ORIGINAL ARTICLE

A comprehensive review of the manufacturing process and properties of natural hydraulic limes

Anna Arizzi · Clara Parra-Fernández

Received: 3 February 2025 / Accepted: 9 April 2025 © The Author(s) 2025

Abstract Within the sub-group of hydraulic limes, natural hydraulic limes (NHL) are obtained by calcining limestone containing silica and alumina at temperatures of less than 1250 °C. The content of hydraulic phases generated at these temperatures depends on the raw material, the firing and cooling conditions inside the kiln, and the slaking method, giving rise to natural hydraulic limes with different hydraulic features. Despite these differences, the European standards classify NHL limes above all based on their free lime content and the compressive strength of the mortar after 28 days of curing. This means that there are natural hydraulic limes on the market today which despite having the same index number (NHL2, NHL3.5 or NHL5) have very different compositional and textural characteristics. The variations in the limes can in turn lead to mortars with different properties in both the fresh and hardened states. Although the standard establishes ranges for the compressive strength values for the different index numbers, these ranges overlap, so giving rise to ambiguities in the classification of these limes. This review paper aims to extend our knowledge as to how different aspects of the manufacturing process of NHLs influence their final properties, with the ultimate objective of achieving a more rigorous classification of these limes. If hydraulic limes with more precisely controlled compositional and textural characteristics were available on the market, this would have a positive impact, especially on architectural heritage conservation, as more suitable, more clearly defined and more compatible hydraulic mortars would be available to restorers.

Keywords Building limes · Hydraulicity · Calcination · Slaking · Composition · Setting

1 Introduction

According to the European standard EN459-1 on building limes [1], those with hydraulic properties "consist mainly of calcium hydroxide, calcium silicates and calcium aluminates and have the property of setting and hardening when mixed with and/or under water". The standard defines three subfamilies of limes with hydraulic properties: (1) natural hydraulic limes (NHL), (2) formulated limes (FL), and (3) hydraulic limes (HL). The first, natural hydraulic lime is defined as "a lime produced by burning of more or less argillaceous or siliceous limestones (including chalk) with reduction to powder by slaking with or without grinding. (...). Grinding agents up to 0.1% are allowed. Natural hydraulic lime does not contain any other additions".

A. Arizzi (🖂) · C. Parra-Fernández Departamento de Mineralogía y Petrología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18002 Granada, Spain e-mail: arizzina@ugr.es

Published online: 12 May 2025

Natural hydraulic limes are classified into three grades: NHL2, for natural hydraulic lime 2; NHL3.5, for natural hydraulic lime 3.5; and NHL5, for natural hydraulic lime 5. This classification is based on the minimum compressive strength values obtained in standardised mortars made with these NHLs after 28 days of curing in accordance with EN459-1 [1]. As already highlighted by other researchers [2–4], the compressive strength ranges for the three types of natural hydraulic lime overlap, implying that some NHL might be misclassified. Such is the case of a natural hydraulic lime with a 28 day strength of around 6 MPa, which could be either a NHL2, a NHL3.5 or a NHL5 (Table 1).

Furthermore, the 28 day compressive strength test can be misleading when characterising and classifying feebly hydraulic NHL in which most of the strength is obtained through long-term carbonation, and therefore after a longer hardening period [2–7]. On average, NHL mortars only reach approximately 50% of their ultimate strength during the first 28 days of curing [6, 8–14]. And in fact, a curing time of at least 2 years is necessary to obtain a real indication of the strength gain in mortars made with NHL, at which point a NHL2 can reach even higher strengths than the weakest NHL5 at 28 days [2, 3, 15].

The European standard EN459-1 [1] also establishes different final setting times for each type of NHL (Table 1). However, it must be emphasised that these are the only physical parameters established in the standard that allow us to distinguish between the different NHLs.

As regards the chemical requirements, the lime available as Ca(OH)₂ (also called *free lime*) has to be controlled (Table 1), and the SO₃ content must be lower than 2% in all types of NHL. It is striking that the European regulations do not specify the approximate amounts of silica and alumina that must be present in the NHL, and/or even in the raw material to obtain this type of lime, especially considering that these compounds are responsible for the hydraulic nature of NHL (as also stated in the standard itself: "the hydraulic properties of NHL exclusively result from the special chemical composition of the natural raw material").

Prior to the differentiation of natural hydraulic limes with indexes 2, 3.5 and 5, a more exhaustive categorisation, which defined the limes as feebly, moderately and eminently (or moderate,

Fable 1 Main characteristics of natural hydraulic limes according to European standard [1, 35] and previous scientific literature [16, 19–22]

		•		,		,		`	,	
Binder type		Physical requirements (EN459-1 [1])	EN459-1 [1])	Chemical requirements (EN459-1 [1] and EN459-2 [35])				Other requirements		
Name	Acronym [1]	Compressive strength at 28 d (MPa)	Final setting times (h)	Available lime as $Ca(OH)_2$ (%)	Available lime Hydraulic Description as Ca(OH) ₂ (%) degree [16] [16, 18]	Description [16, 18]	CI [20, 21]	HI [19, 22]	HI [19, 22] Content in clay phases [21]	Total reactive oxides (SiO ₂ + Al ₂ O ₃ + Fe ₂ O ₃) [16, 18]
Natural hydraulic	NHL2	≥ 2 to ≤ 7	≥ 40	≥ 35	Moderate	Slightly or Feebly	0.3–0.5	0.1–0.2	%8 ~	< 12%
lime	NHL3.5	≥ 3.5 to ≤ 10	≥ 30	> 25	Intermediate	Moderate	0.5-0.7	I	~ 15%	12–18%
	NHL5	≥ 5 to ≤ 15 *	≤ 15	≥ 15	High	Eminently	0.7-1.1	0.2-0.4	~ 25%	18–25%

١

CI cementation index, HI hydraulicity index

*The compressive strength at 7 days is only given for NHL5 and must be $\geq 2 \text{ MPa}$

Materials and Structures (2025) 58:152 Page 3 of 22 152

intermediate and high) hydraulic was used. This classification, which was introduced by Cowper [16], was based on the studies initiated in the eighteenth century by Smeaton, continued by Vicat [17, 18] and completed in the twentieth century by Eckel [19] and Boynton [20]. Cowper [16] defined hydraulic limes as very complex products consisting of silica (SiO₂), alumina (Al₂O₃) and lime (CaO), with or without magnesia (MgO) and iron oxide (Fe₂O₃). Holmes and Wingate [21] consider soluble silica as the most active component of the possible clays, while stating that alumina and ferric oxide also contribute to the hydraulicity. All these reactive oxides are regarded as responsible for the hydraulic properties of binders such as natural hydraulic lime, and precise ranges for the total reactive oxide content have been established for each type of lime (Table 1). These have been used to create indexes that define the total hydraulicity of each binder, i.e. the hydraulicity index (HI, Eq. 1) [9, 17, 19–24] and different versions there of [25, 26] (Eq. 2).

$$HI = \frac{\left(\% \text{SiO}_2\right) + \left(\% \text{Al}_2 \text{O}_3\right)}{\left(\% \text{CaO}\right)} \tag{1}$$

$$HI = \frac{(\% \text{SiO}_2) + (\% \text{Al}_2 \text{O}_3) + (\% \text{Fe}_2 \text{O}_3)}{(\% CaO) + (\% \text{MgO})}$$
(2)

However, the hydraulicity index does not assess the specific contribution made by each oxide to the formation of hydraulic phases. For this reason, another hydraulicity indicator known as the cementation index (*CI*, Eq. 3) was established, which considered the molecular proportions of each oxide when they combine to form the hydraulic compounds [19].

$$CI = \frac{2.8 \times (\% \text{SiO}_2) + 1.1 \times (\% \text{Al}_2 \text{O}_3) + 0.7 \times (\% \text{Fe}_2 \text{O}_3)}{(\% \text{CaO}) + 1.4 \times (\% \text{MgO})}$$
(3)

Nowadays, *CI* is the most common index for classifying hydraulic limes, for determining the suitability of a raw material to produce a binder with a certain degree of hydraulicity and for establishing the boundaries between the different grades of hydraulic limes [27–32]. Even though different CI ranges have been established over time, the most

generally accepted are those defined by Boynton [20, 33, 34], as indicated in Table 1.

However, as stated by Eckel a century ago [19], the cementation index "cannot be the sole basis for classification, because the properties of a hydraulic cementing material (...) depend not only on its composition, but also on the conditions of its manufacture".

Starting from this premise, the aim of this bibliographic review is to extend our knowledge of natural hydraulic lime and its applicable technical standards. To this end, this study will be focusing in particular on the manufacture of NHL and its use, especially in the field of Architectural Heritage conservation and restoration.

2 The manufacturing process of natural hydraulic lime

To understand why NHLs with such different properties are currently available on the market, it is necessary first to explain how they are manufactured at an industrial level, a topic about which little research has been conducted, as other authors have already pointed out [2, 3, 6, 12-14, 16, 19, 21, 25, 27-29, 31, 32, 36-51]. To this end, all the steps of the manufacturing process of natural hydraulic limes will be discussed in depth on the basis of the existing literature, according to which the most important factors affecting the final product are: (1) the chemical-mineralogical and textural composition of the raw materials, (2) the calcination conditions (e.g. temperature and residence time in the kiln), (3) the slaking process, and (4) the reactivity of the lime produced.

2.1 Raw materials

It has always been believed that the hydraulicity of NHLs is dependent on the presence of clays in the raw material. This is because the first definition of the degree of hydraulicity of NHLs referred to Smeaton's studies on English marly limestones, i.e. limestones containing clays. Even further back in time, Vicat [17, 18] produced an "artificial hydraulic lime" by mixing a "rich slaked lime" (obtained from chalk from the Upper Cretaceous carbonatic formation of the Paris Basin, according to Artioli et al. [52]) with a

certain proportion of clay, and calcining the mixture, thus obtaining a product called "twice-kilned". And, in 1796, James Parker manufactured the first natural cement (also called *Roman cement* or *Parker cement*) by burning and grinding septaria, calcareous nodules with a clay nucleus [21, 52].

As a result, the presence of clays has become an essential prerequisite in all raw materials considered suitable for making NHLs. Even though the presence, content and type of clays ("active clays", [21]) are important aspects to consider in the manufacture of NHLs, as the chemical–mineralogical composition of the clays can affect the silicates and aluminates formed [51, 53–55], different types of siliceous limestone (providing they have a *CI* of between 0.30 and 1.10 [19]), and even industrial sub-products [56] can also be used in the manufacture of natural hydraulic limes, as has been demonstrated in recent research.

These materials include stones containing diatoms (amorphous silicon oxide) [26], microcrystalline quartz (or silex), feldspars and plagioclases [27–32, 44, 46–48, 50, 57–64], waste from the paper industry (lime mud, [56]) and a mix of Ca(OH)₂ and SiO₂ [65].

Nowadays, it is more and more widely accepted that a natural hydraulic lime can be obtained not only from a limestone with a certain clay content, but also from a siliceous limestone (for example with silex or chert), providing that the silica present in the stone is reactive [32, 66].

The properties of natural hydraulic limes are directly influenced by the compositional and textural features of the raw materials used in their production [31]. This means that although the reactive oxide content is a determining factor in the development of hydraulicity, the heterogeneity [67], texture, granulometry and crystallinity of the rock influence not only the degree of hydraulicity, but also the physical properties of the calcined product [47–49, 59, 68–70]. For example, Wingate [37] found that crystalline rocks such as marbles, with low porosity and very coarse crystalline impurities, were hard to calcine. Other more recent research studies have investigated the influence of the petrographic features of the rock during the calcination phase [29, 31, 48, 49, 71]. In these studies, calcination was carried out in the laboratory and mostly on ground powder samples rather than on solid rock. In this way it was discovered that rocks with clastic textures are preferable to crystalline rocks because of their higher porosity and ease of decomposition, and that fine-grained or micritic (< 5 μ m) calcite matrices are more prone to calcination than sparite-sized (> 5 μ m) ones [31, 49, 71]. This is because the smaller the particle size, the larger the specific surface area of the grains. If these factors could be controlled, a better-quality quicklime (i.e. more reactive to water) could be produced using less energy, as will be discussed below.

2.2 Calcination

The hydraulicity and physical characteristics (e.g. colour, porosity, specific surface area, density, etc.) of the calcined product are influenced not only by the chemical and mineralogical composition of the raw materials, but also by the calcination conditions [9, 16, 21, 23, 24, 29, 36, 39–42, 71]. In particular, the degree of calcination of the limestone is highly dependent on the maximum temperature reached, the residence time in the kiln [29, 71] and the partial pressure of the surrounding CO₂ [34].

NHLs are obtained by calcination below the clinkering point, 1250 °C, a feature that differentiates these binders from ordinary Portland cement (OPC) and its varieties [72]. During the firing process, the following reactions occur [16, 21, 25, 73]:

- Between 400 and 600 °C, the clays, if any, are dehydrated and decompose partially or totally;
- Between 600 and 850 °C calcite decomposes into calcium oxide and CO₂ [74]. Above 1000 °C, CaO begins to undergo sintering, with an increase in crystallite size as the temperature rises [74], aspect that will have an impact on its reactivity towards water during the hydration step;
- Over 800 °C, a solid-state reaction occurs between unstable reactive ions (i.e., silicon, aluminium and iron) and calcium oxide, generating various silicates and calcium aluminates.

The calcination temperature used in most of the experimental studies reported in the literature ranges between 950 and 1050 °C [5], and 950–1250 °C [16, 25, 75], whilst temperatures higher than 1250 °C would favour solid-state and liquid-state sintering [61]. In some studies, hydraulic binders have been

Materials and Structures (2025) 58:152 Page 5 of 22 152

produced at lower calcination temperatures (850 °C, [26]). As is generally known for aerial lime, preheating and a gradual increase in temperature is preferable to shock calcination, so as to ensure the complete thermal decomposition of the calcite [40].

Heat is unevenly distributed inside traditional kilns in which different calcination temperatures can be reached. As a result, "under-burned", and "hard-burned" (also called "soft-burned" "overburned" and "dead-burned") lime [37] can be obtained. When the stone presents a residual core of non-decomposed calcite, due to an excessively low calcination temperature, the lime is considered to be underburned [37]. If the stone reaches sintering point, due to an excessively high temperature, the lime is said to be hard-burned (depending on the degree of sintering, this lime is then described as overburned or deadburned). In the latter, the CaO particles have a less porous structure and therefore a lower specific surface area, which means that the NHL quicklime is less reactive to slaking [41, 42, 49]. Soft-burned lime, by contrast, is obtained at lower temperatures and is more reactive than lime produced at higher temperatures or with longer residence times in the kiln [37, 40, 41, 50].

This problem was minimised with the invention of modern kilns in which, unlike the traditional ones, the heat is more homogeneously spread and calcination is less dependent on the position of the stone in the kiln. Previously, natural hydraulic lime had been obtained by burning large lumps of material, much larger than those used in the manufacture of Portland cement [76]. In traditional kilns (Fig. 1A), the size of the lump depended on its position in the kiln, which was filled from above and in layers so that the larger rock fragments were placed at the bottom, close to the fire, and the smaller pieces appeared in the upper layers [19]. However, with the introduction of modern industrial kilns (Figs. 1B and C) and machinery capable of reducing rock size to 6–8 cm (Fig. 2) [37], the calcination process was optimized.

Overburning is not only the product of high calcination temperatures, it is also influenced by the chemical and mineralogical composition of the raw material [7]. It is encouraged by the presence of silica, alumina and iron in the raw materials, which are known to clog the pores of the quicklime, decreasing its specific surface area and reactivity to hydration [40, 42]. This also affects the specific surface area of the lime, making it more impermeable to slaking water even if it has been calcined at optimum temperature.

In addition to its effects on the textural properties and reactivity to water of the NHL quicklime, the calcination temperature is also a determining factor in the resulting mineralogy of the NHL. For example,

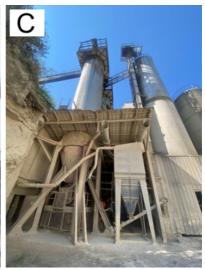


Fig. 1 Types of kiln used by different NHL manufacturers. A Traditional kiln from the Spanish company Cementos Tigre. B Industrial kiln from the Portuguese company Secil. C Indus-

trial kiln from the French company Socli-Heidelberg. *Source* Photographs of the authors

152 Page 6 of 22 Materials and Structures (2025) 58:152

Fig. 2 A Raw material for NHL production on conveyor belts on the way to the kiln. Picture taken at the French company Saint Astier. B Raw materials of homogeneous size piled up by the French NHL producer Lafarge-Holcim. Source Photographs of the authors

the hydraulic phases (C_2S , C_3S , C_3A) and iron phases such as brownmillerite (C_4AF) appear in increasing amounts as calcination temperatures increase [28]. The development of larger amounts of Fe-bearing phases also modifies the physical properties of the lime, giving it a brownish tone [28, 29, 32, 46].

The influence of temperature in the resulting NHL was already observed in 1922 by Eckel [19], who stated that NHL can be produced in two different ways: (1) by the calcination of siliceous or argillaceous stones with a low CI (0.30–1.10), at a medium temperature, which would give rise to a "typical hydraulic lime"; or (2) by the calcination of stones with high CI (1.10–1.60) at a low temperature, which would result in a hydraulic lime with a large proportion of inert material, which Eckel refers to as an "imperfectly burned natural cement". This statement suggests that the same raw material can be used to obtain NHL with different degrees of hydraulicity, providing that a different calcination temperature is used.

Finally, the release of CO_2 in the kiln during calcination also influences the outcome of the calcination process in two main ways. Firstly, the resulting quicklime has a more porous structure, thus affecting the properties of the calcined product [40–42]. Secondly, it gives rise to silicon carbonates and back-reactions of carbonation inside the kiln when the CO_2 extraction system has insufficient

capacity [20, 29, 32, 41, 46, 77]. This can be avoided by installing a more effective ventilation system or by a longer residence time at maximum temperature.

2.3 Hydration (slaking)

The calcined rock that gives rise to NHL is composed in part of a variable amount of calcium oxide that undergoes hydration to obtain calcium hydroxide (Eq. 4).

$$CaO + H_2O \rightarrow Ca(OH)_2$$
 (4)

This is a strong exothermic reaction [78] that causes an associated increase in surface area, weight and volume [20]. In theory, the part of the lime composed of silicates and other hydraulic phases will not slake during this stage [19].

Hydration (or slaking) can be carried out by different methods, as reported in the literature [58, 79]. In the case of air limes, the most common industrial method is "dry hydration", which consists of adding a stoichiometric amount of water to the CaO, by spraying or irrigation [52], so as to obtain a dry fine powder of Ca(OH)₂. Slaking under water, by contrast, involves the use of larger amounts of water to obtain calcium hydroxide in slurry or putty form [40, 52].

Materials and Structures (2025) 58:152 Page 7 of 22 152

Slaking under water (also called *wet hydration*), is never used in the manufacture of NHLs, as it would lead to the undesired hydration of the calcium silicates and aluminates present in the NHL, which are supposed to react later in the mortar. As a result, a water/CaO ratio of 1:1 is used for slaking. According to the reactivity test regulated by the EN 459–2 standard [35], slaking is controlled by measuring the heat of hydration produced by a known weight of lime in a known volume of water.

The reactivity to water of CaO is influenced by a number of factors, including the characteristics of the fired limestone (e.g. composition, surface area, porosity, particle size, etc., [21, 37, 80]), the calcination conditions (e.g. kiln type, temperature and residence time, [81]), the existence of a storage period after calcination [41], the slaking method and the agitation mode [82], and the composition of the slaking water [45, 83, 84].

According to Leontakianakos et al. [45], the slaking process depends mostly on the composition and presence of impurities of the source material, and on the calcination conditions, rather than on the chemical composition of the slaking water. Factors such as the microstructure and texture of the raw material [39], and the magnesium and alumina content of the limestone seem to be key aspects in the progress of reactivity [84].

The use of high temperatures and long residence times during calcination leads to a reduction in the slaking rate due to the coalescence of the lime particles, and a decrease in their specific surface area [20, 39, 43, 49, 80, 82, 85, 86]. By contrast, soft-burned limes are more prone to hydration than hard-burned ones, because they are more porous and therefore more permeable to water [20].

The presence of CO_2 in the kiln and the storage also influence the reactivity of the quicklime towards water [41, 87]. The CaO formed during calcination is a thermodynamically unstable product that tends to react with other compounds such as CO_2 inside the kiln or with the water vapour in the atmosphere [34, 41]. The latter occurs because CaO has a high-water sorption capacity, which means that hydration can occur even in atmospheres with ~15% RH [20, 88]. CaO may be subject to both carbonation and pre-hydration reactions

after calcination [34] and during a potential storage period [41], and therefore prior to the hydration process itself. If this occurs, the lime particles might be covered by a thin surface layer of calcium hydroxide that is known to influence their behaviour during the slaking process [40].

The slaking process can be carried out either: (i) directly on the lime lumps, which turn to dust when they come into contact with water, or (ii) on the previously ground quicklime powder. In general, the slaking of ground quicklime is the preferred option as it is quicker and more homogeneous, and smaller Ca(OH)₂ particles are obtained [20, 37].

Agitation during hydration positively impacts the rate of slaking, as it increases the dispersion of the lime particles and enables higher slaking temperatures to be reached [20, 82].

Finally, the chloride content of the slaking water seems to increase the reactivity of the lime towards water, while sulphates and carbonates delay the hydration reaction [83, 84].

According to Eckel [19], NHL was stored for approximately 10 days in bins in the plant, during which time the lime continued hydrating with the aid of the steam that was generated. Slaking was only considered to have been completed once this period had come to an end.

Similar traditional slaking methods exist in Oriental cultures [58, 79]. Among them, a method called *wind-slaking* [58], which involved exposing the quicklime to wet airflow, so producing better quality limes and mortars with greater mechanical strength. However, this method takes much longer than water-slaking, as it may need 21–40 days depending on the air flow (open or closed) [58].

Pesce et al. [89] have demonstrated the influence of the slaking method on the crystallinity of the mineral phases and on the type of hydrated phases formed. In particular, the enhanced mechanical properties shown by the final mortars could be due to the development of an amorphous precursor of portlandite, detected in limes and cement slaked with moisture from the air [32, 90–99].

In the final stage of the industrial manufacturing process, natural hydraulic limes are usually re-ground right

Fig. 3 A Tube for slaking of the calcined material. B Grinding ball mill for final crushing of NHL. Both images were taken at the French company Lafarge. Source Photographs of the authors

after slaking (Fig. 3), so as to obtain a finer powder that is now ready to be put on sale.

3 The composition of NHL

Natural hydraulic limes are composed, on the one hand, of an aerial fraction that consists mostly of calcium hydroxide (Ca(OH)₂, mineral phase *portlandite*, also referred to as *free lime*), and, on the other, of a hydraulic fraction formed by a series of more or less reactive compounds that depend on the raw material and manufacturing conditions, as commented above.

The predominant hydraulic phase in NHLs is di-calcium silicate (Ca_2SiO_4 , mineral phase *larnite*, also known as *belite*, according to cement chemistry notation C_2S (2 $CaO\cdot SiO_2$)) [8, 23, 25, 29, 31, 53, 65, 72, 96, 100, 101]. Other hydraulic phases likely to be found in NHLs are [7, 8, 23, 28, 29, 32, 46, 48, 100]:

Tri-calcium silicate (Ca₃SiO₅, mineral phase hatrurite), also known as alite, C₃S (3 CaO·SiO₂). This phase is generally formed at higher temperatures than those used in NHL manufacture, but it can be found in NHL due to the occurrence of high-temperature points (hotspots) in the kiln [25, 96].

- Tri-calcium aluminate, also known as *aluminate* or *celite*, C₃A (3 CaO·Al₂O₃);
- Tetra-calcium alumino-ferrite (Ca₂(Al,Fe)₂O₅, mineral phase *brownmillerite*) also known as *felite* or *ferrite*, C₄AF (4 CaO·Al₂O₃·Fe₂O₃);
- Calcium aluminium silico-aluminate (Ca₂Al(AlSiO₇), mineral phase *gehlenite*), also known as C₂AS (2 CaO·Al₂O₃·SiO₂).

Wollastonite (CaSiO₃, CS) and its different polymorphs (e.g. pseudowollastonite, parawollastonite, etc.) are calcium silicates that can sometimes be detected in NHLs, even though they are not hydraulic phases [28]. Other non-hydraulic phases reported in hydraulic limes are bredigite ($\text{Ca}_7\text{Mg}(\text{SiO}_4)_4$) and kilchoanite/rankinite ($\text{Ca}_3\text{Si}_2\text{O}_7$) [32, 102].

In general, the higher proportion of C_2S compared to C_3S and the presence of gehlenite (C_2AS) are two distinctive aspects of natural hydraulic limes as compared to other hydraulic binders such as Portland cement [25].

Gehlenite can also be present in its hydrated form (Ca₂Al(AlSi)O₇ 8H₂O, mineral phase *strätlingite*, C₂ASH₈) [23, 102] or in the form of other intermediate phases that form a solid solution with it. One example is the mineral phase *åkermanite* (Ca₂MgSi₂O₇), in which the aluminium is replaced by magnesium [103], a phase that can also be obtained

Materials and Structures (2025) 58:152 Page 9 of 22 152

from wollastonite if the system is rich in MgO [32, 104].

 C_3A and C_4AF are formed within the calcination temperature range of NHL, although their presence is dependent on the content of reactive Al₂O₃ and Fe₂O₃ in the raw materials [29, 38]. When mixed with water and sometimes during the slaking process itself, these phases, also known as clinker phases [52], produce a series of intermediate or AFm phases [32, 52, 105]. These are predominantly hydrocalumite $(Ca_4Al_2(Cl,CO_3,OH)_2(OH)_{12-4}H_2O)$ and hydrotalcite $(Mg_6Al_2(CO_3)(OH)_{16-4}(H_2O))$, which are calcium and magnesium analogues [106], as well as calcium carboaluminate or monocarboaluminate (C₄AĈH₁₁) and other less stable hydrated phases such as hydroxi-AFm or C_4A hydrates, (C_4AH_{7+x}) and hemicarboaluminate ($C_4A\hat{C}_{0.5}H_{12}$) [102, 105, 107–110].

Other phases derived from the calcination process itself and likely to be detected in NHLs are *quartz* (SiO₂) and its polymorphs, *tridymite and cristobalite*.

Periclase (MgO) can also be present in NHLs if the raw material contained Mg-bearing carbonates (e.g., dolomite, magnesite) or other Mg phases, and trace CaO contents are sometimes found due to incomplete hydration.

Variable *calcite* contents may also be detected, due to incomplete thermal decomposition of this phase or as a result of carbonation of the free lime, when in contact with CO₂. Calcite polymorphs such as *aragonite* or *vaterite* can occasionally be found in NHL and their presence depends mostly on the carbonation conditions.

Silicon carbonates such as *spurrite* formed by recarbonation reactions with the CO_2 inside the kiln or back-reactions have also been reported in the literature [20, 29, 32, 41, 46, 77].

Another phase found by other authors in commercial NHLs is *anhydrite* [23, 96], which may be due to *gypsum* or other sulphur sources in the raw material.

It is worth stressing that, despite the high number of hydraulic phases that are potentially present in NHL, this binder only has to comply with the amounts of free lime established in the European standard EN459-1 [1] for each NHL class (\geq 35% for NHL2, \geq 25% for NHL3.5, and \geq 15% for NHL5), regardless of the other phases it may contain.

4 Setting process

Due to its composition, NHL setting (or hardening) consists of two main processes: (1) carbonation of calcium hydroxide when it comes into contact with atmospheric CO_2 (Eq. 5), and (2) hydration of the hydraulic phases when they come into contact with H_2O [16] (eqs. 6, 7, 8,9 and 10, [38, 75]. These processes are known to be in competition, although in NHL, hydration generally precedes carbonation [7, 111]

Carbonation reaction:

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$$
 (5)

Hydration reactions:

Larnite:

$$Ca_2SiO_4 + 4H_2O \rightarrow C - S - H + Ca(OH)_2$$
 (6)

Hatrurite:

$$Ca_3SiO_5 + 5H_2O \rightarrow C - S - H + 2Ca(OH)_2$$
 (7)

Tri-calcium aluminate:

$$Ca_3Al_2O_6 + 6H_2O \rightarrow C_3AH_6$$
(hydrogarnet) (8)

Brownmillerite:

$$Ca_2AIFeO_5 + 5H_2O$$

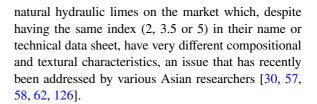
 $\rightarrow C_3AH_6(hydrogarnet) + Fe(OH)_3$ (9)

Gehlenite:

$$Ca_2Al(AlSi)O_7 + 8H_2O \rightarrow C_2ASH_8$$
(strätlingite) (10)

Hydrated calcium silicates (or *calcium silicate hydrates*, C–S–H) are a family of mineral phases such as *jennite* ($C_9S_6H_{11}$), *tobermorite* ($C_5S_6H_5$) or *plombierite* ($C_5S_6H_8$) [102], characterised by disorder phenomena, low crystallinity and very small grain sizes [112], all of which are produced by the hydration of the hydraulic silicate phases C_2S and C_3S . According to Taylor [38], C_3S shows greater reactivity than C_2S , as after 28 days of curing, C_3S is responsible for 70% of cement hydraulicity, while C_2S is responsible for just 30%. However, the differences in the size of these components influence their specific area and therefore their reactivity. The average size of C_2S in cement is between 20 and 40 μ m [38], while in NHL it is around 2 μ m [32], which together with the lower C_3S content in NHL means that

C₂S is expected to make the largest contribution to the C–S–H, even though at a slower rate.


Aluminate phases (C₃A and C₄AF), which are known to be more reactive than C₂S [52], can also react to form AFm phases in the previous stages of hydration. These are hydroxy-AFm, hemi and monocarboaluminate and strätlingite, also known as gehlenite hydrate [105, 110], which tend to form more stable hydrated calcium aluminates (or calcium aluminate hydrates, C-A-H) [23]. Albeit to a lesser extent, C-A-H phases contribute to the mechanical properties of binders of this kind and can be detected in hardened NHL mortars [7]. In their crystalline form, C-A-H are commonly known as hydrogarnet $(Ca_3Al_2(OH)_{12})$ [102, 105]. This phase is considered to be the most stable phase, as all the AFm phases eventually tend towards it [23, 52, 102, 105]. The hydrogarnet phases may also include iron in their structure $(Ca_3(Al_xFe_{1-x})_2(SiO_4)_v(OH)_{4(3-v)}, [113])$ depending on the amount of C_4AF [114].

Other hydrated phases include hydrated calcium calcium silico-aluminate silico-aluminates or hydrates (C-A-S-H) and hydrated magnesium silicates or magnesium silicate hydrates (M-S-H), whose occurrence is closely related to the compositional characteristics of the binder and the raw material [115–121]. The hydrated phases that eventually form gels are hard to detect in NHLs as in many cases they are amorphous and are classified as amorphous phases [96]. They are more easily identified in cement pastes and mortars, where they appear in abundant amounts, and they have sometimes been detected in archaeological materials with pozzolanic activity [122-124].

Table 2 shows some of the most common mineral phases and compounds formed in natural hydraulic lime.

In summary, all natural hydraulic limes today are composed of lime (in the form of calcium hydroxide), silicates and calcium aluminates, in varying proportions depending on the initial composition of the raw material. They also contain a variable amount of inert material (normally *calcite*), whose percentages depend on their manufacturing process [96] and whose characteristics (e.g. granulometry and morphology) can influence the plasticity of the lime [125].

As a result of these key aspects, which are not taken into account in European standards, there are

5 The use of NHL in heritage conservation and bio-construction: current debate

The aforementioned physical and chemical aspects of NHL are crucial for ensuring the best possible outcome of restoration works conducted with this binder, as will be discussed below.

Mortars made with natural hydraulic limes have certain specific characteristics such as lower shrinkage during curing compared to aerial limes and higher percentages of open porosity and pore sizes than modern artificial binders (such as hydraulic limes, i.e. limes blended with cement) that make them durable in historic masonry. This durability has been related to the delayed setting (i.e. setting which starts after shrinkage has occurred) of traditional hydraulic binders (e.g. lime with pozzolana and natural hydraulic lime), which is due to a "major hydraulic component C_2S (belite) compared to cement-based binders that have C_3S (alite)" [128].

These features result in moderate mechanical strengths and in permeability values that avoid excessive water retention and related pathologies [8, 21, 33, 129–132]. The plastic or ductile behaviour of NHL, which is capable of absorbing stresses and of adapting to differential settlements, also prevents cracking of the masonry, making it a flexible material [21, 128, 131, 133, 134]. Lime also has a long-term self-healing capacity, in which carbonate reprecipitation can occur in small cracks or fissures [129].

In chemical terms, unlike other non-natural hydraulic limes (HL) or formulated hydraulic limes (FL), NHL has no soluble salts [8, 126, 129] and it is mainly composed of calcium and silicon. The partially hydraulic nature of NHL means that it can be used, not only in the restoration of natural stone, mortars and earthen materials, but also in the stabilisation of soils [135, 136].

Another important aspect explaining its increased use in sustainable and bio-construction is its mineral

Materials and Structures (2025) 58:152 Page 11 of 22 152

Table 2 Main compounds and mineral phases found in natural hydraulic lime before and after the hydration and carbonation processes (modified from Arizzi and Cultrone [102] and Mertens [127])

Cement chemistry notation	Chemical formula	Name of the mineral phase
Before hydration and carbonation		
СН	Ca(OH) ₂	Portlandite/Free lime
C	CaO	Lime
_	${ m SiO}_2$	Quartz-Trydimite-Cristobalite
M	MgO	Periclase
C_2S	Ca_2SiO_4	Larnite/Belite
C ₃ S	Ca ₃ SiO ₅	Hatrurite/Alite
C ₃ A	$Ca_3Al_2O_6$	Aluminate
C ₄ AF	$Ca_2(Al,Fe)_2O_5$	Brownmillerite/Felite or ferrite
C ₂ AS	Ca ₂ Al(AlSi)O ₇	Gehlenite
CS	CaSiO ₃	Wollastonite
C_7MS_4	$(Ca_7Mg(SiO_4)_4)$	Bredigite
C_3S_2	$\text{Ca}_{3}\text{Si}_{2}\text{O}_{7}$	Kilchoanite/Rankinite
$C_5S_2\bar{C}$	$Ca_5(SiO_4)_2CO_3$	Spurrite
CŠ	CaSO ₄	Anhydrite
After hydration and carbonation		
_	CaCO ₃	Calcite-Aragonite-Vaterite
C-S-H	CaO–SiO ₂ –H ₂ O	Calcium Silicate Hydrate
$C_9S_6H_{11}$	$Ca_9Si_6O_{18}(OH)_6 \cdot 8H_2O$	Jennite
$C_5S_6H_5$	$\text{Ca}_{5}\text{Si}_{6}\text{O}_{16}(\text{OH})_{2} \cdot 4\text{H}_{2}\text{O}$	Tobermorite (or 11 Å-Tobermorite)
$C_5S_6H_8$	$Ca_5Si_6O_{16}(OH)_2 \cdot 7H_2O$	Plombierite (or 14 Å-Tobermorite)
C-A-H	CaO-Al ₂ O ₃ -H ₂ O	Calcium Aluminum Hydrate
C_3AH_6	$Ca_3Al_2(OH)_{12}$	Hydrogarnet
C ₂ ASH ₈	$Ca_2Al(AlSi)O_7 \cdot 8H_2O$	Strätlingite (gehlenite hydrate)
$C_4(A, F)X_2 \cdot y(H_2O)$	$Ca_4Al_2(Cl,CO_3,OH)_2(OH)_{12-4} \cdot H_2O$	Hydrocalumite
$M_6(A,F)X_2\cdot y(H_2O)$	$Mg_6Al_2(CO_3)(OH)_{16-4} \cdot H_2O$	Hydrotalcite
$C_4 A \hat{C}_{0.5} H_{12}$	$Ca_4Al_2O_7(CO_2)_{0.5} \cdot 12H_2O$	Hemicarboaluminate
$C_4A\hat{C}H_{11}$	$Ca_4Al_2O_6(CO_2) \cdot 11H_2O$	Monocarboaluminate
$C\overline{S}H_2$	CaSO ₄ · 2H ₂ O	Gypsum

sequestration strategy. During its setting (carbonation) process, it sequesters larger amounts of CO₂ (a greenhouse gas) than OPC-based concrete, so reducing the environmental impact of its manufacture [29] and making it more environmentally friendly [131, 132, 137]. The more favourable CO₂ balance offered by NHLs, together with the lower energy consumption in their manufacturing process, make these hydraulic binders an interesting alternative to ordinary Portland cement. As a result, they are currently in high demand due to the increased consideration given to the environmental impacts and long-term consequences of construction work [131].

Other advantages applicable in the sustainable construction sector include the aforementioned permeability of NHL mortars. As Banfill and Forster [33] stated, permeability is related to the 'breathability' of the materials and therefore of the building itself. This has an impact on the indoor air quality inside the buildings as well as on the durability of the rest of the building materials [132, 138].

Given their physical compatibility with the generally 'softer' traditional building materials, there are multiple investigations that validate the use of NHLs in restoration work [3, 8, 25, 30, 67, 126, 128, 139–146], for either structural (masonry, bedding

and pointing mortars), protective (finishing mortars such as plasters and renders), or decorative purposes (sgraffito, stucco, etc.).

NHL mortars are mainly used in the restoration of historic buildings to repair damaged original materials (e.g. stone, mortar), with specific applications such as volumetric reintegration in ashlars and decorative elements (Fig. 4), as well as rendering for façade protection [5, 6, 147–151].

Another common application is in injection grouts, a method that involves the pressurized injection of a fluid suspension into voids or cracks [152–156], which hardens in the absence of $\rm CO_2$, developing high permeability and workability, and moderate levels of strength.

As a result, NHLs are nowadays considered as one of the best binders for use in the restoration of buildings, monuments and even mosaics [7, 139, 157, 158]. This is not surprising considering that some ancient mortars were made with a prototype of natural hydraulic lime that resulted from the calcination of impure or cherty limestones [66], which were probably used because there were no other geological resources available locally.

There are also several authors who criticise and question the use of NHL in conservation [9, 12–14, 159–161] due to unexpected long-term performances and the apparent high variability between NHLs with the same index number and from different manufacturers (Fig. 5), which can lead to mortars with final

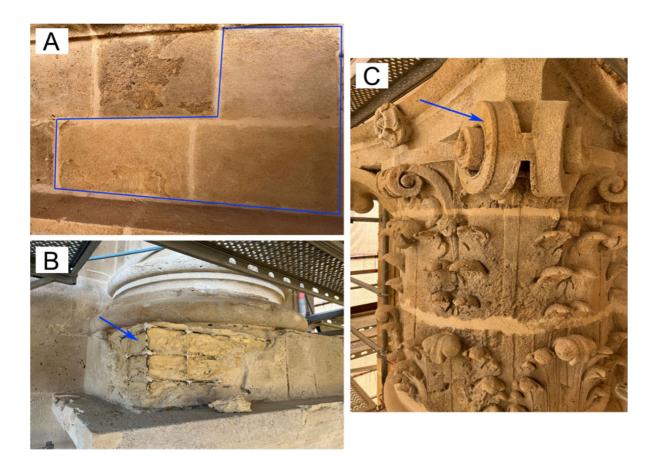


Fig. 4 Examples of applications of NHL mortars for restoration purposes. A Superficial reintegration of deteriorated stone ashlars (the blue line circumscribes the restored area); B Infill of an ashlar with glass rod structure for volumetric reintegration (the blue arrow indicates the NHL mortar that it is being

used); C reintegration of decorative elements (the blue arrow indicates the appearance of the NHL mortars and its aesthetical compatibility with the original substrate). Source Photographs of the authors during the restoration of the tower of the Cathedral of Granada (Spain)

Materials and Structures (2025) 58:152 Page 13 of 22 152

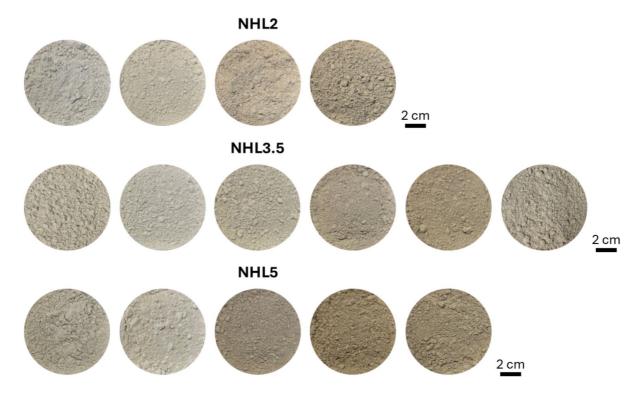


Fig. 5 Appearance and colour of different NHLs produced by the main European manufacturers from France, Spain and Portugal. Source Photographs of the authors

characteristics that differ greatly from those of their historic counterparts.

For this reason, restorers sometimes prefer the most traditional hydraulic lime mortars made with aerial lime and pozzolans (e.g. ceramic fragments, pumice powder, organic ashes, etc.) and other alternatives such as the hot-mixed or hot-lime mortars produced by mixing quicklime with sand [12, 13, 79, 162–167].

However, it is widely accepted that the final physical properties of lime mortars, in general, and NHL mortars in particular, are mostly influenced by the nature and dosage of sand, the water-to-binder ratio, and the curing time and conditions [8, 10, 53, 67, 111, 134, 141–144, 154, 168–173]. They are also affected by the presence of additives and admixtures [57, 145, 153, 155, 156, 174–192], regardless of the type of binder.

In this sense, the physical parameters set out in the European standard (EN459-1 [1]) are hardly applicable to real cases of construction and conservation works, where different types of sand and binder-to-sand ratios are used, and the exposure

conditions vary over time. This is, however, a difficult issue to overcome from the perspective of a harmonised standard that seeks to define the binder rather than the final mortar. In this sense, it is more important to identify and regulate the factors that influence the chemical–mineralogical characteristics of the different natural hydraulic limes, in order to create commercial NHL products with more standardized compositional and textural characteristics, and therefore, with more predictable properties on site.

This incongruence was already observed by Mertens [127], who studied 90 hydraulic limes, most of which were manufactured in France. For their part, Callebaut et al. [25] stated that studies on the production process and characterisation of hydraulic lime mortars were very scarce. They emphasized the importance of acquiring detailed knowledge of the characteristics of hydraulic limes and their mortars as they were ideal materials for use in the conservation of historical buildings. After an in-depth chemical—mineralogical and petrographic characterisation of historical mortars from the

152 Page 14 of 22 Materials and Structures (2025) 58:152

Tournai Cathedral and the Tongeren Basilica (Belgium), Mertens et al. [127, 193] stated that, despite being able to determine unequivocally that these mortars were hydraulic in nature, it was very difficult to decide whether this hydraulicity was due to pozzolanic-type reactions, to the use of hydraulic limes, or perhaps even to both. These studies show that it is difficult to identify the exact type of binder used in a hydraulic mortar.

If we consider the number of mortars on the market which, according to their technical data sheet, are made with hydraulic binders, an inevitable question arises as to the real composition of these mortars. In fact, there are a whole range of possibilities, from the use of hydraulic lime (NHL or HL) to the use of aerial lime with pozzolans, or in the worst case, the use of aerial limes mixed with cement (products that would be classified as formulated limes, FL [1]).

The difficulty of discerning one product from another means that there is great uncertainty about which hydraulic mortar would be most appropriate to ensure the successful restoration of a particular historic building, given that some of these products may not be fully compatible with the original traditional mortars.

6 Conclusions

This review aims to contribute to a greater, more in-depth knowledge of the characteristics and manufacturing process of natural hydraulic limes, with the ultimate objective of developing a more rigorous classification of this sub-group of hydraulic limes. As discussed here, it is evident that a more precise, more harmonized classification of the group of limes with hydraulic features, and in particular natural hydraulic limes, is needed. If the NHL on the European market had more precisely controlled compositional and textural characteristics, this would benefit the building sector as a whole, and the more specific field of historic heritage conservation and restoration in particular, in which NHL is being increasingly used as a compatible binder for repair mortars. This will be useful not only for researchers working in the field, but also for architects and restorers/conservators who will acquire

knowledge about the binders used and, finally, for the manufacturers who will have more detailed specifications to follow.

Three important aspects are missing from the definition of natural hydraulic lime in the EN459-1 standard [1]: (1) the chemical, mineralogical and textural specifications of the raw materials; (2) details about the optimum calcination conditions; and (3) instructions as to how to perform slaking.

On the basis of this review of the bibliography on natural hydraulic limes, we would like to make the following recommendations that could improve the EN459-1 standard [1]:

- To include, in addition to limestone that contains clay, other valid raw materials for NHL such as different types of siliceous limestone with reactive silica.
- (2) To classify the different degrees of hydraulicity of the NHLs, not only on the basis of their free lime and compressive strength values at 28 days, but also on the reactive oxides content and the cementation indexes of the raw materials and final products.
- (3) To advise that different degrees of hydraulicity can be obtained by applying different calcination temperatures (the higher the calcination temperature, the more hydraulic the NHL obtained), when only one type of valid raw material is available.
- (4) To highlight that calcination temperatures of 950 °C reduce the formation of iron-phases, thus favouring the obtention of whiter NHLs.
- (5) To advise that water-slaking can give rise to the premature formation of C-S-H and C-A-H phases, something that can be reduced by using air moisture or steam.

The implementation of the regulatory framework for natural hydraulic limes is expected to have a positive impact on the classification of natural hydraulic limes, and to enable a clear distinction between natural hydraulic limes (NHL) and hydraulic (HL) or formulated limes (FL), in which lime is frequently blended with Portland cement.

Acknowledgements This research is funded by the State Research Agency (SRA) and the Spanish Ministry of Innovation and Science, as part of the project entitled "Manufacture

Materials and Structures (2025) 58:152 Page 15 of 22 152

and suitability of natural hydraulic limes as a binder in sustainable construction and restoration (Id-Cal)" (PID2020-119838RA-100), Research Project PID2023-146405OB-100 (2024-2027), funded by MICIU/AEI/10.13039/501100011033 and FEDER, UE and by Research Group RNM179 of the Junta de Andalucía. We are grateful to Nigel Walkington for proof-reading the English version of the manuscript.

Funding Funding for open access publishing: Universidad de Granada/CBUA.

Declarations

Conflict of interest The authors report there are no competing interests to declare.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

References

- EN 459-1 (2015) Building lime—Part 1: definitions, specifications and conformity criteria. CEN, European committee for standardization
- Figueiredo C (2018) Properties and performance of lime mortars for conservation: the role of binder chemistry and curing regime. PhD Thesis, University of Bath
- Figueiredo C, Henry A, Holmes S (2018) Hydraulic lime production coming full circle? Cathedral communications. Celebrating twenty-five years of the Building Conservation directory 1993–2018; pp. 134–142 https:// www.buildingconservation.com/books/bcd2018/134/. Accessed 20 May 2024
- Oh SJ (2020) Comparative laboratory evaluation of natural hydraulic lime mortars for conservation. PhD thesis, Columbia University. https://doi.org/10.7916/ d8-yrnn-9w25
- Henry A, Stewart J (2012) English heritage. Practical building conservation. Mortars, Renders & Plasters, Ashgate, Farnham
- Figueiredo C, Lawrence M, Ball RJ (2016) Chemical and physical characterization of three NHL2 and the relationship with the mortar properties. In: Villegas L, Lombillo I, Blanco H, Boffill Y (eds) REHABEND Euro-american congress: construction pathology, rehabilitation

- technology and heritage management. 6Th REHABEND Congress, Burgos, pp 1–8
- Álvarez JI, Viega R, Martínez-Ramírez S, Secco M, Faria P, Maravelaki PN, Ramesh M, Papayanni I, Válek J (2021) RILEM TC 277-LHS report: a review on the mechanisms of setting and hardening of lime-based binding systems. Mater Struct 54(63):1–30. https://doi.org/ 10.1617/s11527-021-01648-3
- Lanas J, Pérez Bernal JL, Bello MA, Álvarez Galindo JI (2004) Mechanical properties of natural hydraulic lime-based mortars. Cem Concr Res 34(12):2191–2201. https://doi.org/10.1016/j.cemconres.2004.02.005
- Elsen J, Van Balen K, Mertens G (2012) Hydraulicity in historic lime mortars: a review. In: Válek J, Hughes JJ, Groot CJWP (eds) Historic Mortars. RILEM bookseries. Springer Netherlands, Netherlands, pp 125–139. https:// doi.org/10.1007/978-94-007-4635-0_10
- Grilo J, Santos Silva A, Faria P, Gameiro A, Veiga R, Velosa A (2014) Mechanical and mineralogical properties of natural hydraulic lime-metakaolin mortars in different curing conditions. Constr Build Mater 51:287–294. https://doi.org/10.1016/j.conbuildmat.2013.10.045
- Kalagri A, Karatasios I, Kilikoglou V (2014) The effect of aggregate size and type of binder on microstructure and mechanical properties of NHL mortars. Constr Build Mater 53:467–474. https://doi.org/10.1016/j.conbuildmat.2013.11.111
- 12. Henry A (2018) Hot-mixed mortars: the new lime revival. Context 154(5):30–33
- Copsey N (2022) The rudiments of traditional mortar preparation and use. Arheol Prir nauk Archaeol Sci 18:199–222. https://doi.org/10.18485/arhe_apn.2022.18.
- Copsey N (2020) The revival of traditional, like-for-like and compatible mortars in Canada (and the Midwestern USA). J Build Limes Forum 27:46–60
- Figueiredo C, Ball R, Lawrence R (2016) Is EN459–1 fit for purpose in the context of conservation? In Proceedings of the 36th cement and concrete science conference article 009.
- Cowper AD (1927) Lime and Lime Mortars, vol 14. Donhead Publishing Ltd. Shaftesbury
- 17. Vicat LJ (1818) Recherches expérimentales sur les chaux de construction, les bétons et les mortiers ordinaires, Goujon, Paris. https://books.google.es/books?id=pVR2juQgU28C&printsec=frontcover&hl=fr&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false. Accessed 1 April 2025.
- Vicat LJ (1837) A practical and scientific treatise on calcareous mortars and cements, artificial and natural. John Weale, Architectural Library, 59 High Holborn, London. Accessed 1 Apr 2025. https://archive.org/details/practicalscienti00vica/page/n3/mode/2up
- Eckel EC (1922) Cement, limes and plasters: their materials, manufacture and properties. John Wiley and Sons, London
- Boynton RS (1980) Chemistry and technology of lime and limestone, 2nd edn. John Wiley and Sons Inc, New York

152 Page 16 of 22 Materials and Structures (2025) 58:152

 Holmes S, Wingate M (1997) Building with lime: a practical introduction. Intermediate Technology Publications Ltd, Warwickshire

- Spalding FP (1897) Hydraulic cement. Its properties, testing, and use, 1st edn. Wiley, New York
- Elsen J, Mertens G, Snellings R (2010) Portland cement and other calcareous hydraulic binders: history, production and mineralogy. In: Christidis GE (ed) Advances in the characterization of industrial minerals, 9th edn. European Mineralogical Union Notes in Mineralogy, London, pp 441–479. https://doi.org/10.1180/EMU-notes.9.11
- Elsen J, Jackson MD, Ruiz-Agudo E (2022) Historic concrete science: opus caementicium to "natural cements." Elements 18(5):301–307. https://doi.org/10.2138/gselements.18.5.301
- Callebaut K, Elsen J, Van Balen K, Viaene W (2001) Nineteenth century hydraulic restoration mortars in the Saint Michael's Church (Leuven, Belgium): natural hydraulic lime or cement? Cem Concr Res 31(3):397– 403. https://doi.org/10.1016/S0008-8846(00)00499-3
- Böke H, Çizer Ö, İpekoğlu B, Uğurlu E, Şerifaki K, Toprak G (2008) Characteristics of lime produced from limestone containing diatoms. Constr Build Mater 22(5):866–874. https://doi.org/10.1016/j.conbuildmat. 2006.12.010
- Cho JS, Moon KY, Choi MK, Cho KH, Ahn JW, Yeon KS (2014) Mineral phase and microstructure behaviors on burning condition of domestic low-grade limestone.
 J Korean Ceram Soc 51(2):88. https://doi.org/10.4191/kcers.2014.51.2.88
- Válek J, Van Halem E, Viani A, Pérez-Estébanez M, Ševčík R, Šašek P (2014) Determination of optimal burning temperature ranges for production of natural hydraulic limes. Constr Build Mater 66:771–780. https:// doi.org/10.1016/j.conbuildmat.2014.06.015
- Kozlovcev P, Přikryl R (2017) Compositional characteristics and experimental burning of selected lower Palaeozoic limestones from the Prague basin (Barrandian area, Czech Republic) suitable for the production of natural hydraulic lime. Bull Eng Geol Environ 76:21–37. https://doi.org/10.1007/s10064-016-0882-6
- Kang SH, Lee SO, Hong SG, Kwon YH (2019) Historical and scientific investigations into the use of hydraulic lime in Korea and preventive conservation of historic masonry structures. Sustainability 11(19):5169. https://doi.org/10.3390/su11195169
- Kozlovcev P, Válek J (2021) The micro-structural character of limestone and its influence on the formation of phases in calcined products: natural hydraulic limes and cements. Mater Struct Mater Constr 54(217):1–27. https://doi.org/10.1617/s11527-021-01814-7
- Parra-Fernández C, Arizzi A, Secco M, Cultrone G (2024) The manufacture of natural hydraulic limes: influence of raw materials' composition, calcination and slaking in the crystal-chemical properties of binders. Cem Concr Res 185:107631. https://doi.org/10.1016/j.cemconres.2024.107631
- Banfill PFG, Foster AM (2000) A relationship between hydraulicity and permeability of hydraulic lime. In: Bartos P, Groot C, Hughes JJ (eds) International RILEM

- workshop on historic mortars: characteristics and tests. RILEM Publications sarl, Cachan, pp 173–183
- Oates JAH (1998) Lime and limestone: chemistry and technology, production and uses. Wiley-VCH, Weinheim, Germany
- 35. EN 459–2 (2021) Building lime—Part 2: Test methods. CEN, European committee for standardization
- Ray KW, Mathers FC (1928) Effect of temperature and time of burning upon the properties of high-calcium lime. Ind Eng Chem Res 20(4):415–419. https://doi.org/ 10.1021/ie50220a030
- Wingate M (1985) Small-scale lime-burning: a practical introduction. Intermediate Technology Publications, London
- 38. Taylor HFW (1997) Cement chemistry, 2nd edn. Thomas Telford Publishing, London
- Moropoulou A, Bakolas A, Aggelakopoulou E (2001)
 The effects of limestone characteristics and calcination temperature to the reactivity of the quicklime. Cem Concr Res 31(4):633–639. https://doi.org/10.1016/S0008-8846(00)00490-7
- Elert K, Rodríguez-Navarro C, Sebastián-Pardo E, Hansen E, Cazalla O (2002) lime mortars for the conservation of historic buildings. Stud Conserv 47(1):62–75. https://doi.org/10.1179/sic.2002.47.1.62
- Potgieter JH, Potgieter SS, Moja SJ, Mulaba-Bafubiandi A (2002) An empirical study of factors influencing lime slaking. Part I: production and storage conditions. Miner Eng 15(3):201–203. https://doi.org/10.1016/S0892-6875(02)00008-0
- Gallala W, Gaied ME, Tlili A, Montacer M (2008) Factors influencing the reactivity of quicklime. Proc Inst Civ Eng Constr Mater 161(1):25–30. https://doi.org/10.1680/coma.2008.161.1.25
- 43. Carran D, Hughes J, Leslie A, Kennedy C (2012) The effect of calcination time upon the slaking properties of quicklime. In: Válek J, Hughes J, Groot CJWP (eds) Historic mortars: characterisation, assessment and repair, RILEM bookseries, 7th edn. Springer, Dordrecht, Netherlands, pp 283–295. https://doi.org/10.1007/978-94-007-4635-0_22
- Vola G, Christiansen T, Sarandrea L, Ferri V (2013) Carbonate rocks characterization for the industrial lime manufacturing: worldwide casestudies. 14th Euroseminar on microscopy applied to building materials. EMABM, Helsingør, Denmark
- Leontakianakos G, Baziotis I, Papandreou A, Kanellopoulou D, Stathopoulos VN, Tsimas S (2015) A comparative study of the physicochemical properties of Mgrich and Ca-rich quicklimes and their effect on reactivity. Mater Struct Mater Constr 48:3735–3753. https://doi.org/10.1617/s11527-014-0436-y
- Kozlovcev P, Přikryl R (2015) Devonian micritic limestones used in the historic production of Prague hydraulic lime ('pasta di Praga'): characterization of the raw material and experimental laboratory burning. Mater Constr 65(319):1–16. https://doi.org/10.3989/mc.2015.06314
- 47. Vola G, Sarandrea L, Della Porta G, Cavallo A, Jadoul F, Cruciani G (2018) The influence of petrography, mineralogy and chemistry on burnability and reactivity of quicklime produced in Twin Shaft Regenerative (TSR)

Materials and Structures (2025) 58:152 Page 17 of 22 152

kilns from Neoarchean limestone (Transvaal Supergroup, South Africa). Mineral Petrol 112:555–576. https://doi.org/10.1007/s00710-017-0542-y

- Vola G, Bresciani P, Rodeghero E, Sarandrea L, Cruciani G (2019) Impact of rock fabric, thermal behavior, and carbonate decomposition kinetics on quicklime industrial production and slaking reactivity. J Therm Anal Calorim 136:967–993. https://doi.org/10.1007/s10973-018-7769-7
- Zhu M, Wu J, Yang Z, Zhu Y, Rong Q, Wen Q (2023) Effect of the textures and particle sizes of limestone on the quicklime reaction activity. Minerals 13(9):1201. https://doi.org/10.3390/min13091201
- Lezzerini M, Cinzi L, Pagnotta S (2024) Lime reactivity and overburning: the case of limestones belonging to Tuscan Nappe sequence (NW Tuscany, Italy). J Therm Anal Calorim 149(19):10577–10586. https://doi.org/10.1007/s10973-024-13484-y
- Özer N, Ozgünler SA, Özdamar Ş (2025) Investigation of production possibilities of natural hydraulic binders from marls. Constr Build Mater 470:140675. https://doi.org/ 10.1016/j.conbuildmat.2025.140675
- Artioli G, Secco M, Addis A (2019) The Vitruvian legacy: mortars and binders before and after the Roman world. In Artioli G, Oberti R (eds.) The Contribution of mineralogy to cultural heritage, pp. 151–202. https://doi. org/10.1180/EMU-notes.20.4
- El-Turki A, Ball RJ, Allen GC (2007) The influence of relative humidity on structural and chemical changes during carbonation of hydraulic lime. Cem Concr Res 37(8):1233–1240. https://doi.org/10.1016/j.cemconres. 2007.05.002
- Atasever M, Erdoğan ST (2024) Effects of clay type and component fineness on the hydration and properties of limestone calcined clay cement. Mater Struct 57(8):183. https://doi.org/10.1617/s11527-024-02461-4
- 55. Da Silva MRC, Andrade Neto JDS, Walkley B, Kirchheim AP (2024) Effects of kaolinite and montmorillonite calcined clays on the sulfate balance, early hydration, and artificial pore solution of limestone calcined clay cements (LC³). Mater Struct 57:187. https://doi.org/10.1617/s11527-024-02462-3
- Qin J, Cui C, Cui X, Hussain A (2016) Characterization and application of new natural hydraulic lime produced from lime mud. J Mater Civ Eng 28(7):04016035. https:// doi.org/10.1061/(ASCE)MT.1943-5533.0001528
- Cho JS, Moon KY, Choi MK, Cho KH, Ahn JW, Yeon KS (2017) Performance improvement of local Korean natural hydraulic lime-based mortar using inorganic by-products, Korean. J Chem Eng 34:1385–1392. https://doi.org/10.1007/s11814-017-0019-z
- Dai S (2018) Preliminary study on wind slaked lime used before Qing Dynasty in China. J Archit Conserv 24(2):91–104. https://doi.org/10.1080/13556207.2018. 1491136
- Vola G, Sarandrea L, Mazzieri M, Bresciani P, Ardit M, Cruciani G (2019) Reactivity and overburning tendency of quicklime burnt at high temperature. ZKG Int 72(10):20–31
- Lezzerini M, Legnaioli S, Pagnotta S, Palleschi V (2020)
 The source materials for lime production in the Monte

- Pisano Area (NW Tuscany, Italy). IOP Conf Ser Earth Environ Sci 609(1):012078. https://doi.org/10.1088/1755-1315/609/1/012078
- Vola G, Ardit M, Sarandrea L, Brignoli G, Natali C, Cavallo A, Bianchini G, Cruciani G (2021) Investigation and prediction of sticking tendency, blocks formation and occasional melting of lime at HT (1300° C) by the overburning test method. Constr Build Mater 294:123577. https://doi.org/10.1016/j.conbuildmat.2021.123577
- Phajuy B, Singtuen V (2022) Mineralogical and geochemical characteristics of carbonate rocks for lime industry in Ban Pong, Chiang Mai Province, Northern Thailand. Trends Sci 19(2):2016. https://doi.org/10.48048/tis.2022.2016
- Luo K, Li J, Peng K, Lu Z, Hou L, Jiang J (2023) Properties of natural hydraulic lime prepared from calcite tailings. J Mater Civ Eng 35(2):04022415. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004580
- 64. Özer N, Özgünler SA, Özdamar Ş (2024) Investigation of the possibilities of using biomicritic limestone in Türkiye as a raw material in the production of natural hydraulic binders. J Fac Eng Archit Gazi Univ 39(1):577–591. https://doi.org/10.17341/gazimmfd.1179147
- Bo A, Wang H, Wang D, Zhang D (2022) Thermodynamic and kinetic analysis on the effect of CaSO₄ on calcination of natural hydraulic lime. Mater Today Commun 31:103374. https://doi.org/10.1016/j.mtcomm.2022. 103374
- Dilaria S, Secco M (2022) Mortar recipes through the ages. a brief review of data from prehistory to late antiquity. Arheol prir nauk Archaeol Sci 18:113–126. https:// doi.org/10.18485/arhe_apn.2022.18.9
- 67. Groot C, Veiga R, Papayianni I, Van Hees R, Secco M, Álvarez JI, Faria P, Stefanidou M (2022) RILEM TC 277-LHS report: lime-based mortars for restoration—a review on long-term durability aspects and experience from practice. Mater Struct Mater Constr 55(10):245. https://doi.org/10.1617/s11527-022-02052-1
- Murray JA (1956) Summary of fundamental research on lime and application of results to commercial problems. Report of National Lime Association, Washington DC
- Riccardi MP, Lezzerini M, Carò F, Franzini M, Messiga B (2007) Microtextural and microchemical studies of hydraulic ancient mortars: two analytical approaches to understand pre-industrial technology processes. J Cult Herit 8(4):350–360. https://doi.org/10.1016/j.culher. 2007.04.005
- Vola G, Ardit M, Frijia G, Di Benedetto F, Fornasier F, Lugli F, Natali C, Sarandrea L, Schmitt KE, Cipriani A (2023) Characterization and provenance of carbonate rocks for quicklime and dololime production in twinshaft regenerative kilns from the Arabian peninsula and neighboring countries. Minerals 13(12):1500. https://doi. org/10.3390/min13121500
- Walker DD (1982) The microscope and lime. In Proceedings of the IVth International Conference on Cement Microscopy, 21–48.
- Allen G, Allen J, Elton N, Farey M, Holmes S, Livesey P, Radonjic M (2003) Hydraulic lime mortar for stone, brick and block masonry. Donhead Publishing Ltd, Shaftesbury

152 Page 18 of 22 Materials and Structures (2025) 58:152

Hughes DC, Sugden DB, Jaglin D, Mucha D (2008) Calcination of Roman cement: a pilot study using cement-stones from Whitby. Constr Build Mater 22(7):1446

1455. https://doi.org/10.1016/j.conbuildmat.2007.04.003

- Rodriguez-Navarro C, Ruiz-Agudo E, Luque A, Rodriguez-Navarro AB, Ortega-Huertas M (2009) Thermal decomposition of calcite: mechanisms of formation and textural evolution of CaO nanocrystals. Am Mineral 94(4):578–593. https://doi.org/10.2138/am.2009.3021
- 75. Lea FM (1970) The chemistry of cement and concrete, 3rd edn. Chemical Publishing, New York
- 76. Kozlovcev P, Přikryl R, Přikrylová J (2015) Importance of granulometry on phase evolution and phase-to-phase relationships of experimentally burned impure limestones intended for production of hydraulic lime and/or natural cement. EGU General Assem Geophys Res Abstr 17:4799
- Agrinier P, Deutsch A, Schärer U, Martínez I (2001)
 Fast back-reactions of shock-released CO₂ from carbonates: an experimental approach. Geochim Cosmochim Acta 65(15):2615–2632. https://doi.org/10.1016/S0016-7037(01)00617-2
- Leontakianakos G, Baziotis I, Stathopoulos VN, Kypritidou Z, Profitis L, Chatzitheodoridis E, Tsimas S (2016) Influence of natural water composition on reactivity of quicklime derived from Ca-rich and Mg-rich limestone: implications for sustainability of lime manufacturing through geochemical modeling. RSC Adv 6(70):65799–65807. https://doi.org/10.1039/C6RA1 1346J
- Hassan SA, Al-Zahrani AA (2017) Slaking lime for restoration and conservation of historical buildings and materials, criticism of an arabic historical manuscripts. Eng Appl Sci 2(6):125–131. https://doi.org/10.11648/j. eas.20170206.15
- Ritchie IM, Bing-An X (1990) The kinetics of lime slaking. Hydrometallurgy 23(2–3):377–396. https:// doi.org/10.1016/0304-386X(90)90018-W
- Tungulin D, Behrenberg B, Lutter J, Wallmeier W (2018) Quicklime with defined reaction time window for aerated autoclaved concrete production. ce/papers. Proceedings in civil engineering. Special Issue:ICAAC—6th International conference on autoclaved aerated concrete 2(4), 223–229. https://doi.org/10.1002/cepa.853
- Potgieter SS, Strydom CA, Gheevarhese O (2003) The effect of ultrasonic energy on lime slaking. Miner Eng 16(8):767–770. https://doi.org/10.1016/S0892-6875(03) 00173-0
- Gheevarhese O, Strydom CA, Potgieter JH, Potgieter SS (2002) The influence of chloride and sulphate ions on the slaking rate of lime derived from different limestone deposits in South Africa. Water SA 28(1):45–48. https:// doi.org/10.4314/wsa.v28i1.4866
- Potgieter JH, Potgieter SS, De Waal D (2003) An empirical study of factors influencing lime slaking. Part II: lime constituents and water composition. Water SA 29(2):157–160. https://doi.org/10.4314/wsa.v29i2.4850
- 85. Afridi SK, Bhatty MB, Ahmed AS, Saeed MT, Ahmad S (2008) Experimental study of calcination-carbonation

- process for the production of precipitated calcium carbonate. J Chem Soc Pak 30(4):559–562
- Ontiveros-Ortega E, Ruiz-Agudo EM, Ontiveros-Ortega A (2018) Thermal decomposition of the CaO in traditional lime kilns. Applications in cultural heritage conservation. Constr Build Mater 190:349–362. https://doi.org/10.1016/j.conbuildmat.2018.09.059
- Commandré JM, Salvador S, Nzihou A (2007) Reactivity of laboratory and industrial limes. Chem Eng Res Des 85(4):473–480. https://doi.org/10.1205/cherd06200
- Dubina E, Korat L, Black L, Strupi-Šuput J, Plank J (2013) Influence of water vapour and carbon dioxide on free lime during storage at 80 °C, studied by Raman spectroscopy, Spectrochim. Acta A: Mol Biomol Spectrosc 111:299–303. https://doi.org/10.1016/j.saa.2013.04.033
- Pesce C, Godina MC, Henry A, Pesce GL (2023) Effects of steam-slaking on the characteristics of lime from three different UK manufacturers. In Escalante-Garcia, J.I., Castro Borges, P., Duran-Herrera, A. (eds.) Proceedings of the 75th RILEM Annual Week 2021. RW 2021. RILEM Bookseries, vol 40. Springer, Cham. https://doi. org/10.1007/978-3-031-21735-7_82
- Gillott JE (1967) Carbonatation of Ca(OH)₂ investigated by thermal and X-ray diffraction methods of analysis. J Appl Chem 17(7):185–189. https://doi.org/10.1002/jctb. 5010170701
- 91. Midgley HG (1979) The determination of calcium hydroxide in set Portland cements. Cem Concr Res 9(1):77–82. https://doi.org/10.1016/0008-8846(79) 90097-8
- 92. Milestone NB (1979) Hydration of tricalcium silicate in the presence of lignosulfonates, glucose, and sodium gluconate. J Am Ceram Soc 62(7–8):321–324. https://doi.org/10.1111/j.1151-2916.1979.tb19068.x
- 93. Chaix-Pluchery O, Pannetier J, Bouillot J, Niepce JC (1987) Structural prereactional transformations in Ca(OH)₂. J Solid State Chem 67(2):225–234. https://doi.org/10.1016/0022-4596(87)90358-6
- 94. De la Torre AG, Cabeza A, Calvente A, Bruque S, Aranda MA (2001) Full phase analysis of Portland clinker by penetrating synchrotron powder diffraction. Anal Chem 73(2):151–156. https://doi.org/10.1021/ ac0006674
- Scarlett NVY, Madsen IC, Manias C, Retallack D (2001)
 On-line X-ray diffraction for quantitative phase analysis: application in the Portland cement industry. Powder Diffr 16(2):71–80. https://doi.org/10.1154/1.1359796
- Gualtieri AF, Viani A, Montanari C (2006) Quantitative phase analysis of hydraulic limes using the Rietveld method. Cem Concr Res 36(2):401–406. https://doi.org/10.1016/j.cemconres.2005.02.001
- Lassinantti Gualtieri M, Romagnoli M, Miselli P, Cannio M, Gualtieri AF (2012) Full quantitative phase analysis of hydrated lime using the Rietveld method. Cem Concr Res 42(9):1273–1279. https://doi.org/10.1016/j.cemconres.2012.05.016
- Kudłacz K, Rodriguez-Navarro C (2014) The mechanism of vapor phase hydration of calcium oxide: implications for CO₂ capture. Environ Sci Technol 48(20):12411– 12418. https://doi.org/10.1021/es5034662

Materials and Structures (2025) 58:152 Page 19 of 22 152

- 99. Rodriguez-Navarro C, Burgos-Cara A, Lorenzo FD, Ruiz-Agudo E, Elert K (2020) Nonclassical crystallization of calcium hydroxide via amorphous precursors and the role of additives. Cryst Growth Des 20(7):4418–4432. https://doi.org/10.1021/acs.cgd.0c00241
- Mertens G, Madau P, Durinck D, Blanpain B, Elsen J (2007) Quantitative mineralogical analysis of hydraulic limes by X-ray diffraction. Cem Concr Res 37(11):1524–1530. https://doi.org/10.1016/j.cemconres.2007.08.002
- Gnisci A (2022) Preliminary characterization of hydraulic components of low-temperature calcined marls from the south of Italy. Cem Concr Res 161:106958. https:// doi.org/10.1016/j.cemconres.2022.106958
- 102. Arizzi A, Cultrone G (2021) Mortars and plasters how to characterise hydraulic mortars. Archaeol Anthropol Sci 13(144):1–22. https://doi.org/10.1007/ s12520-021-01404-2
- Swainson IP, Dove MT, Schmahl WW, Putnis A (1992) Neutron powder diffraction study of the åkermanitegehlenite solid solution series. Phys Chem Miner 19:185–195. https://doi.org/10.1007/BF00202107
- 104. Ligabue ML, Saburit A, Lusvardi G, Malferrari D, García-Ten J, Monfort E (2022) Innovative use of thermally treated cement-asbestos in the production of foaming materials: effect of composition, foaming agent, temperature and reaction time. Constr Build Mater 335:127517. https://doi.org/10.1016/j.conbuildmat.2022. 127517
- Matschei T, Lothenbach B, Glasser FP (2007) The role of calcium carbonate in cement hydration. Cem Concr Res 37(4):551–558. https://doi.org/10.1016/j.cemconres. 2006.10.013
- 106. Ponce-Antón G, Ortega LA, Zuluaga MC, Alonso-Olazabal A, Solaun JL (2018) Hydrotalcite and hydrocalumite in mortar binders from the Medieval Castle of Portilla (Álava, North Spain): accurate mineralogical control to achieve more reliable chronological ages. Minerals 8(8):326. https://doi.org/10.3390/min8080326
- 107. Damidot D, Stronach S, Kindness A, Atkins M, Glasser FP (1994) Thermodynamic investigation of the CaO-Al₂O₃-CaCO₃-H₂O closed system at 25 °C and the influence of Na₂O. Cem Concr Res 24(3):563–572. https://doi.org/10.1680/adcr.1995.7.27.129
- 108. Ipavec A, Gabrovšek R, Vuk T, Kaučič V, Maček J, Meden A (2011) Carboaluminate phases formation during the hydration of calcite-containing Portland cement. J Am Ceram Soc 94(4):1238–1242. https://doi.org/10. 1111/j.1551-2916.2010.04201.x
- 109. Mesbah A, Rapin JP, François M, Cau-dit-Coumes C, Frizon F, Leroux F, Renaudin G (2011) Crystal structures and phase transition of cementitious bi-anionic AFm-(Cl⁻, CO₃²⁻) compounds. J Am Ceram Soc 94(1):261– 268. https://doi.org/10.1111/j.1551-2916.2010.04050.x
- Baquerizo LG, Matschei T, Scrivener KL, Saeidpour M, Wadsö L (2015) Hydration states of AFm cement phases. Cem Concr Res 73:143–157. https://doi.org/10.1016/j.cemconres.2015.02.011
- 111. Cizer Ö, Van Balen K, Van Gemert DA (2010) Competition between hydration and carbonation in hydraulic lime and lime-pozzolana mortars. Adv Mater Res

- 133–134:241–246. https://doi.org/10.4028/www.scien tific.net/AMR.133-134.241
- 112. Bonaccorsi E, Merlino S, Kampf AR (2005) The crystal structure of tobermorite 14 Å (plombierite), a C-S-H phase. J Am Ceram Soc 88(3):505–512. https://doi.org/10.1111/j.1551-2916.2005.00116.x
- 113. Dilnesa BZ, Lothenbach B, Renaudin G, Wichser A, Kulik D (2014) Synthesis and characterization of hydrogarnet Ca₃(Al_xFe_{1-x})₂(SiO₄)_y(OH)_{4(3-y)}. Cem Concr Res 59:96–111. https://doi.org/10.1016/j.cemconres.2014.02. 001
- 114. Meller N, Hall C, Jupe AC, Colston SL, Jacques SD, Barnes P, Phipps J (2004) The paste hydration of brown-millerite with and without gypsum: a time resolved synchrotron diffraction study at 30, 70, 100 and 150 °C. J Mater Chem 14(3):428–435. https://doi.org/10.1039/B313215C
- Zhang T, Cheeseman CR, Vandeperre LJ (2011) Development of low pH cement systems forming magnesium silicate hydrate (M-S-H). Cem Concr Res 41(4):439–442. https://doi.org/10.1016/j.cemconres.2011.01.016
- Nied D, Enemark-Rasmussen K, L'Hopital E, Skibsted J, Lothenbach B (2016) Properties of magnesium silicate hydrates (M-S-H). Cem Concr Res 79:323–332. https:// doi.org/10.1016/j.cemconres.2015.10.003
- 117. Sonat C, Unluer C (2017) Investigation of the performance and thermal decomposition of MgO and MgO-SiO₂ formulations. Thermochim Acta 655:251–261. https://doi.org/10.1016/j.tca.2017.07.009
- 118. Tonelli M, Martini F, Calucci L, Geppi M, Borsacchi S, Ridi F (2017) Traditional Portland cement and MgObased cement: a promising combination? Phys Chem Earth Parts A/B/C 99:158–167. https://doi.org/10.1016/j. pce.2017.01.011
- Tran HM, Scott A (2017) Strength and workability of magnesium silicate hydrate binder systems. Constr Build Mater 131:526–535. https://doi.org/10.1016/j.conbuildmat.2016.11.109
- 120. Roosz C, Vieillard P, Blanc P, Gaboreau S, Gailhanou H, Braithwaite D, Montouillout V, Denoyel R, Henocq P, Madé B (2018) Thermodynamic properties of C-S-H, C-A-S-H and M-S-H phases: Results from direct measurements and predictive modelling. Appl Geochem 92:140–156. https://doi.org/10.1016/j.apgeochem.2018.03.004
- Sonat C, Teo WW, Unluer C (2018) Performance and microstructure of MgO-SiO₂ concrete under different environments. Constr Build Mater 184:549–564. https:// doi.org/10.1016/j.conbuildmat.2018.07.032
- 122. Secco M, Previato C, Addis A, Zago G, Kamsteeg A, Dilaria S, Canovaro C, Artioli G, Bonetto J (2019) Mineralogical clustering of the structural mortars from the Sarno Baths, Pompeii: a tool to interpret construction techniques and relative chronologies. J Cult Herit 40:265–273. https://doi.org/10.1016/j.culher.2019.04.016
- 123. Secco M, Dilaria S, Bonetto J, Addis A, Tamburini S, Preto N, Ricci G, Artioli G (2020) Technological transfers in the Mediterranean on the verge of Romanization: insights from the waterproofing renders of Nora (Sardinia, Italy). J Cult Herit 44:63–82. https://doi.org/10.1016/j.culher.2020.01.010

152 Page 20 of 22 Materials and Structures (2025) 58:152

- 124. Dilaria S, Secco M, Bonetto J, Ricci G, Artioli G (2022) Making ancient mortars hydraulic. How composition influences type and crystallinity of reaction products. In Bokan Bosiljkov V, Padovnik A, Turk T, Štukovnik P (eds.) Proceedings of the 6th historic mortars conference—HMC 2022, Ljubljana, pp. 55–69
- 125. Mayo Corrochano C, Sanz Arauz D, Pineda Enebra JI (2018) Metodología simplificada de identificación mediante MOP de las cales hidráulicas y los cementos naturales. In: Álvarez Galindo JI, Fernández Álvarez JM, Navarro Blasco I, Durán Benito A, Sirera Bejarano R (Eds.). VI Jornadas FICAL Fórum Ibérico de la Cal "Tradición, versatilidad e innovación en la cal: un material de excelencia", Pamplona, pp. 188–199.
- Dai SB (2013) Building limes for cultural heritage conservation in China. Herit Sci 1:25. https://doi.org/10. 1186/2050-7445-1-25
- 127. Mertens G (2009) Characterisation of historical mortars and mineralogical study of the physico-chemical reactions on the pozzolan-lime binder interface. PhD thesis, Catholic University of Leuven
- 128. Van Balen K (2024) Future readiness of lime-based building materials: from heritage to innovation. In Proceedings for the extended abstracts of the SUBLime 2024 Conference—Towards the next generation of sustainable masonry systems: Mortars, renders, plasters and other challenges, (15–23). Funchal, Madeira, Portugal. In MATEC Web of Conferences (Vol. 403, p. 01001). EDP Sciences. https://doi.org/10.1051/matecconf/2024403010
- Lanas J, Alvarez-Galindo JI (2003) Masonry repair limebased mortars: factors affecting the mechanical behaviour. Cem Concr Res 33:1867–1876. https://doi.org/10. 1016/S0008-8846(03)00210-2
- Pavía S, Treacy E (2006) A comparative study of the durability and behaviour of fat lime and feebly-hydraulic lime mortars. Mater. Struct./Mater. Constr 39:391–398. https://doi.org/10.1617/s11527-005-9033-4
- Costa C (2015) Hydraulic Binders. In: Gonçalves M, Margarido F (eds) Materials for Construction and Civil Engineering. Springer, Cham. https://doi.org/10.1007/ 978-3-319-08236-3_1
- 132. Cizer Ö (2016) Thematic keynote lime mortars in heritage: fundamental insights into carbonation reaction and its biocatalization. Structural analysis of historical constructions: anamnesis, diagnosis, therapy, controls. CRC Press, Boca Raton, pp 67–74
- Pavía S, Bolton J (2000) Stone, Brick and Mortar: Historical use, decay and conservation of building materials in Ireland. Wordwell, Bray, Ireland
- 134. Hanley R, Pavía S (2008) A study of the workability of natural hydraulic lime mortars and its influence on strength. Mater Struct Mater Constr 41:373–381. https://doi.org/10.1617/s11527-007-9250-0
- 135. Barbero-Barrera MM, Jové-Sandoval F, Iglesias SG (2020) Assessment of the effect of natural hydraulic lime on the stabilisation of compressed earth blocks. Constr Build Mater 260:119877. https://doi.org/10.1016/j.conbu ildmat.2020.119877
- Garcia Chumacero JM, Acevedo Torres PL, Criss Corcuera La Portilla C, Muñoz Perez SP, Villena Zapata LI

- (2023) Effect of the reuse of plastic and metallic fibers on the characteristics of a gravelly soil with clays stabilized with natural hydraulic lime. Innov Infrastruct Solut 8:185. https://doi.org/10.1007/s41062-023-01155-0
- Velosa L, Cachim PB (2009) Hydraulic-lime based concrete: Strength development using a pozzolanic addition and different curing conditions. Constr Build Mater 23(5):2107–2111. https://doi.org/10.1016/j.conbuildmat. 2008.08.013
- Ashurst J, Ashurst N (1988) Practical building conservation: mortars, plasters and renders, vol 3. United Kingdom, Gower Technical Press, Aldershot
- Livesey P (2002) Succeeding with hydraulic lime mortars. J Archit Conserv 8(2):23–37. https://doi.org/10. 1080/13556207.2002.10785317
- Maravelaki-Kalaitzaki P, Bakolas A, Karatasios I, Kilikoglou V (2005) Hydraulic lime mortars for the restoration of historic masonry in Crete. Cem Concr Res 35(8):1577–1586. https://doi.org/10.1016/j.cemconres. 2004.09.001
- 141. Arizzi A, Martinez-Huerga G, Sebastián-Pardo E, Cultrone G (2015) Mineralogical, textural and physical-mechanical study of hydraulic lime mortars cured under different moisture conditions. Mater Construcc 65(318):e053. https://doi.org/10.3989/mc.2015.03514
- 142. Silva BA, Ferreira Pinto AP, Gomes A (2015) Natural hydraulic lime versus cement for blended lime mortars for restoration works. Constr Build Mater 94:346–360. https://doi.org/10.1016/j.conbuildmat.2015.06.058
- 143. Garijo L, Zhang X, Ruiz G, Ortega JJ, Wu Z (2018) The effects of dosage and production process on the mechanical and physical properties of natural hydraulic lime mortars. Constr Build Mater 169:325–334. https://doi. org/10.1016/j.conbuildmat.2018.03.016
- 144. Apostolopoulou M, Bakolas A, Kotsainas M (2021) Mechanical and physical performance of natural hydraulic lime mortars. Constr Build Mater 290:123272. https:// doi.org/10.1016/j.conbuildmat.2021.123272
- 145. Destefani M, Falchi L, Zendri E (2023) Proposal of new natural hydraulic lime-based mortars for the conservation of historical buildings. Coatings 13(8):1418. https://doi. org/10.3390/coatings13081418
- 146. Parra-Fernández C, Varas-Muriel M (2025) Petrographic and petrophysical characterization of the main aerial and hydraulic mortars used in the construction and rehabilitation sectors. Mater Construcc 75(357):e367. https://doi. org/10.3989/mc.2025.379124
- 147. Feilden BM (2003) Conservation of Historic Buildings, 3rd edn. Routledge, Milton Park. https://doi.org/10.4324/ 9780080502915
- 148. Van Balen K, Papayianni I, Van Hees R, Binda L, Waldum A (2005) Introduction to requirements for and functions and properties of repair mortars. Mater Struct Mater Constr 38:781–785. https://doi.org/10.1007/BF02479291
- Forsyth M (2008) Materials & skills for historic building conservation. Blackwell, Oxford
- Cizer Ö, Schueremans L, Serré G, Janssens E, Van Balen K (2010) Assessment of the compatibility of repair mortars in restoration projects. Adv Mater Res 133:1071–1076. https://doi.org/10.4028/www.scientific.net/AMR. 133-134.1071

Materials and Structures (2025) 58:152 Page 21 of 22 152

Schueremans L, Cizer Ö, Janssens E, Serré G, Van Balen K (2011) Characterization of repair mortars for the assessment of their compatibility in restoration projects: research and practice. Constr Build Mater 25(12):4338–4350. https://doi.org/10.1016/j.conbuildmat.2011.01.008

- 152. Vintzileou E, Miltiadou-Fezans A (2008) Mechanical properties of three-leaf stone masonry grouted with ternary or hydraulic lime-based grouts. Eng Struct 30(8):2265–2276. https://doi.org/10.1016/j.engstruct. 2007.11.003
- 153. Baltazar LG, Henriques FMA, Jorne F, Cidade MT (2014) Combined effect of superplasticizer, silica fume and temperature in the performance of natural hydraulic lime grouts. Constr Build Mater 50:584–597. https://doi. org/10.1016/j.conbuildmat.2013.10.005
- 154. Baltazar LG, Henriques FMA, Cidade MT (2019) Rheology of natural hydraulic lime grouts for conservation of stone masonry—Influence of compositional and processing parameters. Fluids 4(1):13. https://doi.org/10.3390/fluids4010013
- 155. Zhang B, Liu P, Qi N, Luo H, Wang F, Ma T, Zhao X, Fei G, Yin S, Zhu J, Shi P (2023) Regulation of oxidation degree for graphene oxide on hydration process and engineering properties of natural hydraulic lime pastes for grout strengthening of stone cultural relics. Constr Build Mater 407:133482. https://doi.org/10.1016/j.conbuildmat.2023.133482
- 156. De La Rosa A, Ruiz G, Moreno R (2024) Analysis of the rheological properties of natural hydraulic lime-based suspensions for sustainable construction and heritage conservation. Materials 17(4):825. https://doi.org/10. 3390/ma17040825
- 157. Macchiarola M, Fiorella G (2008) The study of hydraulic lime mortars for the conservation of mosaics. In Proceedings lessons learned: reflecting on the theory and practice of mosaic conservation. 9th Conference of the international committee for the conservation of mosaics, pp 273–280.
- Županek B, Kikelj ML, Žagar K, Kramar S (2016) A new lightweight support for the restoration and presentation of a large Roman mosaic. J Cult Herit 19:477–485. https://doi.org/10.1016/j.culher.2016.01.005
- 159. Sepulcre-Aguilar A, Hernández-Olivares F (2010) Assessment of phase formation in lime-based mortars with added metakaolin, Portland cement and sepiolite, for grouting of historic masonry. Cem Concr Res 40(1):66–76. https://doi.org/10.1016/j.cemconres.2009. 08.028
- Gulotta D, Goidanich S, Tedeschi C, Nijland TG, Toniolo L (2013) Commercial NHL-containing mortars for the preservation of historical architecture. Part 1: compositional and mechanical characterisation. Constr Build Mater 38:31–42. https://doi.org/10.1016/j.conbuildmat. 2012.08.029
- 161. Copsey N (2020) Like-for-like and compatible mortars for the repair of traditional buildings. Int Arch Photogramm Remote Sens Spat Inf Sci 44:1017–1024. https://doi.org/10.5194/isprs-archives-XLIV-M-1-2020-1017-2020

- Forster A (2004) Hot-lime mortars: a current perspective.
 J Archit Conserv 10(3):7–27. https://doi.org/10.1080/ 13556207.2004.10784923
- 163. Margalha G, Veiga R, Silva AS, De Brito J (2011) Traditional methods of mortar preparation: the hot lime mix method. Cem Concr Compos 33(8):796–804. https://doi.org/10.1016/j.cemconcomp.2011.05.008
- 164. Válek J, Matas T (2012) Experimental study of hot mixed mortars in comparison with lime putty and hydrate mortars. In: Válek J, Hughes J, Groot C (eds) Historic mortars, RILEM bookseries, 7th edn. Springer, Dordrecht
- Copsey N, Gourley B (2015) Hot-mixed lime mortars. J Build Limes Forum 22:70–76
- 166. Pesce C, Godina MC, Henry A, Pesce G (2021) Towards a better understanding of hot-mixed mortars for the conservation of historic buildings: the role of water temperature and steam during lime slaking. Herit Sci 9:72. https://doi.org/10.1186/s40494-021-00546-9
- 167. Pavía S, Veiga R, Hughes J, Pesce G, Válek J, Álvarez JI, Faria P, Padovnik A (2023) RILEM TC 277-LHS report: how hot are hot-lime-mixed mortars? A review. Mater Struct Mater Constr 56(4):87. https://doi.org/10.1617/ s11527-023-02157-1
- 168. Pavía S, Toomey B (2008) Influence of the aggregate quality on the physical properties of natural feeblyhydraulic lime mortars. Mater Struct Mater Constr 41:559–569. https://doi.org/10.1617/s11527-007-9267-4
- 169. Grilo J, Faria P, Veiga R, Santos Silva A, Velosa A (2014) New natural hydraulic lime mortars-physical and microstructural properties in different curing conditions. Constr Build Mater 54:378–384. https://doi.org/10.1016/j.conbuildmat.2013.12.078
- 170. Veiga M; Santos AR, Santos D (2015) Natural Hydraulic Lime Mortars for Rehabilitation of Old Buildings: Compatibility and Performance. In Proceedings of the 2015 Conference and Gathering of the Building Limes Forum, Cambridge, UK
- 171. Xu S, Wang J, Sun Y (2015) Effect of water binder ratio on the early hydration of natural hydraulic lime. Mater Struct Mater Constr 48:3431–3441. https://doi.org/10.1617/s11527-014-0410-8
- 172. Isebaert A, De Boever W, Descamps F, Dils J, Dumon M, De Schutter G, Van Ranst E, Cnudde V, Van Parys L (2016) Pore-related properties of natural hydraulic lime mortars: an experimental study. Mater Struct Mater Constr 49:2767–2780. https://doi.org/10.1617/s11527-015-0684-5
- 173. Faria P, Silva V (2019) Natural hydraulic lime mortars: influence of the aggregates. In: Hughes J, Válek J, Groot C (eds) Historic mortars. Springer, Cham. https://doi.org/10.1007/978-3-319-91606-4_14
- 174. Santarelli ML, Sbardella F, Zuena M, Tirillò J, Sarasini F (2014) Basalt fiber reinforced natural hydraulic lime mortars: a potential bio-based material for restoration. Mater Des 63:398–406. https://doi.org/10.1016/j.matdes. 2014.06.041
- 175. Xu S, Wang J, Ma Q, Zhao X, Zhang T (2014) Study on the lightweight hydraulic mortars designed by the use of diatomite as partial replacement of natural hydraulic lime and masonry waste as aggregate. Constr Build Mater

152 Page 22 of 22 Materials and Structures (2025) 58:152

- 73:33–40. https://doi.org/10.1016/j.conbuildmat.2014. 09.062
- 176. Arizzi A, Cultrone G, Brümmer M, Viles H (2015) A chemical, morphological and mineralogical study on the interaction between hemp hurds and aerial and natural hydraulic lime particles: implications for mortar manufacturing. Constr Build Mater 75:375–384. https://doi.org/10.1016/j.conbuildmat.2014.11.026
- Barbero-Barrera MM, Pombo O, Navacerrada MA (2016) Textile fibre waste bindered with natural hydraulic lime. Compos B: Eng 94:26–33. https://doi.org/10.1016/j.compositesb.2016.03.013
- 178. Xu S, Wang J, Jiang Q, Zhang S (2016) Study of natural hydraulic lime-based mortars prepared with masonry waste powder as aggregate and diatomite/fly ash as mineral admixtures. J Clean Prod 119:118–127. https://doi.org/10.1016/j.jclepro.2016.01.069
- 179. Barbero-Barrera MM, Flores Medina N, Guardia-Martín C (2017) Influence of the addition of waste graphite powder on the physical and microstructural performance of hydraulic lime pastes. Constr Build Mater 149:599–611. https://doi.org/10.1016/j.conbuildmat.2017.05.156
- Faria P, Duarte P, Barbosa D, Ferreira I (2017) New composite of natural hydraulic lime mortar with graphene oxide. Constr Build Mater 156:1150–1157. https:// doi.org/10.1016/j.conbuildmat.2017.09.072
- Barbero-Barrera MM, Medina NF (2018) The effect of polypropylene fibers on graphite-natural hydraulic lime pastes. Constr Build Mater 184:591–601. https://doi.org/ 10.1016/j.conbuildmat.2018.06.121
- 182. Vavričuk A, Bokan-Bosiljkov V, Kramar S (2018) The influence of metakaolin on the properties of natural hydraulic lime-based grouts for historic masonry repair. Constr Build Mater 172:706–716. https://doi.org/10.1016/j.conbuildmat.2018.04.007
- Luo K, Li J, Lu Z, Jiang J, Niu Y (2019) Effect of nano-SiO₂ on early hydration of natural hydraulic lime. Constr Build Mater 216:119–127. https://doi.org/10.1016/j. conbuildmat.2019.04.269
- 184. Dimou AE, Charalampidou CM, Metaxa ZS, Kourkoulis SK, Karatasios I, Asimakopoulos G, Alexopoulos ND (2020) Mechanical and electrical properties of hydraulic lime pastes reinforced with carbon nanomaterials. Procedia Struct Integr 28:1694–1701. https://doi.org/10.1016/j.prostr.2020.10.144
- 185. Luo K, Li J, Han Q, Lu Z, Deng X, Hou L, Niu Y, Jiang J, Xu X, Cai P (2020) Influence of nano-SiO₂ and carbonation on the performance of natural hydraulic lime mortars. Constr Build Mater 235:117411. https://doi.org/10.1016/j.conbuildmat.2019.117411
- 186. Song Z, Lu Z, Lai Z (2020) Mechanical and durability performance improvement of natural hydraulic

- lime-based mortars by lithium silicate solution. Materials 13(22):5292. https://doi.org/10.3390/ma13225292
- Torres I, Matias G, Faria P (2020) Natural hydraulic lime mortars—the effect of ceramic residues on physical and mechanical behaviour. J Build Eng 32:101747. https:// doi.org/10.1016/j.jobe.2020.101747
- Zhang D, Zhao J, Wang D, Wang Y, Ma X (2020) Influence of pozzolanic materials on the properties of natural hydraulic lime based mortars. Constr Build Mater 244:118360. https://doi.org/10.1016/j.conbuildmat.2020. 118360
- García-González J, Faria P, Pereira AS, Lemos PC, Juan-Valdés A (2022) A sustainable production of natural hydraulic lime mortars through bio-amendment. Constr Build Mater 340:127812. https://doi.org/10.1016/j.conbuildmat.2022.127812
- 190. Santhanam K, Ramadoss R (2022) Sustainability development and performance evaluation of natural hydraulic lime mortar for restoration. Environ Sci Pollut Res 29(52):79634–79648. https://doi.org/10.1007/ s11356-022-21019-x
- 191. Shang H, Xiao Z, Wang X, Lu Z, Xu S, Dong P (2024) Study on modification of natural hydraulic lime historical building repair mortar. J Build Eng 97:110583. https:// doi.org/10.1016/j.jobe.2024.110583
- 192. Wei X, Chai Y, Li Y, Wang W, Luo H, Zhang B, Qin Y (2024) New discovery of diethyl carbonate modified natural hydraulic lime in heritage conservation. Int J Archit Herit. https://doi.org/10.1080/15583058.2024.2375040
- 193. Mertens G, Elsen J, Brulet R, Brutsaert A, Deckers M (2009) Quantitative composition of ancient mortars from the Notre Dame Cathedral in Tournai (Belgium). Mater Charact 60(7):580–585. https://doi.org/10.1016/j.match ar.2008.09.004

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

