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A tensegrity family is a group of tensegrity structures that share a common connectivity pattern. The Octahedron,
the Z-Octahedron, and the X-Octahedron families are examples of these groups found in the literature. In this
work, a new graphical representation of the members of the Z-Octahedron family based on octagonal cells is
presented. These new elementary cells are composed of eight nodes and two struts. In addition, a new member of
the family is introduced: the Z-triple-expanded octahedron. New tensegrity structures from the Z-Octahedron

family are obtained by modifying the connectivity pattern of the elements that make up the octagonal cell.
Several element groupings have been considered in order to find different equilibrium configurations. The values
of the force density or force:length ratio that lead to stable and super-stable tensegrity forms have been computed
analytically. It has been proved that the Z-Octahedron family is a good source of new tensegrity forms.

1. Introduction

Tensegrity structures are pin-jointed, free-standing, and pre-stressed,
and they are composed of compression (struts) and tension (cables)
members that are self-equilibrated. The unique mechanical and math-
ematical properties of these structures mean that they have applications
in many fields, such as robotics (Graells Rovira and Mirats Tur, 2009;
Leeetal., 2020; Liu et al., 2022), biology (Fraldi et al., 2021; Suma et al.,
2020), mechanical engineering (Boni and Royer-Carfagni, 2021; Kan
et al., 2019), civil engineering (Bel Hadj Ali et al., 2010; Veuve et al.,
2016), and aerospace engineering (Chen et al., 2020; Tibert and Pelle-
grino, 2002). Tensegrity structures can also be used as dissipative de-
vices for earthquake-proof structures (Fraternali and Santos, 2019;
Singh et al., 2020). In addition, tensegrity metamaterials can be used in
impact protection and energy dissipation systems (Bauer et al., 2021; Ma
et al., 2018).

A tensegrity should fulfill the following conditions (Zhang and
Ohsaki, 2015): i) the tensegrity is free-standing without any support; ii)
it is composed of only two types of members (cables in tension and struts
in compression); iii) the struts are not in contact with each other at their
ends, and iv) the self-weight of the tensegrity is negligibly small in
comparison with the member forces. The tensegrity structures shown in
this work fulfill all the conditions listed above. In practice, in addition to
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the preceding conditions, tensegrity structures should satisfy some other
requirements. Some examples of these requirements are: members
should not intersect with each other, and both the buckling of the struts
and the yielding of the cables must be prevented. There are some opti-
mization methods that consider member intersection (Xu et al., 2016)
and buckling constraints (Xu et al., 2018) in order to avoid these situ-
ations. The member intersection and the potential local buckling of
compression members have not been considered in the present work.

The creation of these types of interesting structures is complex
because tensegrities do not exhibit very intuitive principles (Gomez-
Jauregui, 2010). In addition, novel applications such as biomechanical
structural models and mechanical metamaterials require large-scale
tensegrity structures, which increase the complexity of the design pro-
cedure. One of the main sources of tensegrity structures are regular
polyhedrons, including simple polyhedral tensegrities, prismatic ten-
segrities, and truncated polyhedral tensegrities (Yin et al., 2020; Zhang
et al.,, 2019, 2021, 2013). However, truncated polyhedral tensegrities
are limited by the five types of convex regular polyhedrons: tetrahedron,
cube, octahedron, dodecahedron, and icosahedron.

Another way to construct a tensegrity structure is by assembling
elementary modules together in a specific manner. In Murakami et al.
(Murakami and Nishimura, 2001), the static and dynamic character-
ization of truncated regular polyhedral modules is studied. Rhode-
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Barbarigos et al. (Rhode-Barbarigos et al., 2010) and Feron et al. (Feron
et al., 2019) proposed the use of tensegrity modules as elementary
building modules in the design of pedestrian bridges. In line with this
design procedure, Li et al. (Li et al., 2010) show that tensegrity struc-
tures can be constructed by assembling one-bar elementary cells. Pugh
(Pugh, 1976) defines two main classes of tensegrity structures, named
“rhombic” (or “diamond”) and “zig-zag” systems. Most rhombic and zig-
zag tensegrities can be considered as assemblages of rhombic and Z-
shaped cells, respectively (see Fig. 1).

Finally, tensegrity families are another great source of tensegrity
structures. A tensegrity family is a group of tensegrity structures that
share a common connectivity pattern (Fernandez-Ruiz et al., 2022,
2021, 2020, 2019). The Octahedron (Fernandez-Ruiz et al., 2022,
2019), the Z-Octahedron (Fernandez-Ruiz et al., 2020), and the X-Oc-
tahedron (Fernandez-Ruiz et al., 2021) families are examples of families
of tensegrity structures found in the literature. The greatest advantage of
the design of tensegrity structures based on tensegrity families is that
they can be used to construct new tensegrity forms based on topology
instead of using geometrical intuition. Each member of the family has all
the previous members of the family as folded forms (Fernandez-Ruiz
etal., 2019). Folded forms are tensegrity structures where some nodes in
the equilibrium configuration share the same position in the space
(Hernandez-Montes et al., 2018), while full forms are tensegrity struc-
tures where all the nodes have different positions in the equilibrium
shape (Hernandez-Montes et al., 2018). With this property in mind, a
full form can be considered as the folded form of the subsequent member
of the family, obtaining new tensegrities with a higher number of nodes,
struts, and cables.

In this work, a new member of the Z-Octahedron family is presented:
the Z-triple-expanded octahedron (which is composed of 48 nodes, 24
struts, and 72 cables). In addition, a new graphical representation of the
members of the Z-Octahedron family based on octagonal cells is pro-
posed. New tensegrity structures are constructed by changing the con-
nectivity pattern of the members of the elementary octagonal cell of the
Z-Octahedron family. Several element groupings have been considered
in order to find different equilibrium configurations. An analytical form-
finding method (Fernandez-Ruiz et al., 2019; Hernandez-Montes et al.,
2018) based on the Force Density Method (FDM) (Linkwitz and Schek,
1971; Schek, 1974) is used to solve the self-equilibrated states of the
tensegrities shown in this work. Finally, it has been proved that the
introduction of additional cables in the octagonal cells can result in an
improvement of the stability of a tensegrity.

The tensegrity structures presented in this work could have prom-
ising engineering applications. New research in different fields could be
derived from the application of these new tensegrities. Among others
examples, they could be considered as a unit of tensegrity mass-spring

/TM
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Fig. 1. Rhombic (a) and Z-shaped (b) elementary cells. Thick gray lines and
thin black lines correspond to struts and cables, respectively. Adapted from
(Fernandez-Ruiz et al., 2020).
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chains (Amendola et al., 2018; Fraternali et al., 2014).

2. A new graphical representation of the Z-Octahedron family
2.1. The Z-Octahedron family

The Z-Octahedron family has already been presented in Ferndndez-
Ruiz et al. (Fernandez-Ruiz et al., 2020). The first two members, the Z-
expanded octahedron and the Z-double-expanded octahedron are
defined by using Z-shaped elementary cells (see Fig. 2.a and b,
respectively).

The analytical form-finding method based on FDM that is employed
in this work for the design of tensegrity structures is summarized in
Appendix A, as well as the stability and super-stability criterions.

In Fernandez-Ruiz et al. (Fernandez-Ruiz et al., 2020), two types of
cables are identified (type 1 and type 2) in the two tensegrities of the Z-
Octahedron family shown in Fig. 2. Consequently, two positive values of
the force:length ratio are considered for cables (q.; and g,z for type 1 and
type 2 cables, respectively). On the other hand, only one value of force:
length ratio is considered for struts (g, negative). The force:length ratio,
g, is defined as the ratio between the axial force and the length of each
member of the tensegrity. Furthermore, two independent normalized
force:length ratios taken as Q; = -q.1/qp and Q2 = -q.2/qp are considered.
Note that, by definition, Q; and Q are positive.

The Z-expanded octahedron (see Fig. 2a) is composed of 6 Z-shaped
cells (12 nodes, 6 struts, and 18 cables). The solutions given by the
analytical form-finding method considering q.; = g2 (and consequently,
Q1 = Q2) have already been presented in (Fernandez-Ruiz et al., 2020):
Q1 =1/10(11 — v/41) and Q; = 1/10(11 + /41 ). Other solutions are
obtained, but they are ruled out because Q; has negative values or it is
equal to zero. The solution Q; = 1/10(11 + v/41) leads to a super-
stable equilibrium configuration (the Z-expanded octahedron, see
Fig. 2a), while Q; = 1/10(11 — /41 ) leads to a tensegrity which cannot
not be considered as being either super-stable (it does not fulfill condi-
tion (ii) of the super-stability criterion) or stable (taking into consider-
ation the material properties shown in Appendix A).

The next member of the Z-Octahedron family, the Z-double-
expanded octahedron (see Fig. 2b) composed of 12 Z-shaped cells (24
nodes, 12 struts, and 36 cables), has already been presented in
(Fernandez-Ruiz et al., 2020). The solutions of the form-finding problem
considering g.; = gczare Q1 =1/10(11 — v/41),Q; = 1/10(11 + v/41)
and Q; = 7/3. The solution corresponding to Q; = 7/3 leads to the super-
stable full form of the Z-double-expanded octahedron (see Fig. 2b),Q; =
1/10(11 + v/41), which corresponds to the unstable folded form of the
Z- double-expanded octahedron, while Q; = 1/10(11 — v/41) leads to
an unstable tensegrity structure.

In Ferndndez-Ruiz et al. (Fernandez-Ruiz et al., 2020), a higher
number of different values of force:length ratio is studied.

2.2. Octagonal connection graphs

A plane connection graph is a graphical representation of the con-
nectivity between the nodes of a tensegrity (Fernandez-Ruiz et al.,
2019). The plane connection graph has a key role in the design of ten-
segrity structures because it is the basis for the construction of connec-
tivity matrix C (defined in Appendix A) of the tensegrity. Fig. 2 shows
the plane connection graphs based on Z-shaped elementary cells of both
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Fig. 2. A Z-expanded octahedron (a) and a Z-double-expanded-octahedron (b) together with their corresponding plane connection graphs. Gray lines, black lines,
and dashed black lines correspond to struts, type 1 cables, and type-2 cables, respectively. The plane connection graphs have been adapted from (Fernandez-Ruiz

et al., 2020).
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Fig. 3. New octagonal connection graph of the Z-double expanded octahedron.
Gray lines, black lines, and dashed black lines correspond to struts, type 1 ca-
bles, and type-2 cables, respectively.

the Z-expanded octahedron and the Z-double expanded octahedron
(Fernandez-Ruiz et al., 2020). These plane connection graphs are ob-
tained by replacing the rhombic cells of the tensegrities of the Octahe-
dron family defined in (Fernandez-Ruiz et al., 2019) by Z-shaped cells.

In this piece of work, an alternative plane connection graph is pre-
sented that is based on a new type of cell: the octagonal cell. In Fig. 2b,
two struts and eight cables of the Z-double-expanded octahedron have
been highlighted in blue (for the interpretation of the references to
color, the reader is referred to the online version of this article). These
struts and cables can be considered as making up an octagonal cell.
Accordingly, the Z-double expanded octahedron can be constructed by
assembling six octagonal cells (see Fig. 3). This new plane connection
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Fig. 4. Octagonal connection graph of the Z-triple-expanded octahedron. Gray
lines, black lines, and dashed black lines correspond to struts, type 1 cables, and
type-2 cables, respectively.
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graph (called an octagonal connection graph) is equivalent to the one
shown in Fig. 2b.

It should be highlighted that each of the elementary cells shown in Li
etal. (Li et al., 2010) and those used in the Octahedron (Fernandez-Ruiz
et al., 2022; Fernandez-Ruiz et al., 2019), the Z-Octahedron (Fernandez-
Ruiz et al., 2020), and the X-Octahedron (Fernandez-Ruiz et al., 2021)
tensegrity families only have one strut each. On the other hand, the new
octagonal cell has two struts and eight cables. This new type of cell
opens up a new range of possibilities for defining new tensegrity
structures.

3. The Z-triple-expanded octahedron

It is interesting to note that the connectivity between the cells of the
octagonal connection graph of the Z-double expanded octahedron (see
Fig. 3) follows the same pattern as that of the Z-expanded octahedron
that is based on Z-shaped elementary cells (see Fig. 2a). Therefore, the
octagonal connection graph of the Z-triple expanded octahedron (see
Fig. 4) has been constructed following the same connection pattern as
that of the Z-double-expanded octahedron when Z-shaped cells are
considered (see Fig. 2b).

Fig. 4 shows that the Z-triple-expanded octahedron is composed of
12 octagonal cells (48 nodes, 24 struts, and 72 cables). For this ten-
segrity, the solutions of the form-finding problem areQ; =
1/10(11 — v41), Q1 =1/10(11 +v41),Q; =7/3,Q1 =2/5,Q1 =1/
7(10 —v/30) andQ; = 1/7(10 + +/30). The solutions Q; = 1/10(11 +
V4T ) and Q; = 7/3 correspond to the Z-expanded octahedron and the Z-
double-expanded octahedron, whose members are duplicated and
quadruplicated, (the first one is unstable and the second one is super-
stable), respectively. Therefore, it can be concluded that the Z-triple-
expanded octahedron resulting from the octagonal connection graph
shown in Fig. 4 belongs to the Z-Octahedron family. It has been verified
that the solutionsQ; = 1/10(11 —+/41), Q; =2/5and Q; = 1/7(10 —

Fig. 5. Z-triple-expanded octahedron with Q; = 1/7 (10+\/30) and g = -1.
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Fig. 6. Octagonal cell type 1 (a), type 2 (b), and type 3 (c). Gray lines, black
lines, and dashed black lines correspond to struts, type 1 cables, and type-2
cables, respectively.

v/30) correspond to unstable tensegrity structures. The solution Q; = 1/

7(10 + v/30) leads to the full-form of the Z-triple-expanded octahedron
(see Fig. 5), which is not super-stable because its corresponding force
density matrix, D, is not positive semi-definite (in this case some ei-
genvalues are very close to 0, but they are negative). However, and
according to the material properties shown in Appendix A, the Z-triple-
expanded octahedron is a stable tensegrity.

4. New tensegrity structures based on the Z-Octahedron family

New tensegrity structures can be defined by replacing the connec-
tivity pattern of the elementary octagonal cells of the plane connection
graphs of the Z-Octahedron family. Let us consider, in addition to the
previously considered octagonal cell (see Figs. 3 and 4 and the type 1
octagonal cell in Fig. 6.a), another two types of octagonal cells (see types
2 and 3 in Fig. 6). Fig. 6 shows that the struts are crossed in a type 2
octagonal cell, and two additional crossed cables connecting opposite
nodes of the cell are included in a type 3 cell.

Fig. 7. Type-2-double-expanded octahedron with Q; = Q2 =1/3 (5+ \/ 13) and
Q@ =-1.
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Fig. 8. Q; — Qg self-equilibrium curves of the type-2-double-expanded octahedron (Eq. (1)) (a) and minimum eigenvalue of D for the Q; - Q2 graph of Eq. (1) in the

region 0 < Q; < 2/3, considering q, = -1.
4.1. Type 2 octagonal cell

4.1.1. Type-2-double-expanded octahedron

The plane connection graph of the type-2-double-expanded octahe-
dron is obtained by replacing the type 1 octagonal cells from Fig. 3 with
type 2 octagonal cells (Fig. 6b).

If only two values of g are considered (q.; = qc2, and so Q; = Qa), the
solutions of the form-finding problem that lead to a full form of the
tensegrity are: Q; =1/3(5—+/13) and Q; = 1/3(5++/13). The so-
lution Q; = 1/3(5 — v/13) leads to an unstable tensegrity but, for Q; =
1/3(5+ \/ﬁ), a super-stable tensegrity is obtained: the type-2-double-
expanded octahedron (see Fig. 7).

If three values of g are considered instead of two, as indicated in
Fig. 6b (qc1, gc2 and gp), then the solution of the form-finding problem is
the one shown in Eq. (1). It should be highlighted that other solutions
can also be obtained, but they have been ruled out because they lead to
folded forms, or because Q; and/or Q2 have negative values (and by
definition, both must be positive).

_2(—=2+30))

T €

Fig. 8.a shows the curve, Q; — Q2, which corresponds to Eq. (1). It is
important to note that not all the Q; — Q2 pairs resulting from Eq. (1) lead
to super-stable or stable tensegrities. Hence, the next step is to study
whether the super-stability conditions numbered in Appendix A are
fulfilled or not. First of all, the conditions Q; > 0 and Q, > 0 are checked.

Table 1

Super-stability analysis of the type-2-double-expanded octahedron considering
three values of q. Condition (i): force density matrix D has exactly-four zero-
eigenvalues. Condition (ii): matrix D is positive semi-definite. Condition (iii):
geometry matrix G has a rank of 6.

Solution Q;and Q2 >0 Condition (i) Condition (ii) Condition (iii)
Eq. (1) 0<Q;<2/3 v X _
Q> 4/3 v v

In the regions 0 < Q; < 2/3 and Q; > 4/3, both Q; and Q; are positive.
Secondly, condition (i) of the super-stability criterion is imposed on the
structure, for which the rank deficiency of the resulting matrix D must be
exactly d + 1 (d = 3 in three-dimensional tensegrities, see Appendix A).
It has been verified that all the tensegrity structures in the regions 0 <
Q; < 2/3 and Q; > 4/3 have exactly 4 zero eigenvalues. Condition (ii) of
the super-stability criterion indicates that matrix D must be positive
semi-definite. This condition is fulfilled in region Q; > 4/3. Fig. 8.b
shows the minimum eigenvalue of matrix D for all the Q; — Q2 pairs
obtained from Eq. (1) in region 0 < Q; < 2/3, considering g, = -1. It can
be seen that there is always a negative eigenvalue and so tensegrity
forms resulting from Eq. (1) in region 0 < Q; < 2/3 do not fulfill con-
dition (ii) of super-stability. Finally, and according to condition (iii) of
the super-stability criterion, the rank of the geometry matrix, G, must be
(d? + d)/2 = 6. The tensegrity forms obtained from Eq. (1) in region Q;
> 4/3 have a geometry matrix with a rank of six. Consequently, the
tensegrities of region Q; > 4/3 can be considered as super-stable. On the
contrary, tensegrity forms obtained from Eq. (1) in region 0 < Q; < 2/3
are unstable. The study of the super-stability is summarized in Table 1.

Fig. 9 shows three super-stable equilibrium configurations of the
type-2-double-expanded octahedron for different Q; — Q2 pairs of Eq. (1)
in region Q; > 4/3. As Qg increases in Eq. (1), the resultant tensegrity
resembles more a truncated cube (see Fig. 9).

4.1.2. Type-2-triple-expanded octahedron

As previously mentioned, the plane connection graph of the type-2-
triple-expanded octahedron is constructed by replacing the type 1
octagonal cells from Fig. 4 with type 2 octagonal cells. It should be
highlighted that the connectivity pattern between the type 2 octagonal
cells in the type-2-triple-expanded octahedron is the same as the one
that corresponds to the Z-triple-expanded octahedron (see Fig. 4). If only
two values of q are considered (Q; = Qg), the solutions of the form-
finding problem that leads to a full-form are Q; = 3/70(31 — 3v/29)
and Q; = 3/70(31 + 3v29). Both solutions lead to unstable tensegrity

forms. Other solutions are also obtained, including Q; =1/3 (5 ++13 ),
which corresponds to the type-2-double-expanded octahedron, whose
nodes and members are duplicated (folded form). Given the complexity
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Fig. 9. Equilibrium shapes of the type-2-double-expanded octahedron considering different values of . Q; =1.5& Q2 =10 (Eq. (1) & gy =-1(a); Q; =3 & Q2 =2.8
(Eq. (1)) & g» = -1 (b); Q; = 8 & Q2 = 2.2 (Eq. (1)) & g = -1 (c). Black and blue cables correspond to q.; and q.», respectively and gray bars to g;. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Type-3-double-expanded octahedron with Q; = Q; = 1/17 (15+\/89)
and g = -1.

of the system of equations obtained, a higher number of different values
of g are not considered due to the high computational cost. limitations in
the calculation capacity.

4.2. Octagonal cell type 3

4.2.1. Type-3-double-expanded octahedron

As in the previous case, the plane connection graph of the type-3-
double-expanded octahedron is obtained by replacing the type 1
octagonal cells of Fig. 3 with type 3 octagonal cells (Fig. 6¢). The type 3
double-expanded octahedron is composed of 6 type-3 octagonal cells (24

nodes, 12 struts, and 48 cables). The solutions of the form-finding
problem that consider q.; = q.2 (and consequently Q; = Q2) that lead
to a full form are Q; =1/17(15—+/89) andQ; = 1/17(15+ v/89).
Solution Q; =1/17(15—+/89) leads to an unstable tensegrity, but
Q=1/17(15+ \/@) corresponds to a super-stable tensegrity called
type-3-double-expanded octahedron (see Fig. 10).

If three values of g are considered, as indicated in Fig. 6¢ (qc1, gc2 and
qp), the only solution that leads to full forms is shown in Eq. (2).

_2(4-110,4+50%)
T80

Fig. 11.a shows the Q; — Q2 representation that corresponds to Eq.
(2). As in Section 4.1.1, a study of the super-stability is carried out
depending on the value of the Q; — Q2 pairs (this study is summarized in
Table 2). Tensegrity structures for which 8/7 < Q; < 1/10(11 + /41)
can be considered as super-stable while if 0 < Q; < 1/10(11 + v/41),
then the tensegrities are unstable.

Fig. 12 shows three super-stable equilibrium configurations of the
type-3-double-expanded octahedron considering several Q; — Q2 pairs of
Eq. (2) in region 8/7 < Q; < 1/10(11 + /41).

(2)

4.2.2. Type-3-triple-expanded octahedron

The plane connection graph of the type-3-triple-expanded octahe-
dron is constructed by replacing the type 1 octagonal cells from Fig. 4
with type 3 octagonal cells. The connectivity pattern between the type 3
octagonal cells in the type-3-triple-expanded octahedron is the same
than the one corresponding to the Z-triple-expanded octahedron (see
Fig. 4) and to the type-2-triple-expanded octahedron. The type-3-triple-
expanded octahedron is composed of 12 type 3 octagonal cells (48
nodes, 24 struts, and 96 cables). As in Section 4.1.2, only two values of q
are considered (g.; = gc2, and so Q; = Q2) due to the high computational
cost. The solutions of the form-finding problem that lead to a full-form

are Q; =1/346(379+3/3581) and Q = 1/346(379 —3/3581).
The solution Q; =1 /346(3797 3\/3581) leads to an unstable ten-
segrity, but the solution Q; = 1/346(379 + 3v/3581 ) corresponds to a
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Fig. 11. Q; — Qg self-equilibrium curves of the type-3-double-expanded octahedron (Eq. (2)) (a) and the minimum eigenvalue of D for the Q; - Q2 graph of Eq. (2) in

region 0 < Q; < 1/10 (11-\/41) considering g, = -1.

Table 2

Super-stability analysis of the type-3-double-expanded octahedron considering
three values of gq. Condition (i): force density matrix D has exactly-four zero-
eigenvalues. Condition (ii): matrix D is positive semi-definite. Condition (iii):
geometry matrix G has a rank of 6.

Solution Qrand Q2 >0 Condition Condition Condition
(6] (ii) (iii)
Eq. (2) 0<Q;<1/10 (11- v x -
V41
8/7 < Q; <1/10 v 4 v
11++/41)

super-stable tensegrity called type-3-triple-expanded octahedron (see
Fig. 13). Other solutions are also obtained, includingQ; =
1/17(15 +/89), which corresponds to the type-3-double-expanded
octahedron, whose nodes and members are duplicated (folded form).

It is interesting to note that the introduction of additional cables
means an improvement in the stability of the tensegrity because the
type-2-triple-expanded octahedron is unstable, while the type-3-triple-
expanded octahedron is a super-stable tensegrity. Hence, the type of
octagonal elementary cell used to construct the connectivity pattern has
a significant amount of influence on the tensegrity obtained, especially
related to number of cables or tensioned members. The introduction of
these two cables per octagonal cell is responsible for the difference in the
stability of type 2 and type 3 triple-expanded octahedron tensegrity
structures.

Fig. 12. Equilibrium shapes of the type-3-double-expanded octahedron considering different valuesof g. Q; =1.2& Q2 =10 (Eq. (2) & gy =-1(a); Q1 =1.5& Q2 =
1 (Eq. (2)) & g» = -1 (b); Q; = 1.7 & Q2 = 0.13 (Eq. (2)) & gqp = -1 (c). Black and blue cables correspond to g.; and q., respectively and gray bars to gp. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. Type-3-triple-expanded octahedron with Q; = Q2 = 1/346 (379 +
34/3581) and g, = -1.

T (W

Fig. 14. Octagonal connection graph of the Z-expanded octahedron. Gray lines,
black lines, and dashed black lines correspond to struts, type 1 cables, and type-
2 cables, respectively.
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4.3. Octagonal connection graphs for the expanded octahedron

Special attention is paid to the Z-expanded octahedron (Fig. 2a)
when an octagonal elementary cell is used. Fig. 14 shows the octagonal
connection graph of the Z-expanded octahedron (which is equivalent to
the one shown in Fig. 2a). The comparison of this figure with Figs. 3 and
4 shows that, in Fig. 14, some of the external nodes are permuted, and so
the connection pattern is slightly different.

As in the previous sections, the type-1 octagonal cells in Fig. 14 have
been replaced by type 2 and type 3 octagonal cells (see Fig. 6), and just
one or two values of the force:length ratios for cables have been
considered. The results obtained that correspond to super-stable ten-
segrities are summarized in Table 3.

Table 3 shows that the solution of the form-finding problem of type 1
and type 2 expanded octahedrons is exactly the same. In addition, this
solution has been studied in Fernandez-Ruiz et al. (Fernandez-Ruiz et al.,
2020). On the other hand, Fig. 15 shows several equilibrium configu-
rations of the type-3-expanded octahedron that consider different Q; —
Qg pairs.

4.4. Summary

All the values of the force:length ratios obtained in this work which
lead to stable or super-stable full-forms of tensegrities are summarized in
Fig. 16.

5. Conclusions

The Z-expanded octahedron and the Z-double-expanded octahedron
are constructed by assembling Z-shaped cells. In this piece of work, a
new graphical representation of the members of the Z-Octahedron
family based on octagonal cells has been proposed. This new type of
elementary cell has eight nodes and two struts, twice the number of
nodes and struts than those found in rhombic and Z-shaped cells. The Z-
triple-expanded octahedron has been obtained from the topology of the
Z-Octahedron family considering the new octagonal connection graphs.
This stable tensegrity structure is composed of 48 nodes, 24 struts, and
72 cables. The Z-triple-expanded octahedron contains both the Z-dou-
ble-expanded octahedron and the Z-expanded octahedron as folded
forms, which is a necessary condition for tensegrity families belonging
to the same family. It has been proved that the new octagonal graphical
representation of the Z-Octahedron family can be a good source of new
tensegrity forms.

New tensegrity structures derived from the Z-Octahedron family
have been defined. The connections between elements of the new
octagonal cells have been modified leading to other types of octagonal
cells (type 2 and type 3 octagonal cells). Super-stable tensegrity forms
have been obtained analytically. In addition, several element groupings
have been considered in order to obtain different equilibrium

Table 3
Z-expanded octahedron. Summary of super-stable configurations.
Octagonal cell Q1 =Qz2=-9c1/q Q1 = -qc1/q & Q2 = -qc2/ P
Solution Solution Region
Type 1 Q =1/10(11 + V41) ~216Q - 3Q2 + \/4 ~8Q, + 8Q — 12Q3 + 9Q' Q>1
Type 2 @ = 4-1+Q)
Type 3 Q =3/4 72+10Q1711Q%+\/478Q178Q%74Q§+41Q? 1/2 < Q1 <1/10(11 + VA4T1)

Q =

4(-1+2Q1)
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(b)

Fig. 15. Equilibrium shapes of the type-3- expanded octahedron considering different values of g according to Table 3. Q; = 0.60 & Q2 =1.15& ¢, =-1 (a); Q1 = Q2
=3/4& qy=-1(b); Q; =1.60 & Q2 = 0.09 & g = -1 (c). Black and blue cables correspond to q.; and g., respectively and gray bars to gp. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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octahedron expanded expanded
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Fig. 16. Range of values of Q; for which stable and super-stable tensegrities are obtained for all the types of octagonal cells studied in the work (see Fig. 6). Circles,
crosses, and squares indicate the Q; — Q. pair for which Q; = Q2 in the case of type 1, type 2, and type 3 octagonal cells respectively.

configurations of these new tensegrity structures. The introduction of Declaration of Competing Interest

additional cables in the elementary octagonal cell clearly results in an

improvement of the stability of the resultant tensegrity and in a reduc- The authors declare that they have no known competing financial
tion of the force:length ratio in the cables in the equilibrium interests or personal relationships that could have appeared to influence
configuration. the work reported in this paper.

Appendix A

Analytical form-finding of tensegrity structures (Fernandez-Ruiz et al., 2019; Hernandez-Montes et al., 2018)

An in-depth explanation of the analytical form-finding method of tensegrity structures employed in this work can be seen in (Fernandez-Ruiz et al.,
2019; Hernandez-Montes et al., 2018). In this appendix, a summary of this method is presented.

The FDM (Linkwitz and Schek, 1971; Schek, 1974) is one of the most commonly used form-finding methods for general pin-jointed networks. The
highly non-linear equilibrium equations are linearized by introducing the concept of force density or force:length ratio. The force:length ratio, q, is
defined as the ratio between the axial force and the length of each member of the tensegrity. The equilibrium equations of a general tensegrity
composed of n nodes and m members (cables and struts) can be formulated as (Tran and Lee, 2010; Zhang and Ohsaki, 2015):

Dx =0
Dy =0 (A.1)
Dz =0

In Eq. (A.1) D = CTQC (eR™™) is the force density matrix, and X, y, z (€R™) are the nodal coordinate vectors. The symbol []” represents the
transpose operation of a matrix or vector. The inputs of the form-finding problem are connectivity matrix C and the force:length ratio, g, of each
member of the tensegrity. Connectivity matrix C (€R™ ") defines the connectivity between the nodes of the tensegrity. This matrix is constructed as
follows: if a general member of j connects nodes i and k (with i < k), the ith and kth elements of the jth row of C are set to 1 and —1, respectively. Plane
connection graphs are used to define matrix C. On the other hand, vector q = (q1, ¢, ..., gm) (ER™) contains the force:length ratio of each member of
the tensegrity (Q is the diagonal square matrix of vector q).
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In order to guarantee that a tensegrity does not lie in a space which has lower dimensions than the specific dimension d, matrix D should have rank
deficiency of at least d + 1 (non-degeneracy condition (Hernandez-Montes et al., 2018; Zhang and Ohsaki, 2006)). This non-degeneracy condition is
achieved by making sure that the characteristic polynomial of D (see Eq. (A.2)) has at least d + 1 zero roots. Consequently, and in order to obtain a
three-dimensional tensegrity (d = 3), coefficients as, as, a; and ay of the characteristic polynomial must be zero. Coefficient ay is always zero because
matrix D is singular. Coefficients as, az and aj are expressed in terms of the force:length ratios of the members of the tensegrity (g1, g2, .-, gm). The
system of equations shown in Eq. (A.3) is analytically solved in order to obtain the force:length ratios of the members of the tensegrity that lead to a
rank deficiency of matrix D of at least d + 1.

p(l) ="+ @ A"+t ad+a (A.2)
03((]17~~~=q,n) =0
az(q17"')qm) =0 (A.B)
ai(qi,--sqm) = 0

Stability, prestress-stability and super-stability of tensegrity structures

A tensegrity is stable if its corresponding tangent stiffness matrix K = Kggom + Kgrast is a positive semi-definite matrix (Fernandez-Ruiz et al.,
2019; Zhang and Ohsaki, 2015, 2007). Matrix Kgpast is the elastic stiffness matrix and Kggom is the geometric stiffness matrix. The stability of
tensegrity structures, together with the definition of matrices Kgeom and Kgpast, has been discussed in detail in (Fernandez-Ruiz et al., 2019; Zhang
and Ohsaki, 2015, 2007). In order to study the stability of a tensegrity, the material properties, A, (cross-sectional area) and, E, (Young’s modulus) of
its members must be known. In all the stability studies in this work, it is assumed that the maximum prestress is 1 % of EA (Zhang and Ohsaki, 2015).

In preliminary studies, it could be useful to know whether a tensegrity with a specific pre-stressed state is stable or not, without considering any
specific materials. A tensegrity is said to be prestress-stable if it is stable in the state of self-equilibrium in the directions of infinitesimal mechanisms
(Zhang and Ohsaki, 2015). In this prestress-stability criterion, it is assumed that the member stiffness of the tensegrity is high enough.

Super-stability is a much higher stability criterion than previous ones. It has been stated that a tensegrity is super-stable if it is always stable,
regardless of material properties and prestress levels (Connelly, 1998; Zhang and Ohsaki, 2015, 2007). The super-stability conditions of tensegrity
structures are as follows (Connelly, 1998; Zhang and Ohsaki, 2015, 2007):

1. The rank deficiency of the force density matrix D is exactly d + 1.
2. The force density matrix D is positive semi-definite.
3. The rank of the matrix G is (d 2 + d)/2.

An in-depth explanation on the geometry matrix G can be seen in (Zhang and Ohsaki, 2015).

References Fraternali, F., Carpentieri, G., Amendola, A., Skelton, R.E., Nesterenko, V.F., 2014.
Multiscale tunability of solitary wave dynamics in tensegrity metamaterials. Appl.
Phys. Lett. 105 https://doi.org/10.1063/1.4902071.

Fraternali, F., Santos, F., 2019. Mechanical modeling of superelastic tensegrity braces for
earthquake-proof structures. Extrem. Mech. Lett. 33, 100578 https://doi.org/
10.1016/j.eml1.2019.100578.

Gomez-Jauregui, V., 2010. Tensegrity structures and their application to architecture.
PubliCan, Ediciones de la Universidad de Cantabria.

Graells Rovira, A., Mirats Tur, J.M., 2009. Control and simulation of a tensegrity-based
mobile robot. Rob. Auton. Syst. 57, 526-535. https://doi.org/10.1016/j.
robot.2008.10.010.

Hernandez-Montes, E., Fernandez-Ruiz, M.A., Gil-Martin, L.M., Merino, L., Jara, P.,
2018. Full and folded forms: a compact review of the formulation of tensegrity
structures. Math. Mech. Solids 23, 944-949. https://doi.org/10.1177/
1081286517697372.

Kan, Z., Peng, H., Chen, B., Xie, X., Sun, L., 2019. Investigation of strut collision in
tensegrity statics and dynamics. Int. J. Solids Struct. 167, 202-219. https://doi.org/
10.1016/j.ijsolstr.2019.03.012.

Lee, H., Jang, Y., Choe, J.K,, Lee, S., Song, H., Lee, J.P., Lone, N., Kim, J., 2020. 3D-
printed programmable tensegrity for soft robotics. Sci. Robot. 5, 1-12. https://doi.
org/10.1126/SCIROBOTICS.AAY9024.

Li, Y., Feng, X.Q., Cao, Y.P., Gao, H., 2010. Constructing tensegrity structures from one-
bar elementary cells. Proc. R. Soc. A Math. Phys. Eng. Sci. 466, 45-61. https://doi.
org/10.1098/rspa.2009.0260.

Linkwitz, K., Schek, H.J., 1971. Einige Bemerkungen zur Berechnung von vorgespannten
Seilnetzkonstruktionen. Ingenieur-Archiv. 40, 145-158. https://doi.org/10.1007/
BF00532146.

Liu, Y., Bi, Q., Yue, X., Wu, J,, Yang, B., Li, Y., 2022. A review on tensegrity structures-
based robots. Mech. Mach. Theory 168, 104571. https://doi.org/10.1016/].
mechmachtheory.2021.104571.

Ma, Y., Zhang, Q., Dobah, Y., Scarpa, F., Fraternali, F., Skelton, R.E., Zhang, D., Hong, J.,
2018. Meta-tensegrity: design of a tensegrity prism with metal rubber. Compos.
Struct. 206, 644-657. https://doi.org/10.1016/j.compstruct.2018.08.067.

Murakami, H., Nishimura, Y., 2001. Static and dynamic characterization of regular
truncated icosahedral and dodecahedral tensegrity modules. Int. J. Solids Struct. 38,
9359-9381. https://doi.org/10.1016,/50020-7683(01)00030-0.

Pugh, A., 1976. An introduction to tensegrity. University of California Press.

Bel Hadj Ali, N., Rhode-Barbarigos, L., Pascual Albi, A.A., Smith, L.F.C., 2010. Design
optimization and dynamic analysis of a tensegrity-based footbridge. Eng. Struct. 32,
3650-3659. https://doi.org/10.1016/j.engstruct.2010.08.009.

Amendola, A., Krushynska, A., Daraio, C., Pugno, N.M., Fraternali, F., 2018. Tuning
frequency band gaps of tensegrity mass-spring chains with local and global prestress.
Int. J. Solids Struct. 155, 47-56. https://doi.org/10.1016/j.ijsolstr.2018.07.002.

Bauer, J., Kraus, J.A., Crook, C., Rimoli, J.J., Valdevit, L., 2021. Tensegrity
metamaterials: toward failure-resistant engineering systems through delocalized
deformation. Adv. Mater. 33, 1-9. https://doi.org/10.1002/adma.202005647.

Boni, C., Royer-Carfagni, G., 2021. A new flexural-tensegrity bow. Mech. Mach. Theory
164, 104398. https://doi.org/10.1016/j.mechmachtheory.2021.104398.

Chen, M., Goyal, R., Majji, M., Skelton, R.E., 2020. Design and analysis of a growable
artificial gravity space habitat. Aerosp. Sci. Technol. 106, 106147 https://doi.org/
10.1016/j.ast.2020.106147.

Connelly, R., 1998. Tensegrity structures. Why are they stable? In: Thorpe, M.F.,
Duxbury, P.M. (Eds.), Rigidity Theory and Applications. Kluwer Academic / Plenum
Publishers, pp. 47-54.

Fernandez-Ruiz, M.A., Hernandez-Montes, E., Carbonell-Marquez, J.F., Gil-Martin, L.M.,
2019. Octahedron family: the double-expanded octahedron tensegrity. Int. J. Solids
Struct. 165, 1-13. https://doi.org/10.1016/j.ijsolstr.2019.01.017.

Fernandez-Ruiz, M.A., Hernandez-Montes, E., Gil-Martin, L.M., 2020. The Z-octahedron
family: A new tensegrity family. Eng. Struct. 222, 111151 https://doi.org/10.1016/
j.engstruct.2020.111151.

Fernandez-Ruiz, M.A., Hernandez-Montes, E., Gil-Martin, L.M., 2021. The Octahedron
family as a source of tensegrity families: the X-octahedron family. Int. J. Solids
Struct. 208-209, 1-12. https://doi.org/10.1016/j.ijsolstr.2020.10.019.

Fernandez-Ruiz, M.A., Hernandez-Montes, E., Gil-Martin, L.M., 2022. Topological design
of the octahedron tensegrity family. Eng. Struct. 259, 114211 https://doi.org/
10.1016/j.engstruct.2022.114211.

Feron, J., Boucher, L., Denoél, V., Latteur, P., 2019. Optimization of footbridges
composed of prismatic tensegrity modules. J. Bridg. Eng. 24 https://doi.org/
10.1061/(ASCE)BE.1943-5592.0001438.

Fraldi, M., Cutolo, A., Carotenuto, A.R., Palumbo, S., Pugno, N., 2021. A lesson from
earthquake engineering for selectively damaging cancer cell structures. J. Mech.
Behav. Biomed. Mater. 119, 104533 https://doi.org/10.1016/j.
jmbbm.2021.104533.

10


https://doi.org/10.1016/j.ijsolstr.2018.07.002
https://doi.org/10.1002/adma.202005647
https://doi.org/10.1016/j.mechmachtheory.2021.104398
https://doi.org/10.1016/j.ast.2020.106147
https://doi.org/10.1016/j.ast.2020.106147
http://refhub.elsevier.com/S0020-7683(22)00365-1/h0030
http://refhub.elsevier.com/S0020-7683(22)00365-1/h0030
http://refhub.elsevier.com/S0020-7683(22)00365-1/h0030
https://doi.org/10.1016/j.ijsolstr.2019.01.017
https://doi.org/10.1016/j.engstruct.2020.111151
https://doi.org/10.1016/j.engstruct.2020.111151
https://doi.org/10.1016/j.ijsolstr.2020.10.019
https://doi.org/10.1016/j.engstruct.2022.114211
https://doi.org/10.1016/j.engstruct.2022.114211
https://doi.org/10.1061/(ASCE)BE.1943-5592.0001438
https://doi.org/10.1061/(ASCE)BE.1943-5592.0001438
https://doi.org/10.1016/j.jmbbm.2021.104533
https://doi.org/10.1016/j.jmbbm.2021.104533
https://doi.org/10.1063/1.4902071
https://doi.org/10.1016/j.eml.2019.100578
https://doi.org/10.1016/j.eml.2019.100578
https://doi.org/10.1016/j.robot.2008.10.010
https://doi.org/10.1016/j.robot.2008.10.010
https://doi.org/10.1177/1081286517697372
https://doi.org/10.1177/1081286517697372
https://doi.org/10.1016/j.ijsolstr.2019.03.012
https://doi.org/10.1016/j.ijsolstr.2019.03.012
https://doi.org/10.1126/SCIROBOTICS.AAY9024
https://doi.org/10.1126/SCIROBOTICS.AAY9024
https://doi.org/10.1098/rspa.2009.0260
https://doi.org/10.1098/rspa.2009.0260
https://doi.org/10.1007/BF00532146
https://doi.org/10.1007/BF00532146
https://doi.org/10.1016/j.mechmachtheory.2021.104571
https://doi.org/10.1016/j.mechmachtheory.2021.104571
https://doi.org/10.1016/j.compstruct.2018.08.067
https://doi.org/10.1016/S0020-7683(01)00030-0
http://refhub.elsevier.com/S0020-7683(22)00365-1/h0125

M.A. Fernandez-Ruiz et al.

Rhode-Barbarigos, L., Hadj Ali, N.B., Motro, R., Smith, .F.C., 2010. Designing tensegrity
modules for pedestrian bridges. Eng. Struct. 32, 1158-1167. https://doi.org/
10.1016/j.engstruct.2009.12.042.

Schek, H.J., 1974. The force density method for form-finding and computation of general
networks. Comput. Methods Appl. Mech. Eng. 3, 115-134. https://doi.org/10.1016/
0045-7825(74)90045-0.

Singh, N., Amendola, A., Santos, F., Benzoni, G., Fraternali, F., 2020. Mechanical
response of tensegrity dissipative devices incorporating shape memory alloys. IOP
Conlf. Ser. Mater. Sci. Eng. 999 https://doi.org/10.1088/1757-899X/999/1/012001.

Suma, A., Coronel, L., Bussi, G., Micheletti, C., 2020. Directional translocation resistance
of Zika xrRNA. Nat. Commun. 11, 1-9. https://doi.org/10.1038/541467-020-17508-
7.

Tibert, A.G., Pellegrino, S., 2002. Deployable tensegrity reflectors for small satellites.
J. Spacecr. Rockets 39, 701-709. https://doi.org/10.2514/2.3867.

Tran, H.C,, Lee, J., 2010. Advanced form-finding of tensegrity structures. Comput. Struct.
88, 237-246. https://doi.org/10.1016/j.compstruc.2009.10.006.

Veuve, N., Dalil Safaei, S., Smith, I.F.C., 2016. Active control for mid-span connection of
a deployable tensegrity footbridge. Eng. Struct. 112, 245-255. https://doi.org/
10.1016/j.engstruct.2016.01.011.

Xu, X., Wang, Y., Luo, Y., 2016. General approach for topology-finding of tensegrity
structures. J. Struct. Eng. 142, 04016061. https://doi.org/10.1061/(asce)st.1943-
541x.0001532.

11

International Journal of Solids and Structures 254-255 (2022) 111901

Xu, X., Wang, Y., Luo, Y., Hu, D., 2018. Topology optimization of tensegrity structures
considering buckling constraints. J. Struct. Eng. 144, 04018173. https://doi.org/
10.1061/(asce)st.1943-541x.0002156.

Yin, X., Gao, Z.Y., Zhang, S., Zhang, L.Y., Xu, G.K., 2020. Truncated regular octahedral
tensegrity-based mechanical metamaterial with tunable and programmable
Poisson’s ratio. Int. J. Mech. Sci. 167, 105285 https://doi.org/10.1016/].
ijmecsci.2019.105285.

Zhang, L.Y., Li, Y., Cao, Y.P., Feng, X.Q., 2013. A unified solution for self-equilibrium and
super-stability of rhombic truncated regular polyhedral tensegrities. Int. J. Solids
Struct. 50, 234-245. https://doi.org/10.1016/j.ijsolstr.2012.09.024.

Zhang, L.Y., Jiang, J.H., Wei, K., Yin, X., Xu, G.K., Zhang, J., 2021. Self-equilibrium and
super-stability of rhombic truncated regular tetrahedral and cubic tensegrities using
symmetry-adapted force-density matrix method. Int. J. Solids Struct. 233, 111215
https://doi.org/10.1016/j.ijsolstr.2021.111215.

Zhang, J.Y., Ohsaki, M., 2006. Adaptive force density method for form-finding problem
of tensegrity structures. Int. J. Solids Struct. 43, 5658-5673. https://doi.org/
10.1016/j.ijsolstr.2005.10.011.

Zhang, J.Y., Ohsaki, M., 2007. Stability conditions for tensegrity structures. Int. J. Solids
Struct. 44, 3875-3886. https://doi.org/10.1016/j.ijsolstr.2006.10.027.

Zhang, J.Y., Ohsaki, M., 2015. Tensegrity Structures. Form, Stability. and Symmetry.
Springer.

Zhang, J.Y., Ohsaki, M., Tsuura, F., 2019. Self-equilibrium and super-stability of
truncated regular hexahedral and octahedral tensegrity structures. Int. J. Solids
Struct. 161, 182-192. https://doi.org/10.1016/j.ijsolstr.2018.11.017.


https://doi.org/10.1016/j.engstruct.2009.12.042
https://doi.org/10.1016/j.engstruct.2009.12.042
https://doi.org/10.1016/0045-7825(74)90045-0
https://doi.org/10.1016/0045-7825(74)90045-0
https://doi.org/10.1088/1757-899X/999/1/012001
https://doi.org/10.1038/s41467-020-17508-7
https://doi.org/10.1038/s41467-020-17508-7
https://doi.org/10.2514/2.3867
https://doi.org/10.1016/j.compstruc.2009.10.006
https://doi.org/10.1016/j.engstruct.2016.01.011
https://doi.org/10.1016/j.engstruct.2016.01.011
https://doi.org/10.1061/(asce)st.1943-541x.0001532
https://doi.org/10.1061/(asce)st.1943-541x.0001532
https://doi.org/10.1061/(asce)st.1943-541x.0002156
https://doi.org/10.1061/(asce)st.1943-541x.0002156
https://doi.org/10.1016/j.ijmecsci.2019.105285
https://doi.org/10.1016/j.ijmecsci.2019.105285
https://doi.org/10.1016/j.ijsolstr.2012.09.024
https://doi.org/10.1016/j.ijsolstr.2021.111215
https://doi.org/10.1016/j.ijsolstr.2005.10.011
https://doi.org/10.1016/j.ijsolstr.2005.10.011
https://doi.org/10.1016/j.ijsolstr.2006.10.027
http://refhub.elsevier.com/S0020-7683(22)00365-1/h0200
http://refhub.elsevier.com/S0020-7683(22)00365-1/h0200
https://doi.org/10.1016/j.ijsolstr.2018.11.017

	From octagonal connection graphs belonging to the Z-Octahedron family to new tensegrity structures
	1 Introduction
	2 A new graphical representation of the Z-Octahedron family
	2.1 The Z-Octahedron family
	2.2 Octagonal connection graphs

	3 The Z-triple-expanded octahedron
	4 New tensegrity structures based on the Z-Octahedron family
	4.1 Type 2 octagonal cell
	4.1.1 Type-2-double-expanded octahedron
	4.1.2 Type-2-triple-expanded octahedron

	4.2 Octagonal cell type 3
	4.2.1 Type-3-double-expanded octahedron
	4.2.2 Type-3-triple-expanded octahedron

	4.3 Octagonal connection graphs for the expanded octahedron
	4.4 Summary

	5 Conclusions
	Declaration of Competing Interest
	Appendix A
	Analytical form-finding of tensegrity structures (Fernández-Ruiz et al., 2019; Hernández-Montes et al., 2018)

	Stability, prestress-stability and super-stability of tensegrity structures
	References


