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Abstract. In the transition to a sustainable urban model, renewable energy com-
munities where participants act as both producers and consumers have gained
substantial importance. In this context, the main challenge lies in the optimal siz-
ing of energy generation and storage units to achieve a balance between economic
profitability and independence from the conventional grid. In this study, we de-
fine the resource management problem for the initial setup of an energy commu-
nity, optimising the number of solar panels, wind turbines, and battery capacity
per member. Besides, the objective functions considered include the levelized
cost of energy (LCOE), self-sufficiency, and self-consumption, evaluated under
four different interaction models, from full independence to shared battery use.
While metaheuristics are commonly employed in energy management problems,
the increasing variety of algorithms complicates the selection of an effective op-
timisation method. We implemented several multi-objective metaheuristics, in-
cluding Particle Swarm Optimisation, Marine Predators Algorithm, Whale Opti-
misation Algorithm, and Equilibrium Optimiser. Additionally, we introduce the
Political Optimizer, specifically adapted for multi-objective optimisation, which
provides an additional tool for this kind of problems. Results from simulations
demonstrate that the Multi-Objective Equilibrium Optimiser with Archive Evo-
lution Path achieved the lowest LCOE, 0.0736 $/kWh, and the highest self-suffi-
ciency rate, 0.8873, with shared excess energy production. When implementing
shared storage, the best configurations reached an LCOE of 0.0725 $/kWh, a self-
consumption rate of 1.0000 and a self-sufficiency rate of 0.9509. Finally, the
largest emission reductions were also observed with shared storage, and reached
up to 38.1%.
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1 Introduction

The continuous growth of urban areas makes current energy practices increasingly
unsustainable as they are still largely reliant on fossil fuel systems. About 81.5% of the
energy consumed worldwide comes from fossil fuels [1], contributing to greenhouse
gas emissions and climate change. This dependency has negative consequences, includ-
ing environmental pollution that affects public health, and the rising frequency of ex-
treme weather events that threaten urban infrastructure and quality of life [2]. Renewa-
ble energy models are being adopted to mitigate these issues, with global renewable
energy production increasing by over 59% in the past decade [3]. However, renewable
energy production often depends on uncontrollable factors, such as weather variability.
As a consequence, designing and managing local renewable energy communities to
ensure economic viability remains a significant challenge.

Renewable energy communities are groups of citizens, companies, or local entities
collaborating to produce and share energy [4, 5]. They have been proposed as a solution
towards carbon neutrality in urban environments [6, 7]. These communities operate as
microgrids that combine distributed generation and storage resources, and they usually
require an energy management system to optimise resource allocation and energy flow
[8]. As a result, diverse optimisation techniques have been explored in this context,
including linear programming [9], neural networks [10], fuzzy logic [11] and game
theory [12]. Although studies such as [13-15] successfully address self-consumption
and self-sufficiency optimisation, these models can be rigid or problem-specific, be-
cause they limit adaptability to changing production and consumption patterns. As il-
lustrated in [16-18], metaheuristics offer flexibility and can better handle multi-objec-
tive optimisation. Nevertheless, the inherent difficulty remains, in other words, the
problem’s search space is large, objectives often are contradictory, and renewable pro-
duction is highly variable. Metaheuristic methods have been applied successfully in
various other energy-related optimisation problems, including the siting of solar panels
and wind turbines to maximise generation output [19], as well as optimisation in electric
vehicle systems and energy distribution networks [20-22]. Although these studies do
not focus on energy communities directly, they demonstrate the versatility of metaheu-
ristics in solving complex optimisation tasks regarding energy distribution.

In the metaheuristics field, there are many recent algorithms that can potentially
solve complex problems such as the design of energy systems. For example, in [23] the
African Vulture Optimization Algorithm (AVOA) is specifically used to design a Hy-
brid Solar PV/Wind/Hydrogen/Lithium Battery energy system, making it suitable for
optimizing energy configurations in community settings. Moreover, an improved hy-
brid variant, the hybrid aquila optimizer and African vultures optimisation algorithm
[24], has been proposed and tested on 23 classical benchmark functions, the IEEE
CEC2019 test suite and 5 engineering problems, obtaining effective balancing of ex-
ploration and exploitation and opening up new opportunities in the field. Other relevant
novelties include the artificial lemming algorithm [25] which demonstrated superior
results in IEEE CEC2017 and CEC2022 benchmark tests and outperformed 17 other



metaheuristics, and the multi-strategy boosted snow ablation optimizer [26] tested on
six realistic constrained engineering design problems, which proposes an enhanced
search mechanism that integrates strategies like initialization of good point sets, greedy
selection, differential evolution, and reverse lens learning to improve optimization ef-
ficiency.

According to the No Free Lunch theorem, no single optimisation algorithm can con-
sistently outperform others across all problems. As [27] suggests, the future of me-
taheuristics lies in hybridisation and in applying them to real-world problems. In this
context, we propose applying several state-of-the-art multi-objective metaheuristics to
the optimal allocation of renewable production and storage resources in local energy
communities. To do so, we implemented Particle Swarm Optimisation (PSO) [28], Ma-
rine Predators Algorithm (MPA) [29], Whale Optimisation Algorithm (WOA) [30] and
Equilibrium Optimiser (EO) [31]. In addition, we introduce and evaluate a novel multi-
objective adaptation of the Political Optimiser (PO) [32]. Our goal was to exploit the
algorithm’s capacity for dynamic adjustments and adaptability to more effectively ad-
dress the highly variable nature of renewable energy production and demand.

To assess and validate our approach, we designed and simulated a residential re-
newable energy community using data from the Typical Meteorological Year 3
(TMY3) dataset [33]. The optimisation problem considers three objectives reflecting
economic and operational goals: the Levelized Cost of Energy (LCOE), the Self-Con-
sumption Rate (SCR), and the Self-Sufficiency Rate (SSR). Furthermore, four different
energy management scenarios proposed by [34] were analysed in order to capture dif-
ferent energy flow priorities among community members. The metaheuristics were
evaluated using metrics such as spacing, hypervolume and the epsilon indicator.

Our experimental results confirm that applying multi-objective metaheuristics leads
to viable and efficient community designs. Furthermore, our adaptation of the PO also
showed competitive performance compared to existing algorithms, which validates its
potential as an effective tool for real-world problems such as the one at hand. Thus, the
main contributions of this work are:

e Formulation of the optimal sizing of photovoltaic, wind, and storage units in an

urban renewable energy community as a multi-objective optimisation problem.

e Evaluation of three objectives (Levelized Cost of Energy, Self-Consumption
Rate, and Self-Sufficiency Rate) under four energy management scenarios.

e Implementation and comparison of five state-of-the-art multi-objective me-
taheuristics, including a novel adaptation of the Political Optimiser for this con-
text.

e Thorough evaluation of algorithm performance using established quality indi-
cators and analysis of representative energy allocation solutions.

The following sections of this manuscript are organised as follows. In Section 2, we
provide a description of the proposed methodology. It discusses the dataset employed,
the methods implemented, and the metrics utilised in the research. Subsequently, Sec-
tion 3 details the experiments carried out along with the corresponding parameters. The



experimental results are presented in Section 4. Finally, we conclude this research with
Section 5 by defining the conclusions and future work.

2 Methodology

This section presents the methodology used in this study, as depicted in Figure 1. It
consists of several key components. First, we detail the datasets and sources, including
the TMY 3 dataset for meteorological data and load profiles from the Open Energy Data
Initiative. Next, we describe the community simulation model, which includes PV and
wind generation models, a battery storage simulation with a charge/discharge strategy,
and four energy management scenarios. We then formulate the problem by defining
decision variables such as the number of PV panels, wind turbines, and battery capacity,
along with objectives related to the LCOE, SCR and SSR, taking into consideration
pertinent constraints. The next step in our methodology is the metaheuristic optimisa-
tion phase, and finally, we assess the quality of the optimisation results using appropri-
ate metrics for this problem.
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Figure 1. General overview of the proposed methodology.

2.1 Dataset

The data used in this study are divided into two categories: residential load profiles
[33] and meteorological data [35]. The load profile data consist of information about



the electricity consumption of individual households. On the other hand, the meteoro-
logical data include variables such as temperature, humidity, wind speed, and precipi-
tation, recorded hourly from various weather stations. These data are essential for sim-
ulating the community’s energy generation process.

Load profiles represent a building's energy consumption over time. The Open En-
ergy Data Initiative (OEDI) provides simulated load profiles for commercial and resi-
dential buildings at each TMY3 location. These profiles are generated based on the
characteristics of various building prototypes and the climate zone in which they are
located. They represent electricity and gas consumption in kilowatt-hours (kWh) at
hourly intervals, subdivided into categories such as lighting and heating.

In the first place, the load profiles used in this study correspond to three single-family
homes located in Alabama and the neighbouring state of Mississippi. Specifically, these
profiles are associated with the following TMY 3 locations: Birmingham-Shuttlesworth
International Airport, Anniston Regional Airport, and McComb-Pike County Airport.
These locations were chosen to ensure they are within the same climate zone as the
selected meteorological station, but with different consumption patterns, making the
internal interactions characteristic of an energy community necessary. Each participant
in the energy community is assigned one of the load profiles. Besides, this study only
considers the total electricity consumption of the households.

Secondly, the TMY 3 dataset contains weather-related data for hundreds of locations
in the United States over a typical year. This typical year is constructed for each location
using data collected at a weather station at hourly intervals over at least ten years be-
tween 1976 and 2005. TMY3 employs a method that selects individual months from
different years within the data recording period. For example, the first month of each
year is compared, and the month considered most typical according to various criteria
is selected [36]. This process is repeated for all twelve months, which are then concat-
enated to form a complete typical year. Since adjacent months in the typical year may
come from different years, we can find discontinuities between months. We therefore
applied smoothing techniques to address these discontinuities.

TMY3 includes a wide range of weather variables, such as temperature, precipita-
tion, solar radiation, wind speed and direction, humidity and visibility. Among these,
the variables needed to simulate the renewable energy generation of the community are
air temperature (°C), wind speed (m/s) and global horizontal irradiance (W/m?), i.e., the
total amount of solar radiation incident on a horizontal surface during each hourly pe-
riod.

For this study, we selected the meteorological station at Birmingham-Shuttlesworth
International Airport in Alabama which is located at an elevation of 189 meters above
sea level and has geographic coordinates of 33.567° N, 86.750° W. The data recording
period for this location is 24 years.

It is important to take into account that our study utilises synthetic datasets, which,
while standard in many research contexts, may not fully capture the real behavioural
variability of actual communities. The use of synthetic datasets is often imposed by the
challenges associated with obtaining publicly available real data, which is frequently
limited in scope or involves a small number of buildings. However, we would like to
note that the most recent and validated version of the «End-Use Load Profiles for the



U.S. Building Stock» serves as the foundation for our analysis and it is a good choice
since this dataset is based on simulations of approximately 900.000 modelled buildings
[37], both residential and commercial. Although the resulting profiles are synthetic,
they have been extensively calibrated and validated against measured data where avail-
able.

2.2 Problem formulation

For each participant i, three decision variables were defined: 1) the number of pho-
tovoltaic modules (Npy,), 2) the number of wind turbines (Ny,r,) and 3) the battery
capacity in KWh (Cyq,,). For a community of p participants, the problem involves 3p
decision variables, and a solution is represented as:

(NPV1I NWTil Cbatl' NPVZJ NWTzv Cbatzv i NPth NWTp! Cbatp) (1)

Since the community is small-scale, the size of the participants' facilities is subject
to the constraints given by equation (2).

0 < Npy, =50
0 < Nyr, =10 2
0 < Cpar; <25

To determine optimal dimensions for installations in a renewable energy commu-
nity, several factors must be considered. Beyond economic aspects, maximizing the
community’s internal production is crucial due to the intermittent nature of renewable
energy and the need to minimize environmental impacts from the electrical grid.

The objectives to be optimized in the community model adopted in this work are
three: 1) the LCOE as an indicator of the project’s economic feasibility, 2) the SSR and
3) SCR. These metrics are computed based on a one-year simulation of the energy com-
munity.

The first objective, the LCOE, is an economic metric for comparing energy gener-
ation costs over their lifespan, reflecting the average cost per unit of energy, including
construction, operation and maintenance expenses. In this study, LCOE is expressed in
$/kWh and calculated using the next equation.

C.; +C,) CRF(i,N
Lcog = i *;1) @ N) @3)
gen

Where Cy,; is the initial capital cost of the installation, C,, is the operational and
maintenance cost, and E.,, is the energy generated by the installation in one year. CRF
is the capital recovery factor, calculated based on the interest rate i and the project
lifetime (N years):
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(4)

The initial capital cost of the installation depends solely on the total number of pan-
els, turbines, and batteries installed, as well as their individual costs:

P
Cini = Z 1(vai “cpy + Ny, " cwr + Chay; - Chat) (5)
i=

where p is the number of participants in the community, and cpy, ¢y and c,,; are
the cost of a solar panel, a wind turbine and one kWh of battery storage, respectively.

The second and third objective are the SCR and SSR. They can be calculated from
an individual or collective perspective. However, since renewable energy communities
seek to reduce grid reliance, the optimisation metrics we adopted are based on the col-
lective perspective. The SCR is defined as the proportion of energy generated by the
community that is directly consumed within the community, rather than exported to the
electrical grid. Intuitively, smaller installations result in higher self-consumption rates,
as the likelihood of producing excess energy decreases. It is defined as follows:

SCR = Econcom _ Egen - Eexp (6)
Egen Egen

The SSR, on the other hand, represents the percentage of total energy demand met
by the energy generated within the community. A high self-sufficiency rate indicates a
reduced need to import energy from the grid and is typically associated with larger
generation units. Both rates are bounded in the interval [0, 1] and is calculated as fol-
lows:

E Egon — E
SSR = _“eom - 9 %P )
CON¢otal Egen - Eexp + Eimp

Econgym 1S the energy consumed from the community’s production, Ec,,,,, ., 1S the
total energy consumed, Eg., is the total energy generated by the community, E,,,, is
the energy exported to the grid, and E;,,, is the energy imported from the grid. These
energy quantities were considered over a one-year period.

To conclude, we must note that hourly renewable generation was estimated using
established photovoltaic and wind power models parameterized by the TMY 3 meteor-
ological dataset. Photovoltaic production was computed based on irradiance and tem-
perature data, and they account for panel efficiency and surface area, while wind power
generation was derived from wind speed measurements and turbine power curves. Bat-
tery operation was simulated as a simple state-of-charge model, where energy is stored
or discharged depending on production-demand balance, subject to capacity limits and



round-trip efficiency losses. Finally, energy flows within the community were simu-
lated under four management strategies adapted from [34]. In the first scenario, mem-
bers prioritize self-consumption of their own generated energy before sharing or ex-
porting surplus to the grid. The second scenario prioritizes maximizing the commu-
nity’s collective self-consumption; in doing so, it encourages local sharing of extra en-
ergy. The third scenario focuses on reducing reliance on external sources by prioritizing
community self-sufficiency, by using batteries and shared resources to cover demand
internally. The fourth scenario seeks to minimize costs by dynamically deciding be-
tween local consumption and grid exchange based on real-time production, demand and
economic factors. These simulations are the input data required to compute our objec-
tive functions.

2.3 Multi-objective metaheuristics

A metaheuristic is an iterative optimisation method that starts with an initial popu-
lation of solutions and utilises characteristics of the entire population at each iteration
to guide the search in subsequent iterations.

The problem at hand is a multi-objective optimisation problem, where multiple ob-
jective functions are optimised simultaneously. It results in a Pareto set of solutions
rather than a single best solution. For further reference, the basic concepts associated
with this term are defined in [38].

The algorithms implemented in this study were the Multi-Objective PSO (MOPSO),
Multi-Objective MPA (MOMPA), Non-dominated Sorting WOA (NSWOA) and Fast
Convergence Multi-Objective EO with Archive Evolution Path (FC-MOEO/AEP).
These metaheuristics are inspired by different biological and physical processes. In
contrast, the PO, introduced in [32] has its inspiration from politics. Since we recognise
the potential of this unique approach, we also propose an adaptation of this metaheu-
ristic for multi-objective optimisation problems (referred to from now on as MOPO).

Multi-Objective Political Optimiser

The PO draws inspiration from the human-centric process of politics [32]. It models
key phases of democratic systems, including party formation, constituency allocation,
election campaigns, voting and parliamentary affairs. In this context, each solution rep-
resents a candidate for public office, assigned to a specific political party and constitu-
ency, which corresponds to an electoral division. Each constituency is represented by a
single candidate from each political party. The total population size is determined by
the number of parties and areas. This algorithm was selected for this study due to its
ability to capture the dynamics of negotiation and coordination observed in energy com-
munities. In this analogy, political parties can be used to represent community mem-
bers, each controlling a distinct set of resources such as solar generation, wind genera-
tion and batteries. This reflects the presence of diverse stakeholders with individual
objectives, comparable to political actors with their own agendas, who must nonethe-
less cooperate to achieve beneficial collective outcomes. The optimisation process op-
erates on community-wide metrics such as the LCOE, SSR and SCR. Through iterative



negotiation, the algorithm structure emulates the process that is essential for aligning
the interests of all participants in a shared energy system.

In this study, we propose a novel approach by introducing its multi-objective ver-
sion, MOPO. We specifically designed it to tackle the optimisation challenges faced by
energy communities. Unlike the original PO, which requires selecting the best solution
from each party and area, MOPO employs a more sophisticated ranking mechanism.
This mechanism utilises non-dominated sorting and a reference point technique on a
hyperplane [39]. The reason for this is to enhance diversity and efficiency. The pseu-
docode for this algorithm can be found below.

Algorithm 1: MOPO pseudocode

Input: Maximum number of iterations 7', number of parties P, number of areas A, archive

capacity N4, maximum party-switching probability A,,q.
Output: Archive of non-dominated solutions A

N+PxA
Randomly initialize the population X and evaluate it
Update the archive A using non-dominated sorting and reference points
Find the leader of each party and the winner of each area
fort=1to T do
Update A
for i =1to N do

Update X; according to the party leader, area winner and archive

r +— random number between 0 and 1

if » < A then

‘ Swap X; with the worst member of a random party p

end

Evaluate the new solution X;
end
Update the archive A using non-dominated sorting and reference points
Find area winners (who form the parliament) and party leaders
fori=1to Ado

Compute new solution P! from parliament member P

if P, does not dominate P/ then

‘ Replace P; in the population with P’

end

end

end

In our algorithm, each individual in the initial population is linked to a political
party and an area. Leaders are selected from each party through non-dominated sorting,
with a focus on the least dense reference points. Similarly, winners are chosen from
each area, resulting in a set of party leaders and area winners.

During the electoral campaign phase, the positions of individuals are updated based
on their previous election results, the influence of their party leader, and the area win-
ner. In doing so, it is expected that the algorithm explores promising regions more ef-
fectively. Moreover, individuals are encouraged to approach solutions from an archive,
which represents the approximate Pareto set, thereby accelerating convergence.



Following the electoral campaign, a party-switching phase occurs, where individu-
als have the opportunity to replace less successful members of other parties. The objec-
tives of each solution are evaluated, reflecting voter support. New solutions are added
to the archive, and dominated solutions are removed to maintain quality. If the archive
reaches its capacity, a density criterion is applied to eliminate excess solutions, so only
the most relevant candidates remain.

Finally, the winners from each area form a parliament, where members adjust their
positions based on interactions with randomly selected colleagues. This adjustment
adds new positions to the population if they show enhanced performance, which pro-
motes a competitive and dynamic optimisation environment.

Multi-Objective Particle Swarm Optimisation

The MOPSO algorithm [40] is an adaptation of the classic PSO [28] designed for
multi-objective optimization problems. PSO mimics the social behaviour of animal
swarms, where each particle represents a candidate solution that adjusts its movement
based on personal and collective experiences. In each iteration, particles update their
velocities based on inertia, their best-known position, and the global best position found
by the swarm.

MOPSO modifies this approach to handle multiple objectives by replacing the
global best position with one from a non-dominated solution archive, selected randomly
with probabilities influenced by a grid mechanism that splits the objective space into
hypercubes. This promotes exploration of less populated areas. After updating veloci-
ties and positions, a particle’s best position is only updated if the new position domi-
nates the previous one. At the end of each iteration, non-dominated solutions are stored
in the archive, which uses the grid mechanism to remove solutions from crowded re-
gions if it exceeds capacity.

Multi-Objective Marine Predators Algorithm

The third metaheuristic is inspired by the hunting strategies of marine predators and
their interactions with prey, the MPA [29]. It operates on the principle of «survival of
the fittest», where the most promising solutions act as predators guiding the search for
optimal solutions. The algorithm utilises an elite solution selected from a prey matrix,
which represents all potential solutions. To balance exploration and exploitation of the
search space, MPA alternates between Lévy flights and Brownian motion phases.

In the multi-objective version, MOMPA [41], the initial population is a set of ran-
domly generated solutions, with an elite solution chosen from this prey matrix. The
algorithm progresses through a series of iterations. It prioritises exploration in the first
third by allowing prey to move faster than predators using Brownian motion. In the
second third, the first half of the population focuses on exploitation through small
movements inspired by Lévy flights, while the second half continues to explore. As
iterations progress, the influence of the elite position increases. In the final phase, the
predator moves faster than the prey, emphasizing exploitation through Lévy flights.
MOMPA also incorporates a mutation mechanism to modify predator behaviour and
employs a diversity technique to enhance exploration by utilizing reference points on a



hyperplane in the objective space. In doing so, the algorithm provides a well-balanced
selection of elite solutions.

Non-dominated Sorting Whale Optimization Algorithm

The original WOA [30] is a metaheuristic inspired by the hunting strategies of
humpback whales, particularly the bubble-net technique. In this algorithm, solutions
represent the positions of whales, which are updated in each iteration based on various
hunting actions: encircling the prey (the best solution), attacking in a shrinking spiral,
or searching for prey by moving away from other whales.

In NSWOA [42], the position of the fittest whale is determined at the start of each
iteration using a roulette-wheel selection mechanism, where the selection probability is
inversely related to the front number from non-dominated sorting. At each iteration, the
hunting strategy for each whale adjusts parameters, with a specified probability of en-
tering an exploration phase, in which whales move towards randomly chosen targets
rather than the prey. If exploration does not occur, solutions update their positions
through either an encircling phase, moving toward the best solution, or a bubble-net
attack phase, where they approach the best solution in a spiral trajectory. Moreover, an
adaptive parameter guarantees that exploitation becomes more localised as iterations
progress. After evaluating the objective functions of the new solutions, the new popu-
lation is formed by merging previous and newly generated solutions, from which the
best solutions are selected based on non-dominated sorting and crowding distance cri-
teria.

Fast Convergence Multi-Objective Equilibrium Optimiser with Ar-
chive Evolution Path

The last optimisation algorithm we implemented is a multi-objective version of the
EO [31] with an Archive Evolution Path (AEP) mechanism, which utilises the trajec-
tory of non-dominated solutions [43]. EO is inspired by mass balance models and up-
dates the population in each iteration by adjusting the positions of solutions based on
the principles of equilibrium and dynamic states. On the other hand, AEP enhances
convergence toward the Pareto set by generating new candidate solutions based on the
evolution of the archive from the second iteration onward. Besides, it also employs a
diversity technique based on the maximin function.

In the algorithm, solutions obtained from EO and AEP are merged, and their objec-
tive values are calculated to identify non-dominated solutions for the archive. The ar-
chive is sorted using the maximin metric, which measures the diversity of the Pareto
front, favouring solutions in less dense regions of the objective space. If the archive
exceeds its capacity, the solution with the largest maximin value is removed. The pop-
ulation is then reduced to the desired size by selecting solutions with the smallest max-
imin values. After this, new solutions are generated from the population, and the can-
didates are selected from the archive based on a roulette-wheel method that prioritises
those with smaller maximin values. Furthermore, AEP generates new solutions inde-
pendently from the archive, guided by the archive’s centre and its evolution taking into
account recent iterations.



2.4 Performance metrics

In order to evaluate the implemented algorithms, we must define some metrics to
assess their effectiveness. This section defines the four adopted metrics: Maximum
spread, spacing, € indicator, and hypervolume.

The first metric is Maximum Spread (MS) [44]. It measures the extent of the solu-
tion set across the objective space and is defined based on the range of each objective
in the set of m-objective vectors corresponding to the N solutions obtained by an algo-
rithm, A. Larger MS values indicate a greater spread of the obtained Pareto front, so
MS should be maximised. With W and W' representing individual solutions, MS is
defined as follows:

wsw = |37 g ) ®

J

The spacing (SP) metric calculates the variation in distances between solutions. SP
is an indicator of uniformity, taking non-negative values, with smaller values indicating
greater uniformity. A zero SP value corresponds to a set of equidistant solutions, in
terms of the Manhattan distance, in the objective space. Its mathematical formula is:

SP = \/ﬁ Zl:l(d — dist(W;, A\ {VVI.})Z ®)

Where dist(V;, A) represents the Manhattan distance from W to the set A, and d is
the mean of the minimum distances calculated between one solution and all others.

For our problem, we only require only one solution that represents the generation
and storage resources. Therefore, an algorithm with limited exploration capacity could
still obtain the most suitable configuration for installation. As a consequence, domi-
nance relations between solution sets were used to compare our metaheuristics. Given
two sets of objectives, A and B, the € indicator [38] quantifies the dominance relation-
ship between them. It is a binary indicator that represents a pair of values (e,, €y),
which stand for the smallest number that must be added to or multiplied by the objective
set A for it to dominate B.

€,(A,B) = maxmin max (V; — W;
+(A,B) WEB VeA isjsm( J 1)

(10)
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The last metric adopted is the hypervolume (HV) [45] which provides a measure of
the space covered by the obtained Pareto front A, with respect to a reference point R.
Formally, itis defined as the volume of the union of the hyperrectangles with one vertex



at R and the opposite vertex at the point defined by the objective values of a solution,
where X and Y are elements within the set A and the solution space, respectively. §
signifies the solution space itself, which encompasses all possible solutions. Finally,
the symbol A represents the Lebesgue measure.

HV(A) = A(U{Y ESIX<Y< R}> (11)

X€EA

Unlike the € indicator, HV is not binary, making it easier to interpret. However, the
choice of the reference point is complex in the optimisation problem at hand, due to the
lack of knowledge about the true Pareto front. In this case, the reference point for the
hypervolume was calculated using the worst possible value for each objective. Since
the reference point significantly influences the HV calculation, it has been implemented
alongside the epsilon indicator. The use of both indicators can contribute to more in-
formed decision-making, as both perform similarly when used to compare algorithms
[46].

3 Experiments

In this section, we first present an exploratory analysis of the experiments conducted,
followed by a detailed overview of the parameter settings used for each metaheuristic.
The experiments were carried out on an HP Pavilion x360 14-dy1xxx computer using
Python 3.9.

3.1 Exploratory analysis

Before running the optimisation experiments, an exploratory analysis was con-
ducted to better understand the characteristics of our datasets. Table 1 summarises the
key statistics of the economic parameters and technical specifications used in the sim-
ulation model. The skewness and kurtosis coefficients calculated are Fisher’s, which
means that the reference value for a normal distribution is zero.

Table 1. Descriptive statistics of the dataset.

Statistic  Irradiance Temperature Wind speed Load1 Load2 Load3

Unit W/im2 °C m/s kwh kwh kwh
Mean 186.404 16.972 2.943 0.789 1498 1.713
Std. Dev.  263.347 9.097 1.993 0.287 0.642 0.877
Skewness 1.281 -0.406 0.436 0.369 0526 1.439
Kurtosis 0.392 -0.560 0.410 -0.744 -0.310 3.319
Min 0.000 -12.200 0.000 0.328 0.496 0.480

Q1 0.000 10.575 1.500 0564 1.027 1.103




Q2 12.000 18.300 2.600 0.754 1414 1543
Q3 324.000 23.900 4.100 0996 1934 2149
Max 1013.000 35.000 14.400 1.693 3.825 8.007

As shown in Figure 2, all three participants experience increased consumption in
winter and summer, with the winter load being more pronounced for the third partici-
pant. Similarly, two daily spikes are observed at 8:00 AM and 8:00 PM, with the latter
being higher. The lowest consumption occurs during the early morning hours for all
three participants.

The first participant requires less daily energy than the others, with an average
hourly consumption below 1 kWh and little variation throughout the year. Participants
2 and 3 have similar energy needs, except in December, January and February, when
the third participant's consumption is significantly higher.

Energy consumption by menth for Participant 1 Energy consumption by month for Participant 2 Energy consumption by month for Participant 3
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Figure 2. Boxplots of the three load profiles by month and time of the day.

Temperature exhibits a wider range during winter months (see Figure 3). During
July and August, temperatures never fall below 20°C, indicating warm summers both
day and night. Due to the fact that there is no irradiance between 7:00 PM and 4:00
AM, no solar energy production occurs during this time, so it will require reliance on
wind energy or stored energy in batteries. In contrast, wind speed is highly inconsistent,
with numerous outliers observed across most months and hours. This inconsistency
highlights the intermittent nature of wind energy generation and the advantages of com-
bining it with solar energy.
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Figure 3. Boxplots of the variables in the weather dataset by month and time of the day.

3.2 Parameter settings

The optimisation problem we intend to solve has four distinct versions, referred to
as Scenarios 1 to 4. The first scenario represents a model where participants operate
independently. They consume only the energy produced or stored in their own installa-
tions and import energy from the grid, when necessary, with any surplus energy ex-
ported to the grid. In contrast, Scenario 2 introduces internal interactions, which allows
participants to import surplus energy from others if their own generation is insufficient,
while still retaining grid interactions as a last resort. Scenario 3 maintains the same
structure as Scenario 2 but prioritises community interactions over energy storage dur-
ing each time interval. Lastly, Scenario 4 incorporates shared storage systems, that en-
ables participants to charge and discharge the batteries of others after updating their
own storage units.

We applied the five aforementioned algorithms to these versions of the optimisation
problem to compare the results. The algorithms were developed in Python 3.9, and all
experiments were conducted on a laptop equipped with an Intel Core i5-1155G7 pro-
cessor running at 2.50 GHz and 16 GB of RAM. To execute the algorithms, it was
necessary to assign values to the parameters defining the components of the energy
community simulation, including the characteristics and costs of the energy generation
modules. These values are summarised in the next Table 2. Note that maintenance costs
are assumed to be 10% of the initial capital cost.

Table 2. Parameters for the energy community simulation.



Component  Parameter Name Value

Solar energy u Efficiency 0.95
Psre Maximum power under standard conditions 250 W
Gsre Solar irradiance under standard conditions 1,000 W/m?
y Temperature coefficient under standard conditions  -0.0044 V/°C
Tsrc Temperature under standard conditions 25°C
NOCT Nominal operating cell temperature 47.5°C
Gnocr Solar irradiance under NOCT conditions 800 W/m2
Tnocr Temperature under NOCT conditions 20°C
Wind energy hyr Rotor height 20m
h Anemometer height 10m
a Power law exponent 0.142
Batteries c Fraction of available charge 0.271
k Flow rate between tanks 0.38
LCOE Cn Maintenance costs 10%*
i Nominal interest rate 0.05
N Project lifetime 20 years
Cpy Cost per photovoltaic module $170
Cwr Cost per wind turbine $3500
gt Cost per kWh of battery storage $250

The photovoltaic panel and wind turbine models used as references for renewable
energy generation simulation are the Sharp ND-R250A5 and the Bergey BWC Excel
1, respectively.

Since the three objectives are computed using the amounts of energy generated,
imported, and exported, their calculation depends on the parameter values. LCOE is an
objective to be minimised, while SCR and SSR are objectives to be maximised. To
simplify the implementation of experiments and interpreting the results, SCR and SSR
are redefined as negative values. In this way, we will seek to maximise in the optimi-
sation process.

Furthermore, in order to choose the optimal combination of parameters for each
algorithm, including the population size, we followed the next strategy. The selection
criteria were the € and HV indicators. A grid search was conducted twice for each al-
gorithm, refining the parameter values based on the results of the previous search to
increase their granularity. The chosen parameter configurations are listed in Table 3.
The archive size was set to 50, while the population size was 100 for MOPSO,
MOMPA, NSWOA, and FC-MOEQO/AEP. For MOPO, the population size was calcu-
lated as the product of the number of parties and the number of areas, resulting in 80.

Table 3. Metaheuristic parameters.

Metaheuristic  Parameter Name Value
MOPO P Number of parties 8
A Number of areas 10
Amax Maximum party switch rate 0.65
MOPSO w Inertia parameter 0.7
k Number of axis divisions in the grid 7

MOMPA p Step size 1




PFADs FADs probability 0.6

NSWOA b Spiral parameter 0.85
FC-MOEO/AEP a Exploration parameter in EO 2
a Exploitation parameter in EO 0.5
Pe Generation probability in EO 0.75
o Success rate threshold in AEP 0.5
® Parameter for updating o in AEP 15
k Number of stored archives in AEP 4

Since the algorithms differ in their structures, using iterations for comparison is not
ideal in this case. Therefore, we chose a fixed limit of 5.000 objective function evalua-
tions to ensure a fair comparison. Besides, the quality of the obtained solutions is eval-
uated from two perspectives: external indicators and internal feasibility. External eval-
uation involves calculating maximum spread, spacing, epsilon, and hypervolume indi-
cators, while internal assessment focuses on the feasibility of installations based on
LCOE, SCR, and SSR at both individual and collective levels across different scenar-
i0s.

For each of the four scenarios, the evaluation procedure includes executing each
algorithm 30 times, calculating the mean and standard deviation for execution time and
all indicators except epsilon, and computing the epsilon indicator as the mean of values
from the Pareto fronts of paired algorithms.

In this study, the constraints applied were limited to the upper and lower bounds of
the decision variables. The dataset did not contain specific technical or economic limits
such as panel or battery sizing. While it would be possible to introduce assumptions,
for example to prevent one participant from taking a disproportionate share of re-
sources, these restrictions were not implemented directly in order not to bias the out-
comes. Nevertheless, the Pareto front solutions obtained are inherently balanced due to
the optimisation method, which seeks the best compromise between the individual ob-
jective functions.

4 Results and discussion

Once the parameters are set, this section presents the results from applying the five
multi-objective metaheuristics to the optimisation problem across the four scenarios.
The results are presented on two perspectives: the performance of the metaheuristics in
solving the problem and the characteristics of the solutions obtained.

The performance of the algorithms in the four Scenarios was examined using the
quality indicators are presented in Table 4. The € values were calculated as the average
of the € indicators between the Pareto fronts of the evaluated algorithm and those of the
other algorithms. According to the table, the ability of the algorithms to find a Pareto
front that spans a wide region of the objective space has been quantified using the max-
imum spread indicator. MOMPA stands out in this regard, while MOPSO sometimes
struggles to find solutions with extreme values for individual objectives, as shown by
its MS values. The uniformity of the solutions, measured by SP, is higher for MOPSO



and MOPO. NSWOA demonstrated a more limited capacity to explore the interior re-
gions of the space, which results in gaps that manifest as high spacing values.

The solutions obtained by FC-MOEO/AEP require smaller translations to dominate
the Pareto fronts of other algorithms, as indicated by both additive and multiplicative e
indicators. MOPSO ranks second in this regard. While HV can compare dominance
relationships, its reliance on an estimated nadir point makes it less reliable as a sole
criterion. In this context, MOPSO performs well, followed by MOMPA and FC-
MOEO/AEP. The differences in dominance relationships are more evident in the first
three scenarios, likely due to closer objective values in Scenario 4. Pairwise epsilon
indicators show that FC-MOEQO/AEP slightly outperforms MOPSO across all scenar-
ios. Additionally, FC-MOEO/AERP is the fastest algorithm in terms of execution time.

If we focus on our proposed algorithm, MOPO, we can observe that its HV values
are generally competitive, often falling within a close range of the best-performing al-
gorithms, MOPSO, MOMPA and FC-MOEOQO/AEP. This suggests that MOPO is capa-
ble of finding solutions that effectively cover a significant portion of the objective
space. In terms of other performance metrics, MOPQ’s performance exhibits certain
variability. It is often neither the best nor the worst performer.

Table 4. Quality indicators and execution time for each metaheuristic in each scenario.

Time

()

Scenario 1
MOPSO 0.950 0.13 0.065 0.01 0.029 0.02 1.175 0.09 1.422 0.00 436 1.70
MOMPA 1080 006 0.104 003 0049 003 1264 014 1410 001 531 0.74
NSWOA 0928 012 0169 007 0.08 004 1560 028 1347 0.06 971 9.80
FC-MOEO/AEP 1.020 0.03 0.095 0.02 0.022 0.01 1.161 0.08 1.407 0.01 331 0.61
MOPO 0.992 0.13 0.086 0.02 0.049 0.03 1.290 0.15 1.404 0.01 846 2,53

Scenario 2
MOPSO  0.898 013 0061 001 0027 001 1184 001 1422 0.0 450 2.38
MOMPA 1020 006 0.100 003 0050 003 1294 016 1406 0.01 553 0.90
NSWOA 0.942 0.10 0.163 0.04 0.094 0.05 1.601 0.31 1.332 0.06 992 244
FC-MOEO/AEP 0992 0.03 0084 002 0023 001 1168 009 1403 0.01 354 1.47
MOPO 1040 012 0.087 003 0065 004 139 022 1383 002 846 0.61

Scenario 3
MOPSO  0.901 011 0.065 001 0030 002 118 901 1427 0.0 499 2.70
MOMPA 1050 005 0.100 003 0056 003 1303 016 1409 0.2 615 113
NSWOA 0927 009 0147 005 0100 005 1.648 033 1334 005 1060 313
FC-MOEO/AEP 0.991 0.03 0.090 0.02 0.023 0.01 1.166 0.09 1.406 0.02 411 0.60
MOPO  1.020 010 0.088 002 0062 003 1364 020 1395 0.2 937 177

Scenario 4
MOPSO  0.697 025 0.047 001 0017 001 1068 003 1505 0.00 1750 5.36
MOMPA 0.969 0.10 0.079 0.03 0.043 0.02 1.170 0.09 1.502 0.01 2180 8.29
NSWOA 0940 008 0101 003 0071 004 1.284 014 1497 001 2630 4,05
FC-MOEO/AEP 0961 0.03 0062 001 0009 000 1060 003 1504 000 1210 1.47
MOPO  0.737 029 0.087 006 0.038 002 1146 0.08 1,502 0.04 3560  20.00

Metaheuristic MS c SP c £+ c £x c HV c

Now we present Table 5, a statistical analysis for the optimization capability of the
algorithms. Across 30 executions, the maximum spread, spacing, hypervolume and the
execution time are extracted for each algorithm and scenario. Pairwise statistical sig-
nificance was assessed using the Wilcoxon signed-rank test with a Holm correction to
control the family-wise error rate.

According to Table 5, the results confirm several of the descriptive observations. For
MS, MOMPA significantly outperforms all other algorithms in Scenario 1 and remains
among the top performers in Scenarios 2 and 3. In these two scenarios, MOPO performs
similarly to MOMPA, showing competitive results. In Scenario 4, MOMPA loses its



advantage to NSWOA and FC-MOEO/AEP, while MOPO maintains a moderate per-
formance across all scenarios, i.e., never the best but consistently competitive. From
the point of view of spacing, MOPSO is significantly better than all other algorithms in
all scenarios, followed by MOPO, MOMPA and FC-MOEOQO/AEP, which show statis-
tically similar performance and generally outperform NSWOA. The high HV values
obtained by MOPSO are statistically higher than those of any other algorithm, making
MOPSO the winner in this regard. FC-MOEO/AEP shows similar performance to both
MOMPA and MOPO, while NSWOA is statistically outperformed by all. Finally, the
time execution is different for all algorithms, with the best ranking one being FC-
MOEO/AEP.

Table 5. Comparison between algorithms according to Wilcoxon signed-rank test with Holm
correction, in every scenario. Font colours indicate the statistical significance of the p-values.
Bold corresponds to highly significant results (p < 0.01), italic to significant results including

the marginally significant (0.01 <p < 0.10) and grey to non-significant results (p > 0.10).

E—
MOPSO MOPSO Morso MOPSO MOMPA MowpA MOMPA NSyIoA nswoa b o
Scenario Metric vs vs ;4 v vs b vs b vs

MOMPA NSWOA MOEO/AEP MOPO NSWOA MOEO/AEP MOPO MOEO/AEP MOPO

T VS 242604 TO0E-00 225601 21E 922605 122E-03 127E0 179E-03 307E01
SP 1.68E-07 3.73E-08 1.68E-07 1.43E-06 1.84E-03 1.84E-01 1.28€-01 2.48E-04 2.83E-06

HY 335E-08 186E-08 652608 782E08  447E-08 248E-01 173802 400E-07 154E-06

Time 136E-05 136E-05 L36E-05 136E-05 136E-05 136E-05 136E-05 L36E-05 L136E-05

2 MS 140E-04 281E-01 559E-03 208E03  571E-03 187E-02 281E-01 1.28E-01 404E-03
sp 186E-08 1.86E-08 320E-05 257605  6.52E-08 115601 3.96€-01 1.86E-08 9.83E-07

HY 130E-07 186E-08 186E-08 186E-08 186E-08 360E-01 559E-05 112607 459E-04

Time 1.31E-05 1.31E-05 1.31E-05 1.31E-05 1.31E-05 1.31E-05 1.31E-05 1.31E-05 1.31E-05

3 MS 283E-06 5.29E-01 440E-04 207E08  65E-07 05 441E01 207E-03 207E-03
sp 2.04E-06 373E-08 183E-04 220E04  152E-03 2.88E-01 117E-06 6.99E-06

HY 913E-08 186E-08 186E-08 186E-08  9.13E-08 138E-03 931E-08 229E-06

Time 142605 142605 142605 142605 142605 142E-05 142605 142605 142E-05

4 MS 283E-06 9.75E-05 205€-06 632601 632601 632601 7.92E-03 632601 6.79E-03
SP 1.35E-05 1.86E-08 1.42E-04 5.60E-05 2.17E-02 6.98E-02 5.84E-01 1.84E-06 3.15E-01

HY 6.08E-01 442605 6.08E-0 377E02 A27E02 6.17E-01 617E-01 442605 175602

Time 170E-05 170E-05 1.70E-05 170E-05 170E-05 170E-05 170E-05 170E-05 170E-05

— — — — — — — —

Additionally, we performed a Friedman test to compare all algorithms simultane-
ously, providing mean ranks that summarise their overall performance. It can be seen
in Table 6. This table confirms the presence of at least one statistically significant dif-
ference among the algorithms for each metric in every scenario. Examining the mean
rankings across scenarios in the table and the overall rankings in Table 7, MOMPA and
MOPO consistently achieve top positions in most scenarios for MS. NSWOA generally
ranks lowest, while FC-MOEO/AEP occupies middle positions, i.e., competitive but
without consistent dominance. For SP, the final ranking highlights MOPSO, MOPO,
and FC-MOEO/AEP as the best-performing algorithms, followed by MOMPA and
NSWOA. The HV metric also supports MOPSO’s superiority, followed by FC-
MOEO/AEP and MOMPA, whereas execution time clearly favours FC-MOEQO/AEP.

Table 6. Friedman test results and ranks of algorithms per metric and scenario.

Scenario Metric » p Rank

MOPSO MOMPA NSWOA FC-MOEO/AEP MOPO
1 MS 3352 0 35333 17 39 2.9333 2.9333
SP 65.36 0 1.2333 34 4.4333 3.2 2.7333
HV 83.84 0 11 2.6667 4.7667 31 3.3667
Time 119.2267 0 2 3 4.9667 1 4.0333
2 MS 37.2533 0 3.9667 2.3333 3.6333 32 1.8667

SP 78.2133 0 1.2667 3.2667 4.8333 2.7333 29
HV 87.28 0 1.0667 2.6 4.6667 29 3.7667

Time 120 0 2 3 5 1 4

3 MS 47.9733 0 4.1 1.8333 3.9333 2.8667 2.2667
SP 53.4133 0 1.6 3.4333 4.4667 2.8667 2.6333




HV 88.7733 0 1.0667 2.6333 4.8 2.9667 3.5333
Time 119.2267 0 2 3 4.9667 1 4.0333
4 MS 34,5867 0 4.2 2 2.7 2.6333 3.4667
SP 51.8933 0 1.5667 3.2667 4.4333 2.6333 31
HV 26.48 0 2.4 2.7 4.2333 2.5333 3.1333
Time 120 0 2 3 4 1 5

Table 7. Average algorithm ranks across scenarios, for each metric.

Metric Rank
MOPSO MOMPA NSWOA FC-MOEO/AEP MOPO
MS 3.95 1.9666 3.5416 2.9083 2.6334
SP 1.4167 3.3417 45417 2.8583 2.8416
HV 1.4084 2.65 4.6167 2.875 3.45
Time 2 3 47334 1 4.2666

MOPSO performs very well in spacing and hypervolume with a moderate execution
time. Its leader selection based on crowding distance and velocity updates tends to
maintain a well-distributed and dense Pareto front, offering low spacing and high hy-
pervolume. However, it captures extreme solutions less effectively, which explains its
lower maximum spread.

MOMPA’s foraging phases, Lévy movements and adaptive changes, seem to favour
exploration of the edges of the objective space, leading to higher spread and hypervol-
ume, but do not provide the most uniform spacing.

In our experiments, NSWOA might perform worse because of how it moves (encir-
cling and spiralling around prey solutions). In a smooth, gently sloped problem like
sizing PV, wind and batteries, neighbouring solutions do not differ a lot and it can be
more difficult to spot the promising directions. This encircling behaviour can make the
population cluster in the wrong zones, lowering spread and hypervolume.

In the case of MOPO, our implementation maintains a relatively large set of candi-
date parties exploring the solution space, with 8 parties and 10 areas. This can preserve
diversity, helping spread and spacing. Additionally, the repeated party-switching and
population updates explain the relatively high execution time.

Finally, FC-MOEO/AEP uses the AEP technique to generate additional solutions at
each iteration of FC-MOEO/AEP. It exploits the monotonic behaviour of the SCR and
SSR. Unlike traditional approaches that focus on objective values, AEP considers the
differences between iterations in the mean values of the decision variables to identify
new candidate solutions. For instance, when an increase in a decision variable leads to
an improvement in the objectives, it is likely that further increasing this variable will
continue to yield better solutions. This alignment between the AEP mechanism and the
characteristics of these two objectives may explain the algorithm’s superior perfor-
mance.

We can now shift our focus to the analysis of solutions, specifically the representa-
tive solutions, where some overall trends can be identified, see Table 8. The representa-
tive solution was chosen as the one best trade-off between individual LCOE, SCR, and
SSR, to prevent heavy reliance of any participant on energy produced by the rest [47].
The best trade-off among objectives was typically achieved when storage units have a
large capacity, around 25 kWh. Additionally, the wind turbine components never



exceed a value of 2. It therefore indicates that this type of generator is not cost-effective
in any of the scenarios. Also, the number of photovoltaic modules was consistently
greater than 20 for all participants, with this value being higher for participants 2 and
3. This may be attributed to the lower energy demand of participant 1. In Scenario 4,
all algorithms tended to converge toward installations that maximize the number of
photovoltaic modules. The flexibility offered by shared storage in Scenario 4 enables
larger system sizes without raising the levelized cost of energy, and in certain cases, it
can actually be decreased. Consequently, Scenario 4 outperforms the others in terms of
community-level LCOE, SCR, and SSR.

Table 8. Representative solution for each algorithm in each scenario.

Metaheuristic Representative solution LCOE SCR SSR
Scenario 1
MOPSO  (37,0,25,42,0,25,44,0,25) 0.07925 0.9263 0.8608
MOMPA  (30,0,25,35,0,24,40,0,25) 0.08509 0.9640 0.8227
NSWOA  (26,0,25,30,0,25,37,0,25) 0.09134 0.9824 0.7883
FC-MOEO/AEP  (39,0,25,50,0,25,47,0,25) 0.07567 0.8896 0.8802
MOPO  (29,0,23,35,0,25,32,0,25) 0.08851  0.981  0.7957
Scenario 2
MOPSO  (39,0,25,34,0,25,44,0,25) 0.08117 0.9362 0.8434
MOMPA  (26,0,25,35,0,25,34,0,25) 0.09029 0.9825 0.7975
NSWOA  (24,0,20,32,0,25,35,1,25) 0.09659 0.9811 0.7921
FC-MOEO/AEP  (41,0,25,50,0,25,50,0,25) 0.07447 0.8762 0.8859
MOPO  (28,2,25,35,2,25,29,2,25) 0.13240 0.9832 0.8339
Scenario 3
MOPSO  (36,0,25,44,0,25,41,0,25) 0.07987 0.9311 0.8592
MOMPA  (31,0,25,50,0,25,38,1,25) 0.08643 0.9238 0.8634
NSWOA  (29,0,22,27,0,22,29,0,22) 0.08949 0.9840 0.7384
FC-MOEO/AEP  (49,0,25,50,0,25,46,0,25) 0.07357 0.8647 0.8873
MOPO  (36,0,25,40,0,25,41,0,25) 0.08117 0.9422 0.8514
Scenario 4
MOPSO  (50,0,25,50,0,25,50,0,25)  0.07251 1 0.9509
MOMPA  (50,0,25,50,0,25,50,0,25)  0.07251 1 0.9509
NSWOA  (50,0,25,50,0,25,50,0,25) 0.07251 1 0.9509
FC-MOEO/AEP  (50,0,25,45,1,25,50,2,25)  0.08807 1 0.9590
MOPO  (50,0,25,50,0,25,50,0,25)  0.07251 1 0.9509

In the following part, we present the percentages of emissions observed in our study.
CO: emission reductions from renewable energy generation were assessed relative to
exclusive dependence on conventional grid electricity. We will use the representative
solution obtained by FC-MOEO/AEP as it was the best-performing algorithm for the
calculation (see Table 9). Emission levels were set at 0.225 kgCO2/kWh for solar en-
ergy, 0.008 kgCO2/kWh for wind energy, and 0.028 kgCO./kWh for stored energy [18],
while the grid electricity average emission factor was 0.389 kgCO2/kWh [48]. Greater
independence from the grid was associated with progressively larger emission reduc-
tions, increasing from 34.0% in Scenario 1 to 34.4% in Scenario 2, 34.6% in Scenario
3, and 38.1% in Scenario 4.



Table 9. Summary of the energy community simulation provided by the solution with the
best balance of LCOE, SCR, and SSR at the participant level obtained by FC-MOEO/AEP.

Variable Scenario 1 Scenario 2 Scenario 3  Scenario 4
Costs ($)
Installation 41870 42720 43400 53900
Imports 978 881 835 571
Energy (kWh)

Generated 48641 50636 52073 54019
Imported 5915 5713 5718 2597
Exported 5394 6269 7046 0

Shared - 0 541 476

Shared storage - - - 8608
Emissions (%)

Reduction 34.0 34.4 34.6 38.1

As a final result, we present Figure 4. It shows the Pareto front distribution obtained
by one of the algorithms in the fourth scenario. In the LCOE-SCR projection (Figure
4b), most solutions cluster at low values of LCOE with high SCR, while only a few
points extend towards higher LCOE and lower SCR. In the LCOE-SSR projection
(Figure 4c), a similar pattern is observed, with many solutions concentrated at low
LCOE and high SSR and fewer solutions spreading towards less favourable combina-
tions. In the last graph, Figure 4d, the distribution is more dispersed, with several solu-
tions located in the region of high SCR and high SSR, although a number of points also
appear at lower levels, which illustrates the trade-offs between these two objectives.
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Figure 4. lllustrative example of the Pareto front obtained by the FC-MOEO/AEP algorithm
for the fourth scenario.

5 Conclusions

In this study, the optimal sizing of photovoltaic, wind, and storage units for a small-
scale urban renewable energy community was formulated as a multi-objective optimi-
sation problem. The cost of energy served as the economic metric, while self-consump-
tion and self-sufficiency rates measured energy flexibility and grid independence. Four
scenarios were considered, from full independence among participants to shared energy
generation and storage. To solve this problem, five metaheuristics were applied and
evaluated using quality indicators.

Among these algorithms, FC-MOEQ/AEP, which utilises a solution generation
mechanism based on the evolution of the archive of non-dominated solutions, demon-
strates rapid convergence and superior consistency in finding dominant solutions. The
MOPSO algorithm emerges as a viable alternative, excelling in the uniformity of the
Pareto fronts obtained. Additionally, our proposed adaptation, MOPO, shows generally
competitive HV values, often falling within a close range of the best-performing algo-
rithms, MOPSO and FC-MOEO/AEP. The results indicate that MOPO can discover
solutions that adequately cover a substantial area of the search space, although addi-
tional refinement could be beneficial for MOPO to achieve the optimal outcome.

The strong performance of FC-MOEO/AEP may be attributed to the monotonic na-
ture of the self-consumption and self-sufficiency rates set as objectives. Thus, simula-
tions based on FC-MOEO/AEP solutions indicated that allowing participants to use
surplus energy generated by other members reduces grid interactions and associated
emissions, especially when the energy storage is shared.

These findings highlight the need for optimisation approaches that align with the
specific characteristics of resource management in energy communities, particularly as
the adoption of renewable energy in residential areas continues to grow.



A key limitation of this study is the restricted size of the dataset, which includes
only three participants. While our objective is to work with larger communities, the
specific type of detailed energy data required is insufficient. To our knowledge, no
publicly available dataset meets these requirements at a larger scale. Expanding the
model to communities with more participants would be ideal to capture a wider range
of energy consumption patterns and improve the model’s capabilities.

Our proposed adaptation, MOPO, shows generally competitive HV values, often
falling within a close range of the best-performing algorithms, MOPSO and FC-
MOEO/AEP. While MOPO can discover solutions that adequately cover a substantial
area of the search space, its exploitation capability is currently limited compared to
MOPSO and FC-MOEO/AEP, indicating that additional refinement could further im-
prove its performance and help achieve the optimal outcome.

Future work might focus on introducing constraints to limit the decision space dur-
ing the optimisation process and incorporating additional objectives to avoid infeasible
solutions while effectively managing the trade-off between grid independence and the
autonomy of individual participants. Furthermore, we suggest as future research con-
sidering new competitive methods, such as the adapted and proposed versions of PO,
will be essential in enhancing the effectiveness of optimisation strategies in these con-
texts. Finally, we consider that future research could explore the integration of real-
world data. Such an approach would require careful consideration of the data’s charac-
teristics and variability. It would lead to an interesting understanding of community
behaviours and energy usage particularities that are only present in real data.

6 Abbreviations

EO Equilibrium Optimiser

FC-MOEO/AEP Fast Convergence Multi-Objective Equilibrium Optimiser with Archive Evolution Path
HV Hypervolume

LCOE Levelized Cost of Energy

MOMPA Multi-Objective Marine Predators Algorithm

MOPO Multi-Objective Political Optimiser

MOPSO Multi-Objective Particle Swarm Optimisation

MPA Marine Predators Algorithm

MS Maximum Spread

NSWOA Non-dominated Sorting Whale Optimisation Algorithm
PO Political Optimiser

PSO Particle Swarm Optimisation

SCR Self-Consumption Rate

SP Spacing

SSR Self-Sufficiency Rate

TMY3 Typical Meteorological Year 3

WOA Whale Optimisation Algorithm
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