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Abstract 

The accumulation of dust and other particles on solar panels, known as soiling, is a significant 

factor that affects their performance, leading to reduced efficiency if not addressed properly. In 

this study, we propose a new methodology to estimate soiling on solar photovoltaic panels. To 

address this issue, we utilised data from the University of Jaén and satellite information from 

NASA. We applied five different machine learning models, including Linear Regression, 

Random Forest, Decision Tree, Multilayer Perceptron and Long Short-Term memory neural 

networks to estimate the extent of soiling on the panels. The input data consisted of weather 

data, as well as operational data of the solar panels. Our results showed that the MLP model 

had the lowest average error of 0.0003, indicating its effectiveness in estimating the extent of 

soiling on the panels. This is significantly lower compared to previous proposals in the 

literature, which had an average error of 0.026. This study demonstrates the effectiveness of 

using machine learning methods to forecast soiling on photovoltaic panels accurately. The 

implications of our findings are essential for optimising energy production and improving the 

efficiency of solar power systems. 

Keywords— Photovoltaic panel; soiling; solar panel dirt; machine learning; artificial neural networks  

 

1 INTRODUCTION 

The demand for renewable energy sources has significantly increased due to the 

constant growth of urban and industrial development. One of the most promising sources 

of clean energy is photovoltaic (PV) energy which is generated by panels that directly 

convert solar light into electricity. PV solar energy has demonstrated both environmental 

and economic benefits when compared to fossil resources (Shafique, Luo & Zuo, 2020). 

Moreover, PV machinery has emerged as a trend in the electricity sector, with experts 

estimating that PV will provide up to 25% of the world’s energy in 2050 (IRENA, 2019). 

Thus, solar energy has become a key player in the transition towards a more sustainable 

energy future. The adoption of photovoltaic (PV) systems has many benefits (Schulte, 

Scheller, Sloot & Bruckner, 2022). First, solar energy is a clean and renewable energy 

source that does not release greenhouse gases or air pollutants, reducing the negative 

impact on the environment (Maka & Alabid, 2022). Second, the cost of PV panels has 

significantly decreased over the past decade, making it an increasingly cost-effective 

option for electricity generation (Qamar, Ahmad, Oryani & Zhang, 2022). Third, PV 

systems are modular and can be installed on rooftops, thus reducing the need for large 

land areas for energy generation (Zhu, et al., 2023). Lastly, the adoption of PV systems 

can also create job opportunities and contribute to the growth of the green economy 

(Zhao, et al., 2022). These benefits have led to the rapid growth of the solar industry and 

the widespread adoption of PV systems as a promising alternative to fossil fuels. 

In 2022, PV achieved the first TW of globally installed capacity. This significant 

milestone is expected to be doubled by 2023, favoured by PV’s low-cost, easiness of 

installation and versatility (SolarPower Europe, 2020).  However, the massive 

deployment of PV is also raising concerns related to its land occupancy, as renewables 

have typically lower power densities compared to conventional energy sources (Capellán-

Pérez, de Castro & Arto, 2017). This means that PV, and renewable energies in general, 

will require more land than other technologies to provide the same amount of energy. 

Pushed by the expectation of high profits, new PV capacity might be installed in areas of 

low-cost, but of high ecological value, posing threats to biodiversity (Sills, et al., 2020). 

Additionally, for the same reason, new PV installations might subtract land to agriculture, 

creating issues for the food chain. In light of this, research activities are needed in at least 
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two directions to mitigate any potential negative socio-environmental impact of PV. First, 

innovative solutions to minimize any land issue related to the installations of new PV 

capacity have to be identified, such as novel floating PV (Kumar, Mohammed Niyaz & 

Gupta, 2021) and agri-PV designs (Trommsdorff, et al., 2022). Second, it is also 

important to maximize the energy yields of existing PV power plants, in order to increase 

the efficiency in land and material usage of this technology (Späth, 2018). 

While solar energy is a promising and sustainable solution for meeting increasing 

energy demands, the efficiency and longevity of PV systems are affected by a range of 

factors. In addition to PV cell technology and ambient conditions, proper maintenance 

and cleaning are also critical for maximizing energy generation. One of the major factors 

affecting the efficiency of PV panels is soiling, which refers to the natural dirt lodged in 

the solar panels due to environmental factors (Dhass, Beemkumar, Harikrishnan & Ali, 

2022). Soiling is due to dirt, dust, and other contaminants that deposit on the surface of a 

PV module, absorbing, reflecting, and scattering irradiance. It reduces the amount of light 

reaching the PV cell, lowering the amount of photo-generated energy. It has been recently 

estimated that soiling causes significant losses worldwide, with peaks higher than 30% in 

some regions, leading to non-negligible economic consequences for PV players (Li, 

Mauzerall & Bergin, 2020). Therefore, while the installation of new PV capacity is 

essential, it is equally important to optimize the performance of the existing PV fleet.  

Many researchers emphasize the importance of studying the effect of soiling on PV 

systems as their performance is closely correlated to PV production (Jamil, Rahman, 

Shaari & Desa, 2020). As a consequence, understanding the impact of soiling on PV 

systems and developing effective cleaning and maintenance strategies (Vedulla, Geetha 

& Senthil, 2023) is essential for ensuring the long-term performance and sustainability of 

solar energy. 

An accurate estimation of soiling can produce at least two benefits to PV owners. First, 

it makes it possible to evaluate the economic cost of soiling in terms of missing revenues. 

This way, designers can include the soiling loss in the techno-economic assessments of 

new PV sites. Second, it makes it possible to plan an appropriate mitigation strategy to 

prevent its accumulation, facilitate its natural removal, and/or operate manual or robotic 

cleanings. Indeed, differently from other performance loss mechanisms, soiling is 

reversible, and can be mechanically removed from the PV panels. However, cleanings 

have a cost to cover the expenses associated with the resources (i.e., water, cleaning 

products, ...) and the human labour. Therefore, it is important to accurately estimate the 

soiling loss, in order to plan a cleaning schedule that maximizes the difference between 

the revenues due to the recovered energy and the costs of cleaning. 

The estimation of soiling losses can be realized in different ways: a) deploying a 

soiling monitor (i.e., soiling station or sensor), b) employing a soiling extraction 

algorithm or c) using a soiling estimation model. The first option requires the installation 

of specific hardware, which can be costly and needs maintenance. The second approach 

can be used only once the PV systems are operational, as soiling is identified from the 

actual PV power production data. In the third option, soiling is estimated from 

environmental parameters, whose values are typically available in satellite-derived 

databases for long-term periods and for multiple locations. Therefore, soiling estimation 

models allows estimating losses without the need of installing specific sensors, and even 
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before a PV system is operational, so that soiling mitigation can be included in the site 

selection and plant design phases. However, they require the knowledge of the 

correlations between environmental parameters, system configuration and soiling. The 

soiling of a PV plant is, indeed, influenced by many factors, including site characteristics, 

system geometry, PV modules properties, dust characteristics and concentrations, relative 

humidity, ambient and module temperature, and wind speed (Figgis, Guo, Javed, Ahzi & 

Rémond, 2018). 

Estimation models approximate the soiling profile of a PV system to a sawtooth wave, 

where dust accumulation periods and cleanings alternate. Therefore, in order to 

effectively reproduce the soiling loss profile, one has to understand which factors impacts 

the two events (accumulation and cleanings), and to which extent. A wide range of studies 

all around the world has been conducted to predict energy losses due to dirt. Both 

mathematical (Coello & Boyle, 2019; Santos, Batista, Brito & Quinelato, 2021; Toth, 

Hannigan, Vance & Deceglie, 2020; You, Lim, Dai & Wang, 2018) and machine 

learning-based (Sohani, et al., 2022; Tina, Ventura, Ferlito & De Vito, 2021) solutions 

have been proposed in the literature to minimise energy waste and support decision-

making. Machine learning approaches are particularly promising for soiling prediction 

due to their ability to handle complex systems and non-linear problems (Younis & Alhorr, 

2021). This is a field that is increasingly receiving attention in the academic community 

for the development of new and more efficient techniques (Gaviria, Narváez, Guillen, 

Giraldo & Bressan, 2022). 

Some of the pioneers in studying energy losses for soiling are from the 1970s 

(Bengoechea, Murillo, Sánchez & Lagunas, 2018), such as the research published in 1974 

by Garg (Garg, 1974). Nonetheless, his outcomes are still meaningful and relevant to the 

PV field today since there has been an increase of 200% of scientific publications from 

2012 and 2017 in this regard (Costa, et al., 2018).  

The most varied mathematical models have been proposed to estimate energy losses 

due to soiling on PV panels. In (Santos et al., 2021) the authors developed a model that 

approximates the behaviour of a PV system by modelling irradiance, resistances and cell 

behaviour. A simple model using time series is proposed in (Coello & Boyle, 2019) to 

predict soiling on PV panels by employing the total accumulated particulate mass. A 

similar physics-based approaches was suggested by (You et al., 2018) to predict the 

energy impact of solar PV soiling, and the authors emphasise the effectivity of their 

solution to design cleaning protocols for solar PV systems. For a more comprehensive 

review of the literature, interested readers may refer to (Bessa, Micheli, Almonacid & 

Fernández, 2021). However, neglecting or under/over-estimating the impact of some 

factors might cause significant errors in soiling estimation. 

While the applications of Artificial Intelligence (AI) may seem varied and unrelated, 

they can actually be utilized to optimize the efficiency of photovoltaic (PV) systems, as 

shown in several recent studies (E.-L. Hedrea, Precup, Roman & Petriu, 2021; R.-C. R. 

Hedrea & Petriu, 2021). Studies indicate that the use of machine learning in soiling 

prediction is notoriously beneficial thanks to its capability to deal with complex systems 

and non-linear problems (Younis & Alhorr, 2021). This is a field that is increasingly 

receiving attention in the academic community for the development of new and more 
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efficient techniques (Guo, Javed, Khan, Figgis & Mirza, 2016). Indeed, there are many 

authors that propose the use of AI to predict the performance of PV systems and to 

optimise the cleaning of PV panels. Heinrich et al. (Heinrich, et al., 2020) used machine 

learning techniques to identify cleaning intervention from actual PV data. The authors 

achieved high accuracy when current, voltage and temperature data, measured at 10-

second intervals, were analysed using a random forest model. In (Maftah, Azouzoute, El 

Ydrissi, Oufadel & Maaroufi, 2022), the authors compared quality of the soiling 

estimation of an artificial neural network model with that of linear models for two 

locations using locally measured data. Similarly, (Shapsough, Dhaouadi & Zualkernan, 

2019) and (Laarabi, et al., 2019) used neural networks to predict the soiling losses from 

locally measured environmental data. Javed et al. (Javed, Guo & Figgis, 2017) compared 

the results of artificial neural networks given in input a variable number of locally sourced 

parameters. In (Mehta, Azad, Chemmengath, Raykar & Kalyanaraman, 2018), the authors 

developed a convolutional neural network to estimate the soiling losses from aerial 

pictures of the soiling modules. Similarly, in (Almalki, Albraikan, Soufiene & Ali, 2022) 

the authors present a cleaning drone that uses image processing and AI to clean solar 

panels. The robot uses a camera to take pictures of the solar panels and AI algorithms to 

analyse the images and detect the location of dirt and dust on the panels. A deep neural 

network was implemented in (Zhang, et al., 2021) to estimate the power generation of a 

PV system. The authors trained the artificial neural network (ANN) using historical data 

on weather conditions, solar radiation and power generation. The trained ANN was able 

to predict the power generation with relatively high accuracy, which can be useful for 

improving the operation of the PV system. Thus, the autonomous drone uses this 

information to navigate to the dirtiest areas and clean them. Support vector machines were 

used in (De Leone, Pietrini & Giovannelli, 2015) to predict the power output of a PV 

system. The authors trained a support vector regression model using historical data on 

solar irradiance, environmental temperature and past energy production and obtained 

pretty accurate estimates. Some other approaches, future challenges and recommended 

directions may be found in (Mellit & Kalogirou, 2021).  

It is worth noting that many studies published in this field have predominantly utilised 

on-site meteorological data, while satellite data has been employed only in few cases. 

Some authors have suggested that environmental data from satellites may be less sensitive 

compared to on-site measurements, which could lead to more errors (Carmona, et al., 

2020). However, the possibility of exploiting available information from any location on 

the planet without the need for specific facilities justifies the use of satellite data. In 

addition, the number of parameters available online makes it possible to build models 

based on an unprecedented number of inputs.  

Additionally, one should consider that the environmental features of a specific 

geographical location influence the prediction quality too. That is to say, the fewer dirt 

factors in the atmosphere, the less accurate the prediction is (Å & Deceglie, 2020). For 

example, in locations like Jaén where the dirt levels are relatively low, the accuracy of 

the prediction models become more critical. This is because the decision to clean a solar 

plant is typically based on economic factors (Micheli, et al., 2020; Rodrigo, Gutiérrez, 

Micheli, Fernández & Almonacid, 2020), where the revenue generated by cleaning the 

plant should be greater than the cost of cleaning. In locations like Jaén, this difference is 

relatively small. Therefore, if the soiling is not correctly quantified, there is a higher risk 
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of miscalculating the difference between cleaning revenues and cleaning costs, which can 

lead to incorrect decisions. Our modeling approach was motivated by the need to improve 

the accuracy of soiling prediction models, particularly in locations like Jaén where the 

economic impact of incorrect decisions is more significant. By taking into account the 

environmental features of different locations, we believe that our approach represents a 

novel contribution to the field. 

Based on the literature review, it is clear that the prediction of energy losses due to dirt 

on solar panels is a topic that has gained a lot of attention in recent years. Mathematical 

models and machine learning-based solutions have been proposed to estimate losses due 

to soiling, with machine learning being highly beneficial for its capability to deal with 

complex systems and non-linear problems. The use of AI in predicting the performance 

of PV systems and optimizing the cleaning of PV panels has been proposed by several 

authors, indicating that AI and PV energy are closely intertwined. However, most of the 

papers published so far use mainly on-site meteorological data, and satellite data have 

been employed only in a few cases. Therefore, there is a clear need for a proposal that 

utilizes available information from any location on the planet without requiring specific 

facilities. The accuracy of the models becomes more critical in locations where the 

decision to clean a utility-scale PV plant is typically dictated by economic reasons. 

Therefore, the proposed study, which will utilize satellite data to predict energy losses 

due to dirt on solar panels, is highly relevant and important in the field. By incorporating 

a variety of environmental parameters, the study aims to develop a highly accurate model 

that can be used to support decision-making in the maintenance of solar panels, thus 

improving their efficiency and reducing energy losses. 

For all the aforementioned reasons, in this research, certain environmental parameters 

obtained from satellites and soiling measurements from a sensor in Jaén (Spain) were 

employed to build a machine learning model capable of predicting dirt levels on PV cells. 

To do so, we combined time series and soft computing techniques and the results were 

compared to the ones attained by the models proposed by previous authors. Five 

regression models were implemented: Linear Regression (LR), Decision Tree (DT), 

Random Forest (RF), Multi-layer Perceptron (MLP) and Long Short-Term Memory 

(LSTM) neural network. This study represents a major contribution to the field of PV 

soiling research. To the best of our knowledge, this is the first time that multiple machine 

learning and data mining techniques have been applied to for the scope of estimating the 

PV soiling profile from environmental parameters. 

In light of the aforementioned literature, of the PV community’s needs, and of the 

potential offered by machine learning, the scope of the present work is to further advance 

the knowledge in soiling estimation. This is achieved by (I) applying multiple machine 

learning techniques and (II) by using satellite-derived environmental data. The first 

objective differs from most of previous works, which have typically made use of a single 

machine learning methodology and makes it possible to compare the different techniques 

and to analyse their effectiveness in this area. The second goal enables to potentially 

extend the soiling simulation to any locations covered by satellite-derived database, 

instead of limiting it only to sites where locally measured data are available. 
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The novel approach used in this study brings fresh perspectives and insights to the 

field, and opens up new avenues for future research. The innovative nature of this research 

makes it an important and timely contribution to the field. Indeed, the proposed methods 

can find immediate application in real-world installations. For example, they can be used 

to evaluate the soiling losses of perspective PV sites, making it possible to include the 

soiling mitigation activity in the feasibility study. In addition, if environmental data are 

available in real time, the same models can be used for soiling monitoring as well, saving 

to PV owners and operators the costs associated with the acquisition, the installation and 

the maintenance of soiling sensors. The use of machine learning in place of physical 

models makes it possible to apply the findings of this work to several locations and 

systems, independently of system’s configuration, site characteristics and weather 

conditions, whose impact has not been fully modelled yet.  

The rest of the document is structured as follows. The proposed methodology is 

detailed in section 2. Section 3 introduces the experiments conducted. Section 4 gathers 

the main results. And finally, the conclusions are gathered in Section 0.  

2 METHODOLOGY 

The objective of the study is to create a predictive model to estimate the soiling ratio 

in PV panels. The modelling process consists of five main steps as can be seen in Figure 

1. Firstly, the dataset was created by utilising two complementary sources, one provided 

by the University of Jaén (UJA), and the second dataset obtained from NASA's project 

MERRA-2. The second step involves data preparation, which includes data aggregation 

to calculate the daily mean of aerosol mixing ratio samples, removal of the data that is 

not in the common period among all datasets, and estimation of PM10 values following 

NASA's recommendations. In the third step, data analysis is performed using descriptive 

statistics, null data processing, outlier analysis, and data visualization. Fourthly, 

experiments are conducted with five different models, including linear regression, 

random forest, regression tree, MLP, and LSTM. Finally, the best model is selected. 

Data creation
Data 

preparation
Data analysis Experiments

Best model 

selection

UJA dataset

NASA 

information

Aggregation

Period in 

common

Variable 

PM10

Descriptive 

statistics

Null data 

and outliers

Data 

visualisation

LR, RF, RT, 

MLP, LSTM

Parameter 

testing

Evaluation 

metrics

 

Figure 1. Modelling steps for Soiling Ratio prediction in PV panels. 

 

2.1 Soiling Ratio (SR) 

In our study, we focus on the attribute SR, which was previously defined as Soiling 

Ratio. SR is a term to describe the ratio of the power output of a soiled solar panel to that 
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of a clean panel (Mussawir Ul, et al., 2023). This ratio provides a measure of the reduction 

in energy output due to soiling, which is an important factor affecting the performance of 

photovoltaic (PV) systems. Mathematically, the SR can be expressed as: 

𝑆𝑅 =
𝑍𝑠𝑜𝑖𝑙𝑒𝑑

𝑍𝑐𝑙𝑒𝑎𝑛
 (1) 

Where 𝑍𝑠𝑜𝑖𝑙𝑒𝑑 is the power output of a soiled PV panel, and 𝑍𝑐𝑙𝑒𝑎𝑛 is the power output 

of a clean panel. The SR is typically expressed as a percentage and is used to assess the 

extent of soiling on a panel. The higher the value of SR, the greater the reduction in power 

output due to soiling. In other words, the SR value ranges from 1 (no soiling and no 

losses) to 0 (no energy output just because of soiling). 

2.2 Dataset 

This section is devoted to performing an analysis of the features of the database 

employed in this research.  

Two complementary sources were utilised. The first one was provided by the «Centre 

in Advanced Studies on Earth, Energy and Environmental Sciences» (CEACTEMA) 

from the University of Jaén (UJA). These were measurements taken by a soiling 

monitoring system provided by Atonometrics and installed on the roof of a UJA’s 

building. The second dataset was obtained from the NASA’s project MERRA-2. The 

project combines several databases of information provided by their satellites, such as 

environmental, atmospheric data and other spatial observations related to atmospheric 

pollution, e.g., the interaction between aerosols and other physical processes in the 

climatic system (Bosilovich, Lucchesi & Suarez, 2015). In this study, we utilised three 

MERRA-2 databases: 1) M2T1NXFLX: Meteorological (Office, 2017); 2) 

M2T1NXAER: Aerosol diagnosis (Office, 2015b); 3) M2I3NVAER: Aerosol mixing 

ratio (Office, 2015a). As an illustrative example as to how finally the database is made 

up of, see Figure 2.  

Atonometrics

Final database

M2T1NXFLX

M2T1NXAER

M2I3NVAER

 

Figure 2. Composition of the final database used in this research.  

The final database contains 762 rows and 24 columns indexed by date. It gathers 

information regarding the daily average soiling level and the environmental and 

meteorological factors for the period between March 1st 2019 and March 31st 2021. A 

description of the dataset is detailed in the following Table 1. The soiling level is 

expressed through the soiling ratio (RT), a common metric in PV studies, employed to 

express the fraction of energy not affected by soiling. It is calculated as a ratio between 

the actual energy output of a system and the energy output that the same system would 

have in clean conditions. Therefore, its value ranges from 1 (no soiling and no losses) to 

0 (no energy output because of soiling).  
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Table 1. Description of the columns of the employed database. 

Name Datatype Description Source 

Index date Measurement date, All 

SR float Soiling Ratio of the PV panel, Atonometrics  

T float Temperature at 2 meters above ground. Kelvin (K), M2T1NXFLX 

RH float Relative humidity at 2 meters above ground. Percentage (%), M2T1NXFLX 

P float Atmospheric pressure at ground level. Hectopascals (hPa). M2T1NXFLX 

WS float Wind speed at 10 meters above ground. Meters per second (m/s). M2T1NXFLX 

WD float Wind direction at 10 meters above ground. Degrees (º). 0º is North, 

90º East, 180º South and 270 West). 

M2T1NXFLX 

R float Rainfall or precipitation in mm. Kilograms per square meter 

(kg/m2). 

M2T1NXFLX 

SWI float Short-wave irradiation. Watt hour per square meter (Wh/m2). M2T1NXFLX 

DUSMASS25 float Dust Surface Mass Concentration - PM 2.5 M2T1NXAER 

AIRDENS float air density M2I3NVAER 

BCPHILIC float Hydrophilic Black Carbon M2I3NVAER 

BCPHOBIC float Hydrophobic Black Carbon M2I3NVAER 

DU001 float Dust Mixing Ratio (bin 001) M2I3NVAER 

DU002 float Dust Mixing Ratio (bin 002) M2I3NVAER 

DU003 float Dust Mixing Ratio (bin 003) M2I3NVAER 

DU004 float Dust Mixing Ratio (bin 004) M2I3NVAER 

OCPHILIC float Hydrophilic Organic Carbon (Particulate Matter) M2I3NVAER 

OCPHOBIC float Hydrophobic Organic Carbon (Particulate Matter) M2I3NVAER 

SO4 float Sulphate aerosol M2I3NVAER 

SS001 float Sea Salt Mixing Ratio (bin 001) M2I3NVAER 

SS002 float Sea Salt Mixing Ratio (bin 002) M2I3NVAER 

SS003 float Sea Salt Mixing Ratio (bin 003) M2I3NVAER 

SS004 float Sea Salt Mixing Ratio (bin 004) M2I3NVAER 

PM10 float Aerosol particles of between 2.5 and 10 micrometres diameter, 

directly related to atmospheric pollution. 

New variable 

2.3 Data preparation 

After knowing the origin of the data, now it is time to prepare the dataset. In order to 

unify the different sources, we employed the date according to the measurement of each 

original database.  

The aerosol diagnosis database presented samples on an hourly basis, whereas the 

aerosol mixing ratio recorded samples every three hours. Consequently, data aggregation 

was needed and the daily mean of the obtained values was calculated. Then the period in 

common among all the datasets was kept and the rest of the data was removed. As we 

mentioned before, it remained data from March 2019 to March 2021.  

Following NASA’s recommendations, it was also included the last variable of Table 

1, PM10 whose value was estimated following equation (2). PM10 refers to particulate 

matter that is 10 μm or smaller in diameter and comes from a variety of sources such as 

dust, dirt and vehicle emissions (de Emisiones, 2015). 

𝑃𝑀10 =  (1.375 ∙ 𝑆𝑂4 +  𝐵𝐶𝑝ℎ𝑜𝑏𝑖𝑐 +  𝐵𝐶𝑝ℎ𝑖𝑙𝑖𝑐 +  𝑂𝐶𝑝ℎ𝑜𝑏𝑖𝑐 +  𝑂𝐶𝑝ℎ𝑖𝑙𝑖𝑐 
+  𝐷𝑈001 +  𝐷𝑈002 +  𝐷𝑈003 +  0.74 ∙ 𝐷𝑈004 +  𝑆𝑆01 
+  𝑆𝑆002 +  𝑆𝑆003 +  𝑆𝑆004) ∙ 𝐴𝐼𝑅𝐷𝐸𝑁𝑆 

(2) 

This variable is also used in some mathematical models in the literature. Eventually, 

in this study, we will make use of it to compare both performances.  

2.4 Data analysis 

Data analysis is the process of systematically examining and interpreting data in order 

to extract useful information, draw conclusions or even support decision-making. It 
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involves a wide range of techniques, including descriptive statistics, visualization and 

statistical modelling to get insights from data. In this section, we will employ some of 

these methods so as to turn raw data into meaningful information that can be used to 

improve the performance of our subsequent predictive models.  

The workflow followed in this research can be summarised as illustrated in Figure 3. 

The first step involves calculating several measures that summarise and describe the main 

characteristics of our data. It provides an overall understanding of the data. The second 

stage consists in identifying and handling missing or invalid data. Since hull data can 

have a significant impact on the analysis, it is important to identify and address it before 

proceeding to the subsequent stages. Thirdly, any unusual or extreme observations that 

may influence the analysis are identified. Finally, various tools such as plots and charts 

are used to visually represent the data and its features. It may help to identify patterns or 

trends that might not be immediately apparent from the descriptive statistics. All in all, 

these four stages are key to ensuring that the data is cleaned and properly treated in order 

to arrive at valid conclusions.  

Descriptive 

statistics
Null data Outliers Visualisation

 

Figure 3. Data analysis workflow followed. 

Table 2 provides summary statistics for our SR variable. The number of observations 

in the dataset is 762. Overall, the data appears to have a mean of 0.9796, which means 

that on average, the observations are close to 0.98. The standard deviation of 0.0486 

suggests that the data is relatively consistent, with most values falling within a range of 

about 0.03 of the mean (0.98 ± 0.03). Interestingly, the largest observation is 1.083, even 

though the range in which SR should differ between [0, 1]. This could be due to a variety 

of reasons, such as measurement errors or errors in the data processing. It is also important 

to note that in some cases, the variable of interest may have a maximum of 1 under certain 

conditions, but the data may include values greater than 1 that are not representative of 

the variable’s typical range. According to the UJA’s experts, these values are possible 

and may be attributed to factors such as variations in the used materials or slight 

differences in the solar resource between clean and dirty equipment. On the other hand, 

only 38 rows were missing in the SR column. 

Table 2. Summary statistics for the SR variable.  

Variable Value 

count 762 

mean 0.9796 

std 0.0486 

min 0.5950 

Q1 0.9770 

Q2 0.9880 

Q3 0.9990 

max 1.0830 
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Null 38 

In order to deal with outliers, we implemented the Z-score method. A statistical 

technique used as a measure of how many standard deviations observations are from the 

mean of the data. In our case, 20 rows were identified as outliers using the Z-score 

method. These observations were then removed from the dataset for further analysis. It is 

important to note that the decision of removing these outliers was based on expert 

knowledge and a thorough evaluation of the data. The outliers were identified as potential 

measurement errors and therefore were deemed unreliable for the analysis.   

After cleaning the dataset, a slight change in the data distribution was observed. This 

can be seen in Figure 4. According to researchers at the UJA, the observations outside of 

the quartiles are not outliers, but correct measurements that may appear unusual as a 

consequence of the cumulative nature of the dirt level measurement.  

 

Figure 4. Boxplot representation of the SR quartiles. 

Finally, we can see the distribution of the data after the cleaning process in Figure 5. 

As can be observed, the majority of the values are located within the expected range, with 

a slight variation in the distribution pattern. It is noteworthy that the figure illustrates a 

Gaussian distribution, i.e., the majority of the observations are located around the mean, 

with fewer observations as we move away from it.  

 

Figure 5. Data distribution of the SR attribute.  

3 EXPERIMENTS 

Having preprocessed the time series data provided by the UJA; we conducted a series 

of experiments consisting of launching different regression algorithms in order to predict 

SR.  
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The machine learning algorithms were implemented in Python 3 for its versatility and 

access to packages and functions. We used the Scikit-learn and Keras libraries to adapt 

the LR, DT, RF, MLP and LSTM models. To ensure the effectiveness of the predictors, 

we divided the dataset into training (70%), validation (20%) and testing (10%) portions. 

For each algorithm, different hyperparameters were tested to evaluate the optimal 

combination for the input data. The validation set was used to tune the hyperparameters 

and avoid overfitting. 

Additionally, in order to compare our models with currently employed approaches, we 

chose two recent solutions: Coello and Byle (Coello & Boyle, 2019), and You (You et 

al., 2018). The first authors, propose to compute SR based on the following formula: 

𝑆𝑅 = 1 − 0.3437 erf(0.17𝜔0.8473) (3) 

Where 𝜔 is the total mass accumulation in g-m-2. 

On the other hand, You utilised the total mass accumulation 𝜔 and a waste of energy 

efficiency according to the next equation: 

𝑆𝑅 = 0.0139𝜔 (4) 

The computation of 𝜔 was using the deposition velocity 𝑉𝑑, the atmospheric aerosol 

concentration 𝐶 and the duration in days without rain 𝐷: 

𝜔 = 𝑉𝑑 ∙ 𝐶 ∙ 𝐷 ∙ 10−6 (5) 

Both authors assume that 𝑆𝑅 = 1 when it is registered a rainfall above 0.3mm. In other 

words, the module is completely clean. 

These mathematical models were computed using 7 attributes: temperature, relative 

humidity, pressure, wind speed, short wave irradiation, air density and rainfall (see Table 

1).  

The metrics selected to measure the models’ performance in this study were RMSE, 

MAE, MAPE and R2. The Root Mean Square Error (RMSE) measures the average 

difference between the predicted and actual values. RMSE is the square root of the mean 

of squared differences between the estimated and actual values as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1
 (6) 

The Mean Absolute Error (MAE) is used to measure the average magnitude of the 

errors in a set of predictions, without considering their direction. It measures the absolute 

differences between predicted and actual values: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1
 (7) 

The Mean Absolute Percentage Error (MAPE) measures the average magnitude of the 

errors as a percentage of actual values. It has the following equation:  

𝑀𝐴𝑃𝐸 =
100

𝑛
∑

|𝑦𝑖 − 𝑦̂𝑖|

𝑦𝑖

𝑛

𝑖=1
 (8) 

Lastly, the Coefficient of Determination R2, a statistical metric that explains how well 

a model fits the observed data. R2 measures how close the data are to the fitted regression 
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line. Its value ranges from 0 to 1, where 1 indicates a perfect fit. It can be defined using 

the following formula: 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 (9) 

Where 𝑦𝑖 is the actual value, 𝑦̂𝑖 is the estimation, n is the number of samples, 𝑦̅ is the 

mean of the observed values. 

Finally, given the large number of variables in our dataset, we propose the 

implementation of a feature selection method to identify and select a subset of the most 

relevant attributes. We propose three solutions: the Boruta algorithm (Kursa, Jankowski 

& Rudnicki, 2010), the proposal of Coello&Boyle and You, both of them with a similar 

method, and finally, in order to check whether the sliding window influence the weather 

parameters, only the historical values will be used according to the window used. 

During the experimentation phase, we tested the different models with various 

hyperparameters in order to find the optimal combination for our input data. Specifically, 

we conducted the following experiments: for Boruta, we set the maximum depth to 5, 

allowed the number of estimators to be automatic, and limited the maximum number of 

iterations to 100. For RF and RT, we varied the maximum depth from 5 to 30 and tested 

with up to 100 estimators. Finally, for MLP and LSTM, we tested various 

hyperparameters, such as the number of neurons, patience, early stopping, number of 

layers, activation function, and optimizer. Due to space limitations, the results section 

only includes a selection of these experiments.  

4 RESULTS 

First and foremost, we compare the performance obtained by the previous approaches 

of Coello & Boyle, and You, it can be seen in the following Table 3.  

Table 3. Results of the mathematical models. C&B is the Coello and Boyle model. Y is the You proposal. On-site and 

satellite, are the kind of data employed to fit the models. 

Model RMSE MAE MAPE R2 

C&B on-site 0.016876 0.011128 1.136918 0.341808 

C&B satellite 0.038538 0.023643 2.420922 0.205066 

Y on-site 0.019935 0.013792 1.418861 0.347129 

Y satellite 0.030156 0.017360 1.777113 0.185304 

From this table, we can observe that the “C&B on-site” model has the lowest RMSE 

and MAE among all models, indicating that it has the smallest average error in prediction. 

It has a relatively low MAPE and a moderate R2 value, indicating that the model has a 

moderately accurate prediction and is able to explain 34.18% of the variability of the data. 

On the other hand, the experiment “Y satellite” has the highest RMSE and MAE among 

all models, meaning that is has the largest prediction errors. The model also has a 

moderate MAPE and a low R2 coefficient, it shows a less accurate prediction and is only 

able to explain 18.53% of the data. Based on the results in the table, the Coello and Boyle 

model using the on-site data seems to have the best performance in terms of prediction 

accuracy and explaining the variability of the data.  
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Based on our experiments, we present the performance metrics obtained by using 

different machine learning models. Table 4 gathers the results obtained using the LR 

algorithm. The second column in the table indicates the input data used, which was 

selected using feature selection algorithms: 1) Boruta, 2) C&B and You, 3) sliding 

window. Additionally, to better visualise and analyse the results, we created Figure 6, 

where each line represents the input according to the window size. Each metric has been 

displayed separately to clearly depict the range of their values. 

Table 4. Results of LR. 

# Input Window RMSE MAE MAPE R² 

1 1 1 0.000078 0.000037 0.003788 0.999971 

2 1 2 0.000201 0.000073 0.007447 0.999804 

3 1 3 0.000260 0.000086 0.008768 0.999672 

4 1 5 0.000747 0.000532 0.053962 0.997299 

5 1 7 0.000997 0.000771 0.078187 0.995188 

6 1 10 0.001541 0.000686 0.069519 0.988501 

7 1 14 0.003456 0.001081 0.109789 0.942148 

8 2 1 0.000073 0.000031 0.003113 0.999974 

9 2 2 0.000195 0.000064 0.006527 0.999816 

10 2 3 0.000255 0.000079 0.007992 0.999685 

11 2 5 0.000908 0.000548 0.055646 0.996010 

12 2 7 0.001062 0.000688 0.069770 0.994533 

13 2 10 0.001602 0.000698 0.070858 0.987573 

14 2 14 0.003397 0.000987 0.100253 0.944096 

15 3 1 0.000068 0.000013 0.001361 0.999977 

16 3 2 0.000192 0.000034 0.003427 0.999822 

17 3 3 0.000253 0.000045 0.004561 0.999689 

18 3 5 0.000577 0.000289 0.029185 0.998389 

19 3 7 0.000737 0.000397 0.040180 0.997367 

20 3 10 0.001500 0.000534 0.054144 0.989098 

21 3 14 0.003378 0.000946 0.096068 0.944734 

 

 

    
(a) (b) (c) (d) 

Figure 6. Representation of the performance metrics for the LR model according to the window size. (a) Root Mean 

Squared Error (RMSE), (b) Mean Absolute Error (MAE), (c) Mean Absolute Percentage Error (MAPE), and (d) 

Coefficient of Determination (𝑅2). 
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As we can see from Table 4, as the number of input features increases, the performance 

of the model improves as indicated by lower RMSE, MAE and MAPE values. Moreover, 

as the size of the sliding window increases, the performance of the model decreases as 

pointed by higher RMSE, MAE and MAPE metrics. This suggests that the model might 

be overfitting for larger windows. Finally, it can be seen that the models have a good 

performance for all cases as the R2 values are close to 1. 

Table 5. Results of the RT method. 

# Input Window 
Max 

depth 
RMSE MAE MAPE R² 

1 1 1 7 0.00195 0.00024 0.02331 0.98168 

2 1 1 10 0.00200 0.00028 0.02752 0.98064 

3 1 1 20 0.00194 0.00022 0.02135 0.98185 
4 1 1 25 0.00197 0.00026 0.02512 0.98125 

5 1 1 30 0.00126 0.00021 0.02085 0.99237 

6 1 2 7 0.00198 0.00029 0.02867 0.98096 
7 1 2 10 0.00124 0.00020 0.01944 0.99260 

8 1 2 20 0.00133 0.00021 0.02087 0.99150 

9 1 2 25 0.00196 0.00025 0.02481 0.98149 
10 1 2 30 0.00115 0.00015 0.01442 0.99356 

11 1 3 7 0.00198 0.00028 0.02760 0.98108 

12 1 3 10 0.00200 0.00028 0.02741 0.98070 
13 1 3 20 0.00200 0.00029 0.02852 0.98059 

14 1 3 25 0.00123 0.00020 0.02000 0.99265 

15 1 3 30 0.00129 0.00023 0.02268 0.99193 
16 1 5 7 0.00276 0.00061 0.06148 0.96311 

17 1 5 10 0.00308 0.00056 0.05620 0.95420 

18 1 5 20 0.00304 0.00055 0.05459 0.95527 
19 1 5 25 0.00303 0.00057 0.05705 0.95550 

20 1 5 30 0.00268 0.00051 0.05178 0.96526 

21 2 1 7 0.00118 0.00018 0.01808 0.99330 
22 2 1 10 0.00117 0.00016 0.01585 0.99343 

23 2 1 20 0.00116 0.00016 0.01628 0.99353 

24 2 1 25 0.00119 0.00019 0.01910 0.99310 
25 2 1 30 0.00187 0.00021 0.02098 0.98316 

26 2 2 7 0.00118 0.00019 0.01886 0.99322 

27 2 2 10 0.00187 0.00023 0.02305 0.98307 
28 2 2 20 0.00119 0.00019 0.01909 0.99314 

29 2 2 25 0.00133 0.00022 0.02153 0.99149 

30 2 2 30 0.00121 0.00020 0.02000 0.99297 
31 2 3 7 0.00120 0.00020 0.01953 0.99309 

32 2 3 10 0.00187 0.00024 0.02371 0.98301 

33 2 3 20 0.00118 0.00018 0.01740 0.99330 
34 2 3 25 0.00196 0.00026 0.02523 0.98139 

35 2 3 30 0.00119 0.00018 0.01812 0.99314 

36 2 5 7 0.00318 0.00076 0.07601 0.95111 
37 2 5 10 0.00277 0.00054 0.05427 0.96288 

38 2 5 20 0.00246 0.00046 0.04595 0.97076 

39 2 5 25 0.00240 0.00045 0.04537 0.97221 
40 2 5 30 0.00313 0.00057 0.05661 0.95269 

41 3 1 7 0.00113 0.00014 0.01359 0.99386 

42 3 1 10 0.00112 0.00011 0.01117 0.99396 
43 3 1 20 0.00112 0.00011 0.01117 0.99396 

44 3 1 25 0.00112 0.00011 0.01117 0.99396 

45 3 1 30 0.00112 0.00011 0.01117 0.99396 
46 3 2 7 0.00116 0.00017 0.01660 0.99346 

47 3 2 10 0.00129 0.00017 0.01704 0.99189 
48 3 2 20 0.00129 0.00017 0.01633 0.99193 

49 3 2 25 0.00113 0.00013 0.01269 0.99380 

50 3 2 30 0.00128 0.00016 0.01584 0.99213 
51 3 3 7 0.00195 0.00025 0.02445 0.98158 

52 3 3 10 0.00195 0.00023 0.02265 0.98164 

53 3 3 20 0.00115 0.00015 0.01506 0.99358 
54 3 3 25 0.00131 0.00018 0.01776 0.99174 

55 3 3 30 0.00195 0.00023 0.02219 0.98166 

56 3 5 7 0.00206 0.00040 0.03939 0.97937 
57 3 5 10 0.00145 0.00028 0.02746 0.98989 

58 3 5 20 0.00202 0.00030 0.02943 0.98028 

59 3 5 25 0.00201 0.00030 0.02928 0.98040 
60 3 5 30 0.00202 0.00030 0.02945 0.98027 
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(a) (b) (c) (d) 

Figure 7. Performance metrics of the RT algorithm according to the depth of the trees with the best input and 

window. a) Root Mean Squared Error (RMSE), b) Mean Absolute Error (MAE), c) Mean Absolute Percentage Error 

(MAPE), and d) Coefficient of Determination (R2). 

In the RT method, we tested the effect of modifying the number of look-back days 

from 1 to 5 since bigger values produced high errors. We also experimented with the 

maximum depth of the trees (see Figure 7). The results are summarised in Table 5. The 

best performance was observed when the input was 1 (using the feature obtained by the 

Boruta algorithm), the window size was 1, and the maximum tree depth was 30. This 

resulted in the lowest RMSE (0.00126), low MAE and MAPE (0.00021 and 0.02085, 

respectively), and high R2 (0.99237). Generally, the performance improved as the 

window size decreased and the maximum tree depth increased until a point (10) where 

further increases in tree depth did not result in significant improvement in performance. 

However, there were some exceptions to this trend, such as when the input was 2 and the 

window size was 5, which resulted in high errors and low R2. These trends are highlighted 

in Figure 7, whose graph highlights the effect of the depth of the trees on the model's 

performance.  

Table 6. Results of the RF method. 

# Input Window 
Max 

depth 
RMSE MAE MAPE R² 

1 1 1 7 0.00102 0.00018 0.01841 0.99500 

2 1 1 10 0.00087 0.00017 0.01688 0.99637 

3 1 1 20 0.00089 0.00017 0.01698 0.99618 

4 1 1 25 0.00096 0.00018 0.01792 0.99554 

5 1 1 30 0.00090 0.00018 0.01807 0.99609 

6 1 2 7 0.00115 0.00022 0.02178 0.99358 

7 1 2 10 0.00099 0.00018 0.01873 0.99530 

8 1 2 20 0.00084 0.00016 0.01631 0.99659 

9 1 2 25 0.00090 0.00018 0.01781 0.99606 

10 1 2 30 0.00089 0.00018 0.01774 0.99618 

11 1 3 7 0.00100 0.00019 0.01970 0.99518 

12 1 3 10 0.00099 0.00020 0.02020 0.99525 

13 1 3 20 0.00112 0.00021 0.02146 0.99392 

14 1 3 25 0.00089 0.00021 0.02089 0.99613 

15 1 3 30 0.00095 0.00019 0.01970 0.99562 

16 1 5 7 0.00122 0.00044 0.04435 0.99285 

17 1 5 10 0.00139 0.00051 0.05120 0.99068 

18 1 5 20 0.00135 0.00054 0.05434 0.99121 

19 1 5 25 0.00125 0.00046 0.04620 0.99240 

20 1 5 30 0.00124 0.00051 0.05141 0.99261 

21 2 1 7 0.00119 0.00022 0.02233 0.99318 

22 2 1 10 0.00143 0.00024 0.02446 0.99014 

23 2 1 20 0.00095 0.00017 0.01770 0.99562 

24 2 1 25 0.00102 0.00018 0.01892 0.99495 

25 2 1 30 0.00118 0.00022 0.02245 0.99332 

26 2 2 7 0.00120 0.00023 0.02372 0.99304 

27 2 2 10 0.00117 0.00021 0.02185 0.99339 

28 2 2 20 0.00114 0.00023 0.02338 0.99369 

29 2 2 25 0.00145 0.00026 0.02681 0.98980 

30 2 2 30 0.00104 0.00021 0.02109 0.99478 

31 2 3 7 0.00107 0.00022 0.02259 0.99443 
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32 2 3 10 0.00138 0.00025 0.02620 0.99080 

33 2 3 20 0.00112 0.00022 0.02257 0.99391 

34 2 3 25 0.00110 0.00021 0.02168 0.99414 

35 2 3 30 0.00108 0.00020 0.02027 0.99433 

36 2 5 7 0.00214 0.00065 0.06622 0.97784 

37 2 5 10 0.00199 0.00052 0.05331 0.98084 

38 2 5 20 0.00206 0.00056 0.05722 0.97942 

39 2 5 25 0.00214 0.00059 0.06013 0.97789 

40 2 5 30 0.00207 0.00059 0.05987 0.97936 

41 3 1 7 0.00064 0.00012 0.01152 0.99801 

42 3 1 10 0.00062 0.00010 0.01015 0.99814 

43 3 1 20 0.00062 0.00010 0.01018 0.99815 

44 3 1 25 0.00064 0.00010 0.01026 0.99801 

45 3 1 30 0.00058 0.00010 0.00976 0.99839 

46 3 2 7 0.00073 0.00014 0.01439 0.99739 

47 3 2 10 0.00072 0.00013 0.01272 0.99747 

48 3 2 20 0.00061 0.00012 0.01186 0.99818 

49 3 2 25 0.00073 0.00013 0.01353 0.99745 

50 3 2 30 0.00064 0.00012 0.01246 0.99802 

51 3 3 7 0.00078 0.00016 0.01641 0.99709 

52 3 3 10 0.00071 0.00015 0.01486 0.99759 

53 3 3 20 0.00060 0.00012 0.01258 0.99823 

54 3 3 25 0.00069 0.00014 0.01422 0.99773 

55 3 3 30 0.00067 0.00014 0.01421 0.99780 

56 3 5 7 0.00101 0.00036 0.03650 0.99510 

57 3 5 10 0.00115 0.00035 0.03557 0.99360 

58 3 5 20 0.00105 0.00033 0.03297 0.99464 

59 3 5 25 0.00101 0.00032 0.03266 0.99509 

60 3 5 30 0.00104 0.00032 0.03247 0.99477 

 

    
(a) (b) (c) (d) 

Figure 8. Performance metrics of the RF algorithm according to the depth of the trees with the best input and 

window. a) Root Mean Squared Error (RMSE), b) Mean Absolute Error (MAE), c) Mean Absolute Percentage Error 

(MAPE), and d) Coefficient of Determination (R2). 

 

Table 6 presents the results obtained with the RF algorithm. Similar to the RT method, 

we tested several window sizes and max depths for our models. Figure 8 illustrates the 

performance of the RT method according to the later parameter with the best input and 

window. Our experiments showed that as the maximum tree depth increases, the RMSE 

generally decreases, but the MAE and MAPE mostly increase. This suggests that the 

models become more complex and may overfit to the training data as the maximum tree 

depth increases. The R2 coefficients indicate that the models have high explanatory power 

with values ranging from 0.98 to 0.99, suggesting a strong linear relationship between the 

predicted and actual values. We observed that the choice of window size has a minimal 

effect on the model performance metrics across different window sizes. Furthermore, it 

appears that the different input datasets have a significant impact on the model 

performance, with input 3 consistently outperforming inputs 1 and 2.  

Due to space limitations, we omitted some experiments in the MLP model. For 

validation purposes, we utilized 10% of the data and employed the early stopping 

technique, allowing a maximum of three epochs before termination if there was no 
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improvement. Initially, we evaluated the performance of multiple solvers, including lbfgs, 

sgd and adam, in our MLP model. Subsequently, we investigated the effect of various 

activation functions, including identity, logistic, tanh and relu, on the model’s 

performance. Our results indicated substantial disparities among the parameters 

evaluated. We determined that the optimal configuration was the lbfgs solver with the 

identity activation function. The MLP model was tested by varying the number of neurons 

and hidden layers. The number of neurons was tested up to 90, and the number of hidden 

layers was tested up to 3. The performance of the MLP model was evaluated for each 

configuration of neurons and hidden layers. The results of the experiments showed that 

increasing the number of neurons and hidden layers did not always result in an 

improvement in the performance of the model. Thus, we present the remaining MLP 

experiments in Table 7. We found the same scenario, we observed that increasing the 

window size led to an increase in errors and a decrease in R², which affected the model's 

performance. As shown in Figure 9, smaller window sizes tended to produce better 

accuracy. Additionally, we found that the third input had the best overall performance, 

suggesting it may be the most suitable input for MLP models. Although the results are 

very good, there may be a concern about overfitting. However, we checked for overfitting 

by using an unseen test set to evaluate the generalization ability of all the model. 

Additionally, when comparing the training and testing scores, the testing values were very 

close, and even worse in some cases, indicating that the model was not overfitted. 

Table 7. Results of the MLP model. 

# Input Window RMSE MAE MAPE R² 

1 1 1 0.000078 0.000036 0.003712 0.999970 

2 1 2 0.000202 0.000075 0.007656 0.999800 

3 1 3 0.000259 0.000082 0.008307 0.999680 

4 1 5 0.000747 0.000532 0.053966 0.997300 

5 2 1 0.000073 0.000031 0.003119 0.999970 

6 2 2 0.000195 0.000064 0.006507 0.999820 

7 2 3 0.000255 0.000079 0.007996 0.999690 

8 2 5 0.000908 0.000548 0.055643 0.996010 

9 3 1 0.000068 0.000013 0.001365 0.999980 

10 3 2 0.000192 0.000034 0.003427 0.999820 

11 3 3 0.000253 0.000045 0.004561 0.999690 

12 3 5 0.000577 0.000289 0.029185 0.998390 

 

 

    
(a) (b) (c) (d) 
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Figure 9. Representation of the performance metrics for the MLP model according to the window size. (a) Root Mean 

Squared Error (RMSE), (b) Mean Absolute Error (MAE), (c) Mean Absolute Percentage Error (MAPE), and (d) 

Coefficient of Determination (𝑅2). 

In training the LSTM model, we evaluated various parameters to determine the optimal 

configuration. We experimented with three activation functions: tanh, sigmoid and 

rectified linear unit (ReLU). We also tested network configurations, ranging from 3 to 32 

neurons and 1 to 3 layers. The final configuration was a single-layer network with 10 

neurons and the sigmoid activation function, optimized using the Adam optimizer. Table 

8 shows the errors obtained. Based on these results, it is difficult to assess the overall 

performance of the models. Unlike previous models, there is no clear pattern or trend 

observed in the metrics regarding the input or window size, as depicted in Figure 10. As 

the window size increases, the errors seem to worsen. The values of these metrics vary 

considerable for different combinations of input and window size, with no discernible 

relationship between them.  

Table 8. Results of the LSTM model. 

# Input Window RMSE MAE MAPE R² 

1 1 1 0.012539 0.006720 0.681561 0.238563 

2 1 2 0.012919 0.007060 0.714559 0.191617 

3 1 3 0.012632 0.006790 0.687476 0.227121 

4 1 5 0.012864 0.007330 0.742514 0.198478 

5 2 1 0.012248 0.006770 0.685231 0.273423 

6 2 2 0.012680 0.007320 0.741486 0.221268 

7 2 3 0.012316 0.006910 0.700916 0.265375 

8 2 5 0.012502 0.006940 0.702680 0.242983 

9 3 1 0.012434 0.006420 0.649842 0.251161 

10 3 2 0.012462 0.006400 0.647009 0.247875 

11 3 3 0.012457 0.006810 0.689555 0.248409 

12 3 5 0.012620 0.007340 0.743555 0.228660 

 

 

    
(a) (b) (c) (d) 

Figure 10. Representation of the performance metrics for the LSTM model according to the window size. (a) Root 

Mean Squared Error (RMSE), (b) Mean Absolute Error (MAE), (c) Mean Absolute Percentage Error (MAPE), and 

(d) Coefficient of Determination (𝑅2). 

As a summary, the practical application and verification of the best-performing 

prediction model were conducted using the Coello and Boyle on-site model for the LR 

algorithm, with the input data obtained by the Boruta algorithm, a window size of 1, and 

a maximum depth of 30 for the RT method, and input 3 for the RF algorithm. The results 

showed that the Coello and Boyle model using the on-site data had the lowest RMSE and 
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MAE among all models, indicating that it had the smallest average error in prediction. 

The LR algorithm showed that as the number of input features increased, the performance 

of the model improved. The RT method showed that the performance improved as the 

window size decreased and the maximum tree depth increased until a point where further 

increases in tree depth did not result in significant improvement in performance. For the 

RF algorithm, it was observed that the choice of input dataset had a significant impact on 

the model performance, with input 3 consistently outperforming inputs 1 and 2. The 

results of our experiments demonstrate the effectiveness of using machine learning 

methods to accurately forecast soiling on photovoltaic panels, which is essential for 

optimizing energy production and improving the efficiency of solar power systems. 

5 CONCLUSIONS 

Soiling studies have garnered significant attention in recent times due to their crucial 

role in minimising the detrimental effects of solar energy production. In this work, we 

applied machine learning techniques to tackle this problem and achieved promising 

outcomes. To validate our models, we utilised data from both on-site measurements at 

the UJA and satellite observations. Although the UJA location was not considered to have 

high levels of soiling, which makes it difficult for the models to generalize and make 

accurate predictions, we still achieved satisfactory results. The accuracy of soiling models 

is of critical importance in locations like Jaén where the levels of soiling may be relatively 

low. In such environments, the cost of cleaning photovoltaic panels must be carefully 

considered in order to ensure that the benefits outweigh the costs. This study takes an 

important step toward ensuring that that photovoltaic systems in such locations are 

operated in the most efficient and profitable manner possible. Upon evaluating the best 

10 results obtained for each model, we found that the average error was 0.004, which was 

significantly lower compared to the average error of 0.026 obtained from mathematical 

models. Additionally, we determined that the optimal set of variables was Input 3, which 

reduced the error by 0.002 on average.  

In our study, we evaluated five machine learning models to forecast soiling on 

photovoltaic panels. We found that the MLP neural network model had the highest 

accuracy among the tested models, with an average RMSE of 0.00032, MAE of 0.00015, 

MAPE of 0.01545, and R² of 0.99918, indicating a robust solution. Additionally, we 

found that increasing the number of input features generally improved model 

performance for LR, while increasing sliding window size decreased performance. RT 

and RF methods showed improved performance as maximum tree depth increased, but 

higher depth also increased the risk of overfitting. The choice of input data had a 

significant impact on the model performance. Thus, our study demonstrates the 

effectiveness of using machine learning methods to accurately forecast soiling on 

photovoltaic panels. 

As future work, it would be worthwhile to investigate new machine learning models. 

Additionally, the integration of weather forecasts as external input to the developed 

models could be propose in order to enhance their accuracy and generalisation ability. 

This would involve the exploration of novel techniques to incorporate meteorological 

data into the models and assess their performance in the presence of this information. 

Such an approach has the potential to further improve the predictive capabilities of the 

models and could lead to significant advancements in the field of soiling studies. 
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Additionally, we propose the application of edge-based active contour model to find 

object boundaries in our digital images with weak boundaries and/or strong noise. The 

insights from (Ciecholewski, 2016; Ciecholewski, 2017) can aid in analysing the 

relationship between pollution rank and geographic coordinates and identifying nonlinear 

mechanisms affecting pollution levels. The models proposed in (Precup, Duca, Travin & 

Zinicovscaia, 2022) can be used as a reference to develop similar models. Besides, the 

methods proposed in (Verma, Meenpal & Acharya, 2022) may potentially speed up 

prediction and improve scalability of our models for real-world applications. 

Finally, in order to improve the validation process in future studies, we recommend 

providing a link to the methods and datasets used in a publicly accessible repository. This 

would allow for a sound validation process, which is particularly important in neural 

networks and modelling approaches. 
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