Sensors & Actuators: A. Physical 395 (2025) 117058

Contents lists available at ScienceDirect

Sensors and Actuators: A. Physical

journal homepage: www.journals.elsevier.com/sensors-and-actuators-a-physical

ELSEVIER

A novel bed-based ballistocardiography system for non-contact monitoring
of vital signs, apneas and arrhythmias via smartphone integration

Nuria Lopez-Ruiz °©, Maria Agea ®, Alberto J. Palma“®, Pablo Escobedo”®,
Antonio Martinez-Olmos **

@ PRIMElab, ECSens, IMUDS, CITIC-UGR, University of Granada, Spain
Y CITIC-UGR, University of Granada, Spain

ARTICLE INFO ABSTRACT

Keywords: This work presents a novel remote ballistocardiography system designed for continuous monitoring of in-
Remote ballistocardiography dividuals lying in bed. The system utilizes video recordings of a tracking marker placed on the side of the
Smartphone

mattress. By processing the motion of this marker, ballistocardiographic waveforms are generated, capturing
mattress displacements caused by cardiac activity, respiration, and body movements. The longitudinal and
transverse axes of the mattress naturally separate the contributions of cardiac and respiratory signals within the
ballistocardiography waveform. This orthogonal separation enables the independent analysis of each component,
thereby enhancing the accuracy of heart and respiratory rate estimations. The system’s high resolution and
sensitivity enable not only the reliable extraction of the subject’s vital signs, but also the detection of activity
episodes—both voluntary and involuntary—alongside physiological anomalies such as sleep apnea and cardiac
arrhythmias. The simplicity of the proposed setup offers significant advantages over conventional ballisto-
cardiography systems by eliminating the need for integrated sensors and periodic calibration, and by mitigating
common challenges in remote ballistocardiography applications, including susceptibility to ambient lighting

Video processing
In-bed patient monitoring

conditions.

1. Introduction

Ballistocardiography (BCG) is a non-invasive technique that enables
the measurement of micro-oscillations of the body generated by the
mechanical activity of the heart and circulatory system. Its origins date
back to the 19th century, when Gordon first described, in 1877, the
bodily displacements resulting from the ejection of blood from the heart
into the systemic circulation [1]. Later, in the 1930s, Starr and col-
leagues developed the classical ballistocardiograph, which employed a
suspended platform to record these subtle body movements [2]. In the
following decades, BCG experienced a surge in cardiovascular research,
although its clinical use declined with the advent of alternative diag-
nostic techniques, such as electrocardiography (ECG) and echocardi-
ography [3]. However, in recent years, advances in sensor technologies
and signal processing have enabled a resurgence of BCG, particularly in
applications related to remote and non-invasive health monitoring.

Various types of sensors and techniques have been developed for the
detection of ballistocardiographic signals. Traditionally, mechanical
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ballistocardiographs employed floating platforms or stretchers equipped
with pressure sensors [4]. With technological advancements, piezo-
electric sensors, accelerometers, load cells, and photodetectors, among
others, were introduced to measure body oscillations [5-9]. More
recently, high-sensitivity video cameras combined with image process-
ing techniques have emerged as a viable alternative for the remote
acquisition of these signals [10]. These solutions enable contactless data
acquisition, eliminating the need for electrodes or body-attached sen-
sors, thereby enhancing subject comfort and facilitating long-term
monitoring.

BCG applications span various fields, with particular emphasis on
cardiac and respiratory monitoring. In the medical domain, BCG has
been employed for the detection of arrhythmias, analysis of heart rate
variability, and estimation of cardiac output [11]. Furthermore, its use
in sleep monitoring has enabled the development of surveillance systems
capable of detecting sleep stages or disorders such as obstructive sleep
apnea without the need for intrusive devices [12-14]. Additional ap-
plications include the monitoring of subjects with heart failure, where
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BCG provides valuable insights into their hemodynamic status [15].

One of the most innovative recent developments in the field of BCG is
the application of video processing for the extraction of cardiac signals
from subjects, known as remote BCG (RBCG). This non-invasive
approach enables continuous, contactless subject monitoring, which is
particularly advantageous in clinical, geriatric, and home-care envi-
ronments [16,17]. Through advanced computer vision algorithms, it is
possible to detect micro-oscillations of the body caused by heartbeats
and respiration by analyzing motion patterns in video recordings [18].
Various studies have demonstrated the feasibility of this technique in
both clinical and non-clinical environments, employing methods such as
facial displacement tracking, chest motion analysis, and the amplifica-
tion of subtle changes in video intensity to highlight physiological
movements [19]. In particular, video motion magnification has been
widely used to enhance the visibility of minute displacements resulting
from cardiorespiratory activity [20]. However, since the RBCG tech-
nique relies on direct recordings of the subject, it faces significant
challenges due to variations in ambient lighting and artifacts caused by
subject movement [21].

In a previous study, the authors demonstrated the feasibility of a
remote BCG system using RFID sensors to obtain heart rate (HR) and
respiratory rate (BR) from a subject lying in bed through contactless
monitoring of mattress movements [22]. In the present work, a novel
RBCG system is introduced for monitoring bedridden subjects, based on
video processing and following the same general strategy, namely,
generating the ballistocardiographic signal remotely from mattress vi-
brations induced by physiological activity. In this case, the signal
acquisition system is further simplified by eliminating the need for
sensors integrated into the bed and instead deriving the signal from a
video recording of a marker drawn in the side of the mattress. This
strategy addresses the aforementioned limitations common to RBCG
systems that rely on direct recordings of the subject.

2. Materials and methods
2.1. RBCG system

The proposed system for BCG signal acquisition is illustrated in
Fig. 1. A subject lying in bed generates vibrations in the mattress due to
heartbeats, respiration, and other voluntary or involuntary body
movements [23]. As discussed in the Introduction, various approaches
have been proposed for recording these vibrations using different types

Fig. 1. Schematic representation of the proposed RBCG system. The XYZ Car-
tesian coordinate system used in this study is also depicted. The inset shows a
photograph of the smartphone recording the marker on the side of the mattress.
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of sensors. However, such systems typically require the development of
a dedicated electronic measurement setup and instrumentation
embedded within the mattress [24,25], which entails customized con-
figurations for each implementation and is rarely transferable across
setups due to variations in mattress type, bed frame, and overall struc-
ture. In contrast, the system proposed herein does not require the inte-
gration of specific sensors or electronic signal acquisition systems within
the bed or mattress. Instead, it relies solely on a video camera—in this
case, the built-in camera of a commercially available smartphone—for
capturing video sequences and transmitting them to a remote server,
where signal processing is subsequently performed.

The marker used for motion tracking on the side of the mattress,
which may be drawn with ink or applied as an adhesive element, con-
sists of a small black dot approximately 2 mm in diameter placed on a
white surface (see Fig. 1 inset). The marker can be renewed from one
trial to another, since it is not a critical parameter and does not need to
be the same. The video processing described below, which is used to
determine the point of interest within this marker ensures that the al-
gorithm will be able to detect mattress displacements, regardless of the
marker employed. The recording device employed in this study was a
Samsung Galaxy S24 (8 GB RAM, maximum camera resolution 50 MP,
image sensor size 1/57°°, 4000 mAh battery, 5 G connectivity) that can
be configured to capture video sequences at 30-60 frames per second
(fps) with a resolution of 1920 x 1080 pixels. To avoid overloading the
device, it was exclusively used for recording video segments, which were
then transmitted via Wi-Fi to a remote server for storage and subsequent
processing.

The smartphone is mounted on a tripod at a fixed distance of 5 cm
from the mattress. The device’s camera is oriented toward the marker,
which is aligned with the subject’s chest level on the side of the mattress.
Mattress vibrations, induced by physiological activity, cause subtle
displacements of the marker that are recorded in the video stream.
Subsequent processing of these recording yields the ballistocardio-
graphic signal, as detailed in the following section.

2.2. Video processing

The processing of each video sequence is conducted through the
following steps:

2.2.1. Determination of mattress marker coordinates

To automatically determine the coordinates of a representative point
on the marker—used for analyzing the displacements caused by the
subject’s physiological activity—the following sequence of operations is
applied (see Fig. 2): first, the color image is converted to grayscale, and a
Gaussian filter with a 7 x 7 pixel kernel is applied to reduce high-
frequency noise. The filtered image is then binarized using an in-
tensity threshold based on the standard deviation of the grayscale
values. A morphological kernel filter is subsequently applied to the bi-
nary image to improve region uniformity [26]. Contour detection al-
gorithms are then applied to this image to extract all significant
contours, from which the most appropriate is selected based on geo-
metric and photometric properties such as intensity, area, and circu-
larity. Finally, the centroid of this contour is calculated using spatial
moments with subpixel accuracy [27,28] enhancing the precision of the
marker’s location, thereby improving sensitivity to small vibrations in
the mattress.

2.2.2. Robust optical flow analysis using pyramidal Lucas-Kanade
processing

The application of optical flow algorithms for motion and velocity
detection in video sequences is well established [29,30]. In this study, a
four-level pyramidal implementation of the Lucas-Kanade algorithm is
used, with a search window of 25 x 25 pixels. For each video frame, the
algorithm updates the position of the centroid identified in step (i) and
records its coordinates. This approach allows the system to discard



N. Lopez-Ruiz et al.

Sensors and Actuators: A. Physical 395 (2025) 117058

Binary mask

Kernel filter

Contour detection

Fig. 2. Workflow for determining the coordinates of the mattress marker from the video sequence.

abrupt displacements or inconsistent coordinates caused by noise or
artifacts and to recover the correct marker location in case of temporary
tracking loss.

2.2.3. Filtering and parameter extraction

From the sequence of marker coordinates obtained in the previous
step, two ballistocardiographic signals are derived: BCG-X and BCG-Y,
corresponding to the displacements experienced by the tracked marker
along the longitudinal (X) and transverse (Y) axes of the mattress,
respectively. The BCG-X signal, reflecting longitudinal mattress move-
ments, captures the dominant influence of cardiac activity, as it aligns
with the direction of blood flow from head to feet [31]. In contrast, the
BCG-Y signal, resulting from displacements along the mattress’s Y-axis.
primarily captures respiratory-induced deformations of the mattress
along the transverse axis and does not register significant cardiac
contributions.

To isolate the relevant physiological components, high-pass and low-
pass digital infinite impulse response (IIR) filters are applied, separating
the signals corresponding to cardiac pulse and respiration, respectively
[22]. For respiratory signal extraction, a third-order low-pass filter with
a passband frequency of 0.1 Hz and a stopband frequency of 10 Hz was
designed. To extract the cardiac pulse component, a seventh-order
high-pass filter with a stopband frequency of 0.1 Hz and a passband
frequency of 0.5 Hz was employed. The estimation of the physiological
parameters of interest, i.e., heart rate (HR) and breathing rate (BR), is
performed from these filtered signals using two complementary ap-
proaches commonly adopted in BCG systems: frequency-domain anal-
ysis via the Fast Fourier Transform (FFT) [32] and time-domain analysis
through peak detection [33].

In this work, peak detection for identifying individual heartbeats and
respiratory cycles is implemented as follows: the cardiac signal, ob-
tained by high-pass filtering the BCG-X signal, is further processed using
the Square Wave Transform (SWT), as this technique preserves temporal
alignment. A four-level SWT decomposition is conducted. The level-4
approximation parameter (S4) is normalized and enhanced with 50 %
of the level-4 detail coefficients (D4). The Hilbert transform is then
applied to obtain the envelope of the resulting signal, upon which peaks
are detected using adaptive thresholding. Additionally, the BCG-Y signal
is analyzed using the density of significant simples, a method previously
reported to identify subject activity such as movements or coughing [7].

To validate the estimated heart rate, reference ECG signals were
recorded using the AD8232 electrocardiograph (Analog Devices Inc.,

Wilmington, MA, USA). The deviation error between the reference HR
and the estimated by the proposed system was computed as the absolute
error between the two values.

2.3. Subjects under study

Table 1 presents the biometric characteristics of the three partici-
pants evaluated in this study. The research protocol was approved by the
Ethics Committee of the University of Granada, Granada, Spain (n°
2446/CEIH/2021). Prior to data collection, written informed consent
was obtained from all participants.

3. Results
3.1. BCG curves

Fig. 3(A) presents a representative example of BCG signals obtained
using the proposed system from a subject lying in the supine position
and a relaxed state. As observed, the BCG-X signal, associated primarily
with cardiac activity, exhibits significantly lower amplitude than the
BCG-Y signal, which predominantly reflects respiratory motion. These
signals are subsequently processed using the algorithms described in the
previous section to isolate and visualize the respective contributions of
cardiac and respiratory activity. Fig. 3(B) shows the processed BCG-X
signal (in blue), compared with the simultaneously recorded ECG
signal from the electrocardiograph (in red). As can be seen, the cardiac
activity, consisting of a series of oscillations in the BCG-X signal corre-
sponding to individual heartbeats [34], coincides with the beats detec-
ted by the ECG system, demonstrating the expected time delay between
the electrical ECG signal and the mechanical BCG signal. Fig. 3(C) shows
the filtered BCG-Y signal, with non-respiratory movements removed,
thereby highlighting the signal component attributable to breathing.

Fig. 4 shows the BCG curves recorded from the same subject while
lying in four different positions on the bed: supine (A), prone (B), right
lateral (C), and left lateral (D). As observed, the BCG-X signal, which

Table 1

Subjects’ physiological characteristics.
Subject Sex Age (years) Height (cm) Weight (kg)
#1 Female 23 162 54
#2 Female 54 158 72

#3 Male 22 180 60
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Fig. 3. (A) BCG signals acquired from a subject in the supine position. (B) Filtered BCG-X signal (blue) compared with the ECG signal (red). (C) Filtered BCG-Y signal,

showing respiratory-induced motion.

reflects cardiac activity, is present across all positions. This signal also
exhibits a notable respiratory component in positions (A) and (B), where
the subject’s chest or back is in direct contact with the mattress. In
contrast, in lateral positions (C) and (D), the respiratory influence on the
BCG-X signal is substantially attenuated or absent. The BCG-Y signal, on
the other hand, consistently displays clear respiratory-related motion
across all four postures.

3.2. Extraction of vital signs

Fig. 5 presents BCG signal sequences acquired from the three subjects
in various positions and physiological states. These recordings reflect a
range of heart rate and breathing rate conditions, including relaxation,

elevated heart rate induced by mild physical activity, deep breathing,
and forced rapid breathing. The objective is to evaluate the system’s
ability to estimate HR and BR under diverse physiological and postural
scenarios.

The filtered BCG signals are further processed to estimate average HR
and BR values for each sequence using the two proposed methods:
frequency-domain analysis (FFT) and time-domain peak detection, as
described in the previous section. Fig. 6 shows the peak detection results
applied to the cardiac BCG-X signals from Fig. 5. In each graph, the high-
pass filtered signals are shown in blue, the envelope extracted from
processing this signal is displayed in black, and the significant peaks
identified by the detection algorithm are marked in red.

The HR and BR values obtained from the BCG recordings presented
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Fig. 4. BCG signals from a subject lying in the supine (A), prone (B), right lateral (C), and left lateral (D) positions.
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Fig. 5. BCG recordings obtained under different HT and BR conditions: (A) Subject #3, prone. (B) Subject #2, supine. (C) Subject #2, left lateral. (D) Subject #1,
right lateral. (E) Subject #1, prone. (F) Subject #3, left lateral.

above are summarized in Table 2, along with the error relative to the
ground-truth values. Reference HR values were derived from ECG sig-

nals, and BR values were obtained by manual breath counting.

For sequences A and D, which involved intentionally slowed

breathing below the typical respiratory rates of adult subjects, yielded
maximum HR errors of 2 bpm and 3 bpm using the FFT-based and peak
detection algorithms, respectively. In these sequences, the BR was
accurately estimated without error by both methods. Sequence B,
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Table 2

HR and BR values obtained after processing sequences A-F from Fig. 6. Number
between brackets represents the absolute errors.

Sequence  FFT Peaks detection
HR (error) BR (error) HR (error) BR (error)
(beats/min) (breaths/min) (beats/min) (breaths/min)

A 57 (2) 5(0) 62 (3) 5(0)

B 60 (0) 20 (0) 63 (3) 19

C 62 (11) 24 (0) 67 (16) 24 (0)

D 67 (0) 10 (0) 67 (0) 10 (0)

E 41 (1) 22 (0) 43 (1) 22 (0)

F 57 (2) 35() 60 (1) 34 (0)

corresponding to a subject in a relaxed state, showed no error in BR and
HR estimation using the FFT-based method, while the peak detection
method exhibited minimal errors of 5 beats per minute and 1 breath per
minute, respectively. Sequence C, in which the subject presented a
moderately elevated respiratory rate, resulted in higher HR estimation
errors using both algorithms. This discrepancy may be attributed to
subject position, amplified respiratory artifacts in the BCG-X signal, or
mattress vibrations unrelated to the subject. Such outliers should be
flagged for potential exclusion, especially when performing continuous
temporal analysis, by comparing them with adjacent temporal segments.
Sequence E, from a subject with naturally low HR, yielded accurate
predictions for both HR and BR with negligible error. Finally, sequence
F, simulating forced hyperventilation, also resulted in accurate estima-
tions for both HR and BR using both algorithms, with a maximum error
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in the BCG-X signals from Fig. 5.

of 2 bpm (HR) and 1 breath per minute (BR).

Overall, the HR and BR prediction errors obtained with both FFT-
and peak-based methods fall within the acceptable range reported in the
literature for existing BCG systems [35,36] for most of the cases studied.

3.3. Activity determination

Fig. 7 illustrates in blue color a sequence acquired using the proposed
RBCG system in which subject activity—specifically leg movement—is
present. As can be observed in the figure, this activity causes a signifi-
cant disruption in the BCG-Y signal, with amplitude components that
substantially exceed those typically associated with either cardiac or

normalized signal

Fig. 7.

1 =
BCG-Y

Processed signal

= = = Variance meas.

t(s)

BCG-Y signal containing activity-related artifacts due to leg movement

(blue). Processed signal (black) and variance threshold (red).
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respiratory signals.

To detect and reject sequences contaminated by subject activity, the
processing method developed in [7] has been employed. This technique
involves computing the density of significant samples for each sequence.
This metric is defined as the normalized count of processed samples
whose magnitude exceeds the variance of the overall sample set. A high
density value (approaching one) indicates a clean signal, free from
activity-induced artifacts, whereas a low density value (close to zero)
suggests the presence of movement-related disturbances. This detection
algorithm was applied to the sequences acquired using the RBCG system
described in this work. The method demonstrated excellent perfor-
mance, achieving a 100 % accuracy rate in identifying sequences cor-
rupted by activity. In Fig. 7, the processed BCG-Y curve is shown in
black, and the red line indicates the variance threshold used for classi-
fication. For this specific sequence, the calculated density of significant
samples was 0.045, very close to zero, indicating a strong presence of
subject-induced noise and correctly classifying the frame as corrupted.

3.4. Apnea detection

The proposed RBCG system, due to its ability to naturally separate
cardiac and respiratory components from body-induced mattress vi-
brations, provides not only estimates of average BR, but also the ca-
pacity to detect apnea events, defined as involuntary interruptions or
cessations in breathing.

Fig. 8 shows a representative sequence in which the subject volun-
tarily induced an apnea event, holding their breath approximately be-
tween seconds 18 and 35. The significant respiratory peaks, extracted
from the BCG-Y signal using the peak detection algorithm described
earlier, are marked in red. As shown, no breaths are detected during the
apnea interval, while peaks are clearly present before and after the
event. To identify such episodes, the system monitors the temporal in-
tervals between consecutive respiratory peaks. If a prolonged period
with no detected breaths is observed—exceeding a threshold derived
from the subject’s baseline respiratory rate, estimated from preceding
sequences—the segment is flagged as a potential apnea event.

3.5. Detection of cardiac arrhythmia

One of the subjects included in this study presented a clinically
diagnosed cardiac abnormality known as premature ventricular
contraction (PVC). This arrhythmia is characterized by early de-
polarizations originating in the ventricles, resulting in heartbeats that
occur earlier than expected within the normal rhythm. Fig. 9(A) illus-
trates this phenomenon: the red waveform corresponds to the ECG signal
obtained from this subject in a relaxed state. Premature ventricular
contractions are clearly visible as high-amplitude deflections, recurring
approximately every six normal heartbeats. The simultaneously recor-
ded BCG-X signal from the same subject, obtained using the system
described in this work, is shown in blue. Significant peaks detected in
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Fig. 8. BCG-Y signal exhibiting an apnea event (in black). Red markers denote
detected respiratory peaks.
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the BCG-X signal, corresponding to both normal and premature heart-
beats, are marked in black.

To assess the system’s capability in arrhythmia detection, such as
those exhibited by this subject, the instantaneous HR was estimated
based on the time elapsed between two consecutive significant peaks.
Fig. 9(B) presents the resulting instantaneous HR profile. The average
HR obtained in this sequence is 67 bpm, closely matching the ground
truth ECG (with a deviation of only 1 bpm). However, the instantaneous
HR shows notable fluctuations, ranging approximately from 50 to 80
bpm under normal conditions. Crucially, when a PVC event occurs, it
disrupts the regular heartbeat rhythm. As can be observed in Fig. 9(B),
during PVC events the interval between two detected peaks becomes
shorter than expected, causing a transient spike in instantaneous HR
exceeding 110 bpm, as observed at 5.9's, 12.5s, and 19.2 s. The pres-
ence of these anomalous instantaneous HR values, which deviate
significantly from the subject’s baseline rhythm, are automatically
flagged by the system as irregular heart activity in the subject or
arrhythmic events. This result demonstrates the system’s capability to
not only monitor normal cardiac cycles but also detect irregular heart-
beat patterns indicative of arrhythmic activity, thereby extending its
potential for clinical cardiovascular monitoring applications.

4. Discussion

The video-based processing approach proposed in this study yields
two orthogonal signals: BCG-X, reflecting longitudinal mattress dis-
placements predominantly associated with cardiac activity, and BCG-Y,
corresponding to transverse deformations primarily caused by respira-
tion. This natural decoupling of cardiac and respiratory activities into
distinct dimensions eliminates the need for signal separation or source
isolation techniques commonly required in traditional BCG systems
[12]. Consequently, the method simplifies both signal acquisition and
processing pipelines, while reducing potential errors caused by signal
crosstalk or mutual interference between signals, a common issue in
other BCG systems.

In this study, vital signs estimation using well-established standard
techniques—such as FFT analysis and peak detection—demonstrated
reliable performance across various subjects and conditions. In the
absence of movement artifacts, HR and BR were estimated with high
accuracy, yielding maximum errors of 3 beats per minute and 1 breath
per minute, respectively. These levels of precision are consistent with or
better than those reported in existing literature on BCG systems.
Nevertheless, certain limitations intrinsic to BCG technology persist.
Specifically, external mechanical vibrations or suboptimal subject
positioning can degrade signal quality, particularly for the cardiac signal
(BCG-X), whose low amplitude makes it more susceptible to interference
and detection loss.

In contrast to traditional RBCG systems that capture the subject’s
face or chest, the proposed method eliminates common limitations such
as sensitivity to ambient lighting and facial movements. The system
records exclusively a mattress marker, with no patient features
appearing in the video. This design provides enhanced privacy, as stored
recordings can be associated with subjects only through coded refer-
ences, thereby ensuring protection of personal data. Additionally, it
resolves the generalizability issues observed in mattress-integrated
systems, where sensor characteristics, bed structure, and user vari-
ability necessitate frequent recalibration and limit scalability. Systems
based on pneumatic, piezoelectric, electromechanical, or capacitive
sensors often require custom integration and are difficult to extrapolate
between different beds, require recalibration and adaptation for
different subjects, and must be integrated into the mattress, thus pre-
cluding use with conventional beds.

In contrast, the proposed system offers a non-intrusive, low-cost, and
calibration-free alternative, adaptable to various mattress types and a
range of subjects without installation or calibration procedures. It en-
ables autonomous, unattended home-based health monitoring and
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Fig. 9. (A) BCG-X (blue) and ECG (red) signals from a subject with PVC. (B) Instantaneous HR calculated from detected peaks.

subject follow-up using the subject’s own smartphone. Furthermore,
since the system does not process electrical signals, it is immune to
electromagnetic interference. Lighting conditions—whether natural,
artificial, or infrared—have minimal impact on performance, allowing
for nighttime monitoring without disturbing the subject’s sleep. This
flexibility, combined with high signal fidelity and robust physiological
parameter extraction, makes the proposed system a strong candidate for
continuous, non-contact cardiopulmonary monitoring in both clinical
and non-clinical settings.

In the presented work, video is recorded in short sequences of 30 s
for individual evaluation. This video is transmitted via Wi-Fi to a server
installed on a PC, where it is processed for parameter extraction (HR, BR,
activity, etc.). The time required for the transmission and processing of
each sequence is around 3 min. However, while each sequence is being
processed, the system continues recording and sending new sequences
that remain in a queue for later processing. This strategy inevitably
entails delays in the case of long-term patient monitoring (an effect that,
on the other hand, is also common in polysomnography systems, where
signal processing is performed after monitoring is completed), which
may affect real-time patient monitoring. The optimization of video
processing can be addressed in future works based on this one where
faster computation is required.

5. Conclusions

This work presents a novel remote ballistocardiography system
based on video processing to monitor mattress displacements caused by
a subject’s cardiac activity, respiration, and movement while lying in
bed. To the best of the authors’ knowledge, this is the first documented
approach that captures mattress motion rather than the subject directly,
marking a significant advancement in non-contact cardiopulmonary

monitoring. This work offers several advantages over existing BCG and
RBCG systems documented in the current literature. It is completely
non-invasive, requires no instrumentation of the subject or the bed, and
operates under variable lighting conditions using standard smartphone
cameras. In addition, unlike sensor-based mattress systems that often
necessitate recalibration and integration, this solution is inherently
portable, calibration-free, and compatible with a wide range of mattress
types and user profiles, making it particularly well-suited for home-
based or unattended monitoring.

In this study, the extracted BCG signals were processed to estimate
the vital signs HR and BR using two widely recognized signal processing
techniques: FFT analysis and peak detection. The resulting predictions
demonstrated error rates within the expected limits for these types of
algorithms, provided that the sequences were free from artifacts caused
by the subject or external elements. The system also proved effective in
detecting non-physiological disturbances such as muscle activity (e.g.,
leg movement), as well as physiological anomalies, such as apnea events
and cardiac arrhythmias (e.g., premature ventricular contractions).
These were successfully identified through analysis of parameters like
the density of significant samples and the instantaneous HR and BR,
enabling accurate classification of corrupted sequences and abnormal
cardiac and respiratory events.

In summary, the proposed system represents a practical, accessible,
and scalable alternative to traditional BCG monitoring, enabling reliable
extraction of vital signs and detection of physiological anomalies
without the limitations of direct contact or embedded sensors. Its un-
obtrusive nature and ease of deployment make it a promising tool for
continuous health monitoring in clinical, residential, and remote care
settings. Its unobtrusive nature and ease of deployment make it a
promising tool for continuous health monitoring in clinical, residential,
and remote care settings. The integration of this technique with
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wearable devices for biometric identification and other functions could
provide it with greater potential in these fields.
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