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A B S T R A C T

This work presents a novel remote ballistocardiography system designed for continuous monitoring of in
dividuals lying in bed. The system utilizes video recordings of a tracking marker placed on the side of the 
mattress. By processing the motion of this marker, ballistocardiographic waveforms are generated, capturing 
mattress displacements caused by cardiac activity, respiration, and body movements. The longitudinal and 
transverse axes of the mattress naturally separate the contributions of cardiac and respiratory signals within the 
ballistocardiography waveform. This orthogonal separation enables the independent analysis of each component, 
thereby enhancing the accuracy of heart and respiratory rate estimations. The system’s high resolution and 
sensitivity enable not only the reliable extraction of the subject’s vital signs, but also the detection of activity 
episodes—both voluntary and involuntary—alongside physiological anomalies such as sleep apnea and cardiac 
arrhythmias. The simplicity of the proposed setup offers significant advantages over conventional ballisto
cardiography systems by eliminating the need for integrated sensors and periodic calibration, and by mitigating 
common challenges in remote ballistocardiography applications, including susceptibility to ambient lighting 
conditions.

1. Introduction

Ballistocardiography (BCG) is a non-invasive technique that enables 
the measurement of micro-oscillations of the body generated by the 
mechanical activity of the heart and circulatory system. Its origins date 
back to the 19th century, when Gordon first described, in 1877, the 
bodily displacements resulting from the ejection of blood from the heart 
into the systemic circulation [1]. Later, in the 1930s, Starr and col
leagues developed the classical ballistocardiograph, which employed a 
suspended platform to record these subtle body movements [2]. In the 
following decades, BCG experienced a surge in cardiovascular research, 
although its clinical use declined with the advent of alternative diag
nostic techniques, such as electrocardiography (ECG) and echocardi
ography [3]. However, in recent years, advances in sensor technologies 
and signal processing have enabled a resurgence of BCG, particularly in 
applications related to remote and non-invasive health monitoring.

Various types of sensors and techniques have been developed for the 
detection of ballistocardiographic signals. Traditionally, mechanical 

ballistocardiographs employed floating platforms or stretchers equipped 
with pressure sensors [4]. With technological advancements, piezo
electric sensors, accelerometers, load cells, and photodetectors, among 
others, were introduced to measure body oscillations [5–9]. More 
recently, high-sensitivity video cameras combined with image process
ing techniques have emerged as a viable alternative for the remote 
acquisition of these signals [10]. These solutions enable contactless data 
acquisition, eliminating the need for electrodes or body-attached sen
sors, thereby enhancing subject comfort and facilitating long-term 
monitoring.

BCG applications span various fields, with particular emphasis on 
cardiac and respiratory monitoring. In the medical domain, BCG has 
been employed for the detection of arrhythmias, analysis of heart rate 
variability, and estimation of cardiac output [11]. Furthermore, its use 
in sleep monitoring has enabled the development of surveillance systems 
capable of detecting sleep stages or disorders such as obstructive sleep 
apnea without the need for intrusive devices [12–14]. Additional ap
plications include the monitoring of subjects with heart failure, where 
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BCG provides valuable insights into their hemodynamic status [15].
One of the most innovative recent developments in the field of BCG is 

the application of video processing for the extraction of cardiac signals 
from subjects, known as remote BCG (RBCG). This non-invasive 
approach enables continuous, contactless subject monitoring, which is 
particularly advantageous in clinical, geriatric, and home-care envi
ronments [16,17]. Through advanced computer vision algorithms, it is 
possible to detect micro-oscillations of the body caused by heartbeats 
and respiration by analyzing motion patterns in video recordings [18]. 
Various studies have demonstrated the feasibility of this technique in 
both clinical and non-clinical environments, employing methods such as 
facial displacement tracking, chest motion analysis, and the amplifica
tion of subtle changes in video intensity to highlight physiological 
movements [19]. In particular, video motion magnification has been 
widely used to enhance the visibility of minute displacements resulting 
from cardiorespiratory activity [20]. However, since the RBCG tech
nique relies on direct recordings of the subject, it faces significant 
challenges due to variations in ambient lighting and artifacts caused by 
subject movement [21].

In a previous study, the authors demonstrated the feasibility of a 
remote BCG system using RFID sensors to obtain heart rate (HR) and 
respiratory rate (BR) from a subject lying in bed through contactless 
monitoring of mattress movements [22]. In the present work, a novel 
RBCG system is introduced for monitoring bedridden subjects, based on 
video processing and following the same general strategy, namely, 
generating the ballistocardiographic signal remotely from mattress vi
brations induced by physiological activity. In this case, the signal 
acquisition system is further simplified by eliminating the need for 
sensors integrated into the bed and instead deriving the signal from a 
video recording of a marker drawn in the side of the mattress. This 
strategy addresses the aforementioned limitations common to RBCG 
systems that rely on direct recordings of the subject.

2. Materials and methods

2.1. RBCG system

The proposed system for BCG signal acquisition is illustrated in 
Fig. 1. A subject lying in bed generates vibrations in the mattress due to 
heartbeats, respiration, and other voluntary or involuntary body 
movements [23]. As discussed in the Introduction, various approaches 
have been proposed for recording these vibrations using different types 

of sensors. However, such systems typically require the development of 
a dedicated electronic measurement setup and instrumentation 
embedded within the mattress [24,25], which entails customized con
figurations for each implementation and is rarely transferable across 
setups due to variations in mattress type, bed frame, and overall struc
ture. In contrast, the system proposed herein does not require the inte
gration of specific sensors or electronic signal acquisition systems within 
the bed or mattress. Instead, it relies solely on a video camera—in this 
case, the built-in camera of a commercially available smartphone—for 
capturing video sequences and transmitting them to a remote server, 
where signal processing is subsequently performed.

The marker used for motion tracking on the side of the mattress, 
which may be drawn with ink or applied as an adhesive element, con
sists of a small black dot approximately 2 mm in diameter placed on a 
white surface (see Fig. 1 inset). The marker can be renewed from one 
trial to another, since it is not a critical parameter and does not need to 
be the same. The video processing described below, which is used to 
determine the point of interest within this marker ensures that the al
gorithm will be able to detect mattress displacements, regardless of the 
marker employed. The recording device employed in this study was a 
Samsung Galaxy S24 (8 GB RAM, maximum camera resolution 50 MP, 
image sensor size 1/57’’, 4000 mAh battery, 5 G connectivity) that can 
be configured to capture video sequences at 30–60 frames per second 
(fps) with a resolution of 1920 × 1080 pixels. To avoid overloading the 
device, it was exclusively used for recording video segments, which were 
then transmitted via Wi-Fi to a remote server for storage and subsequent 
processing.

The smartphone is mounted on a tripod at a fixed distance of 5 cm 
from the mattress. The device’s camera is oriented toward the marker, 
which is aligned with the subject’s chest level on the side of the mattress. 
Mattress vibrations, induced by physiological activity, cause subtle 
displacements of the marker that are recorded in the video stream. 
Subsequent processing of these recording yields the ballistocardio
graphic signal, as detailed in the following section.

2.2. Video processing

The processing of each video sequence is conducted through the 
following steps:

2.2.1. Determination of mattress marker coordinates
To automatically determine the coordinates of a representative point 

on the marker—used for analyzing the displacements caused by the 
subject’s physiological activity—the following sequence of operations is 
applied (see Fig. 2): first, the color image is converted to grayscale, and a 
Gaussian filter with a 7 × 7 pixel kernel is applied to reduce high- 
frequency noise. The filtered image is then binarized using an in
tensity threshold based on the standard deviation of the grayscale 
values. A morphological kernel filter is subsequently applied to the bi
nary image to improve region uniformity [26]. Contour detection al
gorithms are then applied to this image to extract all significant 
contours, from which the most appropriate is selected based on geo
metric and photometric properties such as intensity, area, and circu
larity. Finally, the centroid of this contour is calculated using spatial 
moments with subpixel accuracy [27,28] enhancing the precision of the 
marker’s location, thereby improving sensitivity to small vibrations in 
the mattress.

2.2.2. Robust optical flow analysis using pyramidal Lucas-Kanade 
processing

The application of optical flow algorithms for motion and velocity 
detection in video sequences is well established [29,30]. In this study, a 
four-level pyramidal implementation of the Lucas-Kanade algorithm is 
used, with a search window of 25 × 25 pixels. For each video frame, the 
algorithm updates the position of the centroid identified in step (i) and 
records its coordinates. This approach allows the system to discard 

Fig. 1. Schematic representation of the proposed RBCG system. The XYZ Car
tesian coordinate system used in this study is also depicted. The inset shows a 
photograph of the smartphone recording the marker on the side of the mattress.
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abrupt displacements or inconsistent coordinates caused by noise or 
artifacts and to recover the correct marker location in case of temporary 
tracking loss.

2.2.3. Filtering and parameter extraction
From the sequence of marker coordinates obtained in the previous 

step, two ballistocardiographic signals are derived: BCG-X and BCG-Y, 
corresponding to the displacements experienced by the tracked marker 
along the longitudinal (X) and transverse (Y) axes of the mattress, 
respectively. The BCG-X signal, reflecting longitudinal mattress move
ments, captures the dominant influence of cardiac activity, as it aligns 
with the direction of blood flow from head to feet [31]. In contrast, the 
BCG-Y signal, resulting from displacements along the mattress’s Y-axis. 
primarily captures respiratory-induced deformations of the mattress 
along the transverse axis and does not register significant cardiac 
contributions.

To isolate the relevant physiological components, high-pass and low- 
pass digital infinite impulse response (IIR) filters are applied, separating 
the signals corresponding to cardiac pulse and respiration, respectively 
[22]. For respiratory signal extraction, a third-order low-pass filter with 
a passband frequency of 0.1 Hz and a stopband frequency of 10 Hz was 
designed. To extract the cardiac pulse component, a seventh-order 
high-pass filter with a stopband frequency of 0.1 Hz and a passband 
frequency of 0.5 Hz was employed. The estimation of the physiological 
parameters of interest, i.e., heart rate (HR) and breathing rate (BR), is 
performed from these filtered signals using two complementary ap
proaches commonly adopted in BCG systems: frequency-domain anal
ysis via the Fast Fourier Transform (FFT) [32] and time-domain analysis 
through peak detection [33].

In this work, peak detection for identifying individual heartbeats and 
respiratory cycles is implemented as follows: the cardiac signal, ob
tained by high-pass filtering the BCG-X signal, is further processed using 
the Square Wave Transform (SWT), as this technique preserves temporal 
alignment. A four-level SWT decomposition is conducted. The level-4 
approximation parameter (S4) is normalized and enhanced with 50 % 
of the level-4 detail coefficients (D4). The Hilbert transform is then 
applied to obtain the envelope of the resulting signal, upon which peaks 
are detected using adaptive thresholding. Additionally, the BCG-Y signal 
is analyzed using the density of significant simples, a method previously 
reported to identify subject activity such as movements or coughing [7].

To validate the estimated heart rate, reference ECG signals were 
recorded using the AD8232 electrocardiograph (Analog Devices Inc., 

Wilmington, MA, USA). The deviation error between the reference HR 
and the estimated by the proposed system was computed as the absolute 
error between the two values.

2.3. Subjects under study

Table 1 presents the biometric characteristics of the three partici
pants evaluated in this study. The research protocol was approved by the 
Ethics Committee of the University of Granada, Granada, Spain (nº 
2446/CEIH/2021). Prior to data collection, written informed consent 
was obtained from all participants.

3. Results

3.1. BCG curves

Fig. 3(A) presents a representative example of BCG signals obtained 
using the proposed system from a subject lying in the supine position 
and a relaxed state. As observed, the BCG-X signal, associated primarily 
with cardiac activity, exhibits significantly lower amplitude than the 
BCG-Y signal, which predominantly reflects respiratory motion. These 
signals are subsequently processed using the algorithms described in the 
previous section to isolate and visualize the respective contributions of 
cardiac and respiratory activity. Fig. 3(B) shows the processed BCG-X 
signal (in blue), compared with the simultaneously recorded ECG 
signal from the electrocardiograph (in red). As can be seen, the cardiac 
activity, consisting of a series of oscillations in the BCG-X signal corre
sponding to individual heartbeats [34], coincides with the beats detec
ted by the ECG system, demonstrating the expected time delay between 
the electrical ECG signal and the mechanical BCG signal. Fig. 3(C) shows 
the filtered BCG-Y signal, with non-respiratory movements removed, 
thereby highlighting the signal component attributable to breathing.

Fig. 4 shows the BCG curves recorded from the same subject while 
lying in four different positions on the bed: supine (A), prone (B), right 
lateral (C), and left lateral (D). As observed, the BCG-X signal, which 

Fig. 2. Workflow for determining the coordinates of the mattress marker from the video sequence.

Table 1 
Subjects’ physiological characteristics.

Subject Sex Age (years) Height (cm) Weight (kg)

#1 Female 23 162 54
#2 Female 54 158 72
#3 Male 22 180 60
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reflects cardiac activity, is present across all positions. This signal also 
exhibits a notable respiratory component in positions (A) and (B), where 
the subject’s chest or back is in direct contact with the mattress. In 
contrast, in lateral positions (C) and (D), the respiratory influence on the 
BCG-X signal is substantially attenuated or absent. The BCG-Y signal, on 
the other hand, consistently displays clear respiratory-related motion 
across all four postures.

3.2. Extraction of vital signs

Fig. 5 presents BCG signal sequences acquired from the three subjects 
in various positions and physiological states. These recordings reflect a 
range of heart rate and breathing rate conditions, including relaxation, 

elevated heart rate induced by mild physical activity, deep breathing, 
and forced rapid breathing. The objective is to evaluate the system’s 
ability to estimate HR and BR under diverse physiological and postural 
scenarios.

The filtered BCG signals are further processed to estimate average HR 
and BR values for each sequence using the two proposed methods: 
frequency-domain analysis (FFT) and time-domain peak detection, as 
described in the previous section. Fig. 6 shows the peak detection results 
applied to the cardiac BCG-X signals from Fig. 5. In each graph, the high- 
pass filtered signals are shown in blue, the envelope extracted from 
processing this signal is displayed in black, and the significant peaks 
identified by the detection algorithm are marked in red.

The HR and BR values obtained from the BCG recordings presented 

Fig. 3. (A) BCG signals acquired from a subject in the supine position. (B) Filtered BCG-X signal (blue) compared with the ECG signal (red). (C) Filtered BCG-Y signal, 
showing respiratory-induced motion.
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above are summarized in Table 2, along with the error relative to the 
ground-truth values. Reference HR values were derived from ECG sig
nals, and BR values were obtained by manual breath counting.

For sequences A and D, which involved intentionally slowed 

breathing below the typical respiratory rates of adult subjects, yielded 
maximum HR errors of 2 bpm and 3 bpm using the FFT-based and peak 
detection algorithms, respectively. In these sequences, the BR was 
accurately estimated without error by both methods. Sequence B, 

Fig. 4. BCG signals from a subject lying in the supine (A), prone (B), right lateral (C), and left lateral (D) positions.

Fig. 5. BCG recordings obtained under different HT and BR conditions: (A) Subject #3, prone. (B) Subject #2, supine. (C) Subject #2, left lateral. (D) Subject #1, 
right lateral. (E) Subject #1, prone. (F) Subject #3, left lateral.
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corresponding to a subject in a relaxed state, showed no error in BR and 
HR estimation using the FFT-based method, while the peak detection 
method exhibited minimal errors of 5 beats per minute and 1 breath per 
minute, respectively. Sequence C, in which the subject presented a 
moderately elevated respiratory rate, resulted in higher HR estimation 
errors using both algorithms. This discrepancy may be attributed to 
subject position, amplified respiratory artifacts in the BCG-X signal, or 
mattress vibrations unrelated to the subject. Such outliers should be 
flagged for potential exclusion, especially when performing continuous 
temporal analysis, by comparing them with adjacent temporal segments. 
Sequence E, from a subject with naturally low HR, yielded accurate 
predictions for both HR and BR with negligible error. Finally, sequence 
F, simulating forced hyperventilation, also resulted in accurate estima
tions for both HR and BR using both algorithms, with a maximum error 

of 2 bpm (HR) and 1 breath per minute (BR).
Overall, the HR and BR prediction errors obtained with both FFT- 

and peak-based methods fall within the acceptable range reported in the 
literature for existing BCG systems [35,36] for most of the cases studied.

3.3. Activity determination

Fig. 7 illustrates in blue color a sequence acquired using the proposed 
RBCG system in which subject activity—specifically leg movement—is 
present. As can be observed in the figure, this activity causes a signifi
cant disruption in the BCG-Y signal, with amplitude components that 
substantially exceed those typically associated with either cardiac or 

Fig. 6. Detection of significant peaks in the BCG-X signals from Fig. 5.

Table 2 
HR and BR values obtained after processing sequences A–F from Fig. 6. Number 
between brackets represents the absolute errors.

Sequence FFT Peaks detection

​ HR (error) 
(beats/min)

BR (error) 
(breaths/min)

HR (error) 
(beats/min)

BR (error) 
(breaths/min)

A 57 (2) 5 (0) 62 (3) 5 (0)
B 60 (0) 20 (0) 63 (3) 19 (1)
C 62 (11) 24 (0) 67 (16) 24 (0)
D 67 (0) 10 (0) 67 (0) 10 (0)
E 41 (1) 22 (0) 43 (1) 22 (0)
F 57 (2) 35 (1) 60 (1) 34 (0)

Fig. 7. BCG-Y signal containing activity-related artifacts due to leg movement 
(blue). Processed signal (black) and variance threshold (red).
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respiratory signals.
To detect and reject sequences contaminated by subject activity, the 

processing method developed in [7] has been employed. This technique 
involves computing the density of significant samples for each sequence. 
This metric is defined as the normalized count of processed samples 
whose magnitude exceeds the variance of the overall sample set. A high 
density value (approaching one) indicates a clean signal, free from 
activity-induced artifacts, whereas a low density value (close to zero) 
suggests the presence of movement-related disturbances. This detection 
algorithm was applied to the sequences acquired using the RBCG system 
described in this work. The method demonstrated excellent perfor
mance, achieving a 100 % accuracy rate in identifying sequences cor
rupted by activity. In Fig. 7, the processed BCG-Y curve is shown in 
black, and the red line indicates the variance threshold used for classi
fication. For this specific sequence, the calculated density of significant 
samples was 0.045, very close to zero, indicating a strong presence of 
subject-induced noise and correctly classifying the frame as corrupted.

3.4. Apnea detection

The proposed RBCG system, due to its ability to naturally separate 
cardiac and respiratory components from body-induced mattress vi
brations, provides not only estimates of average BR, but also the ca
pacity to detect apnea events, defined as involuntary interruptions or 
cessations in breathing.

Fig. 8 shows a representative sequence in which the subject volun
tarily induced an apnea event, holding their breath approximately be
tween seconds 18 and 35. The significant respiratory peaks, extracted 
from the BCG-Y signal using the peak detection algorithm described 
earlier, are marked in red. As shown, no breaths are detected during the 
apnea interval, while peaks are clearly present before and after the 
event. To identify such episodes, the system monitors the temporal in
tervals between consecutive respiratory peaks. If a prolonged period 
with no detected breaths is observed—exceeding a threshold derived 
from the subject’s baseline respiratory rate, estimated from preceding 
sequences—the segment is flagged as a potential apnea event.

3.5. Detection of cardiac arrhythmia

One of the subjects included in this study presented a clinically 
diagnosed cardiac abnormality known as premature ventricular 
contraction (PVC). This arrhythmia is characterized by early de
polarizations originating in the ventricles, resulting in heartbeats that 
occur earlier than expected within the normal rhythm. Fig. 9(A) illus
trates this phenomenon: the red waveform corresponds to the ECG signal 
obtained from this subject in a relaxed state. Premature ventricular 
contractions are clearly visible as high-amplitude deflections, recurring 
approximately every six normal heartbeats. The simultaneously recor
ded BCG-X signal from the same subject, obtained using the system 
described in this work, is shown in blue. Significant peaks detected in 

the BCG-X signal, corresponding to both normal and premature heart
beats, are marked in black.

To assess the system’s capability in arrhythmia detection, such as 
those exhibited by this subject, the instantaneous HR was estimated 
based on the time elapsed between two consecutive significant peaks. 
Fig. 9(B) presents the resulting instantaneous HR profile. The average 
HR obtained in this sequence is 67 bpm, closely matching the ground 
truth ECG (with a deviation of only 1 bpm). However, the instantaneous 
HR shows notable fluctuations, ranging approximately from 50 to 80 
bpm under normal conditions. Crucially, when a PVC event occurs, it 
disrupts the regular heartbeat rhythm. As can be observed in Fig. 9(B), 
during PVC events the interval between two detected peaks becomes 
shorter than expected, causing a transient spike in instantaneous HR 
exceeding 110 bpm, as observed at 5.9 s, 12.5 s, and 19.2 s. The pres
ence of these anomalous instantaneous HR values, which deviate 
significantly from the subject’s baseline rhythm, are automatically 
flagged by the system as irregular heart activity in the subject or 
arrhythmic events. This result demonstrates the system’s capability to 
not only monitor normal cardiac cycles but also detect irregular heart
beat patterns indicative of arrhythmic activity, thereby extending its 
potential for clinical cardiovascular monitoring applications.

4. Discussion

The video-based processing approach proposed in this study yields 
two orthogonal signals: BCG-X, reflecting longitudinal mattress dis
placements predominantly associated with cardiac activity, and BCG-Y, 
corresponding to transverse deformations primarily caused by respira
tion. This natural decoupling of cardiac and respiratory activities into 
distinct dimensions eliminates the need for signal separation or source 
isolation techniques commonly required in traditional BCG systems 
[12]. Consequently, the method simplifies both signal acquisition and 
processing pipelines, while reducing potential errors caused by signal 
crosstalk or mutual interference between signals, a common issue in 
other BCG systems.

In this study, vital signs estimation using well-established standard 
techniques—such as FFT analysis and peak detection—demonstrated 
reliable performance across various subjects and conditions. In the 
absence of movement artifacts, HR and BR were estimated with high 
accuracy, yielding maximum errors of 3 beats per minute and 1 breath 
per minute, respectively. These levels of precision are consistent with or 
better than those reported in existing literature on BCG systems. 
Nevertheless, certain limitations intrinsic to BCG technology persist. 
Specifically, external mechanical vibrations or suboptimal subject 
positioning can degrade signal quality, particularly for the cardiac signal 
(BCG-X), whose low amplitude makes it more susceptible to interference 
and detection loss.

In contrast to traditional RBCG systems that capture the subject’s 
face or chest, the proposed method eliminates common limitations such 
as sensitivity to ambient lighting and facial movements. The system 
records exclusively a mattress marker, with no patient features 
appearing in the video. This design provides enhanced privacy, as stored 
recordings can be associated with subjects only through coded refer
ences, thereby ensuring protection of personal data. Additionally, it 
resolves the generalizability issues observed in mattress-integrated 
systems, where sensor characteristics, bed structure, and user vari
ability necessitate frequent recalibration and limit scalability. Systems 
based on pneumatic, piezoelectric, electromechanical, or capacitive 
sensors often require custom integration and are difficult to extrapolate 
between different beds, require recalibration and adaptation for 
different subjects, and must be integrated into the mattress, thus pre
cluding use with conventional beds.

In contrast, the proposed system offers a non-intrusive, low-cost, and 
calibration-free alternative, adaptable to various mattress types and a 
range of subjects without installation or calibration procedures. It en
ables autonomous, unattended home-based health monitoring and 

Fig. 8. BCG-Y signal exhibiting an apnea event (in black). Red markers denote 
detected respiratory peaks.
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subject follow-up using the subject’s own smartphone. Furthermore, 
since the system does not process electrical signals, it is immune to 
electromagnetic interference. Lighting conditions—whether natural, 
artificial, or infrared—have minimal impact on performance, allowing 
for nighttime monitoring without disturbing the subject’s sleep. This 
flexibility, combined with high signal fidelity and robust physiological 
parameter extraction, makes the proposed system a strong candidate for 
continuous, non-contact cardiopulmonary monitoring in both clinical 
and non-clinical settings.

In the presented work, video is recorded in short sequences of 30 s 
for individual evaluation. This video is transmitted via Wi-Fi to a server 
installed on a PC, where it is processed for parameter extraction (HR, BR, 
activity, etc.). The time required for the transmission and processing of 
each sequence is around 3 min. However, while each sequence is being 
processed, the system continues recording and sending new sequences 
that remain in a queue for later processing. This strategy inevitably 
entails delays in the case of long-term patient monitoring (an effect that, 
on the other hand, is also common in polysomnography systems, where 
signal processing is performed after monitoring is completed), which 
may affect real-time patient monitoring. The optimization of video 
processing can be addressed in future works based on this one where 
faster computation is required.

5. Conclusions

This work presents a novel remote ballistocardiography system 
based on video processing to monitor mattress displacements caused by 
a subject’s cardiac activity, respiration, and movement while lying in 
bed. To the best of the authors’ knowledge, this is the first documented 
approach that captures mattress motion rather than the subject directly, 
marking a significant advancement in non-contact cardiopulmonary 

monitoring. This work offers several advantages over existing BCG and 
RBCG systems documented in the current literature. It is completely 
non-invasive, requires no instrumentation of the subject or the bed, and 
operates under variable lighting conditions using standard smartphone 
cameras. In addition, unlike sensor-based mattress systems that often 
necessitate recalibration and integration, this solution is inherently 
portable, calibration-free, and compatible with a wide range of mattress 
types and user profiles, making it particularly well-suited for home- 
based or unattended monitoring.

In this study, the extracted BCG signals were processed to estimate 
the vital signs HR and BR using two widely recognized signal processing 
techniques: FFT analysis and peak detection. The resulting predictions 
demonstrated error rates within the expected limits for these types of 
algorithms, provided that the sequences were free from artifacts caused 
by the subject or external elements. The system also proved effective in 
detecting non-physiological disturbances such as muscle activity (e.g., 
leg movement), as well as physiological anomalies, such as apnea events 
and cardiac arrhythmias (e.g., premature ventricular contractions). 
These were successfully identified through analysis of parameters like 
the density of significant samples and the instantaneous HR and BR, 
enabling accurate classification of corrupted sequences and abnormal 
cardiac and respiratory events.

In summary, the proposed system represents a practical, accessible, 
and scalable alternative to traditional BCG monitoring, enabling reliable 
extraction of vital signs and detection of physiological anomalies 
without the limitations of direct contact or embedded sensors. Its un
obtrusive nature and ease of deployment make it a promising tool for 
continuous health monitoring in clinical, residential, and remote care 
settings. Its unobtrusive nature and ease of deployment make it a 
promising tool for continuous health monitoring in clinical, residential, 
and remote care settings. The integration of this technique with 

Fig. 9. (A) BCG-X (blue) and ECG (red) signals from a subject with PVC. (B) Instantaneous HR calculated from detected peaks.
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wearable devices for biometric identification and other functions could 
provide it with greater potential in these fields.
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