep-
resent rigid body mechanics, its accuracy for internal strains and stresses
inside the block is lower than that of FEM, [26]. A comprehensive re-
view of analytical and numerical methods for assessing the performance
of masonry structures can be found in [27].

The combination of DEM to model the interactions between blocks
and FEM to model their elasticity is optimal for studying the mechanical
behavior of masonry structures. This fusion is known as the combined
Finite-Discrete Element Method (FemDem) [28], which has gained
widespread application in recent years, [29]. It has also become a pow-
erful tool in the fields of rock and geo-mechanics [30]. More recently,
[31] has shown how this combination can also be helpful for structural
engineering, as in the study of the collapse of masonry arches under var-
ious static actions. The extension to cases with dynamic loads has been
made for simple structures, such as walls under cyclic loads [32].

Identifying structural deterioration is essential for adequately eval-
uating and maintaining masonry structures. Direct visual inspection
remains the standard practice for detecting structural deterioration.
However, it is usually restricted to the external parts of the bridge.
Destructive testing methods consist of small penetration/extraction tech-
niques of specimens that only partially assess the structure; moreover,
they are only suitable for use in preliminary inspections.

In addition to traditional inspection and monitoring tech-
niques, more advanced—though often costly—approaches such as
Nondestructive Testing (NDT) can provide a detailed assessment of a
bridge’s structural condition. Using sensors or imaging technologies,
these methods can monitor the onset of damage, crack formation, and
large deformations [33], supplying valuable data to prevent structural
pathologies. Comprehensive reviews of NDT applications are provided
in [34,35], while [36] focuses on Acoustic Emission techniques.
Experimental approaches based on ambient vibration testing and
operational modal analysis have been reported in [37,38], along with
methods combining ambient and random impact vibrations. Recent
developments also include the use of self-sensing materials for new
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masonry structures [39] and advanced methods based on deep learning
and image reconstruction [40,41].

Several studies combine structure monitoring with FEM simula-
tions, as previously mentioned, while FEM can model discontinuous
domains through interface elements, this approach becomes computa-
tionally less competitive for masonry structures with numerous contact
interfaces [42]. DEM has been used with inverse or optimization al-
gorithms involving interactions between bodies. Some examples are
the calibration of microparameters in granular materials using Genetic
Algorithms (GA) [43], a specialized heuristic optimization tool that re-
lies on the application of the rules of both natural selection and genetics
[44], the identification of rock-like material parameters [45], and the
shape optimization of bucket elevators [46]. However, to the best of
our knowledge, existing literature lacks numerical procedures based on
DEM or FemDem specifically designed for damage detection in masonry
structures exhibiting discontinuities between blocks.

This paper presents an inverse method for damage location in a
masonry bridge using FemDem. A brief description of FemDem and a
numerical parametric model of a masonry arch bridge missing one or
two blocks will be developed in Section 2; a similar bridge has been
studied in [47] for other objectives. Also, an objective function, built
upon the numerical displacements of the bridge contour, is proposed
in Section 3. This function is minimized using a GA capable of find-
ing the missing blocks’ location. Since experimental displacements are
currently unavailable and no direct experimental analog was found in
the literature, they will be simulated by direct “experimental” FemDem
simulations in which the positions of the missing blocks are known; sub-
sequently, the inverse problem will detect these positions without the
initial information. Although the lack of experimental data represents
a limitation of the current study, this work constitutes a critical phase
before proceeding to physical validation as it is well-established in the
literature on structural health monitoring of historical masonry [48,49].
Different noise levels will be inserted into the “experimental” displace-
ments to account for possible interferences from monitoring systems or
surrounding effects in actual experiments. This methodology provides
insight into the proposed method’s ability to detect damage for differ-
ent noise levels and for the cases and results presented and discussed in
Sections 4 and 5.

2. The FemDem method, masonry bridge model and parameters

The modelling strategy adopted is based on the combined Finite
Element-Discrete Element Method, which has been extensively used in
the analysis of masonry structures due to its capability to represent both
the continuum mechanical behavior of the blocks and the discrete na-
ture of the joints [11,28]. This hybrid approach integrates the strengths
of the Finite Element Method for accurately computing stresses and
strains within each block, with those of the Discrete Element Method for
modelling contact interaction, separation, sliding, and rotation between
blocks.

In the FemDem framework, each masonry unit is discretized into fi-
nite elements connected by cohesive interfaces representing the mortar
joints. Contact detection algorithms are employed to identify poten-
tial interactions between adjacent blocks when relative displacements
occur. Once contact is detected, normal and tangential contact laws
govern the transfer of forces, incorporating stiffness degradation and
frictional sliding where relevant. This formulation naturally handles
nonlinear phenomena such as crack initiation at joints, progressive joint
opening and closing, and post-peak softening. Moreover, the method
can reproduce large displacements and rotations without the numerical
instabilities that can affect purely continuum-based models.

While masonry bridges are 3D structures, the dimension perpendic-
ular to the main plane is smaller than the others; this two-dimensional
(2D) assumption is more evident in early railroad bridges with only
one track. Furthermore, most loads act within the frontal plane, re-
sulting in minimal out-of-plane displacements. The current 2D model,
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Fig. 1. Geometry of the masonry bridge. A pair of integers (x,,x,) identifies each block. Control points for displacement § are numbered in red.
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Fig. 2. Symmetric FemDem masonry bridge mesh, indicating the boundary conditions and discretization of block in two (blue), three (green), four (pink) and variable

(brown) finite elements.

see Fig. 1, neglects the fill material due to its relatively lower stiffness
compared to the stone masonry. Therefore, the geometry resembles a
plane stress/strain situation. This simplification is appropriate for the
initial development of the damage detection methodology, as the pri-
mary structural response is governed by the arch and spandrel walls,
see [31]. For practical applications requiring higher accuracy, the model
can be extended to include fill properties through equivalent stiffness
adjustments [50] or 3D modelling [51].

As mentioned, the objective of the current article is to develop and
apply an algorithm to automatically detect the absence of some blocks
in a structure, comparing the behavior of a base case that simulates ex-
perimental measurements with other cases missing one or two blocks.
Both cases are evaluated on the reference masonry bridge illustrated in
Fig. 1, consisting of a semicircular arch with external dimensions of 20 m
(span) by 6 m (rise). The arch has a radius of R = 7 m, with its center lo-
cated on the vertical axis of symmetry at a height of 0.3 R above ground
level. Location of blocks is indexed by a pair of coordinates, and verti-
cal displacements used in this work are recorded at the control points
indicated by red dots.

For this purpose, a FemDem mesh corresponding to the blocks of the
figure is created, see Fig. 2. It is composed of 212 rectangular blocks
of general dimensions 1 x 0.5 m with 529 elements. The exception is
for the transition blocks close to the arch, whose shape and size have
been adapted to accommodate the intersections with the arch, mim-
icking real-world masonry construction. As each block is identified by
a pair of indices (see Fig. 1; therefore, the locations and the absence
of one or more blocks in the inverse problem can be easily registered.
The bridge’s motion is prevented at its base (clamped), and the lateral
sides can move vertically to simulate the rest of the terrain. To mimic
real structural inspections and leverage their accessibility, the red nodes

FemDem is a computationally demanding method, with runtime
dependent on the number of contact interfaces and the internal dis-
cretization of each block. To achieve a reasonable CPU time with good
accuracy and a robust simulation in contact scenarios, see Munjiza in
[28], the discretization is performed with triangular finite elements (FE),
as shown in Fig. 2 as follows:

(a) The rectangular blocks at the lateral sides of the bridge are divided
into two FE since their mechanical behavior is quite homogeneous
(blue).

(b) The arch blocks are divided into three FE due to their significant
stress gradient (green).

(c) At the arch bottom and the bridge’s highest row—where the
stresses are highly concentrated—they are divided into four FE
(pink).

(d) The transition blocks are divided into one to three FE to maintain
a good aspect ratio (brown).

The mechanical and numerical parameters adopted in the model are
summarized in Table 1. The notation is as follows: E denotes the Young’s
modulus, v the Poisson’s ratio, p the density, p, and p, the penalty pa-
rameters in the normal and tangential directions, respectively, and ¢
the friction angle between blocks. Most of the mechanical parameters
are obtained from Ref. [52]; however, p, and p, are computed according
to the prescriptions in Ref. [28].

Table 1
Mechanical and numerical material parameters of the FemDem model.

located in the arch intrados and on the upper side of the bridge are des- E v ’ Pn P~ ¢
ignated as control points for measuring vertical displacements in the N/m? - kg/m? N/m N/m °
2.5e10 0.2 2400 1e9 le8 35

inverse problem.
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Fig. 3. (Top). Eindhoven wall, experimental crack progress, left; FemDem crack
progress, center; Tresca stress, right; red maximum with a blue minimum of 0.
(Bottom) Displacement d vs. reaction force F at the top nodes.

The blocks are assumed to be homogeneous stones with very high
compressive strength. Therefore, they cannot fracture; their surfaces are
rough without mortar in joints (dry stone).

Although the present study does not reproduce an experimental test
directly, the modelling approach has been contrasted with relevant ex-
perimental evidence from the literature. In particular, the Eindhoven
masonry wall experiment [52,53] provides a valuable reference for
validating the general mechanical behavior captured by the FemDem
formulation. This large-scale test involved a masonry wall subjected to
lateral mechanical loading and monitored under controlled laboratory
conditions, see Fig. 3. These validation results were previously published
by the authors in [47]. In this setup, contact discontinuities naturally oc-
curred due to load-induced cracking and detachment, where the results
(crack openings) produced by FemDem, Fig. 3 (top-left), fit well with the
experimental results (top-center). Additionally, a numerical representa-
tion of the Tresca stress is presented. The numerical and experimental
displacement d vs. reaction force F relations shown in Fig. 3 bottom,
show a good agreement, confirming that the model accurately repro-
duces the physical behavior. The slight discrepancy observed at the end
of the distribution (approximately 19 % compared to the experiment)
can be attributed to the model’s limitations in capturing internal brick
failure. These parallels support the capability of the numerical model to
reproduce realistic structural responses, thereby reinforcing confidence
in its application to the detection of block-scale damage in masonry
bridges.

3. Inverse problem description and methodology

This section presents the inverse problem of damage identification
formulated with FemDem to locate missing block positions. The cor-
responding objective function is calculated using the distribution of
vertical displacements § under the gravity of the bridge for the control
points shown in Fig. 1. These displacements are computed parametri-
cally as a function of the positions of the missing blocks, identified with
the pair of integer indices (x|, x,) defined in Fig. 1.

The present work is exclusively computational. Therefore, instead
of using real experimental displacements, numerical displacements
8§%(x,x,) = 6°F at the control nodes of Fig. 1 from a direct FemDem
case (in which one or two blocks are missing) are used as reference. The
superscript “experimental” is only symbolic, indicating that numerical
data takes the place of experimental data.

To replicate the inherent variations in field measurements, noise is
added to the §°* data. The noise is uniformly applied to all displacements
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Fig. 4. Vertical FemDem displacements at control nodes: (a) top row and (b)
arch, for both the intact structure (No damage) and the damaged case with block
(10,4) removed (see Fig. 1), presented without noise (Damage) and with 14 %
noise.

and its amplitude is user-chosen from 5 % to 10 %. The higher the noise,
the more difficult it is for GA to converge since the “experimental” dis-
tribution becomes very different from that of the FemDem, the objective
function is high, and the minima may be found at incorrect locations.

As a preliminary example, Fig. 4 shows the numerically calculated
6% with FemDem for the case without damage (continuous line), and the
particular case of the missing block (x,x,) = (10,4), without (dashed
line) and with a 14 % noise (dash-dotted line). For blocks at the top row
of the bridge numbered 1 to 40, the figure a) shows that the values are
slightly higher at the center-left due to the lower rigidity induced by the
missing block. The figure b) plots the 6°* of the arch; the distribution is
now almost symmetric since the missing block does not affect the arch
displacements much, and its absolute maximum value lies close to the
central keystone. The results with and without noise are similar (though
not identical) because the 14 % noise is applied only to the total 5**
standard deviation. A noise level of 14 % translates into an error for
each individual displacement measurement ranging from +1.1 mm up
to +9.8 mm for measured displacements between 8 mm and 70 mm at
the top row, and from 0 mm up to +11.1 mm for measured displacements
ranging from 0 mm to 80 mm at the arch. Expressing the uncertainty in
this way facilitates clearer interpretation for monitoring practitioners.

In the current article, a GA controls the inverse problem solution with
Eq. (1) defining the calculation of the mentioned objective function. The
GAs are global search metaheuristics particularly well-suited for discrete
design variables and discontinuous objective functions. Unlike gradient—
based optimization methods, which may struggle with the combinatorial
complexity of block configurations, GA does not require gradient infor-
mation, can effectively navigate multiple local optima, and is robust to
measurement noise. These algorithms have been widely applied in struc-
tural damage detection problems [54,55], demonstrating both flexibility
and reliability in similar contexts.

To this end, FemDem simulations are performed with one or two
blocks missing at locations proposed by the GA population, calculating
a new set of displacements 5{ for each run (where j denotes the GA
iteration). Subsequently, the objective function f, is formulated as the
difference between the experimental (or “real”) and the GA-generated
displacements:

N
12 =]0g<2 (5;’* —5{) + 10—16>, )}
i=1
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Fig. 5. Flowchart for the computation of the objective function.

where i is the number of the control node (shown in red) of Fig. 1 and
N = 78 its maximum. The objective function was designed to be both
robust against measurement errors and applicable to real monitoring sit-
uations. Robustness is achieved through the use of the L1 norm, which
reduces the influence of extreme values in the data, a logarithmic trans-
formation f, to improve optimization convergence [56], normalization
of displacement differences to handle variations in measurement scale,
and multiple control points to provide redundancy in case of sensor mal-
function or data loss. In terms of applicability, the formulation works
effectively under static and quasi-static loading conditions but can also
be extended to dynamic situations. Its structure allows integration with
various sensor types and can be adapted to different bridge geometries
and damage scenarios [33].

Fig. 5 summarizes the GA procedure: the algorithm iteratively ad-
justs the position of the missing block from the population, and FemDem
calculates the corresponding vertical displacement &/ at each control
node i.

These displacements are compared with the initial 5°* corresponding
to a case with the actual missing block position (unknown to the GA);
subsequently, the objective function is evaluated at each step ;.

The inverse problem can be posed as a minimization (which can be
constrained) that is defined as finding (x,, x,) such that:

min - f,(xy,X;) (2)
(x1,x2)

As mentioned, when a single block is missing, the variables to op-
timize are the positions (x,,x,). The coordinates of the block’s center
of gravity are stored in a vector using the previously defined indices.
For two-block detection cases, the variables are duplicated as (x;,x,)
and (x3,x4). To proceed with the calculation, GA changes the variables
in integer steps within the range of the indices taken from a reduced
population.

4. Absence of one block

Fig. 6 illustrates the objective function Eq. (1) for a single missing
block, specifically for the (10,4) location in the wall near the bridge’s
top and upper left corner, calculated without noise. Unlike typical GA
cases where only a reduced population is calculated, a population size of
50 is used for this problem, 212 cases are run for this figure, representing
the absence of all blocks one by one.

To prevent the algorithm from becoming trapped in local minima
near the global minimum and to maintain the genetic diversity of
the population, a high mutation and crossover factors of 0.7 and 0.8,
respectively, are applied.

Several regions can be identified in the figure. For missing blocks lo-
cated near (10,4), f, exhibits a flat profile with minor undulations. This
area corresponds to the majority of the left wall, where any missing block
produces a displacement field §/ very similar to the initial 5¢*. Thus, the
difference in Eq. (5) is nearly uniform and close to zero for all blocks,
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T2

Fig. 6. Objective function without noise of all cases for a missing block at x; =10,
x, =4. Large values truncated for better representation.
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Fig. 7. Noise level versus number of GA iterations to converge for a missing
block at (10,4).

and the logarithm of the sum tends to a significant negative value. The
function increases as the GA case j moves away from (10,4). Specifically,
for missing blocks located at the arch (x; =0), f, increases rapidly due
to the partial collapse of the structure, which generates large displace-
ments. A similar situation is observed for locations near the bridge’s top.
A peak close to the minimum corresponds to missing blocks close to the
arch; no collapse occurs, but the movements are significant. Finally, the
minimum can be easily observed in the figure, right at the missing block
location. Since this f,, minimum is isolated, the mathematical prediction
of the missing block location is both unique and accurate.

To analyze the influence of noise on the results, the maximum level
that the GA can accept without divergence is assessed for the case (10,4).
Fig. 7 shows the noise % versus the number of GA iterations required
to converge. For levels lower than 5 %, the increase is almost linear; up
to 13 %, an almost flat distribution is observed, steeply increasing from
13 % onwards. It is important to note that convergence generation is not
a rigorous indicator since it is highly dependent on random variables
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Table 2
Number of iterations for convergence, noise function level for several pairs
(x;, x,) of missing blocks. Cases without convergence are indicated by a hyphen.

X 0 6 6 2 2 4 4 8 8 10 10
X, 15 4 6 6 10 10 12 12 4 12
% noise 10 5 10 5 10 5 10 5 10 10 10
# iter. 8 9 - 27 65 35 - 127 - 67 32

Fig. 8. Bridge vertical displacement field and collapse for missing block (0,15);
blocks numbered after the missing block already in movement and contacting
the next arch block.

such as the initial population. Nevertheless, it provides an approximate
view of how steep the absolute minimum is.

Now, to study the robustness of the inverse problem, the calculation
is performed for different missing locations and levels of noise. Table 2
shows the indices (x;, x,) of the found missing block location and the
iteration at which convergence is reached.

When block (0,15) in the arch is missing, the structure becomes un-
stable, as large displacements occur at the control nodes close to the
keystone (see Fig. 8). In this situation, the missing block can be easily
detected in only eight iterations, even for the intermediate-high noise
level of 10 %.

For the missing block (6,4), located vertically aligned with (10,4),
convergence is strongly influenced by the noise level. While §¢* in the
arch remains largely unchanged from the previous case, the top row dis-
placements are significantly perturbed. Fig. 9 (middle) shows that the
normalized displacements (with respect to the maximum displacement)
above the arch are almost symmetric, a situation confirmed by the sym-
metry observed in the arch intrados (bottom figure). However, a slight
asymmetry is present in the distribution shown in the middle figure,
where the §°* of nodes 1 to 20 is slightly larger than that of nodes 21

normalized 6

normalized ¢

© 40 30 60 70 80
# node
Fig. 9. Vertical displacement field (top) for missing block (6,4) indicated by

a white rectangle; noise-free displacements at bridge top (middle) and the
external side of the arch (bottom).
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Fig. 10. Vertical displacement field (top) for missing block (2,6) indicated by
a white rectangle; noise-free displacements at bridge top (middle) and the
external side of the arch (bottom).

to 40. The small perturbation can only be detected with nine iterations
for a low noise level of 5 %, but the location is impossible with 10 % as
listed in Table 2.

The absence of (2,6) close to the arch bottom left produces rela-
tively large movements in its vicinity. The top Fig. 10 shows that the
orange block above (2,6) experiences one of the highest displacements,
slightly rearranging the neighboring blocks. This effect is also evident
in the small asymmetries depicted in Fig. 10. The largest difference is
observed at nodes 10 to 15 in the middle figure, attributed to their verti-
cal alignment with the missing block. Consequently, the sought location
can be found with an intermediate number of iterations, even for 10 %
noise.

The (4,10) case corresponds to a missing block located symmetrically
to the previous example, but slightly farther to the right. The motion of
the surrounding area is small and does not produce much rearrange-
ment. The missing block has little influence on the symmetry of the
bridge and arch displacements; see the Figs. 11 middle and bottom.
However, a small perturbation is observed around the top nodes 31 to
40, where the displacement is slightly smaller than that of their symmet-
ric counterparts (nodes 1 to 10). This perturbation in the arch and top
sides enables the detection of the missing spot with a 5 % noise level,
but it is undetectable with a higher noise level.

The next case is similar, but involves the missing block (8,12),
situated four rows higher and farther from the arch than the previ-
ous instance. Therefore, its influence on the arch’s displacement field
is negligible, as the distribution remains symmetric (Fig. 12 bottom).
However, a perturbation is observed at the bridge’s top (middle figure),
and the number of iterations required for convergence at 5 % noise is
higher than in the previous case, while detection is impossible at 10 %
noise.

A noteworthy case arises when the missing block is located in one of
the uppermost rows of the bridge. If this block is, for instance, (10, 4), the
situation is shown in Fig. 4. However, if the missing block is close to the
keystone (10, 12), an asymmetry in this area will appear due to the sig-
nificant rearrangement close to the gap, Fig. 13 middle. Consequently,
the normalized control node distributions at the top and the arch suffer
a loss of symmetry, and the detection is achieved with an intermediate
number of iterations even with a 10 % noise.
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Fig. 11. Vertical displacement field (top) for missing block (4,10) indicated
by a white rectangle; noise-free displacements at bridge top (middle) and the
external side of the arch (bottom).
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Fig. 12. Vertical displacement field (top) for missing block (8,12) indicated
by a white rectangle; noise-free displacements at bridge top (middle) and the
external side of the arch (bottom).

5. Absence of two blocks

This section presents a second set of analyses performed to detect
two randomly located missing blocks. The same procedure as that of
Table 2 is followed to show that the method is consistent and robust.
In Table 3, the results for several pairs of missing blocks (x;,x,) and
(x3,x4) are shown, as well as the noise % and the generation for which
the GA converges.

From the analysis of the table, it was necessary to reduce the noise
level from 10 % to 5 % in all two-block cases, as convergence could not
be achieved with the higher value in any instance.

When the first missing block is located in the arch (x; = 0, first two
columns of the table), the position of the second block becomes irrel-
evant, undetectable, and independent of the noise level. This behavior
occurs because the large displacements produced in the arch mask any
small perturbations that might occur in other areas. The absence of two
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Fig. 13. Vertical displacement field (top) for missing block (10,12) indicated by
a white triangle; noise-free displacements at bridge top (middle) and external
side of the arch (bottom).

Table 3
Number of iterations for convergence for missing blocks (x,,x,), (x3,x,), as a
function of noise level. Cases without convergence are indicated by a hyphen.

X 0 0 4 4 4 11 6 6 10
X, 15 15 2 10 10 4 4 4 12
X3 7 7 11 2 2 11 8 8 10
X4 10 10 3 6 6 3 1 1 4
% noise 1 5 5 2 5 5 2 5 5

# iter. block 1 27 32 90 157 - 196 214 239 213
# iter. block 2 - - 90 157 - 196 214 239 213

blocks approximately located in the same vertical line and away from
the arch, case (4,2)+(11,3), produces a noticeable decrease in the top
distribution of the left side; see the Fig. 14 middle. This effect is not
detected in the arch distribution of Fig. 14 bottom. However, the miss-
ing blocks introduce asymmetry in both distributions, particularly in the
top left section of the wall. Therefore, the number of iterations to reach
convergence is relatively small, even with an intermediate noise level.
The displacement field (Fig. 14 bottom) is symmetric in areas near the
central arch since the missing blocks are far away.

A substantial local collapse occurs when the missing blocks are con-
tiguous, such as (11,4)+(11,3), leading to the collapse of the blocks
above them. Convergence is achieved within an intermediate number
of iterations because the displacement is concentrated in this area (see
Fig. 15).

If the missing blocks are quasi-symmetric and located near the arch’s
base, such as (4,10)+(2,6), the number of iterations for convergence
is intermediate at low noise levels. The maxima 6°* are concentrated
near the block (2,6), see Fig. 16 top, due to the rearrangement near the
bottom left side of the arch. Consequently, the asymmetry is easily found
in Fig. 16, middle and bottom distributions.

For a missing block in the vicinity of the arch, with the other lo-
cated on the bridge’s left side (e.g., (6,4)+(8,1), figures not shown),
the GA identifies the locations within an intermediate number of itera-
tions. This is due to the difficulty of finding the block on the left end,
while the one near the arch is easily identified. The number of iterations
remains similar across different noise levels, indicating the persistent
difficulty in locating the extreme block. A similar behavior is found for
cases (10,12)+(10,4), for which one of the blocks is very close to the
keystone while the other is at an intermediate distance. The figure is also
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Fig. 14. Vertical displacement field (top) for missing blocks (4,2)+(11,3) indi-

cated by white rectangles; noise—free displacements at bridge top (middle) and
external side of the arch (bottom).

g

o 02

T 04

2

=06

g

S 08

=]

-1 1
10 20 30 40

5 0

w

B

8 L

= -0.5

g

=

3

s

-1 L L
40 50 60 70 80
# node

Fig. 15. Vertical displacement field (top) for missing blocks (11,4) + (11,3) indi-
cated by white rectangles; noise—free displacements at bridge top (middle) and
external side of the arch (bottom).

not presented, but 6°* are large close to the keystone, and small near the
arch on the left.

Generally, blocks in high rows are easier to detect, and GA converges
with fewer generations. It is important to note that the number of iter-
ations for convergence depends on random variables and varies slightly
for the same simulation run. However, it provides a good idea of how
easy or difficult convergence is.

6. Conclusions

The development of a parametric FemDem model enables the charac-
terization of damaged masonry structures, attributable to its capacity to
accurately model block interactions. Furthermore, this method is well-
suited for implementing inverse problems aimed at damage detection.

To some degree, the bridge displacements under any set of loads
depend on the damage position. Missing blocks near the arch produce
significant displacements and are therefore easier to detect than those
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Fig. 16. Vertical displacement field (top) for missing blocks (4,10) +(2,6) indi-
cated by white rectangles; noise—free displacements at bridge top (middle) and
external side of the arch (bottom).

caused by damage located in intermediate or remote zones from this
arch.

The noise applied to the primary case—used to simulate the experi-
mental data—significantly influences the results. A medium noise level
results in damage not detectable for damage located in intermediate or
far—off areas from the arch. Similarly, in situations where the damage is
in the vicinity of the arch, high noise levels prevent the location of the
damage. In other scenarios, the prediction is accurate.

Finally, the statistical variability of the mechanical and geometrical
properties of the bridge makes the development of probabilistic inverse
problems necessary despite their high computational cost.
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