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A B S T R A C T

In recent years, avocado has gained significant global importance due to its nutritional benefits, and rising 
consumer demand, becoming a staple in health-conscious diets. This growing interest has also raised concerns 
about environmental sustainability, and as a result, efforts are being made to promote more sustainable farming 
practices while meeting the rising demand. In this study, we present a tool designed to enhance the efficiency of 
the pre-harvest process and improve avocado quality. We propose a multimodal sensing scheme integrating three 
different data sources: a portable multispectral system for in situ measurements, satellite imagery and, onsite 
environmental sensors to estimate the fruit ripening stage. This combined remote and onsite yielded a high 
correlation with dry matter content, considered here as the reference indicator of avocado ripening, across three 
consecutive harvest seasons. The performance of various machine learning techniques was evaluated using 
different combinations of these datasets. Notably, the artificial neural network (ANN) model achieved the highest 
accuracy (0.74) and recall (0.96) for predicting the overripe avocado class. Therefore, ANN model was extended 
to regression models, where all of them have demonstrated high predictive accuracy, with R2 coefficient ranges 
from 0.81 to 0.91. The online data achieved the highest coefficient (0.91), providing a slightly better perfor
mance compared to the offline model. Nonetheless, predictions based solely on multispectral data remain 
valuable, particularly when online data are unavailable.

1. Introduction

Avocado (Persea Americana) contains vitamins A, B, C, E, and K, 
including 25 essential nutrients. It also contains phytochemicals, like 
beta-sitosterol, and antioxidants, like lycopene and beta-carotene with 
proven benefits for a healthy diet [1]. These essential nutrients are 

boosting the demand for the fruit globally. The increased demand across 
the globe has resulted in increased production. According to [2], avo
cado production was +9.5 million avocados in 2022, which increased by 
9.7 % and reached 10.4 million in 2023. The avocado market is pro
jected to register a compound annual growth rate (CAGR) of 9.70 % 
from 2024 to 2031 [3]. Avocados, as a climacteric fruit, can be picked 
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mature but still unripe, continuing the ripening process after the har
vesting [1,4]. However, they can also remain on the tree as long as 
needed, depending on market conditions. However, leaving them too 
much time on the tree will cause an over-mature state that will lead the 
fruit to short shelf life and other problems after the harvest, causing huge 
economic losses [5]. Moreover, given their high perishability, avocados 
require timely and well-coordinated harvesting and post-harvest 
handling, and uninterrupted cold chains. An important determining 
factor of the external and internal eating quality of ripe avocado fruit 
quality is maturity level at harvest. Therefore, the determination of the 
avocado maturity stage on the tree is quite relevant to guarantee an 
optimum state before harvesting. When avocados are harvested from the 
tree, a fast-ripening process takes place: 12–18 days of external colour 
changes and a loss of firmness are clear indicators of the avocado 
ripening [6].

Several parameters provide non-visual, informative indicators 
related to avocado ripening that could facilitate direct assessment on the 
tree (pre-harvest): moisture content, mesocarp oil or dry matter, among 
others. However, most of them are still determined using invasive 
techniques. Both avocado mesocarp oil content and dry matter gradually 
increase during fruit growth and exhibit strong correlations with 
maturity and eating quality [7]. In fact, mesocarp oil content along with 
related attributes such as dry matter and moisture contents are globally 
accepted as reliable maturity indices for determining optimal harvest 
timing [8–10]. In the Tropical Coast (Spain) avocado dry matter typi
cally ranges from 21 % at the onset of the season (October) to around 31 
% when the avocado is considered to be optimal for consumption 
(January). Firmness is also a significant parameter to determine the 
maturity stage of harvested avocados, and numerous studies for 
non-destructive estimation of firmness have been reported [5,11–14].

Due to their non-destructive nature, there is increasing interest in 
implementing non-invasive techniques such as spectroscopic, image 
processing or acoustic methods [15] to assess avocado ripening and 
quality. Several studies have been carried out to study the maturity stage 
through image analysis, as these approaches avoid the human subjec
tivity of manual analysis, they are usually cheaper than other tech
niques, and they can easily provide in-situ results [16–18]. In this 
context, the use of colorimetric parameters obtained from color
imeters/spectrometers [19,20], cameras [21] or smartphones [22] as 
analytical devices for evaluating external appearance have demon
strated promising results. Some researchers have tried to determine dry 
matter of the avocado using near-infrared spectroscopy (NIR) [23,24] 
and even using portable instrumentation [25]. Recently, low-cost mul
tispectral prototypes for fruit ripening assessment of fruits have been 
developed [26,27]. However, to date, none have conducted comparative 
analysis of machine learning models including consecutive crops, nor 
have they systematically compared various regression and classification 
methodologies

A comprehensive review of various invasive and non-invasive tech
niques for the determination of avocado maturity stage is presented in 
[28]. However, the correlation between dry matter content and multi
spectral data for predicting the optimal maturity state of avocados re
mains unexplored. Most published studies focus on the information 
obtained during the post-harvest storage, causing high variation in 
product quality and posing challenges for harvest scheduling. Visi
ble/NIR multispectral sensors can only gather a limited number of 
spectral bands, requiring the use of machine learning algorithms or 
multivariable correlation techniques to relate this information to 
maturity parameters such as dry matter content of firmness [24,29–34]. 
Moreover, spectral shape features, described by specific spectral indices, 
are shown to enhance the interpretability and predictive power of the 
spectral data [32]. Meanwhile, satellite imagery has recently been in
tegrated with machine learning approaches for crop monitoring appli
cations, including fruit yield estimation in mango [35], avocado 
orchards [36], and rice grain moisture content [37]. Nonetheless, 
relying on a single data source may impose inherent limitations. To 

address these constraints, multimodal sensing strategies, where data 
from multiple sources are combined, have been increasingly adopted to 
improve predictive performance and robustness [38,39].

Hence, this work aims to correlate the dry matter content (consid
ered the reference indicator of ripeness) in pre-harvest avocados with a 
multimodal sensing framework throughout the entire harvesting period. 
This multimodal scheme integrates remote data, including satellite im
agery and onsite environmental sensors measurements, with fruit-level 
data obtained via a custom-developed multispectral system. The latter 
acquires diffuse reflectance measurements of avocados using the 
developed multispectral sensor described in [40]. We propose an offline 
model using only onsite multispectral data, making it suitable for field 
applications where internet connectivity is limited or unavailable. In 
contrast, the online model incorporated additional data sources, 
including satellite-derived indices and environmental data collected on 
the farm. To our knowledge, this is the first study to combine off
line/online and onsite/remote data sources for fruit ripening assess
ment. Various machine learning techniques (classification and 
regression models) were applied and evaluated across all possible 
dataset combinations. These results will potentially help to enhance 
pre-harvest decision-making efficiency, improve avocado quality at 
retail outlets, and reduce post-harvest losses within the agri-food supply 
chain. Although the experiment was conducted in a controlled envi
ronment (Fig. 1), the techniques and methodologies employed can be 
readily adapted for field deployment in a smartphone-based prototype. 
Such a device would integrate the trained model, include a physical 
enclosure to shield the sensor from ambient lighting variations, and 
implement a light correction algorithm to ensure consistent data quality 
under varying field conditions [42].

2. Material and methods

2.1. Collection and preparation of samples

Hass avocado fruits were picked from a commercial orchard located 
in Motril, Province of Granada, Spain, specifically from designated 
sectors 1 and 4. Sampling was conducted weekly throughout three 
consecutive harvest seasons periods, from September to February from 
2020 to 2023. Ten trees of Hass variety of avocado exhibiting similar 
growth stages were randomly selected as sampling sites. A total of 476 
avocados were collected over the 2020–2021, 2021–2022 and 
2022–2023 seasons, comprising 110, 220 and 146 avocados, respec
tively. To maintain consistency, fruits of comparable size were selected, 
and measures were taken to minimize thermal exposure during trans
portation and storage. Given the study’s focus on the pre-harvest 
ripening process, all measurements using the developed multispectral 
system were conducted within 24 h of harvest, preserving the avocados 
in low temperature conditions. In the laboratory, each fruit was assigned 
a unique identifier, weighted, and photographed to ensure an appro
priate register of each sample.

2.2. Multispectral system description and data acquisition

Multispectral data were acquired adapting a previously developed 
portable multispectral system [40]. The instrument is depicted in Fig. 1. 
Electronic components are enclosed in a black box of 9 × 15 × 3 cm3, 
and inside, the printed circuit board has dimensions of 8 × 12 cm2, being 
the main block, the sensing module. This block consists of a 
light-emitting diode (LED) array distributed in a squared pattern, as a 
multispectral source, surrounding a digital colour sensor acting as the 
reflectance detector. For UV/VIS/NIR optical excitation, the ten selected 
LED models are shown in Table 1.

To achieve a more uniform irradiance pattern over the sample, two 
LEDs of each wavelength were included, disposed in symmetrical posi
tion regarding the colour detector which is placed in the centre of the 
square. The S11059–02DT (Hamamatsu Photonics K.K. Japan) colour 
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detector used is an I2C interface-compatible model that allows to choose 
the sensitivity mode as well as the integration time during which the 
reflected light is collected. In a high sensitivity mode, the photosensitive 
area of the colour detector is 0.56 × 1.22 mm2. It is sensitive to four 
different bands: red (575 to 660 nm, λpeak = 615 nm), green (455 to 630 
nm, λpeak = 530 nm), blue (400 to 540 nm, λpeak = 460 nm), and near 
infrared (700 to 885 nm, λpeak = 855 nm) radiations. Therefore, for each 
excitation LED, four data are acquired: xxx_r, xxx_g, xxx_b, and xxx_ir, 
where xxx refers to white or the maximum emission of each LED and r,g, 
b,ir to the red, green, blue and infrared detector output channels 
respectively. During the system operation, each pair of LEDs with the 
same emission spectra are sequentially activated, and the received light 
is codified into words of 16 bits of resolution. To obtain a similar 
response of the system for each LED source, the integration time 
parameter was individually configured, ranging from 175 ms to 1.75 s. 
The colour sensor is facing an aperture in the black box, where the 
sample is placed. As mentioned, RGB and infrared (IR) coordinates are 
measured and sent to a microcontroller for further processing. More 

details can be read elsewhere [40].
Spectral data were acquired from four orthogonal positions along its 

equatorial contour with the multispectral device as shown in Fig. 1. The 
fruit was placed in the instrument over a black foam for a better fit of the 
fruit irregular surface. The analysis was carried out in dark conditions in 
order to avoid external light influence on the results. Three replicas were 
captured for each position, having a total of twelve multispectral mea
surements for each analysed avocado. The dataset was generated by 
averaging multispectral measurement for each fruit at each spectral 
band and LED. Each avocado sample was associated with both its 
respective measured dry matter content, detailed below, and its harvest 
date.

2.3. Environmental and satellite data

As an important novelty in this work, some environmental parame
ters and satellite imagery data were also measured at the moment of 
harvesting and included in the classification analysis. Regarding the 
environmental sensor data, the avocado farm has installed several sen
sors that gather specific variables for integration into the predictive 
model. These variables include surface and deep tension (DT), soil hu
midity (RHS), vapour pressure deficit (VPD), ambient temperature (TA) 
and soil temperature (TS). These variables were collected using a 
climate data access API at intervals of approximately 10–15 min. The 
data collected by the sensors were organised into consecutive subsets, 
known as ‘temporal windows’. These ‘windows’ were created by seg
menting the dataset at regular time intervals. Specifically, each ‘win
dow’ encapsulated 100 sequential measurements of the 5 variables, 
consequently with a duration between 16 and 25 h. Within each win
dow, the corresponding output or dry matter value was determined by 
selecting the measurement closest in time to the end of the window. This 
approach ensured that the value used for the output within each window 
corresponded to the most recent measurement in relation to the win
dow’s end time.

In addition, satellite Sentinel 2 (Copernicus Sentinel Missions, ESA, 
EU) images from the periods corresponding to avocado harvests were 

Fig. 1. Experimental setup holding the multispectral system in a black case in order to obtain the measurements avoiding external light influence.

Table 1 
LEDs for multispectral optical excitation.

LED Reference Manufacturer λpeak 
(nm)

SML-LX2832UWC- 
TR

Lumex Inc., Carol Stream, IL, USA White 
clear

VLMU3100 Vishay Intertechnology Inc., Malvern, PA, USA 405

LD MSVG-JGLH- 
46–1

OSRAM Opto Semiconductors GmbH, 
Germany

455

AA3021ZGSK

Kingbright Electronic Co., Ltd., New Taipei 
City, Taiwan

515
APTR3216PGW 555
APT2012NW 610
APT2012SRCPRV 655

SML-LX15HC-RP-TR Lumex Inc., Carol Stream, IL, USA 700

VSMG2700 Vishay Intertechnology Inc., Malvern, PA, USA 830
VSMF3710 890
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employed to compute the Normalised Difference Vegetation Index 
(NDVI) and the Normalised Difference Red Edge Index (NDRE) for 
specific sectors within the estate where the fruits were collected. NDVI 
measures the greenness, and the density of the vegetation captured in a 
satellite image. Healthy vegetation has a very characteristic spectral 
reflectance curve which we can benefit from by calculating the differ
ence between two bands – visible red and near-infrared. NDVI is that 
difference expressed as a number – ranging from − 1 to 1. In a comple
mentary way, NDRE is a metric that is used to analyse whether images 
obtained from multi-spectral image sensors contain healthy vegetation. 
It uses the ratio of Near-Infrared and the edge of Red. In the Supple
mentary information file, Figure S1 (Supplementary Information file, SI) 
displays an example of grayscale intensity corresponding to the specific 
NDVI and NDRE values for two different sectors in the farm. Then, the 
whole data were rescaled using StandardScaler method, adjusting values 
to the standard normal distribution with a mean of 0 and a standard 
deviation of 1. Sentinel satellite images are provided every 5 days. The 
spatial resolution of Sentinel imagery, pixel, is approximately 10 × 10 
m, which closely corresponds to the typical canopy size of an individual 
avocado tree. The closest available image of each harvest day was used 
for the model. The dataset, including NDVI and NDRE features, was 
constructed by averaging data from both harvest sectors for each cor
responding harvest date.

2.4. Reference data: dry matter determination

Dry matter content was used as the reference parameter for ripeness 
assessment. Its determination was performed following the procedure 
described below. Every avocado was peeled, and three slices weighing 
about 4–5 g in total were obtained from each fruit, ensuring that each 
sample included both mesocarp and endocarp sections. The slices were 
placed on a watch glass and weighted using a Boeco scale model BWL 51 
(Boeckel & Co. GmbH & Co. KG, Hamburg, Germany) with a sensibility 
of 0.01 g. The samples, together with the watch glass, were placed inside 
a LG Electronics model MH6883BAK microwaves (Seoul, South Korea) 
and subjected to drying for 12 min at 540 W, alongside a glass full of 
water to prevent sample overheating. During this process, the avocado 
samples lost their water content, yielding dry samples. When the pro
gram is over, the dry sample was introduced in a desiccator for 5 min to 
equilibrate temperature before final weighting. The dry matter per
centage, DM, was calculated according to Eq. (1): 

DM (%) = 100⋅
Dry sample Weight

Sample weight
(1) 

2.5. Data engineering

The dataset includes spectral information, measurements collected 
by environmental sensors installed in the avocado plantation, as well as 
processed satellite images for calculating relevant vegetation indices. 
These combined datasets provide a comprehensive insight into the 
conditions and characteristics of the avocados under study, as detailed 
below.

Multispectral information was collected for a total of 476 avocados. 
As mentioned, three measurements were taken for each of the 4 sides of 
the avocado (avocado faces), giving a total of up to 12 measurements per 
avocado and a total of 5712 instances. Following data analysis, outliers 
were identified as observations lying more than 2.5 standard deviations 
from the mean and were subsequently removed, leaving for further 
processing a total of 436 avocados and 5134 entries. Each entry consists 
of 40 variables, encompassing measurements for red, green, blue, and 
infrared from various LED wavelengths: ‘white_r’, ‘white_g’, ‘white_b’, 
‘white_ir’, ‘405_r’, ‘405_g’, ‘405_b’, ‘405_ir’, ‘455_r’, ‘455_g’, ‘455_b’, 
‘455_ir’, ‘515_r’, ‘515_g’, ‘515_b’, ‘515_ir’, ‘555_r’, ‘555_g’, ‘555_b, 
‘555_ir’, ‘610_r’, ‘610_g’, ‘610_b’, ‘610_ir’, ‘655_r’, ‘655_g’, ‘655_b’, 
‘655_ir’, ‘700_r’, ‘700_g’, ‘700_b’, ‘700_ir’, ‘830_r’, ‘830_g’, ‘830_b’, 

‘830_ir’, ‘890_r’, ‘890_g’, ‘890_b’, ‘890_ir’. Then, each entry was also 
individually normalised. To do that, the StandardScaler standardization 
technique was used. This method adjusts each variable to have a mean of 
zero and a standard deviation of one across the entire data set. This 
ensures that all variables are on a comparable scale and prevents vari
ables with larger value ranges from dominating.

A variable was generated specifically for the classification models, 
called DM_class, which contains 3 categories of avocado ripeness: R1 
(immature fruit), when the dry matter values (DM) are less than 20 %, 
R2 (optimal fruit for harvesting) with DM between 20 % and 23 % and, 
R3 (overripe fruit), when DM is higher than 23 %.

The complete study workflow is illustrated in Fig. 2, showing all the 
steps of the data processing from the fruit harvesting to the analysis of 
the model accuracies. Datasets, data preprocessing, features selection, 
and used machine learning models are also displayed. As explained 
below, the feature importance analysis (using SHAP, Shapley Additive 
exPlanations) was integrated into the machine learning workflow. This 
step, which reduced the number of features, is represented in Fig. 2 by 
the overlap of the ‘feature importance’ block with the ‘machine 
learning’ box.

2.6. Classification models

In the initial analysis phase, our primary objective was to formulate a 
solution by employing a range of classification methods on the spectral 
information dataset. Diverse algorithms were strategically chosen, 
encompassing both traditional and more advanced approaches. Notably, 
the lineup included well-established models such as XGBoost, Random 
Forest, Support Vector Classification (SVC), K-Nearest Neighbors (KNN), 
Adaboost, Linear Discriminant Analysis (LDA), and even Artificial 
Neural Networks (ANN) using a sequential model. Given the amount of 
data, we divided the dataset into two parts: 70 % for training and 30 % 
for testing. We then employed the GroupKFold technique for cross- 
validation, using a k-fold value of 7. This method was selected to 
ensure that all data points related to the same avocado remained within 
a single fold, preventing data leakage between the training and testing 
sets.

2.7. Regression models

After initial tests with classification models, further experiments 
were carried out to evaluate the performance of regression models. 
These models provide the advantage of predicting a precise dry matter 
value, as opposed to a categorical range, offering more detailed infor
mation to growers for harvesting avocados at their optimal ripeness. In 
addition, various data sources were incorporated into the modelling 
process to enhance performance. The offline model utilized only mul
tispectral data from the prototype, making it suitable for field conditions 
where internet connectivity is unreliable or unavailable. The online 
model incorporated additional data sources, including satellite-derived 
indices (NDVI and NDRE) and on-farm sensor data, allowing for a 
richer set of features related to avocado maturity but requiring internet 
access for real-time data integration.

The neural network architecture of the online model incorporates 
multiple input branches, each tailored to process specific types of data. A 
gated recurrent unit (GRU) layer is responsible for processing sensor 
data, while convolutional layers with max-pooling handle satellite- 
derived NDVI and NDRE data. The multispectral data from the proto
type is processed using fully connected layers with dropout to mitigate 
overfitting. After each branch processes its respective data, their outputs 
are concatenated and passed through additional dense layers with 
dropout for comprehensive feature extraction. The model was compiled 
and trained using the Adam optimizer. More details about the obtained 
model, using all the available data sources, can be found in Figure S2 in 
the Supplementary Information file.

The dataset was split into training and testing sets using the 
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GroupKFold cross-validation strategy, ensuring that the same groups 
were not present in both sets. During training, the Mean Squared Error 
(MSE) was employed as the loss function. The model was trained with 5- 
fold cross-validation, where a separate model was trained for each fold. 
Early stopping was applied with a patience of 30 epochs to avoid 
overfitting, and the best-performing model for each fold was saved 
based on the lowest validation loss. Hyperparameter tuning was con
ducted using Bayesian Optimization through the Keras Tuner library. 
The optimization search included the number of units in the GRU layer, 
the filters in the convolutional layers, and the units in the fully con
nected layers. A total of 10 trials were performed, and the model with 
the best validation loss was selected.

After training, the model’s performance was evaluated on the test 
set. The R² metric (coefficient of determination) was used to assess the 
accuracy of predictions compared to actual values. Final model perfor
mance was reported as the mean MSE across all folds, accompanied by 
R² scores and graphical results. To evaluate the importance of the 
various data sources, different models were trained using combinations 
of inputs. These combinations allowed us to analyse the contributions of 
each data source to the predictive performance of the proposed multi
modal scheme. The different combinations of input data used for model 
training are detailed in Table 2, where it has been indicated which in
formation has been included as training data from three possible data
sets for each particular regression model.

To reduce the complexity of the multispectral data captured by the 
prototype, which measures 40 spectral variables, the interpretability 
technique SHAP was applied to the offline model. This method, 
commonly used to explain complex models like neural networks, facil
itated the assessment of the contribution of each wavelength to the 

model’s predictions [41]. The SHAP analysis was performed on the 
best-performing offline model, trained exclusively with the spectral 
variables. By using SHAP, the most relevant spectral bands were iden
tified, which enabled a potential reduction in the number of LEDs 
required in the prototype. This approach not only simplifies the hard
ware design but also enhances the data processing pipeline by elimi
nating redundant or less informative features. The insights gained from 
these techniques informed decisions to streamline the prototype, 
thereby improving both its efficiency and cost-effectiveness.

3. Results

3.1. Exploratory data analysis

In this section, we present an exploratory analysis of the collected 
data to gain insights into the characteristics and distributions of key 
variables. The dry matter content, which is the variable to be predicted 
by the models developed in this study, had a mean of 21.59 %, ranging 
from a minimum of 12.20 % to a maximum of 32.50 % (as illustrated by 
the density plot distribution, Fig. 3A).

During the first harvest (2020–2021), a relatively small number of 
avocados with low dry matter content (R1) were collected. In response, 
efforts were made during the second harvest to increase the proportion 
of avocados within this lower DM category. This intentional adjustment 
in harvesting strategy is reflected in the observed differences between 
the first and second harvest periods. Specifically, the second harvest 
shows a more pronounced peak in the lower DM range, indicating a 
successful increase in the collection of avocados with the desired lower 
moisture content (Fig. 4A).

The correlations between spectral variables and dry matter content 
were examined. This analysis aimed to understand the relationship be
tween avocado spectral characteristics and their dry matter content, 
essential for accurate predictive modelling. The correlation analysis of 
the variables reveals that certain variables are highly correlated with 
each other, as it can be derived from heatmap shown Figure S3 in the 
Supplementary Information file. This redundancy in the features can 
lead to overfitting in the models, and, in addition, to increasing their 

Fig. 2. Diagram of data gathering. processing and modelling, showing how multispectral, satellite and environmental data are integrated to provide the dry matter 
content (DM) predictions at each avocado harvest date. Features and applied machine learning models (read sections above and below for meaning of the acronyms) 
are also pointed out.The ‘feature importance’ block overlaps with the ‘machine learning’ box to illustrate that SHAP analysis was used to reduce the number 
of features.

Table 2 
Offline and online regression models, showing the different combinations of 
datasets used for model training.

Data sources Online Offline

Satellite data ✔ ✔ ✔ ​ ✔ ​ ​
Environmental data ✔ ✔ ​ ✔ ​ ✔ ​
Multispectral data ✔ ​ ✔ ✔ ​ ​ ✔
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Fig. 3. Distribution and correlation of dry matter content (DM) and the spectral variable 655_g across all collected data. A) Density plot showing the overall dis
tribution of DM values. B) Boxplot illustrating the distribution of 655_g across different DM classes (R1, R2, R3). C) Scatterplot demonstrating the positive correlation 
between DM and 655_g.

Fig. 4. Distribution and correlation of dry matter content (DM) and the spectral variable 655_g separated by harvest periods. (A) Density plot showing the distri
bution of DM values across different harvest periods. (B) Boxplot displaying the distribution of 655_g across DM classes (R1, R2, R3) for each harvest period (orange, 
harvest period 1; blue, harvest period 2; and, green, harvest period 3). (C) Scatterplot highlighting the correlation between DM and 655_g within each harvest period.
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computational complexity. Therefore, feature reduction could be bene
ficial for enhancing the model’s efficiency and preventing information 
redundancy, while still maintaining the predictive capacity of the 
models. Thus, according to the heatmap, the variables most strongly 
correlated with dry matter content originate from the LEDs 610, 655, 
700, and 890 nm (all above 0.5). This positive correlation among the 
LED values is evident in the scatter plots and boxplots corresponding to 
each of the classes. Specifically, the boxplot (Fig. 4B) shows the distri
bution of 655_g across different harvest periods (R1, R2, R3), and the 
scatterplot (Fig. 4C) highlights the positive correlation between 655_g 
and DM. This correlation becomes stronger as the avocados ripen, 
indicating that 655_g is a reliable predictor of DM. When analysing the 
data separated by harvest period, the general trend of increasing 655_g 
with higher DM is consistent across the full dataset; however, this trend 
is less evident during the first harvest, likely due to the scarcity of 
avocados with lower DM in that period. In contrast, the correlation 
between 655_g and DM becomes more apparent in the second and third 
harvests. This enhanced correlation in the later harvests is likely a result 
of the adjustments made to the harvesting strategy after the first period, 
which aimed to increase the collection of avocados with lower DM.

3.2. Results of classification models (offline model)

The evaluation of classification models for predicting avocado 
maturity stages, including R1, R2, and R3 using spectral measurements 
obtained from a multispectral prototype is shown in Table 3. It sum
marizes the average performance metrics across seven-fold cross-vali
dation for each model. Among the models evaluated, the Artificial 
Neural Network (ANN) demonstrated the highest accuracy (0.74) and 
recall (0.96) for predicting the R3 class. However, it showed compara
tively lower recall (0.37) for the R2 class. The results reveal a variation 
in model performance for each avocado maturity category. Specifically, 
we observed that the R1 and R3 categories are recognized with higher 
precision and recall compared to the R2 category.

3.3. Results of regression models

Following the classification model results, it was observed that two 
of the classes (R1 and R3), which represent the most distinct stages of 
ripeness, were well differentiated. However, the intermediate class (R2) 
was not as effectively separated. Given these findings, we decided to 
further investigate the precision of regression models, which offer a 
more granular approach by predicting the exact dry matter content (DM) 
for each avocado. Given that the best results in classification were 
achieved using Artificial Neural Networks (ANNs), we extended this 
approach to the regression models as well. Table 4 summarizes the 
performance of the regression models using all the combinations of the 
three different data sources: sensor data, satellite data, and multispectral 
data. The checkmarks (✔) indicate the data source that has been 
included in the regression models. All models have demonstrated high 
predictive accuracy, as indicated by the R2 coefficient of determination, 
which ranges from 0.81 to 0.91. The online model achieved the highest 
coefficient (0.91), suggesting a marginally better performance 

compared to the offline model. Standard deviation (sd) values were 
consistently low across all models and data sources, with the online 
model exhibiting slightly better precision (e.g., sd = 0.015 compared to 
sd = 0.028 for the offline model). These results indicate robust and 
reliable predictions, with minimal variability.

3.4. Spectral feature relevance

Fig. 5 presents the SHAP analysis applied to the predictive model for 
determining dry matter in avocados. The plot highlights the 20 most 
relevant spectral features, ranked by their contribution to the model’s 
predictions while the SHAP values for the 40 features are included in 
Table S1. Each dot represents a sample, and its position along the x-axis 
indicates the SHAP value, i.e., the impact of that specific feature on the 
model’s output. The colour gradient represents the feature value, with 
blue indicating lower values and pink higher values.

The results reveal that the spectral bands around 700 nm (700_r and 
700_g), 455 nm (455_r and 455_b), and 405 nm (405_r, 405_b, and 
405_g) show the highest contributions to the model’s predictions, 
underscoring their importance for capturing relevant information. In 
contrast, certain bands, such as those at 555 nm, exhibit negligible 
contributions, suggesting they could be excluded without significantly 
affecting the model’s performance.

To evaluate the impact of dimensionality reduction, the model was 
retrained using only the top 30 features identified by the SHAP analysis. 
Notably, this reduced model maintained the same performance metrics 
as the original model trained with all 40 features, demonstrating that the 
less relevant spectral bands do not provide additional predictive power. 
This finding supports the hypothesis that the number of LEDs in the 
prototype can be reduced, simplifying the hardware design and opti
mizing the data acquisition pipeline while preserving accuracy and 
robustness.

4. Discussion

The development of predictive models for avocado ripeness, based 
on multispectral data, satellite imagery, and environmental sensor data, 
holds significant potential for optimizing harvest timing and enhancing 
quality control processes in avocado production. This study provides 
valuable insights into the relationship between dry matter content (DM), 
a key indicator of avocado ripeness, and various environmental and 
spectral variables, ultimately supporting more informed decision- 
making in agriculture. However, several aspects warrant further 
consideration to refine and enhance these models.

4.1. Challenges in classification models

Initially, classification models were employed to categorize avocados 
into three ripeness stages: immature (R1), intermediate (R2), and 
overripe (R3). While these models performed well in distinguishing the 
extreme stages (R1 and R3), they faced challenges in accurately classi
fying the intermediate stage (R2). This stage exhibited reduced precision 
and recall, likely due to the gradual transition between ripeness stages, 
which is difficult to define within the dataset. These limitations high
light the inherent complexity of using discrete categories to represent 
what is essentially a continuous biological process.

4.2. Regression models: improved accuracy and insights

Given the challenges with classification models, regression models 
were employed to predict DM as a continuous variable. These models 
demonstrated superior performance, likely due to their ability to 
leverage continuous data from multiple sources, rather than discrete 
classifications as previously reported [28]. The results highlighted the 
significant improvements achieved by integrating spectral, environ
mental, and satellite-based indices, further emphasizing the value of a 

Table 3 
Performance of classification models.

Model Accuracy Recall Precision

R1 R2 R3 R1 R2 R3

XGBoost 0.68 0.80 0.41 0.77 0.79 0.45 0.71
RandomForest 0.68 0.80 0.40 0.76 0.79 0.46 0.70
SVC 0.67 0.80 0.40 0.74 0.77 0.46 0.69
KNN 0.64 0.76 0.44 0.67 0.74 0.42 0.71
AdaBoost 0.60 0.62 0.41 0.72 0.75 0.36 0.67
LDA 0.66 0.77 0.44 0.72 0.79 0.45 0.69
ANN 0.74 0.81 0.37 0.96 0.90 0.63 0.68
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comprehensive data-driven approach. An interesting observation was 
the variability in model performance depending on the data sources 
used. Although all data types contributed to better DM predictions, 
differences in R² values between models using satellite indices and those 
using environmental sensors suggest that the architecture and integra
tion methodology of the models could influence their effectiveness.

The SHAP analysis provides valuable insights into the contribution of 

individual spectral bands to the model’s performance, facilitating the 
identification of the most informative wavelengths for predicting dry 
matter in avocados. The results demonstrate that spectral bands around 
700 nm, 455 nm, and 405 nm consistently exhibit high importance, 
while others, such as the 555 nm band, contribute minimally. This 
suggests that certain wavelengths are redundant or less informative, and 
their removal could simplify the hardware setup without compromising 

Table 4 
Results of offline and online regression models, showing the different combinations of datasets used for model training.

Data sources Online Offline

Satellite data ✔ ✔ ✔ ​ ✔ ​ ​
Environmental data ✔ ✔ ​ ✔ ​ ✔ ​
Spectral data ✔ ​ ✔ ✔ ​ ​ ✔
R2 0.86 0.91 0.86 0.85 0.90 0.82 0.81
sd / RMSE 0.028 0.015 0.030 0.026 0.020 0.033 0.032

Fig. 5. SHAP analysis of the 20 most important spectral features contributing to the predictive model for avocado DM content. The x-axis represents SHAP values 
(feature impact on model output), and the y-axis lists the spectral features ranked by relevance. Each dot corresponds to a sample, with the colour indicating the 
feature value (blue: low, pink: high). This analysis identified the key wavelengths contributing to the predictions, enabling the potential elimination of redun
dant features.
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predictive accuracy. Furthermore, our investigation revealed substantial 
redundancy among spectral features, as evidenced by high correlations 
between certain bands. This redundancy indicates that several features 
capture overlapping information, which not only increases the 
complexity of the data processing pipeline but also limits the inter
pretability of the model. By eliminating less relevant or redundant 
wavelengths, we can streamline the spectral acquisition process, reduce 
computational demands, and optimize hardware design.

Notably, retraining the model with the top 30 features, identified by 
SHAP as the most relevant, maintained the same predictive performance 
as the model trained with all 40 spectral bands. This underscores that the 
excluded bands do not add significant information to the model. Such 
dimensionality reduction not only confirms the robustness of the SHAP- 
based feature selection approach but also highlights the potential for 
cost and efficiency improvements in the multispectral prototype. These 
findings are consistent with prior studies demonstrating that carefully 
selected subsets of spectral bands can achieve comparable or even su
perior performance to models trained on the full spectrum. By focusing 
on the most relevant bands, it is possible to design simpler and more 
cost-effective devices, which are particularly advantageous for portable 
or field-based applications. Future work could further explore the inte
gration of feature selection with hardware design, ensuring that both the 
computational and physical components of the system are optimized for 
real-world deployment.

4.3. Strengths of the multimodal sensing approach

A key contribution of this study is the integration of multispectral 
data with environmental sensor data and satellite-derived vegetation 
indices (e.g., NDVI, NDRE). This multimodal approach provides a ho
listic understanding of avocado ripeness by combining physical char
acteristics (e.g., spectral reflectance) with environmental factors. This 
synergy significantly enhances the predictive accuracy of the models 
compared to relying on any single data source [40]. For example, 
regression models that incorporated both multispectral data and satel
lite indices achieved an impressive R² of 0.91, demonstrating a robust 
predictive capability. Importantly, both satellite data and sensor data, 
when analysed independently, were shown to be highly effective in 
predicting DM, underscoring the importance of these sources in preci
sion agriculture.

4.4. Limitations and future work

Despite the promising results, there are opportunities to further 
enhance these predictive models. One key recommendation is to expand 
the dataset to include data from multiple harvest seasons. Incorporating 
data from diverse growing conditions, climatic variations, and different 
crop cycles can enrich the models, making them more generalizable and 
robust across varied contexts. Additionally, future efforts could explore 
improvements in model architectures to better capture the complex re
lationships between multispectral, environmental, and satellite data. 
Advanced techniques, such as deep learning models or hybrid ap
proaches, may offer improved predictive capabilities by effectively 
managing the heterogeneity and scale of the input data.

5. Conclusions

This study highlights the potential of integrating multispectral, sat
ellite, and environmental data to develop accurate predictive models for 
estimation of avocado ripeness stage. The results emphasize the value of 
multimodal sensing data and continuous prediction frameworks in 
optimizing harvest strategies. By addressing the challenges identified, 
such as classification ambiguity, and by pursuing future directions 
involving expanded datasets and advanced model architectures, these 
predictive tools can become invaluable assets for precision agriculture, 
ultimately improving both productivity and sustainability in avocado 

production. The models developed herein have the potential to revolu
tionize avocado harvesting strategies. Accurate predictions of dry matter 
content, which is directly correlated with fruit ripeness, are essential for 
ensuring that avocados are harvested at their optimal stage. By enabling 
growers to determine peak maturity with precision, these models can 
minimize losses due to overripe or underripe harvests, thereby reducing 
post-harvest waste and improving overall fruit quality. Furthermore, the 
ability to predict dry matter content in real-time and in situ, using 
portable multispectral systems could streamline logistics, allowing for 
better synchronization between harvest timing and market demand for 
optimal ripeness.
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