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Abstract

The accumulation of dust and other particles on solar panels, known as soiling, is a significant
factor that affects their performance, leading to reduced efficiency if not addressed properly. In
this study, we propose a new methodology to estimate soiling on solar photovoltaic panels. To
address this issue, we utilised data from the University of Jaén and satellite information from
NASA. We applied five different machine learning models, including Linear Regression,
Random Forest, Decision Tree, Multilayer Perceptron and Long Short-Term memory neural
networks to estimate the extent of soiling on the panels. The input data consisted of weather
data, as well as operational data of the solar panels. Our results showed that the MLP model
had the lowest average error of 0.0003, indicating its effectiveness in estimating the extent of
soiling on the panels. This is significantly lower compared to previous proposals in the
literature, which had an average error of 0.026. This study demonstrates the effectiveness of
using machine learning methods to forecast soiling on photovoltaic panels accurately. The
implications of our findings are essential for optimising energy production and improving the
efficiency of solar power systems.
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1 INTRODUCTION

The demand for renewable energy sources has significantly increased due to the
constant growth of urban and industrial development. One of the most promising sources
of clean energy is photovoltaic (PV) energy which is generated by panels that directly
convert solar light into electricity. PV solar energy has demonstrated both environmental
and economic benefits when compared to fossil resources (Shafigue, Luo & Zuo, 2020).
Moreover, PV machinery has emerged as a trend in the electricity sector, with experts
estimating that PV will provide up to 25% of the world’s energy in 2050 (IRENA, 2019).
Thus, solar energy has become a key player in the transition towards a more sustainable
energy future. The adoption of photovoltaic (PV) systems has many benefits (Schulte,
Scheller, Sloot & Bruckner, 2022). First, solar energy is a clean and renewable energy
source that does not release greenhouse gases or air pollutants, reducing the negative
impact on the environment (Maka & Alabid, 2022). Second, the cost of PV panels has
significantly decreased over the past decade, making it an increasingly cost-effective
option for electricity generation (Qamar, Ahmad, Oryani & Zhang, 2022). Third, PV
systems are modular and can be installed on rooftops, thus reducing the need for large
land areas for energy generation (Zhu, et al., 2023). Lastly, the adoption of PV systems
can also create job opportunities and contribute to the growth of the green economy
(Zhao, et al., 2022). These benefits have led to the rapid growth of the solar industry and
the widespread adoption of PV systems as a promising alternative to fossil fuels.

In 2022, PV achieved the first TW of globally installed capacity. This significant
milestone is expected to be doubled by 2023, favoured by PV’s low-cost, easiness of
installation and versatility (SolarPower Europe, 2020). However, the massive
deployment of PV is also raising concerns related to its land occupancy, as renewables
have typically lower power densities compared to conventional energy sources (Capellan-
Pérez, de Castro & Arto, 2017). This means that PV, and renewable energies in general,
will require more land than other technologies to provide the same amount of energy.
Pushed by the expectation of high profits, new PV capacity might be installed in areas of
low-cost, but of high ecological value, posing threats to biodiversity (Sills, et al., 2020).
Additionally, for the same reason, new PV installations might subtract land to agriculture,
creating issues for the food chain. In light of this, research activities are needed in at least




two directions to mitigate any potential negative socio-environmental impact of PV. First,
innovative solutions to minimize any land issue related to the installations of new PV
capacity have to be identified, such as novel floating PV (Kumar, Mohammed Niyaz &
Gupta, 2021) and agri-PV designs (Trommsdorff, et al., 2022). Second, it is also
important to maximize the energy yields of existing PV power plants, in order to increase
the efficiency in land and material usage of this technology (Spéath, 2018).

While solar energy is a promising and sustainable solution for meeting increasing
energy demands, the efficiency and longevity of PV systems are affected by a range of
factors. In addition to PV cell technology and ambient conditions, proper maintenance
and cleaning are also critical for maximizing energy generation. One of the major factors
affecting the efficiency of PV panels is soiling, which refers to the natural dirt lodged in
the solar panels due to environmental factors (Dhass, Beemkumar, Harikrishnan & Ali,
2022). Soiling is due to dirt, dust, and other contaminants that deposit on the surface of a
PV module, absorbing, reflecting, and scattering irradiance. It reduces the amount of light
reaching the PV cell, lowering the amount of photo-generated energy. It has been recently
estimated that soiling causes significant losses worldwide, with peaks higher than 30% in
some regions, leading to non-negligible economic consequences for PV players (Li,
Mauzerall & Bergin, 2020). Therefore, while the installation of new PV capacity is
essential, it is equally important to optimize the performance of the existing PV fleet.
Many researchers emphasize the importance of studying the effect of soiling on PV
systems as their performance is closely correlated to PV production (Jamil, Rahman,
Shaari & Desa, 2020). As a consequence, understanding the impact of soiling on PV
systems and developing effective cleaning and maintenance strategies (\VVedulla, Geetha
& Senthil, 2023) is essential for ensuring the long-term performance and sustainability of
solar energy.

An accurate estimation of soiling can produce at least two benefits to PV owners. First,
it makes it possible to evaluate the economic cost of soiling in terms of missing revenues.
This way, designers can include the soiling loss in the techno-economic assessments of
new PV sites. Second, it makes it possible to plan an appropriate mitigation strategy to
prevent its accumulation, facilitate its natural removal, and/or operate manual or robotic
cleanings. Indeed, differently from other performance loss mechanisms, soiling is
reversible, and can be mechanically removed from the PV panels. However, cleanings
have a cost to cover the expenses associated with the resources (i.e., water, cleaning
products, ...) and the human labour. Therefore, it is important to accurately estimate the
soiling loss, in order to plan a cleaning schedule that maximizes the difference between
the revenues due to the recovered energy and the costs of cleaning.

The estimation of soiling losses can be realized in different ways: a) deploying a
soiling monitor (i.e., soiling station or sensor), b) employing a soiling extraction
algorithm or c) using a soiling estimation model. The first option requires the installation
of specific hardware, which can be costly and needs maintenance. The second approach
can be used only once the PV systems are operational, as soiling is identified from the
actual PV power production data. In the third option, soiling is estimated from
environmental parameters, whose values are typically available in satellite-derived
databases for long-term periods and for multiple locations. Therefore, soiling estimation
models allows estimating losses without the need of installing specific sensors, and even
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before a PV system is operational, so that soiling mitigation can be included in the site
selection and plant design phases. However, they require the knowledge of the
correlations between environmental parameters, system configuration and soiling. The
soiling of a PV plant is, indeed, influenced by many factors, including site characteristics,
system geometry, PV modules properties, dust characteristics and concentrations, relative
humidity, ambient and module temperature, and wind speed (Figgis, Guo, Javed, Ahzi &
Rémond, 2018).

Estimation models approximate the soiling profile of a PV system to a sawtooth wave,
where dust accumulation periods and cleanings alternate. Therefore, in order to
effectively reproduce the soiling loss profile, one has to understand which factors impacts
the two events (accumulation and cleanings), and to which extent. A wide range of studies
all around the world has been conducted to predict energy losses due to dirt. Both
mathematical (Coello & Boyle, 2019; Santos, Batista, Brito & Quinelato, 2021; Toth,
Hannigan, Vance & Deceglie, 2020; You, Lim, Dai & Wang, 2018) and machine
learning-based (Sohani, et al., 2022; Tina, Ventura, Ferlito & De Vito, 2021) solutions
have been proposed in the literature to minimise energy waste and support decision-
making. Machine learning approaches are particularly promising for soiling prediction
due to their ability to handle complex systems and non-linear problems (Younis & Alhorr,
2021). This is a field that is increasingly receiving attention in the academic community
for the development of new and more efficient techniques (Gaviria, Narvéaez, Guillen,
Giraldo & Bressan, 2022).

Some of the pioneers in studying energy losses for soiling are from the 1970s
(Bengoechea, Murillo, Sanchez & Lagunas, 2018), such as the research published in 1974
by Garg (Garg, 1974). Nonetheless, his outcomes are still meaningful and relevant to the
PV field today since there has been an increase of 200% of scientific publications from
2012 and 2017 in this regard (Costa, et al., 2018).

The most varied mathematical models have been proposed to estimate energy losses
due to soiling on PV panels. In (Santos et al., 2021) the authors developed a model that
approximates the behaviour of a PV system by modelling irradiance, resistances and cell
behaviour. A simple model using time series is proposed in (Coello & Boyle, 2019) to
predict soiling on PV panels by employing the total accumulated particulate mass. A
similar physics-based approaches was suggested by (You et al., 2018) to predict the
energy impact of solar PV soiling, and the authors emphasise the effectivity of their
solution to design cleaning protocols for solar PV systems. For a more comprehensive
review of the literature, interested readers may refer to (Bessa, Micheli, Almonacid &
Fernandez, 2021). However, neglecting or under/over-estimating the impact of some
factors might cause significant errors in soiling estimation.

While the applications of Artificial Intelligence (Al) may seem varied and unrelated,
they can actually be utilized to optimize the efficiency of photovoltaic (PV) systems, as
shown in several recent studies (E.-L. Hedrea, Precup, Roman & Petriu, 2021; R.-C. R.
Hedrea & Petriu, 2021). Studies indicate that the use of machine learning in soiling
prediction is notoriously beneficial thanks to its capability to deal with complex systems
and non-linear problems (Younis & Alhorr, 2021). This is a field that is increasingly
receiving attention in the academic community for the development of new and more




efficient techniques (Guo, Javed, Khan, Figgis & Mirza, 2016). Indeed, there are many
authors that propose the use of Al to predict the performance of PV systems and to
optimise the cleaning of PV panels. Heinrich et al. (Heinrich, et al., 2020) used machine
learning techniques to identify cleaning intervention from actual PV data. The authors
achieved high accuracy when current, voltage and temperature data, measured at 10-
second intervals, were analysed using a random forest model. In (Maftah, Azouzoute, El
Ydrissi, Oufadel & Maaroufi, 2022), the authors compared quality of the soiling
estimation of an artificial neural network model with that of linear models for two
locations using locally measured data. Similarly, (Shapsough, Dhaouadi & Zualkernan,
2019) and (Laarabi, et al., 2019) used neural networks to predict the soiling losses from
locally measured environmental data. Javed et al. (Javed, Guo & Figgis, 2017) compared
the results of artificial neural networks given in input a variable number of locally sourced
parameters. In (Mehta, Azad, Chemmengath, Raykar & Kalyanaraman, 2018), the authors
developed a convolutional neural network to estimate the soiling losses from aerial
pictures of the soiling modules. Similarly, in (Almalki, Albraikan, Soufiene & Ali, 2022)
the authors present a cleaning drone that uses image processing and Al to clean solar
panels. The robot uses a camera to take pictures of the solar panels and Al algorithms to
analyse the images and detect the location of dirt and dust on the panels. A deep neural
network was implemented in (Zhang, et al., 2021) to estimate the power generation of a
PV system. The authors trained the artificial neural network (ANN) using historical data
on weather conditions, solar radiation and power generation. The trained ANN was able
to predict the power generation with relatively high accuracy, which can be useful for
improving the operation of the PV system. Thus, the autonomous drone uses this
information to navigate to the dirtiest areas and clean them. Support vector machines were
used in (De Leone, Pietrini & Giovannelli, 2015) to predict the power output of a PV
system. The authors trained a support vector regression model using historical data on
solar irradiance, environmental temperature and past energy production and obtained
pretty accurate estimates. Some other approaches, future challenges and recommended
directions may be found in (Mellit & Kalogirou, 2021).

It is worth noting that many studies published in this field have predominantly utilised
on-site meteorological data, while satellite data has been employed only in few cases.
Some authors have suggested that environmental data from satellites may be less sensitive
compared to on-site measurements, which could lead to more errors (Carmona, et al.,
2020). However, the possibility of exploiting available information from any location on
the planet without the need for specific facilities justifies the use of satellite data. In
addition, the number of parameters available online makes it possible to build models
based on an unprecedented number of inputs.

Additionally, one should consider that the environmental features of a specific
geographical location influence the prediction quality too. That is to say, the fewer dirt
factors in the atmosphere, the less accurate the prediction is (A & Deceglie, 2020). For
example, in locations like Jaén where the dirt levels are relatively low, the accuracy of
the prediction models become more critical. This is because the decision to clean a solar
plant is typically based on economic factors (Micheli, et al., 2020; Rodrigo, Gutiérrez,
Micheli, Fernandez & Almonacid, 2020), where the revenue generated by cleaning the
plant should be greater than the cost of cleaning. In locations like Jaén, this difference is
relatively small. Therefore, if the soiling is not correctly quantified, there is a higher risk
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of miscalculating the difference between cleaning revenues and cleaning costs, which can
lead to incorrect decisions. Our modeling approach was motivated by the need to improve
the accuracy of soiling prediction models, particularly in locations like Jaén where the
economic impact of incorrect decisions is more significant. By taking into account the
environmental features of different locations, we believe that our approach represents a
novel contribution to the field.

Based on the literature review, it is clear that the prediction of energy losses due to dirt
on solar panels is a topic that has gained a lot of attention in recent years. Mathematical
models and machine learning-based solutions have been proposed to estimate losses due
to soiling, with machine learning being highly beneficial for its capability to deal with
complex systems and non-linear problems. The use of Al in predicting the performance
of PV systems and optimizing the cleaning of PV panels has been proposed by several
authors, indicating that Al and PV energy are closely intertwined. However, most of the
papers published so far use mainly on-site meteorological data, and satellite data have
been employed only in a few cases. Therefore, there is a clear need for a proposal that
utilizes available information from any location on the planet without requiring specific
facilities. The accuracy of the models becomes more critical in locations where the
decision to clean a utility-scale PV plant is typically dictated by economic reasons.
Therefore, the proposed study, which will utilize satellite data to predict energy losses
due to dirt on solar panels, is highly relevant and important in the field. By incorporating
a variety of environmental parameters, the study aims to develop a highly accurate model
that can be used to support decision-making in the maintenance of solar panels, thus
improving their efficiency and reducing energy losses.

For all the aforementioned reasons, in this research, certain environmental parameters
obtained from satellites and soiling measurements from a sensor in Jaén (Spain) were
employed to build a machine learning model capable of predicting dirt levels on PV cells.
To do so, we combined time series and soft computing techniques and the results were
compared to the ones attained by the models proposed by previous authors. Five
regression models were implemented: Linear Regression (LR), Decision Tree (DT),
Random Forest (RF), Multi-layer Perceptron (MLP) and Long Short-Term Memory
(LSTM) neural network. This study represents a major contribution to the field of PV
soiling research. To the best of our knowledge, this is the first time that multiple machine
learning and data mining techniques have been applied to for the scope of estimating the
PV soiling profile from environmental parameters.

In light of the aforementioned literature, of the PV community’s needs, and of the
potential offered by machine learning, the scope of the present work is to further advance
the knowledge in soiling estimation. This is achieved by (I) applying multiple machine
learning techniques and (Il) by using satellite-derived environmental data. The first
objective differs from most of previous works, which have typically made use of a single
machine learning methodology and makes it possible to compare the different techniques
and to analyse their effectiveness in this area. The second goal enables to potentially
extend the soiling simulation to any locations covered by satellite-derived database,
instead of limiting it only to sites where locally measured data are available.



The novel approach used in this study brings fresh perspectives and insights to the
field, and opens up new avenues for future research. The innovative nature of this research
makes it an important and timely contribution to the field. Indeed, the proposed methods
can find immediate application in real-world installations. For example, they can be used
to evaluate the soiling losses of perspective PV sites, making it possible to include the
soiling mitigation activity in the feasibility study. In addition, if environmental data are
available in real time, the same models can be used for soiling monitoring as well, saving
to PV owners and operators the costs associated with the acquisition, the installation and
the maintenance of soiling sensors. The use of machine learning in place of physical
models makes it possible to apply the findings of this work to several locations and
systems, independently of system’s configuration, site characteristics and weather
conditions, whose impact has not been fully modelled yet.

The rest of the document is structured as follows. The proposed methodology is
detailed in section 2. Section 3 introduces the experiments conducted. Section 4 gathers
the main results. And finally, the conclusions are gathered in Section 0.

2 METHODOLOGY

The objective of the study is to create a predictive model to estimate the soiling ratio
in PV panels. The modelling process consists of five main steps as can be seen in Figure
1. Firstly, the dataset was created by utilising two complementary sources, one provided
by the University of Jaén (UJA), and the second dataset obtained from NASA's project
MERRA-2. The second step involves data preparation, which includes data aggregation
to calculate the daily mean of aerosol mixing ratio samples, removal of the data that is
not in the common period among all datasets, and estimation of PM10 values following
NASA's recommendations. In the third step, data analysis is performed using descriptive
statistics, null data processing, outlier analysis, and data visualization. Fourthly,
experiments are conducted with five different models, including linear regression,
random forest, regression tree, MLP, and LSTM. Finally, the best model is selected.

oy
Data creation Data. Data analysis
preparation

Best model
selection

@v Descriptive LR, RF, RT, Evaluation
L As i L ! ’ ! .
| |UJA getasel ggregation statistics MLP, LSTM metrics
ﬁ NASA Period in Null data %E}TT Parameter
information common and outliers testing
)
@ Variable Data
PM10 | visualisation

Figure 1. Modelling steps for Soiling Ratio prediction in PV panels.

2.1 Soiling Ratio (SR)
In our study, we focus on the attribute SR, which was previously defined as Soiling
Ratio. SR is a term to describe the ratio of the power output of a soiled solar panel to that
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of a clean panel (Mussawir Ul, et al., 2023). This ratio provides a measure of the reduction
in energy output due to soiling, which is an important factor affecting the performance of
photovoltaic (PV) systems. Mathematically, the SR can be expressed as:

A
SR = soiled (1)

chean

Where Z,,;1¢q4 1S the power output of a soiled PV panel, and Z ;.. is the power output
of a clean panel. The SR is typically expressed as a percentage and is used to assess the
extent of soiling on a panel. The higher the value of SR, the greater the reduction in power
output due to soiling. In other words, the SR value ranges from 1 (no soiling and no
losses) to 0 (no energy output just because of soiling).

2.2 Dataset
This section is devoted to performing an analysis of the features of the database
employed in this research.

Two complementary sources were utilised. The first one was provided by the «Centre
in Advanced Studies on Earth, Energy and Environmental Sciences» (CEACTEMA)
from the University of Jaén (UJA). These were measurements taken by a soiling
monitoring system provided by Atonometrics and installed on the roof of a UJA’s
building. The second dataset was obtained from the NASA’s project MERRA-2. The
project combines several databases of information provided by their satellites, such as
environmental, atmospheric data and other spatial observations related to atmospheric
pollution, e.g., the interaction between aerosols and other physical processes in the
climatic system (Bosilovich, Lucchesi & Suarez, 2015). In this study, we utilised three
MERRA-2 databases: 1) M2TINXFLX: Meteorological (Office, 2017); 2)
M2T1INXAER: Aerosol diagnosis (Office, 2015b); 3) M2I3NVAER: Aerosol mixing
ratio (Office, 2015a). As an illustrative example as to how finally the database is made
up of, see Figure 2.

NASA

8M2T1NXFLX —— JA
———————

U
Final database
8M2T1NXAER 8Atonometrics
8 M2I3NVAER

Figure 2. Composition of the final database used in this research.

The final database contains 762 rows and 24 columns indexed by date. It gathers
information regarding the daily average soiling level and the environmental and
meteorological factors for the period between March 1% 2019 and March 31% 2021. A
description of the dataset is detailed in the following Table 1. The soiling level is
expressed through the soiling ratio (RT), a common metric in PV studies, employed to
express the fraction of energy not affected by soiling. It is calculated as a ratio between
the actual energy output of a system and the energy output that the same system would
have in clean conditions. Therefore, its value ranges from 1 (no soiling and no losses) to
0 (no energy output because of soiling).



Table 1. Description of the columns of the employed database.

Name Datatype  Description Source
Index date Measurement date, All
SR float Soiling Ratio of the PV panel, Atonometrics
T float Temperature at 2 meters above ground. Kelvin (K), M2TINXFLX
RH float Relative humidity at 2 meters above ground. Percentage (%), M2TINXFLX
P float Atmospheric pressure at ground level. Hectopascals (hPa). M2TINXFLX
WS float Wind speed at 10 meters above ground. Meters per second (m/s). M2TINXFLX
WD float Wind direction at 10 meters above ground. Degrees (°). 0° is North, M2TINXFLX
90° East, 180° South and 270 West).
R float Rainfall or precipitation in mm. Kilograms per square meter M2TINXFLX
(kg/m?).
SWI float Short-wave irradiation. Watt hour per square meter (Wh/m2). M2TINXFLX
DUSMASS25 float Dust Surface Mass Concentration - PM 2.5 M2T1NXAER
AIRDENS float air density M2I3NVAER
BCPHILIC float Hydrophilic Black Carbon M2I3NVAER
BCPHOBIC float Hydrophobic Black Carbon M2I3NVAER
DU001 float Dust Mixing Ratio (bin 001) M2I3NVAER
DU002 float Dust Mixing Ratio (bin 002) M2I3NVAER
DU003 float Dust Mixing Ratio (bin 003) M2I3NVAER
DU004 float Dust Mixing Ratio (bin 004) M2I3NVAER
OCPHILIC float Hydrophilic Organic Carbon (Particulate Matter) M2I3NVAER
OCPHOBIC  float Hydrophobic Organic Carbon (Particulate Matter) M2I3NVAER
S04 float Sulphate aerosol M2I3NVAER
SS001 float Sea Salt Mixing Ratio (bin 001) M2I3NVAER
SS002 float Sea Salt Mixing Ratio (bin 002) M2I3NVAER
SS003 float Sea Salt Mixing Ratio (bin 003) M2I3NVAER
SS004 float Sea Salt Mixing Ratio (bin 004) M2I3NVAER
PM10 float Aerosol particles of between 2.5 and 10 micrometres diameter, New variable

directly related to atmospheric pollution.

2.3 Data preparation

After knowing the origin of the data, now it is time to prepare the dataset. In order to
unify the different sources, we employed the date according to the measurement of each
original database.

The aerosol diagnosis database presented samples on an hourly basis, whereas the
aerosol mixing ratio recorded samples every three hours. Consequently, data aggregation
was needed and the daily mean of the obtained values was calculated. Then the period in
common among all the datasets was kept and the rest of the data was removed. As we
mentioned before, it remained data from March 2019 to March 2021.

Following NASA’s recommendations, it was also included the last variable of Table
1, PM10 whose value was estimated following equation (2). PM10 refers to particulate
matter that is 10 wum or smaller in diameter and comes from a variety of sources such as
dust, dirt and vehicle emissions (de Emisiones, 2015).

PM10 = (1.375-504 + BCphobic + BCphilic + OCphobic + OCphilic
+ DU001 + DU002 + DUO003 + 0.74-DU004 + SSO1 (2
+ SS002 + SS003 + SS004) - AIRDENS

This variable is also used in some mathematical models in the literature. Eventually,

in this study, we will make use of it to compare both performances.

2.4 Data analysis
Data analysis is the process of systematically examining and interpreting data in order
to extract useful information, draw conclusions or even support decision-making. It



involves a wide range of techniques, including descriptive statistics, visualization and
statistical modelling to get insights from data. In this section, we will employ some of
these methods so as to turn raw data into meaningful information that can be used to
improve the performance of our subsequent predictive models.

The workflow followed in this research can be summarised as illustrated in Figure 3.
The first step involves calculating several measures that summarise and describe the main
characteristics of our data. It provides an overall understanding of the data. The second
stage consists in identifying and handling missing or invalid data. Since hull data can
have a significant impact on the analysis, it is important to identify and address it before
proceeding to the subsequent stages. Thirdly, any unusual or extreme observations that
may influence the analysis are identified. Finally, various tools such as plots and charts
are used to visually represent the data and its features. It may help to identify patterns or
trends that might not be immediately apparent from the descriptive statistics. All in all,
these four stages are key to ensuring that the data is cleaned and properly treated in order
to arrive at valid conclusions.

Descriptive
statistics

Null data Outliers Visualisation

Figure 3. Data analysis workflow followed.

Table 2 provides summary statistics for our SR variable. The number of observations
in the dataset is 762. Overall, the data appears to have a mean of 0.9796, which means
that on average, the observations are close to 0.98. The standard deviation of 0.0486
suggests that the data is relatively consistent, with most values falling within a range of
about 0.03 of the mean (0.98 + 0.03). Interestingly, the largest observation is 1.083, even
though the range in which SR should differ between [0, 1]. This could be due to a variety
of reasons, such as measurement errors or errors in the data processing. It is also important
to note that in some cases, the variable of interest may have a maximum of 1 under certain
conditions, but the data may include values greater than 1 that are not representative of
the variable’s typical range. According to the UJA’s experts, these values are possible
and may be attributed to factors such as variations in the used materials or slight
differences in the solar resource between clean and dirty equipment. On the other hand,
only 38 rows were missing in the SR column.

Table 2. Summary statistics for the SR variable.

Variable Value

count 762
mean 0.9796
std 0.0486
min 0.5950
Q1 0.9770
Q2 0.9880
Q3 0.9990
max 1.0830
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Null 38

In order to deal with outliers, we implemented the Z-score method. A statistical
technique used as a measure of how many standard deviations observations are from the
mean of the data. In our case, 20 rows were identified as outliers using the Z-score
method. These observations were then removed from the dataset for further analysis. It is
important to note that the decision of removing these outliers was based on expert
knowledge and a thorough evaluation of the data. The outliers were identified as potential
measurement errors and therefore were deemed unreliable for the analysis.

After cleaning the dataset, a slight change in the data distribution was observed. This
can be seen in Figure 4. According to researchers at the UJA, the observations outside of
the quartiles are not outliers, but correct measurements that may appear unusual as a
consequence of the cumulative nature of the dirt level measurement.

i

Figure 4. Boxplot representation of the SR quartiles.

Finally, we can see the distribution of the data after the cleaning process in Figure 5.
As can be observed, the majority of the values are located within the expected range, with
a slight variation in the distribution pattern. It is noteworthy that the figure illustrates a
Gaussian distribution, i.e., the majority of the observations are located around the mean,
with fewer observations as we move away from it.

400

300
)
c
2 200
Q
z
= 100 I

0.9 0.95 1 1.05 1.1

SR

Figure 5. Data distribution of the SR attribute.

3 EXPERIMENTS

Having preprocessed the time series data provided by the UJA; we conducted a series
of experiments consisting of launching different regression algorithms in order to predict
SR.
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The machine learning algorithms were implemented in Python 3 for its versatility and
access to packages and functions. We used the Scikit-learn and Keras libraries to adapt
the LR, DT, RF, MLP and LSTM models. To ensure the effectiveness of the predictors,
we divided the dataset into training (70%), validation (20%) and testing (10%) portions.
For each algorithm, different hyperparameters were tested to evaluate the optimal
combination for the input data. The validation set was used to tune the hyperparameters
and avoid overfitting.

Additionally, in order to compare our models with currently employed approaches, we
chose two recent solutions: Coello and Byle (Coello & Boyle, 2019), and You (You et
al., 2018). The first authors, propose to compute SR based on the following formula:

SR = 1 — 0.3437 erf(0.17w%8473) (3)
Where w is the total mass accumulation in g-m.

On the other hand, You utilised the total mass accumulation w and a waste of energy
efficiency according to the next equation:

SR = 0.013%w (4)
The computation of w was using the deposition velocity V,, the atmospheric aerosol
concentration C and the duration in days without rain D:

w=V,-C-D-107° (5)
Both authors assume that SR = 1 when it is registered a rainfall above 0.3mm. In other
words, the module is completely clean.

These mathematical models were computed using 7 attributes: temperature, relative
humidity, pressure, wind speed, short wave irradiation, air density and rainfall (see Table
1).

The metrics selected to measure the models’ performance in this study were RMSE,
MAE, MAPE and R% The Root Mean Square Error (RMSE) measures the average
difference between the predicted and actual values. RMSE is the square root of the mean
of squared differences between the estimated and actual values as follows:

1 n
RMSE = —Z (i — 90?2 (6)
n i=1

The Mean Absolute Error (MAE) is used to measure the average magnitude of the
errors in a set of predictions, without considering their direction. It measures the absolute
differences between predicted and actual values:

1 n
MAE == |y, -3 ™
niadi=q

The Mean Absolute Percentage Error (MAPE) measures the average magnitude of the
errors as a percentage of actual values. It has the following equation:

100" |y; — 9

MAPE = —Z i3l (8)
n i=1  Yi

Lastly, the Coefficient of Determination R?, a statistical metric that explains how well

a model fits the observed data. R?> measures how close the data are to the fitted regression
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line. Its value ranges from 0 to 1, where 1 indicates a perfect fit. It can be defined using
the following formula:

_ (i —9)° )
=1 (i — ¥)?
Where y; is the actual value, ¥; is the estimation, n is the number of samples, ¥ is the
mean of the observed values.

R?=1

Finally, given the large number of variables in our dataset, we propose the
implementation of a feature selection method to identify and select a subset of the most
relevant attributes. We propose three solutions: the Boruta algorithm (Kursa, Jankowski
& Rudnicki, 2010), the proposal of Coello&Boyle and You, both of them with a similar
method, and finally, in order to check whether the sliding window influence the weather
parameters, only the historical values will be used according to the window used.

During the experimentation phase, we tested the different models with various
hyperparameters in order to find the optimal combination for our input data. Specifically,
we conducted the following experiments: for Boruta, we set the maximum depth to 5,
allowed the number of estimators to be automatic, and limited the maximum number of
iterations to 100. For RF and RT, we varied the maximum depth from 5 to 30 and tested
with up to 100 estimators. Finally, for MLP and LSTM, we tested various
hyperparameters, such as the number of neurons, patience, early stopping, number of
layers, activation function, and optimizer. Due to space limitations, the results section
only includes a selection of these experiments.

4  RESULTS
First and foremost, we compare the performance obtained by the previous approaches
of Coello & Boyle, and You, it can be seen in the following Table 3.

Table 3. Results of the mathematical models. C&B is the Coello and Boyle model. Y is the You proposal. On-site and
satellite, are the kind of data employed to fit the models.

Model RMSE MAE MAPE R2

C&B on-site  0.016876 0.011128 1.136918 0.341808
C&B satellite  0.038538 0.023643 2.420922 0.205066
Y on-site 0.019935 0.013792 1.418861 0.347129
Y satellite 0.030156 0.017360 1.777113 0.185304

From this table, we can observe that the “C&B on-site” model has the lowest RMSE
and MAE among all models, indicating that it has the smallest average error in prediction.
It has a relatively low MAPE and a moderate R? value, indicating that the model has a
moderately accurate prediction and is able to explain 34.18% of the variability of the data.
On the other hand, the experiment Y satellite” has the highest RMSE and MAE among
all models, meaning that is has the largest prediction errors. The model also has a
moderate MAPE and a low R? coefficient, it shows a less accurate prediction and is only
able to explain 18.53% of the data. Based on the results in the table, the Coello and Boyle
model using the on-site data seems to have the best performance in terms of prediction
accuracy and explaining the variability of the data.
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Based on our experiments, we present the performance metrics obtained by using
different machine learning models. Table 4 gathers the results obtained using the LR
algorithm. The second column in the table indicates the input data used, which was
selected using feature selection algorithms: 1) Boruta, 2) C&B and You, 3) sliding
window. Additionally, to better visualise and analyse the results, we created Figure 6,
where each line represents the input according to the window size. Each metric has been
displayed separately to clearly depict the range of their values.

Table 4. Results of LR.

# Input Window RMSE MAE MAPE R2

1 0.000078 0.000037 0.003788 0.999971
0.000201 0.000073 0.007447 0.999804
0.000260 0.000086 0.008768 0.999672
0.000747 0.000532 0.053962 0.997299
0.000997 0.000771 0.078187 0.995188
10 0.001541 0.000686 0.069519 0.988501
14 0.003456 0.001081 0.109789 0.942148
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2 1 0.000073 0.000031 0.003113 0.999974

2 2 0.000195 0.000064 0.006527 0.999816
10 2 3 0.000255 0.000079 0.007992 0.999685
11 2 5 0.000908 0.000548 0.055646 0.996010
12 2 7 0.001062 0.000688 0.069770 0.994533
13 2 10 0.001602 0.000698 0.070858 0.987573
14 2 14 0.003397 0.000987 0.100253 0.944096
15 3 1 0.000068 0.000013 0.001361 0.999977
16 3 2 0.000192 0.000034 0.003427 0.999822
17 3 3 0.000253 0.000045 0.004561 0.999689
18 3 5 0.000577 0.000289 0.029185 0.998389
19 3 7 0.000737 0.000397 0.040180 0.997367
20 3 10 0.001500 0.000534 0.054144 0.989098
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Figure 6. Representation of the performance metrics for the LR model according to the window size. (a) Root Mean
Squared Error (RMSE), (b) Mean Absolute Error (MAE), (c) Mean Absolute Percentage Error (MAPE), and (d)
Coefficient of Determination (R?).
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As we can see from Table 4, as the number of input features increases, the performance
of the model improves as indicated by lower RMSE, MAE and MAPE values. Moreover,
as the size of the sliding window increases, the performance of the model decreases as
pointed by higher RMSE, MAE and MAPE metrics. This suggests that the model might
be overfitting for larger windows. Finally, it can be seen that the models have a good
performance for all cases as the R? values are close to 1.

Table 5. Results of the RT method.

# Input  Window d'\:;t’;] RMSE  MAE  MAPE R?

T 1 1 7 000195 000024 002331 0.98168
2 1 1 10 000200 000028 0.02752 0.98064
31 1 20 000194 0.00022 0.02135 0.98185
4 1 1 25 000197 0.00026 0.02512 0.98125
5 1 1 30 000126 0.00021 0.02085 0.99237
6 1 2 7 000198 0.00029 0.02867 0.98096
7 1 2 10 000124 000020 001944 0.99260
8 1 2 20 000133 0.00021 0.02087 0.99150
9 1 2 25 000196 0.00025 0.02481 0.98149
0 1 2 30 000115 0.00015 0.01442 0.99356
11 1 3 7 000198 0.00028 0.02760 0.98108
12 1 3 10 000200 000028 002741 0.98070
13 1 3 20 0.00200 0.00029 0.02852 0.98059
14 1 3 25 000123 0.00020 0.02000 0.99265
15 1 3 30 000129 0.00023 0.02268 0.99193
6 1 5 7 000276 0.00061 0.06148 0.96311
17 1 5 10 000308 000056 0.05620 0.95420
18 1 5 20 0.00304 0.00055 0.05459 0.95527
19 1 5 25 000303 0.00057 0.05705 0.95550
20 1 5 30 000268 0.00051 0.05178 0.96526
21 2 1 7 000118 0.00018 0.01808 0.99330
2 2 1 10 000117 000016 001585 0.99343
23 2 1 20 000116 0.00016 0.01628 0.99353
24 2 1 25 000119 0.00019 0.01910 0.99310
%5 2 1 30 000187 0.00021 0.02098 0.98316
2% 2 2 7 000118 0.00019 0.01886 0.99322
21 2 2 10 000187 000023 0.02305 0.98307
28 2 2 20 000119 000019 0.01909 0.99314
29 2 2 25 000133 0.00022 0.02153 0.99149
30 2 2 30 000121 0.00020 0.02000 0.99297
31 2 3 7 000120 0.00020 0.01953 0.99309
2 2 3 10 000187 000024 002371 098301
33 2 3 20 000118 0.00018 0.01740 0.99330
34 2 3 25 000196 0.00026 0.02523 0.98139
3B 2 3 30 000119 000018 001812 0.99314
% 2 5 7 000318 000076 0.07601 0.95111
37 2 5 10 000277 000054 005427 0.96288
38 2 5 20 000246 0.00046 0.04595 0.97076
39 2 5 25 000240 0.00045 0.04537 0.97221
40 2 5 30 000313 0.00057 0.05661 0.95269
a3 1 7 000113 0.00014 0.01359 0.99386
42 3 1 10 000112 000011 001117 0.99396
43 3 1 20 000112 0.00011 0.01117 0.99396
44 3 1 25 000112 000011 0.01117 0.99396
45 3 1 30 000112 0.00011 0.01117 0.99396
46 3 2 7 000116 0.00017 0.01660 0.99346
473 2 10 000129 000017 001704 0.99189
48 3 2 20 000129 0.00017 0.01633 0.99193
49 3 2 25 000113 0.00013 0.01269 0.99380
50 3 2 30 000128 0.00016 0.01584 0.99213
51 3 3 7 000195 0.00025 0.02445 0.98158
52 3 3 10 000195 000023 0.02265 0.98164
53 3 3 20 000115 0.00015 0.01506 0.99358
54 3 3 25 000131 000018 001776 0.99174
55 3 3 30 000195 0.00023 0.02219 0.98166
56 3 5 7 000206 0.00040 0.03939 0.97937
57 3 5 10 000145 000028 002746 0.98989
58 3 5 20 0.00202 0.00030 0.02943 0.98028
59 3 5 25 000201 0.00030 0.02928 0.98040
60 3 5 30 000202 0.00030 0.02945 0.98027
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Figure 7. Performance metrics of the RT algorithm according to the depth of the trees with the best input and
window. a) Root Mean Squared Error (RMSE), b) Mean Absolute Error (MAE), ¢) Mean Absolute Percentage Error
(MAPE), and d) Coefficient of Determination (R2).

In the RT method, we tested the effect of modifying the number of look-back days
from 1 to 5 since bigger values produced high errors. We also experimented with the
maximum depth of the trees (see Figure 7). The results are summarised in Table 5. The
best performance was observed when the input was 1 (using the feature obtained by the
Boruta algorithm), the window size was 1, and the maximum tree depth was 30. This
resulted in the lowest RMSE (0.00126), low MAE and MAPE (0.00021 and 0.02085,
respectively), and high R2 (0.99237). Generally, the performance improved as the
window size decreased and the maximum tree depth increased until a point (10) where
further increases in tree depth did not result in significant improvement in performance.
However, there were some exceptions to this trend, such as when the input was 2 and the
window size was 5, which resulted in high errors and low R2. These trends are highlighted
in Figure 7, whose graph highlights the effect of the depth of the trees on the model's
performance.

Table 6. Results of the RF method.

#  Input  Window d“:;; RMSE  MAE  MAPE R?

1 1 1 7 000102 000018 001841 0.99500
2 1 1 10 000087 000017 0.01688  0.99637
3 1 1 20 000089 000017 0.01698  0.99618
4 1 1 25 000096 000018 001792  0.99554
5 1 1 30 000090 000018 0.01807  0.99609
6 1 2 7 000115 000022 0.02178 099358
7 1 2 10 000099 000018 0.01873  0.99530
8 1 2 20 000084 000016 0.01631  0.99659
9 1 2 25 000090 000018 001781  0.99606
0 1 2 30 000089 000018 001774  0.99618
1 1 3 7 000100 0.00019 0.01970 0.99518
2 1 3 10 000099 000020 0.02020  0.99525
13 1 3 20 000112 000021 002146  0.99392
u 1 3 25 000089 000021 002089  0.99613
15 1 3 30 000095 000019 001970  0.99562
6 1 5 7 000122 0.00044 0.04435 0.99285
171 5 10 000139 000051 005120  0.99068
18 1 5 20 000135 000054 0.05434 0.99121
19 1 5 25 000125 000046 0.04620  0.99240
20 1 5 30 000124 000051 005141 0.99261
21 2 1 7 000119 000022 0.02233 099318
2 2 1 10 000143 000024 0.02446  0.99014
23 2 1 20 000095 000017 001770  0.99562
24 2 1 25 000102 000018 0.01892  0.99495
% 2 1 30 000118 000022 002245 0.99332
% 2 2 7 000120 0.00023 0.02372  0.99304
27 2 2 10 000117 000021 0.02185 0.99339
28 2 2 20 000114 000023 002338  0.99369
29 2 2 25 000145 000026 0.02681  0.98980
30 2 2 30 000104 000021 002109  0.99478
31 2 3 7 000107 0.00022 0.02259  0.99443
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32 2 3 10 0.00138  0.00025  0.02620  0.99080
33 2 3 20 0.00112  0.00022  0.02257  0.99391
34 2 3 25 0.00110  0.00021  0.02168  0.99414
35 2 3 30 0.00108  0.00020  0.02027  0.99433
36 2 5 7 0.00214  0.00065 0.06622  0.97784
37 2 5 10 0.00199  0.00052  0.05331  0.98084
38 2 5 20 0.00206  0.00056  0.05722  0.97942
39 2 5 25 0.00214  0.00059  0.06013  0.97789
40 2 5 30 0.00207  0.00059  0.05987  0.97936
41 3 1 7 0.00064  0.00012  0.01152  0.99801
42 3 1 10 0.00062  0.00010 0.01015 0.99814
43 3 1 20 0.00062  0.00010  0.01018  0.99815
44 3 1 25 0.00064 0.00010 0.01026  0.99801
45 3 1 30 0.00058  0.00010  0.00976  0.99839
46 3 2 7 0.00073  0.00014  0.01439  0.99739
47 3 2 10 0.00072  0.00013  0.01272  0.99747
48 3 2 20 0.00061  0.00012 0.01186  0.99818
49 3 2 25 0.00073  0.00013  0.01353  0.99745
50 3 2 30 0.00064 0.00012 0.01246  0.99802
51 3 3 7 0.00078  0.00016  0.01641  0.99709
52 3 3 10 0.00071  0.00015 0.01486  0.99759
53 3 3 20 0.00060  0.00012  0.01258  0.99823
54 3 3 25 0.00069  0.00014  0.01422  0.99773
55 3 3 30 0.00067  0.00014  0.01421  0.99780
56 3 5 7 0.00101  0.00036  0.03650  0.99510
57 3 5 10 0.00115 0.00035  0.03557  0.99360
58 3 5 20 0.00105 0.00033  0.03297  0.99464
59 3 5 25 0.00101  0.00032  0.03266  0.99509
60 3 5 30 0.00104  0.00032  0.03247  0.99477
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0.00064 0.00012 0.01150 0.99840
0.00062 0.00011 0.01100 099830
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0.00058 0.00010 0.01000 0.99800
0.00056 0.00010 0.00950 0.99790
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Figure 8. Performance metrics of the RF algorithm according to the depth of the trees with the best input and
window. a) Root Mean Squared Error (RMSE), b) Mean Absolute Error (MAE), ¢) Mean Absolute Percentage Error
(MAPE), and d) Coefficient of Determination (R2).

Table 6 presents the results obtained with the RF algorithm. Similar to the RT method,
we tested several window sizes and max depths for our models. Figure 8 illustrates the
performance of the RT method according to the later parameter with the best input and
window. Our experiments showed that as the maximum tree depth increases, the RMSE
generally decreases, but the MAE and MAPE mostly increase. This suggests that the
models become more complex and may overfit to the training data as the maximum tree
depth increases. The R? coefficients indicate that the models have high explanatory power
with values ranging from 0.98 to 0.99, suggesting a strong linear relationship between the
predicted and actual values. We observed that the choice of window size has a minimal
effect on the model performance metrics across different window sizes. Furthermore, it
appears that the different input datasets have a significant impact on the model
performance, with input 3 consistently outperforming inputs 1 and 2.

Due to space limitations, we omitted some experiments in the MLP model. For
validation purposes, we utilized 10% of the data and employed the early stopping
technique, allowing a maximum of three epochs before termination if there was no
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improvement. Initially, we evaluated the performance of multiple solvers, including Ibfgs,
sgd and adam, in our MLP model. Subsequently, we investigated the effect of various
activation functions, including identity, logistic, tanh and relu, on the model’s
performance. Our results indicated substantial disparities among the parameters
evaluated. We determined that the optimal configuration was the Ibfgs solver with the
identity activation function. The MLP model was tested by varying the number of neurons
and hidden layers. The number of neurons was tested up to 90, and the number of hidden
layers was tested up to 3. The performance of the MLP model was evaluated for each
configuration of neurons and hidden layers. The results of the experiments showed that
increasing the number of neurons and hidden layers did not always result in an
improvement in the performance of the model. Thus, we present the remaining MLP
experiments in Table 7. We found the same scenario, we observed that increasing the
window size led to an increase in errors and a decrease in R2, which affected the model's
performance. As shown in Figure 9, smaller window sizes tended to produce better
accuracy. Additionally, we found that the third input had the best overall performance,
suggesting it may be the most suitable input for MLP models. Although the results are
very good, there may be a concern about overfitting. However, we checked for overfitting
by using an unseen test set to evaluate the generalization ability of all the model.
Additionally, when comparing the training and testing scores, the testing values were very
close, and even worse in some cases, indicating that the model was not overfitted.

Table 7. Results of the MLP model.

# Input Window RMSE MAE MAPE R?

1 0.000078 0.000036 0.003712 0.999970
0.000202 0.000075 0.007656 0.999800
0.000259 0.000082 0.008307 0.999680
0.000747 0.000532 0.053966 0.997300
0.000073 0.000031 0.003119 0.999970
0.000195 0.000064 0.006507 0.999820
0.000255 0.000079 0.007996 0.999690
0.000908 0.000548 0.055643 0.996010
0.000068 0.000013 0.001365 0.999980
0.000192 0.000034 0.003427 0.999820
0.000253 0.000045 0.004561 0.999690
0.000577 0.000289 0.029185 0.998390
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Figure 9. Representation of the performance metrics for the MLP model according to the window size. (a) Root Mean
Squared Error (RMSE), (b) Mean Absolute Error (MAE), (c) Mean Absolute Percentage Error (MAPE), and (d)
Coefficient of Determination (R?).

In training the LSTM model, we evaluated various parameters to determine the optimal
configuration. We experimented with three activation functions: tanh, sigmoid and
rectified linear unit (ReLU). We also tested network configurations, ranging from 3 to 32
neurons and 1 to 3 layers. The final configuration was a single-layer network with 10
neurons and the sigmoid activation function, optimized using the Adam optimizer. Table
8 shows the errors obtained. Based on these results, it is difficult to assess the overall
performance of the models. Unlike previous models, there is no clear pattern or trend
observed in the metrics regarding the input or window size, as depicted in Figure 10. As
the window size increases, the errors seem to worsen. The values of these metrics vary
considerable for different combinations of input and window size, with no discernible
relationship between them.

Table 8. Results of the LSTM model.

# Input Window RMSE MAE MAPE R?

1 0.012539 0.006720 0.681561 0.238563
0.012919 0.007060 0.714559 0.191617
0.012632 0.006790 0.687476 0.227121
0.012864 0.007330 0.742514 0.198478
0.012248 0.006770 0.685231 0.273423
0.012680 0.007320 0.741486 0.221268
0.012316 0.006910 0.700916 0.265375
0.012502 0.006940 0.702680 0.242983
0.012434 0.006420 0.649842 0.251161
0.012462 0.006400 0.647009 0.247875
0.012457 0.006810 0.689555 0.248409
0.012620 0.007340 0.743555 0.228660
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Figure 10. Representation of the performance metrics for the LSTM model according to the window size. (a) Root
Mean Squared Error (RMSE), (b) Mean Absolute Error (MAE), (c) Mean Absolute Percentage Error (MAPE), and
(d) Coefficient of Determination (R?).
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As a summary, the practical application and verification of the best-performing
prediction model were conducted using the Coello and Boyle on-site model for the LR
algorithm, with the input data obtained by the Boruta algorithm, a window size of 1, and
a maximum depth of 30 for the RT method, and input 3 for the RF algorithm. The results
showed that the Coello and Boyle model using the on-site data had the lowest RMSE and
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MAE among all models, indicating that it had the smallest average error in prediction.
The LR algorithm showed that as the number of input features increased, the performance
of the model improved. The RT method showed that the performance improved as the
window size decreased and the maximum tree depth increased until a point where further
increases in tree depth did not result in significant improvement in performance. For the
RF algorithm, it was observed that the choice of input dataset had a significant impact on
the model performance, with input 3 consistently outperforming inputs 1 and 2. The
results of our experiments demonstrate the effectiveness of using machine learning
methods to accurately forecast soiling on photovoltaic panels, which is essential for
optimizing energy production and improving the efficiency of solar power systems.

5 CONCLUSIONS

Soiling studies have garnered significant attention in recent times due to their crucial
role in minimising the detrimental effects of solar energy production. In this work, we
applied machine learning techniques to tackle this problem and achieved promising
outcomes. To validate our models, we utilised data from both on-site measurements at
the UJA and satellite observations. Although the UJA location was not considered to have
high levels of soiling, which makes it difficult for the models to generalize and make
accurate predictions, we still achieved satisfactory results. The accuracy of soiling models
is of critical importance in locations like Jaén where the levels of soiling may be relatively
low. In such environments, the cost of cleaning photovoltaic panels must be carefully
considered in order to ensure that the benefits outweigh the costs. This study takes an
important step toward ensuring that that photovoltaic systems in such locations are
operated in the most efficient and profitable manner possible. Upon evaluating the best
10 results obtained for each model, we found that the average error was 0.004, which was
significantly lower compared to the average error of 0.026 obtained from mathematical
models. Additionally, we determined that the optimal set of variables was Input 3, which
reduced the error by 0.002 on average.

In our study, we evaluated five machine learning models to forecast soiling on
photovoltaic panels. We found that the MLP neural network model had the highest
accuracy among the tested models, with an average RMSE of 0.00032, MAE of 0.00015,
MAPE of 0.01545, and Rz of 0.99918, indicating a robust solution. Additionally, we
found that increasing the number of input features generally improved model
performance for LR, while increasing sliding window size decreased performance. RT
and RF methods showed improved performance as maximum tree depth increased, but
higher depth also increased the risk of overfitting. The choice of input data had a
significant impact on the model performance. Thus, our study demonstrates the
effectiveness of using machine learning methods to accurately forecast soiling on
photovoltaic panels.

As future work, it would be worthwhile to investigate new machine learning models.
Additionally, the integration of weather forecasts as external input to the developed
models could be propose in order to enhance their accuracy and generalisation ability.
This would involve the exploration of novel techniques to incorporate meteorological
data into the models and assess their performance in the presence of this information.
Such an approach has the potential to further improve the predictive capabilities of the
models and could lead to significant advancements in the field of soiling studies.
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Additionally, we propose the application of edge-based active contour model to find
object boundaries in our digital images with weak boundaries and/or strong noise. The
insights from (Ciecholewski, 2016; Ciecholewski, 2017) can aid in analysing the
relationship between pollution rank and geographic coordinates and identifying nonlinear
mechanisms affecting pollution levels. The models proposed in (Precup, Duca, Travin &
Zinicovscaia, 2022) can be used as a reference to develop similar models. Besides, the
methods proposed in (Verma, Meenpal & Acharya, 2022) may potentially speed up
prediction and improve scalability of our models for real-world applications.

Finally, in order to improve the validation process in future studies, we recommend
providing a link to the methods and datasets used in a publicly accessible repository. This
would allow for a sound validation process, which is particularly important in neural
networks and modelling approaches.

6 ABBREVIATIONS

Al Artificial Intelligence
ANN  Artificial Neural Network
DT Decision Tree

LR Linear Regression

LSTM Long Short-Term Memory
MAE  Mean Absolute Error

MAPE Mean Absolute Percentage Error
MLP  Multi-Layer Perceptron

PV Photovoltaic

R? Coefficient of Determination

RF Random Forest

RMSE Root Mean Squared Error

SR Soiling Ratio

UJA University of Jaén
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