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A B S T R A C T   

A tensegrity family is a group of tensegrity structures that share a common connectivity pattern. The Octahedron, 
the Z-Octahedron, and the X-Octahedron families are examples of these groups found in the literature. In this 
work, a new graphical representation of the members of the Z-Octahedron family based on octagonal cells is 
presented. These new elementary cells are composed of eight nodes and two struts. In addition, a new member of 
the family is introduced: the Z-triple-expanded octahedron. New tensegrity structures from the Z-Octahedron 
family are obtained by modifying the connectivity pattern of the elements that make up the octagonal cell. 
Several element groupings have been considered in order to find different equilibrium configurations. The values 
of the force density or force:length ratio that lead to stable and super-stable tensegrity forms have been computed 
analytically. It has been proved that the Z-Octahedron family is a good source of new tensegrity forms.   

1. Introduction 

Tensegrity structures are pin-jointed, free-standing, and pre-stressed, 
and they are composed of compression (struts) and tension (cables) 
members that are self-equilibrated. The unique mechanical and math
ematical properties of these structures mean that they have applications 
in many fields, such as robotics (Graells Rovira and Mirats Tur, 2009; 
Lee et al., 2020; Liu et al., 2022), biology (Fraldi et al., 2021; Suma et al., 
2020), mechanical engineering (Boni and Royer-Carfagni, 2021; Kan 
et al., 2019), civil engineering (Bel Hadj Ali et al., 2010; Veuve et al., 
2016), and aerospace engineering (Chen et al., 2020; Tibert and Pelle
grino, 2002). Tensegrity structures can also be used as dissipative de
vices for earthquake-proof structures (Fraternali and Santos, 2019; 
Singh et al., 2020). In addition, tensegrity metamaterials can be used in 
impact protection and energy dissipation systems (Bauer et al., 2021; Ma 
et al., 2018). 

A tensegrity should fulfill the following conditions (Zhang and 
Ohsaki, 2015): i) the tensegrity is free-standing without any support; ii) 
it is composed of only two types of members (cables in tension and struts 
in compression); iii) the struts are not in contact with each other at their 
ends, and iv) the self-weight of the tensegrity is negligibly small in 
comparison with the member forces. The tensegrity structures shown in 
this work fulfill all the conditions listed above. In practice, in addition to 

the preceding conditions, tensegrity structures should satisfy some other 
requirements. Some examples of these requirements are: members 
should not intersect with each other, and both the buckling of the struts 
and the yielding of the cables must be prevented. There are some opti
mization methods that consider member intersection (Xu et al., 2016) 
and buckling constraints (Xu et al., 2018) in order to avoid these situ
ations. The member intersection and the potential local buckling of 
compression members have not been considered in the present work. 

The creation of these types of interesting structures is complex 
because tensegrities do not exhibit very intuitive principles (Gómez- 
Jáuregui, 2010). In addition, novel applications such as biomechanical 
structural models and mechanical metamaterials require large-scale 
tensegrity structures, which increase the complexity of the design pro
cedure. One of the main sources of tensegrity structures are regular 
polyhedrons, including simple polyhedral tensegrities, prismatic ten
segrities, and truncated polyhedral tensegrities (Yin et al., 2020; Zhang 
et al., 2019, 2021, 2013). However, truncated polyhedral tensegrities 
are limited by the five types of convex regular polyhedrons: tetrahedron, 
cube, octahedron, dodecahedron, and icosahedron. 

Another way to construct a tensegrity structure is by assembling 
elementary modules together in a specific manner. In Murakami et al. 
(Murakami and Nishimura, 2001), the static and dynamic character
ization of truncated regular polyhedral modules is studied. Rhode- 
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Barbarigos et al. (Rhode-Barbarigos et al., 2010) and Feron et al. (Feron 
et al., 2019) proposed the use of tensegrity modules as elementary 
building modules in the design of pedestrian bridges. In line with this 
design procedure, Li et al. (Li et al., 2010) show that tensegrity struc
tures can be constructed by assembling one-bar elementary cells. Pugh 
(Pugh, 1976) defines two main classes of tensegrity structures, named 
“rhombic” (or “diamond”) and “zig-zag” systems. Most rhombic and zig- 
zag tensegrities can be considered as assemblages of rhombic and Z- 
shaped cells, respectively (see Fig. 1). 

Finally, tensegrity families are another great source of tensegrity 
structures. A tensegrity family is a group of tensegrity structures that 
share a common connectivity pattern (Fernández-Ruiz et al., 2022, 
2021, 2020, 2019). The Octahedron (Fernández-Ruiz et al., 2022, 
2019), the Z-Octahedron (Fernández-Ruiz et al., 2020), and the X-Oc
tahedron (Fernández-Ruiz et al., 2021) families are examples of families 
of tensegrity structures found in the literature. The greatest advantage of 
the design of tensegrity structures based on tensegrity families is that 
they can be used to construct new tensegrity forms based on topology 
instead of using geometrical intuition. Each member of the family has all 
the previous members of the family as folded forms (Fernández-Ruiz 
et al., 2019). Folded forms are tensegrity structures where some nodes in 
the equilibrium configuration share the same position in the space 
(Hernández-Montes et al., 2018), while full forms are tensegrity struc
tures where all the nodes have different positions in the equilibrium 
shape (Hernández-Montes et al., 2018). With this property in mind, a 
full form can be considered as the folded form of the subsequent member 
of the family, obtaining new tensegrities with a higher number of nodes, 
struts, and cables. 

In this work, a new member of the Z-Octahedron family is presented: 
the Z-triple-expanded octahedron (which is composed of 48 nodes, 24 
struts, and 72 cables). In addition, a new graphical representation of the 
members of the Z-Octahedron family based on octagonal cells is pro
posed. New tensegrity structures are constructed by changing the con
nectivity pattern of the members of the elementary octagonal cell of the 
Z-Octahedron family. Several element groupings have been considered 
in order to find different equilibrium configurations. An analytical form- 
finding method (Fernández-Ruiz et al., 2019; Hernández-Montes et al., 
2018) based on the Force Density Method (FDM) (Linkwitz and Schek, 
1971; Schek, 1974) is used to solve the self-equilibrated states of the 
tensegrities shown in this work. Finally, it has been proved that the 
introduction of additional cables in the octagonal cells can result in an 
improvement of the stability of a tensegrity. 

The tensegrity structures presented in this work could have prom
ising engineering applications. New research in different fields could be 
derived from the application of these new tensegrities. Among others 
examples, they could be considered as a unit of tensegrity mass-spring 

chains (Amendola et al., 2018; Fraternali et al., 2014). 

2. A new graphical representation of the Z-Octahedron family 

2.1. The Z-Octahedron family 

The Z-Octahedron family has already been presented in Fernández- 
Ruiz et al. (Fernández-Ruiz et al., 2020). The first two members, the Z- 
expanded octahedron and the Z-double-expanded octahedron are 
defined by using Z-shaped elementary cells (see Fig. 2.a and b, 
respectively). 

The analytical form-finding method based on FDM that is employed 
in this work for the design of tensegrity structures is summarized in 
Appendix A, as well as the stability and super-stability criterions. 

In Fernández-Ruiz et al. (Fernández-Ruiz et al., 2020), two types of 
cables are identified (type 1 and type 2) in the two tensegrities of the Z- 
Octahedron family shown in Fig. 2. Consequently, two positive values of 
the force:length ratio are considered for cables (qc1 and qc2 for type 1 and 
type 2 cables, respectively). On the other hand, only one value of force: 
length ratio is considered for struts (qb, negative). The force:length ratio, 
q, is defined as the ratio between the axial force and the length of each 
member of the tensegrity. Furthermore, two independent normalized 
force:length ratios taken as Q1 = -qc1/qb and Q2 = -qc2/qb are considered. 
Note that, by definition, Q1 and Q2 are positive. 

The Z-expanded octahedron (see Fig. 2a) is composed of 6 Z-shaped 
cells (12 nodes, 6 struts, and 18 cables). The solutions given by the 
analytical form-finding method considering qc1 = qc2 (and consequently, 
Q1 = Q2) have already been presented in (Fernández-Ruiz et al., 2020): 
Q1 = 1/10

(
11 −

̅̅̅̅̅̅
41

√ )
and Q1 = 1/10

(
11 +

̅̅̅̅̅̅
41

√ )
. Other solutions are 

obtained, but they are ruled out because Q1 has negative values or it is 
equal to zero. The solution Q1 = 1/10

(
11 +

̅̅̅̅̅̅
41

√ )
leads to a super- 

stable equilibrium configuration (the Z-expanded octahedron, see 
Fig. 2a), while Q1 = 1/10

(
11 −

̅̅̅̅̅̅
41

√ )
leads to a tensegrity which cannot 

not be considered as being either super-stable (it does not fulfill condi
tion (ii) of the super-stability criterion) or stable (taking into consider
ation the material properties shown in Appendix A). 

The next member of the Z-Octahedron family, the Z-double- 
expanded octahedron (see Fig. 2b) composed of 12 Z-shaped cells (24 
nodes, 12 struts, and 36 cables), has already been presented in 
(Fernández-Ruiz et al., 2020). The solutions of the form-finding problem 
considering qc1 = qc2 are Q1 = 1/10

(
11 −

̅̅̅̅̅̅
41

√ )
, Q1 = 1/10

(
11 +

̅̅̅̅̅̅
41

√ )

and Q1 = 7/3. The solution corresponding to Q1 = 7/3 leads to the super- 
stable full form of the Z-double-expanded octahedron (see Fig. 2b),Q1 =

1/10
(
11 +

̅̅̅̅̅̅
41

√ )
, which corresponds to the unstable folded form of the 

Z- double-expanded octahedron, while Q1 = 1/10
(
11 −

̅̅̅̅̅̅
41

√ )
leads to 

an unstable tensegrity structure. 
In Fernández-Ruiz et al. (Fernández-Ruiz et al., 2020), a higher 

number of different values of force:length ratio is studied. 

2.2. Octagonal connection graphs 

A plane connection graph is a graphical representation of the con
nectivity between the nodes of a tensegrity (Fernández-Ruiz et al., 
2019). The plane connection graph has a key role in the design of ten
segrity structures because it is the basis for the construction of connec
tivity matrix C (defined in Appendix A) of the tensegrity. Fig. 2 shows 
the plane connection graphs based on Z-shaped elementary cells of both 

Fig. 1. Rhombic (a) and Z-shaped (b) elementary cells. Thick gray lines and 
thin black lines correspond to struts and cables, respectively. Adapted from 
(Fernández-Ruiz et al., 2020). 
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the Z-expanded octahedron and the Z-double expanded octahedron 
(Fernández-Ruiz et al., 2020). These plane connection graphs are ob
tained by replacing the rhombic cells of the tensegrities of the Octahe
dron family defined in (Fernández-Ruiz et al., 2019) by Z-shaped cells. 

In this piece of work, an alternative plane connection graph is pre
sented that is based on a new type of cell: the octagonal cell. In Fig. 2b, 
two struts and eight cables of the Z-double-expanded octahedron have 
been highlighted in blue (for the interpretation of the references to 
color, the reader is referred to the online version of this article). These 
struts and cables can be considered as making up an octagonal cell. 
Accordingly, the Z-double expanded octahedron can be constructed by 
assembling six octagonal cells (see Fig. 3). This new plane connection 

Fig. 2. A Z-expanded octahedron (a) and a Z-double-expanded-octahedron (b) together with their corresponding plane connection graphs. Gray lines, black lines, 
and dashed black lines correspond to struts, type 1 cables, and type-2 cables, respectively. The plane connection graphs have been adapted from (Fernández-Ruiz 
et al., 2020). 

Fig. 3. New octagonal connection graph of the Z-double expanded octahedron. 
Gray lines, black lines, and dashed black lines correspond to struts, type 1 ca
bles, and type-2 cables, respectively. 

Fig. 4. Octagonal connection graph of the Z-triple-expanded octahedron. Gray 
lines, black lines, and dashed black lines correspond to struts, type 1 cables, and 
type-2 cables, respectively. 
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graph (called an octagonal connection graph) is equivalent to the one 
shown in Fig. 2b. 

It should be highlighted that each of the elementary cells shown in Li 
et al. (Li et al., 2010) and those used in the Octahedron (Fernández-Ruiz 
et al., 2022; Fernández-Ruiz et al., 2019), the Z-Octahedron (Fernández- 
Ruiz et al., 2020), and the X-Octahedron (Fernández-Ruiz et al., 2021) 
tensegrity families only have one strut each. On the other hand, the new 
octagonal cell has two struts and eight cables. This new type of cell 
opens up a new range of possibilities for defining new tensegrity 
structures. 

3. The Z-triple-expanded octahedron 

It is interesting to note that the connectivity between the cells of the 
octagonal connection graph of the Z-double expanded octahedron (see 
Fig. 3) follows the same pattern as that of the Z-expanded octahedron 
that is based on Z-shaped elementary cells (see Fig. 2a). Therefore, the 
octagonal connection graph of the Z-triple expanded octahedron (see 
Fig. 4) has been constructed following the same connection pattern as 
that of the Z-double-expanded octahedron when Z-shaped cells are 
considered (see Fig. 2b). 

Fig. 4 shows that the Z-triple-expanded octahedron is composed of 
12 octagonal cells (48 nodes, 24 struts, and 72 cables). For this ten
segrity, the solutions of the form-finding problem areQ1 =

1/10
(
11 −

̅̅̅̅̅̅
41

√ )
, Q1 = 1/10

(
11 +

̅̅̅̅̅̅
41

√ )
, Q1 = 7/3, Q1 = 2/5, Q1 = 1/

7
(
10 −

̅̅̅̅̅̅
30

√ )
andQ1 = 1/7

(
10 +

̅̅̅̅̅̅
30

√ )
. The solutions Q1 = 1/10

(
11 +

̅̅̅̅̅̅
41

√ )
and Q1 = 7/3 correspond to the Z-expanded octahedron and the Z- 

double-expanded octahedron, whose members are duplicated and 
quadruplicated, (the first one is unstable and the second one is super- 
stable), respectively. Therefore, it can be concluded that the Z-triple- 
expanded octahedron resulting from the octagonal connection graph 
shown in Fig. 4 belongs to the Z-Octahedron family. It has been verified 
that the solutionsQ1 = 1/10

(
11 −

̅̅̅̅̅̅
41

√ )
, Q1 = 2/5 and Q1 = 1/7

(
10 −

̅̅̅̅̅̅
30

√ )
correspond to unstable tensegrity structures. The solution Q1 = 1/

7
(
10 +

̅̅̅̅̅̅
30

√ )
leads to the full-form of the Z-triple-expanded octahedron 

(see Fig. 5), which is not super-stable because its corresponding force 
density matrix, D, is not positive semi-definite (in this case some ei
genvalues are very close to 0, but they are negative). However, and 
according to the material properties shown in Appendix A, the Z-triple- 
expanded octahedron is a stable tensegrity. 

4. New tensegrity structures based on the Z-Octahedron family 

New tensegrity structures can be defined by replacing the connec
tivity pattern of the elementary octagonal cells of the plane connection 
graphs of the Z-Octahedron family. Let us consider, in addition to the 
previously considered octagonal cell (see Figs. 3 and 4 and the type 1 
octagonal cell in Fig. 6.a), another two types of octagonal cells (see types 
2 and 3 in Fig. 6). Fig. 6 shows that the struts are crossed in a type 2 
octagonal cell, and two additional crossed cables connecting opposite 
nodes of the cell are included in a type 3 cell. 

Fig. 5. Z-triple-expanded octahedron with Q1 = 1/7 (10+√30) and qb = -1.  

Fig. 6. Octagonal cell type 1 (a), type 2 (b), and type 3 (c). Gray lines, black 
lines, and dashed black lines correspond to struts, type 1 cables, and type-2 
cables, respectively. 

Fig. 7. Type-2-double-expanded octahedron with Q1 = Q2 = 1/3 (5+√13) and 
qb = -1. 
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4.1. Type 2 octagonal cell 

4.1.1. Type-2-double-expanded octahedron 
The plane connection graph of the type-2-double-expanded octahe

dron is obtained by replacing the type 1 octagonal cells from Fig. 3 with 
type 2 octagonal cells (Fig. 6b). 

If only two values of q are considered (qc1 = qc2, and so Q1 = Q2), the 
solutions of the form-finding problem that lead to a full form of the 
tensegrity are: Q1 = 1/3

(
5 −

̅̅̅̅̅̅
13

√ )
and Q1 = 1/3

(
5 +

̅̅̅̅̅̅
13

√ )
. The so

lution Q1 = 1/3
(
5 −

̅̅̅̅̅̅
13

√ )
leads to an unstable tensegrity but, for Q1 =

1/3
(
5 +

̅̅̅̅̅̅
13

√ )
, a super-stable tensegrity is obtained: the type-2-double- 

expanded octahedron (see Fig. 7). 
If three values of q are considered instead of two, as indicated in 

Fig. 6b (qc1, qc2 and qb), then the solution of the form-finding problem is 
the one shown in Eq. (1). It should be highlighted that other solutions 
can also be obtained, but they have been ruled out because they lead to 
folded forms, or because Q1 and/or Q2 have negative values (and by 
definition, both must be positive). 

Q2 =
2( − 2 + 3Q1)

− 4 + 3Q1
(1) 

Fig. 8.a shows the curve, Q1 – Q2, which corresponds to Eq. (1). It is 
important to note that not all the Q1 – Q2 pairs resulting from Eq. (1) lead 
to super-stable or stable tensegrities. Hence, the next step is to study 
whether the super-stability conditions numbered in Appendix A are 
fulfilled or not. First of all, the conditions Q1 > 0 and Q2 > 0 are checked. 

In the regions 0 < Q1 < 2/3 and Q1 > 4/3, both Q1 and Q2 are positive. 
Secondly, condition (i) of the super-stability criterion is imposed on the 
structure, for which the rank deficiency of the resulting matrix D must be 
exactly d + 1 (d = 3 in three-dimensional tensegrities, see Appendix A). 
It has been verified that all the tensegrity structures in the regions 0 <
Q1 < 2/3 and Q1 > 4/3 have exactly 4 zero eigenvalues. Condition (ii) of 
the super-stability criterion indicates that matrix D must be positive 
semi-definite. This condition is fulfilled in region Q1 > 4/3. Fig. 8.b 
shows the minimum eigenvalue of matrix D for all the Q1 – Q2 pairs 
obtained from Eq. (1) in region 0 < Q1 < 2/3, considering qb = -1. It can 
be seen that there is always a negative eigenvalue and so tensegrity 
forms resulting from Eq. (1) in region 0 < Q1 < 2/3 do not fulfill con
dition (ii) of super-stability. Finally, and according to condition (iii) of 
the super-stability criterion, the rank of the geometry matrix, G, must be 
(d2 + d)/2 = 6. The tensegrity forms obtained from Eq. (1) in region Q1 
> 4/3 have a geometry matrix with a rank of six. Consequently, the 
tensegrities of region Q1 > 4/3 can be considered as super-stable. On the 
contrary, tensegrity forms obtained from Eq. (1) in region 0 < Q1 < 2/3 
are unstable. The study of the super-stability is summarized in Table 1. 

Fig. 9 shows three super-stable equilibrium configurations of the 
type-2-double-expanded octahedron for different Q1 – Q2 pairs of Eq. (1) 
in region Q1 > 4/3. As Q1 increases in Eq. (1), the resultant tensegrity 
resembles more a truncated cube (see Fig. 9). 

4.1.2. Type-2-triple-expanded octahedron 
As previously mentioned, the plane connection graph of the type-2- 

triple-expanded octahedron is constructed by replacing the type 1 
octagonal cells from Fig. 4 with type 2 octagonal cells. It should be 
highlighted that the connectivity pattern between the type 2 octagonal 
cells in the type-2-triple-expanded octahedron is the same as the one 
that corresponds to the Z-triple-expanded octahedron (see Fig. 4). If only 
two values of q are considered (Q1 = Q2), the solutions of the form- 
finding problem that leads to a full-form are Q1 = 3/70

(
31 − 3

̅̅̅̅̅̅
29

√ )

and Q1 = 3/70
(
31 + 3

̅̅̅̅̅̅
29

√ )
. Both solutions lead to unstable tensegrity 

forms. Other solutions are also obtained, including Q1 = 1/3
(
5 +

̅̅̅̅̅̅
13

√ )
, 

which corresponds to the type-2-double-expanded octahedron, whose 
nodes and members are duplicated (folded form). Given the complexity 

Fig. 8. Q1 – Q2 self-equilibrium curves of the type-2-double-expanded octahedron (Eq. (1)) (a) and minimum eigenvalue of D for the Q1 - Q2 graph of Eq. (1) in the 
region 0 < Q1 < 2/3, considering qb = -1. 

Table 1 
Super-stability analysis of the type-2-double-expanded octahedron considering 
three values of q. Condition (i): force density matrix D has exactly-four zero- 
eigenvalues. Condition (ii): matrix D is positive semi-definite. Condition (iii): 
geometry matrix G has a rank of 6.  

Solution Q1 and Q2 > 0 Condition (i) Condition (ii) Condition (iii) 

Eq. (1) 0 < Q1 < 2/3 ✓ ✕ – 
Q1 > 4/3 ✓ ✓ ✓  
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of the system of equations obtained, a higher number of different values 
of q are not considered due to the high computational cost. limitations in 
the calculation capacity. 

4.2. Octagonal cell type 3 

4.2.1. Type-3-double-expanded octahedron 
As in the previous case, the plane connection graph of the type-3- 

double-expanded octahedron is obtained by replacing the type 1 
octagonal cells of Fig. 3 with type 3 octagonal cells (Fig. 6c). The type 3 
double-expanded octahedron is composed of 6 type-3 octagonal cells (24 

nodes, 12 struts, and 48 cables). The solutions of the form-finding 
problem that consider qc1 = qc2 (and consequently Q1 = Q2) that lead 
to a full form are Q1 = 1/17

(
15 −

̅̅̅̅̅̅
89

√ )
andQ1 = 1/17

(
15 +

̅̅̅̅̅̅
89

√ )
. 

Solution Q1 = 1/17
(
15 −

̅̅̅̅̅̅
89

√ )
leads to an unstable tensegrity, but 

Q1 = 1/17
(
15 +

̅̅̅̅̅̅
89

√ )
corresponds to a super-stable tensegrity called 

type-3-double-expanded octahedron (see Fig. 10). 
If three values of q are considered, as indicated in Fig. 6c (qc1, qc2 and 

qb), the only solution that leads to full forms is shown in Eq. (2). 

Q2 =
2
(
4 − 11Q1 + 5Q2

1

)

8 − 7Q1
(2) 

Fig. 11.a shows the Q1 – Q2 representation that corresponds to Eq. 
(2). As in Section 4.1.1, a study of the super-stability is carried out 
depending on the value of the Q1 – Q2 pairs (this study is summarized in 
Table 2). Tensegrity structures for which 8/7 < Q1 < 1/10

(
11 +

̅̅̅̅̅̅
41

√ )

can be considered as super-stable while if 0 < Q1 < 1/10
(
11 +

̅̅̅̅̅̅
41

√ )
, 

then the tensegrities are unstable. 
Fig. 12 shows three super-stable equilibrium configurations of the 

type-3-double-expanded octahedron considering several Q1 – Q2 pairs of 
Eq. (2) in region 8/7 < Q1 < 1/10

(
11 +

̅̅̅̅̅̅
41

√ )
. 

4.2.2. Type-3-triple-expanded octahedron 
The plane connection graph of the type-3-triple-expanded octahe

dron is constructed by replacing the type 1 octagonal cells from Fig. 4 
with type 3 octagonal cells. The connectivity pattern between the type 3 
octagonal cells in the type-3-triple-expanded octahedron is the same 
than the one corresponding to the Z-triple-expanded octahedron (see 
Fig. 4) and to the type-2-triple-expanded octahedron. The type-3-triple- 
expanded octahedron is composed of 12 type 3 octagonal cells (48 
nodes, 24 struts, and 96 cables). As in Section 4.1.2, only two values of q 
are considered (qc1 = qc2, and so Q1 = Q2) due to the high computational 
cost. The solutions of the form-finding problem that lead to a full-form 
are Q1 = 1/346

(
379 + 3

̅̅̅̅̅̅̅̅̅̅̅
3581

√ )
and Q1 = 1/346

(
379 − 3

̅̅̅̅̅̅̅̅̅̅̅
3581

√ )
. 

The solution Q1 = 1/346
(
379 − 3

̅̅̅̅̅̅̅̅̅̅̅
3581

√ )
leads to an unstable ten

segrity, but the solution Q1 = 1/346
(
379 + 3

̅̅̅̅̅̅̅̅̅̅̅
3581

√ )
corresponds to a 

Fig. 9. Equilibrium shapes of the type-2-double-expanded octahedron considering different values of q. Q1 = 1.5 & Q2 = 10 (Eq. (1)) & qb = -1 (a); Q1 = 3 & Q2 = 2.8 
(Eq. (1)) & qb = -1 (b); Q1 = 8 & Q2 = 2.2 (Eq. (1)) & qb = -1 (c). Black and blue cables correspond to qc1 and qc2, respectively and gray bars to qb. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Type-3-double-expanded octahedron with Q1 = Q2 = 1/17 (15+√89) 
and qb = -1. 
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super-stable tensegrity called type-3-triple-expanded octahedron (see 
Fig. 13). Other solutions are also obtained, includingQ1 =

1/17
(
15 +

̅̅̅̅̅̅
89

√ )
, which corresponds to the type-3-double-expanded 

octahedron, whose nodes and members are duplicated (folded form). 
It is interesting to note that the introduction of additional cables 

means an improvement in the stability of the tensegrity because the 
type-2-triple-expanded octahedron is unstable, while the type-3-triple- 
expanded octahedron is a super-stable tensegrity. Hence, the type of 
octagonal elementary cell used to construct the connectivity pattern has 
a significant amount of influence on the tensegrity obtained, especially 
related to number of cables or tensioned members. The introduction of 
these two cables per octagonal cell is responsible for the difference in the 
stability of type 2 and type 3 triple-expanded octahedron tensegrity 
structures. 

Fig. 11. Q1 – Q2 self-equilibrium curves of the type-3-double-expanded octahedron (Eq. (2)) (a) and the minimum eigenvalue of D for the Q1 - Q2 graph of Eq. (2) in 
region 0 < Q1 < 1/10 (11-√41) considering qb = -1. 

Table 2 
Super-stability analysis of the type-3-double-expanded octahedron considering 
three values of q. Condition (i): force density matrix D has exactly-four zero- 
eigenvalues. Condition (ii): matrix D is positive semi-definite. Condition (iii): 
geometry matrix G has a rank of 6.  

Solution Q1 and Q2 > 0 Condition 
(i) 

Condition 
(ii) 

Condition 
(iii) 

Eq. (2) 0 < Q1 < 1/10 (11- 
√41) 

✓ ✕ – 

8/7 < Q1 < 1/10 
(11+√41) 

✓ ✓ ✓  

Fig. 12. Equilibrium shapes of the type-3-double-expanded octahedron considering different values of q. Q1 = 1.2 & Q2 = 10 (Eq. (2)) & qb = -1 (a); Q1 = 1.5 & Q2 =

1 (Eq. (2)) & qb = -1 (b); Q1 = 1.7 & Q2 = 0.13 (Eq. (2)) & qb = -1 (c). Black and blue cables correspond to qc1 and qc2, respectively and gray bars to qb. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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4.3. Octagonal connection graphs for the expanded octahedron 

Special attention is paid to the Z-expanded octahedron (Fig. 2a) 
when an octagonal elementary cell is used. Fig. 14 shows the octagonal 
connection graph of the Z-expanded octahedron (which is equivalent to 
the one shown in Fig. 2a). The comparison of this figure with Figs. 3 and 
4 shows that, in Fig. 14, some of the external nodes are permuted, and so 
the connection pattern is slightly different. 

As in the previous sections, the type-1 octagonal cells in Fig. 14 have 
been replaced by type 2 and type 3 octagonal cells (see Fig. 6), and just 
one or two values of the force:length ratios for cables have been 
considered. The results obtained that correspond to super-stable ten
segrities are summarized in Table 3. 

Table 3 shows that the solution of the form-finding problem of type 1 
and type 2 expanded octahedrons is exactly the same. In addition, this 
solution has been studied in Fernández-Ruiz et al. (Fernández-Ruiz et al., 
2020). On the other hand, Fig. 15 shows several equilibrium configu
rations of the type-3-expanded octahedron that consider different Q1 – 
Q2 pairs. 

4.4. Summary 

All the values of the force:length ratios obtained in this work which 
lead to stable or super-stable full-forms of tensegrities are summarized in 
Fig. 16. 

5. Conclusions 

The Z-expanded octahedron and the Z-double-expanded octahedron 
are constructed by assembling Z-shaped cells. In this piece of work, a 
new graphical representation of the members of the Z-Octahedron 
family based on octagonal cells has been proposed. This new type of 
elementary cell has eight nodes and two struts, twice the number of 
nodes and struts than those found in rhombic and Z-shaped cells. The Z- 
triple-expanded octahedron has been obtained from the topology of the 
Z-Octahedron family considering the new octagonal connection graphs. 
This stable tensegrity structure is composed of 48 nodes, 24 struts, and 
72 cables. The Z-triple-expanded octahedron contains both the Z-dou
ble-expanded octahedron and the Z-expanded octahedron as folded 
forms, which is a necessary condition for tensegrity families belonging 
to the same family. It has been proved that the new octagonal graphical 
representation of the Z-Octahedron family can be a good source of new 
tensegrity forms. 

New tensegrity structures derived from the Z-Octahedron family 
have been defined. The connections between elements of the new 
octagonal cells have been modified leading to other types of octagonal 
cells (type 2 and type 3 octagonal cells). Super-stable tensegrity forms 
have been obtained analytically. In addition, several element groupings 
have been considered in order to obtain different equilibrium 

Fig. 13. Type-3-triple-expanded octahedron with Q1 = Q2 = 1/346 (379 +
3√3581) and qb = -1. 

Fig. 14. Octagonal connection graph of the Z-expanded octahedron. Gray lines, 
black lines, and dashed black lines correspond to struts, type 1 cables, and type- 
2 cables, respectively. 

Table 3 
Z-expanded octahedron. Summary of super-stable configurations.  

Octagonal cell Q1 = Q2 = -qc1/qb Q1 = -qc1/qb & Q2 = -qc2/qb 

Solution Solution Region 

Type 1 Q1 = 1/10
(
11 +

̅̅̅̅̅̅
41

√ )

Q2 =
− 2 + 6Q1 − 3Q2

1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4 − 8Q1 + 8Q2
1 − 12Q3

1 + 9Q4
1

√

4( − 1 + Q1)

Q1 > 1 
Type 2 

Type 3 Q1 = 3/4 
Q2 =

− 2 + 10Q1 − 11Q2
1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4 − 8Q1 − 8Q2
1 − 4Q3

1 + 41Q4
1

√

4( − 1 + 2Q1)

1/2 < Q1 < 1/10
(
11 +

̅̅̅̅̅̅
41

√ )
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configurations of these new tensegrity structures. The introduction of 
additional cables in the elementary octagonal cell clearly results in an 
improvement of the stability of the resultant tensegrity and in a reduc
tion of the force:length ratio in the cables in the equilibrium 
configuration. 
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Appendix A 

Analytical form-finding of tensegrity structures (Fernández-Ruiz et al., 2019; Hernández-Montes et al., 2018) 

An in-depth explanation of the analytical form-finding method of tensegrity structures employed in this work can be seen in (Fernández-Ruiz et al., 
2019; Hernández-Montes et al., 2018). In this appendix, a summary of this method is presented. 

The FDM (Linkwitz and Schek, 1971; Schek, 1974) is one of the most commonly used form-finding methods for general pin-jointed networks. The 
highly non-linear equilibrium equations are linearized by introducing the concept of force density or force:length ratio. The force:length ratio, q, is 
defined as the ratio between the axial force and the length of each member of the tensegrity. The equilibrium equations of a general tensegrity 
composed of n nodes and m members (cables and struts) can be formulated as (Tran and Lee, 2010; Zhang and Ohsaki, 2015): 

D x = 0
D y = 0
D z = 0

(A.1) 

In Eq. (A.1) D = CTQC (∈Rn×n) is the force density matrix, and x, y, z (∈Rn) are the nodal coordinate vectors. The symbol []T represents the 
transpose operation of a matrix or vector. The inputs of the form-finding problem are connectivity matrix C and the force:length ratio, q, of each 
member of the tensegrity. Connectivity matrix C (∈Rm×n) defines the connectivity between the nodes of the tensegrity. This matrix is constructed as 
follows: if a general member of j connects nodes i and k (with i < k), the ith and kth elements of the jth row of C are set to 1 and − 1, respectively. Plane 
connection graphs are used to define matrix C. On the other hand, vector q = (q1, q2, …, qm) (∈Rm) contains the force:length ratio of each member of 
the tensegrity (Q is the diagonal square matrix of vector q). 

Fig. 15. Equilibrium shapes of the type-3- expanded octahedron considering different values of q according to Table 3. Q1 = 0.60 & Q2 = 1.15 & qb = -1 (a); Q1 = Q2 
= 3/4 & qb = -1 (b); Q1 = 1.60 & Q2 = 0.09 & qb = -1 (c). Black and blue cables correspond to qc1 and qc2, respectively and gray bars to qb. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 16. Range of values of Q1 for which stable and super-stable tensegrities are obtained for all the types of octagonal cells studied in the work (see Fig. 6). Circles, 
crosses, and squares indicate the Q1 – Q2 pair for which Q1 = Q2 in the case of type 1, type 2, and type 3 octagonal cells respectively. 
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In order to guarantee that a tensegrity does not lie in a space which has lower dimensions than the specific dimension d, matrix D should have rank 
deficiency of at least d + 1 (non-degeneracy condition (Hernández-Montes et al., 2018; Zhang and Ohsaki, 2006)). This non-degeneracy condition is 
achieved by making sure that the characteristic polynomial of D (see Eq. (A.2)) has at least d + 1 zero roots. Consequently, and in order to obtain a 
three-dimensional tensegrity (d = 3), coefficients a3, a2, a1 and a0 of the characteristic polynomial must be zero. Coefficient a0 is always zero because 
matrix D is singular. Coefficients a3, a2 and a1 are expressed in terms of the force:length ratios of the members of the tensegrity (q1, q2, …, qm). The 
system of equations shown in Eq. (A.3) is analytically solved in order to obtain the force:length ratios of the members of the tensegrity that lead to a 
rank deficiency of matrix D of at least d + 1. 

p(λ) = λn + an− 1λn− 1 +…+ a1λ+ a0 (A.2)  

a3(q1,…, qm) = 0
a2(q1,…, qm) = 0
a1(q1,…, qm) = 0

(A.3)  

Stability, prestress-stability and super-stability of tensegrity structures 

A tensegrity is stable if its corresponding tangent stiffness matrix K = KGEOM + KELAST is a positive semi-definite matrix (Fernández-Ruiz et al., 
2019; Zhang and Ohsaki, 2015, 2007). Matrix KELAST is the elastic stiffness matrix and KGEOM is the geometric stiffness matrix. The stability of 
tensegrity structures, together with the definition of matrices KGEOM and KELAST, has been discussed in detail in (Fernández-Ruiz et al., 2019; Zhang 
and Ohsaki, 2015, 2007). In order to study the stability of a tensegrity, the material properties, A, (cross-sectional area) and, E, (Young’s modulus) of 
its members must be known. In all the stability studies in this work, it is assumed that the maximum prestress is 1 % of EA (Zhang and Ohsaki, 2015). 

In preliminary studies, it could be useful to know whether a tensegrity with a specific pre-stressed state is stable or not, without considering any 
specific materials. A tensegrity is said to be prestress-stable if it is stable in the state of self-equilibrium in the directions of infinitesimal mechanisms 
(Zhang and Ohsaki, 2015). In this prestress-stability criterion, it is assumed that the member stiffness of the tensegrity is high enough. 

Super-stability is a much higher stability criterion than previous ones. It has been stated that a tensegrity is super-stable if it is always stable, 
regardless of material properties and prestress levels (Connelly, 1998; Zhang and Ohsaki, 2015, 2007). The super-stability conditions of tensegrity 
structures are as follows (Connelly, 1998; Zhang and Ohsaki, 2015, 2007):  

1. The rank deficiency of the force density matrix D is exactly d + 1.  
2. The force density matrix D is positive semi-definite.  
3. The rank of the matrix G is (d 2 + d)/2. 

An in-depth explanation on the geometry matrix G can be seen in (Zhang and Ohsaki, 2015). 
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