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ARTICLE INFO ABSTRACT
Keywords: In recent years, avocado has gained significant global importance due to its nutritional benefits, and rising
Multispectral information consumer demand, becoming a staple in health-conscious diets. This growing interest has also raised concerns

Machine learning
Avocado ripening
ANN

about environmental sustainability, and as a result, efforts are being made to promote more sustainable farming
practices while meeting the rising demand. In this study, we present a tool designed to enhance the efficiency of
the pre-harvest process and improve avocado quality. We propose a multimodal sensing scheme integrating three
different data sources: a portable multispectral system for in situ measurements, satellite imagery and, onsite
environmental sensors to estimate the fruit ripening stage. This combined remote and onsite yielded a high
correlation with dry matter content, considered here as the reference indicator of avocado ripening, across three
consecutive harvest seasons. The performance of various machine learning techniques was evaluated using
different combinations of these datasets. Notably, the artificial neural network (ANN) model achieved the highest
accuracy (0.74) and recall (0.96) for predicting the overripe avocado class. Therefore, ANN model was extended
to regression models, where all of them have demonstrated high predictive accuracy, with R? coefficient ranges
from 0.81 to 0.91. The online data achieved the highest coefficient (0.91), providing a slightly better perfor-
mance compared to the offline model. Nonetheless, predictions based solely on multispectral data remain
valuable, particularly when online data are unavailable.

1. Introduction boosting the demand for the fruit globally. The increased demand across
the globe has resulted in increased production. According to [2], avo-

Avocado (Persea Americana) contains vitamins A, B, C, E, and K, cado production was +9.5 million avocados in 2022, which increased by
including 25 essential nutrients. It also contains phytochemicals, like 9.7 % and reached 10.4 million in 2023. The avocado market is pro-
beta-sitosterol, and antioxidants, like lycopene and beta-carotene with jected to register a compound annual growth rate (CAGR) of 9.70 %
proven benefits for a healthy diet [1]. These essential nutrients are from 2024 to 2031 [3]. Avocados, as a climacteric fruit, can be picked
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mature but still unripe, continuing the ripening process after the har-
vesting [1,4]. However, they can also remain on the tree as long as
needed, depending on market conditions. However, leaving them too
much time on the tree will cause an over-mature state that will lead the
fruit to short shelf life and other problems after the harvest, causing huge
economic losses [5]. Moreover, given their high perishability, avocados
require timely and well-coordinated harvesting and post-harvest
handling, and uninterrupted cold chains. An important determining
factor of the external and internal eating quality of ripe avocado fruit
quality is maturity level at harvest. Therefore, the determination of the
avocado maturity stage on the tree is quite relevant to guarantee an
optimum state before harvesting. When avocados are harvested from the
tree, a fast-ripening process takes place: 12-18 days of external colour
changes and a loss of firmness are clear indicators of the avocado
ripening [6].

Several parameters provide non-visual, informative indicators
related to avocado ripening that could facilitate direct assessment on the
tree (pre-harvest): moisture content, mesocarp oil or dry matter, among
others. However, most of them are still determined using invasive
techniques. Both avocado mesocarp oil content and dry matter gradually
increase during fruit growth and exhibit strong correlations with
maturity and eating quality [7]. In fact, mesocarp oil content along with
related attributes such as dry matter and moisture contents are globally
accepted as reliable maturity indices for determining optimal harvest
timing [8-10]. In the Tropical Coast (Spain) avocado dry matter typi-
cally ranges from 21 % at the onset of the season (October) to around 31
% when the avocado is considered to be optimal for consumption
(January). Firmness is also a significant parameter to determine the
maturity stage of harvested avocados, and numerous studies for
non-destructive estimation of firmness have been reported [5,11-14].

Due to their non-destructive nature, there is increasing interest in
implementing non-invasive techniques such as spectroscopic, image
processing or acoustic methods [15] to assess avocado ripening and
quality. Several studies have been carried out to study the maturity stage
through image analysis, as these approaches avoid the human subjec-
tivity of manual analysis, they are usually cheaper than other tech-
niques, and they can easily provide in-situ results [16-18]. In this
context, the use of colorimetric parameters obtained from color-
imeters/spectrometers [19,20], cameras [21] or smartphones [22] as
analytical devices for evaluating external appearance have demon-
strated promising results. Some researchers have tried to determine dry
matter of the avocado using near-infrared spectroscopy (NIR) [23,24]
and even using portable instrumentation [25]. Recently, low-cost mul-
tispectral prototypes for fruit ripening assessment of fruits have been
developed [26,27]. However, to date, none have conducted comparative
analysis of machine learning models including consecutive crops, nor
have they systematically compared various regression and classification
methodologies

A comprehensive review of various invasive and non-invasive tech-
niques for the determination of avocado maturity stage is presented in
[28]. However, the correlation between dry matter content and multi-
spectral data for predicting the optimal maturity state of avocados re-
mains unexplored. Most published studies focus on the information
obtained during the post-harvest storage, causing high variation in
product quality and posing challenges for harvest scheduling. Visi-
ble/NIR multispectral sensors can only gather a limited number of
spectral bands, requiring the use of machine learning algorithms or
multivariable correlation techniques to relate this information to
maturity parameters such as dry matter content of firmness [24,29-34].
Moreover, spectral shape features, described by specific spectral indices,
are shown to enhance the interpretability and predictive power of the
spectral data [32]. Meanwhile, satellite imagery has recently been in-
tegrated with machine learning approaches for crop monitoring appli-
cations, including fruit yield estimation in mango [35], avocado
orchards [36], and rice grain moisture content [37]. Nonetheless,
relying on a single data source may impose inherent limitations. To
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address these constraints, multimodal sensing strategies, where data
from multiple sources are combined, have been increasingly adopted to
improve predictive performance and robustness [38,39].

Hence, this work aims to correlate the dry matter content (consid-
ered the reference indicator of ripeness) in pre-harvest avocados with a
multimodal sensing framework throughout the entire harvesting period.
This multimodal scheme integrates remote data, including satellite im-
agery and onsite environmental sensors measurements, with fruit-level
data obtained via a custom-developed multispectral system. The latter
acquires diffuse reflectance measurements of avocados using the
developed multispectral sensor described in [40]. We propose an offline
model using only onsite multispectral data, making it suitable for field
applications where internet connectivity is limited or unavailable. In
contrast, the online model incorporated additional data sources,
including satellite-derived indices and environmental data collected on
the farm. To our knowledge, this is the first study to combine off-
line/online and onsite/remote data sources for fruit ripening assess-
ment. Various machine learning techniques (classification and
regression models) were applied and evaluated across all possible
dataset combinations. These results will potentially help to enhance
pre-harvest decision-making efficiency, improve avocado quality at
retail outlets, and reduce post-harvest losses within the agri-food supply
chain. Although the experiment was conducted in a controlled envi-
ronment (Fig. 1), the techniques and methodologies employed can be
readily adapted for field deployment in a smartphone-based prototype.
Such a device would integrate the trained model, include a physical
enclosure to shield the sensor from ambient lighting variations, and
implement a light correction algorithm to ensure consistent data quality
under varying field conditions [42].

2. Material and methods
2.1. Collection and preparation of samples

Hass avocado fruits were picked from a commercial orchard located
in Motril, Province of Granada, Spain, specifically from designated
sectors 1 and 4. Sampling was conducted weekly throughout three
consecutive harvest seasons periods, from September to February from
2020 to 2023. Ten trees of Hass variety of avocado exhibiting similar
growth stages were randomly selected as sampling sites. A total of 476
avocados were collected over the 2020-2021, 2021-2022 and
2022-2023 seasons, comprising 110, 220 and 146 avocados, respec-
tively. To maintain consistency, fruits of comparable size were selected,
and measures were taken to minimize thermal exposure during trans-
portation and storage. Given the study’s focus on the pre-harvest
ripening process, all measurements using the developed multispectral
system were conducted within 24 h of harvest, preserving the avocados
in low temperature conditions. In the laboratory, each fruit was assigned
a unique identifier, weighted, and photographed to ensure an appro-
priate register of each sample.

2.2. Multispectral system description and data acquisition

Multispectral data were acquired adapting a previously developed
portable multispectral system [40]. The instrument is depicted in Fig. 1.
Electronic components are enclosed in a black box of 9 x 15 x 3 cm?®,
and inside, the printed circuit board has dimensions of 8 x 12 cm?, being
the main block, the sensing module. This block consists of a
light-emitting diode (LED) array distributed in a squared pattern, as a
multispectral source, surrounding a digital colour sensor acting as the
reflectance detector. For UV/VIS/NIR optical excitation, the ten selected
LED models are shown in Table 1.

To achieve a more uniform irradiance pattern over the sample, two
LEDs of each wavelength were included, disposed in symmetrical posi-
tion regarding the colour detector which is placed in the centre of the
square. The S11059-02DT (Hamamatsu Photonics K.K. Japan) colour
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Fig. 1. Experimental setup holding the multispectral system in a black case in order to obtain the measurements avoiding external light influence.

Table 1
LEDs for multispectral optical excitation.
LED Reference Manufacturer Jpeak
(nm)
SML-LX2832UWC- Lumex Inc., Carol Stream, IL, USA White
TR clear
VLMU3100 Vishay Intertechnology Inc., Malvern, PA, USA 405
LD MSVG-JGLH- OSRAM Opto Semiconductors GmbH, 455
46-1 Germany
AA3021ZGSK 515
APTR3216PGW Kingbright Electronic Co., Ltd., New Taipei 555
APT2012NW City, Taiwan 610
APT2012SRCPRV 655
SML-LX15HC-RP-TR Lumex Inc., Carol Stream, IL, USA 700
VSMG2700 . 830
VSMF3710 Vishay Intertechnology Inc., Malvern, PA, USA 890

detector used is an I2C interface-compatible model that allows to choose
the sensitivity mode as well as the integration time during which the
reflected light is collected. In a high sensitivity mode, the photosensitive
area of the colour detector is 0.56 x 1.22 mm? It is sensitive to four
different bands: red (575 to 660 nm, Apeak = 615 nm), green (455 to 630
nm, Apeak = 530 nm), blue (400 to 540 nm, Apeak = 460 nm), and near
infrared (700 to 885 nm, Apear = 855 nm) radiations. Therefore, for each
excitation LED, four data are acquired: xxx_r, xxx_g xxx_b, and xxx_ir,
where xxx refers to white or the maximum emission of each LED and r,g,
b,ir to the red, green, blue and infrared detector output channels
respectively. During the system operation, each pair of LEDs with the
same emission spectra are sequentially activated, and the received light
is codified into words of 16 bits of resolution. To obtain a similar
response of the system for each LED source, the integration time
parameter was individually configured, ranging from 175 ms to 1.75 s.
The colour sensor is facing an aperture in the black box, where the
sample is placed. As mentioned, RGB and infrared (IR) coordinates are
measured and sent to a microcontroller for further processing. More

details can be read elsewhere [40].

Spectral data were acquired from four orthogonal positions along its
equatorial contour with the multispectral device as shown in Fig. 1. The
fruit was placed in the instrument over a black foam for a better fit of the
fruit irregular surface. The analysis was carried out in dark conditions in
order to avoid external light influence on the results. Three replicas were
captured for each position, having a total of twelve multispectral mea-
surements for each analysed avocado. The dataset was generated by
averaging multispectral measurement for each fruit at each spectral
band and LED. Each avocado sample was associated with both its
respective measured dry matter content, detailed below, and its harvest
date.

2.3. Environmental and satellite data

As an important novelty in this work, some environmental parame-
ters and satellite imagery data were also measured at the moment of
harvesting and included in the classification analysis. Regarding the
environmental sensor data, the avocado farm has installed several sen-
sors that gather specific variables for integration into the predictive
model. These variables include surface and deep tension (DT), soil hu-
midity (RHS), vapour pressure deficit (VPD), ambient temperature (TA)
and soil temperature (TS). These variables were collected using a
climate data access API at intervals of approximately 10-15 min. The
data collected by the sensors were organised into consecutive subsets,
known as ‘temporal windows’. These ‘windows’ were created by seg-
menting the dataset at regular time intervals. Specifically, each ‘win-
dow’ encapsulated 100 sequential measurements of the 5 variables,
consequently with a duration between 16 and 25 h. Within each win-
dow, the corresponding output or dry matter value was determined by
selecting the measurement closest in time to the end of the window. This
approach ensured that the value used for the output within each window
corresponded to the most recent measurement in relation to the win-
dow’s end time.

In addition, satellite Sentinel 2 (Copernicus Sentinel Missions, ESA,
EU) images from the periods corresponding to avocado harvests were
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employed to compute the Normalised Difference Vegetation Index
(NDVI) and the Normalised Difference Red Edge Index (NDRE) for
specific sectors within the estate where the fruits were collected. NDVI
measures the greenness, and the density of the vegetation captured in a
satellite image. Healthy vegetation has a very characteristic spectral
reflectance curve which we can benefit from by calculating the differ-
ence between two bands - visible red and near-infrared. NDVI is that
difference expressed as a number - ranging from —1 to 1. In a comple-
mentary way, NDRE is a metric that is used to analyse whether images
obtained from multi-spectral image sensors contain healthy vegetation.
It uses the ratio of Near-Infrared and the edge of Red. In the Supple-
mentary information file, Figure S1 (Supplementary Information file, SI)
displays an example of grayscale intensity corresponding to the specific
NDVI and NDRE values for two different sectors in the farm. Then, the
whole data were rescaled using StandardScaler method, adjusting values
to the standard normal distribution with a mean of 0 and a standard
deviation of 1. Sentinel satellite images are provided every 5 days. The
spatial resolution of Sentinel imagery, pixel, is approximately 10 x 10
m, which closely corresponds to the typical canopy size of an individual
avocado tree. The closest available image of each harvest day was used
for the model. The dataset, including NDVI and NDRE features, was
constructed by averaging data from both harvest sectors for each cor-
responding harvest date.

2.4. Reference data: dry matter determination

Dry matter content was used as the reference parameter for ripeness
assessment. Its determination was performed following the procedure
described below. Every avocado was peeled, and three slices weighing
about 4-5 g in total were obtained from each fruit, ensuring that each
sample included both mesocarp and endocarp sections. The slices were
placed on a watch glass and weighted using a Boeco scale model BWL 51
(Boeckel & Co. GmbH & Co. KG, Hamburg, Germany) with a sensibility
of 0.01 g. The samples, together with the watch glass, were placed inside
a LG Electronics model MH6883BAK microwaves (Seoul, South Korea)
and subjected to drying for 12 min at 540 W, alongside a glass full of
water to prevent sample overheating. During this process, the avocado
samples lost their water content, yielding dry samples. When the pro-
gram is over, the dry sample was introduced in a desiccator for 5 min to
equilibrate temperature before final weighting. The dry matter per-
centage, DM, was calculated according to Eq. (1):

Dry sample Weight

DM (%) = 100-
(%) Sample weight

(€Y

2.5. Data engineering

The dataset includes spectral information, measurements collected
by environmental sensors installed in the avocado plantation, as well as
processed satellite images for calculating relevant vegetation indices.
These combined datasets provide a comprehensive insight into the
conditions and characteristics of the avocados under study, as detailed
below.

Multispectral information was collected for a total of 476 avocados.
As mentioned, three measurements were taken for each of the 4 sides of
the avocado (avocado faces), giving a total of up to 12 measurements per
avocado and a total of 5712 instances. Following data analysis, outliers
were identified as observations lying more than 2.5 standard deviations
from the mean and were subsequently removed, leaving for further
processing a total of 436 avocados and 5134 entries. Each entry consists
of 40 variables, encompassing measurements for red, green, blue, and
infrared from various LED wavelengths: ‘white_r’, ‘white_g’, ‘white_b’,
‘white_ir’, ‘405_r’, ‘405_g’, ‘405_b’, ‘405_ir’, ‘455r’, ‘455_g’, ‘455_b’,
‘455 ir’, ‘5151, ‘515_¢g’, ‘515b°, ‘515.r’, ‘555r°, ‘555.g’, ‘555_b,
‘555_ir’, ‘610_r’, ‘610_g’, ‘610_b’, ‘610_ir’, ‘655r’, ‘655_g’, ‘655_b’,
‘655_ir’, ‘700_r’, “700_g’, ‘700_b’, ‘700.ir’, ‘830_r’, ‘830_g’, ‘830_b’,
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‘830_ir’, ‘890_r’, ‘890_g’, ‘890_b’, ‘890_ir’. Then, each entry was also
individually normalised. To do that, the StandardScaler standardization
technique was used. This method adjusts each variable to have a mean of
zero and a standard deviation of one across the entire data set. This
ensures that all variables are on a comparable scale and prevents vari-
ables with larger value ranges from dominating.

A variable was generated specifically for the classification models,
called DM_class, which contains 3 categories of avocado ripeness: R1
(immature fruit), when the dry matter values (DM) are less than 20 %,
R2 (optimal fruit for harvesting) with DM between 20 % and 23 % and,
R3 (overripe fruit), when DM is higher than 23 %.

The complete study workflow is illustrated in Fig. 2, showing all the
steps of the data processing from the fruit harvesting to the analysis of
the model accuracies. Datasets, data preprocessing, features selection,
and used machine learning models are also displayed. As explained
below, the feature importance analysis (using SHAP, Shapley Additive
exPlanations) was integrated into the machine learning workflow. This
step, which reduced the number of features, is represented in Fig. 2 by
the overlap of the ‘feature importance’ block with the ‘machine
learning’ box.

2.6. Classification models

In the initial analysis phase, our primary objective was to formulate a
solution by employing a range of classification methods on the spectral
information dataset. Diverse algorithms were strategically chosen,
encompassing both traditional and more advanced approaches. Notably,
the lineup included well-established models such as XGBoost, Random
Forest, Support Vector Classification (SVC), K-Nearest Neighbors (KNN),
Adaboost, Linear Discriminant Analysis (LDA), and even Artificial
Neural Networks (ANN) using a sequential model. Given the amount of
data, we divided the dataset into two parts: 70 % for training and 30 %
for testing. We then employed the GroupKFold technique for cross-
validation, using a k-fold value of 7. This method was selected to
ensure that all data points related to the same avocado remained within
a single fold, preventing data leakage between the training and testing
sets.

2.7. Regression models

After initial tests with classification models, further experiments
were carried out to evaluate the performance of regression models.
These models provide the advantage of predicting a precise dry matter
value, as opposed to a categorical range, offering more detailed infor-
mation to growers for harvesting avocados at their optimal ripeness. In
addition, various data sources were incorporated into the modelling
process to enhance performance. The offline model utilized only mul-
tispectral data from the prototype, making it suitable for field conditions
where internet connectivity is unreliable or unavailable. The online
model incorporated additional data sources, including satellite-derived
indices (NDVI and NDRE) and on-farm sensor data, allowing for a
richer set of features related to avocado maturity but requiring internet
access for real-time data integration.

The neural network architecture of the online model incorporates
multiple input branches, each tailored to process specific types of data. A
gated recurrent unit (GRU) layer is responsible for processing sensor
data, while convolutional layers with max-pooling handle satellite-
derived NDVI and NDRE data. The multispectral data from the proto-
type is processed using fully connected layers with dropout to mitigate
overfitting. After each branch processes its respective data, their outputs
are concatenated and passed through additional dense layers with
dropout for comprehensive feature extraction. The model was compiled
and trained using the Adam optimizer. More details about the obtained
model, using all the available data sources, can be found in Figure S2 in
the Supplementary Information file.

The dataset was split into training and testing sets using the
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Fig. 2. Diagram of data gathering. processing and modelling, showing how multispectral, satellite and environmental data are integrated to provide the dry matter
content (DM) predictions at each avocado harvest date. Features and applied machine learning models (read sections above and below for meaning of the acronyms)
are also pointed out.The ‘feature importance’ block overlaps with the ‘machine learning’ box to illustrate that SHAP analysis was used to reduce the number

of features.

GroupKFold cross-validation strategy, ensuring that the same groups
were not present in both sets. During training, the Mean Squared Error
(MSE) was employed as the loss function. The model was trained with 5-
fold cross-validation, where a separate model was trained for each fold.
Early stopping was applied with a patience of 30 epochs to avoid
overfitting, and the best-performing model for each fold was saved
based on the lowest validation loss. Hyperparameter tuning was con-
ducted using Bayesian Optimization through the Keras Tuner library.
The optimization search included the number of units in the GRU layer,
the filters in the convolutional layers, and the units in the fully con-
nected layers. A total of 10 trials were performed, and the model with
the best validation loss was selected.

After training, the model’s performance was evaluated on the test
set. The R? metric (coefficient of determination) was used to assess the
accuracy of predictions compared to actual values. Final model perfor-
mance was reported as the mean MSE across all folds, accompanied by
R? scores and graphical results. To evaluate the importance of the
various data sources, different models were trained using combinations
of inputs. These combinations allowed us to analyse the contributions of
each data source to the predictive performance of the proposed multi-
modal scheme. The different combinations of input data used for model
training are detailed in Table 2, where it has been indicated which in-
formation has been included as training data from three possible data-
sets for each particular regression model.

To reduce the complexity of the multispectral data captured by the
prototype, which measures 40 spectral variables, the interpretability
technique SHAP was applied to the offline model. This method,
commonly used to explain complex models like neural networks, facil-
itated the assessment of the contribution of each wavelength to the

Table 2
Offline and online regression models, showing the different combinations of
datasets used for model training.

Data sources Online Offline
Satellite data v v v v

Environmental data v v v v
Multispectral data v v v v

model’s predictions [41]. The SHAP analysis was performed on the
best-performing offline model, trained exclusively with the spectral
variables. By using SHAP, the most relevant spectral bands were iden-
tified, which enabled a potential reduction in the number of LEDs
required in the prototype. This approach not only simplifies the hard-
ware design but also enhances the data processing pipeline by elimi-
nating redundant or less informative features. The insights gained from
these techniques informed decisions to streamline the prototype,
thereby improving both its efficiency and cost-effectiveness.

3. Results
3.1. Exploratory data analysis

In this section, we present an exploratory analysis of the collected
data to gain insights into the characteristics and distributions of key
variables. The dry matter content, which is the variable to be predicted
by the models developed in this study, had a mean of 21.59 %, ranging
from a minimum of 12.20 % to a maximum of 32.50 % (as illustrated by
the density plot distribution, Fig. 3A).

During the first harvest (2020-2021), a relatively small number of
avocados with low dry matter content (R1) were collected. In response,
efforts were made during the second harvest to increase the proportion
of avocados within this lower DM category. This intentional adjustment
in harvesting strategy is reflected in the observed differences between
the first and second harvest periods. Specifically, the second harvest
shows a more pronounced peak in the lower DM range, indicating a
successful increase in the collection of avocados with the desired lower
moisture content (Fig. 4A).

The correlations between spectral variables and dry matter content
were examined. This analysis aimed to understand the relationship be-
tween avocado spectral characteristics and their dry matter content,
essential for accurate predictive modelling. The correlation analysis of
the variables reveals that certain variables are highly correlated with
each other, as it can be derived from heatmap shown Figure S3 in the
Supplementary Information file. This redundancy in the features can
lead to overfitting in the models, and, in addition, to increasing their
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bution of DM values across different harvest periods. (B) Boxplot displaying the distribution of 655_g across DM classes (R1, R2, R3) for each harvest period (orange,
harvest period 1; blue, harvest period 2; and, green, harvest period 3). (C) Scatterplot highlighting the correlation between DM and 655_g within each harvest period.
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computational complexity. Therefore, feature reduction could be bene-
ficial for enhancing the model’s efficiency and preventing information
redundancy, while still maintaining the predictive capacity of the
models. Thus, according to the heatmap, the variables most strongly
correlated with dry matter content originate from the LEDs 610, 655,
700, and 890 nm (all above 0.5). This positive correlation among the
LED values is evident in the scatter plots and boxplots corresponding to
each of the classes. Specifically, the boxplot (Fig. 4B) shows the distri-
bution of 655_g across different harvest periods (R1, R2, R3), and the
scatterplot (Fig. 4C) highlights the positive correlation between 655_g
and DM. This correlation becomes stronger as the avocados ripen,
indicating that 655_g is a reliable predictor of DM. When analysing the
data separated by harvest period, the general trend of increasing 655_g
with higher DM is consistent across the full dataset; however, this trend
is less evident during the first harvest, likely due to the scarcity of
avocados with lower DM in that period. In contrast, the correlation
between 655_g and DM becomes more apparent in the second and third
harvests. This enhanced correlation in the later harvests is likely a result
of the adjustments made to the harvesting strategy after the first period,
which aimed to increase the collection of avocados with lower DM.

3.2. Results of classification models (offline model)

The evaluation of classification models for predicting avocado
maturity stages, including R1, R2, and R3 using spectral measurements
obtained from a multispectral prototype is shown in Table 3. It sum-
marizes the average performance metrics across seven-fold cross-vali-
dation for each model. Among the models evaluated, the Artificial
Neural Network (ANN) demonstrated the highest accuracy (0.74) and
recall (0.96) for predicting the R3 class. However, it showed compara-
tively lower recall (0.37) for the R2 class. The results reveal a variation
in model performance for each avocado maturity category. Specifically,
we observed that the R1 and R3 categories are recognized with higher
precision and recall compared to the R2 category.

3.3. Results of regression models

Following the classification model results, it was observed that two
of the classes (R1 and R3), which represent the most distinct stages of
ripeness, were well differentiated. However, the intermediate class (R2)
was not as effectively separated. Given these findings, we decided to
further investigate the precision of regression models, which offer a
more granular approach by predicting the exact dry matter content (DM)
for each avocado. Given that the best results in classification were
achieved using Artificial Neural Networks (ANNs), we extended this
approach to the regression models as well. Table 4 summarizes the
performance of the regression models using all the combinations of the
three different data sources: sensor data, satellite data, and multispectral
data. The checkmarks (v) indicate the data source that has been
included in the regression models. All models have demonstrated high
predictive accuracy, as indicated by the R? coefficient of determination,
which ranges from 0.81 to 0.91. The online model achieved the highest
coefficient (0.91), suggesting a marginally better performance

Table 3

Performance of classification models.
Model Accuracy Recall Precision

R1 R2 R3 R1 R2 R3

XGBoost 0.68 0.80 0.41 0.77 0.79 0.45 0.71
RandomForest 0.68 0.80 0.40 0.76 0.79 0.46 0.70
SvC 0.67 0.80 0.40 0.74 0.77 0.46 0.69
KNN 0.64 0.76 0.44 0.67 0.74 0.42 0.71
AdaBoost 0.60 0.62 0.41 0.72 0.75 0.36 0.67
LDA 0.66 0.77 0.44 0.72 0.79 0.45 0.69
ANN 0.74 0.81 0.37 0.96 0.90 0.63 0.68
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compared to the offline model. Standard deviation (sd) values were
consistently low across all models and data sources, with the online
model exhibiting slightly better precision (e.g., sd = 0.015 compared to
sd = 0.028 for the offline model). These results indicate robust and
reliable predictions, with minimal variability.

3.4. Spectral feature relevance

Fig. 5 presents the SHAP analysis applied to the predictive model for
determining dry matter in avocados. The plot highlights the 20 most
relevant spectral features, ranked by their contribution to the model’s
predictions while the SHAP values for the 40 features are included in
Table S1. Each dot represents a sample, and its position along the x-axis
indicates the SHAP value, i.e., the impact of that specific feature on the
model’s output. The colour gradient represents the feature value, with
blue indicating lower values and pink higher values.

The results reveal that the spectral bands around 700 nm (700_r and
700_g), 455 nm (455_r and 455_b), and 405 nm (405_r, 405_b, and
405_g) show the highest contributions to the model’s predictions,
underscoring their importance for capturing relevant information. In
contrast, certain bands, such as those at 555 nm, exhibit negligible
contributions, suggesting they could be excluded without significantly
affecting the model’s performance.

To evaluate the impact of dimensionality reduction, the model was
retrained using only the top 30 features identified by the SHAP analysis.
Notably, this reduced model maintained the same performance metrics
as the original model trained with all 40 features, demonstrating that the
less relevant spectral bands do not provide additional predictive power.
This finding supports the hypothesis that the number of LEDs in the
prototype can be reduced, simplifying the hardware design and opti-
mizing the data acquisition pipeline while preserving accuracy and
robustness.

4. Discussion

The development of predictive models for avocado ripeness, based
on multispectral data, satellite imagery, and environmental sensor data,
holds significant potential for optimizing harvest timing and enhancing
quality control processes in avocado production. This study provides
valuable insights into the relationship between dry matter content (DM),
a key indicator of avocado ripeness, and various environmental and
spectral variables, ultimately supporting more informed decision-
making in agriculture. However, several aspects warrant further
consideration to refine and enhance these models.

4.1. Challenges in classification models

Initially, classification models were employed to categorize avocados
into three ripeness stages: immature (R1), intermediate (R2), and
overripe (R3). While these models performed well in distinguishing the
extreme stages (R1 and R3), they faced challenges in accurately classi-
fying the intermediate stage (R2). This stage exhibited reduced precision
and recall, likely due to the gradual transition between ripeness stages,
which is difficult to define within the dataset. These limitations high-
light the inherent complexity of using discrete categories to represent
what is essentially a continuous biological process.

4.2. Regression models: improved accuracy and insights

Given the challenges with classification models, regression models
were employed to predict DM as a continuous variable. These models
demonstrated superior performance, likely due to their ability to
leverage continuous data from multiple sources, rather than discrete
classifications as previously reported [28]. The results highlighted the
significant improvements achieved by integrating spectral, environ-
mental, and satellite-based indices, further emphasizing the value of a
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Table 4
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Results of offline and online regression models, showing the different combinations of datasets used for model training.

Data sources Online

Offline

Satellite data v v v
Environmental data v v

Spectral data v v

R? 0.86 0.91 0.86
sd / RMSE 0.028 0.015 0.030

0.85 0.90 0.82 0.81
0.026 0.020 0.033 0.032

700 r
455 r oo
700_g
405 r
405_b
830_r
455 b
830_b
655_r
405_g

blanco_r

blanco_b
700 _ir
890 ir
655_b
515_r
655_ir
455 ir
610_g

blanco_g .

High

Feature value

~0.10 ~0.05

r T Low
0.05 0.10

SHAP value (impact on model output)

Fig. 5. SHAP analysis of the 20 most important spectral features contributing to the predictive model for avocado DM content. The x-axis represents SHAP values
(feature impact on model output), and the y-axis lists the spectral features ranked by relevance. Each dot corresponds to a sample, with the colour indicating the
feature value (blue: low, pink: high). This analysis identified the key wavelengths contributing to the predictions, enabling the potential elimination of redun-

dant features.

comprehensive data-driven approach. An interesting observation was
the variability in model performance depending on the data sources
used. Although all data types contributed to better DM predictions,
differences in R? values between models using satellite indices and those
using environmental sensors suggest that the architecture and integra-
tion methodology of the models could influence their effectiveness.
The SHAP analysis provides valuable insights into the contribution of

individual spectral bands to the model’s performance, facilitating the
identification of the most informative wavelengths for predicting dry
matter in avocados. The results demonstrate that spectral bands around
700 nm, 455 nm, and 405 nm consistently exhibit high importance,
while others, such as the 555 nm band, contribute minimally. This
suggests that certain wavelengths are redundant or less informative, and
their removal could simplify the hardware setup without compromising
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predictive accuracy. Furthermore, our investigation revealed substantial
redundancy among spectral features, as evidenced by high correlations
between certain bands. This redundancy indicates that several features
capture overlapping information, which not only increases the
complexity of the data processing pipeline but also limits the inter-
pretability of the model. By eliminating less relevant or redundant
wavelengths, we can streamline the spectral acquisition process, reduce
computational demands, and optimize hardware design.

Notably, retraining the model with the top 30 features, identified by
SHAP as the most relevant, maintained the same predictive performance
as the model trained with all 40 spectral bands. This underscores that the
excluded bands do not add significant information to the model. Such
dimensionality reduction not only confirms the robustness of the SHAP-
based feature selection approach but also highlights the potential for
cost and efficiency improvements in the multispectral prototype. These
findings are consistent with prior studies demonstrating that carefully
selected subsets of spectral bands can achieve comparable or even su-
perior performance to models trained on the full spectrum. By focusing
on the most relevant bands, it is possible to design simpler and more
cost-effective devices, which are particularly advantageous for portable
or field-based applications. Future work could further explore the inte-
gration of feature selection with hardware design, ensuring that both the
computational and physical components of the system are optimized for
real-world deployment.

4.3. Strengths of the multimodal sensing approach

A key contribution of this study is the integration of multispectral
data with environmental sensor data and satellite-derived vegetation
indices (e.g., NDVI, NDRE). This multimodal approach provides a ho-
listic understanding of avocado ripeness by combining physical char-
acteristics (e.g., spectral reflectance) with environmental factors. This
synergy significantly enhances the predictive accuracy of the models
compared to relying on any single data source [40]. For example,
regression models that incorporated both multispectral data and satel-
lite indices achieved an impressive R? of 0.91, demonstrating a robust
predictive capability. Importantly, both satellite data and sensor data,
when analysed independently, were shown to be highly effective in
predicting DM, underscoring the importance of these sources in preci-
sion agriculture.

4.4. Limitations and future work

Despite the promising results, there are opportunities to further
enhance these predictive models. One key recommendation is to expand
the dataset to include data from multiple harvest seasons. Incorporating
data from diverse growing conditions, climatic variations, and different
crop cycles can enrich the models, making them more generalizable and
robust across varied contexts. Additionally, future efforts could explore
improvements in model architectures to better capture the complex re-
lationships between multispectral, environmental, and satellite data.
Advanced techniques, such as deep learning models or hybrid ap-
proaches, may offer improved predictive capabilities by effectively
managing the heterogeneity and scale of the input data.

5. Conclusions

This study highlights the potential of integrating multispectral, sat-
ellite, and environmental data to develop accurate predictive models for
estimation of avocado ripeness stage. The results emphasize the value of
multimodal sensing data and continuous prediction frameworks in
optimizing harvest strategies. By addressing the challenges identified,
such as classification ambiguity, and by pursuing future directions
involving expanded datasets and advanced model architectures, these
predictive tools can become invaluable assets for precision agriculture,
ultimately improving both productivity and sustainability in avocado
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production. The models developed herein have the potential to revolu-
tionize avocado harvesting strategies. Accurate predictions of dry matter
content, which is directly correlated with fruit ripeness, are essential for
ensuring that avocados are harvested at their optimal stage. By enabling
growers to determine peak maturity with precision, these models can
minimize losses due to overripe or underripe harvests, thereby reducing
post-harvest waste and improving overall fruit quality. Furthermore, the
ability to predict dry matter content in real-time and in situ, using
portable multispectral systems could streamline logistics, allowing for
better synchronization between harvest timing and market demand for
optimal ripeness.
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