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H I G H L I G H T S

∙ Parametric Finite Discrete Element Methods allow accurate study of masonry structures.

∙ Block contact and friction are necessary for the new inverse problem of damage location.

∙ Combination of Finite-Discrete and Genetic methods has not been applied to masonry.

∙ Random noise must modify initial numerical data to simulate real structural results.

∙ Finding 1 or 2 blocks is accurate in most cases although dependent on noise.
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A B S T R A C T

Thousands of masonry structures are part of the international railway and road networks, with some remaining 

in use for up to two centuries. Given increasing operational demands in both traffic weight and speeds, devel-

oping effective damage detection techniques becomes essential for their proper maintenance. Currently, damage 

assessment is performed primarily in situ, involving a high costs. Therefore, a numerical tool based on an inverse 

problem for damage detection from a series of indirect and/or permanent measurements is necessary. As a first 

step, this paper presents a numerical approach that combines finite and discrete element methods with genetic 

algorithms to identify the position of one or two missing blocks in a one–span masonry bridge. Field measure-

ments are replaced with a displacement set from a two–dimensional FemDem mesh considering missing blocks. 

These numerical distributions are sampled at a limited number of control nodes and are perturbed with statistical 

noise to simulate the variations in the actual measurements. The results are compared with a small population of 

new numerical cases generated by the genetic algorithm. With appropriate noise levels, it is demonstrated that 

the method can find the missing locations automatically and accurately identify the missing locations.

1. Introduction

Masonry arches made out of adobe bricks can be traced back to 3000 

years BC in ancient cultures [1]; the advantage of this particular geome-

try is that it transforms the bending stresses of straight beams into purely 

compressive stresses. During Roman times, the application of arches 

evolved from habitational buildings to infrastructures such as bridges 

and aqueducts or even domes in their three–dimensional (3D) version. 

The preferred materials became, as they are today, fired brick or stone.

Among the infrastructures, the masonry bridge is one of the oldest 

structural typologies due to its ease of construction, the availability of

rock material in the surrounding areas, and the high capacity of the 

stone to work under compression. Thus, these structures present high 

resistance and stiffness, and they have a significant durability that has 

permitted their survival over centuries. Nowadays, a vast structural her-

itage needs to be preserved, and many of these bridges are still in service: 

there could be over 22,000 in Europe alone, and even more in other 

continents.

Most functioning masonry bridges are part of public transportation 

systems, constructed between the 19 

th and mid–20 

th centuries. Adapting 

them to new structural operational conditions is necessary since they
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support axial loads higher than initially predicted; therefore, new and 

more accurate tools are required for their analysis.

Since masonry bridges are composed of stones or bricks glued by 

mortar or directly in contact, they are internally discontinuous struc-

tures, [2]. Contact provides the structure’s overall stability; as a con-

sequence, complex nonlinear and discontinuous behavior appears as 

explained in [3]. Early efforts to investigate the behavior of arches can 

be traced back to the first experimental studies of the Roman architect 

Vitruvius in the 1st century B.C. [4]. Many years later, the Renaissance 

engineer and artist Leonardo da Vinci [5] focused on stability analysis 

to design a 240 m single–span masonry bridge (without mortar) over 

the Golden Horn, Istanbul.

Comprehensive graphical methods were developed in the XIX cen-

tury [6] for calculating discontinuous structures. Later, semiempirical 

methods [7], analytical formulations [8], or methods based on linear and 

nonlinear elasticity [9] emerged. These methods can often accurately 

model the nonlinear behavior, but only apply to the simplest geometries 

and loads. Therefore, there is a need to consider advanced techniques 

that account for the masonry’s inherent structural discontinuous nature.

The Discrete Element Method (DEM) [10] is a numerical tool capa-

ble of calculating the response of multibody systems interacting through 

contact and friction, and it was first implemented in the 1970 s. DEM 

modelling of masonry structures is of natural and immediate application 

[11,12]. Moreover, applying DEM to analyze a wide range of historical 

masonry structures is possible thanks to the current increase in com-

putational capabilities. These structures include walls [13–16], arches 

[17,18], masonry columns [19], buildings under static and dynamic 

regimes [20] or domes in 3D static/dynamic situations [21].

Methods similar to DEM, such as Non–Smooth Contact Dynamics, 

have been published in [22]; however, their application requires a sig-

nificantly high computational cost. The Finite Element Method (FEM) 

is an alternative, but inserting interfaces for the contact between blocks 

makes it less competitive, [23–25]. Despite the suitability of DEM to rep-

resent rigid body mechanics, its accuracy for internal strains and stresses 

inside the block is lower than that of FEM, [26]. A comprehensive re-

view of analytical and numerical methods for assessing the performance 

of masonry structures can be found in [27].

The combination of DEM to model the interactions between blocks 

and FEM to model their elasticity is optimal for studying the mechanical 

behavior of masonry structures. This fusion is known as the combined 

Finite–Discrete Element Method (FemDem) [28], which has gained 

widespread application in recent years, [29]. It has also become a pow-

erful tool in the fields of rock and geo–mechanics [30]. More recently, 

[31] has shown how this combination can also be helpful for structural 

engineering, as in the study of the collapse of masonry arches under var-

ious static actions. The extension to cases with dynamic loads has been 

made for simple structures, such as walls under cyclic loads [32].

Identifying structural deterioration is essential for adequately eval-

uating and maintaining masonry structures. Direct visual inspection 

remains the standard practice for detecting structural deterioration. 

However, it is usually restricted to the external parts of the bridge. 

Destructive testing methods consist of small penetration/extraction tech-

niques of specimens that only partially assess the structure; moreover, 

they are only suitable for use in preliminary inspections.

In addition to traditional inspection and monitoring tech-

niques, more advanced—though often costly—approaches such as 

Nondestructive Testing (NDT) can provide a detailed assessment of a 

bridge’s structural condition. Using sensors or imaging technologies, 

these methods can monitor the onset of damage, crack formation, and 

large deformations [33], supplying valuable data to prevent structural 

pathologies. Comprehensive reviews of NDT applications are provided 

in [34,35], while [36] focuses on Acoustic Emission techniques. 

Experimental approaches based on ambient vibration testing and 

operational modal analysis have been reported in [37,38], along with 

methods combining ambient and random impact vibrations. Recent 

developments also include the use of self-sensing materials for new

masonry structures [39] and advanced methods based on deep learning 

and image reconstruction [40,41].

Several studies combine structure monitoring with FEM simula-

tions, as previously mentioned, while FEM can model discontinuous 

domains through interface elements, this approach becomes computa-

tionally less competitive for masonry structures with numerous contact 

interfaces [42]. DEM has been used with inverse or optimization al-

gorithms involving interactions between bodies. Some examples are 

the calibration of microparameters in granular materials using Genetic 

Algorithms (GA) [43], a specialized heuristic optimization tool that re-

lies on the application of the rules of both natural selection and genetics 

[44], the identification of rock–like material parameters [45], and the 

shape optimization of bucket elevators [46]. However, to the best of 

our knowledge, existing literature lacks numerical procedures based on 

DEM or FemDem specifically designed for damage detection in masonry 

structures exhibiting discontinuities between blocks.

This paper presents an inverse method for damage location in a 

masonry bridge using FemDem. A brief description of FemDem and a 

numerical parametric model of a masonry arch bridge missing one or 

two blocks will be developed in Section 2; a similar bridge has been 

studied in [47] for other objectives. Also, an objective function, built 

upon the numerical displacements of the bridge contour, is proposed 

in Section 3. This function is minimized using a GA capable of find-

ing the missing blocks’ location. Since experimental displacements are 

currently unavailable and no direct experimental analog was found in 

the literature, they will be simulated by direct “experimental” FemDem 

simulations in which the positions of the missing blocks are known; sub-

sequently, the inverse problem will detect these positions without the 

initial information. Although the lack of experimental data represents 

a limitation of the current study, this work constitutes a critical phase 

before proceeding to physical validation as it is well–established in the 

literature on structural health monitoring of historical masonry [48,49]. 

Different noise levels will be inserted into the “experimental” displace-

ments to account for possible interferences from monitoring systems or 

surrounding effects in actual experiments. This methodology provides 

insight into the proposed method’s ability to detect damage for differ-

ent noise levels and for the cases and results presented and discussed in 

Sections 4 and 5.

2. The FemDem method, masonry bridge model and parameters

The modelling strategy adopted is based on the combined Finite 

Element–Discrete Element Method, which has been extensively used in 

the analysis of masonry structures due to its capability to represent both 

the continuum mechanical behavior of the blocks and the discrete na-

ture of the joints [11,28]. This hybrid approach integrates the strengths 

of the Finite Element Method for accurately computing stresses and 

strains within each block, with those of the Discrete Element Method for 

modelling contact interaction, separation, sliding, and rotation between 

blocks.

In the FemDem framework, each masonry unit is discretized into fi-

nite elements connected by cohesive interfaces representing the mortar 

joints. Contact detection algorithms are employed to identify poten-

tial interactions between adjacent blocks when relative displacements 

occur. Once contact is detected, normal and tangential contact laws 

govern the transfer of forces, incorporating stiffness degradation and 

frictional sliding where relevant. This formulation naturally handles 

nonlinear phenomena such as crack initiation at joints, progressive joint 

opening and closing, and post–peak softening. Moreover, the method 

can reproduce large displacements and rotations without the numerical 

instabilities that can affect purely continuum-based models.

While masonry bridges are 3D structures, the dimension perpendic-

ular to the main plane is smaller than the others; this two-dimensional 

(2D) assumption is more evident in early railroad bridges with only 

one track. Furthermore, most loads act within the frontal plane, re-

sulting in minimal out-of-plane displacements. The current 2D model,
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Fig. 1. Geometry of the masonry bridge. A pair of integers (𝑥 1 

,𝑥 2 

) identifies each block. Control points for displacement 𝛿 are numbered in red.

Fig. 2. Symmetric FemDem masonry bridge mesh, indicating the boundary conditions and discretization of block in two (blue), three (green), four (pink) and variable 

(brown) finite elements.

see Fig. 1, neglects the fill material due to its relatively lower stiffness 

compared to the stone masonry. Therefore, the geometry resembles a 

plane stress/strain situation. This simplification is appropriate for the 

initial development of the damage detection methodology, as the pri-

mary structural response is governed by the arch and spandrel walls, 

see [31]. For practical applications requiring higher accuracy, the model 

can be extended to include fill properties through equivalent stiffness 

adjustments [50] or 3D modelling [51].

As mentioned, the objective of the current article is to develop and 

apply an algorithm to automatically detect the absence of some blocks 

in a structure, comparing the behavior of a base case that simulates ex-

perimental measurements with other cases missing one or two blocks. 

Both cases are evaluated on the reference masonry bridge illustrated in 

Fig. 1, consisting of a semicircular arch with external dimensions of 20 m 

(span) by 6 m (rise). The arch has a radius of 𝑅 = 7 m, with its center lo-

cated on the vertical axis of symmetry at a height of 0.3 𝑅 above ground 

level. Location of blocks is indexed by a pair of coordinates, and verti-

cal displacements used in this work are recorded at the control points 

indicated by red dots.

For this purpose, a FemDem mesh corresponding to the blocks of the 

figure is created, see Fig. 2. It is composed of 212 rectangular blocks 

of general dimensions 1 × 0.5 m with 529 elements. The exception is 

for the transition blocks close to the arch, whose shape and size have 

been adapted to accommodate the intersections with the arch, mim-

icking real-world masonry construction. As each block is identified by 

a pair of indices (see Fig. 1; therefore, the locations and the absence 

of one or more blocks in the inverse problem can be easily registered. 

The bridge’s motion is prevented at its base (clamped), and the lateral 

sides can move vertically to simulate the rest of the terrain. To mimic 

real structural inspections and leverage their accessibility, the red nodes 

located in the arch intrados and on the upper side of the bridge are des-

ignated as control points for measuring vertical displacements in the 

inverse problem.

FemDem is a computationally demanding method, with runtime 

dependent on the number of contact interfaces and the internal dis-

cretization of each block. To achieve a reasonable CPU time with good 

accuracy and a robust simulation in contact scenarios, see Munjiza in 

[28], the discretization is performed with triangular finite elements (FE), 

as shown in Fig. 2 as follows:

(a) The rectangular blocks at the lateral sides of the bridge are divided

into two FE since their mechanical behavior is quite homogeneous 

(blue).

(b) The arch blocks are divided into three FE due to their significant

stress gradient (green).

(c) At the arch bottom and the bridge’s highest row—where the

stresses are highly concentrated—they are divided into four FE 

(pink).

(d) The transition blocks are divided into one to three FE to maintain

a good aspect ratio (brown).

The mechanical and numerical parameters adopted in the model are 

summarized in Table 1. The notation is as follows: 𝐸 denotes the Young’s 

modulus, 𝜈 the Poisson’s ratio, 𝜌 the density, 𝑝 𝑛 

and 𝑝 𝑡 

the penalty pa-

rameters in the normal and tangential directions, respectively, and 𝜙 

the friction angle between blocks. Most of the mechanical parameters 

are obtained from Ref. [52]; however, 𝑝 𝑛 

and 𝑝 𝑡 

are computed according 

to the prescriptions in Ref. [28].

Table 1 

Mechanical and numerical material parameters of the FemDem model.

𝐸 𝜈 𝜌 𝑝 𝑛 𝑝 𝑡 𝜙

N/m 

2 – kg/m 

3 N/m N/m ◦

2.5e10 0.2 2400 1e9 1e8 35

Structures 81 (2025) 110279 

3 



R. Bravo and J.L. Pérez-Aparicio

Fig. 3. (Top). Eindhoven wall, experimental crack progress, left; FemDem crack 

progress, center; Tresca stress, right; red maximum with a blue minimum of 0. 

(Bottom) Displacement 𝑑 vs. reaction force 𝐹 at the top nodes.

The blocks are assumed to be homogeneous stones with very high 

compressive strength. Therefore, they cannot fracture; their surfaces are 

rough without mortar in joints (dry stone).

Although the present study does not reproduce an experimental test 

directly, the modelling approach has been contrasted with relevant ex-

perimental evidence from the literature. In particular, the Eindhoven 

masonry wall experiment [52,53] provides a valuable reference for 

validating the general mechanical behavior captured by the FemDem 

formulation. This large-scale test involved a masonry wall subjected to 

lateral mechanical loading and monitored under controlled laboratory 

conditions, see Fig. 3. These validation results were previously published 

by the authors in [47]. In this setup, contact discontinuities naturally oc-

curred due to load-induced cracking and detachment, where the results 

(crack openings) produced by FemDem, Fig. 3 (top-left), fit well with the 

experimental results (top-center). Additionally, a numerical representa-

tion of the Tresca stress is presented. The numerical and experimental 

displacement 𝑑 vs. reaction force 𝐹 relations shown in Fig. 3 bottom, 

show a good agreement, confirming that the model accurately repro-

duces the physical behavior. The slight discrepancy observed at the end 

of the distribution (approximately 19 % compared to the experiment) 

can be attributed to the model’s limitations in capturing internal brick 

failure. These parallels support the capability of the numerical model to 

reproduce realistic structural responses, thereby reinforcing confidence 

in its application to the detection of block-scale damage in masonry 

bridges.

3. Inverse problem description and methodology

This section presents the inverse problem of damage identification 

formulated with FemDem to locate missing block positions. The cor-

responding objective function is calculated using the distribution of 

vertical displacements 𝛿 under the gravity of the bridge for the control 

points shown in Fig. 1. These displacements are computed parametri-

cally as a function of the positions of the missing blocks, identified with 

the pair of integer indices (𝑥 1 

, 𝑥 2 

) defined in Fig. 1.

The present work is exclusively computational. Therefore, instead 

of using real experimental displacements, numerical displacements 

𝛿 

𝑒𝑥 (𝑥 1 

, 𝑥 2 

) ≡ 𝛿 

𝑒𝑥 at the control nodes of Fig. 1 from a direct FemDem 

case (in which one or two blocks are missing) are used as reference. The 

superscript “experimental” is only symbolic, indicating that numerical 

data takes the place of experimental data.

To replicate the inherent variations in field measurements, noise is 

added to the 𝛿 

𝑒𝑥 data. The noise is uniformly applied to all displacements

Fig. 4. Vertical FemDem displacements at control nodes: (a) top row and (b) 

arch, for both the intact structure (No damage) and the damaged case with block 

(10,4) removed (see Fig. 1), presented without noise (Damage) and with 14 % 

noise.

and its amplitude is user–chosen from 5 % to 10 %. The higher the noise, 

the more difficult it is for GA to converge since the “experimental” dis-

tribution becomes very different from that of the FemDem, the objective 

function is high, and the minima may be found at incorrect locations.

As a preliminary example, Fig. 4 shows the numerically calculated 

𝛿 

𝑒𝑥 with FemDem for the case without damage (continuous line), and the 

particular case of the missing block (𝑥 1 

, 𝑥 2 

) = (10,4), without (dashed 

line) and with a 14 % noise (dash-dotted line). For blocks at the top row 

of the bridge numbered 1 to 40, the figure a) shows that the values are 

slightly higher at the center–left due to the lower rigidity induced by the 

missing block. The figure b) plots the 𝛿 

𝑒𝑥 of the arch; the distribution is 

now almost symmetric since the missing block does not affect the arch 

displacements much, and its absolute maximum value lies close to the 

central keystone. The results with and without noise are similar (though 

not identical) because the 14 % noise is applied only to the total 𝛿 

𝑒𝑥 

standard deviation. A noise level of 14 % translates into an error for 

each individual displacement measurement ranging from ±1.1 mm up 

to ±9.8 mm for measured displacements between 8 mm and 70 mm at 

the top row, and from 0 mm up to ±11.1 mm for measured displacements 

ranging from 0 mm to 80 mm at the arch. Expressing the uncertainty in 

this way facilitates clearer interpretation for monitoring practitioners.

In the current article, a GA controls the inverse problem solution with 

Eq. (1) defining the calculation of the mentioned objective function. The 

GAs are global search metaheuristics particularly well–suited for discrete 

design variables and discontinuous objective functions. Unlike gradient– 

based optimization methods, which may struggle with the combinatorial 

complexity of block configurations, GA does not require gradient infor-

mation, can effectively navigate multiple local optima, and is robust to 

measurement noise. These algorithms have been widely applied in struc-

tural damage detection problems [54,55], demonstrating both flexibility 

and reliability in similar contexts.

To this end, FemDem simulations are performed with one or two 

blocks missing at locations proposed by the GA population, calculating 

a new set of displacements 𝛿 

𝑗 

𝑖 for each run (where 𝑗 denotes the GA 

iteration). Subsequently, the objective function 𝑓 𝑣 

is formulated as the 

difference between the experimental (or “real”) and the GA-generated 

displacements:

𝑓 𝑣 = log 

( 𝑁
∑

𝑖=1

|

|

|

|

(

𝛿𝑒𝑥𝑖 − 𝛿 

𝑗
𝑖

)

|

|

|

|

+ 10 

−16 

) 

, (1)
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Fig. 5. Flowchart for the computation of the objective function.

where 𝑖 is the number of the control node (shown in red) of Fig. 1 and 

𝑁 = 78 its maximum. The objective function was designed to be both 

robust against measurement errors and applicable to real monitoring sit-

uations. Robustness is achieved through the use of the 𝐿1 norm, which 

reduces the influence of extreme values in the data, a logarithmic trans-

formation 𝑓 𝑣 

to improve optimization convergence [56], normalization 

of displacement differences to handle variations in measurement scale, 

and multiple control points to provide redundancy in case of sensor mal-

function or data loss. In terms of applicability, the formulation works 

effectively under static and quasi–static loading conditions but can also 

be extended to dynamic situations. Its structure allows integration with 

various sensor types and can be adapted to different bridge geometries 

and damage scenarios [33].

Fig. 5 summarizes the GA procedure: the algorithm iteratively ad-

justs the position of the missing block from the population, and FemDem

calculates the corresponding vertical displacement 𝛿 

𝑗 at each control 

node 𝑖.
These displacements are compared with the initial 𝛿 

𝑒𝑥 corresponding 

to a case with the actual missing block position (unknown to the GA); 

subsequently, the objective function is evaluated at each step 𝑗.
The inverse problem can be posed as a minimization (which can be 

constrained) that is defined as finding (𝑥 1 

, 𝑥 2 

) such that:

min
(𝑥 1 

,𝑥 2 

)
𝑓 𝑣(𝑥 1 

, 𝑥 2 

) (2)

As mentioned, when a single block is missing, the variables to op-

timize are the positions (𝑥 1 

, 𝑥 2 

). The coordinates of the block’s center 

of gravity are stored in a vector using the previously defined indices. 

For two-block detection cases, the variables are duplicated as (𝑥 1 

, 𝑥 2 

) 

and (𝑥 3, 𝑥 4 

). To proceed with the calculation, GA changes the variables

in integer steps within the range of the indices taken from a reduced 

population.

4. Absence of one block

Fig. 6 illustrates the objective function Eq. (1) for a single missing 

block, specifically for the (10,4) location in the wall near the bridge’s 

top and upper left corner, calculated without noise. Unlike typical GA 

cases where only a reduced population is calculated, a population size of 

50 is used for this problem, 212 cases are run for this figure, representing 

the absence of all blocks one by one.

To prevent the algorithm from becoming trapped in local minima 

near the global minimum and to maintain the genetic diversity of 

the population, a high mutation and crossover factors of 0.7 and 0.8, 

respectively, are applied.

Several regions can be identified in the figure. For missing blocks lo-

cated near (10,4), 𝑓 𝑣 

exhibits a flat profile with minor undulations. This 

area corresponds to the majority of the left wall, where any missing block 

produces a displacement field 𝛿 

𝑗 very similar to the initial 𝛿 

𝑒𝑥 . Thus, the 

difference in Eq. (5) is nearly uniform and close to zero for all blocks,

5 10 15 20
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-6

-4

-2

0

20

-10
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15

0

10
10

5 5
0

Fig. 6. Objective function without noise of all cases for a missing block at 𝑥 1 

=10, 

𝑥 2=4. Large values truncated for better representation.

Fig. 7. Noise level versus number of GA iterations to converge for a missing 

block at (10,4).

and the logarithm of the sum tends to a significant negative value. The 

function increases as the GA case j moves away from (10,4). Specifically, 

for missing blocks located at the arch (𝑥 1 

=0), 𝑓 𝑣 

increases rapidly due 

to the partial collapse of the structure, which generates large displace-

ments. A similar situation is observed for locations near the bridge’s top. 

A peak close to the minimum corresponds to missing blocks close to the 

arch; no collapse occurs, but the movements are significant. Finally, the 

minimum can be easily observed in the figure, right at the missing block 

location. Since this 𝑓 𝑣 

minimum is isolated, the mathematical prediction 

of the missing block location is both unique and accurate.

To analyze the influence of noise on the results, the maximum level 

that the GA can accept without divergence is assessed for the case (10,4). 

Fig. 7 shows the noise % versus the number of GA iterations required 

to converge. For levels lower than 5 %, the increase is almost linear; up 

to 13 %, an almost flat distribution is observed, steeply increasing from 

13 % onwards. It is important to note that convergence generation is not 

a rigorous indicator since it is highly dependent on random variables

Structures 81 (2025) 110279 
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Table 2 

Number of iterations for convergence, noise function level for several pairs 

(𝑥 1 

, 𝑥 2 

) of missing blocks. Cases without convergence are indicated by a hyphen.

𝑥 1 

0 6 6 2 2 4 4 8 8 10 10

𝑥 2 

15 4 4 6 6 10 10 12 12 4 12 

% noise 10 5 10 5 10 5 10 5 10 10 10 

# iter. 8 9 – 27 65 35 – 127 – 67 32

Fig. 8. Bridge vertical displacement field and collapse for missing block (0,15); 

blocks numbered after the missing block already in movement and contacting 

the next arch block.

such as the initial population. Nevertheless, it provides an approximate 

view of how steep the absolute minimum is.

Now, to study the robustness of the inverse problem, the calculation 

is performed for different missing locations and levels of noise. Table 2 

shows the indices (𝑥 1 

, 𝑥 2 

) of the found missing block location and the 

iteration at which convergence is reached.

When block (0,15) in the arch is missing, the structure becomes un-

stable, as large displacements occur at the control nodes close to the 

keystone (see Fig. 8). In this situation, the missing block can be easily 

detected in only eight iterations, even for the intermediate–high noise 

level of 10 %.

For the missing block (6,4), located vertically aligned with (10,4), 

convergence is strongly influenced by the noise level. While 𝛿 

𝑒𝑥 in the 

arch remains largely unchanged from the previous case, the top row dis-

placements are significantly perturbed. Fig. 9 (middle) shows that the 

normalized displacements (with respect to the maximum displacement) 

above the arch are almost symmetric, a situation confirmed by the sym-

metry observed in the arch intrados (bottom figure). However, a slight 

asymmetry is present in the distribution shown in the middle figure, 

where the 𝛿 

𝑒𝑥 of nodes 1 to 20 is slightly larger than that of nodes 21

Fig. 9. Vertical displacement field (top) for missing block (6,4) indicated by 

a white rectangle; noise–free displacements at bridge top (middle) and the 

external side of the arch (bottom).

Fig. 10. Vertical displacement field (top) for missing block (2,6) indicated by 

a white rectangle; noise–free displacements at bridge top (middle) and the 

external side of the arch (bottom).

to 40. The small perturbation can only be detected with nine iterations 

for a low noise level of 5 %, but the location is impossible with 10 % as 

listed in Table 2.

The absence of (2,6) close to the arch bottom left produces rela-

tively large movements in its vicinity. The top Fig. 10 shows that the 

orange block above (2,6) experiences one of the highest displacements, 

slightly rearranging the neighboring blocks. This effect is also evident 

in the small asymmetries depicted in Fig. 10. The largest difference is 

observed at nodes 10 to 15 in the middle figure, attributed to their verti-

cal alignment with the missing block. Consequently, the sought location 

can be found with an intermediate number of iterations, even for 10 % 

noise.

The (4,10) case corresponds to a missing block located symmetrically 

to the previous example, but slightly farther to the right. The motion of 

the surrounding area is small and does not produce much rearrange-

ment. The missing block has little influence on the symmetry of the 

bridge and arch displacements; see the Figs. 11 middle and bottom. 

However, a small perturbation is observed around the top nodes 31 to 

40, where the displacement is slightly smaller than that of their symmet-

ric counterparts (nodes 1 to 10). This perturbation in the arch and top 

sides enables the detection of the missing spot with a 5 % noise level, 

but it is undetectable with a higher noise level.

The next case is similar, but involves the missing block (8,12), 

situated four rows higher and farther from the arch than the previ-

ous instance. Therefore, its influence on the arch’s displacement field 

is negligible, as the distribution remains symmetric (Fig. 12 bottom). 

However, a perturbation is observed at the bridge’s top (middle figure),

and the number of iterations required for convergence at 5 % noise is 

higher than in the previous case, while detection is impossible at 10 % 

noise.

A noteworthy case arises when the missing block is located in one of 

the uppermost rows of the bridge. If this block is, for instance, (10, 4), the 

situation is shown in Fig. 4. However, if the missing block is close to the

keystone (10, 12), an asymmetry in this area will appear due to the sig-

nificant rearrangement close to the gap, Fig. 13 middle. Consequently, 

the normalized control node distributions at the top and the arch suffer 

a loss of symmetry, and the detection is achieved with an intermediate 

number of iterations even with a 10 % noise.
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Fig. 11. Vertical displacement field (top) for missing block (4,10) indicated 

by a white rectangle; noise–free displacements at bridge top (middle) and the 

external side of the arch (bottom).

Fig. 12. Vertical displacement field (top) for missing block (8,12) indicated 

by a white rectangle; noise–free displacements at bridge top (middle) and the 

external side of the arch (bottom).

5. Absence of two blocks

This section presents a second set of analyses performed to detect 

two randomly located missing blocks. The same procedure as that of 

Table 2 is followed to show that the method is consistent and robust. 

In Table 3, the results for several pairs of missing blocks (𝑥 1 

, 𝑥 2 

) and 

(𝑥 3 

, 𝑥 4 

) are shown, as well as the noise % and the generation for which 

the GA converges.

From the analysis of the table, it was necessary to reduce the noise 

level from 10 % to 5 % in all two-block cases, as convergence could not 

be achieved with the higher value in any instance.

When the first missing block is located in the arch (𝑥 1 

= 0, first two 

columns of the table), the position of the second block becomes irrel-

evant, undetectable, and independent of the noise level. This behavior 

occurs because the large displacements produced in the arch mask any 

small perturbations that might occur in other areas. The absence of two

Fig. 13. Vertical displacement field (top) for missing block (10,12) indicated by 

a white triangle; noise–free displacements at bridge top (middle) and external 

side of the arch (bottom).

Table 3 

Number of iterations for convergence for missing blocks (𝑥 1 

, 𝑥 2 

), (𝑥 3 

, 𝑥 4 

), as a 

function of noise level. Cases without convergence are indicated by a hyphen.

𝑥 1 0 0 4 4 4 11 6 6 10

𝑥 2 15 15 2 10 10 4 4 4 12

𝑥 3 7 7 11 2 2 11 8 8 10

𝑥 4 10 10 3 6 6 3 1 1 4

% noise 1 5 5 2 5 5 2 5 5

# iter. block 1 27 32 90 157 – 196 214 239 213

# iter. block 2 – – 90 157 – 196 214 239 213

blocks approximately located in the same vertical line and away from 

the arch, case (4,2)+(11,3), produces a noticeable decrease in the top 

distribution of the left side; see the Fig. 14 middle. This effect is not 

detected in the arch distribution of Fig. 14 bottom. However, the miss-

ing blocks introduce asymmetry in both distributions, particularly in the 

top left section of the wall. Therefore, the number of iterations to reach 

convergence is relatively small, even with an intermediate noise level. 

The displacement field (Fig. 14 bottom) is symmetric in areas near the 

central arch since the missing blocks are far away.

A substantial local collapse occurs when the missing blocks are con-

tiguous, such as (11,4)+(11,3), leading to the collapse of the blocks 

above them. Convergence is achieved within an intermediate number 

of iterations because the displacement is concentrated in this area (see 

Fig. 15).

If the missing blocks are quasi-symmetric and located near the arch’s 

base, such as (4,10)+(2,6), the number of iterations for convergence 

is intermediate at low noise levels. The maxima 𝛿 

𝑒𝑥 are concentrated 

near the block (2,6), see Fig. 16 top, due to the rearrangement near the 

bottom left side of the arch. Consequently, the asymmetry is easily found 

in Fig. 16, middle and bottom distributions.

For a missing block in the vicinity of the arch, with the other lo-

cated on the bridge’s left side (e.g., (6,4)+(8,1), figures not shown), 

the GA identifies the locations within an intermediate number of itera-

tions. This is due to the difficulty of finding the block on the left end, 

while the one near the arch is easily identified. The number of iterations 

remains similar across different noise levels, indicating the persistent 

difficulty in locating the extreme block. A similar behavior is found for 

cases (10,12)+(10,4), for which one of the blocks is very close to the 

keystone while the other is at an intermediate distance. The figure is also
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Fig. 14. Vertical displacement field (top) for missing blocks (4,2)+(11,3) indi-

cated by white rectangles; noise–free displacements at bridge top (middle) and 

external side of the arch (bottom).

Fig. 15. Vertical displacement field (top) for missing blocks (11,4)+(11,3) indi-

cated by white rectangles; noise–free displacements at bridge top (middle) and 

external side of the arch (bottom).

not presented, but 𝛿 

𝑒𝑥 are large close to the keystone, and small near the 

arch on the left.

Generally, blocks in high rows are easier to detect, and GA converges 

with fewer generations. It is important to note that the number of iter-

ations for convergence depends on random variables and varies slightly 

for the same simulation run. However, it provides a good idea of how 

easy or difficult convergence is.

6. Conclusions

The development of a parametric FemDem model enables the charac-

terization of damaged masonry structures, attributable to its capacity to 

accurately model block interactions. Furthermore, this method is well-

suited for implementing inverse problems aimed at damage detection.

To some degree, the bridge displacements under any set of loads 

depend on the damage position. Missing blocks near the arch produce 

significant displacements and are therefore easier to detect than those

Fig. 16. Vertical displacement field (top) for missing blocks (4,10)+(2,6) indi-

cated by white rectangles; noise–free displacements at bridge top (middle) and 

external side of the arch (bottom).

caused by damage located in intermediate or remote zones from this 

arch.

The noise applied to the primary case—used to simulate the experi-

mental data—significantly influences the results. A medium noise level 

results in damage not detectable for damage located in intermediate or 

far–off areas from the arch. Similarly, in situations where the damage is 

in the vicinity of the arch, high noise levels prevent the location of the 

damage. In other scenarios, the prediction is accurate.

Finally, the statistical variability of the mechanical and geometrical 

properties of the bridge makes the development of probabilistic inverse 

problems necessary despite their high computational cost.
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