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Abstract. In the transition to a sustainable urban model, renewable energy com-

munities where participants act as both producers and consumers have gained 

substantial importance. In this context, the main challenge lies in the optimal siz-

ing of energy generation and storage units to achieve a balance between economic 

profitability and independence from the conventional grid. In this study, we de-

fine the resource management problem for the initial setup of an energy commu-

nity, optimising the number of solar panels, wind turbines, and battery capacity 

per member. Besides, the objective functions considered include the levelized 

cost of energy (LCOE), self-sufficiency, and self-consumption, evaluated under 

four different interaction models, from full independence to shared battery use. 

While metaheuristics are commonly employed in energy management problems, 

the increasing variety of algorithms complicates the selection of an effective op-

timisation method. We implemented several multi-objective metaheuristics, in-

cluding Particle Swarm Optimisation, Marine Predators Algorithm, Whale Opti-

misation Algorithm, and Equilibrium Optimiser. Additionally, we introduce the 

Political Optimizer, specifically adapted for multi-objective optimisation, which 

provides an additional tool for this kind of problems. Results from simulations 

demonstrate that the Multi-Objective Equilibrium Optimiser with Archive Evo-

lution Path achieved the lowest LCOE, 0.0736 $/kWh, and the highest self-suffi-

ciency rate, 0.8873, with shared excess energy production. When implementing 

shared storage, the best configurations reached an LCOE of 0.0725 $/kWh, a self-

consumption rate of 1.0000 and a self-sufficiency rate of 0.9509. Finally, the 

largest emission reductions were also observed with shared storage, and reached 

up to 38.1%. 
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1 Introduction 

The continuous growth of urban areas makes current energy practices increasingly 

unsustainable as they are still largely reliant on fossil fuel systems. About 81.5% of the 

energy consumed worldwide comes from fossil fuels [1], contributing to greenhouse 

gas emissions and climate change. This dependency has negative consequences, includ-

ing environmental pollution that affects public health, and the rising frequency of ex-

treme weather events that threaten urban infrastructure and quality of life [2]. Renewa-

ble energy models are being adopted to mitigate these issues, with global renewable 

energy production increasing by over 59% in the past decade [3]. However, renewable 

energy production often depends on uncontrollable factors, such as weather variability. 

As a consequence, designing and managing local renewable energy communities to 

ensure economic viability remains a significant challenge. 

Renewable energy communities are groups of citizens, companies, or local entities 

collaborating to produce and share energy [4, 5]. They have been proposed as a solution 

towards carbon neutrality in urban environments [6, 7]. These communities operate as 

microgrids that combine distributed generation and storage resources, and they usually 

require an energy management system to optimise resource allocation and energy flow 

[8]. As a result, diverse optimisation techniques have been explored in this context, 

including linear programming [9], neural networks [10], fuzzy logic [11] and game 

theory [12]. Although studies such as [13-15] successfully address self-consumption 

and self-sufficiency optimisation, these models can be rigid or problem-specific, be-

cause they limit adaptability to changing production and consumption patterns. As il-

lustrated in [16-18], metaheuristics offer flexibility and can better handle multi-objec-

tive optimisation. Nevertheless, the inherent difficulty remains, in other words, the 

problem’s search space is large, objectives often are contradictory, and renewable pro-

duction is highly variable. Metaheuristic methods have been applied successfully in 

various other energy-related optimisation problems, including the siting of solar panels 

and wind turbines to maximise generation output [19], as well as optimisation in electric 

vehicle systems and energy distribution networks [20-22]. Although these studies do 

not focus on energy communities directly, they demonstrate the versatility of metaheu-

ristics in solving complex optimisation tasks regarding energy distribution. 

In the metaheuristics field, there are many recent algorithms that can potentially 

solve complex problems such as the design of energy systems. For example, in [23] the 

African Vulture Optimization Algorithm (AVOA) is specifically used to design a Hy-

brid Solar PV/Wind/Hydrogen/Lithium Battery energy system, making it suitable for 

optimizing energy configurations in community settings. Moreover, an improved hy-

brid variant, the hybrid aquila optimizer and African vultures optimisation algorithm 

[24], has been proposed and tested on 23 classical benchmark functions, the IEEE 

CEC2019 test suite and 5 engineering problems, obtaining effective balancing of ex-

ploration and exploitation and opening up new opportunities in the field. Other relevant 

novelties include the artificial lemming algorithm [25] which demonstrated superior 

results in IEEE CEC2017 and CEC2022 benchmark tests and outperformed 17 other 



metaheuristics, and the multi-strategy boosted snow ablation optimizer [26] tested on 

six realistic constrained engineering design problems, which proposes an enhanced 

search mechanism that integrates strategies like initialization of good point sets, greedy 

selection, differential evolution, and reverse lens learning to improve optimization ef-

ficiency. 

According to the No Free Lunch theorem, no single optimisation algorithm can con-

sistently outperform others across all problems. As [27] suggests, the future of me-

taheuristics lies in hybridisation and in applying them to real-world problems. In this 

context, we propose applying several state-of-the-art multi-objective metaheuristics to 

the optimal allocation of renewable production and storage resources in local energy 

communities. To do so, we implemented Particle Swarm Optimisation (PSO) [28], Ma-

rine Predators Algorithm (MPA) [29], Whale Optimisation Algorithm (WOA) [30] and 

Equilibrium Optimiser (EO) [31]. In addition, we introduce and evaluate a novel multi-

objective adaptation of the Political Optimiser (PO) [32]. Our goal was to exploit the 

algorithm’s capacity for dynamic adjustments and adaptability to more effectively ad-

dress the highly variable nature of renewable energy production and demand.  

To assess and validate our approach, we designed and simulated a residential re-

newable energy community using data from the Typical Meteorological Year 3 

(TMY3) dataset [33]. The optimisation problem considers three objectives reflecting 

economic and operational goals: the Levelized Cost of Energy (LCOE), the Self-Con-

sumption Rate (SCR), and the Self-Sufficiency Rate (SSR). Furthermore, four different 

energy management scenarios proposed by [34] were analysed in order to capture dif-

ferent energy flow priorities among community members. The metaheuristics were 

evaluated using metrics such as spacing, hypervolume and the epsilon indicator. 

Our experimental results confirm that applying multi-objective metaheuristics leads 

to viable and efficient community designs. Furthermore, our adaptation of the PO also 

showed competitive performance compared to existing algorithms, which validates its 

potential as an effective tool for real-world problems such as the one at hand. Thus, the 

main contributions of this work are: 

• Formulation of the optimal sizing of photovoltaic, wind, and storage units in an 

urban renewable energy community as a multi-objective optimisation problem. 

• Evaluation of three objectives (Levelized Cost of Energy, Self-Consumption 

Rate, and Self-Sufficiency Rate) under four energy management scenarios. 

• Implementation and comparison of five state-of-the-art multi-objective me-

taheuristics, including a novel adaptation of the Political Optimiser for this con-

text. 

• Thorough evaluation of algorithm performance using established quality indi-

cators and analysis of representative energy allocation solutions. 

The following sections of this manuscript are organised as follows. In Section 2, we 

provide a description of the proposed methodology. It discusses the dataset employed, 

the methods implemented, and the metrics utilised in the research. Subsequently, Sec-

tion 3 details the experiments carried out along with the corresponding parameters. The 



experimental results are presented in Section 4. Finally, we conclude this research with 

Section 5 by defining the conclusions and future work. 

2 Methodology 

This section presents the methodology used in this study, as depicted in Figure 1. It 

consists of several key components. First, we detail the datasets and sources, including 

the TMY3 dataset for meteorological data and load profiles from the Open Energy Data 

Initiative. Next, we describe the community simulation model, which includes PV and 

wind generation models, a battery storage simulation with a charge/discharge strategy, 

and four energy management scenarios. We then formulate the problem by defining 

decision variables such as the number of PV panels, wind turbines, and battery capacity, 

along with objectives related to the LCOE, SCR and SSR, taking into consideration 

pertinent constraints. The next step in our methodology is the metaheuristic optimisa-

tion phase, and finally, we assess the quality of the optimisation results using appropri-

ate metrics for this problem. 
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Figure 1. General overview of the proposed methodology. 

  

2.1 Dataset 

The data used in this study are divided into two categories: residential load profiles 

[33] and meteorological data [35]. The load profile data consist of information about 



the electricity consumption of individual households. On the other hand, the meteoro-

logical data include variables such as temperature, humidity, wind speed, and precipi-

tation, recorded hourly from various weather stations. These data are essential for sim-

ulating the community’s energy generation process. 

Load profiles represent a building's energy consumption over time. The Open En-

ergy Data Initiative (OEDI) provides simulated load profiles for commercial and resi-

dential buildings at each TMY3 location. These profiles are generated based on the 

characteristics of various building prototypes and the climate zone in which they are 

located. They represent electricity and gas consumption in kilowatt-hours (kWh) at 

hourly intervals, subdivided into categories such as lighting and heating.  

In the first place, the load profiles used in this study correspond to three single-family 

homes located in Alabama and the neighbouring state of Mississippi. Specifically, these 

profiles are associated with the following TMY3 locations: Birmingham-Shuttlesworth 

International Airport, Anniston Regional Airport, and McComb-Pike County Airport. 

These locations were chosen to ensure they are within the same climate zone as the 

selected meteorological station, but with different consumption patterns, making the 

internal interactions characteristic of an energy community necessary. Each participant 

in the energy community is assigned one of the load profiles. Besides, this study only 

considers the total electricity consumption of the households. 

Secondly, the TMY3 dataset contains weather-related data for hundreds of locations 

in the United States over a typical year. This typical year is constructed for each location 

using data collected at a weather station at hourly intervals over at least ten years be-

tween 1976 and 2005. TMY3 employs a method that selects individual months from 

different years within the data recording period. For example, the first month of each 

year is compared, and the month considered most typical according to various criteria 

is selected [36]. This process is repeated for all twelve months, which are then concat-

enated to form a complete typical year. Since adjacent months in the typical year may 

come from different years, we can find discontinuities between months. We therefore 

applied smoothing techniques to address these discontinuities.  

TMY3 includes a wide range of weather variables, such as temperature, precipita-

tion, solar radiation, wind speed and direction, humidity and visibility. Among these, 

the variables needed to simulate the renewable energy generation of the community are 

air temperature (ºC), wind speed (m/s) and global horizontal irradiance (W/m2), i.e., the 

total amount of solar radiation incident on a horizontal surface during each hourly pe-

riod. 

For this study, we selected the meteorological station at Birmingham-Shuttlesworth 

International Airport in Alabama which is located at an elevation of 189 meters above 

sea level and has geographic coordinates of 33.567° N, 86.750° W. The data recording 

period for this location is 24 years. 

It is important to take into account that our study utilises synthetic datasets, which, 

while standard in many research contexts, may not fully capture the real behavioural 

variability of actual communities. The use of synthetic datasets is often imposed by the 

challenges associated with obtaining publicly available real data, which is frequently 

limited in scope or involves a small number of buildings. However, we would like to 

note that the most recent and validated version of the «End-Use Load Profiles for the 



U.S. Building Stock» serves as the foundation for our analysis and it is a good choice 

since this dataset is based on simulations of approximately 900.000 modelled buildings 

[37], both residential and commercial. Although the resulting profiles are synthetic, 

they have been extensively calibrated and validated against measured data where avail-

able. 

2.2 Problem formulation 

For each participant 𝑖, three decision variables were defined: 1) the number of pho-

tovoltaic modules (𝑁𝑃𝑉𝑖
), 2) the number of wind turbines (𝑁𝑊𝑇𝑖

) and 3) the battery 

capacity in kWh (𝐶𝑏𝑎𝑡𝑖
). For a community of 𝑝 participants, the problem involves 3𝑝 

decision variables, and a solution is represented as: 

(𝑁𝑃𝑉1
, 𝑁𝑊𝑇1

, 𝐶𝑏𝑎𝑡1
, 𝑁𝑃𝑉2

, 𝑁𝑊𝑇2
, 𝐶𝑏𝑎𝑡2

, … , 𝑁𝑃𝑉𝑝
, 𝑁𝑊𝑇𝑝

, 𝐶𝑏𝑎𝑡𝑝
) (1) 

Since the community is small-scale, the size of the participants' facilities is subject 

to the constraints given by equation (2). 

{

0 < 𝑁𝑃𝑉𝑖
≤ 50 

0 ≤ 𝑁𝑊𝑇𝑖
≤ 10

0 < 𝐶𝑏𝑎𝑡𝑖
≤ 25

 (2) 

To determine optimal dimensions for installations in a renewable energy commu-

nity, several factors must be considered. Beyond economic aspects, maximizing the 

community’s internal production is crucial due to the intermittent nature of renewable 

energy and the need to minimize environmental impacts from the electrical grid. 

The objectives to be optimized in the community model adopted in this work are 

three: 1) the LCOE as an indicator of the project’s economic feasibility, 2) the SSR and 

3) SCR. These metrics are computed based on a one-year simulation of the energy com-

munity. 

The first objective, the LCOE, is an economic metric for comparing energy gener-

ation costs over their lifespan, reflecting the average cost per unit of energy, including 

construction, operation and maintenance expenses. In this study, LCOE is expressed in 

$/kWh and calculated using the next equation. 

LCOE =
(𝐶𝑖𝑛𝑖 + 𝐶𝑚) ∙ CRF(𝑖, 𝑁)

𝐸𝑔𝑒𝑛
 (3) 

Where 𝐶𝑖𝑛𝑖 is the initial capital cost of the installation, 𝐶𝑚 is the operational and 

maintenance cost, and 𝐸𝑔𝑒𝑛 is the energy generated by the installation in one year. CRF 

is the capital recovery factor, calculated based on the interest rate 𝑖 and the project 

lifetime (𝑁 years): 



CRF(𝑖, 𝑁) =
𝑖(1 + 𝑖)𝑁

(1 + 𝑖)𝑁 − 1
 (4) 

The initial capital cost of the installation depends solely on the total number of pan-

els, turbines, and batteries installed, as well as their individual costs: 

𝐶𝑖𝑛𝑖 = ∑ (𝑁𝑃𝑉𝑖
∙ 𝑐𝑃𝑉 + 𝑁𝑊𝑇𝑖

∙ 𝑐𝑊𝑇 + 𝐶𝑏𝑎𝑡𝑖
∙ 𝑐𝑏𝑎𝑡)

𝑝

𝑖=1
 (5) 

where 𝑝 is the number of participants in the community, and 𝑐𝑃𝑉, 𝑐𝑊𝑇 and 𝑐𝑏𝑎𝑡 are 

the cost of a solar panel, a wind turbine and one kWh of battery storage, respectively. 

The second and third objective are the SCR and SSR. They can be calculated from 

an individual or collective perspective. However, since renewable energy communities 

seek to reduce grid reliance, the optimisation metrics we adopted are based on the col-

lective perspective. The SCR is defined as the proportion of energy generated by the 

community that is directly consumed within the community, rather than exported to the 

electrical grid. Intuitively, smaller installations result in higher self-consumption rates, 

as the likelihood of producing excess energy decreases. It is defined as follows: 

SCR =
𝐸𝑐𝑜𝑛𝑐𝑜𝑚

𝐸𝑔𝑒𝑛

=
𝐸𝑔𝑒𝑛 − 𝐸𝑒𝑥𝑝

𝐸𝑔𝑒𝑛

 (6) 

The SSR, on the other hand, represents the percentage of total energy demand met 

by the energy generated within the community. A high self-sufficiency rate indicates a 

reduced need to import energy from the grid and is typically associated with larger 

generation units. Both rates are bounded in the interval [0, 1] and is calculated as fol-

lows: 

SSR =
𝐸𝑐𝑜𝑛𝑐𝑜𝑚

𝐸𝑐𝑜𝑛𝑡𝑜𝑡𝑎𝑙

=
𝐸𝑔𝑒𝑛 − 𝐸𝑒𝑥𝑝

𝐸𝑔𝑒𝑛 − 𝐸𝑒𝑥𝑝 + 𝐸𝑖𝑚𝑝
 (7) 

𝐸𝑐𝑜𝑛𝑐𝑜𝑚
 is the energy consumed from the community’s production, 𝐸𝑐𝑜𝑛𝑡𝑜𝑡𝑎𝑙

 is the 

total energy consumed, 𝐸𝑔𝑒𝑛 is the total energy generated by the community, 𝐸𝑒𝑥𝑝  is 

the energy exported to the grid, and 𝐸𝑖𝑚𝑝 is the energy imported from the grid. These 

energy quantities were considered over a one-year period. 

To conclude, we must note that hourly renewable generation was estimated using 

established photovoltaic and wind power models parameterized by the TMY3 meteor-

ological dataset. Photovoltaic production was computed based on irradiance and tem-

perature data, and they account for panel efficiency and surface area, while wind power 

generation was derived from wind speed measurements and turbine power curves. Bat-

tery operation was simulated as a simple state-of-charge model, where energy is stored 

or discharged depending on production-demand balance, subject to capacity limits and 



round-trip efficiency losses. Finally, energy flows within the community were simu-

lated under four management strategies adapted from [34]. In the first scenario, mem-

bers prioritize self-consumption of their own generated energy before sharing or ex-

porting surplus to the grid. The second scenario prioritizes maximizing the commu-

nity’s collective self-consumption; in doing so, it encourages local sharing of extra en-

ergy. The third scenario focuses on reducing reliance on external sources by prioritizing 

community self-sufficiency, by using batteries and shared resources to cover demand 

internally. The fourth scenario seeks to minimize costs by dynamically deciding be-

tween local consumption and grid exchange based on real-time production, demand and 

economic factors. These simulations are the input data required to compute our objec-

tive functions. 

2.3 Multi-objective metaheuristics 

A metaheuristic is an iterative optimisation method that starts with an initial popu-

lation of solutions and utilises characteristics of the entire population at each iteration 

to guide the search in subsequent iterations. 

The problem at hand is a multi-objective optimisation problem, where multiple ob-

jective functions are optimised simultaneously. It results in a Pareto set of solutions 

rather than a single best solution. For further reference, the basic concepts associated 

with this term are defined in [38].  

The algorithms implemented in this study were the Multi-Objective PSO (MOPSO), 

Multi-Objective MPA (MOMPA), Non-dominated Sorting WOA (NSWOA) and Fast 

Convergence Multi-Objective EO with Archive Evolution Path (FC-MOEO/AEP). 

These metaheuristics are inspired by different biological and physical processes. In 

contrast, the PO, introduced in [32] has its inspiration from politics. Since we recognise 

the potential of this unique approach, we also propose an adaptation of this metaheu-

ristic for multi-objective optimisation problems (referred to from now on as MOPO).  

Multi-Objective Political Optimiser  

The PO draws inspiration from the human-centric process of politics [32]. It models 

key phases of democratic systems, including party formation, constituency allocation, 

election campaigns, voting and parliamentary affairs. In this context, each solution rep-

resents a candidate for public office, assigned to a specific political party and constitu-

ency, which corresponds to an electoral division. Each constituency is represented by a 

single candidate from each political party. The total population size is determined by 

the number of parties and areas. This algorithm was selected for this study due to its 

ability to capture the dynamics of negotiation and coordination observed in energy com-

munities. In this analogy, political parties can be used to represent community mem-

bers, each controlling a distinct set of resources such as solar generation, wind genera-

tion and batteries. This reflects the presence of diverse stakeholders with individual 

objectives, comparable to political actors with their own agendas, who must nonethe-

less cooperate to achieve beneficial collective outcomes. The optimisation process op-

erates on community-wide metrics such as the LCOE, SSR and SCR. Through iterative 



negotiation, the algorithm structure emulates the process that is essential for aligning 

the interests of all participants in a shared energy system. 

In this study, we propose a novel approach by introducing its multi-objective ver-

sion, MOPO. We specifically designed it to tackle the optimisation challenges faced by 

energy communities. Unlike the original PO, which requires selecting the best solution 

from each party and area, MOPO employs a more sophisticated ranking mechanism. 

This mechanism utilises non-dominated sorting and a reference point technique on a 

hyperplane [39]. The reason for this is to enhance diversity and efficiency. The pseu-

docode for this algorithm can be found below.  

 

 
 

In our algorithm, each individual in the initial population is linked to a political 

party and an area. Leaders are selected from each party through non-dominated sorting, 

with a focus on the least dense reference points. Similarly, winners are chosen from 

each area, resulting in a set of party leaders and area winners. 

During the electoral campaign phase, the positions of individuals are updated based 

on their previous election results, the influence of their party leader, and the area win-

ner. In doing so, it is expected that the algorithm explores promising regions more ef-

fectively. Moreover, individuals are encouraged to approach solutions from an archive, 

which represents the approximate Pareto set, thereby accelerating convergence. 



Following the electoral campaign, a party-switching phase occurs, where individu-

als have the opportunity to replace less successful members of other parties. The objec-

tives of each solution are evaluated, reflecting voter support. New solutions are added 

to the archive, and dominated solutions are removed to maintain quality. If the archive 

reaches its capacity, a density criterion is applied to eliminate excess solutions, so only 

the most relevant candidates remain. 

Finally, the winners from each area form a parliament, where members adjust their 

positions based on interactions with randomly selected colleagues. This adjustment 

adds new positions to the population if they show enhanced performance, which pro-

motes a competitive and dynamic optimisation environment.  

Multi-Objective Particle Swarm Optimisation  

The MOPSO algorithm [40] is an adaptation of the classic PSO [28] designed for 

multi-objective optimization problems. PSO mimics the social behaviour of animal 

swarms, where each particle represents a candidate solution that adjusts its movement 

based on personal and collective experiences. In each iteration, particles update their 

velocities based on inertia, their best-known position, and the global best position found 

by the swarm. 

MOPSO modifies this approach to handle multiple objectives by replacing the 

global best position with one from a non-dominated solution archive, selected randomly 

with probabilities influenced by a grid mechanism that splits the objective space into 

hypercubes. This promotes exploration of less populated areas. After updating veloci-

ties and positions, a particle’s best position is only updated if the new position domi-

nates the previous one. At the end of each iteration, non-dominated solutions are stored 

in the archive, which uses the grid mechanism to remove solutions from crowded re-

gions if it exceeds capacity. 

Multi-Objective Marine Predators Algorithm 

The third metaheuristic is inspired by the hunting strategies of marine predators and 

their interactions with prey, the MPA [29]. It operates on the principle of «survival of 

the fittest», where the most promising solutions act as predators guiding the search for 

optimal solutions. The algorithm utilises an elite solution selected from a prey matrix, 

which represents all potential solutions. To balance exploration and exploitation of the 

search space, MPA alternates between Lévy flights and Brownian motion phases. 

In the multi-objective version, MOMPA [41], the initial population is a set of ran-

domly generated solutions, with an elite solution chosen from this prey matrix. The 

algorithm progresses through a series of iterations. It prioritises exploration in the first 

third by allowing prey to move faster than predators using Brownian motion. In the 

second third, the first half of the population focuses on exploitation through small 

movements inspired by Lévy flights, while the second half continues to explore. As 

iterations progress, the influence of the elite position increases. In the final phase, the 

predator moves faster than the prey, emphasizing exploitation through Lévy flights. 

MOMPA also incorporates a mutation mechanism to modify predator behaviour and 

employs a diversity technique to enhance exploration by utilizing reference points on a 



hyperplane in the objective space. In doing so, the algorithm provides a well-balanced 

selection of elite solutions. 

Non-dominated Sorting Whale Optimization Algorithm 

The original WOA [30] is a metaheuristic inspired by the hunting strategies of 

humpback whales, particularly the bubble-net technique. In this algorithm, solutions 

represent the positions of whales, which are updated in each iteration based on various 

hunting actions: encircling the prey (the best solution), attacking in a shrinking spiral, 

or searching for prey by moving away from other whales.  

In NSWOA [42], the position of the fittest whale is determined at the start of each 

iteration using a roulette-wheel selection mechanism, where the selection probability is 

inversely related to the front number from non-dominated sorting. At each iteration, the 

hunting strategy for each whale adjusts parameters, with a specified probability of en-

tering an exploration phase, in which whales move towards randomly chosen targets 

rather than the prey. If exploration does not occur, solutions update their positions 

through either an encircling phase, moving toward the best solution, or a bubble-net 

attack phase, where they approach the best solution in a spiral trajectory. Moreover, an 

adaptive parameter guarantees that exploitation becomes more localised as iterations 

progress. After evaluating the objective functions of the new solutions, the new popu-

lation is formed by merging previous and newly generated solutions, from which the 

best solutions are selected based on non-dominated sorting and crowding distance cri-

teria. 

Fast Convergence Multi-Objective Equilibrium Optimiser with Ar-

chive Evolution Path 

The last optimisation algorithm we implemented is a multi-objective version of the 

EO [31] with an Archive Evolution Path (AEP) mechanism, which utilises the trajec-

tory of non-dominated solutions [43]. EO is inspired by mass balance models and up-

dates the population in each iteration by adjusting the positions of solutions based on 

the principles of equilibrium and dynamic states. On the other hand, AEP enhances 

convergence toward the Pareto set by generating new candidate solutions based on the 

evolution of the archive from the second iteration onward. Besides, it also employs a 

diversity technique based on the maximin function. 

In the algorithm, solutions obtained from EO and AEP are merged, and their objec-

tive values are calculated to identify non-dominated solutions for the archive. The ar-

chive is sorted using the maximin metric, which measures the diversity of the Pareto 

front, favouring solutions in less dense regions of the objective space. If the archive 

exceeds its capacity, the solution with the largest maximin value is removed. The pop-

ulation is then reduced to the desired size by selecting solutions with the smallest max-

imin values. After this, new solutions are generated from the population, and the can-

didates are selected from the archive based on a roulette-wheel method that prioritises 

those with smaller maximin values. Furthermore, AEP generates new solutions inde-

pendently from the archive, guided by the archive’s centre and its evolution taking into 

account recent iterations. 



2.4 Performance metrics 

In order to evaluate the implemented algorithms, we must define some metrics to 

assess their effectiveness. This section defines the four adopted metrics: Maximum 

spread, spacing, 𝜖 indicator, and hypervolume. 

The first metric is Maximum Spread (MS) [44]. It measures the extent of the solu-

tion set across the objective space and is defined based on the range of each objective 

in the set of 𝑚-objective vectors corresponding to the 𝑁 solutions obtained by an algo-

rithm, A. Larger MS values indicate a greater spread of the obtained Pareto front, so 

MS should be maximised. With 𝑊 and 𝑊′ representing individual solutions, MS is 

defined as follows: 

MS(A) = √∑ max
𝑊,𝑊′∈A

(𝑊𝑗 − 𝑊𝑗
′)

2𝑚

𝑗=1
 (8) 

The spacing (SP) metric calculates the variation in distances between solutions. SP 

is an indicator of uniformity, taking non-negative values, with smaller values indicating 

greater uniformity. A zero SP value corresponds to a set of equidistant solutions, in 

terms of the Manhattan distance, in the objective space. Its mathematical formula is: 

SP = √
1

𝑁 − 1
∑ (𝑑̅ − 𝑑𝑖𝑠𝑡(𝑊𝑖 , A \ {𝑊𝑖})

2𝑁

𝑖=1
 (9) 

Where 𝑑𝑖𝑠𝑡(𝑉𝑖 , A) represents the Manhattan distance from 𝑊 to the set A, and 𝑑̅ is 

the mean of the minimum distances calculated between one solution and all others.  

For our problem, we only require only one solution that represents the generation 

and storage resources. Therefore, an algorithm with limited exploration capacity could 

still obtain the most suitable configuration for installation. As a consequence, domi-

nance relations between solution sets were used to compare our metaheuristics. Given 

two sets of objectives, A and B, the 𝜖 indicator [38] quantifies the dominance relation-

ship between them. It is a binary indicator that represents a pair of values (𝜖+, 𝜖x), 

which stand for the smallest number that must be added to or multiplied by the objective 

set A for it to dominate B. 

𝜖+(A, B) = max
𝑊∈B

min
𝑉∈A

max
𝑖≤𝑗≤𝑚

(𝑉𝑗 − 𝑊𝑗) 

𝜖x(A, B) = max
𝑊∈B

min
𝑉∈A

max
𝑖≤𝑗≤𝑚

(
𝑉𝑗

𝑊𝑗
) 

(10) 

The last metric adopted is the hypervolume (HV) [45] which provides a measure of 

the space covered by the obtained Pareto front A, with respect to a reference point R. 

Formally, it is defined as the volume of the union of the hyperrectangles with one vertex 



at R and the opposite vertex at the point defined by the objective values of a solution, 

where X and Y are elements within the set A and the solution space, respectively. 𝒮 

signifies the solution space itself, which encompasses all possible solutions. Finally, 

the symbol λ represents the Lebesgue measure. 

HV(A) = 𝜆 (⋃{𝑌 ∈ 𝒮|𝑋 ≺ 𝑌 ≺ 𝑅}

𝑋∈A

) (11) 

Unlike the 𝜖 indicator, HV is not binary, making it easier to interpret. However, the 

choice of the reference point is complex in the optimisation problem at hand, due to the 

lack of knowledge about the true Pareto front. In this case, the reference point for the 

hypervolume was calculated using the worst possible value for each objective. Since 

the reference point significantly influences the HV calculation, it has been implemented 

alongside the epsilon indicator. The use of both indicators can contribute to more in-

formed decision-making, as both perform similarly when used to compare algorithms 

[46]. 

3 Experiments 

In this section, we first present an exploratory analysis of the experiments conducted, 

followed by a detailed overview of the parameter settings used for each metaheuristic. 

The experiments were carried out on an HP Pavilion x360 14-dy1xxx computer using 

Python 3.9.  

3.1 Exploratory analysis 

Before running the optimisation experiments, an exploratory analysis was con-

ducted to better understand the characteristics of our datasets. Table 1 summarises the 

key statistics of the economic parameters and technical specifications used in the sim-

ulation model. The skewness and kurtosis coefficients calculated are Fisher’s, which 

means that the reference value for a normal distribution is zero. 

Table 1. Descriptive statistics of the dataset.  

Statistic Irradiance Temperature Wind speed Load 1 Load 2 Load 3 

Unit W/m2 °C m/s kWh kWh kWh 

Mean 186.404 16.972 2.943 0.789 1.498 1.713 

Std. Dev. 263.347 9.097 1.993 0.287 0.642 0.877 

Skewness 1.281 -0.406 0.436 0.369 0.526 1.439 

Kurtosis 0.392 -0.560 0.410 -0.744 -0.310 3.319 

Min 0.000 -12.200 0.000 0.328 0.496 0.480 

Q1 0.000 10.575 1.500 0.564 1.027 1.103 



Q2 12.000 18.300 2.600 0.754 1.414 1.543 

Q3 324.000 23.900 4.100 0.996 1.934 2.149 

Max 1013.000 35.000 14.400 1.693 3.825 8.007 

 

As shown in Figure 2, all three participants experience increased consumption in 

winter and summer, with the winter load being more pronounced for the third partici-

pant. Similarly, two daily spikes are observed at 8:00 AM and 8:00 PM, with the latter 

being higher. The lowest consumption occurs during the early morning hours for all 

three participants. 

The first participant requires less daily energy than the others, with an average 

hourly consumption below 1 kWh and little variation throughout the year. Participants 

2 and 3 have similar energy needs, except in December, January and February, when 

the third participant's consumption is significantly higher. 

 
Figure 2. Boxplots of the three load profiles by month and time of the day. 

Temperature exhibits a wider range during winter months (see Figure 3). During 

July and August, temperatures never fall below 20ºC, indicating warm summers both 

day and night. Due to the fact that there is no irradiance between 7:00 PM and 4:00 

AM, no solar energy production occurs during this time, so it will require reliance on 

wind energy or stored energy in batteries. In contrast, wind speed is highly inconsistent, 

with numerous outliers observed across most months and hours. This inconsistency 

highlights the intermittent nature of wind energy generation and the advantages of com-

bining it with solar energy. 



 
Figure 3. Boxplots of the variables in the weather dataset by month and time of the day. 

3.2 Parameter settings 

The optimisation problem we intend to solve has four distinct versions, referred to 

as Scenarios 1 to 4. The first scenario represents a model where participants operate 

independently. They consume only the energy produced or stored in their own installa-

tions and import energy from the grid, when necessary, with any surplus energy ex-

ported to the grid. In contrast, Scenario 2 introduces internal interactions, which allows 

participants to import surplus energy from others if their own generation is insufficient, 

while still retaining grid interactions as a last resort. Scenario 3 maintains the same 

structure as Scenario 2 but prioritises community interactions over energy storage dur-

ing each time interval. Lastly, Scenario 4 incorporates shared storage systems, that en-

ables participants to charge and discharge the batteries of others after updating their 

own storage units. 

We applied the five aforementioned algorithms to these versions of the optimisation 

problem to compare the results. The algorithms were developed in Python 3.9, and all 

experiments were conducted on a laptop equipped with an Intel Core i5-1155G7 pro-

cessor running at 2.50 GHz and 16 GB of RAM. To execute the algorithms, it was 

necessary to assign values to the parameters defining the components of the energy 

community simulation, including the characteristics and costs of the energy generation 

modules. These values are summarised in the next Table 2. Note that maintenance costs 

are assumed to be 10% of the initial capital cost. 

 

Table 2. Parameters for the energy community simulation.  



Component Parameter Name Value 

Solar energy 𝜇 Efficiency 0.95  
𝑃𝑆𝑇𝐶 Maximum power under standard conditions 250 W  
𝐺𝑆𝑇𝐶 Solar irradiance under standard conditions 1,000 W/m²  

𝛾 Temperature coefficient under standard conditions -0.0044 V/ºC  
𝑇𝑆𝑇𝐶 Temperature under standard conditions 25 ºC  

𝑁𝑂𝐶𝑇 Nominal operating cell temperature 47.5 ºC  
𝐺𝑁𝑂𝐶𝑇 Solar irradiance under NOCT conditions 800 W/m²  
𝑇𝑁𝑂𝐶𝑇 Temperature under NOCT conditions 20 ºC 

Wind energy ℎ𝑊𝑇 Rotor height 20 m  
ℎ Anemometer height 10 m  
𝛼 Power law exponent 0.142 

Batteries 𝑐 Fraction of available charge 0.271  
𝑘 Flow rate between tanks 0.38 

LCOE 𝐶𝑚 Maintenance costs 10%*  
𝑖 Nominal interest rate 0.05  
𝑁 Project lifetime 20 years  

𝑐𝑃𝑉 Cost per photovoltaic module $170  
𝑐𝑊𝑇 Cost per wind turbine $3500  
𝑐𝑏𝑎𝑡 Cost per kWh of battery storage $250 

 

The photovoltaic panel and wind turbine models used as references for renewable 

energy generation simulation are the Sharp ND-R250A5 and the Bergey BWC Excel 

1, respectively.  

Since the three objectives are computed using the amounts of energy generated, 

imported, and exported, their calculation depends on the parameter values. LCOE is an 

objective to be minimised, while SCR and SSR are objectives to be maximised. To 

simplify the implementation of experiments and interpreting the results, SCR and SSR 

are redefined as negative values. In this way, we will seek to maximise in the optimi-

sation process. 

Furthermore, in order to choose the optimal combination of parameters for each 

algorithm, including the population size, we followed the next strategy. The selection 

criteria were the 𝜖 and HV indicators. A grid search was conducted twice for each al-

gorithm, refining the parameter values based on the results of the previous search to 

increase their granularity. The chosen parameter configurations are listed in Table 3. 

The archive size was set to 50, while the population size was 100 for MOPSO, 

MOMPA, NSWOA, and FC-MOEO/AEP. For MOPO, the population size was calcu-

lated as the product of the number of parties and the number of areas, resulting in 80. 

 

Table 3. Metaheuristic parameters. 

Metaheuristic Parameter Name Value 

MOPO P Number of parties 8 
 A Number of areas 10 

 λmax Maximum party switch rate 0.65 
MOPSO w Inertia parameter 0.7 

 k Number of axis divisions in the grid 7 

MOMPA p Step size 1 



 pFADs FADs probability 0.6 

NSWOA b Spiral parameter 0.85 

FC-MOEO/AEP a1 Exploration parameter in EO 2 

 a2 Exploitation parameter in EO 0.5 

 pG Generation probability in EO 0.75 

 σ Success rate threshold in AEP 0.5 

 ω Parameter for updating α in AEP 1.5 

 k Number of stored archives in AEP 4 

 

Since the algorithms differ in their structures, using iterations for comparison is not 

ideal in this case. Therefore, we chose a fixed limit of 5.000 objective function evalua-

tions to ensure a fair comparison. Besides, the quality of the obtained solutions is eval-

uated from two perspectives: external indicators and internal feasibility. External eval-

uation involves calculating maximum spread, spacing, epsilon, and hypervolume indi-

cators, while internal assessment focuses on the feasibility of installations based on 

LCOE, SCR, and SSR at both individual and collective levels across different scenar-

ios. 

For each of the four scenarios, the evaluation procedure includes executing each 

algorithm 30 times, calculating the mean and standard deviation for execution time and 

all indicators except epsilon, and computing the epsilon indicator as the mean of values 

from the Pareto fronts of paired algorithms. 

In this study, the constraints applied were limited to the upper and lower bounds of 

the decision variables. The dataset did not contain specific technical or economic limits 

such as panel or battery sizing. While it would be possible to introduce assumptions, 

for example to prevent one participant from taking a disproportionate share of re-

sources, these restrictions were not implemented directly in order not to bias the out-

comes. Nevertheless, the Pareto front solutions obtained are inherently balanced due to 

the optimisation method, which seeks the best compromise between the individual ob-

jective functions. 

4 Results and discussion 

Once the parameters are set, this section presents the results from applying the five 

multi-objective metaheuristics to the optimisation problem across the four scenarios. 

The results are presented on two perspectives: the performance of the metaheuristics in 

solving the problem and the characteristics of the solutions obtained. 

The performance of the algorithms in the four Scenarios was examined using the 

quality indicators are presented in Table 4. The 𝜖 values were calculated as the average 

of the 𝜖 indicators between the Pareto fronts of the evaluated algorithm and those of the 

other algorithms. According to the table, the ability of the algorithms to find a Pareto 

front that spans a wide region of the objective space has been quantified using the max-

imum spread indicator. MOMPA stands out in this regard, while MOPSO sometimes 

struggles to find solutions with extreme values for individual objectives, as shown by 

its MS values. The uniformity of the solutions, measured by SP, is higher for MOPSO 



and MOPO. NSWOA demonstrated a more limited capacity to explore the interior re-

gions of the space, which results in gaps that manifest as high spacing values. 

The solutions obtained by FC-MOEO/AEP require smaller translations to dominate 

the Pareto fronts of other algorithms, as indicated by both additive and multiplicative 𝜖 

indicators. MOPSO ranks second in this regard. While HV can compare dominance 

relationships, its reliance on an estimated nadir point makes it less reliable as a sole 

criterion. In this context, MOPSO performs well, followed by MOMPA and FC-

MOEO/AEP. The differences in dominance relationships are more evident in the first 

three scenarios, likely due to closer objective values in Scenario 4. Pairwise epsilon 

indicators show that FC-MOEO/AEP slightly outperforms MOPSO across all scenar-

ios. Additionally, FC-MOEO/AEP is the fastest algorithm in terms of execution time. 

If we focus on our proposed algorithm, MOPO, we can observe that its HV values 

are generally competitive, often falling within a close range of the best-performing al-

gorithms, MOPSO, MOMPA and FC-MOEO/AEP. This suggests that MOPO is capa-

ble of finding solutions that effectively cover a significant portion of the objective 

space. In terms of other performance metrics, MOPO’s performance exhibits certain 

variability. It is often neither the best nor the worst performer. 

 
Table 4. Quality indicators and execution time for each metaheuristic in each scenario. 

Metaheuristic MS σ SP σ ε+ σ ε× σ HV σ 
Time 

(s) 
σ 

Scenario 1 
            

MOPSO 0.950 0.13 0.065 0.01 0.029 0.02 1.175 0.09 1.422 0.00 436 1.70 

MOMPA 1.080 0.06 0.104 0.03 0.049 0.03 1.264 0.14 1.410 0.01 531 0.74 

NSWOA 0.928 0.12 0.169 0.07 0.086 0.04 1.560 0.28 1.347 0.06 971 9.80 

FC-MOEO/AEP 1.020 0.03 0.095 0.02 0.022 0.01 1.161 0.08 1.407 0.01 331 0.61 

MOPO 0.992 0.13 0.086 0.02 0.049 0.03 1.290 0.15 1.404 0.01 846 2.53 

Scenario 2             
MOPSO 0.898 0.13 0.061 0.01 0.027 0.01 1.184 0.01 1.422 0.00 450 2.38 

MOMPA 1.020 0.06 0.100 0.03 0.050 0.03 1.294 0.16 1.406 0.01 553 0.90 

NSWOA 0.942 0.10 0.163 0.04 0.094 0.05 1.601 0.31 1.332 0.06 992 2.44 

FC-MOEO/AEP 0.992 0.03 0.084 0.02 0.023 0.01 1.168 0.09 1.403 0.01 354 1.47 

MOPO 1.040 0.12 0.087 0.03 0.065 0.04 1.396 0.22 1.383 0.02 846 0.61 

Scenario 3             
MOPSO 0.901 0.11 0.065 0.01 0.030 0.02 1.188 9.01 1.427 0.00 499 2.70 

MOMPA 1.050 0.05 0.100 0.03 0.056 0.03 1.303 0.16 1.409 0.02 615 1.13 

NSWOA 0.927 0.09 0.147 0.05 0.100 0.05 1.648 0.33 1.334 0.05 1060 3.13 

FC-MOEO/AEP 0.991 0.03 0.090 0.02 0.023 0.01 1.166 0.09 1.406 0.02 411 0.60 

MOPO 1.020 0.10 0.088 0.02 0.062 0.03 1.364 0.20 1.395 0.02 937 1.77 

Scenario 4             
MOPSO 0.697 0.25 0.047 0.01 0.017 0.01 1.068 0.03 1.505 0.00 1750 5.36 

MOMPA 0.969 0.10 0.079 0.03 0.043 0.02 1.170 0.09 1.502 0.01 2180 8.29 

NSWOA 0.940 0.08 0.101 0.03 0.071 0.04 1.284 0.14 1.497 0.01 2630 4.05 

FC-MOEO/AEP 0.961 0.03 0.062 0.01 0.009 0.00 1.060 0.03 1.504 0.00 1210 1.47 

MOPO 0.737 0.29 0.087 0.06 0.038 0.02 1.146 0.08 1.502 0.04 3560 20.00 

 

Now we present Table 5, a statistical analysis for the optimization capability of the 

algorithms. Across 30 executions, the maximum spread, spacing, hypervolume and the 

execution time are extracted for each algorithm and scenario. Pairwise statistical sig-

nificance was assessed using the Wilcoxon signed-rank test with a Holm correction to 

control the family-wise error rate.  

According to Table 5, the results confirm several of the descriptive observations. For 

MS, MOMPA significantly outperforms all other algorithms in Scenario 1 and remains 

among the top performers in Scenarios 2 and 3. In these two scenarios, MOPO performs 

similarly to MOMPA, showing competitive results. In Scenario 4, MOMPA loses its 



advantage to NSWOA and FC-MOEO/AEP, while MOPO maintains a moderate per-

formance across all scenarios, i.e., never the best but consistently competitive. From 

the point of view of spacing, MOPSO is significantly better than all other algorithms in 

all scenarios, followed by MOPO, MOMPA and FC-MOEO/AEP, which show statis-

tically similar performance and generally outperform NSWOA. The high HV values 

obtained by MOPSO are statistically higher than those of any other algorithm, making 

MOPSO the winner in this regard. FC-MOEO/AEP shows similar performance to both 

MOMPA and MOPO, while NSWOA is statistically outperformed by all. Finally, the 

time execution is different for all algorithms, with the best ranking one being FC-

MOEO/AEP. 

Table 5. Comparison between algorithms according to Wilcoxon signed-rank test with Holm 

correction, in every scenario. Font colours indicate the statistical significance of the p-values. 

Bold corresponds to highly significant results (p < 0.01), italic to significant results including 

the marginally significant (0.01 ≤ p < 0.10) and grey to non-significant results (p ≥ 0.10). 

Scenario Metric 
MOPSO 

vs  

MOMPA 

MOPSO 
vs  

NSWOA 

MOPSO 

vs 

FC-
MOEO/AEP 

MOPSO 
vs 

MOPO 

MOMPA 
vs 

NSWOA 

MOMPA 

vs 

FC-
MOEO/AEP 

MOMPA 
vs 

MOPO 

NSWOA 

vs 

FC-
MOEO/AEP 

NSWOA 
vs 

MOPO 

FC-

MOEO/AEP 

vs  
MOPO 

1 MS 2.42E-04 1.00E+00 2.25E-01 4.21E-01 9.22E-05 1.22E-03 4.27E-02 1.79E-03 3.07E-01 1.00E+00 
 SP 1.68E-07 3.73E-08 1.68E-07 1.43E-06 1.84E-03 1.84E-01 1.28E-01 2.48E-04 2.83E-06 1.40E-01 
 HV 3.35E-08 1.86E-08 6.52E-08 7.82E-08 4.47E-08 2.48E-01 1.73E-02 4.00E-07 1.54E-06 3.18E-01 
 Time 1.36E-05 1.36E-05 1.36E-05 1.36E-05 1.36E-05 1.36E-05 1.36E-05 1.36E-05 1.36E-05 1.36E-05 

2 MS 1.40E-04 2.81E-01 5.59E-03 2.08E-03 5.71E-03 1.87E-02 2.81E-01 1.28E-01 4.04E-03 4.82E-02 
 SP 1.86E-08 1.86E-08 3.20E-05 2.57E-05 6.52E-08 1.15E-01 3.96E-01 1.86E-08 9.83E-07 1.00E+00 
 HV 1.30E-07 1.86E-08 1.86E-08 1.86E-08 1.86E-08 3.60E-01 5.59E-05 1.12E-07 4.59E-04 1.74E-03 
 Time 1.31E-05 1.31E-05 1.31E-05 1.31E-05 1.31E-05 1.31E-05 1.31E-05 1.31E-05 1.31E-05 1.31E-05 

3 MS 2.83E-06 5.29E-01 4.40E-04 2.07E-03 6.15E-07 2.21E-05 4.41E-01 2.07E-03 2.07E-03 2.76E-01 
 SP 2.04E-06 3.73E-08 1.83E-04 2.20E-04 1.52E-03 6.37E-01 2.88E-01 1.17E-06 6.99E-06 6.55E-01 
 HV 9.13E-08 1.86E-08 1.86E-08 1.86E-08 9.13E-08 3.28E-01 1.38E-03 9.31E-08 2.29E-06 1.40E-01 
 Time 1.42E-05 1.42E-05 1.42E-05 1.42E-05 1.42E-05 1.42E-05 1.42E-05 1.42E-05 1.42E-05 1.42E-05 

4 MS 2.83E-06 9.75E-05 2.05E-06 6.32E-01 6.32E-01 6.32E-01 7.92E-03 6.32E-01 6.79E-03 9.62E-04 
 SP 1.35E-05 1.86E-08 1.42E-04 5.60E-05 2.17E-02 6.98E-02 5.84E-01 1.84E-06 3.15E-01 3.41E-01 
 HV 6.08E-01 4.42E-05 6.08E-01 3.77E-02 4.27E-02 6.17E-01 6.17E-01 4.42E-05 1.75E-02 3.03E-01 
 Time 1.70E-05 1.70E-05 1.70E-05 1.70E-05 1.70E-05 1.70E-05 1.70E-05 1.70E-05 1.70E-05 1.70E-05 

 

Additionally, we performed a Friedman test to compare all algorithms simultane-

ously, providing mean ranks that summarise their overall performance. It can be seen 

in Table 6. This table confirms the presence of at least one statistically significant dif-

ference among the algorithms for each metric in every scenario. Examining the mean 

rankings across scenarios in the table and the overall rankings in Table 7, MOMPA and 

MOPO consistently achieve top positions in most scenarios for MS. NSWOA generally 

ranks lowest, while FC-MOEO/AEP occupies middle positions, i.e., competitive but 

without consistent dominance. For SP, the final ranking highlights MOPSO, MOPO, 

and FC-MOEO/AEP as the best-performing algorithms, followed by MOMPA and 

NSWOA. The HV metric also supports MOPSO’s superiority, followed by FC-

MOEO/AEP and MOMPA, whereas execution time clearly favours FC-MOEO/AEP. 

 
Table 6. Friedman test results and ranks of algorithms per metric and scenario. 

Scenario Metric χ² p 
Rank 

MOPSO MOMPA NSWOA FC-MOEO/AEP MOPO 

1 MS 33.52 0 3.5333 1.7 3.9 2.9333 2.9333  
SP 65.36 0 1.2333 3.4 4.4333 3.2 2.7333  
HV 83.84 0 1.1 2.6667 4.7667 3.1 3.3667  

Time 119.2267 0 2 3 4.9667 1 4.0333 

2 MS 37.2533 0 3.9667 2.3333 3.6333 3.2 1.8667  
SP 78.2133 0 1.2667 3.2667 4.8333 2.7333 2.9  
HV 87.28 0 1.0667 2.6 4.6667 2.9 3.7667  

Time 120 0 2 3 5 1 4 

3 MS 47.9733 0 4.1 1.8333 3.9333 2.8667 2.2667  
SP 53.4133 0 1.6 3.4333 4.4667 2.8667 2.6333 



 
HV 88.7733 0 1.0667 2.6333 4.8 2.9667 3.5333  

Time 119.2267 0 2 3 4.9667 1 4.0333 

4 MS 34.5867 0 4.2 2 2.7 2.6333 3.4667  
SP 51.8933 0 1.5667 3.2667 4.4333 2.6333 3.1  
HV 26.48 0 2.4 2.7 4.2333 2.5333 3.1333  

Time 120 0 2 3 4 1 5 

 
Table 7. Average algorithm ranks across scenarios, for each metric. 

Metric 
Rank 

MOPSO MOMPA NSWOA FC-MOEO/AEP MOPO 

MS 3.95 1.9666 3.5416 2.9083 2.6334 

SP 1.4167 3.3417 4.5417 2.8583 2.8416 

HV 1.4084 2.65 4.6167 2.875 3.45 

Time 2 3 4.7334 1 4.2666 

 

MOPSO performs very well in spacing and hypervolume with a moderate execution 

time. Its leader selection based on crowding distance and velocity updates tends to 

maintain a well-distributed and dense Pareto front, offering low spacing and high hy-

pervolume. However, it captures extreme solutions less effectively, which explains its 

lower maximum spread. 

MOMPA’s foraging phases, Lévy movements and adaptive changes, seem to favour 

exploration of the edges of the objective space, leading to higher spread and hypervol-

ume, but do not provide the most uniform spacing. 

In our experiments, NSWOA might perform worse because of how it moves (encir-

cling and spiralling around prey solutions). In a smooth, gently sloped problem like 

sizing PV, wind and batteries, neighbouring solutions do not differ a lot and it can be 

more difficult to spot the promising directions. This encircling behaviour can make the 

population cluster in the wrong zones, lowering spread and hypervolume. 

In the case of MOPO, our implementation maintains a relatively large set of candi-

date parties exploring the solution space, with 8 parties and 10 areas. This can preserve 

diversity, helping spread and spacing. Additionally, the repeated party-switching and 

population updates explain the relatively high execution time. 

Finally, FC-MOEO/AEP uses the AEP technique to generate additional solutions at 

each iteration of FC-MOEO/AEP. It exploits the monotonic behaviour of the SCR and 

SSR. Unlike traditional approaches that focus on objective values, AEP considers the 

differences between iterations in the mean values of the decision variables to identify 

new candidate solutions. For instance, when an increase in a decision variable leads to 

an improvement in the objectives, it is likely that further increasing this variable will 

continue to yield better solutions. This alignment between the AEP mechanism and the 

characteristics of these two objectives may explain the algorithm’s superior perfor-

mance. 

We can now shift our focus to the analysis of solutions, specifically the representa-

tive solutions, where some overall trends can be identified, see Table 8. The representa-

tive solution was chosen as the one best trade-off between individual LCOE, SCR, and 

SSR, to prevent heavy reliance of any participant on energy produced by the rest [47]. 

The best trade-off among objectives was typically achieved when storage units have a 

large capacity, around 25 kWh. Additionally, the wind turbine components never 



exceed a value of 2. It therefore indicates that this type of generator is not cost-effective 

in any of the scenarios. Also, the number of photovoltaic modules was consistently 

greater than 20 for all participants, with this value being higher for participants 2 and 

3. This may be attributed to the lower energy demand of participant 1. In Scenario 4, 

all algorithms tended to converge toward installations that maximize the number of 

photovoltaic modules. The flexibility offered by shared storage in Scenario 4 enables 

larger system sizes without raising the levelized cost of energy, and in certain cases, it 

can actually be decreased. Consequently, Scenario 4 outperforms the others in terms of 

community-level LCOE, SCR, and SSR. 

 
Table 8. Representative solution for each algorithm in each scenario. 

Metaheuristic Representative solution LCOE SCR SSR 

Scenario 1 
   

MOPSO (37,0,25,42,0,25,44,0,25) 0.07925 0.9263 0.8608 

MOMPA (30,0,25,35,0,24,40,0,25) 0.08509 0.9640 0.8227 

NSWOA (26,0,25,30,0,25,37,0,25) 0.09134 0.9824 0.7883 

FC-MOEO/AEP (39,0,25,50,0,25,47,0,25) 0.07567 0.8896 0.8802 

MOPO (29,0,23,35,0,25,32,0,25) 0.08851 0.981 0.7957 

Scenario 2 
   

MOPSO (39,0,25,34,0,25,44,0,25) 0.08117 0.9362 0.8434 

MOMPA (26,0,25,35,0,25,34,0,25) 0.09029 0.9825 0.7975 

NSWOA (24,0,20,32,0,25,35,1,25) 0.09659 0.9811 0.7921 

FC-MOEO/AEP (41,0,25,50,0,25,50,0,25) 0.07447 0.8762 0.8859 

MOPO (28,2,25,35,2,25,29,2,25) 0.13240 0.9832 0.8339 

Scenario 3 
   

MOPSO (36,0,25,44,0,25,41,0,25) 0.07987 0.9311 0.8592 

MOMPA (31,0,25,50,0,25,38,1,25) 0.08643 0.9238 0.8634 

NSWOA (29,0,22,27,0,22,29,0,22) 0.08949 0.9840 0.7384 

FC-MOEO/AEP (49,0,25,50,0,25,46,0,25) 0.07357 0.8647 0.8873 

MOPO (36,0,25,40,0,25,41,0,25) 0.08117 0.9422 0.8514 

Scenario 4 
   

MOPSO (50,0,25,50,0,25,50,0,25) 0.07251 1 0.9509 

MOMPA (50,0,25,50,0,25,50,0,25) 0.07251 1 0.9509 

NSWOA (50,0,25,50,0,25,50,0,25) 0.07251 1 0.9509 

FC-MOEO/AEP (50,0,25,45,1,25,50,2,25) 0.08807 1 0.9590 

MOPO (50,0,25,50,0,25,50,0,25) 0.07251 1 0.9509 

 

In the following part, we present the percentages of emissions observed in our study. 

CO₂ emission reductions from renewable energy generation were assessed relative to 

exclusive dependence on conventional grid electricity. We will use the representative 

solution obtained by FC-MOEO/AEP as it was the best-performing algorithm for the 

calculation (see Table 9). Emission levels were set at 0.225 kgCO₂/kWh for solar en-

ergy, 0.008 kgCO₂/kWh for wind energy, and 0.028 kgCO₂/kWh for stored energy [18], 

while the grid electricity average emission factor was 0.389 kgCO₂/kWh [48]. Greater 

independence from the grid was associated with progressively larger emission reduc-

tions, increasing from 34.0% in Scenario 1 to 34.4% in Scenario 2, 34.6% in Scenario 

3, and 38.1% in Scenario 4. 



Table 9. Summary of the energy community simulation provided by the solution with the 

best balance of LCOE, SCR, and SSR at the participant level obtained by FC-MOEO/AEP. 

Variable Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Costs ($)     

Installation 41870 42720 43400 53900 

Imports 978 881 835 571 

Energy (kWh)     

Generated 48641 50636 52073 54019 

Imported 5915 5713 5718 2597 

Exported 5394 6269 7046 0 

Shared - 0 541 476 

Shared storage - - - 8608 

Emissions (%)     

Reduction 34.0 34.4 34.6 38.1 

 

As a final result, we present Figure 4. It shows the Pareto front distribution obtained 

by one of the algorithms in the fourth scenario. In the LCOE–SCR projection (Figure 

4b), most solutions cluster at low values of LCOE with high SCR, while only a few 

points extend towards higher LCOE and lower SCR. In the LCOE–SSR projection 

(Figure 4c), a similar pattern is observed, with many solutions concentrated at low 

LCOE and high SSR and fewer solutions spreading towards less favourable combina-

tions. In the last graph, Figure 4d, the distribution is more dispersed, with several solu-

tions located in the region of high SCR and high SSR, although a number of points also 

appear at lower levels, which illustrates the trade-offs between these two objectives. 

 

 
 

(a) (b) 



  
(c) (d) 

Figure 4. Illustrative example of the Pareto front obtained by the FC-MOEO/AEP algorithm 

for the fourth scenario.  

 

5 Conclusions 

In this study, the optimal sizing of photovoltaic, wind, and storage units for a small-

scale urban renewable energy community was formulated as a multi-objective optimi-

sation problem. The cost of energy served as the economic metric, while self-consump-

tion and self-sufficiency rates measured energy flexibility and grid independence. Four 

scenarios were considered, from full independence among participants to shared energy 

generation and storage. To solve this problem, five metaheuristics were applied and 

evaluated using quality indicators. 

Among these algorithms, FC-MOEO/AEP, which utilises a solution generation 

mechanism based on the evolution of the archive of non-dominated solutions, demon-

strates rapid convergence and superior consistency in finding dominant solutions. The 

MOPSO algorithm emerges as a viable alternative, excelling in the uniformity of the 

Pareto fronts obtained. Additionally, our proposed adaptation, MOPO, shows generally 

competitive HV values, often falling within a close range of the best-performing algo-

rithms, MOPSO and FC-MOEO/AEP. The results indicate that MOPO can discover 

solutions that adequately cover a substantial area of the search space, although addi-

tional refinement could be beneficial for MOPO to achieve the optimal outcome. 

The strong performance of FC-MOEO/AEP may be attributed to the monotonic na-

ture of the self-consumption and self-sufficiency rates set as objectives. Thus, simula-

tions based on FC-MOEO/AEP solutions indicated that allowing participants to use 

surplus energy generated by other members reduces grid interactions and associated 

emissions, especially when the energy storage is shared. 

These findings highlight the need for optimisation approaches that align with the 

specific characteristics of resource management in energy communities, particularly as 

the adoption of renewable energy in residential areas continues to grow.  



A key limitation of this study is the restricted size of the dataset, which includes 

only three participants. While our objective is to work with larger communities, the 

specific type of detailed energy data required is insufficient. To our knowledge, no 

publicly available dataset meets these requirements at a larger scale. Expanding the 

model to communities with more participants would be ideal to capture a wider range 

of energy consumption patterns and improve the model’s capabilities.  

Our proposed adaptation, MOPO, shows generally competitive HV values, often 

falling within a close range of the best-performing algorithms, MOPSO and FC-

MOEO/AEP. While MOPO can discover solutions that adequately cover a substantial 

area of the search space, its exploitation capability is currently limited compared to 

MOPSO and FC-MOEO/AEP, indicating that additional refinement could further im-

prove its performance and help achieve the optimal outcome. 

Future work might focus on introducing constraints to limit the decision space dur-

ing the optimisation process and incorporating additional objectives to avoid infeasible 

solutions while effectively managing the trade-off between grid independence and the 

autonomy of individual participants. Furthermore, we suggest as future research con-

sidering new competitive methods, such as the adapted and proposed versions of PO, 

will be essential in enhancing the effectiveness of optimisation strategies in these con-

texts. Finally, we consider that future research could explore the integration of real-

world data. Such an approach would require careful consideration of the data’s charac-

teristics and variability. It would lead to an interesting understanding of community 

behaviours and energy usage particularities that are only present in real data. 

6 Abbreviations 

EO Equilibrium Optimiser 

FC-MOEO/AEP Fast Convergence Multi-Objective Equilibrium Optimiser with Archive Evolution Path 

HV Hypervolume 

LCOE Levelized Cost of Energy 

MOMPA Multi-Objective Marine Predators Algorithm 

MOPO Multi-Objective Political Optimiser 

MOPSO Multi-Objective Particle Swarm Optimisation 

MPA Marine Predators Algorithm 

MS Maximum Spread 

NSWOA Non-dominated Sorting Whale Optimisation Algorithm 

PO Political Optimiser 

PSO Particle Swarm Optimisation 

SCR Self-Consumption Rate 

SP Spacing 

SSR Self-Sufficiency Rate 

TMY3 Typical Meteorological Year 3 

WOA Whale Optimisation Algorithm 
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