Analysis and modeling of YouTube traffic

Pablo Ameigeiras, Juan J. Ramos-Munoz, Jorge Navarro-Ortiz, Juan M. Lopez-Soler

Research Center on Information and Communications Technologies (CITIC),

University of Granada, Granada, Spain

Corresponding author: Juan M. Lopez-Soler Email: juanma@ugr.es. Telephone: +34 958242303.
Postal address: Department of Signal Theory, Telematics and Communications,

E.T.S.I. Informética y Telecomunicacion,

C/ Periodista Daniel Saucedo Aranda s/n, 18071 Granada, Spain

ABSTRACT - YouTube currently accounts for a significant percentage of the Internet’s global traffic. Hence,
understanding the characteristics of the YouTube traffic generation pattern can provide a significant advantage in
predicting user video quality and in enhancing network design. In this paper we present a characterization of the
traffic generated by YouTube when accessed from a regular PC. Based on this characterization, a YouTube server
traffic generation model is proposed, which, for example, can be easily implemented in simulation tools. The
derived characterization and model are based on experimental evaluations of traffic generated by the application
layer of YouTube servers. A YouTube server commences the download with an initial burst and later throttles
down the generation rate. If the available bandwidth is reduced (e.g., in the presence of network congestion), the
server behaves as if the data excess that cannot be transmitted due to the reduced bandwidth were accumulated at a
server’s buffer, which is later drained if the bandwidth availability is recovered. As we will show, the video clip
encoding rate plays a relevant role in determining the traffic generation rate, and therefore, a cumulative density
function for the most viewed video clips will be presented. The proposed traffic generation model was
implemented in a YouTube emulation server, and the generated synthetic traffic traces were compared to
downloads from the original YouTube server. The results show that the relative error between downloads from the
emulation server and the original server does not exceed 6% for the 90% of the considered videos.

1. INTRODUCTION

In recent years, the Internet has experienced enormous increases in traffic from social networking media
data and video streaming on-demand web-based services due to the increasing interest in user-generated
content. Internet videos from sites such as YouTube, Hulu, and Netflix grew to represent about 40% of
the consumer Internet traffic in 2010 [1], while the percentage of the Internet’s traffic from Peer-to-Peer
(P2P) services has declined in the past few years [1]. Among all audio and video sites, YouTube has
become the most dominant, being rated as the third-most visited Internet site (according to [2]);
additionally, continuing a growing trend, video traffic has reached 52% of the total traffic in mobile
networks at the end of 2011 [3]. Therefore, the analysis and characterization of its traffic is of major
importance.

YouTube employs the MP4 container for high-definition (HD) clips and uses the Flash Video (FLV) as
the default format for the majority of non-HD clips [4]. While users may upload their content in a
variety of media formats, YouTube adapts them to the aforementioned formats before posting [5].
YouTube employs the progressive download technique that enables video playback before the content
download is completely finished [5]. It also uses the HTTP/TCP platform, which further distinguishes it
from traditional media streaming.

The present paper aims at two main objectives: 1) shed light on the YouTube service from the viewpoint
of the progressive download traffic generation carried out by YouTube servers accessed from a regular
PC; the rationale for it is because of the algorithms and parameters ruling the traffic generation are not
publicly available; and 2) propose a YouTube server traffic generation model. As a result, one major

Keywords — YouTube, YouTube Traffic Generation, Progressive Download, YouTube Data
Rate, YouTube Application Flow Control, Progressive Download Traffic Generation.

mailto:juanma@ugr.es

benefit is that YouTube traffic sources can be easily implemented in network simulation tools and
experimental test beds to evaluate the service performance and its end-user quality degradation impact,
e.g. as done in [6].

In this work, we focus on FLV-based video clips since the default download from regular PCs use an
FLV container for more than 92 percent of the videos clips -as it will be shown in section 3.3-.
Furthermore, users stick with default player configurations with negligible voluntary change of video
resolutions [7].

Our study includes a complete characterization of the progressive download technique used by
YouTube servers. The results will show that the server commences a download by transferring an initial
burst of 40 seconds of video data at the Internet’s maximum available bandwidth and later applies a
throttling algorithm that imposes a data rate equal to 1.25 times the video clip encoding rate. For these
phases, YouTube applies a minimum size of the initial burst and a minimum transmission data rate of
250 kbps during the throttling phase.

The experimental results will also show that if the available bandwidth is reduced (e.g., in the presence
of network congestion), the server behaves as if the data excess that cannot be transmitted due to the
limited Internet bandwidth were accumulated at a server buffer of 2 MB, which is later drained as soon
as the bandwidth availability is recovered. It was also identified that the video clip encoding rate plays a
key role in determining the download data rate. Therefore, the cumulative density function (CDF) for a
large number of randomly-chosen video clips is presented and later fitted by an analytical function.

Based on all of the conducted experiments, we propose a YouTube server traffic generation model. This
model was validated by implementing it in a YouTube emulation server, and by comparing the
generated synthetic traffic traces with downloads from the original YouTube server. We claim that in
the worst case 90% of the video clips generated by our model have a relative error that does not exceed
6%.

The rest of the article is organized as follows: section 2 provides an overview of YouTube server and
player operation; section 3 provides the experimental framework and a description of the collected sets
of traces; section 4 presents the analysis of the experimental results of the main characteristics of
YouTube traffic generation; section 5 provides the pseudo-code of the YouTube server traffic
generation model, and presents its experimental validation; and, finally, sections 6 and 7 present the
related work and main conclusions respectively.

2. YOUTUBE OPERATION OVERVIEW

This section describes the operation of the YouTube service. Figure 1 summarizes the different
functionalities of this service, including both the server and the client.

The video clip download process is initiated by the end-user requesting the YouTube web page of the
desired video clip. When the web browser receives the YouTube web page, the embedded player
initiates the required signaling (see section 2.1) with the media server (selected from a farm of servers)
to indicate the video that is to be played. Then, the player starts progressively downloading the video
data (at a receiving data rate in the TCP layer R,), which is stored in a buffer (as described in section
2.2), and later played with a playback rate equal to the video clip encoding rate V;. The video clip data
are encapsulated in an HTTP response, and then, the data feed a TCP stack (at a traffic generation rate
in the application layer G,) with a proprietary algorithm by the media server. Finally, the data are sent
by the TCP stack (at a transmission data rate in the TCP layer T,) to the client over the Internet (with an
available bandwidth B).

CLIENT COMPUTER

APPLICATION LAYER

GET url, video

YOUTUBE PLAYER YOUTUBE WEB SERVER

web page including video player

YOUTUBE MEDIA SERVER

APPLICATION LAYER

{ 1 GETvideo, parameters

! SIGNALING |

L H video
........... {:rewsimw

L

------ GET video, ﬁ

[Y + | parameters

! YOUTUBE VIDEO l‘:"} SIGNALING E Ld * E HTTP

i PLAYER LOGIC (N ! ! 1

AYER |

i - Sltgar:: rlt:‘gchine A < ; El

i el putering S ot | TRAFFIC GENERATION
— ' B e i

| TCP LAYER - < TCP LAYER
[

Figure 1. Overview of operation of the YouTube service.
2.1. Signaling

On YouTube, each video has a unique identifier (video_id) and can be accessed via a URL at the
YouTube site as well as an embedded object in other HTML pages. In the first case, the accessing URL
is http://www.youtube.com/watch?v=<video_id>. In the second case, the video is accessed as an
embeddable object by using the URL http://www.youtube.com/v/<video_id>. In both cases, the HTML
code contains a customizable Adobe Flash video player [8] provided by YouTube that is downloaded
after the web browser parses the page.

The player can be fed with configuration parameters (such as the video clip identifier, video format, and
other parameters explained below). When the video clip is embedded in a YouTube web page, the
player setup is encoded as JavaScript variables of the HTML page. On the contrary, when the video is
embedded in any other web page, the player must obtain the proper parameters by issuing an HTTP
request to the URL http://www.youtube.com/get_video_info?video_id=<video_id> to obtain the
parameters list. The player may choose to change the configuration parameters (for example if it runs in
full screen mode) but we will concentrate on the regular case when the parameters are maintained.

After the video player has been configured with the setup parameters, it issues the HTTP request to the
streaming server, specified as parameters in the HTML code. Then, a progressive download is
performed from that server (called the media server hereafter).

We have observed that the video player only issues a single HTTP request to initiate the download and
that the video stream is downloaded as an HT TP response with no further client to server signaling. A
new HTTP request is required only if the user sets the position for the video playback.

The HTTP request is sent to the URL http://<media_server>.youtube.com/videoplayback of the
streaming media server along with configuration parameters. These setup parameters, which control the
server behavior, are specified as query variables of the service URL. Although to the authors’
knowledge the meaning and syntax of the server parameters are not publicly documented, we have
identified some of the arguments that govern the download operation. They are summarized in Table 1.

For the majority of non-HD video clips, the HTTP response of the media server encapsulates the
requested video and the corresponding audio formatted in an FLV file [9]. The FLV file includes tags
that encode the characteristics of the encapsulated media. For instance, the audio tag specifies the audio
codec (SoundFormat), sampling rate (SoundRate) and size of each sample (SoundSize). The video tag

3

includes the codec type (CodecID and VideoData). This information is essential to decode, render and
synchronize the audio and video media as well as to setup the streaming server downloading parameters.
The FLV file includes an onMetaData tag, which can be accessed from an ActionScript program and
describes the video properties (see Table 2).

This information can be accessed easily, and thus, it is reasonable to believe that the media servers may
use it to calculate, for instance, the traffic generation rate in the application layer.

Parameter Description

sparams The list of the parameters included in the request, separated by commas
id A unique video identifier tag

algorithm | The algorithm that the media server should use to stream the video; it is
fixed to “throttle-factor”

factor Speed factor, expressed as a factor of the video encoding rate; its value
is fixed to 1.25

burst The length of video that the server will send for the initial buffering
measured in seconds; it is fixed to 40 seconds

begin Playback start time expressed in milliseconds

itag Video format code, equivalent to fmt (undocumented URL parameter).

FLV-based video clips have itag equal to 5 (low quality, 240p), 34
(normal quality, 360p) and 35 (high (non-HD) quality, 480p). See [10]
for more information about this parameter.

Table 1. Video request parameters that control progressive download performance.

Parameter Description
Duration Total duration of the file measured in seconds
Bytelength Total size of the file measured in bytes

Totaldatarate Joint data bit rate in kilobits per second

Videodatarate Video bit rate in kilobits per second

Audiodatarate Audio bit rate in kilobits per second

Framerate Frames per second of the media

Width, Height Width and height of the video frames measured in pixels
Table 2. FLV parameters of the onMetaData tag.

2.2. Player operation

As mentioned in section 2.1, the YouTube video player is an Adobe Flash application (in SWF format)
that is loaded from the HTML page and obtains its parameters from either JavaScript variables of the
HTML page or through an HTTP request. As in other streaming clients, it stores the video data in a
play-out buffer that mitigates instantaneous degradation of the network conditions that could affect the
end-user’s perceived video quality, e.g., causing a playback interruption. These degradations could
include fluctuations in the available bandwidth and in the end-to-end delay, as well as packet losses. The
player states and the buffering strategy are explained next.

2.3. Player states

The YouTube video player has several states [11], which depend on the current action being performed:
unstarted, ended, playing, paused, buffering and cued. These states are represented in Figure 2.

user presses the
play button, enough
buffered data

user presses the play
button, not enough
buffered data

user presses the
pause button

not started user presses
automatically the play button

enough

buffered data video

finishes

UNSTARTED >(BUFFERING

video configured to
start automatically

insufficient
buffered data

Figure 2. State diagram of the YouTube video player.

When the SWF player is first loaded, it enters the unstarted state. Then, the player starts downloading
the FLV file, changing its state to buffering. Once the player has enough data in its buffer, the playback
starts (change to playing state). During video play-out the user may pause the video, which causes the
player to go to the paused state. Assuming that there are no congestion events, the video will continue
smoothly, ending without problems, and the player will have entered the ended state.

However, network degradations may pause the video playback due to a lack of sufficient buffered data.
If this situation occurs, the player will enter the buffering state until there are enough data to continue, at
which time it will enter the playing state. These state transitions may take place several times during
short periods, thus causing intermittent and consecutive pauses. In addition, if the player is stopped or
configured not to directly play the video when the web page is loaded, it enters the cued state (i.e., the
video is cued and ready to play). Before the player can enter the playing state, a certain amount of data
must be stored in the play-out buffer both at the beginning (an initial buffering) and after a playback
interruption (a rebuffering event). See [12] for more information about the amount of data stored during
a rebuffering event in YouTube.

3. EXPERIMENTAL FRAMEWORK

In this section, we describe the experimental framework used to collect traces of data traffic generated
by the YouTube media servers. The framework is composed of a PC connected to a campus network
(University of Granada), which in turn is connected to the Internet through the national Academic and
Research Network (RedIRIS [13]). During pilot tests, it has been verified that neither the CPU or
memory of the PC nor the network connection impeded the normal playback of the video clips. The
framework includes three software tools installed in the PC: the Wireshark protocol analyzer [14], a
playback monitor and a clip surveyor; the last two were specifically developed for the performed
experiments.

3.1. Playback monitor tool

A playback monitor tool has been built with the objective of analyzing the server traffic generation. The
tool is based on a Java Servlet and includes a web application that embeds the YouTube player. The tool
consists of two parts: 1) a monitoring web page in which the YouTube player is embedded and
controlled using the YouTube player API [11] via JavaScript and 2) a Java Servlet that sequentially
reads the list of videos to monitor from a configuration file, launches the web browser with our
monitoring web page, requests the listed video clips, and later gathers the data generated by the player's
API.

For every clip download, the YouTube player API provides -marked with a timestamp- the state of the
player, the playback time, and the number of bytes received in the player buffer. This information is
dumped periodically every 100 milliseconds. Moreover, the transitions between the player’s states are
also recorded asynchronously. At the end of the download, the data are gathered by the Servlet and
stored in a separate file for post-processing.

The launcher Servlet is configured to intentionally reduce the available bandwidth of the PC’s network
connection by using SoftPerfect Bandwidth Manager Lite for Windows [15] to introduce controlled
bandwidth limitations during the clip download.

3.2. Clip surveyor tool

To characterize the encoding rates of the YouTube video clips, we have also developed a clip surveyor
tool, which collects the list of the most viewed videos for a date or range of dates, and downloads the
FLV file header for each video clip with the purpose of extracting its main parameters, such as the
encoding rate.

By means of the YouTube Data API [11] the tool gathers a list of video clips. To obtain the FLV file

header of each clip, the clip surveyor tool automatically launches a web browser (namely Firefox) with
the proper URL and stops the download after 30 seconds so that the initial part of the clip is downloaded

5

but the rest disregarded. The tool FLVTool2 [16] is used to extract the FLV's onMetaData information,
which contains the video encoding data rate (section 2.1).

3.3. Collected traces

We only consider FLV files for clip characterization because it is the most used file format for video
resolutions (more than 92 percent, as exposed below).

Two sets of data traffic traces (sets T1 and T2) have been collected during the weeks between
05/12/2010 and 07/12/2010 in order to analyze the behavior of the YouTube video servers. These trace
sets only include the download of the video clips in their default FLV file format.

Two additional sets of data traffic traces (sets T3 and T4) have been collected during the weeks between
26/01/2012 and 27/02/2012 in order to validate the traffic model derived from trace sets T1 and T2. All
FLV-based video formats (i.e., itag equal to 5, 34 and 35) are considered.

. Trace set T1: a set of 95 video clip downloads obtained with the playback monitor tool. This
set has been collected to understand the main traffic generation characteristics of the YouTube server:
the initial burst (section 4.2), the throttling algorithm (section 4.3), and the chunk size (section 4.4). The
video clips have been downloaded with the default quality (89% with itag=34 and 11% with itag=>5),
with encoding rates from 140 to 918 kbps (average 510 kbps), and durations from 561 to 659 s (average
605 s). To minimize the effect of network congestion, this trace set was collected at night. Their
identifiers (VideolDs) are available at [17].

. Trace set T2: a set of 95 video clip downloads (the same set of video clips as in T1) but
adding bandwidth limitations. This set has been collected to understand the characteristics of the
YouTube server in the presence of bandwidth limitations (section 4.5). This set has been obtained with
the playback monitor tool: for every clip, two downloads are performed, reducing the available
bandwidth to 50 kbps over time intervals of 15 and 120 seconds, respectively. To minimize the effect of
other sources of network congestion on this trace set, these measurements were collected at night.

° Trace set T3: a set of 32070 video clips randomly collected using the random prefix sampling
method presented in [18] that provides an unbiased collection of YouTube video identifiers (videolD
parameter). Using this sampling method, 12777 videolDs and their available formats (itag parameter)
were obtained by means of Google Data API queries [19]. The default formats were 34 (FLV format),
18 (MP4 format), and 5 (FLV format) for 92.5%, 7.3% and 0.2% of the considered video identifiers
respectively. Concentrating on the available FLV formats of these video identifiers, YouTube provided
12713, 11772, and 7585 video clips with itags equal to 5, 34 and 35 respectively, yielding the total set
of 32070 video clips. It shall be noticed that none of these videolD had itag 6, which was an FLV-based
format but it is currently inactive. The main information of these video clips was extracted from the
metadata of the FLV available containers. These metadata include the audio stream and video stream
encoding rates, the encoding rate of the video clip, the video clip duration, the resolution (width and
height), the frame rate and the byte length. The 12713 video clips with itag =5 (240p) had encoding
rates from 38 to 2489 kbps (average 301 kbps) and durations from 1 to 11346s (average 234 s). The
11772 video clips with itag = 34 (360p) had encoding rates from 29 to 2333 kbps (average 527 kbps)
and durations from 1 to 9131 s (average 242 s). The 7585 video clips with itag = 35 (480p) had
encoding rates from 33 to 3230 kbps (average 840 kbps) and durations from 1 to 11346 s (average 234
s). These traces have been collected with the clip surveyor tool, and have been used to characterize the
video clip encoding rates (see section 4.1). More information about these traces is available at [20].

° Trace set T4: a set of 600 video clips has been collected for validation purposes. This set
includes 200 video clips for each of the considered formats (itag 5, 34 and 35) using the same sampling
method as for trace set T3. For each video clip a trace from the real YouTube server and another trace
from a customized YouTube emulation server have been obtained. All the traces from the real YouTube
server were downloaded over the campus network (University of Granada). Additionally, they were
collected at night to minimize the effect of other sources of network congestion. The YouTube
emulation server is directly connected through a Local Area Network to our PC. The 200 video clips
with itag = 5 had encoding rates from 62 to 638 kbps (average 284 kbps) and durations from 120 to
5001 seconds (average 426 seconds). The 200 video clips with itag = 34 had encoding rates from 91 to

6

939 kbps (average 506 kbps) and durations from 121 to 5239 seconds (average 399 seconds). The 200
video clips with itag = 35 had encoding rates from 113 to 1371 kbps (average 790 kbps) and durations
from 120 to 4538 seconds (average 390 seconds). More information about these traces is available at
[21].

4, ANALYSIS OF THE EXPERIMENTAL RESULTS

This section presents the experimental results obtained to evaluate the traffic generation of the
application layer of the YouTube server.

4.1 Characterization of the video clip encoding rates and durations

As it will be described in the following subsections, the traffic generation rate of the media server
depends on the video clip encoding rate. Hence, we require a characterization of the video clip encoding
rates in order to be able to create a model of the traffic that YouTube media servers generate.

To statistically characterize the variety of encoding rates, we extracted the FLV parameters of the
onMetaData tag from the video clips in trace set T3 and derived the histogram of the encoding rates. As
described in section 3.3 we concentrated on the FLV-based video formats (i.e., itag equal to 5, 34 and
35).

Because the audio and video codecs used can provide different compression levels depending on the
characteristics of the video content, YouTube clips present a wide variety of bit rates. The encoding
rates of the audio and video streams have been collected, and their corresponding histograms are shown
in Figure 3. Regarding the audio stream, the encoding rates of video clips with itag equal to 5 do not
exceed 64 kbps, whereas video clips with itag equal to 34 and 35 reach up to approximately 128 kbps.
Regarding the video stream, the encoding rates strongly differ with the video format. For the itags equal
to 5, 34 and 35, 99% of the video clips have a video stream encoding rate below 500 kbps, 810 kbps and
1300 kbps respectively.

0.4 0.35 0.4
Hllitag = 5 Hllitag = 34 Hllitag = 35
0.35 03 0.35
0.3 0.25 0.3
£ 0.25 E ., £ 0.25
g” 0.2 jg’ gn 02
7] @ 0.15 2
T o1 - T T o1
0.1 - ot I 0.1
0.05 | 4 0 0.05
| II 0 Jlllllllll |I a— | . o= 2 | M— |
0 10 20 30 40 50 60 70 40 60 80 100 120 14 40 60 80 100 120 140
Audio Stream Encoding Rate (kbps) Audio Stream Encoding Rate (kbps) Audio Stream Encoding Rate (kbps)
0.45 0.14 0.1
o Ellitag =5 » Hlllitag = 34 000 Hllitag = 35
035 0.08
0.3 01 0.07
£ £ £ 0.06
S 025 & 008
.8 g g’ 0.05
2 02 2 o £ oo
0.15 0.03 I ‘ J—
0.1 0.02
ottt |
. - et R RN ARRRR
0 100 200 300 400 500 600 700 200 400 600 800 0 200 400 600 800 1000 1200
Video Stream Encoding Rate (kbps) Video Stream Encoding Rate (kbps) Video Stream Encoding Rate (kbps)
a) b) c)

Figure 3. Histogram of the video stream encoding rates of YouTube clips,
(a) itag =5, (b) itag = 34, (c) itag = 35.

For the purpose of statistical characterization, the CDF of the total video clip encoding rate V, (i.e., the
sum of the audio and video streams) and the CDF of the video clip duration d have been computed and
are represented in Figure 4. The obtained CDFs have been fitted with the objective of providing

analytical functions that can be implemented in simulation tools. The derived fitting functions, Fy and
Fp, are presented in equation (1) and graphically depicted in Figure 4. Please note that the values
obtained from the fitting functions shall be bounded between 0 and 1, so the expressions for Fy and Fp
are valid if v, is lower than 650, 930 and 2200 kbps for itag 5, 34 and 35 respectively, and d is lower
than 5000 s.

1 7 - 1
7

0.9 / 0.9

08 / 08 /!

0.7 / / 0.7 /

0.6 0.6
. / . y
a 05 0 05
S i{ — o /

04 — CDF (itag = 5) || 0.4

/ _____ F, (tag = 5) A
0.3 —_ oo = 2 H 0.3
l / CDF (itag = 34) V4
02 —— Fv (tag=34) || 0.2 7 d
T ——CDF
o1 CDF (itag = 35)|| 01k Fo
F, (tag=35) |~ | | T D
T 0 ——
% 500 1000 1500 2000 10" 10° 10° 10"
Video Clip Encoding Rate (kbps) Duration (s)
a) b)

Figure 4. CDFs of (a) the video clip encoding rates and (b) their durations, and their corresponding curve fitting.

5

Z ax,itag,i Xi
Fy (itag,x)=—=)
j=0

1+ Z bx,itag,j X‘ i

]

where x is the corresponding measurement, i.e. the video clip encoding rate v, or the video clip duration
d, itag is 5, 34 or 35, and the corresponding coefficients (ay,itag,i aNd byjitag, j) are shown in Table 3.

- X=V, (encoding rate) x=d (duration)
Coefficients itag=5 itag=34 itag=35 all itags
Byitag.0 6.624-10° | 2.764-10° | 5.109-10° 5.813-10°
B itag.1 -5.530-10" | -9.136-10° | -1.470-10" 2.747-10°
Agitag2 9.850-10° | 9.675-10" | 1.057-10° 2.082-10°
Ayitaa3 -5.013-10°% | 1.818-10° | -1.422.10° 0
Ayitagd 7.926-10 | -7.457.10" | 5.517.10" 0
Ay itag,5 0 4.935.10° 0 0
Dyitago -8.908-10° | -3.628-10° | -2.607-10° 2.318-10°
Dyitagt 3.579-10° | 5.834-10° | 3.423.10° 2.088-10°
Dyitag2 -8.515.10° | -1.431-10° | -2.527-10° 0
Dyitaga 9.670-10™ | -6.398-10 | 8.037-10% 0
Dy itags 0 4.797-10%" | -2.273-10" 0

Table 3. Coefficients for the curve fitting of the CDFs of the video clip encoding rates and their durations.

4.2.

Initial burst

In this subsection we investigate the operation of the YouTube server during the initial seconds of a

progressive download. Based on the information provided by the Playback Monitor Tool, we depict the
progressive download of two FLV video clips, which belong to trace set T1, as an example. Figure 5 (a)
plots the time evolution of the instantaneous amount of data received by the player at the beginning of
the download. Additionally, Figure 5 (b) depicts the time evolution of the accumulated amount of data
received in the player’s buffer and the accumulated amount of data reproduced by the player during the
entire download. The number of bytes reproduced by the player was estimated based on the playback
time information and the video clip encoding rate.

As shown in Figure 5, the video clip download commences with a significant burst of data. After this
initial burst, the receiving data rate of the client's player is considerably reduced. This effect can be
clearly observed in Figure 5 (a), where it can be seen that during the initial few seconds, the amount of
data received at the player is significant and later reduced; it can also be clearly observed in Figure 5 (b)
by the change in the slope of the accumulated data received at the player after an initial few seconds.
Graphical representations of other download examples of trace set T1 are not included here, but they
also exhibit the rapid download of an initial burst of data during the beginning of the download. The
authors in [7], [22] and [23] also observed that the YouTube server sends the video as fast as possible
for an initial buffering period before settling into a constant sending rate.

60

Received KBytes at Player 16/-End of Download >/ <
q e - / 7
© I‘N-I-TEL-BU_R-’T { (Bin size = 10ms) (1‘335,1‘6.56|\‘/|B) / P ,/
[4 1 i i i Ve v
—~ — | | | B
9) | | | / -
2 & "[Throttling Phase |,/ Pa
< s ~~"End of Playback |
S: £ / T (201.55,16.56MB)
fat -
2 S e /
g LING £ /
g ——t—| E o /!
< E - "
g 1 8 // % End of Initial Burst
c < sl —
2 ' il 4 f’/,, | (5.57,3.27{\/13) |
2 “Start of Playback Received at Player
| U ,«4’;/ (1.5s,0 MB) i Rreprodtru:ed by Play?r
7 8 9 10 % 20 40 60 8 100 120 140 160 180 200
Time (sec) Time (sec)
a) b)

Figure 5. Examples of time evolution of the (a) instantaneous and (b) accumulated received data at the player
buffer.

To extend the previous analysis to a large set of video clip downloads, all downloads of trace set T1
have been post-processed in search of an initial burst. This initial burst is identified in each trace by
determining the slope change in the accumulated data received by the player between the initial burst
and the subsequent phase (hereafter referred to as throttling phase). The instantaneous fluctuations of
the network bandwidth hindered the identification of the slope change. To mitigate this effect, the
accumulated data have been filtered with a 500-ms simple moving average (a 400ms period has also
been used and produced nearly identical results). A slope approximation sequence is computed as the
difference between consecutive samples of the filtered series. Then, the maximum slope after the initial
burst (i.e., during the throttling phase) is computed by considering only the last 20 seconds of the trace.

The observed end of the initial burst is measured as the last instant of the trace when two consecutive
samples of the slope approximation sequence surpass the maximum slope of the throttling phase.

Table 4 depicts the CDF of the amount of data (measured in seconds of video data, i.e., by dividing the
amount of data by the video clip encoding rate) downloaded until the observed end of the initial burst
for all downloads of trace set T1. The results show that the majority of the measured sizes amount to
approximately 40 seconds of video data. For the remaining downloads, the empirical measurements of
their initial bursts slightly differ from 40 seconds, which is caused by short fluctuations in the network’s
available bandwidth that affect the empirical estimation. However, during the validation process, we
detected that for the videos with encoding rates lower than 200 kbps the amount of downloaded data
during the initial burst is approximately equal to 40 seconds multiplied by 200kbps.

Size of the initial burst (s) 37 | 38 | 39 | 40 41 42 43 44 45 46 | 47
Cumulative probability (%) | 1.2 | 1.2 | 3.6 | 69.9 | 89.2 | 91.6 | 94.0 | 97.6 | 97.6 | 98.8 | 100

Table 4. CDF of the initial burst size measured in seconds of video data.

From Table 4 we conclude that in the case of YouTube, there exists an initial burst with a size
equivalent to 40 seconds of video content, i.e., a total amount of data equal to 40 multiplied by the video

clip encoding rate assuming a minimum encoding rate of 200kbps. It should be noted that the setup
parameter burst sent to the HTTP request by the YouTube client is set to 40 seconds (see section 2.1).

The operation of the application layer of the YouTube server at the beginning of the download presented
in Figure 5 resembles the Advanced Fast Start of Windows Media Services [24], which sends the first
few seconds of data at the maximum available bandwidth of the Internet. The objective of this initial
burst is to inject a significant amount of data in the player’s buffer. This strategy aims to improve the
quality perceived by the end-users beyond that of traditional streaming with no initial burst, in which the
player awaits a longer initial buffering delay [25].

4.3. Throttling algorithm

We continue our discussion of the experimental analysis by focusing on the operation of the YouTube
server after the initial seconds of a progressive download. As shown in Figure 5 (b), after the initial
burst, the slope of the accumulated received data at the player was reduced due to a decrease in the
receiving data rate. Let us further analyze this download example. Figure 5 (b) shows that after the
initial burst, the slope of the amount of data received in the player’s buffer with respect to time (i.e., the
receiving data rate) remains approximately constant until the download is completed. This suggests that
the application layer in the server throttles down the traffic generation rate, thereby establishing a
constant limit on the rate at which the data are fed to the TCP stack during this phase. This throttling
effect increases the total time required to complete the file download.

Based on the accumulated data received by the player and assuming an approximately constant
transmission data rate during the throttling phase, it is possible to make a simple estimation of the
transmission data rate based on Figure 5 (b): T, = (16.56MB - 3.27MB)/(133s-5.5s) =~ 875 kbps, where
T, is the transmission data rate. Additionally, the video clip encoding rate V, = 696 kbps is obtained
from the FLV's onMetaData information (see section 2.1). Note that V, could also be estimated based on
the accumulated data reproduced by the player from Figure 5 (b) as V, = (16.56MB)/(201.5s-1.5s) =
695 kbps. Thus, it is interesting to observe that during the throttling phase, the ratio T,/ V, = 1.256,
which indicates that during this phase, the YouTube server progressively downloads the video clip file
at a pace approximately 25% faster than it is reproduced by the player. Again, a graphical representation
of other examples of downloads of trace set T1 also presents a throttling phase and a similar factor T,/
V.

To verify the application of the throttling performed by the YouTube server, all video clip downloads of
trace set T1 were also post-processed to obtain the measured download times. Let t; denote the total
time to download a video clip measured in seconds. Then, assuming that the transmission data rate is
approximately constant during the throttling phase, t4 can be expressed as

8-5-40-V
ty=t, +——

d ib -I-r (2)
where tj, is a variable that represents the time required to download the initial burst, s is the file size
measured in bytes, V, is the video clip encoding rate measured in bps, and T, is the transmission data
rate measured in bps. Let us further assume that T, = 1.25-V, during the throttling phase. Then,

8-5s-40-V, 1
ty=t,+———=t, +—(d-40
d = lib 1.25-V, ib 1'25() (3)

where d represents the duration of the video clip measured in seconds (see duration parameter available
in the onMetaData tag in Table 1).

For each video clip, Figure 6 depicts the total download time versus the video clip duration. Figure 6
also represents the linear equation (3), though assuming ti, = 0. From the figure, it can be seen that the
total download time closely approximates the represented linear equation for video clips longer than 40
seconds and that a small increase is observed due to the variable tiy, > 0. Again, during the validation

10

process, we detected that for the videos with encoding rates lower than 200 kbps the transmission data
rate during the throttling phase is approximately equal to 250kbps (i.e. 1.25 multiplied by 200kbps).

F F

[va
250 x download time X%
t=(d-40)/1.25 2
200
150 5/
100 /
50 5
0 M&f

0 50 100 150 200 250 300 350
Duration time (seconds)

Download time (seconds)

Figure 6. Samples of video clip duration and download time.

From these results, it can be concluded that after the initial burst, the media server throttles down the
traffic generation rate, thereby avoiding transferring the data at the maximum available bandwidth. The
server sends information at a constant bit rate, and a throttling algorithm (see parameter
algorithm=throttle-factor in Table 1) is applied that shapes the traffic generation rate according to a
throttle factor multiplied by the video clip encoding rate assuming a minimum encoding rate of
200kbps. The so-called throttle factor (see setup parameter factor in Table 1) is equal to 1.25. These
results are in agreement with [7], [22] and [23].

This throttling procedure is also used in other platforms such as the 1S (Internet Information Services)

Media Services delivery platform. It saves bandwidth of media files that might not be played to the end
[26]. Additionally, it prevents congestion both at the server and the network because the data transfer is
not performed at the Internet’s maximum available bandwidth.

4.4, Chunk size

This section analyzes another characteristic of the traffic generated by the YouTube server: during the
throttling phase the traffic is generated in chunks of a specific size.

Figure 5 (a) shows the data received instantaneously at the player during the initial seconds of an
example download. The figure shows that during the throttling phase, the pattern of reception of data
alternates between the reception of data chunks and short periods without packets. To further analyze
this characteristic, the instantaneously received data of two additional download examples are depicted
in Figure 7. The figures only represent a short time span of the throttling phase during the download.
The video clip encoding rates of the selected examples are 135 kbps and 1.089 Mbps, which are close to
the lower and the upper limits of the video clip encoding rates, respectively (see section 4.1). The figure
clearly shows that in both downloads, the data are received in chunks with a nearly constant period.
Further analysis of these two examples reveals that the aggregate payload of the TCP packets grouped in
each chunk is exactly equal to 64 KBytes. Moreover, the period between chunks is approximately
64KB/(1.25- V,), i.e., 64KB divided by the transmission data rate during the throttling phase. This
characteristic of the traffic generation can be easily recognized when analyzing a short time span during
the throttling phase, as in Figure 7. However, it cannot be identified during the initial burst.

11

20 ; T T T ; 20 ; ; ;

181 Received KBytes at Player 18 — Received KBytes at Player ||
(Bin size = 10ms) 64KB CHUNK 64KB CHUNK (Bin size = 10ms)
16 16
g 14 - g 14 -
s 12 | g 12
2 10 i 210
g 6 ‘ é 6
g | g, |
2 | AT A
. — | i —i| 1 1] 1l
26 27 287 29 30 31 32 33 34 35 28 285 29 29.5 30 30.5 31
Time (sec) Time (sec)
=2.1s =380 ms
a) b)

Figure 7. An example of time evolution of the instantaneously received data at the player buffer for video clips
with encoding rates of (a) 135 kbps and (b) 1.089 Mbps.

To verify this characteristic of the YouTube server, again all video clip downloads of trace set T1 were
also post-processed. In this case, we use the WireShark information to collect the time instants at which
the packets arrived at the client computer. Post-processing eliminates the initial bursts of each
download. Additionally, the post-processing groups packets into chunks so that two consecutive packets
belong to the same chunk if the difference between their arrival times does not exceed a given time
threshold. If the difference is longer than the time threshold, the two consecutive packets are assumed to
belong to different chunks. Thus, the size of a chunk can be calculated simply by aggregating the size of
the payloads of all of its TCP packets. The time threshold used to decide if two consecutive packets
belong to the same chunk is selected to be 200 ms. The selection of this period is based on Figure 7 (b)
in which the time between the end of the reception of a chunk and the beginning of the next does not
exceed 200 ms, and only 1% of the analyzed video clips have an encoding rate larger than 1 Mbps
(roughly similar to the one used for Figure 7 (b)).

From the empirically measured chunk sizes, we observe that the majority (96.86%) of the measured
chunk sizes are equal to 64 KB. Marginally, chunk sizes in multiples of 64 KB (e.g., 128 KB and 192
KB) were also found due to delay fluctuations in the network that affect the empirical estimation. In
particular, just 0.97% of the chunk sizes have 128KB, whereas none of the other sizes exceed the 0.3%.
These results are in agreement with [22] and [23] that also found that chunks are typically 64KB in size.

45, Effects of available bandwidth reduction

One of the most relevant factors that may impact the performance quality of the YouTube service is the
effect of network congestion because it can potentially cause a rebuffering event, which ultimately
degrades the video quality perceived by the end-user. Let us assume that a congestion episode takes
place at a given instant during the download of a YouTube video clip. Network congestion has several
pernicious effects on this flow [27]:

° Increase in the probability of discarding a packet at the network nodes. For the YouTube
service, this effect is mitigated by the retransmission capability of TCP, although retransmission implies
a longer transmission delay. Additionally, packet discarding also reduces the transmission data rate at
the TCP layer.

° Longer queuing delay at the network nodes and, therefore, an increase in end-to-end delay.
However, for YouTube flows, this effect is alleviated by the amount of data stored by the player's buffer
during the initial burst.

. Reduction in the transmission data rate in the TCP layer, which in turn limits the bandwidth
available for the application. If the network congestion episode is long enough, this effect can lead to a
rebuffering event.

12

Of all of the effects of network congestion, the present section concentrates on the influence of the
reduction in the available bandwidth caused by a long congestion episode on the operation of the
transmitting and receiving entities of the YouTube application layer.

While it is true that the available bandwidth drops in the presence of network congestion, it does not
drop at a constant value. However, to conduct controlled experiments, the bandwidth will be limited to a
fixed value in the tests discussed in the following subsections.

45.1. The influence of network congestion episodes on the playback

During a congestion episode, the transmission data rate in the TCP layer is reduced. If this rate is lower
than the play-out rate, the player drains data from the buffer more rapidly than it is received from the
Internet, and therefore, the amount of data stored in the player’s buffer starts decreasing. An example of
this situation is depicted in Figure 8, where it can be seen that at approximately 150 seconds, the player
starts receiving data more slowly due to an episode of network congestion; therefore, the amount of data
stored in the player’s buffer begins to decrease.

Under this circumstance, two possible cases can be envisaged: i) the network congestion episode is
short, and the bandwidth availability is recovered before completely emptying the player’s buffer; in
this case, the rebuffering event is avoided. ii) The network congestion lasts long enough so that the
player’s buffer eventually runs out of data; in this case, the play-out is paused, and the player starts
rebuffering the data. Video clip playback is stopped for the amount of time required to accumulate
sufficient data to resume the play-out. This situation is also represented in Figure 8, where it can be seen
that the amount of data stored in the player’s buffer approaches zero at approximately 215 seconds,
leading to the rebuffering event. From the figure, it can also be concluded that a congestion episode is
more likely to cause a rebuffering event if it occurs during the early stages of the download because
there are fewer data stored in the player’s buffer.

T T T T

Received at Player /
25 ===== Reproduced by Player
Stored at Player’s Buffer / //
0 THROTTLING CONGESTION vl
£ 20 y/4
S z
15
[a} S
g >
2 /
g 10 ,// a
2 / Rebuffering
5 - \

0 50 100 150 200 250 300 350 400
Time (sec)

Figure 8. The effect of network congestion on the playback.

4.5.2. Server response to a network congestion episode

A network congestion episode may not only affect the player and the playback of the video clip, but, as
it will be described in this section, it may also affect the traffic generation rate of the server's application
layer.

To analyze this response, the playback monitor tool presented in 3.1 has been used to download a video
clip in which the bandwidth of the network connection of our host machine was intentionally reduced to
50 kbps during a given time interval. Two time intervals are considered: 15 and 120 seconds. The
selection of these congestion durations is intentionally chosen to manifest the desired effect. The

13

selected video clip has an encoding rate of 684 kbps. The experiment has been repeated five times for

each time interval. The results obtained after processing the corresponding traces are presented in Figure
9.

10 T T T T T T 22 T T T T T T 3
—===='Received at Player if No Congestion Had Occurred#4 || ==== Received at Player if No Congestion Had Occurred
Received at Player,Downloads 1-5 20 Received at Player,Downloads 1-5 I

9.5

r

.
18 ;

7
,
d /

8.5 -

16 -

14 /'

d .
7 10 "/‘ Smax/ f
e
6.5 / 8 //

'

|

30 35 40 45 50 55 60 65 40 60 80 100 120 140 160 180
Time (sec) Time (sec)

a) b)
Figure 9. Five video clip downloads with a congestion episode lasting (a) 15 s and (b) 120 s.

Accumulated Data (MBytes)
©

Accumulated Data (MBytes)
N,

In the five downloads represented in Figure 9 (a), it can be seen that after the recovery phase (at time
instant 58 seconds and beyond), the amount of data received by the player is the same as if there had
been no congestion episode. On the contrary, in none of the five downloads represented in Figure 9 (b)
does the amount of data received at the player reach a value that would suggest that no congestion
episode had occurred.

In the download examples shown in Figure 9 (a) and (b), the YouTube server acts as if the amount of
data that could not be transmitted during the network congestion episode was stored in a buffer. When
the episode ended, the server’s application layer released the data stored in the buffer at the available
bandwidth, which explains the rapid download during the recovery phase. From Figure 9 (a), it can be
inferred that the buffer is continuously fed (even during the congestion episode) at the rate indicated by
the throttling algorithm, which explains why after the recovery phase the amount of data received by the
player is the same as if there had been no congestion episode. However, in the case of Figure 9 (b), the
amount of data received by the player does not reach the value that suggests no congestion episode had
occurred. This might be caused by a limited buffer size such that if the congestion episode lasts long
enough, the buffer is filled up and the filling procedure is blocked. As a consequence, in the case of
Figure 9 (b), the time required to complete the download of the video clip is observed to have increased.

To verify the behavior described above, the previous experiment has been repeated for all downloads of
trace set T2. For every clip, two downloads are performed, again reducing the bandwidth of the network
connection to 50 kbps over time intervals of 15 and 120 seconds, respectively. For every clip, Figure 10
depicts two metrics: i) the measured time required to complete the download and ii) the estimated time
required to complete the download if no congestion occurred. The latter metric is computed from
equation (3), where t;, is obtained from the experiment.

14

T
Liney=x
* Congestion Duration = 120s
: : O Congestion Duration = 15z]
1 1 1 1 T T T T T
400 450 500 550 BOO B850 700 750 80O 850 200
Measured Download Time (s)

Estimated Download Time if Mo Congestion Had Ocurred (s)

Figure 10. Measured download time versus estimated download time if no congestion occurs. The durations of the
congestion episodes are 15 and 120 s.

The results in Figure 10 clearly confirm the behavior observed in Figure 9 for all of the videos of trace
set T2. It can be concluded that the duration of the congestion episode determines whether or not the
YouTube server buffer can fully compensate the effect of the temporary bandwidth reduction in the total
download time. These results suggest that the YouTube server's application layer behaves as a non-
greedy source that feeds the TCP stack at the rate imposed by the throttling algorithm. The TCP layer
possibly manages and implements the buffering. Then, when a network congestion episode occurs, the
transmission data rate at the TCP layer is reduced, and the data excess that cannot be transmitted begins
to be stored in the buffer. If the congestion episode is short enough and the transmission data rate at the
TCP layer is recovered, and then the buffer is drained. However, when the buffer is full, the application
layer is blocked from sending more data to the buffer. However, it is unknown how deep and how long
the temporary bandwidth reduction must be to cause a buffer overflow and, therefore, an increase in the
total download time.

To determine the size of this YouTube server buffer, we further analyze the traces corresponding to the
downloads of trace set T2 with a reduced available bandwidth of 50 kbps that lasts for an interval of 120
seconds. An estimation of the YouTube server buffer is performed for every download based on the
results depicted in Figure 9 (b). The estimation is computed as Bs = Spax - Smin, Where Bs denotes the
server buffer size. Spax is computed during the congestion episode and represents the maximum
difference between the amount of data received by the player and the amount of data received if no
congestion episode occurred. Sy, is computed after the congestion episode is over and represents the
minimum difference between the amount of data received by the player and the amount of data received
if no congestion episode occurred. The CDF of the resulting estimations (B;) of trace set T2 are shown
in Table 5. The results show that the estimations approximate a size of 2 MB. Hence, it is assumed that
the YouTube server buffer has a maximum size of 2 MB (or equivalently, 32 chunks of size 64 KB
each).

B (MB) 1.96 | 1.98 | 2.00 | 2.02 | 2.04 | 2.06 | 2.08 | 2.10
Cumulative probability (%) | 3.2 | 10.6 | 35.1 | 61.7 | 88.3 | 97.9 | 98.9 | 100
Table 5. CDF of the estimated size of the YouTube server buffer B.

5. SERVER TRAFFIC GENERATION MODEL

Based on the experimental data presented in previous sections, a simple model of the traffic generated
by the YouTube server is proposed by means of an algorithm described in pseudo-code (see Figure 11).
The algorithm provides the instants at which the application layer feeds a TCP blocking socket. The
socket is to be opened with a sending buffer of 2MB.

The algorithm consists of an initialization block and a filling procedure. At the beginning, the algorithm
calculates the initialization parameters, which will be used next. In network simulation tools the

15

encoding rate and the duration can be obtained by sampling the CDF proposed in equation (1). From
these two parameters, the video clip size can be estimated. For the subsequent phases, YouTube
assumes a minimum encoding rate equal to 200 kbps. After the initialization of parameters, the server
sends an initial burst of data as its pre-catching strategy. Afterwards, the filling procedure writes blocks
of 64 KB of data into the TCP socket with a period controlled by the parameter sending_rate (which is
computed based on throttling factor and the video encoding bit rate). The socket is assumed to transmit
the data packets at the pace indicated by the TCP layer. If the TCP socket sending buffer becomes full,
the execution of the program is blocked, and the algorithm cannot write more data until the buffer starts
to be drained.

5.1. Validation of the proposed YouT ube traffic generation model

This section presents the validation of the proposed traffic generation model. For this purpose, we built
a server that emulates the YouTube server, providing FLV video clip files at the pace specified by the
traffic generation model of Figure 11. Then, we evaluated the accuracy of the synthetic traffic generated
by our customized server and the one generated by the original YouTube server.

Initialization procedure

if (video encoding rate < 200kbps) then video encoding rate = 200kbps;
remaining bytes = video size bytes - 40*video encoding rate/8;

sending rate = video encoding rate *1.25;

Open a TCP blocking socket with a 2.0 MB Sending Buffer;

Send initial burst at maximum available bandwidth;

Filling procedure
While (remaining bytes>0)
Write 64 KB into TCP socket;
remaining bytes = remaining bytes - 64 KB;
Sleep 64 KB/sending rate seconds;

Endwhile;

Figure 11. Pseudo-code of server traffic generation model.

The experimental test bed used for this validation was designed to collect data traffic traces of
downloads from the original YouTube server as well as from our YouTube emulation server. For the
first case, we reused the framework of section 3. For the second, the playback monitor tool (see section
3.1) installed in our PC was enabled to access the YouTube emulation server that was located in another
computer within the same Local Area Network (LAN). The emulation server was implemented with the
pseudo-code of Figure 11 in Java, and upon request of the web browser of the Playback Monitor Tool, it
starts feeding the TCP socket with the FLV contents at the pace indicated by the proposed traffic model.
For downloads from the original YouTube server and from the emulated server, the available bandwidth
of the PC's network connection was limited to 5 Mbps. Without a common limit, the connection to the
emulated server through the LAN was expected to provide a much higher available bandwidth than the
connection through the Internet to the original YouTube server. This would cause a bias in the time
required to download the initial burst or to recover after a bandwidth limitation period, which would
impede the comparison between the download traces from the original YouTube server and from the
emulated one.

For the validation, we aimed at using a representative sample of 200 video clips for each FLV-based
video format (i.e., itag equal to 5, 34 and 35) in trace set T4. For each format we selected (using the
random prefix sampling method presented in [18]) a set of 200 video clips whose CDF of the encoding
rates matched the CDF of the encoding rates of the extensive video clip collection of trace set T3. The
distribution of the encoding rates of the selected video clips in trace set T4 is compared to the ones in

16

trace set T3 in the QQ plots of Figure 12 for each video format. Moreover, for each format, a two-
sample Kolmogorov-Smirnov test failed to reject the null hypothesis that the encoding rates of the video
clips in trace sets T4 and T3 are from the same continuous distribution at a significance level of 5%.

3l 3] 3l
— = -
' 500 ‘1000 c 1400 +
2 450 8 o 4 8 ;ﬁ"g
g + D g‘t @ 1200 +7
kel + kel e k=] >
S 400 ® S 800 >
= & = £g§ =
O 350 r © 700 © 1000
7 l I ﬁffgg Q
g 30 & 60 S g0 &
=) o 2 Wi 2
g 250 ajfér g 500 E
£ 200 & Z 400 g 6w
© © ©
8 150 ggf 8 300 8 f

* 400
@ & g & g e
g 100 . £ g 200 pe & #

P # = 200 = + itag = 35|
s ‘ + ttag=5); oo ¢ - tag=34|+ o » ‘ ?
8 o | T I] | |
=] o o o L L
o 0 100 200 300 400 50 o 0 200 400 600 800 1000 O o 200 400 600 800 1000 1200 1400
i} Encoding Rate Quantiles(kbps) of Videos in T4 § Encoding Rate Quantiles(kbps) of Videosin T4 (G Encoding Rate Quantiles(kbps) of Videos in T4
a) b) c)

Figure 12. Encoding rates quantile-quantile plots of video clips in trace set T3 and T4,
(a) itag = 5, (b) itag = 34, (c) itag = 35.

For every video clip and server, three cases were analyzed: a) no additional bandwidth limitation, b) a
50 kbps additional bandwidth limitation lasting 15 seconds, and c) a 50 kbps additional bandwidth
limitation lasting 120 seconds. Again, these bandwidth limitations were performed using SoftPerfect
Bandwidth Manager Lite for Windows [15]. For every download, the playback monitor tool provided
the amount of accumulated data received by the player's buffer as a function of time.

The download traces from the original YouTube server and from the emulated server have been
compared for every video clip and considered case. For the comparison, the instantaneous relative error
of the accumulated amount of data has been computed at every sampling instant n as:

~ |Aln]- Aln] 4)
A

g[n]

where gn] denotes the instantaneous relative error, A[n] represents the amount of accumulated data

received by the player's buffer in the case of the download from the original server, and A[n] represents
the amount of accumulated data from the emulated server. It should be noted from section 3.1 that our
playback monitor tool dumps the collected data every 100 ms, which therefore fixes the period between
consecutive samples of the discrete-time sequences A[n] and An]. Finally, for every video clip and
considered case, the 90th percentile of the discrete-time sequence &n] has been computed and denoted
as ¢ . Figure 13 represents the CDF of & for the three considered cases.

The results show that in the case of no additional bandwidth limitation 90% of the video clips have a
relative error £ that does not exceed 4.5%. In the cases with bandwidth limitation, 90% of the video
clips have a relative error £ that does not exceed 6%. Most of the observed error is an artifact of the
technique used in our testbed to deal with the variable available bandwidth at Internet. Bandwidth
fluctuations at Internet cannot be fully eliminated by the bandwidth limitations introduced to our PC's
network connection, which directly affect the relative error of the accumulated amount of data.

17

1 o) 1 ermeenpaannnen 1
0. -"'ﬁr . 0. = 0. ’/—-"
08 J,.J‘r 08 -’r,r' 08 f‘rr
0.7 E"E 0.7 f'fr 3 e 0.7 “‘{ ;
0.6 it 0.6 R 0.6 &
LQL 0.5 r|-"| LQL 0.5 "r i LQL 0.5
81 S 8
0.4 ']: 0.4 rr 0.4 _’L
03 03 - 03
02 H ——itag = 34} 02 ‘r ——itag = 34} 02 Ir ——itag = 344
iy e B i I ey
' ,1 itag = 5 ’ Jf itag = 5 ’ itag = 5
ott T oLt T ob= :
o 2 4 6 8 10 o 2 4 6 8 10 o 2 4 6 8 10
£ (%) % (%) £ (%)
a) b))

Figure 13. CDF of the relative error & between downloads from the original YouTube server and from the
emulated one for the following cases: (a) no additional bandwidth limitation, (b) a 50 kbps additional bandwidth
limitation lasting 15 seconds, and (c) a 50 kbps additional bandwidth limitation lasting 120 seconds

6. RELATED WORK

The impact of new and existing services on traffic volume in current and future backbone networks has
been studied in [28]. In this respect, YouTube is the leading video download site, being rated as the
third-most visited Internet site [2].

Various studies have been performed to characterize YouTube traffic, each of which has focused on
different aspects. Works [5] [29] [30] analyzed relevant characteristics of YouTube videos as their
popularity, duration, file size, bit rate, and social network characteristics.

From a different perspective, the work in [31] presented the characteristics of YouTube traffic over a
campus network, providing statistics regarding the video request rate over time, the number of requests
per client, the session duration and file size, and the authors further analyzed the implications on
caching methods.

In [32], the characterization was performed from a DSL provider perspective, indicating that the
YouTube traffic characteristics differ significantly from those of other Web traffic and that YouTube
servers apply a data rate limitation of about 1.25 Mbps. Similarly, the work in [33] investigated the
characteristics of network traffic flows of video-sharing services from a network provider standpoint.

In addition to our work, other studies have focused on the traffic characteristics of YouTube video
streaming servers. Alcock and Nelson [22] found some of its basic properties. In particular, they
illustrated that it is a standard practice for YouTube servers to send consistently sized blocks of 64KB
data at a reduced rate to limit the amount of data that is sent to the client. They also described that
during the initial burst phase the amount of data sent by the YouTube server is related to the
transmission rate during the throttling phase.

Rao et al. [23] made an extensive description of the streaming strategy of YouTube and Netflix. For
YouTube they measured the traffic characteristics for the cases of access via PCs and mobile devices,
and additionally considered several containers (Flash, HTMLS5 and FlashHD). Their measurement
results for the case of FLV-file downloads accessed via PC also exhibited an initial burst, and short on-
off periods with a throttling factor.

Finamore et al. [7] also compared the traffic generation when accessing YouTube via PCs and maobile
devices. They described that mobile devices cannot buffer the entire video so the player progressively
reguests portions according to the evolution of the playback. Our investigation of YouTube traffic has
also found the characteristics presented by Rao [23] and Alcock [22], although our results have shown
that YouTube applies a minimum transmission data rate during the throttling phase and a minimum size
of the initial burst. Unlike previous works, we have carried out the analysis for the case of reduction of
the available bandwidth in the network.

18

Regarding the modeling of YouTube traffic, Zink et al. [31] proposed a model for evaluating proxy
caching schemes that generates user requests that contain video id, client IP, request time, and content
size. Additionally, Rao et al. also proposed a mathematical model of the aggregate video streaming.
However, to the best of our knowledge, our work is the first to present and validate a model that
provides for each video clip the instants and blocks of data at which the YouTube application layer
generates the traffic.

7. CONCLUSIONS

This paper characterizes the YouTube service from the viewpoint of traffic generation in the server's
application layer, which is very valuable for predicting the video quality perceived by end-users and
enhancing network design. The characterization is based on combined information from both
YouTube’s official documentation and the conducted experiments. The focus has been on FLV-based
video clips since, as it has been shown in section 3.3, the default download from regular PCs use an
FLV container for more than 92 percent of the videos clips.

The presented results have shown that YouTube’s progressive download commences by transferring an
initial burst of 40 seconds of data at the Internet’s maximum available bandwidth and later applies a
throttling algorithm that imposes a data rate equal to 1.25 (i.e., the throttling factor) times the video clip
encoding rate. Our results have shown that YouTube applies a minimum transmission data rate of 250
kbps during the throttling phase and a minimum size of the initial burst (equivalent to 40 seconds
multiplied by 200 kbps). Moreover, it has also been shown that after the initial burst, the data are sent in
chunks of 64 KB.

The YouTube media server reacts to a reduction in the transmission data rate in the TCP layer as if the
data excess that cannot be transmitted were accumulated at the server buffer, which is later drained if
the bandwidth availability is recovered. The TCP layer possibly manages and implements this server
buffer. If the congestion episode is long enough, the server buffer is filled, and the application layer is
blocked from sending more data to the buffer. This causes the time required to complete the download
of a video clip to increase even if later the bandwidth availability is fully recovered. The experiments
conducted have also indicated that the size of the server buffer is approximately 2.0 MB.

Due to the relevance of the video clip encoding rate in determining the download data rate, a CDF of the
encoding rates for FLV-file based video clips has been computed. It has been shown that for the itag
equal to 34 (which is the default format for 92% of the video clips) the video clip encoding rate ranges
from 100 kbps to approximately 1 Mbps. This implies that during the throttling phase traffic is
generated at a rate that ranges from 250kbps to approximately 1.25Mbps. The obtained CDF of the
encoding rates has been fitted by an analytical function. Additionally, the CDF of the video clip
duration is also presented and fitted by an analytical function.

Based on all of the conducted experiments, a YouTube server traffic generation model has been
formulated, which can be easily implemented in network simulation tools to evaluate service
performance and end-user quality.

For validation purposes, we have built a server that emulates the YouTube server, providing FLV video
clip files at the pace specified by the proposed traffic generation model. We have compared the
accumulated amount of data received by the player when using our customized server and when using
the original YouTube server. The results have shown that, for 90% of the considered videos, the relative
error does not exceed 4.5% in the case of no additional bandwidth limitation and 6% in the cases of
additional bandwidth limitations.

Finally, for future work we are interested in the characterization of the YouTube traffic in the case of
network congestion episodes with packet losses and variable bandwidth limitations.

19

ACKNOWLEDGEMENTS

This work was supported by the "Ministerio de Ciencia e Innovacion” of Spain under research project
TIN2010-20323. The authors would like to thank the anonymous reviewers for their valuable
comments. The authors would also like to thank Professor Jose Carlos Segura-Luna and Jose A.
Zamora-Cobo for their very valuable collaboration.

REFERENCES

[1] Cisco Corporation. Cisco Visual Networking Index: forecast and methodology, 2010-2015. White paper.
Available: http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper c11-
481360 ns827 Networking_Solutions White Paper.html. Accessed 25" April 2012.

[2] Alexa Corporation. The Top 500 Sites on the Web. Available: http://www.alexa.com/topsites. Accessed 25"

April 2012.

[3] Cisco Corporation. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2011-
2016. White paper. Available:

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white _paper ¢11-520862.pdf.

Accessed 25" April 2012.

[4] Garapati, N. Quality estimation of YouTube video service. Master Thesis. Blekinge Institute of
Technology, Sweden. Feb. 2010.

[5] Gill, P, Arlitt, M., Li, Z., and Mahanti, A. YouTube traffic characterization: a view from the edge. In
Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement. San Diego. 2007. DOI:
10.1145/1298306.1298310

[6] Matera F., Matteotti F., Pasquali P., Rea L., Tarantino A., Baroncini V., Del Prete G., Gaudino G.
Comparison between objective and subjective measurements of quality of service over an Optical Wide
Area network. European Transactions on Telecommunications. Volume 19, Issue 3, pages 233-245, April
2008. DOI: 10.1002/ett.1189.

[7] Finamore A., Mellia M., Munafo M., Rao S. G. YouTube Everywhere: Impact of Device and
Infrastructure Synergies on User Experience, In Proc. 11th Annual Internet Measurement Conference (IMC
'11), Berlin, Germany, November 2011.

[8] Adobe Systems Incorporated. Adobe Flash Player. Available: http://www.adobe.com/. Accessed 25th
April 2012.

[9] Adobe Systems Incorporated. Video file format specification wversion 10.1. Available:
http://download.macromedia.com/f4v/video file format spec v10 1.pdf. Accessed 25th April 2012.

[10] YouTube-DL documentation. Available: http://rg3.github.com/youtube-dl/documentation.html.
Accessed 25th April 2012.

[11] Youtube Corporation. YouTube APIs and tools. Available: http://code.google.com/intl/en-
US/apis/youtube/overview.html. Accessed 25th April 2012.

[12] Staehle, B., Hirth, M., Pries, R., Wamser, F., and Staehle, D. YoMo: A Youtube application comfort
monitoring tool. In Proceedings of the QoE for Multimedia Content Sharing workshop, Tampere, Finland.
2010.

[13] Red Iris. Red Iris Weathermap. Available: http://www.rediris.es/conectividad/weathermap/. Accessed
25th April 2012.

[14] Wireshark Corporation. Wireshark network protocol analyzer. Available: http://www.wireshark.org/.
Accessed 25th April 2012.

[15] Softperfect Research. SoftPerfect bandwidth manager lite version for Windows. Available:
http://www.softperfect.com/products/bandwidth/. Accessed 27" February 2012.

[16] Inlet Media Corporation. FLVTool2 — flash video and meta data manipulation. Available:
http://www.inlet-media.de/flvtool2/. Accessed 25th April 2012.

[17] Characterization of trace sets T1 and T2. Available : http://dtstc.ugr.es/tl/downloads/set t1 t2.csv.
Accessed 25th April 2012.

20

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html
http://www.alexa.com/topsites
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.adobe.com/
http://download.macromedia.com/f4v/video_file_format_spec_v10_1.pdf
http://rg3.github.com/youtube-dl/documentation.html
http://code.google.com/intl/en-US/apis/youtube/overview.html
http://code.google.com/intl/en-US/apis/youtube/overview.html
http://www.rediris.es/conectividad/weathermap/
http://www.wireshark.org/
http://www.softperfect.com/products/bandwidth/
http://www.inlet-media.de/flvtool2/
http://dtstc.ugr.es/tl/downloads/set_t1_t2.csv

[18] zhou, J., Li, Y., Adhikari, V.K., and Zhang, Z. Counting YouTube videos via random prefix
sampling. In Proceedings of the 2011 Internet Measurement Conference (IMC’11), Berlin, Germany. 2011.
DOI: 10.1145/2068816.2068851.

[19] Google Data API Protocol - API Query Parameters. Available :
http://code.google.com/apis/youtube/2.0/developers guide protocol api query parameters.html. Accessed
25th April 2012.

[20] Characterization of trace set T3. Available: http://dtstc.ugr.es/tl/downloads/format_set t3.xIsx and
http://dtstc.ugr.es/tl/downloads/metadata_set t3.xIsx. Accessed 25th April 2012.

[21] Characterization of trace set T4. Available : http://dtstc.ugr.es/tl/downloads/format_set t4.xIsx and
http://dtstc.ugr.es/tl/downloads/metadata_set t4.xIsx. Accessed 25th April 2012.

[22] Alcock, S., and Nelson, R. Application flow control in Youtube video streams. ACM SIGCOMM
Computer Communication Review, vol. 41 no. 2, April 2011. DOI: 10.1145/1971162.1971166

[23] Rao A., Lim Y., Barakat C., Legout A., Towsley D., Dabbous W., Network Characteristics of Video
Streaming Traffic. 7th International Conference on emerging Networking EXperiments and
Technologies (CONEXT). December 2011.

[24] Microsoft ~Corporation. Windows Media Services features and benefits. Awvailable:
http://www.microsoft.com/windows/windowsmedia/forpros/serve/features.aspx. Accessed 27" February
2012.

[25] Varsa, V., and Curcio, I. Transparent end-to-end packet switched streaming service (PSS); RTP usage
model (release 9). 3GPP TR 26.937 V9.0.0. 2009.

[26] Microsoft Corporation. IS Media Services. Available: http://technet.microsoft.com/en-
us/library/ee729229(WS.10).aspx. June 10, 2010. Accessed 27" February 2012.

[27] Welzl, M. Network Congestion Control: Managing Internet Traffic. John Wiley & Sons. 2005.

[28] Palkopoulou, E., Merkle, C., Schupke, D. A., Gruber, C. G. and Kirstadter, A. Traffic models for
future backbone networks -- a service-oriented approach. European Transactions on Telecommunications.
Volume 22, Issue 4, pages 137-150, June 2011. DOI: 10.1002/ett.1464

[29] Cheng, X., Dale, C., and Liu, J. Understanding the characteristics of Internet short video sharing:
YouTube as a case study. Technical Report arXiv:0707.3670v1 [cs.NI], Cornell University, arXiv e-prints.
2007.

[30] Cha, M., Kwak, H., Rodriguez, P., Ahn, Y., and Moon, S. | tube, you tube, everybody tubes:
analyzing the world's largest user generated content video system. In Proceedings of the 7th ACM
SIGCOMM Conference on Internet Measurement. San Diego. 2007. DOI: 10.1145/1298306.1298309

[31] Zink, M., Suh, K., Gu, Y. and Kurose, J. Characteristics of YouTube network traffic at a campus
network — measurements, models, and implications. Computer Networks 2008, 53:501-514. DOI:
10.1016/j.comnet.2008.09.022

[32] Plissonneau, L., En-Najjary, T., and Urvoy-Keller G. Revisiting web traffic from a DSL provider
perspective: the case of YouTube. In Proceedings of the 19th ITC Specialist Seminar 2008 on Network
Usage and Traffic (ITC SS 19), Berlin, Germany. 2008.

[33] Mori, T., Kawahara, R., Hasegawa, H., and Shimogawa, S. Characterizing traffic flows originating
from large-scale video sharing services. In Proceedings of Traffic Monitoring and Analysis: Second
International Workshop (TMA 2010). Springer, 2010, 17-31.

21

http://code.google.com/apis/youtube/2.0/developers_guide_protocol_api_query_parameters.html
http://dtstc.ugr.es/tl/downloads/format_set_t3.xlsx
http://dtstc.ugr.es/tl/downloads/metadata_set_t3.xlsx
http://dtstc.ugr.es/tl/downloads/format_set_t4.xlsx
http://dtstc.ugr.es/tl/downloads/metadata_set_t4.xlsx
http://technet.microsoft.com/en-us/library/ee729229(WS.10).aspx
http://technet.microsoft.com/en-us/library/ee729229(WS.10).aspx

