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Abstract Within the sub-group of hydraulic limes,
natural hydraulic limes (NHL) are obtained by cal-
cining limestone containing silica and alumina at
temperatures of less than 1250 °C. The content of
hydraulic phases generated at these temperatures
depends on the raw material, the firing and cooling
conditions inside the kiln, and the slaking method,
giving rise to natural hydraulic limes with differ-
ent hydraulic features. Despite these differences, the
European standards classify NHL limes above all
based on their free lime content and the compressive
strength of the mortar after 28 days of curing. This
means that there are natural hydraulic limes on the
market today which despite having the same index
number (NHL2, NHL3.5 or NHL5) have very differ-
ent compositional and textural characteristics. The
variations in the limes can in turn lead to mortars
with different properties in both the fresh and hard-
ened states. Although the standard establishes ranges
for the compressive strength values for the different
index numbers, these ranges overlap, so giving rise
to ambiguities in the classification of these limes.
This review paper aims to extend our knowledge as
to how different aspects of the manufacturing pro-
cess of NHLs influence their final properties, with
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the ultimate objective of achieving a more rigorous
classification of these limes. If hydraulic limes with
more precisely controlled compositional and textural
characteristics were available on the market, this
would have a positive impact, especially on architec-
tural heritage conservation, as more suitable, more
clearly defined and more compatible hydraulic mor-
tars would be available to restorers.
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1 Introduction

According to the European standard EN459-1 on
building limes [1], those with hydraulic properties
“consist mainly of calcium hydroxide, calcium
silicates and calcium aluminates and have the
property of setting and hardening when mixed with
and/or under water”. The standard defines three
subfamilies of limes with hydraulic properties: (1)
natural hydraulic limes (NHL), (2) formulated limes
(FL), and (3) hydraulic limes (HL). The first, natural
hydraulic lime is defined as “a lime produced by
burning of more or less argillaceous or siliceous
limestones (including chalk) with reduction to powder
by slaking with or without grinding. (...). Grinding
agents up to 0.1% are allowed. Natural hydraulic
lime does not contain any other additions” .
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Natural hydraulic limes are classified into three ~
grades: NHL2, for natural hydraulic lime 2; NHL3.5, £ %
for natural hydraulic lime 3.5; and NHLS, for natural § +
hydraulic lime 5. This classification is based on the g %
minimum compressive strength values obtained in 2;&5 x0B §
standardised mortars made with these NHLs after 28 Ea g1y 4o
days of curing in accordance with EN459-1 [1]. As
already highlighted by other researchers [2—4], the B
compressive strength ranges for the three types of nat- =
ural hydraulic lime overlap, implying that some NHL é 5 _ s 5 §
might be misclassified. Such is the case of a natu- - S£a | v
ral hydraulic lime with a 28 day strength of around g g
6 MPa, which could be either a NHL2, a NHL3.5 or a - % a
NHLS5 (Table 1). =2 B g 3
Furthermore, the 28 day compressive strength g i £ s 2
test can be misleading when characterising and g 5
classifying feebly hydraulic NHL in which most of the S
strength is obtained through long-term carbonation, E 5 g ’;T :|
and therefore after a longer hardening period [2-7]. 3 o8& g &8s
On average, NHL mortars only reach approximately §
50% of their ultimate strength during the first 28 days 5 8 5.y 2
of curing [6, 8-14]. And in fact, a curing time of at = §§ ?% § g
least 2 years is necessary to obtain a real indication E E = %D”“ s E
of the strength gain in mortars made with NHL, at @
which point a NHL2 can reach even higher strengths % N o §
than the weakest NHLS5 at 28 days [2, 3, 15]. g g E § g
The European standard EN459-1 [1] also § =8 | £& o
establishes different final setting times for each type 12229 leg P
of NHL (Table 1). However, it must be emphasised % 2 é _ § % 5‘ N
that these are the only physical parameters established 5 E é’ § . _ Ef e . e :Qo:
in the standard that allow us to distinguish between 1588282 2 [N A g
the different NHLs. £ =
As regards the chemical requirements, the lime § = é"ﬂ 5
available as Ca(OH), (also called free lime) has to 2 E 2% - o E
be controlled (Table 1), and the SO; content must £ § EE MRV 5
be lower than 2% in all types of NHL. It is striking L2 5
that the European regulations do not specify the _§ «é gb . B
approximate amounts of silica and alumina that must E‘ % f = e, § ?
be present in the NHL, and/or even in the raw material g £ % %‘ 5o a 5 .2
to obtain this type of lime, especially considering that g8 & 2 a2 |2 %
these compounds are responsible for the hydraulic E £ S% PRSI _‘g :z::
nature of NHL (as also stated in the standard itself: g 2 =
“the hydraulic properties of NHL exclusively result é c . E %ﬁ
from the special chemical composition of the natural g g 8 o é 2
raw material”). S 2= z £z E i
Prior to the differentiation of natural hydraulic <§ % g
limes with indexes 2, 3.5 and 5, a more exhaus- - | & 2 § E
tive categorisation, which defined the limes as _;: é o T 5 2 § o
g ST E =
feebly, moderately and eminently (or moderate, g & z 257 S F
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intermediate and high) hydraulic was used. This
classification, which was introduced by Cow-
per [16], was based on the studies initiated in the
eighteenth century by Smeaton, continued by Vicat
[17, 18] and completed in the twentieth century by
Eckel [19] and Boynton [20]. Cowper [16] defined
hydraulic limes as very complex products consist-
ing of silica (SiO,), alumina (Al,O;) and lime
(Ca0), with or without magnesia (MgO) and iron
oxide (Fe,03). Holmes and Wingate [21] consider
soluble silica as the most active component of the
possible clays, while stating that alumina and fer-
ric oxide also contribute to the hydraulicity. All
these reactive oxides are regarded as responsible for
the hydraulic properties of binders such as natural
hydraulic lime, and precise ranges for the total reac-
tive oxide content have been established for each
type of lime (Table 1). These have been used to
create indexes that define the total hydraulicity of
each binder, i.e. the hydraulicity index (HI, Eq. 1)
[9, 17, 19-24] and different versions there of [25,
26] (Eq. 2).

i (%Si0,) + (%A1,05) o
B (%Ca0)

_ (%S10,) + (%AL,05) + (%Fe,03)
- (%Ca0) + (%MgO) @

However, the hydraulicity index does not assess
the specific contribution made by each oxide to
the formation of hydraulic phases. For this reason,
another hydraulicity indicator known as the cemen-
tation index (CI, Eq. 3) was established, which con-
sidered the molecular proportions of each oxide
when they combine to form the hydraulic com-
pounds [19].

2.8 X (%Si0,) + 1.1 X (%A1,05) + 0.7 X (%Fe,05)

cr= (%Ca0) + 1.4 X (%MgO)
3)
Nowadays, CI is the most common index for
classifying hydraulic limes, for determining the
suitability of a raw material to produce a binder
with a certain degree of hydraulicity and for estab-
lishing the boundaries between the different grades
of hydraulic limes [27-32]. Even though different
CI ranges have been established over time, the most

generally accepted are those defined by Boynton
[20, 33, 34], as indicated in Table 1.

However, as stated by Eckel a century ago [19],
the cementation index ‘“cannot be the sole basis
for classification, because the properties of a
hydraulic cementing material (..) depend not only
on its composition, but also on the conditions of its
manufacture”.

Starting from this premise, the aim of this
bibliographic review is to extend our knowledge of
natural hydraulic lime and its applicable technical
standards. To this end, this study will be focusing
in particular on the manufacture of NHL and its
use, especially in the field of Architectural Heritage
conservation and restoration.

2 The manufacturing process of natural hydraulic
lime

To understand why NHLs with such different
properties are currently available on the market, it is
necessary first to explain how they are manufactured
at an industrial level, a topic about which little
research has been conducted, as other authors have
already pointed out [2, 3, 6, 12-14, 16, 19, 21, 25,
27-29, 31, 32, 36-51]. To this end, all the steps of
the manufacturing process of natural hydraulic
limes will be discussed in depth on the basis of the
existing literature, according to which the most
important factors affecting the final product are: (1)
the chemical-mineralogical and textural composition
of the raw materials, (2) the calcination conditions
(e.g. temperature and residence time in the kiln), (3)
the slaking process, and (4) the reactivity of the lime
produced.

2.1 Raw materials

It has always been believed that the hydraulicity of
NHLs is dependent on the presence of clays in the
raw material. This is because the first definition of the
degree of hydraulicity of NHLs referred to Smeaton’s
studies on English marly limestones, i.e. limestones
containing clays. Even further back in time, Vicat
[17, 18] produced an “artificial hydraulic lime” by
mixing a “rich slaked lime” (obtained from chalk
from the Upper Cretaceous carbonatic formation of
the Paris Basin, according to Artioli et al. [52]) with a
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certain proportion of clay, and calcining the mixture,
thus obtaining a product called *‘twice-kilned’’. And,
in 1796, James Parker manufactured the first natural
cement (also called Roman cement or Parker cement)
by burning and grinding septaria, calcareous nodules
with a clay nucleus [21, 52].

As a result, the presence of clays has become an
essential prerequisite in all raw materials considered
suitable for making NHLs. Even though the presence,
content and type of clays (“active clays”, [21]) are
important aspects to consider in the manufacture of
NHLs, as the chemical-mineralogical composition
of the clays can affect the silicates and aluminates
formed [51, 53-55], different types of siliceous
limestone (providing they have a CI of between 0.30
and 1.10 [19]), and even industrial sub-products
[56] can also be used in the manufacture of natural
hydraulic limes, as has been demonstrated in recent
research.

These materials include stones containing diatoms
(amorphous silicon oxide) [26], microcrystalline
quartz (or silex), feldspars and plagioclases [27-32,
44, 4648, 50, 57-64], waste from the paper industry
(lime mud, [56]) and a mix of Ca(OH), and SiO,
[65].

Nowadays, it is more and more widely accepted
that a natural hydraulic lime can be obtained not only
from a limestone with a certain clay content, but also
from a siliceous limestone (for example with silex or
chert), providing that the silica present in the stone is
reactive [32, 66].

The properties of natural hydraulic limes are
directly influenced by the compositional and textural
features of the raw materials used in their production
[31]. This means that although the reactive oxide
content is a determining factor in the development
of hydraulicity, the heterogeneity [67], texture,
granulometry and crystallinity of the rock influence
not only the degree of hydraulicity, but also the
physical properties of the calcined product [47—49,
59, 68-70]. For example, Wingate [37] found that
crystalline rocks such as marbles, with low porosity
and very coarse crystalline impurities, were hard to
calcine. Other more recent research studies have
investigated the influence of the petrographic features
of the rock during the calcination phase [29, 31, 48,
49, 71]. In these studies, calcination was carried
out in the laboratory and mostly on ground powder
samples rather than on solid rock. In this way it

was discovered that rocks with clastic textures are
preferable to crystalline rocks because of their higher
porosity and ease of decomposition, and that fine-
grained or micritic (< 5 pm) calcite matrices are
more prone to calcination than sparite-sized (> 5 pm)
ones [31, 49, 71]. This is because the smaller the
particle size, the larger the specific surface area of the
grains. If these factors could be controlled, a better-
quality quicklime (i.e. more reactive to water) could
be produced using less energy, as will be discussed
below.

2.2 Calcination

The hydraulicity and physical characteristics (e.g.
colour, porosity, specific surface area, density, etc.)
of the calcined product are influenced not only by
the chemical and mineralogical composition of the
raw materials, but also by the calcination conditions
[9, 16, 21, 23, 24, 29, 36, 3942, 71]. In particular,
the degree of calcination of the limestone is highly
dependent on the maximum temperature reached,
the residence time in the kiln [29, 71] and the partial
pressure of the surrounding CO, [34].

NHLs are obtained by calcination below the
clinkering point, 1250 °C, a feature that differentiates
these binders from ordinary Portland cement (OPC)
and its varieties [72]. During the firing process, the
following reactions occur [16, 21, 25, 73]:

e Between 400 and 600 °C, the clays, if any, are
dehydrated and decompose partially or totally;

e Between 600 and 850 °C calcite decomposes into
calcium oxide and CO, [74]. Above 1000 °C,
CaO begins to undergo sintering, with an increase
in crystallite size as the temperature rises [74],
aspect that will have an impact on its reactivity
towards water during the hydration step;

e Over 800 °C, a solid-state reaction occurs between
unstable reactive ions (i.e., silicon, aluminium
and iron) and calcium oxide, generating various
silicates and calcium aluminates.

The calcination temperature used in most of the
experimental studies reported in the literature ranges
between 950 and 1050 °C [5], and 950-1250 °C [16,
25, 75], whilst temperatures higher than 1250 °C
would favour solid-state and liquid-state sintering
[61]. In some studies, hydraulic binders have been
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produced at lower calcination temperatures (850
°C, [26]). As is generally known for aerial lime,
preheating and a gradual increase in temperature is
preferable to shock calcination, so as to ensure the
complete thermal decomposition of the calcite [40].

Heat is unevenly distributed inside traditional
kilns in which different calcination temperatures
can be reached. As a result, “under-burned”,
“soft-burned” and ‘“‘hard-burned’ (also called
“overburned’ and “dead-burned’) lime [37] can be
obtained. When the stone presents a residual core of
non-decomposed calcite, due to an excessively low
calcination temperature, the lime is considered to be
underburned [37]. If the stone reaches sintering point,
due to an excessively high temperature, the lime is
said to be hard-burned (depending on the degree of
sintering, this lime is then described as overburned
or deadburned). In the latter, the CaO particles have
a less porous structure and therefore a lower specific
surface area, which means that the NHL quicklime
is less reactive to slaking [41, 42, 49]. Soft-burned
lime, by contrast, is obtained at lower temperatures
and is more reactive than lime produced at higher
temperatures or with longer residence times in the
kiln [37, 40, 41, 50].

This problem was minimised with the invention of
modern kilns in which, unlike the traditional ones, the
heat is more homogeneously spread and calcination

is less dependent on the position of the stone in the
kiln. Previously, natural hydraulic lime had been
obtained by burning large lumps of material, much
larger than those used in the manufacture of Portland
cement [76]. In traditional kilns (Fig. 1A), the size of
the lump depended on its position in the kiln, which
was filled from above and in layers so that the larger
rock fragments were placed at the bottom, close to the
fire, and the smaller pieces appeared in the upper lay-
ers [19]. However, with the introduction of modern
industrial kilns (Figs. 1B and C) and machinery capa-
ble of reducing rock size to 68 cm (Fig. 2) [37], the
calcination process was optimized.

Overburning is not only the product of high
calcination temperatures, it is also influenced by
the chemical and mineralogical composition of the
raw material [7]. It is encouraged by the presence
of silica, alumina and iron in the raw materials,
which are known to clog the pores of the quicklime,
decreasing its specific surface area and reactivity
to hydration [40, 42]. This also affects the specific
surface area of the lime, making it more impermeable
to slaking water even if it has been calcined at
optimum temperature.

In addition to its effects on the textural properties
and reactivity to water of the NHL quicklime, the
calcination temperature is also a determining factor
in the resulting mineralogy of the NHL. For example,

Fig. 1 Types of kiln used by different NHL manufacturers. A
Traditional kiln from the Spanish company Cementos Tigre. B
Industrial kiln from the Portuguese company Secil. C Indus-

trial kiln from the French company Socli-Heidelberg. Source
Photographs of the authors
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Fig. 2 A Raw material
for NHL production on
conveyor belts on the way
to the kiln. Picture taken at
the French company Saint
Astier. B Raw materials of
homogeneous size piled
up by the French NHL
producer Lafarge-Holcim.
Source Photographs of the
authors

the hydraulic phases (C,S, C;S, C;A) and iron phases
such as brownmillerite (C,AF) appear in increasing
amounts as calcination temperatures increase [28].
The development of larger amounts of Fe-bearing
phases also modifies the physical properties of the
lime, giving it a brownish tone [28, 29, 32, 46].

The influence of temperature in the resulting
NHL was already observed in 1922 by Eckel [19],
who stated that NHL can be produced in two
different ways: (1) by the calcination of siliceous
or argillaceous stones with a low CI (0.30-1.10), at
a medium temperature, which would give rise to a
“typical hydraulic lime”; or (2) by the calcination of
stones with high CI (1.10-1.60) at a low temperature,
which would result in a hydraulic lime with a large
proportion of inert material, which Eckel refers to
as an “imperfectly burned natural cement”. This
statement suggests that the same raw material can
be used to obtain NHL with different degrees of
hydraulicity, providing that a different calcination
temperature is used.

Finally, the release of CO, in the kiln during
calcination also influences the outcome of the
calcination process in two main ways. Firstly, the
resulting quicklime has a more porous structure,
thus affecting the properties of the calcined product
[40-42]. Secondly, it gives rise to silicon carbonates
and back-reactions of carbonation inside the kiln
when the CO, extraction system has insufficient

capacity [20, 29, 32, 41, 46, 77]. This can be avoided
by installing a more effective ventilation system or by
a longer residence time at maximum temperature.

2.3 Hydration (slaking)

The calcined rock that gives rise to NHL is
composed in part of a variable amount of calcium
oxide that undergoes hydration to obtain calcium
hydroxide (Eq. 4).

CaO + H,0 — Ca(OH), 4)

This is a strong exothermic reaction [78] that
causes an associated increase in surface area,
weight and volume [20]. In theory, the part of the
lime composed of silicates and other hydraulic
phases will not slake during this stage [19].

Hydration (or slaking) can be carried out by
different methods, as reported in the literature [58,
79]. In the case of air limes, the most common
industrial method is “dry hydration”, which consists
of adding a stoichiometric amount of water to the
CaO, by spraying or irrigation [52], so as to obtain a
dry fine powder of Ca(OH),. Slaking under water, by
contrast, involves the use of larger amounts of water
to obtain calcium hydroxide in slurry or putty form
[40, 52].
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Slaking under water (also called wet hydration), is
never used in the manufacture of NHLs, as it would
lead to the undesired hydration of the calcium sili-
cates and aluminates present in the NHL, which are
supposed to react later in the mortar. As a result, a
water/CaO ratio of 1:1 is used for slaking. According
to the reactivity test regulated by the EN 459-2 stand-
ard [35], slaking is controlled by measuring the heat
of hydration produced by a known weight of lime in a
known volume of water.

The reactivity to water of CaO is influenced by
a number of factors, including the characteristics
of the fired limestone (e.g. composition, surface
area, porosity, particle size, etc., [21, 37, 80]), the
calcination conditions (e.g. kiln type, temperature
and residence time, [81]), the existence of a storage
period after calcination [41], the slaking method and
the agitation mode [82], and the composition of the
slaking water [45, 83, 84].

According to Leontakianakos et al. [45], the
slaking process depends mostly on the composition
and presence of impurities of the source material,
and on the calcination conditions, rather than on the
chemical composition of the slaking water. Factors
such as the microstructure and texture of the raw
material [39], and the magnesium and alumina
content of the limestone seem to be key aspects in the
progress of reactivity [84].

The use of high temperatures and long residence
times during calcination leads to a reduction in
the slaking rate due to the coalescence of the lime
particles, and a decrease in their specific surface
area [20, 39, 43, 49, 80, 82, 85, 86]. By contrast,
soft-burned limes are more prone to hydration than
hard-burned ones, because they are more porous and
therefore more permeable to water [20].

The presence of CO, in the kiln and the storage
also influence the reactivity of the quicklime towards
water [41, 87]. The CaO formed during calcination is a
thermodynamically unstable product that tends to react
with other compounds such as CO, inside the kiln or
with the water vapour in the atmosphere [34, 41]. The
latter occurs because CaO has a high-water sorption
capacity, which means that hydration can occur even
in atmospheres with ~15% RH [20, 88]. CaO may be
subject to both carbonation and pre-hydration reactions

after calcination [34] and during a potential storage
period [41], and therefore prior to the hydration process
itself. If this occurs, the lime particles might be covered
by a thin surface layer of calcium hydroxide that is
known to influence their behaviour during the slaking
process [40].

The slaking process can be carried out either: (i)
directly on the lime lumps, which turn to dust when
they come into contact with water, or (ii) on the
previously ground quicklime powder. In general, the
slaking of ground quicklime is the preferred option
as it is quicker and more homogeneous, and smaller
Ca(OH), particles are obtained [20, 37].

Agitation during hydration positively impacts the
rate of slaking, as it increases the dispersion of the lime
particles and enables higher slaking temperatures to be
reached [20, 82].

Finally, the chloride content of the slaking water
seems to increase the reactivity of the lime towards
water, while sulphates and carbonates delay the
hydration reaction [83, 84].

According to Eckel [19], NHL was stored for
approximately 10 days in bins in the plant, during which
time the lime continued hydrating with the aid of the
steam that was generated. Slaking was only considered
to have been completed once this period had come to an
end.

Similar traditional slaking methods exist in Oriental
cultures [58, 79]. Among them, a method called wind-
slaking [58], which involved exposing the quicklime
to wet airflow, so producing better quality limes and
mortars with greater mechanical strength. However,
this method takes much longer than water-slaking, as it
may need 21-40 days depending on the air flow (open
or closed) [58].

Pesce et al. [89] have demonstrated the influence of
the slaking method on the crystallinity of the mineral
phases and on the type of hydrated phases formed. In
particular, the enhanced mechanical properties shown
by the final mortars could be due to the development
of an amorphous precursor of portlandite, detected in
limes and cement slaked with moisture from the air [32,
90-99].

In the final stage of the industrial manufacturing pro-
cess, natural hydraulic limes are usually re-ground right

niem
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Fig. 3 A Tube for slaking of the calcined material. B Grinding ball mill for final crushing of NHL. Both images were taken at the

French company Lafarge. Source Photographs of the authors

after slaking (Fig. 3), so as to obtain a finer powder that
is now ready to be put on sale.

3 The composition of NHL

Natural hydraulic limes are composed, on the one
hand, of an aerial fraction that consists mostly
of calcium hydroxide (Ca(OH),, mineral phase
portlandite, also referred to as free lime), and, on
the other, of a hydraulic fraction formed by a series
of more or less reactive compounds that depend on
the raw material and manufacturing conditions, as
commented above.

The predominant hydraulic phase in NHLs
is di-calcium silicate (Ca,SiO,, mineral phase
larnite, also known as belite, according to cement
chemistry notation C,S (2 CaO-SiO,)) [8, 23, 25,
29, 31, 53, 65, 72, 96, 100, 101]. Other hydraulic
phases likely to be found in NHLs are [7, 8, 23, 28,
29, 32, 46, 48, 100]:

e Tri-calcium  silicate  (Ca3SiOs,  mineral
phase hatrurite), also known as alite, C;S (3
Ca0-Si0,). This phase is generally formed at
higher temperatures than those used in NHL
manufacture, but it can be found in NHL due to
the occurrence of high-temperature points (hot-
spots) in the kiln [25, 96].

e Tri-calcium aluminate, also known as aluminate
or celite, C;A (3 CaO-Al,05);

e Tetra-calcium alumino-ferrite (Ca,(AlFe),0s,
mineral phase brownmillerite) also known as
felite or ferrite, C,AF (4 CaO-Al,05-Fe,05);

e Calcium aluminium silico-aluminate
(Ca,Al(AISiO;), mineral phase gehlenite), also
known as C,AS (2 Ca0-Al,05-Si0,).

Wollastonite (CaSiO;, CS) and its different
polymorphs (e.g. pseudowollastonite,
parawollastonite, etc.) are calcium silicates that can
sometimes be detected in NHLs, even though they
are not hydraulic phases [28]. Other non-hydraulic
phases reported in hydraulic limes are bredigite
(Ca;Mg(Si0,),) and kilchoanite/rankinite (Ca;Si,0)
[32, 102].

In general, the higher proportion of C,S compared
to C;S and the presence of gehlenite (C,AS) are
two distinctive aspects of natural hydraulic limes as
compared to other hydraulic binders such as Portland
cement [25].

Gehlenite can also be present in its hydrated
form (Ca,Al(AlSi)O; 8H,0, mineral phase
strétlingite, C,ASHg) [23, 102] or in the form of
other intermediate phases that form a solid solution
with it. One example is the mineral phase dkermanite
(Ca,MgSi,0,), in which the aluminium is replaced by
magnesium [103], a phase that can also be obtained
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from wollastonite if the system is rich in MgO [32,
104].

C;A and C,AF are formed within the calcination
temperature range of NHL, although their presence
is dependent on the content of reactive Al,O; and
Fe,O; in the raw materials [29, 38]. When mixed
with water and sometimes during the slaking process
itself, these phases, also known as clinker phases
[52], produce a series of intermediate or AFm phases
[32, 52, 105]. These are predominantly hydrocalumite
(Ca, Aly(C1,CO5,0H),(0OH),, 4H,0) and hydrotalcite
(MgsAl(CO;5)(OH),,4(H,0)), which are calcium
and magnesium analogues [106], as well as
calcium carboaluminate or monocarboaluminate
(C,ACH,,) and other less stable hydrated phases
such as hydroxi-AFm or C,A hydrates, (C,AH;,)
and hemicarboaluminate (C4ACO'5H12) [102, 105,
107-110].

Other phases derived from the calcination process
itself and likely to be detected in NHLs are quartz
(Si0,) and its polymorphs, tridymite and cristobalite.

Periclase (MgO) can also be present in NHLs if
the raw material contained Mg-bearing carbonates
(e.g., dolomite, magnesite) or other Mg phases,
and trace CaO contents are sometimes found due to
incomplete hydration.

Variable calcite contents may also be detected,
due to incomplete thermal decomposition of this
phase or as a result of carbonation of the free lime,
when in contact with CO,. Calcite polymorphs such
as aragonite or vaterite can occasionally be found
in NHL and their presence depends mostly on the
carbonation conditions.

Silicon carbonates such as spurrite formed by
recarbonation reactions with the CO, inside the kiln
or back-reactions have also been reported in the
literature [20, 29, 32, 41, 46, 77].

Another phase found by other authors in
commercial NHLs is anhydrite [23, 96], which may
be due to gypsum or other sulphur sources in the raw
material.

It is worth stressing that, despite the high number
of hydraulic phases that are potentially present
in NHL, this binder only has to comply with the
amounts of free lime established in the European
standard EN459-1 [1] for each NHL class (> 35% for
NHL2, >25% for NHL3.5, and >15% for NHL5),
regardless of the other phases it may contain.

4 Setting process

Due to its composition, NHL setting (or hardening)
consists of two main processes: (1) carbonation of
calcium hydroxide when it comes into contact with
atmospheric CO, (Eq. 5), and (2) hydration of the
hydraulic phases when they come into contact with
H,O [16] (egs. 6, 7, 8,9 and 10, [38, 75]. These
processes are known to be in competition, although
in NHL, hydration generally precedes carbonation [7,
111].
Carbonation reaction:

Ca(OH), + CO, — CaCO; + H,0 3)
Hydration reactions:
Larnite:

Ca,Si04 +4H,0 — C—-S —H + Ca(OH), (6)
Hatrurite:

Ca;Si05 + 5SH,0 — C - S — H + 2Ca(OH), )
Tri-calcium aluminate:

Ca;AL,O¢ + 6H,0 — C;AH¢(hydrogarnet) 8)
Brownmillerite:

Ca,AlFeOs + 5H,0

— C3;AHg(hydrogarnet) + Fe(OH); ©)

Gehlenite:

Ca, Al(AlSi)O; + 8H,0 — C,ASH,(stritlingite)
(10)
Hydrated calcium silicates (or calcium silicate
hydrates, C-S—H) are a family of mineral phases such as
Jjennite (CoScH, ), tobermorite (CsS¢Hs) or plombierite
(C5S¢Hyg) [102], characterised by disorder phenomena,
low crystallinity and very small grain sizes [112], all of
which are produced by the hydration of the hydraulic
silicate phases C,S and C;S. According to Taylor [38],
C;S shows greater reactivity than C,S, as after 28
days of curing, C;S is responsible for 70% of cement
hydraulicity, while C,S is responsible for just 30%.
However, the differences in the size of these components
influence their specific area and therefore their reactivity.
The average size of C,S in cement is between 20 and 40
pm [38], while in NHL it is around 2 pm [32], which
together with the lower C;S content in NHL means that



152 Page 10 of 22

Materials and Structures (2025) 58:152

C,S is expected to make the largest contribution to the
C-S—H, even though at a slower rate.

Aluminate phases (C;A and C,AF), which are
known to be more reactive than C,S [52], can also
react to form AFm phases in the previous stages
of hydration. These are hydroxy-AFm, hemi and
monocarboaluminate and stritlingite, also known
as gehlenite hydrate [105, 110], which tend to form
more stable hydrated calcium aluminates (or calcium
aluminate hydrates, C-A-H) [23]. Albeit to a lesser
extent, C-A-H phases contribute to the mechanical
properties of binders of this kind and can be detected
in hardened NHL mortars [7]. In their crystalline
form, C-A-H are commonly known as hydrogarnet
(CazAl,(OH),,) [102, 105]. This phase is considered
to be the most stable phase, as all the AFm phases
eventually tend towards it [23, 52, 102, 105]. The
hydrogarnet phases may also include iron in their
structure  (Cas(AlFe,_),(Si0,)(OH)y5_y), [113])
depending on the amount of C,AF [114].

Other hydrated phases include hydrated calcium
silico-aluminates ~ or  calcium  silico-aluminate
hydrates (C-A-S-H) and hydrated magnesium silicates
or magnesium silicate hydrates (M-S-H), whose
occurrence is closely related to the compositional
characteristics of the binder and the raw material
[115-121]. The hydrated phases that eventually form
gels are hard to detect in NHLs as in many cases
they are amorphous and are classified as amorphous
phases [96]. They are more easily identified in cement
pastes and mortars, where they appear in abundant
amounts, and they have sometimes been detected
in archaeological materials with pozzolanic activity
[122-124].

Table 2 shows some of the most common mineral
phases and compounds formed in natural hydraulic
lime.

In summary, all natural hydraulic limes today are
composed of lime (in the form of calcium hydroxide),
silicates and calcium aluminates, in varying
proportions depending on the initial composition
of the raw material. They also contain a variable
amount of inert material (normally calcite), whose
percentages depend on their manufacturing process
[96] and whose characteristics (e.g. granulometry and
morphology) can influence the plasticity of the lime
[125].

As a result of these key aspects, which are not
taken into account in European standards, there are

natural hydraulic limes on the market which, despite
having the same index (2, 3.5 or 5) in their name or
technical data sheet, have very different compositional
and textural characteristics, an issue that has recently
been addressed by various Asian researchers [30, 57,
58, 62, 126].

5 The use of NHL in heritage conservation
and bio-construction: current debate

The aforementioned physical and chemical aspects
of NHL are crucial for ensuring the best possible
outcome of restoration works conducted with this
binder, as will be discussed below.

Mortars made with natural hydraulic limes
have certain specific characteristics such as lower
shrinkage during curing compared to aerial limes
and higher percentages of open porosity and pore
sizes than modern artificial binders (such as hydraulic
limes, i.e. limes blended with cement) that make them
durable in historic masonry. This durability has been
related to the delayed setting (i.e. setting which starts
after shrinkage has occurred) of traditional hydraulic
binders (e.g. lime with pozzolana and natural
hydraulic lime), which is due to a “major hydraulic
component C,S (belite) compared to cement-based
binders that have C;S (alite)” [128].

These features result in moderate mechanical
strengths and in permeability values that avoid
excessive water retention and related pathologies [8,
21, 33, 129-132]. The plastic or ductile behaviour
of NHL, which is capable of absorbing stresses and
of adapting to differential settlements, also prevents
cracking of the masonry, making it a flexible
material [21, 128, 131, 133, 134]. Lime also has a
long-term self-healing capacity, in which carbonate
reprecipitation can occur in small cracks or fissures
[129].

In chemical terms, unlike other non-natural
hydraulic limes (HL) or formulated hydraulic limes
(FL), NHL has no soluble salts [8, 126, 129] and it
is mainly composed of calcium and silicon. The
partially hydraulic nature of NHL means that it
can be used, not only in the restoration of natural
stone, mortars and earthen materials, but also in the
stabilisation of soils [135, 136].

Another important aspect explaining its increased
use in sustainable and bio-construction is its mineral
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Table 2 Main compounds and mineral phases found in natural hydraulic lime before and after the hydration and carbonation pro-
cesses (modified from Arizzi and Cultrone [102] and Mertens [127])

Cement chemistry notation

Chemical formula

Name of the mineral phase

Before hydration and carbonation

CH Ca(OH), Portlandite/Free lime

C CaO Lime

- Sio, Quartz-Trydimite-Cristobalite
M MgO Periclase

C,S Ca,SiO, Larnite/Belite

CsS Ca;Si0; Hatrurite/Alite

C;A Ca;Al,O¢ Aluminate

C,AF Ca,(Al,Fe),04 Brownmillerite/Felite or ferrite
C,AS Ca,Al(AlSi)O, Gehlenite

CS CaSiO; Wollastonite

C,MS, (Ca;Mg(Si0y),) Bredigite

C;S, Ca;Si,0, Kilchoanite/Rankinite

CsS,0 Ca;(510,),CO;4 Spurrite

cS CaSO, Anhydrite

After hydration and carbonation

- CaCO;, Calcite-Aragonite-Vaterite
C-S-H Ca0-SiO,-H,0 Calcium Silicate Hydrate
CoSeH CaySig0,3(OH)4 - 8H,0 Jennite

CsS¢H; Ca;Sic0,,(OH), - 4H,0 Tobermorite (or 11 A-Tobermorite)
CsS¢Hg Ca;Sic0,,(OH), - TH,0 Plombierite (or 14 A-Tobermorite)
C-A-H Ca0-Al,0;-H,0 Calcium Aluminum Hydrate
C;AHg Ca;Al,(OH),, Hydrogarnet

C,ASH, Ca,Al(AIS)O; - 8H,0 Stritlingite (gehlenite hydrate)
C,(A, X, - y(H,0) Ca Al (C1,CO;,0H),(OH),, 4 - H,0O Hydrocalumite

My(A, F)X, - y(H,0) MgcAl(CO;)(OH)¢ 4 H,O Hydrotalcite

C,AC)H,, Ca,Al,0,(CO,) 5 - 12H,0 Hemicarboaluminate
C,ACH,, Ca,Al,O4(CO,) - 11H,0 Monocarboaluminate

CSH, CaSO,4 2H,0 Gypsum

sequestration strategy. During its setting (carbona-
tion) process, it sequesters larger amounts of CO, (a
greenhouse gas) than OPC-based concrete, so reduc-
ing the environmental impact of its manufacture [29]
and making it more environmentally friendly [131,
132, 137]. The more favourable CO, balance offered
by NHLs, together with the lower energy consump-
tion in their manufacturing process, make these
hydraulic binders an interesting alternative to ordi-
nary Portland cement. As a result, they are currently
in high demand due to the increased consideration
given to the environmental impacts and long-term
consequences of construction work [131].

Other advantages applicable in the sustainable
construction sector include the aforementioned per-
meability of NHL mortars. As Banfill and Forster
[33] stated, permeability is related to the ‘breatha-
bility’ of the materials and therefore of the building
itself. This has an impact on the indoor air quality
inside the buildings as well as on the durability of the
rest of the building materials [132, 138].

Given their physical compatibility with the
generally ‘softer’ traditional building materials, there
are multiple investigations that validate the use of
NHLs in restoration work [3, 8, 25, 30, 67, 126, 128,
139-146], for either structural (masonry, bedding
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and pointing mortars), protective (finishing mortars
such as plasters and renders), or decorative purposes
(sgraffito, stucco, etc.).

NHL mortars are mainly used in the restora-
tion of historic buildings to repair damaged original
materials (e.g. stone, mortar), with specific applica-
tions such as volumetric reintegration in ashlars and
decorative elements (Fig. 4), as well as rendering for
fagade protection [5, 6, 147-151].

Another common application is in injection grouts,
a method that involves the pressurized injection of
a fluid suspension into voids or cracks [152-156],
which hardens in the absence of CO,, developing
high permeability and workability, and moderate
levels of strength.

As a result, NHLs are nowadays considered as
one of the best binders for use in the restoration of
buildings, monuments and even mosaics [7, 139,
157, 158]. This is not surprising considering that
some ancient mortars were made with a prototype of
natural hydraulic lime that resulted from the calcina-
tion of impure or cherty limestones [66], which were
probably used because there were no other geological
resources available locally.

There are also several authors who criticise and
question the use of NHL in conservation [9, 12-14,
159-161] due to unexpected long-term performances
and the apparent high variability between NHLs with
the same index number and from different manufac-
turers (Fig. 5), which can lead to mortars with final

Fig. 4 Examples of applications of NHL mortars for restora-
tion purposes. A Superficial reintegration of deteriorated stone
ashlars (the blue line circumscribes the restored area); B Infill
of an ashlar with glass rod structure for volumetric reintegra-
tion (the blue arrow indicates the NHL mortar that it is being

used); C reintegration of decorative elements (the blue arrow
indicates the appearance of the NHL mortars and its aesthetical
compatibility with the original substrate). Source Photographs
of the authors during the restoration of the tower of the Cathe-
dral of Granada (Spain)
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Fig. 5 Appearance and colour of different NHLs produced by the main European manufacturers from France, Spain and Portugal.

Source Photographs of the authors

characteristics that differ greatly from those of their
historic counterparts.

For this reason, restorers sometimes prefer the
most traditional hydraulic lime mortars made with
aerial lime and pozzolans (e.g. ceramic fragments,
pumice powder, organic ashes, etc.) and other
alternatives such as the hot-mixed or hot-lime mortars
produced by mixing quicklime with sand [12, 13, 79,
162-167].

However, it is widely accepted that the final
physical properties of lime mortars, in general, and
NHL mortars in particular, are mostly influenced by
the nature and dosage of sand, the water-to-binder
ratio, and the curing time and conditions [8, 10, 53,
67, 111, 134, 141-144, 154, 168-173]. They are also
affected by the presence of additives and admixtures
[57, 145, 153, 155, 156, 174—-192], regardless of the
type of binder.

In this sense, the physical parameters set out
in the European standard (EN459-1 [1]) are
hardly applicable to real cases of construction and
conservation works, where different types of sand
and binder-to-sand ratios are used, and the exposure

conditions vary over time. This is, however, a
difficult issue to overcome from the perspective
of a harmonised standard that seeks to define the
binder rather than the final mortar. In this sense,
it is more important to identify and regulate the
factors that influence the chemical-mineralogical
characteristics of the different natural hydraulic
limes, in order to create commercial NHL products
with more standardized compositional and textural
characteristics, and therefore, with more predictable
properties on site.

This incongruence was already observed by
Mertens [127], who studied 90 hydraulic limes,
most of which were manufactured in France. For
their part, Callebaut et al. [25] stated that studies
on the production process and characterisation of
hydraulic lime mortars were very scarce. They
emphasized the importance of acquiring detailed
knowledge of the characteristics of hydraulic limes
and their mortars as they were ideal materials for use
in the conservation of historical buildings. After an
in-depth chemical-mineralogical and petrographic
characterisation of historical mortars from the
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Tournai Cathedral and the Tongeren Basilica
(Belgium), Mertens et al. [127, 193] stated that,
despite being able to determine unequivocally that
these mortars were hydraulic in nature, it was very
difficult to decide whether this hydraulicity was due
to pozzolanic-type reactions, to the use of hydraulic
limes, or perhaps even to both. These studies show
that it is difficult to identify the exact type of binder
used in a hydraulic mortar.

If we consider the number of mortars on the market
which, according to their technical data sheet, are
made with hydraulic binders, an inevitable question
arises as to the real composition of these mortars. In
fact, there are a whole range of possibilities, from
the use of hydraulic lime (NHL or HL) to the use of
aerial lime with pozzolans, or in the worst case, the
use of aerial limes mixed with cement (products that
would be classified as formulated limes, FL [1]).

The difficulty of discerning one product from
another means that there is great uncertainty about
which hydraulic mortar would be most appropriate
to ensure the successful restoration of a particular
historic building, given that some of these products
may not be fully compatible with the original
traditional mortars.

6 Conclusions

This review aims to contribute to a greater, more
in-depth knowledge of the characteristics and
manufacturing process of natural hydraulic limes,
with the ultimate objective of developing a more
rigorous classification of this sub-group of hydraulic
limes. As discussed here, it is evident that a more
precise, more harmonized classification of the group
of limes with hydraulic features, and in particular
natural hydraulic limes, is needed. If the NHL on
the European market had more precisely controlled
compositional and textural characteristics, this would
benefit the building sector as a whole, and the more
specific field of historic heritage conservation and
restoration in particular, in which NHL is being
increasingly used as a compatible binder for repair
mortars. This will be useful not only for researchers
working in the field, but also for architects and
restorers/conservators who will acquire more

knowledge about the binders used and, finally, for
the manufacturers who will have more detailed
specifications to follow.

Three important aspects are missing from the
definition of natural hydraulic lime in the EN459-1
standard [1]: (1) the chemical, mineralogical and
textural specifications of the raw materials; (2)
details about the optimum calcination conditions;
and (3) instructions as to how to perform slaking.

On the basis of this review of the bibliography on
natural hydraulic limes, we would like to make the
following recommendations that could improve the
EN459-1 standard [1]:

(1) To include, in addition to limestone that contains
clay, other valid raw materials for NHL such
as different types of siliceous limestone with
reactive silica.

(2) To classify the different degrees of hydraulicity
of the NHLs, not only on the basis of their free
lime and compressive strength values at 28 days,
but also on the reactive oxides content and the
cementation indexes of the raw materials and
final products.

(3) To advise that different degrees of hydraulicity
can be obtained by applying different calcination
temperatures  (the higher the calcination
temperature, the more hydraulic the NHL
obtained), when only one type of valid raw
material is available.

(4) To highlight that calcination temperatures of
950 °C reduce the formation of iron-phases, thus
favouring the obtention of whiter NHLs.

(5) To advise that water-slaking can give rise to
the premature formation of C—S-H and C-A-H
phases, something that can be reduced by using
air moisture or steam.

The implementation of the regulatory framework
for natural hydraulic limes is expected to have a
positive impact on the classification of natural
hydraulic limes, and to enable a clear distinction
between natural hydraulic limes (NHL) and
hydraulic (HL) or formulated limes (FL), in which
lime is frequently blended with Portland cement.
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