
Vol.: (0123456789)

Materials and Structures          (2025) 58:152  
https://doi.org/10.1617/s11527-025-02656-3

ORIGINAL ARTICLE

A comprehensive review of the manufacturing process 
and properties of natural hydraulic limes

Anna Arizzi   · Clara Parra‑Fernández 

Received: 3 February 2025 / Accepted: 9 April 2025 
© The Author(s) 2025

Abstract  Within the sub-group of hydraulic limes, 
natural hydraulic limes (NHL) are obtained by cal-
cining limestone containing silica and alumina at 
temperatures of less than 1250  °C. The content of 
hydraulic phases generated at these temperatures 
depends on the raw material, the firing and cooling 
conditions inside the kiln, and the slaking method, 
giving rise to natural hydraulic limes with differ-
ent hydraulic features. Despite these differences, the 
European standards classify NHL limes above all 
based on their free lime content and the compressive 
strength of the mortar after 28  days of curing. This 
means that there are natural hydraulic limes on the 
market today which despite having the same index 
number (NHL2, NHL3.5 or NHL5) have very differ-
ent compositional and textural characteristics. The 
variations in the limes can in turn lead to mortars 
with different properties in both the fresh and hard-
ened states. Although the standard establishes ranges 
for the compressive strength values for the different 
index numbers, these ranges overlap, so giving rise 
to ambiguities in the classification of these limes. 
This review paper aims to extend our knowledge as 
to how different aspects of the manufacturing pro-
cess of NHLs influence their final properties, with 

the ultimate objective of achieving a more rigorous 
classification of these limes. If hydraulic limes with 
more precisely controlled compositional and textural 
characteristics were available on the market, this 
would have a positive impact, especially on architec-
tural heritage conservation, as more suitable, more 
clearly defined and more compatible hydraulic mor-
tars would be available to restorers.

Keywords  Building limes · Hydraulicity · 
Calcination · Slaking · Composition · Setting

1  Introduction

According to the European standard EN459-1 on 
building limes [1], those with hydraulic properties 
“consist mainly of calcium hydroxide, calcium 
silicates and calcium aluminates and have the 
property of setting and hardening when mixed with 
and/or under water”. The standard defines three 
subfamilies of limes with hydraulic properties: (1) 
natural hydraulic limes (NHL), (2) formulated limes 
(FL), and (3) hydraulic limes (HL). The first, natural 
hydraulic lime is defined as “a lime produced by 
burning of more or less argillaceous or siliceous 
limestones (including chalk) with reduction to powder 
by slaking with or without grinding. (…). Grinding 
agents up to 0.1% are allowed. Natural hydraulic 
lime does not contain any other additions”.
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Natural hydraulic limes are classified into three 
grades: NHL2, for natural hydraulic lime 2; NHL3.5, 
for natural hydraulic lime 3.5; and NHL5, for natural 
hydraulic lime 5. This classification is based on the 
minimum compressive strength values obtained in 
standardised mortars made with these NHLs after 28 
days of curing in accordance with EN459-1 [1]. As 
already highlighted by other researchers [2–4], the 
compressive strength ranges for the three types of nat-
ural hydraulic lime overlap, implying that some NHL 
might be misclassified. Such is the case of a natu-
ral hydraulic lime with a 28 day strength of around 
6 MPa, which could be either a NHL2, a NHL3.5 or a 
NHL5 (Table 1).

Furthermore, the 28 day compressive strength 
test can be misleading when characterising and 
classifying feebly hydraulic NHL in which most of the 
strength is obtained through long-term carbonation, 
and therefore after a longer hardening period [2–7]. 
On average, NHL mortars only reach approximately 
50% of their ultimate strength during the first 28 days 
of curing [6, 8–14]. And in fact, a curing time of at 
least 2 years is necessary to obtain a real indication 
of the strength gain in mortars made with NHL, at 
which point a NHL2 can reach even higher strengths 
than the weakest NHL5 at 28 days [2, 3, 15].

The European standard EN459-1 [1] also 
establishes different final setting times for each type 
of NHL (Table  1). However, it must be emphasised 
that these are the only physical parameters established 
in the standard that allow us to distinguish between 
the different NHLs.

As regards the chemical requirements, the lime 
available as Ca(OH)2 (also called free lime) has to 
be controlled (Table  1), and the SO3 content must 
be lower than 2% in all types of NHL. It is striking 
that the European regulations do not specify the 
approximate amounts of silica and alumina that must 
be present in the NHL, and/or even in the raw material 
to obtain this type of lime, especially considering that 
these compounds are responsible for the hydraulic 
nature of NHL (as also stated in the standard itself: 
“the hydraulic properties of NHL exclusively result 
from the special chemical composition of the natural 
raw material”).

Prior to the differentiation of natural hydraulic 
limes with indexes 2, 3.5 and 5, a more exhaus-
tive categorisation, which defined the limes as 
feebly, moderately and eminently (or moderate, Ta
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intermediate and high) hydraulic was used. This 
classification, which was introduced by Cow-
per [16], was based on the studies initiated in the 
eighteenth century by Smeaton, continued by Vicat 
[17, 18] and completed in the twentieth century by 
Eckel [19] and Boynton [20]. Cowper [16] defined 
hydraulic limes as very complex products consist-
ing of silica (SiO2), alumina (Al2O3) and lime 
(CaO), with or without magnesia (MgO) and iron 
oxide (Fe2O3). Holmes and Wingate [21] consider 
soluble silica as the most active component of the 
possible clays, while stating that alumina and fer-
ric oxide also contribute to the hydraulicity. All 
these reactive oxides are regarded as responsible for 
the hydraulic properties of binders such as natural 
hydraulic lime, and precise ranges for the total reac-
tive oxide content have been established for each 
type of lime (Table  1). These have been used to 
create indexes that define the total hydraulicity of 
each binder, i.e. the hydraulicity index (HI, Eq.  1) 
[9, 17, 19–24] and different versions there of [25, 
26] (Eq. 2).

However, the hydraulicity index does not assess 
the specific contribution made by each oxide to 
the formation of hydraulic phases. For this reason, 
another hydraulicity indicator known as the cemen-
tation index (CI, Eq. 3) was established, which con-
sidered the molecular proportions of each oxide 
when they combine to form the hydraulic com-
pounds [19].

Nowadays, CI is the most common index for 
classifying hydraulic limes, for determining the 
suitability of a raw material to produce a binder 
with a certain degree of hydraulicity and for estab-
lishing the boundaries between the different grades 
of hydraulic limes [27–32]. Even though different 
CI ranges have been established over time, the most 

(1)HI =

(

%SiO2

)

+
(

%Al2O3

)

(%CaO)

(2)HI =

(

%SiO2

)

+
(

%Al2O3

)

+ (%Fe2O3)

(%CaO) + (%MgO)

(3)

CI =
2.8 ×

(

%SiO2

)

+ 1.1 ×
(

%Al2O3

)

+ 0.7 × (%Fe2O3)

(%CaO) + 1.4 × (%MgO)

generally accepted are those defined by Boynton 
[20, 33, 34], as indicated in Table 1.

However, as stated by Eckel a century ago [19], 
the cementation index “cannot be the sole basis 
for classification, because the properties of a 
hydraulic cementing material (..) depend not only 
on its composition, but also on the conditions of its 
manufacture”.

Starting from this premise, the aim of this 
bibliographic review is to extend our knowledge of 
natural hydraulic lime and its applicable technical 
standards. To this end, this study will be focusing 
in particular on the manufacture of NHL and its 
use, especially in the field of Architectural Heritage 
conservation and restoration.

2 � The manufacturing process of natural hydraulic 
lime

To understand why NHLs with such different 
properties are currently available on the market, it is 
necessary first to explain how they are manufactured 
at an industrial level, a topic about which little 
research has been conducted, as other authors have 
already pointed out [2, 3, 6, 12–14, 16, 19, 21, 25, 
27–29, 31, 32, 36–51]. To this end, all the steps of 
the manufacturing process of natural hydraulic 
limes will be discussed in depth on the basis of the 
existing literature, according to which the most 
important factors affecting the final product are: (1) 
the chemical–mineralogical and textural composition 
of the raw materials, (2) the calcination conditions 
(e.g. temperature and residence time in the kiln), (3) 
the slaking process, and (4) the reactivity of the lime 
produced.

2.1 � Raw materials

It has always been believed that the hydraulicity of 
NHLs is dependent on the presence of clays in the 
raw material. This is because the first definition of the 
degree of hydraulicity of NHLs referred to Smeaton’s 
studies on English marly limestones, i.e. limestones 
containing clays. Even further back in time, Vicat 
[17, 18] produced an “artificial hydraulic lime” by 
mixing a “rich slaked lime” (obtained from chalk 
from the Upper Cretaceous carbonatic formation of 
the Paris Basin, according to Artioli et al. [52]) with a 
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certain proportion of clay, and calcining the mixture, 
thus obtaining a product called ‘‘twice-kilned’’. And, 
in 1796, James Parker manufactured the first natural 
cement (also called Roman cement or Parker cement) 
by burning and grinding septaria, calcareous nodules 
with a clay nucleus [21, 52].

As a result, the presence of clays has become an 
essential prerequisite in all raw materials considered 
suitable for making NHLs. Even though the presence, 
content and type of clays (“active clays”, [21]) are 
important aspects to consider in the manufacture of 
NHLs, as the chemical–mineralogical composition 
of the clays can affect the silicates and aluminates 
formed [51, 53–55], different types of siliceous 
limestone (providing they have a CI of between 0.30 
and 1.10 [19]), and even industrial sub-products 
[56] can also be used in the manufacture of natural 
hydraulic limes, as has been demonstrated in recent 
research.

These materials include stones containing diatoms 
(amorphous silicon oxide) [26], microcrystalline 
quartz (or silex), feldspars and plagioclases [27–32, 
44, 46–48, 50, 57–64], waste from the paper industry 
(lime mud, [56]) and a mix of Ca(OH)2 and SiO2 
[65].

Nowadays, it is more and more widely accepted 
that a natural hydraulic lime can be obtained not only 
from a limestone with a certain clay content, but also 
from a siliceous limestone (for example with silex or 
chert), providing that the silica present in the stone is 
reactive [32, 66].

The properties of natural hydraulic limes are 
directly influenced by the compositional and textural 
features of the raw materials used in their production 
[31]. This means that although the reactive oxide 
content is a determining factor in the development 
of hydraulicity, the heterogeneity [67], texture, 
granulometry and crystallinity of the rock influence 
not only the degree of hydraulicity, but also the 
physical properties of the calcined product [47–49, 
59, 68–70]. For example, Wingate [37] found that 
crystalline rocks such as marbles, with low porosity 
and very coarse crystalline impurities, were hard to 
calcine. Other more recent research studies have 
investigated the influence of the petrographic features 
of the rock during the calcination phase [29, 31, 48, 
49, 71]. In these studies, calcination was carried 
out in the laboratory and mostly on ground powder 
samples rather than on solid rock. In this way it 

was discovered that rocks with clastic textures are 
preferable to crystalline rocks because of their higher 
porosity and ease of decomposition, and that fine-
grained or micritic (< 5  µm) calcite matrices are 
more prone to calcination than sparite-sized (> 5 µm) 
ones [31, 49, 71]. This is because the smaller the 
particle size, the larger the specific surface area of the 
grains. If these factors could be controlled, a better-
quality quicklime (i.e. more reactive to water) could 
be produced using less energy, as will be discussed 
below.

2.2 � Calcination

The hydraulicity and physical characteristics (e.g. 
colour, porosity, specific surface area, density, etc.) 
of the calcined product are influenced not only by 
the chemical and mineralogical composition of the 
raw materials, but also by the calcination conditions 
[9, 16, 21, 23, 24, 29, 36, 39–42, 71]. In particular, 
the degree of calcination of the limestone is highly 
dependent on the maximum temperature reached, 
the residence time in the kiln [29, 71] and the partial 
pressure of the surrounding CO2 [34].

NHLs are obtained by calcination below the 
clinkering point, 1250 °C, a feature that differentiates 
these binders from ordinary Portland cement (OPC) 
and its varieties [72]. During the firing process, the 
following reactions occur [16, 21, 25, 73]:

•	 Between 400 and 600 °C, the clays, if any, are 
dehydrated and decompose partially or totally;

•	 Between 600 and 850 °C calcite decomposes into 
calcium oxide and CO2 [74]. Above 1000 °C, 
CaO begins to undergo sintering, with an increase 
in crystallite size as the temperature rises [74], 
aspect that will have an impact on its reactivity 
towards water during the hydration step;

•	 Over 800 °C, a solid-state reaction occurs between 
unstable reactive ions (i.e., silicon, aluminium 
and iron) and calcium oxide, generating various 
silicates and calcium aluminates.

The calcination temperature used in most of the 
experimental studies reported in the literature ranges 
between 950 and 1050 °C [5], and 950–1250 °C [16, 
25, 75], whilst temperatures higher than 1250 °C 
would favour solid-state and liquid-state sintering 
[61]. In some studies, hydraulic binders have been 
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produced at lower calcination temperatures (850 
°C, [26]). As is generally known for aerial lime, 
preheating and a gradual increase in temperature is 
preferable to shock calcination, so as to ensure the 
complete thermal decomposition of the calcite [40].

Heat is unevenly distributed inside traditional 
kilns in which different calcination temperatures 
can be reached. As a result, “under-burned”, 
“soft-burned” and “hard-burned” (also called 
“overburned” and “dead-burned”) lime [37] can be 
obtained. When the stone presents a residual core of 
non-decomposed calcite, due to an excessively low 
calcination temperature, the lime is considered to be 
underburned [37]. If the stone reaches sintering point, 
due to an excessively high temperature, the lime is 
said to be hard-burned (depending on the degree of 
sintering, this lime is then described as overburned 
or deadburned). In the latter, the CaO particles have 
a less porous structure and therefore a lower specific 
surface area, which means that the NHL quicklime 
is less reactive to slaking [41, 42, 49]. Soft-burned 
lime, by contrast, is obtained at lower temperatures 
and is more reactive than lime produced at higher 
temperatures or with longer residence times in the 
kiln [37, 40, 41, 50].

This problem was minimised with the invention of 
modern kilns in which, unlike the traditional ones, the 
heat is more homogeneously spread and calcination 

is less dependent on the position of the stone in the 
kiln. Previously, natural hydraulic lime had been 
obtained by burning large lumps of material, much 
larger than those used in the manufacture of Portland 
cement [76]. In traditional kilns (Fig. 1A), the size of 
the lump depended on its position in the kiln, which 
was filled from above and in layers so that the larger 
rock fragments were placed at the bottom, close to the 
fire, and the smaller pieces appeared in the upper lay-
ers [19]. However, with the introduction of modern 
industrial kilns (Figs. 1B and C) and machinery capa-
ble of reducing rock size to 6–8 cm (Fig. 2) [37], the 
calcination process was optimized.

Overburning is not only the product of high 
calcination temperatures, it is also influenced by 
the chemical and mineralogical composition of the 
raw material [7]. It is encouraged by the presence 
of silica, alumina and iron in the raw materials, 
which are known to clog the pores of the quicklime, 
decreasing its specific surface area and reactivity 
to hydration [40, 42]. This also affects the specific 
surface area of the lime, making it more impermeable 
to slaking water even if it has been calcined at 
optimum temperature.

In addition to its effects on the textural properties 
and reactivity to water of the NHL quicklime, the 
calcination temperature is also a determining factor 
in the resulting mineralogy of the NHL. For example, 

Fig. 1   Types of kiln used by different NHL manufacturers. A 
Traditional kiln from the Spanish company Cementos Tigre. B 
Industrial kiln from the Portuguese company Secil. C Indus-

trial kiln from the French company Socli-Heidelberg. Source 
Photographs of the authors
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the hydraulic phases (C2S, C3S, C3A) and iron phases 
such as brownmillerite (C4AF) appear in increasing 
amounts as calcination temperatures increase [28]. 
The development of larger amounts of Fe-bearing 
phases also modifies the physical properties of the 
lime, giving it a brownish tone [28, 29, 32, 46].

The influence of temperature in the resulting 
NHL was already observed in 1922 by Eckel [19], 
who stated that NHL can be produced in two 
different ways: (1) by the calcination of siliceous 
or argillaceous stones with a low CI (0.30–1.10), at 
a medium temperature, which would give rise to a 
“typical hydraulic lime”; or (2) by the calcination of 
stones with high CI (1.10–1.60) at a low temperature, 
which would result in a hydraulic lime with a large 
proportion of inert material, which Eckel refers to 
as an “imperfectly burned natural cement”. This 
statement suggests that the same raw material can 
be used to obtain NHL with different degrees of 
hydraulicity, providing that a different calcination 
temperature is used.

Finally, the release of CO2 in the kiln during 
calcination also influences the outcome of the 
calcination process in two main ways. Firstly, the 
resulting quicklime has a more porous structure, 
thus affecting the properties of the calcined product 
[40–42]. Secondly, it gives rise to silicon carbonates 
and back-reactions of carbonation inside the kiln 
when the CO2 extraction system has insufficient 

capacity [20, 29, 32, 41, 46, 77]. This can be avoided 
by installing a more effective ventilation system or by 
a longer residence time at maximum temperature.

2.3 � Hydration (slaking)

The calcined rock that gives rise to NHL is 
composed in part of a variable amount of calcium 
oxide that undergoes hydration to obtain calcium 
hydroxide (Eq. 4).

This is a strong exothermic reaction [78] that 
causes an associated increase in surface area, 
weight and volume [20]. In theory, the part of the 
lime composed of silicates and other hydraulic 
phases will not slake during this stage [19].

Hydration (or slaking) can be carried out by 
different methods, as reported in the literature [58, 
79]. In the case of air limes, the most common 
industrial method is “dry hydration”, which consists 
of adding a stoichiometric amount of water to the 
CaO, by spraying or irrigation [52], so as to obtain a 
dry fine powder of Ca(OH)2. Slaking under water, by 
contrast, involves the use of larger amounts of water 
to obtain calcium hydroxide in slurry or putty form 
[40, 52].

(4)CaO + H2O → Ca(OH)2

Fig. 2   A Raw material 
for NHL production on 
conveyor belts on the way 
to the kiln. Picture taken at 
the French company Saint 
Astier. B Raw materials of 
homogeneous size piled 
up by the French NHL 
producer Lafarge-Holcim. 
Source Photographs of the 
authors
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Slaking under water (also called wet hydration), is 
never used in the manufacture of NHLs, as it would 
lead to the undesired hydration of the calcium sili-
cates and aluminates present in the NHL, which are 
supposed to react later in the mortar. As a result, a 
water/CaO ratio of 1:1 is used for slaking. According 
to the reactivity test regulated by the EN 459–2 stand-
ard [35], slaking is controlled by measuring the heat 
of hydration produced by a known weight of lime in a 
known volume of water.

The reactivity to water of CaO is influenced by 
a number of factors, including the characteristics 
of the fired limestone (e.g. composition, surface 
area, porosity, particle size, etc., [21, 37, 80]), the 
calcination conditions (e.g. kiln type, temperature 
and residence time, [81]), the existence of a storage 
period after calcination [41], the slaking method and 
the agitation mode [82], and the composition of the 
slaking water [45, 83, 84].

According to Leontakianakos et  al. [45], the 
slaking process depends mostly on the composition 
and presence of impurities of the source material, 
and on the calcination conditions, rather than on the 
chemical composition of the slaking water. Factors 
such as the microstructure and texture of the raw 
material [39], and the magnesium and alumina 
content of the limestone seem to be key aspects in the 
progress of reactivity [84].

The use of high temperatures and long residence 
times during calcination leads to a reduction in 
the slaking rate due to the coalescence of the lime 
particles, and a decrease in their specific surface 
area [20, 39, 43, 49, 80, 82, 85, 86]. By contrast, 
soft-burned limes are more prone to hydration than 
hard-burned ones, because they are more porous and 
therefore more permeable to water [20].

The presence of CO2 in the kiln and the storage 
also influence the reactivity of the quicklime towards 
water [41, 87]. The CaO formed during calcination is a 
thermodynamically unstable product that tends to react 
with other compounds such as CO2 inside the kiln or 
with the water vapour in the atmosphere [34, 41]. The 
latter occurs because CaO has a high-water sorption 
capacity, which means that hydration can occur even 
in atmospheres with ~ 15% RH [20, 88]. CaO may be 
subject to both carbonation and pre-hydration reactions 

after calcination [34] and during a potential storage 
period [41], and therefore prior to the hydration process 
itself. If this occurs, the lime particles might be covered 
by a thin surface layer of calcium hydroxide that is 
known to influence their behaviour during the slaking 
process [40].

The slaking process can be carried out either: (i) 
directly on the lime lumps, which turn to dust when 
they come into contact with water, or (ii) on the 
previously ground quicklime powder. In general, the 
slaking of ground quicklime is the preferred option 
as it is quicker and more homogeneous, and smaller 
Ca(OH)2 particles are obtained [20, 37].

Agitation during hydration positively impacts the 
rate of slaking, as it increases the dispersion of the lime 
particles and enables higher slaking temperatures to be 
reached [20, 82].

Finally, the chloride content of the slaking water 
seems to increase the reactivity of the lime towards 
water, while sulphates and carbonates delay the 
hydration reaction [83, 84].

According to Eckel [19], NHL was stored for 
approximately 10 days in bins in the plant, during which 
time the lime continued hydrating with the aid of the 
steam that was generated. Slaking was only considered 
to have been completed once this period had come to an 
end.

Similar traditional slaking methods exist in Oriental 
cultures [58, 79]. Among them, a method called wind-
slaking [58], which involved exposing the quicklime 
to wet airflow, so producing better quality limes and 
mortars with greater mechanical strength. However, 
this method takes much longer than water-slaking, as it 
may need 21–40 days depending on the air flow (open 
or closed) [58].

Pesce et al. [89] have demonstrated the influence of 
the slaking method on the crystallinity of the mineral 
phases and on the type of hydrated phases formed. In 
particular, the enhanced mechanical properties shown 
by the final mortars could be due to the development 
of an amorphous precursor of portlandite, detected in 
limes and cement slaked with moisture from the air [32, 
90–99].

In the final stage of the industrial manufacturing pro-
cess, natural hydraulic limes are usually re-ground right 
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after slaking (Fig. 3), so as to obtain a finer powder that 
is now ready to be put on sale.

3 � The composition of NHL

Natural hydraulic limes are composed, on the one 
hand, of an aerial fraction that consists mostly 
of calcium hydroxide (Ca(OH)2, mineral phase 
portlandite, also referred to as free lime), and, on 
the other, of a hydraulic fraction formed by a series 
of more or less reactive compounds that depend on 
the raw material and manufacturing conditions, as 
commented above.

The predominant hydraulic phase in NHLs 
is di-calcium silicate (Ca2SiO4, mineral phase 
larnite, also known as belite, according to cement 
chemistry  notation C2S (2 CaO·SiO2)) [8, 23, 25, 
29, 31, 53, 65, 72, 96, 100, 101]. Other hydraulic 
phases likely to be found in NHLs are [7, 8, 23, 28, 
29, 32, 46, 48, 100]:

•	 Tri-calcium silicate (Ca3SiO5, mineral 
phase hatrurite), also known as alite, C3S (3 
CaO·SiO2). This phase is generally formed at 
higher temperatures than those used in NHL 
manufacture, but it can be found in NHL due to 
the occurrence of high-temperature points (hot-
spots) in the kiln [25, 96].

•	 Tri-calcium aluminate, also known as aluminate 
or celite, C3A (3 CaO·Al2O3);

•	 Tetra-calcium alumino-ferrite (Ca2(Al,Fe)2O5, 
mineral phase brownmillerite) also known as 
felite or ferrite, C4AF (4 CaO·Al2O3·Fe2O3);

•	 Calcium aluminium silico-aluminate 
(Ca2Al(AlSiO7), mineral phase gehlenite), also 
known as C2AS (2 CaO·Al2O3·SiO2).

Wollastonite (CaSiO3, CS) and its different 
polymorphs (e.g. pseudowollastonite, 
parawollastonite, etc.) are calcium silicates that can 
sometimes be detected in NHLs, even though they 
are not hydraulic phases [28]. Other non-hydraulic 
phases reported in hydraulic limes are bredigite 
(Ca7Mg(SiO4)4) and kilchoanite/rankinite (Ca3Si2O7) 
[32, 102].

In general, the higher proportion of C2S compared 
to C3S and the presence of gehlenite (C2AS) are 
two distinctive aspects of natural hydraulic limes as 
compared to other hydraulic binders such as Portland 
cement [25].

Gehlenite can also be present in its hydrated 
form (Ca2Al(AlSi)O7 8H2O, mineral phase 
strätlingite, C2ASH8) [23, 102] or in the form of 
other intermediate phases that form a solid solution 
with it. One example is the mineral phase åkermanite 
(Ca2MgSi2O7), in which the aluminium is replaced by 
magnesium [103], a phase that can also be obtained 

Fig. 3   A Tube for slaking of the calcined material. B Grinding ball mill for final crushing of NHL. Both images were taken at the 
French company Lafarge. Source Photographs of the authors
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from wollastonite if the system is rich in MgO [32, 
104].

C3A and C4AF are formed within the calcination 
temperature range of NHL, although their presence 
is dependent on the content of reactive Al2O3 and 
Fe2O3 in the raw materials [29, 38]. When mixed 
with water and sometimes during the slaking process 
itself, these phases, also known as clinker phases 
[52], produce a series of intermediate or AFm phases 
[32, 52, 105]. These are predominantly hydrocalumite 
(Ca4Al2(Cl,CO3,OH)2(OH)12-4H2O) and hydrotalcite 
(Mg6Al2(CO3)(OH)16–4(H2O)), which are calcium 
and magnesium analogues [106], as well as 
calcium carboaluminate or monocarboaluminate 
(C4AĈH11) and other less stable hydrated phases 
such as hydroxi-AFm or C4A hydrates, (C4AH7+x) 
and hemicarboaluminate (C4AĈ0.5H12) [102, 105, 
107–110].

Other phases derived from the calcination process 
itself and likely to be detected in NHLs are quartz 
(SiO2) and its polymorphs, tridymite and cristobalite.

Periclase (MgO) can also be present in NHLs if 
the raw material contained Mg-bearing carbonates 
(e.g., dolomite, magnesite) or other Mg phases, 
and trace CaO contents are sometimes found due to 
incomplete hydration.

Variable calcite contents may also be detected, 
due to incomplete thermal decomposition of this 
phase or as a result of carbonation of the free lime, 
when in contact with CO2. Calcite polymorphs such 
as aragonite or vaterite can occasionally be found 
in NHL and their presence depends mostly on the 
carbonation conditions.

Silicon carbonates such as spurrite formed by 
recarbonation reactions with the CO2 inside the kiln 
or back-reactions have also been reported in the 
literature [20, 29, 32, 41, 46, 77].

Another phase found by other authors in 
commercial NHLs is anhydrite [23, 96], which may 
be due to gypsum or other sulphur sources in the raw 
material.

It is worth stressing that, despite the high number 
of hydraulic phases that are potentially present 
in NHL, this binder only has to comply with the 
amounts of free lime established in the European 
standard EN459-1 [1] for each NHL class (≥ 35% for 
NHL2, ≥ 25% for NHL3.5, and ≥ 15% for NHL5), 
regardless of the other phases it may contain.

4 � Setting process

Due to its composition, NHL setting (or hardening) 
consists of two main processes: (1) carbonation of 
calcium hydroxide when it comes into contact with 
atmospheric CO2 (Eq.  5), and (2) hydration of the 
hydraulic phases when they come into contact with 
H2O [16] (eqs.  6, 7, 8,9 and 10, [38, 75]. These 
processes are known to be in competition, although 
in NHL, hydration generally precedes carbonation [7, 
111].

Carbonation reaction:

Hydration reactions:
Larnite:

Hatrurite:

Tri-calcium aluminate:

Brownmillerite:

Gehlenite:

Hydrated calcium silicates (or calcium silicate 
hydrates, C–S–H) are a family of mineral phases such as 
jennite (C9S6H11), tobermorite (C5S6H5) or plombierite 
(C5S6H8) [102], characterised by disorder phenomena, 
low crystallinity and very small grain sizes [112], all of 
which are produced by the hydration of the hydraulic 
silicate phases C2S and C3S. According to Taylor [38], 
C3S shows greater reactivity than C2S, as after 28 
days of curing, C3S is responsible for 70% of cement 
hydraulicity, while C2S is responsible for just 30%. 
However, the differences in the size of these components 
influence their specific area and therefore their reactivity. 
The average size of C2S in cement is between 20 and 40 
μm [38], while in NHL it is around 2 μm [32], which 
together with the lower C3S content in NHL means that 

(5)Ca(OH)2 + CO2 → CaCO3 + H2O

(6)Ca2SiO4 + 4H2O → C − S − H + Ca(OH)2

(7)Ca3SiO5 + 5H2O → C − S − H + 2Ca(OH)2

(8)Ca3Al2O6 + 6H2O → C3AH6(hydrogarnet)

(9)
Ca2AlFeO5 + 5H2O

→ C3AH6(hydrogarnet) + Fe(OH)3

(10)
Ca2Al(AlSi)O7 + 8H2O → C2ASH8(strätlingite)
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C2S is expected to make the largest contribution to the 
C–S–H, even though at a slower rate.

Aluminate phases (C3A and C4AF), which are 
known to be more reactive than C2S [52], can also 
react to form AFm phases in the previous stages 
of hydration. These are hydroxy-AFm, hemi and 
monocarboaluminate and strätlingite, also known 
as gehlenite hydrate [105, 110], which tend to form 
more stable hydrated calcium aluminates (or calcium 
aluminate hydrates, C-A-H) [23]. Albeit to a lesser 
extent, C-A-H phases contribute to the mechanical 
properties of binders of this kind and can be detected 
in hardened NHL mortars [7]. In their crystalline 
form, C-A-H are commonly known as hydrogarnet 
(Ca3Al2(OH)12) [102, 105]. This phase is considered 
to be the most stable phase, as all the AFm phases 
eventually tend towards it [23, 52, 102, 105]. The 
hydrogarnet phases may also include iron in their 
structure (Ca3(AlxFe1−x)2(SiO4)y(OH)4(3−y), [113]) 
depending on the amount of C4AF [114].

Other hydrated phases include hydrated calcium 
silico-aluminates or calcium silico-aluminate 
hydrates (C-A-S-H) and hydrated magnesium silicates 
or magnesium silicate hydrates (M-S-H), whose 
occurrence is closely related to the compositional 
characteristics of the binder and the raw material 
[115–121]. The hydrated phases that eventually form 
gels are hard to detect in NHLs as in many cases 
they are amorphous and are classified as amorphous 
phases [96]. They are more easily identified in cement 
pastes and mortars, where they appear in abundant 
amounts, and they have sometimes been detected 
in archaeological materials with pozzolanic activity 
[122–124].

Table  2 shows some of the most common mineral 
phases and compounds formed in natural hydraulic 
lime.

In summary, all natural hydraulic limes today are 
composed of lime (in the form of calcium hydroxide), 
silicates and calcium aluminates, in varying 
proportions depending on the initial composition 
of the raw material. They also contain a variable 
amount of inert material (normally calcite), whose 
percentages depend on their manufacturing process 
[96] and whose characteristics (e.g. granulometry and 
morphology) can influence the plasticity of the lime 
[125].

As a result of these key aspects, which are not 
taken into account in European standards, there are 

natural hydraulic limes on the market which, despite 
having the same index (2, 3.5 or 5) in their name or 
technical data sheet, have very different compositional 
and textural characteristics, an issue that has recently 
been addressed by various Asian researchers [30, 57, 
58, 62, 126].

5 � The use of NHL in heritage conservation 
and bio‑construction: current debate

The aforementioned physical and chemical aspects 
of NHL are crucial for ensuring the best possible 
outcome of restoration works conducted with this 
binder, as will be discussed below.

Mortars made with natural hydraulic limes 
have certain specific characteristics such as lower 
shrinkage during curing compared to aerial limes 
and higher percentages of open porosity and pore 
sizes than modern artificial binders (such as hydraulic 
limes, i.e. limes blended with cement) that make them 
durable in historic masonry. This durability has been 
related to the delayed setting (i.e. setting which starts 
after shrinkage has occurred) of traditional hydraulic 
binders (e.g. lime with pozzolana and natural 
hydraulic lime), which is due to a “major hydraulic 
component C2S (belite) compared to cement-based 
binders that have C3S (alite)” [128].

These features result in moderate mechanical 
strengths and in permeability values that avoid 
excessive water retention and related pathologies [8, 
21, 33, 129–132]. The plastic or ductile behaviour 
of NHL, which is capable of absorbing stresses and 
of adapting to differential settlements, also prevents 
cracking of the masonry, making it a flexible 
material [21, 128, 131, 133, 134]. Lime also has a 
long-term self-healing capacity, in which carbonate 
reprecipitation can occur in small cracks or fissures 
[129].

In chemical terms, unlike other non-natural 
hydraulic limes (HL) or formulated hydraulic limes 
(FL), NHL has no soluble salts [8, 126, 129] and it 
is mainly composed of calcium and silicon. The 
partially hydraulic nature of NHL means that it 
can be used, not only in the restoration of natural 
stone, mortars and earthen materials, but also in the 
stabilisation of soils [135, 136].

Another important aspect explaining its increased 
use in sustainable and bio-construction is its mineral 
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sequestration strategy. During its setting (carbona-
tion) process, it sequesters larger amounts of CO2 (a 
greenhouse gas) than OPC-based concrete, so reduc-
ing the environmental impact of its manufacture [29] 
and making it more environmentally friendly [131, 
132, 137]. The more favourable CO2 balance offered 
by NHLs, together with the lower energy consump-
tion in their manufacturing process, make these 
hydraulic binders an interesting alternative to ordi-
nary Portland cement. As a result, they are currently 
in high demand due to the increased consideration 
given to the environmental impacts and long-term 
consequences of construction work [131].

Other advantages applicable in the sustainable 
construction sector include the aforementioned per-
meability of NHL mortars. As Banfill and Forster 
[33] stated, permeability is related to the ‘breatha-
bility’ of the materials and therefore of the building 
itself. This has an impact on the indoor air quality 
inside the buildings as well as on the durability of the 
rest of the building materials [132, 138].

Given their physical compatibility with the 
generally ‘softer’ traditional building materials, there 
are multiple investigations that validate the use of 
NHLs in restoration work [3, 8, 25, 30, 67, 126, 128, 
139–146], for either structural (masonry, bedding 

Table 2   Main compounds and mineral phases found in natural hydraulic lime before and after the hydration and carbonation pro-
cesses (modified from Arizzi and Cultrone [102] and Mertens [127])

Cement chemistry notation Chemical formula Name of the mineral phase

Before hydration and carbonation
CH Ca(OH)2 Portlandite/Free lime
C CaO Lime
– SiO2 Quartz-Trydimite-Cristobalite
M MgO Periclase
C2S Ca2SiO4 Larnite/Belite
C3S Ca3SiO5 Hatrurite/Alite
C3A Ca3Al2O6 Aluminate
C4AF Ca2(Al,Fe)2O5 Brownmillerite/Felite or ferrite
C2AS Ca2Al(AlSi)O7 Gehlenite
CS CaSiO3 Wollastonite
C7MS4 (Ca7Mg(SiO4)4) Bredigite
C3S2 Ca3Si2O7 Kilchoanite/Rankinite
C5S2C̄ Ca5(SiO4)2CO3 Spurrite
CS̄ CaSO4 Anhydrite
After hydration and carbonation
– CaCO3 Calcite-Aragonite-Vaterite
C–S–H CaO–SiO2–H2O Calcium Silicate Hydrate
C9S6H11 Ca9Si6O18(OH)6 · 8H2O Jennite
C5S6H5 Ca5Si6O16(OH)2 · 4H2O Tobermorite (or 11 Å-Tobermorite)
C5S6H8 Ca5Si6O16(OH)2 · 7H2O Plombierite (or 14 Å-Tobermorite)
C-A-H CaO-Al2O3-H2O Calcium Aluminum Hydrate
C3AH6 Ca3Al2(OH)12 Hydrogarnet
C2ASH8 Ca2Al(AlSi)O7 · 8H2O Strätlingite (gehlenite hydrate)
C4(A, F)X2 · y(H2O) Ca4Al2(Cl,CO3,OH)2(OH)12–4 · H2O Hydrocalumite
M6(A, F)X2 · y(H2O) Mg6Al2(CO3)(OH)16–4· H2O Hydrotalcite
C4AĈ0.5H12 Ca4Al2O7(CO2)0.5 · 12H2O Hemicarboaluminate
C4AĈH11 Ca4Al2O6(CO2) · 11H2O Monocarboaluminate
CS̄H2 CaSO4· 2H2O Gypsum
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and pointing mortars), protective (finishing mortars 
such as plasters and renders), or decorative purposes 
(sgraffito, stucco, etc.).

NHL mortars are mainly used in the restora-
tion of historic buildings to repair damaged original 
materials (e.g. stone, mortar), with specific applica-
tions such as volumetric reintegration in ashlars and 
decorative elements (Fig. 4), as well as rendering for 
façade protection [5, 6, 147–151].

Another common application is in injection grouts, 
a method that involves the pressurized injection of 
a fluid suspension into voids or cracks [152–156], 
which hardens in the absence of CO2, developing 
high permeability and workability, and moderate 
levels of strength.

As a result, NHLs are nowadays considered as 
one of the best binders for use in the restoration of 
buildings, monuments and even mosaics [7, 139, 
157, 158]. This is not surprising considering that 
some ancient mortars were made with a prototype of 
natural hydraulic lime that resulted from the calcina-
tion of impure or cherty limestones [66], which were 
probably used because there were no other geological 
resources available locally.

There are also several authors who criticise and 
question the use of NHL in conservation [9, 12–14, 
159–161] due to unexpected long-term performances 
and the apparent high variability between NHLs with 
the same index number and from different manufac-
turers (Fig.  5), which can lead to mortars with final 

Fig. 4   Examples of applications of NHL mortars for restora-
tion purposes. A Superficial reintegration of deteriorated stone 
ashlars (the blue line circumscribes the restored area); B Infill 
of an ashlar with glass rod structure for volumetric reintegra-
tion (the blue arrow indicates the NHL mortar that it is being 

used); C reintegration of decorative elements (the blue arrow 
indicates the appearance of the NHL mortars and its aesthetical 
compatibility with the original substrate). Source Photographs 
of the authors during the restoration of the tower of the Cathe-
dral of Granada (Spain)
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characteristics that differ greatly from those of their 
historic counterparts.

For this reason, restorers sometimes prefer the 
most traditional hydraulic lime mortars made with 
aerial lime and pozzolans (e.g. ceramic fragments, 
pumice powder, organic ashes,  etc.) and other 
alternatives such as the hot-mixed or hot-lime mortars 
produced by mixing quicklime with sand [12, 13, 79, 
162–167].

However, it is widely accepted that the final 
physical properties of lime mortars, in general, and 
NHL mortars in particular, are mostly influenced by 
the nature and dosage of sand, the water-to-binder 
ratio, and the curing time and conditions [8, 10, 53, 
67, 111, 134, 141–144, 154, 168–173]. They are also 
affected by the presence of additives and admixtures 
[57, 145, 153, 155, 156, 174–192], regardless of the 
type of binder.

In this sense, the physical parameters set out 
in the European standard (EN459-1 [1]) are 
hardly applicable to real cases of construction and 
conservation works, where different types of sand 
and binder-to-sand ratios are used, and the exposure 

conditions vary over time. This is, however, a 
difficult issue to overcome from the perspective 
of a harmonised standard that seeks to define the 
binder rather than the final mortar. In this sense, 
it is more important to identify and regulate the 
factors that influence the chemical–mineralogical 
characteristics of the different natural hydraulic 
limes, in order to create commercial NHL products 
with more standardized compositional and textural 
characteristics, and therefore, with more predictable 
properties on site.

This incongruence was already observed by 
Mertens [127], who studied 90 hydraulic limes, 
most of which were manufactured in France. For 
their part, Callebaut et  al. [25] stated that studies 
on the production process and characterisation of 
hydraulic lime mortars were very scarce. They 
emphasized the importance of acquiring detailed 
knowledge of the characteristics of hydraulic limes 
and their mortars as they were ideal materials for use 
in the conservation of historical buildings. After an 
in-depth chemical–mineralogical and petrographic 
characterisation of historical mortars from the 

Fig. 5   Appearance and colour of different NHLs produced by the main European manufacturers from France, Spain and Portugal. 
Source Photographs of the authors
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Tournai Cathedral and the Tongeren Basilica 
(Belgium), Mertens et  al. [127, 193] stated that, 
despite being able to determine unequivocally that 
these mortars were hydraulic in nature, it was very 
difficult to decide whether this hydraulicity was due 
to pozzolanic-type reactions, to the use of hydraulic 
limes, or perhaps even to both. These studies show 
that it is difficult to identify the exact type of binder 
used in a hydraulic mortar.

If we consider the number of mortars on the market 
which, according to their technical data sheet, are 
made with hydraulic binders, an inevitable question 
arises as to the real composition of these mortars. In 
fact, there are a whole range of possibilities, from 
the use of hydraulic lime (NHL or HL) to the use of 
aerial lime with pozzolans, or in the worst case, the 
use of aerial limes mixed with cement (products that 
would be classified as formulated limes, FL [1]).

The difficulty of discerning one product from 
another means that there is great uncertainty about 
which hydraulic mortar would be most appropriate 
to ensure the successful restoration of a particular 
historic building, given that some of these products 
may not be fully compatible with the original 
traditional mortars.

6 � Conclusions

This review aims to contribute to a greater, more 
in-depth knowledge of the characteristics and 
manufacturing process of natural hydraulic limes, 
with the ultimate objective of developing a more 
rigorous classification of this sub-group of hydraulic 
limes. As discussed here, it is evident that a more 
precise, more harmonized classification of the group 
of limes with hydraulic features, and in particular 
natural hydraulic limes, is needed. If the NHL on 
the European market had more precisely controlled 
compositional and textural characteristics, this would 
benefit the building sector as a whole, and the more 
specific field of historic heritage conservation and 
restoration in particular, in which NHL is being 
increasingly used as a compatible binder for repair 
mortars. This will be useful not only for researchers 
working in the field, but also for architects and 
restorers/conservators who will acquire more 

knowledge about the binders used and, finally, for 
the manufacturers who will have more detailed 
specifications to follow.

Three important aspects are missing from the 
definition of natural hydraulic lime in the EN459-1 
standard [1]: (1) the chemical, mineralogical and 
textural specifications of the raw materials; (2) 
details about the optimum calcination conditions; 
and (3) instructions as to how to perform slaking.

On the basis of this review of the bibliography on 
natural hydraulic limes, we would like to make the 
following recommendations that could improve the 
EN459-1 standard [1]:

(1)	 To include, in addition to limestone that contains 
clay, other valid raw materials for NHL such 
as different types of siliceous limestone with 
reactive silica.

(2)	 To classify the different degrees of hydraulicity 
of the NHLs, not only on the basis of their free 
lime and compressive strength values at 28 days, 
but also on the reactive oxides content and the 
cementation indexes of the raw materials and 
final products.

(3)	 To advise that different degrees of hydraulicity 
can be obtained by applying different calcination 
temperatures (the higher the calcination 
temperature, the more hydraulic the NHL 
obtained), when only one type of valid raw 
material is available.

(4)	 To highlight that calcination temperatures of 
950 ºC reduce the formation of iron-phases, thus 
favouring the obtention of whiter NHLs.

(5)	 To advise that water-slaking can give rise to 
the premature formation of C–S–H and C-A-H 
phases, something that can be reduced by using 
air moisture or steam.

The implementation of the regulatory framework 
for natural hydraulic limes is expected to have a 
positive impact on the classification of natural 
hydraulic limes, and to enable a clear distinction 
between natural hydraulic limes (NHL) and 
hydraulic (HL) or formulated limes (FL), in which 
lime is frequently blended with Portland cement.
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