
Acta Applicandae Mathematicae          (2025) 199:10 
https://doi.org/10.1007/s10440-025-00746-6

Comparison Principles and Asymptotic Behavior of Delayed
Age-Structured Neuron Models

María J. Cáceres1 · José A. Cañizo1 · Nicolas Torres1,2

Received: 21 March 2025 / Accepted: 16 September 2025
© The Author(s), under exclusive licence to Springer Nature B.V. 2025

Abstract
In the context of neuroscience the elapsed-time model is an age-structured equation that
describes the behavior of interconnected spiking neurons through the time since the last
discharge, with many interesting dynamics depending on the type of interactions between
neurons. We investigate the asymptotic behavior of this equation in the case of both discrete
and distributed delays that account for the time needed to transmit a nerve impulse from one
neuron to the rest of the ensemble. To prove the convergence to the equilibrium, we follow an
approach based on comparison principles for Volterra equations involving the total activity,
which provides a simpler and more straightforward alternative technique than those in the
existing literature on the elapsed-time model.

Keywords Age-structured models · Delay equations · Comparison principles · Volterra
equations

Mathematics Subject Classification 35F15 · 35F20 · 92-10

1 Introduction

Several mean-field models have been proposed to describe the electrical activity of a large
group of interconnected neurons. They usually take the form of a partial differential equation
with a time variable and additional variables, often called structure variables, which describe
one or more additional quantities of the system. For example, models structured by the
membrane potential of neurons such as the integrate-and-fire systems are well-known with
a vast literature [1–8].
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This article is devoted to the study of an age-structured model for an interconnected
ensemble of neurons described by the elapsed time since last discharge at the membrane
potential, which is known as the elapsed-time equation (ET). In this model neurons are
subjected to random discharges so that when they reach the firing potential, they stimulate
(or inhibit) other neurons to spike. Depending on the type of interaction, different possible
behaviors of the brain activity are possible.

This equation was initially proposed in [9] and then subsequently developed by many
authors with different extensions by incorporating new elements such as the fragmentation
equation [10], spatial dependence with connectivity kernel in [11], a multiple-renewal equa-
tion in [12] and a leaky memory variable in [13]. Moreover, like the case of membrane
potential models such as the Fokker-Planck equation, this model can be obtained as a mean-
field limit of a microscopic model and it establishes a bridge of the dynamics of a single
neuron with a population-based approach, whose aspects have been investigated in [14–19].
Readers seeking further information may consult [20] for a comprehensive review of non-
linear partial differential equations in neuroscience.

We begin by introducing the model and summarizing its background, followed by a de-
scription of the results addressed in this article.

In all models in this paper, n = n(t, a) represents the density at time t ≥ 0 of neurons
which fired a ≥ 0 units of time ago. The time elapsed since the last spike is commonly re-
ferred to as the neuron’s age. We always write the models in dimensionless form to simplify
the mathematical treatment, but units can be easily added by standard procedures. In this
work we focus on the elapsed-time model with distributed delay, which correspond to the
nonlinear system given by

∂tn + ∂an + S(a,X(t))n = 0, t, a > 0, (1a)

n(t, a = 0) = r(t) :=
∫︂ ∞

0
S(a,X(t))n(t, a)da, t > 0, (1b)

X(t) =
∫︂ t

−∞
α(t − s)r(s)ds, t > 0. (1c)

The quantity r = r(t) represents the total number (or density) of neurons which fire
at time t , which means that the membrane potential reaches a threshold value and then
resets to a baseline value. This term r(t) determines the total activity of the neuron network,
represented by the quantity X = X(t) through a convolution with a certain nonnegative
function α ∈ L1(R+) with

∫︁ ∞
0 α(s)ds = 1, which is known as the kernel of distributed

delay. This convolution takes into account the delay in transmission after a neuron spikes
and the value α(s) represents the influence in the total activity at time t of a neuron which
fired at time t − s. In this context, it is understood that the history of the rate r(t) for t < 0
is fixed as an initial condition (as we explain later in (1e))

The nonnegative function S(a,X) is called the firing coefficient and it represents the sus-
ceptibility of neurons to discharge. This function accounts for the effect that a total activity
X has on neurons of age a. As we see in the boundary condition (1b) of n at a = 0, when a
neuron discharges at time t its age is reset 0, so that the firing rate r(t) is determined by an
integral involving the firing coefficient S and the total activity X(t), which depends on the
previous states of the system for the firing rate and the delay kernel α.

A typical choice for the firing coefficient is S(a,X) = φ(X)1a>σ , which represents a
network of neurons with an absolute refractory time σ ≥ 0 during which they cannot fire
again after a given discharge. Furthermore, the function S may be increasing or decreasing
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in X, to allow for excitatory of inhibitory interactions respectively and it determines the type
of regime of the system. In the case that S does not depend on X the model becomes linear,
and its study is considerably simpler. We notice that r(t) can be calculated by knowing
n(s, a) for times s < t , so equation (1c) is a type of delayed boundary condition.

The above equation should be complemented by a suitable initial condition,

n(t = 0, a) = n0(a), a > 0, (1d)

r(t) = r0(t), t < 0, (1e)

where n0 ∈ L1(R+) is a given nonnegative function, and r0 is defined on (−∞,0). Since
(1a)–(1e) is a delay equation, it would be natural to specify n(t, a) for t ∈ (−∞,0] as an
initial condition, but only the firing rate r(t) = n(t,0) is actually used, so we emphasize
that it is enough to set r(t) for negative times t . Thus we allow for “infinite delay” in the
equation. The statement of the model in [9] is equivalent to assuming r(t) = 0 for all t < 0.
If for a certain d > 0 one assumes that α(t) = 0 for all t > d , then it is clearly enough to
give r(t) for t ∈ [−d,0] as initial data (since the values of r(t) for t < −d do not play any
role).

Moreover, we formally have the following mass-conservation property

∫︂ ∞

0
n(t, a) da =

∫︂ ∞

0
n0(a) da, ∀t ≥ 0, (2)

and without loss of generality, we will normalize it to 1 so that n(t, ·) can be interpreted as
the probability distribution at time t of the time since the last spike.

There are two important situations which are limiting cases of this one. First, if we take
the limit as α → δd (a Dirac delta function at t = d) for some d > 0 we formally obtain the
model with single discrete delay:

∂tn + ∂an + S(a, r(t − d))n = 0, t, a > 0, (3a)

n(t, a = 0) = r(t) :=
∫︂ ∞

0
S(a, r(t − d))n(t, a)da. t > 0. (3b)

This system is known as the case with discrete delay, where the total activity is just the
firing rate at time t − d . Now the natural initial condition involves setting

n(t = 0, a) = n0(a), a > 0, (3c)

r(t) = r0(t), − d ≤ t < 0. (3d)

In turn, if we consider the limit d = 0 then this system becomes

∂tn + ∂an + S(a, r(t))n = 0, t, a > 0, (4a)

n(t, a = 0) = r(t) =
∫︂ ∞

0
S(a, r(t))n(t, a)da. t > 0. (4b)

This system is known as the case with instantaneous transmission. Now the definition of
r(t) is an independent equation, which has to be solved together with the whole system and
the only initial condition to set is n(0, a) for a > 0. If n(t, a) is known for a certain t , then
finding an r(t) which satisfies r(t) = ∫︁ ∞

0 S(a, r(t))n(t, a)da may be an ill-posed problem;
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see [9] or [21] for a simple example, and more recently [22] for an analysis of the conditions
which may stop this system from being well-posed.

Concerning the steady states, the equilibria of (1a)–(1e) are given by the equation:

⎧⎪⎪⎨
⎪⎪⎩

∂an
∗ + S(a,X∗)n∗ = 0 a > 0,

r∗ := n∗(a = 0) = ∫︁ ∞
0 S(a,X∗)n∗(a)da,

X∗ = r∗ ∫︁ ∞
0 α(s)ds.

(5)

Thanks to the normalization
∫︁ ∞

0 α(s) ds = 1 we have X∗ = r∗. From the first equation of

the system we get that n∗(a) := r∗e− ∫︁ a
0 S(a′,X∗) da′

and the following equation holds for r∗:

r∗I (r∗) = 1, with I (r) :=
∫︂ ∞

0
e− ∫︁ a

0 S(s,r)ds da, (6)

as a consequence of the mass-conservation property.
For simplicity we call the steady state as the pair (n∗, r∗), since X∗ = r∗. Moreover, for

the case of instantaneous transmission (4a)–(4b) and the case with discrete delay (1a)–(1e)
the definition of an equilibrium is analogous and in all cases we have the same steady states
for a given firing coefficient S. We also remark that when the system is inhibitory it has a
unique steady state, while in the excitatory case multiple steady states may arise [9].

Finally, if we fix X = r̄ ≥ 0 as parameter in the coefficient S we obtain the following
linear equation, which is fundamental to understand the non-linear problems (1a)–(1e) and
(3a)–(3d).

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tn + ∂an + S(a, r̄)n = 0 t, a > 0,

n(t, a = 0) = r(t) :=
∫︂ ∞

0
S(a, r̄)n(t, a)da t > 0,

n(t = 0, a) = n0(a) a > 0.

(7)

Observe that this linear equation does not have any explicit delay and in this case it can be
cast in the form of an abstract ODE in the space ℳ(R+) of finite signed Borel measures,
given by

∂tn = Lr̄ [n] := −∂an − S(a, r̄)n + δ0

∫︂ ∞

0
S(a, r̄)n(a)da. (8)

For the sake of simplicity of the notation in the computations, we treat the elements in
ℳ(R+) as if they were integrable functions with corresponding generalization. The solution
of this linear problem determines a positive and mass-preserving semigroup in ℳ(R+),
which will be denoted as etLr̄ in the sequel. In other words, etLr̄ is a Markov semigroup. The
asymptotic behavior of etLr̄ is well-known, as we state in the following result.

Proposition 1 (Linear spectral gap) Assume that S satisfies Hypothesis 1, and let r̄ ≥ 0 be

given. Then the pair

(︃
n̄∗ := r̄∗e− ∫︁ a

0 S(s,r̄) ds , r̄∗ :=
(︂∫︁ ∞

0 e− ∫︁ a
0 S(s,r̄) ds da

)︂−1
)︃

is the unique

positive stationary solution to Equation (7) such that n∗ ∈ L1(0,∞) with
∫︁ ∞

0 n∗ da = 1.
And there exist constants C0, λ > 0 such that for all initial data n0 ∈ ℳ(R+) it holds that,
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for all t ≥ 0,

∥etLr̄ n0 − ⟨n0⟩n̄∗∥T V ≤ C0e
−λt∥n0 − ⟨n0⟩n̄∗∥T V

|r(t) − ⟨n0⟩r̄∗| ≤ C0e
−λt∥n0 − ⟨n0⟩n̄∗∥T V

(9)

with ⟨n0⟩ := ∫︁ ∞
0 n0 da.

We remark that the constant λ gives the natural speed of convergence to equilibrium of
(7). This result can be proved through different techniques such as the entropy method [23],
Doeblin’s theory [21] and Kato’s inequality [24].

Concerning the nonlinear case, global well-posedness of weak solutions has been studied
in the case with instantaneous transmission and also distributed delay [9, 17, 21, 24] and
more recently in [22] with a numerical scheme inspired in fixed-point problems.

Regarding long-time behavior, global results are comparatively rare: no general results
on convergence to equilibrium are available, and no useful entropy or Lyapunov functional
is known for the nonlinear model. Some partial results in this direction include [25], where
the existence of periodic solutions with jump discontinuities was established in the case of
strong non-linearities.

However, a quite complete analysis can be carried out in perturbative situations, when
the system is close to a linear system. In this regard, the following properties are expected
to hold:

1. There exists a unique probability equilibrium n∗, with its associated firing rate r∗.
2. All solutions with an initial probability distribution converge to this equilibrium as t →

+∞ at an exponential rate.

It is reasonable to study these properties when the nonlinearity is weak, meaning that the
following holds for a small enough ℓ:

|S(a, r) − S(a, r ′)| ≤ ℓ|r − r ′| for all a, r, r ′ > 0. (10)

In previous papers a very similar condition to this is always used. In the literature on neuron
dynamics this condition corresponds to either “weak connectivity” or “strong connectivity”
regimes. To understand the meaning of weak and strong regimes it is important to notice that
the firing coefficient is usually written as ˜︁S(a, JX) in other references, where J ≥ 0 is the
network connectivity parameter. We have avoided this notation to simplify the presentation
of the model, so we do not have a parameter J ; we just take S(a,X) ≡ ˜︁S(a, JX). When
using this notation, “weak connectivity” corresponds to small J , and “strong connectivity”
corresponds to large J . With appropriate (additional) assumptions on ˜︁S, one may show (10)
(or a very similar condition to (10)) either when J is small enough, or when J is large
enough.

Results on properties 1 and 2 were first given in [9, 10, 26] by using variations of the gen-
eralized relative entropy method [23, 27] in the case of instantaneous transmission (4a)–(4b),
while a semigroup approach based on Doeblin’s theory [28, 29] was given in [21], applica-
ble to both equation (4a)–(4b) and modified models with fatigue proposed in [10]. The same
ideas were also used to study a model structured by additional past discharge times in [12]
and with a memory term in [13].

Besides the case with instantaneous transmission, exponential convergence with dis-
tributed delay has been previously studied by Mischler et al. [24, 30] for weak nonlinearities
under regularity assumption such as when the firing coefficient S ∈ LipX L1

a . This result was
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proved through a spectral analysis based on the analysis in [31] for the growth-fragmentation
equation.

The goal of our article is to fill some gaps on the convergence to the equilibrium for
the elapsed-time model for both distributed and discrete delays under the regime of weak
nonlinearities with an alternative method to the spectral analysis previously cited and under
simple assumptions for S. Apart from introducing a relatively simple method, we are also
able to include some new cases such as the case of algebraic decay of α. In addition, the case
with discrete delay, despite being formally a particular case of the distributed delay, should
be analyzed separately, since it is a singular case and no explicit proof was given before for
this case.

Our approach relies on a comparison principle for integral equations involving the dis-
tance to equilibrium of the total activity |X(t) − X∗| in the case of Equation (1a)–(1e) and
|r(t) − r∗| in the case of Equation (3a)–(3d). The strategy consists in finding a suitable up-
per solution of a Volterra-type equation that vanishes when t → ∞ and that allows to bound
the quantities |X(t) − X∗| and |r(t) − r∗|. Comparisons techniques for other age-structured
models have been recently studied in [32] with logistic growth and spatial diffusion.

The advantage of this argument is that we obtain a simpler proof of convergence to equi-
librium, whose rate also depends explicitly on the bounds of the kernel α and the delay d in
their respective cases. Moreover, we also point out that suitable modifications of the argu-
ment based on a perturbation of the linear case stated in Proposition 1 can also deal with the
delayed equations (1a)–(1e) and (3a)–(3d), and get the desired property 2 above.

1.1 Main Results of This Article

We now present the results of this paper, highlighting the crucial role played by the size λ

of the spectral gap of the linear equation (7), with r̄ = r∗, given in Proposition 1. We will
always assume the following:

Hypothesis 1 (Conditions on S) We assume S : (0,+∞) × [0,+∞) → [0,+∞) is a
bounded measurable function, and Lipschitz with respect to its second variable with Lip-
schitz constant l:

|S(a, r) − S(a, r ′)| ≤ ℓ|r − r ′| for all a, r, r ′ > 0.

We also assume that there exist constants s0, σ > 0 such that

S(a, r) ≥ s01{a>σ } for all a, r ≥ 0. (11)

Hypothesis 2 (Initial conditions) We assume that n0 is a nonnegative probability measure
on (0,+∞). For the distributed delay equation (1a)–(1e) we assume that r0 : (−∞,0] →
[0,+∞) is a bounded function; for the single discrete delay equation (3a)–(3d) we assume
that d > 0 and r0 : [−d,0] → [0,+∞) is a bounded function.

It is also known, in general, [9, 21, 26] that in either weak or strong connectivity regime
the nonlinear problems (1a)–(1e) and (3a)–(3d) have a unique probability equilibrium: there
exists ℓ∗ > 0 such that if S satisfies Hypothesis 1 with 0 ≤ ℓ ≤ ℓ∗ then equations (1a)–(1e)
and (3a)–(3d) have a unique equilibrium (n∗, r∗) such that n∗ is a probability measure. Since
our results below are stated for small ℓ one may always assume that ℓ ≤ ℓ∗, so the fact that
there is a unique equilibrium in that case is known. The results presented in this article are
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still valid when S satisfies similar Lipschitz estimates involving the integral with respect to
a, as it was done for example in [24, 30]. Furthermore, see Remarks 2 and 4 for more details
on how to apply our main results in the context of weak and strong regimes.

The following are the main results of this article. Regarding the single discrete delay
model we have:

Theorem 1 (Single discrete delay) Assume Hypothesis 1, with ℓ small enough such that
there exists a unique steady state (n∗, r∗) of equation (3a)–(3d), and let λ > 0 be the spectral
gap of the linear equation (7), with r̄ = r∗. Then there exists ℓ0 > 0 (depending only on λ)
such that for all d > 0 there exist constants 0 < μ < λ (depending only on d and λ), C > 0
so that when ℓ ≤ ℓ0 any initial condition (n0, r0) satisfying Hypothesis 2, the solution (n, r)

of equation (3a)–(3d) satisfies

∥n(t) − n∗∥T V ≤ CK0e
−μt ,

|r(t) − r∗| ≤ CK0e
−μt

(12)

for all t > 0, where K0 measures the initial distance to equilibrium in the following sense:

K0 := ∥r0 − r∗∥∞ + ∥n0 − n∗∥T V .

We notice that in this case ∥r0 − r∗∥∞ denotes the L∞ norm in the interval [−d,0].
The previous theorem informally states that in the weak-connectivity regime, the non-

linear model (3a)–(3d) converges to equilibrium at essentially the same rate as the linear
system. We can also obtain similar results for the distributed delay model (1a)–(1e), with
the important difference that solutions will now converge to equilibrium at (roughly) the
slowest of the following rates:

1. The rate e−λt of decay to equilibrium of the linear model.
2. The decay rate to 0 of the function α.

The following two results make this idea precise:

Theorem 2 (Exponentially distributed delay) Assume Hypothesis 1, with ℓ small enough
such that there exists a unique steady state (n∗, r∗) of equation (1a)–(1e), and let λ > 0 be
the spectral gap of the linear equation (7), with r̄ = r∗. Assume that there exist constants
Cα,β > 0 such that

α(t) ≤ Cαe
−βt for all t > 0.

Then, for any 0 < μ < min{λ,β} there exists ℓ0 > 0 depending only on ∥S∥∞ and μ such
that if ℓ ≤ ℓ0, there exists a constant C > 0 (depending only on S, Cα and β) such that for
any initial condition (n0, r0) satisfying Hypothesis 2 the solution (n, r) of equation (1a)–(1e)
satisfies

∥n(t) − n∗∥T V ≤ CK0e
−μt , (13)

|r(t) − r∗| ≤ CK0e
−μt , (14)

|X(t) − X∗| ≤ CK0e
−μt (15)

for all t > 0, where K0 measures the initial distance to equilibrium in the following sense:

K0 := ∥r0 − r∗∥∞ + ∥n0 − n∗∥T V .
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In this case ∥r0 − r∗∥∞ denotes the L∞ norm on (−∞,0). We also point out that X∗ :=
r∗ ∫︁ ∞

0 α(s)ds is the total activity at equilibrium.
Regarding algebraic tails we have a similar result, this time with an algebraic speed of

convergence:

Theorem 3 (Distributed delay, algebraic tail) Assume Hypothesis 1, with ℓ small enough
such that there exists a unique steady state (n∗, r∗) of equation (1a)–(1e), and let λ > 0 be
the spectral gap of the linear equation (7), with r̄ = r∗. Assume that there exist constants
Cα > 0, β > 1 such that

α(t) ≤ Cα

1 + tβ
.

Then there exists ℓ0 > 0 depending only on S such that if ℓ ≤ ℓ0, there exists a constant
C > 0 (depending only on S, Cα and β) such that for any initial condition (n0, r0) satisfying
Hypothesis 2 the solution (n, r) of equation (1a)–(1e) satisfies

∥n(t) − n∗∥T V ≤ CK0

1 + tβ−1
, (16)

|r(t) − r∗| ≤ CK0

1 + tβ−1
, (17)

|X(t) − X∗| ≤ CK0

1 + tβ−1
(18)

for all t > 0, where K0 measures the initial distance to equilibrium in the following
sense:

K0 := ∥r0 − r∗∥∞ + ∥n0 − n∗∥T V .

This result allows to extend the convergence result in [24, 30] where the kernel α must
have a Laplace transform ˆ︁α(z) defined for ℜ(z) > −c for some c > 0, i.e. α decays expo-
nentially. Thus, even if α decays like an inverse of a polynomial, it is still possible to have
convergence to the equilibrium with explicit rates that depend on the bounds of α.

The proof of the above results is based on a perturbation argument, writing the nonlinear
equations as the linear one plus a perturbation term which can be shown to be small, and
then using Duhamel’s formula to compare with the solution of the linear equation. There are
two important ideas to consider in order to carry out this plan: first, it is natural to consider
the spectral gap in total variation norm, as the perturbation term is small in this norm (but is
not even finite in stronger norms such as Lp); this was used in [21] in order to study the case
without delay. Second, the inequalities obtained after using Duhamel’s formula are modified
versions of Volterra integral equations for which there is no general theory readily available.
We give comparison theorems for them, from which one can then obtain the main results.

The rest of the paper is devoted to proving the convergence theorems and offering re-
marks and perspectives that emerge from them. It is organized as follows: Sect. 2 contains
the proof of Theorem 1, while Sect. 3 contains the proofs of Theorems 2 and 3.
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2 Model with a Single Discrete Delay: Proof of Theorem 1

This section is devoted to the elapsed time equation with a single discrete delay given in
(3a)–(3d):

∂tn + ∂an + S(a, r(t − d))n = 0, t, a > 0, (19a)

n(t, a = 0) = r(t) :=
∫︂ ∞

0
S(a, r(t − d))n(t, a)da, t > 0. (19b)

We remind that the steady states (n∗, r∗) in this case are given by:

{︄
∂an

∗ + S(a, r∗)n∗ = 0 a > 0,

r∗ := n∗(a = 0) = ∫︁ ∞
0 S(a, r∗)n∗(a) da,

where n∗(a) = r∗e− ∫︁ a
0 S(a′,r∗)da′

and r∗ > 0 satisfies Equation (6).
The aim of this section is to prove Theorem 1. To achieve this, we make use of the

following comparison lemma.

Lemma 1 (Comparison lemma with discrete delay) Consider the constants d > 0, c1 ≥ 0,
c2 ≥ 0 and the functions f ∈ L∞(0,∞), u0 ∈ L∞(−d,0). Let u ∈ L∞(−d,∞) such that

{︄
u(t) ≤ c1u(t − d) + c2

∫︁ t

0 e−λ(t−s)u(s − d)ds + f (t) ∀t > 0,

u(t) ≤ u0(t) ∀t ∈ (−d,0),
(20)

and u ∈ L∞(−d,∞) such that
{︄

u(t) ≥ c1u(t − d) + c2

∫︁ t

0 e−λ(t−s)ū(s − d)ds + f (t) ∀t > 0,

u(t) ≥ u0(t) ∀t ∈ (−d,0),
(21)

Then u(t) ≤ u(t) for all t > −d .

In other words u and u are respectively lower and upper solutions of the delayed Volte-
rra-type equation given by

{︄
u(t) = c1u(t − d) + c2

∫︁ t

0 e−λ(t−s)u(s − d)ds + f (t) ∀t > 0,

u(t) = u0(t) ∀t ∈ (−d,0),
(22)

and the comparison principle holds.

Proof Observe that h(t) := u(t) − u(t) satisfies the following inequalities

{︄
h(t) ≥ c1h(t − d) + c2

∫︁ t

0 e−λ(t−s)h(s − d)ds ∀t > 0,

h(t) ≥ 0 ∀t ∈ (−d,0).

From the first inequality we conclude that h(t) ≥ 0 for all t ∈ (0, d) and by iterating over
the intervals (kd, (k + 1)d) with k ∈N, we conclude that h(t) ≥ 0 for all t > −d . □

Now we can proceed with the proof of Theorem 1.
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Proof of Theorem 1 We write the solution of Equation (19a)–(19b) as

∂tn = Lr∗ [n] + h

where the linear operator Lr∗ was defined in (8), with r̄ = r∗, and h is given by

h(t, a) = (S(a, r∗) − S(a, r(t − d)))n(t, a)

+ δ0(a)

∫︂ ∞

0
(S(a′, r(t − d)) − S(a′, r∗))n(t, a′)da′,

and by applying Duhamel’s formula and Proposition 1, there exists C0, λ > 0 such that the
following inequality holds:

∥n(t) − n∗∥T V ≤ C0e
−λt∥n0 − n∗∥T V + C0

∫︂ t

0
e−λ(t−s)∥h(s)∥T V ds. (23)

By using the mass-conservation property (2) of the system, for h we obtain

∥h(t, ·)∥T V ≤ 2ℓ|r(t − d) − r∗| ∀t > 0, (24)

where ℓ is the Lipschitz constant of S with respect to r (see Hypothesis 1). Also, from the
definition of r(t) (see (19b)) we obtain

|r(t) − r∗| =
⃓⃓
⃓⃓
∫︂ ∞

0
S(a, r(t − d))n(t, a)da −

∫︂ ∞

0
S(a, r∗)n∗(a)da

⃓⃓
⃓⃓

≤
∫︂ ∞

0
|S(a, r(t − d)) − S(a, r∗)|n(t, a)da +

∫︂ ∞

0
S(a, r∗)|n(t, a) − n∗(a)|da

≤ ℓ|r(t − d) − r∗| + ∥S∥∞∥n(t, a) − n∗(a)∥T V .

Now using (23) and (24) in the previous equation we get

|r(t) − r∗| ≤ ℓ|r(t − d) − r∗| + C0∥S∥∞∥n0 − n∗∥T V e−λt

+ 2C0∥S∥∞ℓ

∫︂ t

0
e−λ(t−s)|r(s − d) − r∗|ds.

(25)

We define the constants C1 := 2C0∥S∥∞ and C2 := C0∥S∥∞∥n0 − n∗∥T V so that for u(t) :=
|r(t) − r∗| we get the inequality

u(t) ≤ ℓu(t − d) + C1ℓ

∫︂ t

0
e−λ(t−s)u(s − d)ds + C2e

−λt ∀t ≥ 0.

The main idea is to apply now the comparison lemma. We look for a constant A,μ > 0 such
that we get u(t) ≤ Ae−μt for all t > −d . This means that the function v(t) := Ae−μt must
satisfy the following inequalities

{︄
v(t) ≥ ℓv(t − d) + C1ℓ

∫︁ t

0 e−λ(t−s)v(s − d)ds + C2e
−λt ∀t > 0

v(t) ≥ |r0 − r∗| ∀t ∈ (−d,0),
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or equivalently in terms of A and μ

A

(︃
1 − ℓeμd − C1ℓe

μd 1 − e−(λ−μ)t

λ − μ

)︃
≥ C2e

−(λ−μ)t ∀t > 0

A ≥ eμt |r0(t) − r∗| ∀t ∈ (−d,0).

(26)

Observe that (using e−(λ−μ)t ≥ 0 on the left and e−(λ−μ)t ≤ 1 on the right) a sufficient
condition to verify (26) is given by the inequalities

A

(︃
1 − ℓ

(︃
eμd + C1e

μd 1

λ − μ

)︃)︃
≥ C2

A ≥ sup
t∈[−d,0]

|r0(t) − r∗|.

Therefore, for ℓ > 0 satisfying

ℓ

(︃
eμd + C1e

μd 1

λ − μ

)︃
< 1, or equivalently ℓ <

e−μd(λ − μ)

λ − μ + C1
,

and A verifying

A > max

{︃
||r0 − r∗||∞,

C2(λ − μ)

λ − μ − ℓ0eμd(λ − μ + C1)

}︃
with μ < λ, and ℓ ≤ ℓ0,

we get that (26) holds and hence v(t) satisfies the desired inequalities. By Lemma 1 we
conclude that

u(t) = |r(t) − r∗| ≤ Ae−μt . (27)

Without loss of generality we can assume ∥n0 −n∗∥T V +∥r0 − r∗∥∞ > 0, so we can choose
A of the form A = ˜︁C(S,d,μ)

(︁∥n0 − n∗∥T V + ∥r0 − r∗∥∞
)︁

(since C2 is the only constant
we defined which depends on the initial distance ∥n0 − n∗∥T V ).

We now assert that we can find a bound on ℓ, ℓ0, independent of d such that (27) holds
for some choice of μ > 0. Indeed, when d ≤ 1 we can choose μ = λ

2 and set ℓ0 := λe−λ

λ+2C1
such that for

ℓ ≤ ℓ0 <
λe− λ

2

λ + 2C1

the estimate (27) is verified. Similarly for d > 1, if we take μ = λ
d+1 such that for

ℓ ≤ ℓ0 <
dλe− d

d+1 λ

dλ + (d + 1)C1
,

the same conclusion holds. Finally, from estimates (23) and (24) the exponential conver-
gence of ∥n(t) − n∗∥T V in (12) readily follows. □

In light of the proof, we draw attention to the following remarks.

Remark 1 We have proved the existence of a sufficiently small connectivity parameter ℓ0

such that for any transmission delay d , we have exponential convergence of the system
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towards its unique steady state. Nevertheless, the rate of convergence is influenced by d

and, as expected, it decreases as d increases.
An interesting extension would be to jointly study the dependence on the delay d and the

spectral gap given λ in Proposition 1. For a given delay d , one would expect that a larger
value of λ will allow a larger value of the Lipschitz constant ℓ0 where the exponential con-
vergence holds. The choice of ℓ0 = λe−λ

λ+2C1
obtained in the proof of the theorem is decreasing

in terms of λ ≫ 1, suggesting that this bound might be improved.

Remark 2 (Relaxed hypotheses) Our proofs can be adapted to work when the following
relaxed condition on S holds, instead of Hypothesis 1:

Hypothesis 3 (Conditions on S) We assume S : (0,+∞) × [0,+∞) → [0,+∞) is a
bounded measurable function, and let (n∗, r∗) be an equilibrium of the linear equation (7).
We assume that S is Lipschitz with respect to r with constant ℓ when |r −r∗| is small enough,
that is: there exists δ > 0 such that

|S(a, r) − S(a, r ′)| ≤ ℓ|r − r ′| for all a > 0 and all r, r ′ ∈ [r∗ − δ, r∗ + δ].
This assumption requires a Lipschitz constant only close to the equilibrium r∗. With this

condition, following the proof of Theorem 1, we may obtain convergence to the equilibrium
provided that the initial condition is close enough to the equilibrium itself. In this case one
does not need to impose that the equilibrium is unique.

3 Model with Distributed Delay: Proof of Theorems 2 and 3

In this section we will consider the elapsed time model with distributed delay given in
(1a)–(1e)

∂tn + ∂an + S(a,X(t))n = 0, t, a > 0, (28a)

n(t, a = 0) = r(t) :=
∫︂ ∞

0
S(a,X(t))n(t, a)da, t > 0, (28b)

X(t) =
∫︂ t

−∞
α(t − s)r(s)ds. t > 0. (28c)

Remind that in this case the equilibrium distribution (n∗, r∗) solves the system
⎧⎪⎪⎨
⎪⎪⎩

∂an
∗ + S(a,X∗)n∗ = 0 a > 0,

r∗ := n∗(a = 0) = ∫︁ ∞
0 S(a,X∗)n∗(a) da,

X∗ = r∗ ∫︁ ∞
0 α(s) ds.

where n∗(a) = r∗e− ∫︁ a
0 S(a′,r∗)da′

and r∗ > 0 satisfies Equation (6).
For the proof of Theorems 2 and 3 we first need the following comparison lemma. For

f,g ∈ L∞(0,∞) we use the notation f ∗ g := ∫︁ t

0 f (t − s)g(s)ds.

Lemma 2 Consider the functions f, k ∈ L∞(0,∞) with k nonnegative. Let u ∈ L∞(0,∞)

such that

u(t) ≤ (k ∗ u)(t) + f (t) ∀t > 0. (29)
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and u ∈ L∞(0,∞) such that

u(t) ≥ (k ∗ u)(t) + f (t) ∀t > 0. (30)

Then it holds that u(t) ≤ u(t) for all t ≥ 0.

In other words u and u are respectively lower and upper solutions of the Volterra equation
given by

u(t) = (k ∗ u)(t) + f (t) ∀t > 0, (31)

and the comparison principle holds.

Proof Observe that h(t) := u(t) − u(t) satisfies

h(t) ≥ (k ∗ h)(t).

For T > 0 we consider A1[T ] := inft∈[0,T ] h(t) and we have

(︃
1 −

∫︂ T

0
k(s)ds

)︃
A1[T ] ≥ 0.

Therefore when we choose T such that

T ∥k∥∞ < 1, (32)

we conclude that A1[T ] ≥ 0, which means that u(t) ≥ u(t) for all t ∈ [0, T ]. Similarly for
t ∈ [T ,2T ] we define A2[T ] := inft∈[T ,2T ] and obtain

(︃
1 −

∫︂ 2T

T

k(s)ds

)︃
A2[T ] ≥ 0.

Again, using the uniform bound for T in (32) we have that A2[T ] ≥ 0, which implies that
u(t) ≥ u(t) for all t ∈ [T ,2T ]. By iterating this argument, we deduce that u(t) ≥ u(t) for all
t ≥ 0. □

Now we can prove Theorem 2.

Proof of Theorem 2 As in the proof of Theorem 1, by Duhamel’s formula and Proposition 1
there exist C0, λ > 0 such that the following inequality holds

∥n(t) − n∗∥T V ≤ C0e
−λt∥n0 − n∗∥T V + C0

∫︂ t

0
e−λ(t−s)∥h(s)∥T V ds, (33)

where h is given by

h(t, a) = (S(a,X∗) − S(a,X(t)))n(t, a) + δ0(a)

∫︂ ∞

0
(S(a,X(t)) − S(a′,X∗))n(t, a′)da′,

thus, using Hypothesis 1, we have the estimate

∥h(t, ·)∥T V ≤ 2ℓ|X(t) − X∗| for all t > 0. (34)
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Also, we can estimate |r(t) − r∗| as in the proof of Theorem 1:

|r(t) − r∗| =
⃓⃓
⃓⃓
∫︂ ∞

0
S(a,X(t))n(t, a)da −

∫︂ ∞

0
S(a,X∗)n∗(a)da

⃓⃓
⃓⃓

≤
∫︂ ∞

0
|S(a,X(t)) − S(a,X∗)|n(t, a)da +

∫︂ ∞

0
S(a,X∗)|n(t, a) − n∗(a)|da

≤ ℓ|X(t) − X∗| + ∥S∥∞∥n(t, a) − n∗(a)∥T V . (35)

Using now (33) and (34) we obtain

|r(t) − r∗| ≤ ℓ|X(t) − X∗| + C0∥S∥∞∥n0 − n∗∥T V e−λt

+ 2C0∥S∥∞ℓ

∫︂ t

0
e−λ(t−s)|X(s) − X∗|ds. (36)

To simplify the notation define the constants C1 := 2C0∥S∥∞ and C2 := C0∥S∥∞∥n0 −
n∗∥T V .

We seek to estimate |X(t) − X∗|, so we define u(t) := |X(t) − X∗|, and we obtain

u(t) =
⃓⃓
⃓⃓
∫︂ ∞

0
α(s)r(t − s)ds − r∗

∫︂ ∞

0
α(s)ds

⃓⃓
⃓⃓ ≤

∫︂ ∞

0
α(s)|r(t − s) − r∗|ds

=
∫︂ t

0
α(t − s)|r(s) − r∗|ds +

∫︂ ∞

t

α(s)|r0(t − s) − r∗|ds

≤
∫︂ t

0
α(t − s)|r(s) − r∗|ds + ∥r0 − r∗∥∞

∫︂ ∞

t

α(s)ds.

Using (36) in the previous expression,

u(t) ≤ ∥r0 − r∗∥∞
∫︂ ∞

t

α(s)ds

+
∫︂ t

0
α(t − s)

(︃
ℓu(s) + C2e

−λs + C1ℓ

∫︂ s

0
e−λ(s−s′)u(s ′)ds ′

)︃
ds.

We define

g(t) := ∥r0 − r∗∥∞
∫︂ ∞

t

α(s)ds + C2

∫︂ t

0
α(t − s)e−λs ds,

so we write the inequality for u(t) as

u(t) ≤ g(t) + ℓ(α ∗ u) + C1ℓ(α ∗ e−λt ∗ u).

Like in the case of a single discrete delay, we aim to apply the comparison lemma. We
look for constants A,μ > 0 such that u(t) ≤ Ae−μt for all t ≥ 0. For this, we would like the
function v(t) := Ae−μt to satisfy

v(t) ≥ g(t) + ℓ(α ∗ v) + C1ℓ(α ∗ e−λt ∗ v) for all t ≥ 0,
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or equivalently in terms of A and μ

A ≥ g(t)eμt + ℓA

∫︂ t

0
eμsα(s)ds + ℓ

AC1

λ − μ

∫︂ t

0
eμsα(s)(1 − e−(λ−μ)(t−s))ds

for t ≥ 0.

(37)

For μ < min{β,λ}, we estimate each term in the right-hand side. For the first one,

g(t)eμt ≤ C3
Cα

β
e−(β−μ)t + C2Cα

e−(β−μ)t − e−(λ−μ)t

λ − β
≤ Cα

(︃
C3

β
+ C2

|λ − β|
)︃

,

where we call C3 := ∥r0 − r∗∥∞. For the remaining two terms we have

∫︂ t

0
eμsα(s)ds ≤ Cα

1 − e−(β−μ)t

β − μ
≤ Cα

β − μ
,

∫︂ t

0
eμsα(s)(1 − e−(λ−μ)(t−s))ds ≤

∫︂ t

0
eμsα(s)ds ≤ Cα

β − μ
.

Hence in order to satisfy (37) it is enough to satisfy

A ≥ Cα

(︃
C3

β
+ C2

|λ − β|
)︃

+ ℓACα

β − μ

(︃
1 + C1

λ − μ

)︃
,

that is,

A

(︃
1 − ℓCα

β − μ

(︃
1 + C1

λ − μ

)︃)︃
≥ Cα

(︃
C3

β
+ C2

|λ − β|
)︃

.

Therefore if the following inequalities hold

ℓ <
β − μ

Cα

λ − μ

λ − μ + C1
,

A > Cα

(︃
C3

β
+ C2

|λ − β|
)︃(︃

(β − μ)(λ − μ)

(β − μ)(λ − μ) − ℓCα(λ − μ + C1)

)︃

we get that A and μ satisfy (37) and thus, due to our comparison result in Lemma 2

|X(t) − X∗| ≤ Ae−μt for t ≥ 0.

Notice that the dependence on ∥r0 − r∗∥∞ and ∥n0 − n∗∥TV are included in C3 and C2,
respectively. The exponential decay of ∥n(t) − n∗∥T V readily follows from (33) and (34),
and then exponential decay of |r(t) − r∗| follows from (35). □

To prove Theorem 3 regarding the case in which α decays algebraically we will need the
following lemma on decay of convolutions:

Lemma 3 Let f,g ∈ L∞(R+) and a > 0, b > 1 such that f = O(t−a) and g = O(t−b) when
t → ∞. Then for their convolution we have

h(t) :=
∫︂ t

0
f (t − s)g(s)ds = O(t−min{a,b−1}) as t → ∞.
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Proof Observe that g ∈ L1(R+) since b > 1. Thus there exists two constants C1,C2 > 0
such that for t large enough we have the following estimate

|h(t)| ≤
∫︂ t

0
|f (t − s)g(s)|ds,

≤
∫︂ t

2

0
|f (t − s)g(s)|ds +

∫︂ t

t
2

|f (t − s)g(s)|ds

≤ C1

∫︂ t
2

0
(t − s)−a|g(s)|ds + C2

∫︂ t

t
2

|f (t − s)|s−b ds

≤ 2at−aC1∥g∥1 + C2∥f ∥∞
2b−1 − 1

b − 1
t−(b−1),

where the last inequality proves the desired result. □

With this lemma we prove Theorem 3.

Proof of Theorem 3 We can carry out the same initial steps as in the exponential case. With
the same notation, the function u(t) = |X(t) − X∗| satisfies

u(t) ≤ g(t) + ℓ(α ∗ u) + C1ℓ(α ∗ e−λt ∗ u),

with g(t) = C3

∫︁ ∞
t

α(s)ds + C2

∫︁ t

0 α(t − s)e−λs ds. We recall that the constants C1, C2 and
C3 were defined by

C1 := 2C0∥S∥∞, C2 := C0∥S∥∞∥n0 − n∗∥T V , C3 := ∥r0 − r∗∥∞.

Like the previous result, we aim to apply the comparison lemma. We look for constants
A,μ > 0 such that the function v(t) := A

1+tμ
satisfies the inequality

v(t) ≥ g(t) + ℓ(α ∗ v) + C1ℓ(α ∗ e−λt ∗ v) for all t ≥ 0,

or equivalently in terms of A and μ,

A ≥ g(t)(1 + tμ) + ℓA

∫︂ t

0

1 + tμ

1 + (t − s)μ
α(s)ds

+ ℓAC1

∫︂ t

0

∫︂ s

0
α(t − s)e−λ(s−s′) 1 + tμ

1 + (s ′)μ
ds ′ ds (38)

for all t ≥ 0. We now estimate each term in the right-hand side. First observe that for the
first term of g(t) we have that

∫︂ ∞

t

α(s)ds ≤ Cα,β

1 + tβ−1

for some constant Cα,β > 0 depending on Cα and β . Thus, by choosing μ = β − 1 and
applying Lemma 3, there exists a constant C4 > 0 depending on Cα and β such that

g(t)(1 + tμ) ≤ C3C4
1 + tμ

1 + tβ−1
+ C2C4

1 + tμ

1 + tβ−1
≤ C4(C2 + C3)
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and similarly (possibly taking a larger constant C4) we get

∫︂ t

0

1 + tμ

1 + (t − s)μ
α(s)ds ≤ C4,

∫︂ t

0

∫︂ s

0
α(t − s)e−λ(s−s′) 1 + tμ

1 + s ′μ ds ′ ds ≤ C4.

Therefore in order to satisfy (37) it is enough to satisfy

A ≥ C4(C2 + C3) + ℓAC4(1 + C1),

or equivalently

A(1 − ℓC4(1 + C1)) ≥ C4(C2 + C3).

Hence, if the following inequalities hold

ℓ <
1

C4(1 + C1)
, A >

C4(C2 + C3)

1 − ℓC4(1 + C1)
.

we get that A and μ satisfy (38) and thus

|X(t) − X∗| ≤ A

1 + tβ−1
for all t ≥ 0.

Notice again that the dependence on the initial condition is implicit in C2 and C3. The
convergence of |r(t) − r∗| and ∥n(t) − n∗∥T V readily follows from estimates (33), (34) and
(35) as in the exponential case, by using Lemma 3 to estimate the integral in (33). □

We end the paper with the following two remarks.

Remark 3 The convergence results of Theorems 2 and 3 with α bounded by an exponential
function or with algebraic tail, respectively, can be extended for a general α as long as we
are able to find a suitable upper solution, which might depend on several parameters and an
optimization may be performed.

Remark 4 (Relaxed hypotheses) Analogously to Remark 2, our proofs for the model with
distributed delay can be carried out under the relaxed Hypothesis 3 on S, instead of Hypoth-
esis 1. In this case we obtain convergence to the equilibrium in both regimes, provided the
initial data is close to the equilibrium in terms of r .
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21. Cañizo, J.A., Yoldaş, H.: Asymptotic behaviour of neuron population models structured by elapsed-time.
Nonlinearity 32(2), 464 (2019)

22. Sepúlveda, M., Torres, N., Villada, L.M.: Well-posedness and numerical analysis of an elapsed time
model with strongly coupled neural networks (2023). arXiv preprint. arXiv:2310.02068

23. Perthame, B.: Transport Equations in Biology. Frontiers in Mathematics, vol. 198. Springer, Basel (2006)
24. Mischler, S., Quiñinao, C., Weng, Q.: Weak and strong connectivity regimes for a general time elapsed

neuron network model. J. Stat. Phys. 173(1), 77–98 (2018)
25. Torres, N., Cáceres, M.J., Perthame, B., Salort, D.: An elapsed time model for strongly coupled inhibitory

and excitatory neural networks. Phys. D: Nonlinear Phenom., 132977 (2021)
26. Pakdaman, K., Perthame, B., Salort, D.: Relaxation and self-sustained oscillations in the time elapsed

neuron network model. SIAM J. Appl. Math. 73(3), 1260–1279 (2013)
27. Michel, P., Mischler, S., Perthame, B.: General relative entropy inequality: an illustration on growth

models. J. Math. Pures Appl. 84(9), 1235–1260 (2005)
28. Bansaye, V., Cloez, B., Gabriel, P.: Ergodic behavior of non-conservative semigroups via generalized

doeblin’s conditions. Acta Appl. Math. 166(1), 29–72 (2020)
29. Gabriel, P.: Measure solutions to the conservative renewal equation. ESAIM Proc. Surv. 62, 68–78

(2018)

https://doi.org/10.1103/PhysRevE.110.064308
https://arxiv.org/abs/2501.06015
https://arxiv.org/abs/2310.02068


Comparison Principles and Asymptotic Behavior of Delayed. . . Page 19 of 19    10 

30. Mischler, S., Weng, Q.: Relaxation in time elapsed neuron network models in the weak connectivity
regime. Acta Appl. Math. 157(1), 45–74 (2018)

31. Mischler, S., Scher, J.: Spectral analysis of semigroups and growth-fragmentation equations. Ann. Inst.
Henri Poincaré, Anal. Non Linéaire, 33, 849–898 (2016)

32. Deng, K., Webb, G.F., Wu, Y.: Analysis of age and spatially dependent population model: application to
forest growth. Nonlinear Anal., Real World Appl. 56, 103164 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a pub-
lishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such publishing agreement and applicable law.


	Comparison Principles and Asymptotic Behavior of Delayed Age-Structured Neuron Models
	Abstract
	Introduction
	Main Results of This Article

	Model with a Single Discrete Delay: Proof of Theorem 1
	Model with Distributed Delay: Proof of Theorems 2 and 3
	References


