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Abstract

The growing ubiquity of digital platforms has enabled unprecedented participation in large-
scale group decision-making processes. Nevertheless, integrating subjective linguistically
expressed opinions into structured decision protocols remains a significant challenge. This
paper presents a novel framework that leverages the semantic and affective capabilities of
large language models to support large-scale group decision-making tasks by extracting
and quantifying experts’ communicative traits—specifically clarity and trust—from natural
language input. Based on these traits, participants are clustered into behavioural groups,
each of which is assigned a representative preference structure and a weight reflecting its
internal cohesion and communicative quality. A sentiment-informed consensus mechanism
then aggregates these group-level matrices to form a collective decision outcome. The
method enhances scalability and interpretability while preserving the richness of human
expression. The results suggest that incorporating behavioural dimensions into large-
scale group decision-making via large language models fosters fairer, more balanced,
and semantically grounded decisions, offering a promising avenue for next-generation
decision-support systems.

Keywords: large language model; large-scale method; group decision-making method;
consensus; sentiment analysis

1. Introduction

In contemporary society, group decision-making constitutes a foundational element of
collective dynamics. The profound transformations brought about by globalisation and
the pervasive influence of social media have redefined the frameworks through which
deliberative processes unfold [1]. The near-universal accessibility of the internet has
democratised participation, enabling a wider and more diverse population to contribute to
decision-making mechanisms [2]. Concurrently, the exponential increase in the volume and
complexity of information presents substantial challenges for effective analysis and gover-
nance. To address these intricacies, the field has witnessed the emergence of a specialised
domain referred to as large-scale group decision-making (LSGDM) [3-6], which seeks to
manage decision processes involving a vast number of participants. Over recent years,
LSGDM has garnered significant scholarly attention, reflecting its growing importance in
both theoretical inquiry and practical applications [7].
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Social networks have become an environment for carrying out LSGDM methods
because people from different parts of the world can express their opinions on a topic
without having to travel [8,9]. When people communicate using social networks, they often
express their ideas using natural language [10]. Natural Language Processing (NLP) is
a line of research that has become relevant in this area since it allows experts to provide
inputs in a form closer to natural communication [11].

Nevertheless, using natural language and social networks to create an LSGDM method
presents several challenges. Firstly, the unstructured nature of natural language makes
it difficult to extract meaningful preferences. Secondly, the volume of information in
LSGDM processes far exceeds that of classical GDM, demanding more efficient methods for
processing and analysis. To address these challenges, recent advances in NLP, particularly
the use of large language models (LLMs), offer a promising solution [12]. These models are
capable of interpreting and summarising expert opinions expressed in natural language,
providing structured data for decision-making processes.

In this paper, we propose an LSGDM method designed to handle these challenges.
Our method uses an LLM to process the comments made by experts during discussions,
extracting relevant preferences and behavioural features. Additionally, we apply a variable
selection process to eliminate irrelevant information, reducing complexity and optimising
performance [13]. To efficiently manage the large volume of data, grouping techniques are
applied to group similar experts and opinions [7,14-16].

There are several existing approaches for grouping experts in LSGDM contexts [17,18].
In our method, once expert inputs are processed by the LLM, we classify experts based on
behavioural and linguistic cues extracted from their contributions. Each group of experts is
assigned a representative preference relation and a weighting factor based on characteristics
such as consistency, expressiveness, or assertiveness [19].

To achieve consensus, our method introduces an optimised process that focuses on
inter-group comparison rather than exhaustive expert-to-expert comparison. This signifi-
cantly reduces computational cost while maintaining the robustness of the final decision.

This study introduces a novel behavioural framework for large-scale group decision-
making (LSGDM) that departs from the conventional models in several key ways:

1. Itleverages large language models (LLMSs) to extract behavioural signals—specifically
clarity and trust—from unstructured expert commentary.

2. It uses these communicative features to group experts based not only on their stated
preferences but also on how those preferences are articulated.

3. Itintroduces a weighted aggregation mechanism in which the influence of each group
is modulated by its internal cohesion and communicative quality, measured through
intra-group consensus and sentiment scores.

4. It demonstrates, through comparative analysis, that this behaviourally informed
approach maintains decision quality while enhancing interpretability and fairness,
especially in heterogeneous expert panels.

Unlike the existing methods, which treat preference statements as isolated context-free
inputs, our framework integrates linguistic tone and rhetorical expression as fundamental
dimensions of group reasoning. This represents a conceptual shift from strictly preference-
based models to a sentiment-aware and interaction-sensitive paradigm for consensus
modelling in LSGDM contexts.

While preference aggregation is a core component of LSGDM, our approach intro-
duces a behavioural dimension by modelling how preferences are expressed, not just
what they are. This distinction becomes crucial in large, diverse expert groups where
communication quality varies significantly. Grouping based on clarity and trust allows
the model to attenuate the influence of unclear or disruptive discourse and amplify con-
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tributions that are constructive and coherent, leading to more interpretable and socially
robust decisions. These communicative traits can directly impact consensus building,
especially in open, unmoderated, or asynchronous environments, such as online platforms
or crowdsourcing settings.

The structure of this document is as follows. Section 2 presents the fundamental con-
cepts related to LSGDM and group decision-making processes. Section 3 details the stages
of the proposed method, describing the system based on sentiment analysis integrated
with an LSGDM approach. Section 4 provides an illustrative example demonstrating the
application of the proposed method. In Section 5, a comparative analysis is conducted
to highlight the strengths and limitations of the proposed system in relation to existing
approaches in the current literature. Finally, Section 6 provides the concluding remarks.

2. Preliminaries

This section introduces the foundational ideas required to understand the method
proposed in this work. Section 2.1 reviews recent advances in computational language
understanding, focusing on LLMs and how they can be leveraged to map textual contribu-
tions into rich semantic and affective representations. Section 2.2 then presents the core
concepts behind LSGDM problems (see Figure 1).

| Expert Coments |

v

Text Preprocesing

v

LLM Analysis
(Contextual Embbedings / Topic Extraction / Semantic Evaluation)

v

Decision Making /
Classification Process

h 4

Qutput
(Labels, Categories__)

Figure 1. Simple flowchart of the application of an LLM in decision-making.

2.1. Contextual Language Understanding with Large Language Models

Human communication is inherently nuanced, imprecise, and context-dependent.
Computers, on the other hand, reason over numerical structures. Bridging this gap
has traditionally required NLP techniques capable of converting free text into machine-
readable data. Early approaches relied on sparse vector models such as bag-of-words
(BoW) [20,21]; however, recent work shows that transformer-based LLMs provide far richer
representations [22,23].

In our framework, each expert’s contribution to the debate is first encoded by a pre-
trained LLM (e.g., BERT or GPT-3) that produces a contextual embedding h € R? for the
entire utterance [24,25]. These continuous vectors capture syntax, semantics, and pragmatic
signals—including affect—without the need for manual feature engineering. A lightweight
classifier, fine-tuned on annotated dialogue data, then infers two affective dimensions
that are critical for LSGDM processes: trust and clarity. This allows the decision-support
system to quantify sentiment with sentence-level granularity while preserving linguistic
subtleties that BoW cannot model. While other behavioural dimensions—such as influence,
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engagement, or persuasiveness—could potentially affect consensus formation, we selected
clarity and trust due to their foundational communicative role and their operational re-
liability. Clarity ensures intelligibility and transparency of discourse, which facilitates
semantic alignment across participants. Trust promotes respectful and constructive inter-
action, which is essential to mitigate conflict and foster cooperation. Furthermore, these
two dimensions are semantically stable and can be robustly identified by transformer-based
LLMs across different contexts, whereas other dimensions are more context-sensitive and
harder to quantify without task-specific supervision. This makes clarity and trust especially
suitable for scalable domain-independent group decision-making frameworks.

The recent literature shows a growing interest in the application of LLMs to process
expert-generated content in various domains. For example, [26] introduces a neural ar-
chitecture for e-commerce that combines lexical resources with deep learning modules to
enhance textual interpretation. Ref. [27] proposes a transformer-based model tailored to so-
cial media that captures syntactic and semantic subtleties. Ref. [28] presents a hybrid model
integrating neural embeddings with blockchain to improve the traceability and classifica-
tion of textual input. These approaches reflect a transition from traditional sentiment-driven
pipelines to more sophisticated and holistic treatments of natural language based on LLMs.

2.2. Group Decision-Making

Large-scale group decision-making refers to contexts in which a high number of indi-
viduals, typically referred to as experts, are involved in a collective decision process [29,30].
Let us define a group of m experts, denoted by E, who must evaluate a set of n possible
alternatives, X, using individual preference structures Ps fors =1,...,m.

Numerous strategies for representing expert preferences have been developed [31],
among which preference relations are one of the most commonly adopted formats [32,33].
This work follows the preference relation model as it facilitates the comparison of alterna-
tives and supports the assessment of internal consistency. The preferences are expressed
through a function y; : X x X — [0, 1], which reflects the degree to which one alternative
is preferred over another. The resulting matrix Ps; = ( p? ;i#j=1,...,n)isof sizen x n,
where each entry p = ps(x;, x;) captures the pairwise comparison between alternatives x;
and x;.

The methodology proposed in this work follows a structured process divided into
distinct phases, which are outlined as follows:

*  Expression of preferences: Experts engage in preliminary discussions to exchange
viewpoints on the alternatives under consideration. Following this deliberation
phase, each expert provides their individual preferences through a preference re-
lation matrix [33].

* Consensus evaluation: The level of agreement among experts is assessed by cal-
culating a consensus degree, which measures the alignment of opinions [34,35]. A
consensus threshold « € [0,1] is defined, indicating the minimum acceptable con-
sensus level [36]. If this threshold is not met, experts are prompted to revise their
evaluations. This iteration can occur for a predefined number of rounds [29], after
which a final decision is made regardless of the consensus achieved [37].

* Aggregation of preferences: To generate a unified representation of the collective
opinion, the individual matrices are aggregated into a collective preference matrix
Cg. This step relies on the use of aggregation functions to combine the diverse
evaluations [32].

*  Deriving the final ranking: The collective matrix Cg is then employed to compute a
ranking of the alternatives. This can be achieved through various dominance-based
techniques, including the quantifier-guided dominance degree (QGDD) [38].
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Recent research has proposed numerous models and strategies to address LSGDM
challenges. For example, in [39], a decision-making approach incorporates trust prop-
agation and conflict resolution within a social network structure. The method in [5]
identifies opinion leaders using grouping techniques and a k-core decomposition strategy.
A two-stage method introduced in [6] enhances consensus in multi-attribute decision
settings. Meanwhile, Ref. [40] explores hesitant fuzzy preference relations to model un-
certainty in expert judgments. The model in [41] addresses non-cooperative behaviour
through rationality-based adjustments, and [42] integrates probabilistic terms to handle
imprecise inputs from decision-makers.

In contrast with previous approaches that relied on sentiment analysis techniques
or bag-of-words models to extract meaning from expert opinions, this work proposes the
integration of an LLM to support the reasoning process behind preference elicitation. The
LLM interprets natural language justifications provided by experts, helping to refine their
preferences and ensuring they align with the context and objectives of the decision problem.
This advanced linguistic capability allows for a more robust, semantic-aware interpretation
of human input, enhancing the quality and adaptability of the decision-making process.

3. Method: Modelling LSGDM Through Grouping with LLM

This section introduces a novel framework designed to address LSGDM problems
by incorporating a sentiment-aware classification of experts. The approach capitalises on
recent advances in natural language understanding to assess two specific communicative
traits: clarity—defined as the intelligibility, structure, and transparency of language—and
trust—understood as the degree of constructive, respectful, and receptive interaction
exhibited in expert discourse. By leveraging these dimensions, the method structures
deliberation not merely around preferences but around the expressive quality of expert
engagement. The full process unfolds through the following stages (see Figure 2):

*  Sentiment extraction from textual input: Expert comments provided during the
discussion phase are subjected to semantic analysis using transformer-based language
models. Each contribution is quantitatively evaluated to determine the speaker’s
average clarity and trust scores, thus enabling behavioural profiling of all participants
grounded in their communicative expression.

* Behavioural grouping of experts: Experts are then partitioned into four distinct
behavioural profiles based on their previously computed sentiment scores. The re-
sulting groups—combinations of high/low clarity and trust—allow for a segmenta-
tion of the decision space that accounts for both cognitive and interpersonal aspects
of interaction.

*  Articulation of preferences: After completing the discussion, each expert is asked
to provide their judgments regarding the set of alternatives. These judgments are
encoded using fuzzy preference relations, allowing for nuanced and non-binary evalu-
ations that better reflect real-world reasoning.

*  Derivation of intra-group preference structures: Within each sentiment-based group,
individual preferences are aggregated to construct a group-level preference matrix.
At this stage, each expert contributes equally, ensuring internal fairness within be-
havioural categories.

*  Weight assignment to groups: To modulate the influence of each group in the fi-
nal decision, weights are assigned on the basis of four factors: internal consensus,
number of members, average clarity, and average trust. This composite weighting
scheme ensures that groups characterised by cohesion and constructive discourse
exert proportionally greater influence.
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e  Evaluation of consensus dynamics: Both intra-group and inter-group agreement

levels are examined to assess the overall harmony or polarisation in the collective
decision-making environment. This diagnostic step provides insights into the nature
of dissent or alignment across the behavioural spectrum of experts.

*  Synthesis of the collective decision: The final preference relation is obtained by

integrating the group-level matrices using the corresponding weights.

*  Creating the Ranking of Alternatives: The decision-making process concludes with

the application of aggregation techniques, such as QGDD [38], to derive a ranking of
the alternatives that encapsulates both individual judgments and behavioural quality.

Experts

W

extraction from
textual input

Consensus <a > Sentiment

e

‘ ‘ Behavioural

 E—— grouping of experts| 1 ‘

~
‘ ‘ LCLT Subgroup LCHT Subgroup HCLT Subgroup HCHT Subgroup

‘ ‘ Articulation of Articulation of Articulation of Articulation of

preferences preferences preferences preferences
JL JL I JL
‘ - . - \"'
Weight assignment Weight assignment Weight assignment Weight assignment
to groups to groups to groups to groups

‘ ‘ = - - —

valuation of consensus

Synthesis of the
collective decision

C
Synthesis of the
collective decision

Figure 2. Flowchart of the proposed method. Experts are grouped based on their average clarity
and trust scores into four behavioural profiles: LCLT (low clarity-low trust), LCHT (low clarity-high
trust), HCLT (high clarity-low trust), and HCHT (high clarity-high trust). These groups are used to
construct intra-group preference matrices and assign behavioural weights. Each arrow corresponds
to a separate behavioural group (LCLT, LCHT, HCLT, or HCHT), shown individually to illustrate
parallel processing. The visual steps match the main methodological subsections. Intermediate
outcomes such as the intra-group preference structures are not shown as separate nodes since they

emerge from the integration of previous stages.

To substantiate the scalability of the proposed framework, we provide an asymptotic
analysis of the computational effort required by its principal components. Let m represent
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the number of experts, k the average number of comments per expert, and n the number of
decision alternatives. The sentiment extraction stage requires each comment to be processed
by a transformer-based language model to generate clarity and trust scores. Assuming an
average comment length of L tokens and constant-time inference per token, the overall
complexity can be expressed as O(m - k - L). Since L remains bounded in practical settings,
this stage exhibits linear growth with respect to the number of comments. The behavioural
grouping step partitions experts into four clusters based on two scalar attributes, clarity and
trust. Using a threshold-based approach, this operation is performed in O(m) time. Even
if more advanced clustering methods (such as k-means) are employed, the cost remains
O(m - i), where i is the number of iterations, typically a small constant. Finally, preference
aggregation and weighting involve constructing intra-group preference matrices at a cost of
O(m - n?) and synthesising the global collective matrix in O(g - n%), where g is the number
of behavioural groups (g = 4 in this case).

3.1. Sentiment Extraction from Textual Input

In the initial phase of the proposed framework, the core objective is to extract quan-
tifiable sentiment indicators from the textual contributions of experts. Consider a set of
N experts E = {ej,ey,...,en}, where each expert e; produces a sequence of comments
Ci = {ci1,¢io, - - -, cim, }, with M; representing the number of comments submitted by expert
i. Each comment c;; is a natural language text segment encapsulating the expert’s opinion
or argument.

To transform these qualitative inputs into a structured quantitative form, we apply
a sophisticated language model M based on transformer architectures, trained to assess

communicative attributes. Specifically, M computes two distinct sentiment scores per
clarity
ij

our approach, the sentiment analysis model extracts two communicative dimensions from

comment: clarity s and trust slt.]mSt, both normalised within the unit interval [0, 1]. In
expert comments: clarity and trust.

Clarity is defined as the degree to which a comment exhibits linguistic structure,
coherence, and intelligibility. It reflects how well the speaker’s intent and reasoning are
conveyed in natural language.

Trust, as used in this work, is operationally defined as the degree to which a comment
is perceived as constructive, respectful, and receptive to others’ viewpoints. While classical
definitions of trust often imply an asymmetric two-way relationship between agents, our
model focuses on the textual expression of trustworthy intent as inferred from linguistic
tone. This formulation enables sentence-level estimation and circumvents the need for
explicit dyadic modelling.

To ensure reproducibility, we report the exact prompt formulations used in the LLM-
based evaluation. For each expert comment, the model was queried with the following
zero-shot prompts:

e Clarity prompt: “On a scale from 0 to 1, how clear, structured, and easy to follow is the
following comment?”

*  Trust prompt: “On a scale from 0 to 1, how constructive, respectful, and receptive is the tone
of the following comment?”

These scores were then normalised and averaged per expert, yielding a behavioural
clarity
i
prioritises communicative disposition over interpersonal dependency, which aligns with

profile S; = [S , S ysed in the clustering process. We note that this model of trust

recent discourse-level sentiment frameworks.

. clarity _trust clarity _trust
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This mapping can be formally represented as a vector-valued function:
B Sl;jlanty
Sij = gtrust (2)
I

The individual sentiment vectors s;; are aggregated at the expert level to define an
expert-specific sentiment profile vector S;, which summarises the overall behavioural
tendencies of expert e;:

1 M; Sclarity ML Z]M—ll S?}arlty
. I
Si= 3 & Sij = | Qrust | 3)
Mi i—1 Sirus LZMz‘ strust
] M; ~j=17ij

This averaging process effectively smooths the fluctuations in individual comment
sentiment scores and yields a robust estimate of the expert’s communication style across
the entire discussion.

In matrix notation, if we define the sentiment matrices for all comments by expert ¢; as

clarity clarity clarity
. lsﬂ gy el 1 o
trust  gtrust trust
i SR Sing
then the expert profile vector is computed by
1
Si=S;- M ®)

where 1 € RMi*1 is a column vector of ones, and the dot denotes matrix multiplication.

It is important to highlight that the transformer model M leverages deep contextual
embeddings and attention mechanisms to capture subtle nuances in language, allowing
the system to discern not only explicit sentiment but also implicit cues related to clarity
and trustworthiness.

The resultant vectors S; for all experts form the basis for the subsequent behavioural
grouping step, where experts are grouped according to similarity in their communicative
profiles. This step ensures that the decision-making process is informed not merely by
stated preferences but also by the qualitative nature of expert interactions.

Thus, this phase constitutes a foundational transformation from unstructured textual
data to structured sentiment-informed expert profiles, enabling a richer and more inter-
pretable group decision-making framework. It is important to acknowledge that, in this
study, we did not perform an empirical validation of the LLM-generated sentiment scores
against human annotations. The clarity and trust scores are derived from prompt-based
evaluations using an instruction-tuned transformer model, selected for its demonstrated
performance in discourse-level tasks. While this approach ensures scalability and do-
main flexibility, future work should include controlled annotation studies and inter-rater
agreement analyses to benchmark the model’s outputs against expert human judgment.
Such validation would enhance the methodological robustness and interpretability of
the behavioural grouping mechanism. While other behavioural traits such as emotional
tone, assertiveness, or engagement could be considered for analysis, we limited the group-
ing mechanism to clarity and trust due to their semantic generality, task-independence,
and interpretability. These dimensions are robustly inferred from natural language using
transformer-based models and directly impact deliberative quality, which makes them
particularly suitable for large-scale domain-independent decision frameworks.
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3.2. Articulation of Preferences

Upon completion of the textual deliberations and the exchange of arguments among
the experts, each participant is requested to articulate their preferences over the set of
decision alternatives. This process translates subjective judgments into a formal structure
that can be mathematically processed.

Experts are not required to provide exact fuzzy numbers. Instead, each expert ex-
presses their pairwise preferences among alternatives using a predefined ordinal linguis-
tic scale (e.g., “equally preferred”, “moderately preferred”, “strongly preferred”, etc.).
These qualitative judgements are then mapped to fuzzy numerical values in the [0,1]
interval using a calibrated transformation function, consistent with standard practices in
LSGDM literature.

Let E = {ey,ep,...,em} denote the set of m experts and X = {x1,xy,..., X, } represent
the set of n alternatives under consideration. Each expert e; € E expresses their preference
via a fuzzy preference relation Ps, defined as the matrix

g:(ﬁq for ij=1,...,n, i#]j, ®)

where the element péj € [0,1] quantifies the degree to which expert e; prefers alternative x;
over x;.
The interpretation of the preference values follows the conventional fuzzy preference semantics:

> 0.5, indicates that x; is preferred to x; by expert es,
pls] = 0.5, indicates indifference between x; and x;, (7)

< 0.5, indicates that X; is preferred to x;.

Note that the diagonal elements pi are conventionally set to 0.5, reflecting indifference
of an alternative with itself:

pi =05 Vi=1,..,n (8)

This fuzzy relational representation enables experts to express graded preferences
rather than strict binary choices, thereby capturing nuanced judgments that more closely
approximate real decision-making processes.

The set of preference matrices {P;, Py, ..., Py} collected from all experts forms the
foundational data for the subsequent aggregation and analysis steps. Furthermore, the
sentiment scores extracted previously (clarity and trust) will be employed to contextualise
and weight these preference relations according to the behavioural profiles of the experts.

3.3. Behavioural Grouping of Experts

In this phase, experts are segmented into distinct clusters according to their measured
degrees in two critical communicative dimensions: clarity and trust. These dimensions
serve as proxies for behavioural tendencies, capturing, respectively, the transparency
and coherence of the expert’s discourse, and the constructive, respectful nature of their
interaction [43].

By crossing these two continuous scales, four unique behavioural archetypes arise:

¢  Low Clarity-Low Trust (LCLT): Experts whose contributions are unclear and exhibit
low levels of respectful or constructive engagement.

e Low Clarity-High Trust (LCHT): Experts with less clear discourse but who maintain
a constructive and trustworthy interaction style.

*  High Clarity-Low Trust (HCLT): Experts whose communication is clear but may lack
trustworthiness, potentially reflecting blunt or overly critical attitudes.
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¢  High Clarity-High Trust (HCHT): Experts who express their opinions both clearly
and with a high degree of trustworthiness, facilitating constructive deliberation.

Formally, let us denote the clarity and trust scores for expert es as cs and f;, respectively,
both ranging within a normalised scale: cs, t5 € [0, 1]. The thresholds defining the partition
boundaries for these dimensions are set as [ = 0.5,1; = 0.5, dividing the score space into
quadrants corresponding to the behavioural clusters. Accordingly, the cluster assignment
function is defined as (see Figure 3)

LCLT, s <l, ts<l,
LCHT, ¢ <, ts>1,
Cluster(es) = s = 9)
HCLT, ¢ >1., ts <l
HCHT, ¢ > 1., ts> 1.
Subsequently, the analysis is applied to the comments produced by each expert. Let
¢j be an expert who has made M; comments {cjl, Cjas- -, CiM; }. For each comment cji, the

language model M computes a clarity score sﬁaﬂty and a trust score S;Z?“St, both in the
interval [0, 1].
Trust {
LCHT HCHT
05 Clarity c;
0l5
LCLT

0o
\v)

Figure 3. Behavioural clusters of experts based on their clarity and trust scores.
For each expert ej, two score vectors are constructed:

clarity _ [ clarity clarity clarity
S; —{sjl /S ,...,stj , (10)

trust __ trust _trust trust
s —{sjl Sj2 e SiM, } (11)

Then, the average clarity and trust scores for expert ¢; are calculated as

M:
] .
~clarity 1 clarity
S]- = 4M] ;Sji ’ (12)
i=1
M:
1 ]
strust trust
5t = — ) st (13)

/ M; !

Ny
I

1

Using the thresholds /c and I; defined in the clustering phase, expert ¢; is assigned to a
behavioural group according to
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LCLT, s-]?lar“y <l, st
LCHT, s-;?lar“y <l, st
HCLT, s-;?l"““y >, st
HCHT, gj.lar“y >, St >

Cluster(e;) = (14)

This classification enables a nuanced weighting of expert inputs in the aggregation
process, taking into account both their evaluative judgments and the qualitative nature of
their communication style. It is important to note that the current implementation employs
fixed mid-point thresholds (0.5) for both clarity and trust, reflecting the natural semantic
boundary between low and high values in the normalised [0, 1] scale. This choice ensures
balanced group distributions and interpretability. However, the framework is designed
to be modular, and the thresholds can be adjusted or derived from the data. Alternative
approaches—such as k-means clustering, Gaussian mixture models, or quantile-based
segmentation—can be adopted to dynamically determine group boundaries based on the
statistical properties of the sentiment distributions. This flexibility allows the method to be
adapted to different contexts while preserving behavioural interpretability.

3.4. Derivation of Intra-Group Preference Structures

Once experts have been classified into behavioural groups according to their clarity
and trust scores, the next step consists of deriving a preference matrix for each group. This
process synthesises the individual evaluations within each behavioural cluster, creating an
intra-group preference structure that reflects both the judgments and the communicative
traits of its members.

Let G = {LCLT, LCHT, HCLT, HCHT} be the set of behavioural groups derived in
Section 3.4. Each group G € G contains a subset of experts Ug C E whose communicative
profiles—measured in terms of clarity and trust—are similar. For each expert e; € Ug,
let P; denote their fuzzy preference relation, following the representation introduced
in Section 3.3.

To derive the intra-group preference relation Pg, the individual matrices Ps are aggre-
gated using the arithmetic mean, with equal weight assigned to all experts in the group.
This yields the following formulation for each pair of alternatives (i, f):

iji 1 ij L .
pG—m 2 pd, Vij=1,...,n, i#]j (15)

escl

and the diagonal entries are set as usual:

pl=05 Vi=1,...,n (16)

The resulting group-level preference matrix Pg captures the central tendencies within
each communicative group. Since the members of a group are behaviourally similar in
their clarity and trust levels, the aggregation also benefits from internal consistency. These
matrices will be used in the next stage (Section 3.6) to construct a behaviourally weighted
global preference relation.

3.5. Weight Assignment to Groups

Once the intra-group preference structures have been established (see Section 3.4),
we proceed to compute the weight of each behavioural group in order to synthesise a
global collective preference relation. These weights reflect both the distribution of experts
across the groups and the communicative quality of their interactions. To obtain the group
weights, we define a weighting scheme based on three key factors:
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1. The proportion of experts assigned to the group (membership rate).
The average clarity and trust score of the group.
3. The internal consensus among members of the group.

Let G = {LCLT,LCHT, HCLT, HCHT} denote the set of behavioural groups. For a
group G € G, let U represent the set of experts assigned to that group, and let |U¢| be the
number of experts in the group. Let m = |E| be the total number of experts.

The relative size of the group is calculated as

_ |Ug]

t
¢ m

(17)

Let sglarity and s'T"t denote the average clarity and trust scores, respectively, of expert
e € Ug (as computed in Section 3.1). Then, the average clarity and trust for group G are

= 1 clarit - 1
Co=— 2 lse 7], Te=mr7 Y, ls&™ (18)
|UG| gévffc ‘ ‘UG‘ EEZUG ‘

Let P; and P; be the fuzzy preference matrices of any two experts ¢;,¢; € Ug. The
consensus between them is defined using a normalised distance function:

2
n n 6z __ 1,0z
\/25_1 227?7:&% (Pi P; )

dis(P;, Pj) =1 — " =1) (19)
The average consensus within the group is computed as
2 Ug| -1 |Ug|
Consg = ———+—— dis(P;, P; (20)
Ugl?+|Ugl = j=1-2+1 (P

Combining the above elements, the unnormalised weight for group G is given by

wg = </tc . éc 'TG -Consg (21)
Finally, the weights are normalised to ensure they sum to one:

wa

Wg (22)

 Yoeg Wo

These normalised weights W capture the relative importance of each behavioural
group in the aggregation process. Groups with higher communicative quality (as reflected
in clarity and trust) and greater internal consensus will have a stronger influence on the
final collective preference relation.

To facilitate interpretation, it is useful to consider the conceptual meaning of each term
in the weighting formula. The parameter ¢ represents the relative size of the behavioural
group, while Cg and T correspond to its average clarity and trust scores, respectively.
The term Consg captures intra-group consensus and thus reflects the internal coherence
of evaluations. The combined expression integrates these dimensions multiplicatively
to ensure that groups with greater size, communicative quality, and agreement exert
proportionally more influence on the final aggregation.

3.6. Evaluation of Consensus Dynamics

The consolidation of a collective decision within a multi-agent system is contingent
upon the presence of a sufficient degree of alignment across divergent behavioural groups.
In the proposed framework, the evaluation of consensus dynamics serves as a critical
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checkpoint, ensuring that the integration of intra-group preferences into a final collective
decision is grounded in inter-group concordance rather than procedural aggregation alone.

This process is conceptually structured into two sequential stages. First, a formal
quantification of the consensus degree among the distinct behavioural groups is performed.
Second, this empirical value is contrasted with a predefined consensus threshold, denoted
a € [0,1], which operationalises the minimal acceptable standard for agreement prior to
decision ratification [44].

Let G = {LCLT,LCHT,HCLT, HCHT} denote the set of behavioural archetypes iden-
tified through clarity—trust profiling. For each group G € G, let C represent the intra-group
preference matrix derived in Section 3.5. These matrices are constructed via intra-cluster
aggregation and capture the representative attitudinal disposition of the group toward the
decision alternatives.

To evaluate inter-group consensus, we invoke the distance metric previously defined in
Equation (19), now applied to the aggregated matrices Cg, and Cg;. The overall consensus
score is calculated as the mean pairwise proximity between all distinct group matrices:

Consensus = |g(|gz_1> G,.,szeg dis(Cg,, CG].) (23)
Gi<G;j
Given that |G| = 4, this simplifies to
2 3 4 )
Consensus = 0 l; j;l dis(Cg,, Cg;) (24)

where dis(+, -) denotes the normalised Euclidean divergence between preference matrices.

This metric captures the structural alignment of aggregated preferences across be-
havioural segments. Should the resulting consensus score satisfy Consensus > «, it is
inferred that the behavioural groups exhibit sufficient coherence to proceed with the deriva-
tion of the final collective preference relation and the corresponding ranking of alternatives.

Conversely, if the consensus falls below the required threshold, the system initiates
a feedback-driven deliberation protocol. This mechanism seeks to foster convergence by
encouraging inter-group dialogue and the reconsideration of evaluative stances. Addi-
tionally, experts whose communicative behaviour impedes consensus—particularly those
manifesting persistently low clarity or trust metrics—may be prompted to adjust their
rhetorical approach to facilitate mutual understanding.

To prevent indefinite deliberative cycles, an upper bound R € N is imposed on
the number of consensus iterations, consistent with best practices in dynamic consensus
models [45]. If, after R rounds, the consensus score remains below «, the decision-support
system proceeds to synthesise the global preference relation using the most recent intra-
group matrices and their corresponding behavioural weights, thereby ensuring procedural
closure and decision tractability.

3.7. Calculating the Collective Preference Relation

Upon construction of the intra-group preference matrices Cg for each behavioural
cluster G € G = {LCLT, LCHT, HCLT, HCHT} and the derivation of their corresponding
behavioural weights W (as outlined in Section 3.6), it becomes possible to synthesise a
global collective preference relation, denoted Cgjppal-

This matrix encapsulates the evaluative consensus of the entire expert panel, in-
tegrating both individual judgments and the qualitative communication characteristics
embedded in group formation. To perform the aggregation, we adopt a weighted arithmetic
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mean across the group-level matrices [46,47]. Formally, the collective preference matrix is
defined as

chlobal:G;gWG'PlC]; VZ,]:l,,Tl,l#] (25)

where pg represents the pairwise preference value between alternatives x; and x; within
group G, and W is the normalised behavioural weight assigned to group G.

This procedure ensures that the final preference matrix Cgjopa1 is not merely a nu-
merical fusion of evaluations but a sentiment-informed synthesis that acknowledges the
deliberative and rhetorical profiles of the decision participants.

3.8. Creating the Ranking of Alternatives

Once the global collective preference relation Cgjopa has been established (as defined
in Equation (25)), the final stage of the decision-making process involves determining a
prioritised list of alternatives that best reflect the consensus preferences of the expert panel.

To this end, we adopt the quantifier-guided dominance degree (QGDD), a well-established
operator in fuzzy decision-making frameworks [38,48]. This operator assesses the rel-
ative dominance of each alternative over the remaining ones based on the aggregated
preference values.

Formally, for each alternative xj€ X = {x1,x2,...,%4}, its QGDD score is defined as

1 n ]'5
QGDD; = n—1 * PCaiobal (26)
5=

s

where ijsGlobal represents the degree to which alternative x; is preferred over alternative x;
in the collective preference matrix.

The QGDD value encapsulates the average strength of an alternative in dominating
others, thus serving as a scalar representation of its overall support within the group.
Higher QGDD values indicate stronger collective endorsement.

The final ranking of alternatives is then obtained by sorting the set X in descending
order of their corresponding QGDD scores:

Rank(X) = s0Ttgesc ({QGDD]-};?:l) 27)

This ranking reflects the collective evaluative landscape, filtered through the lens of
behavioural group weighting and sentiment-aware aggregation. By relying exclusively on
QGDD, the method emphasises dominance as the primary mechanism for selecting the
most preferred alternatives in large-scale group decision contexts.

3.9. Computational Cost Comparison: With vs. Without Grouping

To support the methodological rigour of the proposed approach, we present a formal
comparison of the computational complexity between the grouping-based model and a
baseline scenario where all expert preferences are aggregated directly without sentiment-
based clustering.

Let m be the number of experts, n the number of alternatives, k the average number
of comments per expert, L the average comment length in tokens, and g the number of
behavioural groups (typically ¢ = 4, as defined in Section 3.3).

Without Grouping
In the non-grouped case:

*  Sentiment analysis: Not performed. Cost: O(1).
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¢  Preference aggregation: Aggregating m fuzzy preference matrices into a single matrix:
O(m - n?).

¢  Consensus evaluation: Optional or trivial since there are no intra-/inter-group layers.
However, if full consensus evaluation between individual experts is required, this
would involve O(m? - n%) complexity due to the m - (m — 1) /2 pairwise comparisons
of fuzzy preference matrices. This becomes significant in large-scale scenarios and is
one of the motivations for reducing the consensus space via behavioural grouping.

Total complexity: O(m - n?).

With Grouping (Proposed Method)

¢ Sentiment extraction: Each of the m - k comments is analysed by an LLM, with
per-token inference cost: O(m - k- L).

*  Grouping: Sentiment vectors clustered into ¢ = 4 groups: O(m) (threshold-based).

e Intra-group aggregation: O(m - n?) (same as non-grouped).

*  Group weighting: Involves consensus measures among 1 matrices: O (m? - n?) in the
worst case, but reduced to O(g - n?) due to grouping.

»  Final aggregation: Combine ¢ group matrices into global consensus: O(g - n?).

Total complexity:
O(m-k-L+m-n>+g-n?)

Since ¢ < m and L is bounded, the dominant term is O(m - k - L + m - n?), which
remains scalable.

While the grouped model introduces additional overhead due to sentiment analysis,
it reduces the cost of consensus measurement by avoiding m? pairwise comparisons.
Therefore, in scenarios with large m, the proposed approach is computationally competitive,
particularly when k is moderate and grouping stabilises consensus formation. In contrast to
non-grouped approaches that may require O(m?) comparisons for consensus computation,
our method reduces this to O(g?) comparisons among aggregated group matrices, yielding
significant computational savings while preserving decision robustness.

4. Case Study

To illustrate the proposed method, this section presents a case study involving a
simulated group decision-making process among 20 domain experts focused on strategic
priorities in digital policy. The expert panel is constructed to reflect a range of commu-
nicative behaviours. Each expert contributes a set of 10 text-based comments, crafted to
display variation in clarity and interpersonal tone, either by manual generation based on
typical discourse patterns or by adapting examples from real-world consultation settings.
While the present case study is simulated, it is constructed using representative behavioural
profiles and discourse examples inspired by real consultation settings. As future work, we
aim to conduct an empirical evaluation of the proposed method with real expert panels in
order to assess its practical applicability and behavioural validity.

The model is prompted to score each utterance in terms of two behavioural dimen-
sions: clarity, understood as linguistic structure and coherence, and trust, interpreted as
constructive, respectful engagement. The resulting scores are averaged per expert and used
to classify participants into four behavioural groups. After the deliberation phase, each
expert submits a fuzzy preference matrix over a set of four digital policy alternatives. The
expert panel is denoted as E = {eq, ey, ...,ex0}. The context involves advising a national
digital agency on the most appropriate public investment measures to improve the digital
infrastructure and governance of the country.

The set of alternatives under consideration is defined as X = {x1, x2, x3, x4}, where
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*  xj: increase investment in cybersecurity systems.

*  xo: expand broadband infrastructure in rural areas.

*  x3: promote digital literacy and education programs.

* x4 develop Al governance frameworks and regulations.

Each expert contributes a set of 10 textual comments during a moderated online discus-
sion phase. These texts can range in length from a brief statement to an extended argument.
The use of the term “text” is intended to generalise across this variability. If an expert
provides fewer than 14 comments, the remaining entries are considered neutral placehold-
ers—i.e., empty texts—to maintain uniformity in the sentiment aggregation process. This
ensures that each expert’s behavioural profile (clarity and trust) can be computed on a
comparable basis. For sentiment analysis, we employed a state-of-the-art instruction-tuned
large language model capable of interpreting natural language comments through zero-shot
prompt-based scoring. Each expert comment was evaluated by prompting the model with
structured questions designed to yield scalar ratings for clarity (e.g., coherence, structure,
and intelligibility) and trust (e.g., respectfulness and constructiveness). These scores were
normalised within the [0, 1] range and averaged per expert to produce behavioural profiles.

Following the textual contribution phase, each comment is processed through a
transformer-based sentiment analysis model, which assigns a pair of scores for clarity and
trust. Based on these scores, each expert is classified into one of four behavioural groups:

*  high clarity-high trust (HCHT);
e high clarity—low trust (HCLT);
* low clarity-high trust (LCHT);
e low clarity-low trust (LCLT).

This behavioural classification enables the construction of intra-group preference ma-
trices, followed by the weighting and aggregation steps described in Section 3.1. The goal is
to derive a sentiment-aware collective preference structure that reflects not only the experts’
evaluations of the alternatives but also the communicative quality of their participation.

Examples of comments include

*  “That proposal completely ignores rural communities.” (low trust-moderate clarity);
o “Istrongly support expanding broadband; it’s essential.” (high trust-high clarity);

*  “Your idea lacks a long-term perspective.” (low trust-high clarity);

*  “Great point about inclusion; very well argued.” (high trust-high clarity).

After the discussion phase, each expert submits a fuzzy preference relation Ps over the
four alternatives. Some representative matrices include

— 04 00 05 - 08 01 09

06 — 04 07 02 — 03 08
P = Pg =

1.0 06 — 09 09 07 — 08

05 03 02 - 01 02 02 -

Following the sentiment extraction phase described in Section 3.3, each expert is
assigned to one of four behavioural groups based on their average clarity and trust scores:

*  Grcrr: low clarity—low trust;

*  Grcpr: low clarity-high trust;
*  Gpgcrr: high clarity-low trust;
*  Gpycpgr: high clarity-high trust.

The resulting distribution of experts and corresponding behavioural metrics are shown
in Table 1.
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Table 1. Group composition and behavioural metrics.

Group #Experts Avg. Clarity Avg. Trust Intra-Group Consensus

GLcir 5 0.17 0.22 0.69
Grenr 1 0.20 0.79 0.76
Greir 6 0.88 0.26 0.56
Grent 5 0.91 0.84 0.68

Each group’s internal preferences are then aggregated using the arithmetic mean to
obtain intra-group preference matrices. For instance,

041 0.29 0.53 — 043 025 0.53

Ce _ 059 — 034 059 Co _ 057 — 022 049
LeLr 071 066 — 0.82 LCHT 075 078 — 055
047 041 018 - 047 051 045 —

— 054 029 0.52 — 049 035 048

Co _ 046 — 032 045 Co _ 051 — 022 048

HCLT 071 068 — 0.82 HCHT 065 078 — 0.66
048 055 018 — 052 052 034 —

The group weights are calculated according to Equation (22), combining the size of the

group, average clarity, average trust, and intra-group consensus. The results are presented
in Table 2.

Table 2. Group weights based on behavioural profiles.

Group Normalised Weight
Grerr 0.1647
GLcHT 0.2288
GHcerr 0.2574
GHCHT 0.3490

For example, consider the group Ggcyr with size proportion tg = 0.25, average clarity
Cg = 091, trust Tg = 0.84, and consensus Consg = 0.68. Applying Equation (21), the
unnormalised weight is computed as wg = +/(0.25-0.91-0.84 - 0.68) ~ 0.395. Following
normalisation across all groups (Equation (22)), this yields a final weight of approximately
0.349, consistent with the value reported in Table 2.

To ensure that the aggregation reflects a reasonable level of agreement across be-
havioural groups, the inter-group consensus is calculated using the distance metric defined
in Equation (24). Table 3 reports the pairwise consensus values:

Since the average consensus value exceeds the threshold & = 0.85, the process proceeds
without further deliberation. The final collective preference matrix is obtained using
Equation (25):

— 0.4760 0.3018 0.5100
0.5240 — 0.2655 0.4927
0.6982 0.7345 — 0.7024
0.4900 0.5073 0.2976 —

CGlobal =
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Table 3. Inter-group consensus metrics.

Group Pair Consensus Score
Grerr, GLeHT 0.9629
Grerr, GHerr 0.9773
Grerr, GHeHT 0.9700
Grent, GHerr 0.9631
Greur, GHeHT 0.9802
Grcrr, GHeHT 0.9752

Average 0.9714

Finally, the ranking of alternatives is derived using the QGDD operator (Equation (26)).
The resulting values are shown in Table 4.

Table 4. QGDD values using the collective preference relation Cg.

Alternative X1 X0 X3 X4
QGDD 0.4293 0.4274 0.7117 0.4316

Finally, we employ Trillo’s Theorem [49] to verify the internal consistency and coher-
ence of the group decision-making outcome. This theorem establishes that, if a unique
alternative appears at the top of the aggregated ranking obtained through the Quantified
Group Decision Degree (QGDD), and the variance of individual preferences is low for that
alternative, then the result can be considered both valid and consensual.

By sorting the alternatives in descending order of QGDD, the resulting ranking is

Ranking : {x3, x4, %1, %2}

According to the theorem, the clear prominence of x3 at the top of the list—combined
with its low preference dispersion—confirms the robustness and legitimacy of the group
decision, and also reveals a bias among the experts in favour of x3: promoting digital literacy
and inclusion programs.

Comparative Scenario Without Grouping

To assess the added value of the behavioural grouping process, we conducted a com-
parative evaluation using the same expert preference matrices but omitting the sentiment-
based clustering stage. In this baseline scenario, all individual fuzzy preference matrices
were directly aggregated using an unweighted arithmetic mean:

di 1 ¢
pijet = o Y. v (28)
s=1

This yielded the following collective preference matrix:

— 04650 03112 0.4995
Cor = 05350 — 02693 0.4910
rect 0.6888 0.7307 —  0.7051

05005 0.5090 0.2949  —

The QGDD scores for the alternatives were as follows (see Table 5):
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Table 5. QGDD scores for the non-grouped scenario.

Alternative QGDD
X1 0.4252
X3 0.4317
X3 0.7082
X4 0.4348

The resulting ranking was
Ranking (no grouping): {x3, X4, X2, X1}

While the top alternative (x3) remains unchanged, the scores for x; and x4 are closer,
and the influence of communicative behaviour is no longer present. This illustrates how
grouping and behavioural weighting enhance the interpretability and robustness of the
final decision, particularly when preferences are heterogeneous or conflicting. Without
grouping, high-clarity or high-trust contributions exert no additional influence, which may
obscure the quality and credibility of the consensus. The grouped model also showed
greater stability under weight perturbation, suggesting its suitability for environments
with variable communication behaviour or uncertain participant quality.

5. Discussion

This study proposes a novel perspective on LSGDM by incorporating behavioural
signals derived from expert discourse. Rather than relying solely on declared preferences,
the model interprets how opinions are expressed, particularly in terms of clarity and trust,
which are quantified as core behavioural indicators during expert grouping. Central to this
approach is the use of LLMs, whose contextual understanding enables the extraction of
nuanced communicative patterns often invisible to traditional techniques.

The practical motivation behind sentiment-informed grouping lies in its ability to man-
age heterogeneity in deliberative quality. In traditional LSGDM, all preference inputs are
treated equally regardless of whether they come from vague, incoherent, or aggressive con-
tributors. By introducing clarity and trust as communicative weights, the method promotes
interpretability and fairness, rewarding constructive participation. This is particularly
useful in large-scale panels where it is infeasible to manually moderate or validate each
input. Our case study demonstrates that such behavioural weighting leads to consistent
decisions even under expert diversity. Although further empirical validation is planned,
the results already suggest the framework’s robustness and potential utility.

While the proposed framework assumes that expert discourse is generated in good
faith, real-world environments may present noisy or even adversarial contributions. For
instance, actors could deliberately manipulate linguistic cues to secure membership in high-
weight groups (e.g., by artificially inflating clarity or trust markers) or to degrade consensus
quality. Such vulnerabilities warrant careful consideration. Potential mitigation strategies
include the integration of anomaly detection mechanisms to identify behavioural profiles
that deviate significantly from normative patterns, the use of regularisation techniques to
limit the impact of outlier groups on global aggregation, and cross-validation of sentiment-
derived features with historical participation records. Future work should also explore
adversarial robustness benchmarks and stress-testing scenarios to ensure that sentiment-
aware consensus models maintain integrity under strategic manipulation.

The contribution of NLP, and specifically LLMs, is foundational. The formation of ex-
pert groups is driven by linguistic features, and the weighting mechanism used to modulate
group influence depends directly on these behavioural indicators. Without this semantic
layer, the model would be incapable of capturing the affective and interpersonal dynamics
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that are crucial to realistic consensus formation. The structure of the weighting formula
reflects this as it integrates discourse-derived metrics in a way that would be infeasible
through classical methods. A key innovation lies in repositioning expert commentary from
a peripheral role to a central mechanism of influence. The deliberative exchange is no
longer a preliminary step but a functional component of the system itself. As a result, not
only the content but also the form of expression becomes relevant, affecting how opinions
are grouped and weighted.

This framework points toward a new generation of decision-support systems—those
that do not merely quantify preferences but interpret discourse as a core input. Future work
may explore how such models can adapt to evolving conversation dynamics in real time, fur-
ther bridging the gap between natural communication and structured collective reasoning.

The proposed approach offers several key advantages that reinforce its suitability for
complex large-scale decision-making environments:

¢  Sentiment-based expert classification: Through LLM-driven sentiment analysis, the
method evaluates the emotional tone and assertiveness of expert comments, enabling
the identification of behavioural profiles. Experts are grouped accordingly, improving
interpretability and reducing the complexity of consensus formation.

*  Linguistic-informed weight adjustment: The influence of each group is adjusted based
on the tone of its members” discourse. Groups marked by respectful and construc-
tive communication receive higher weights, fostering fairer influence allocation and
promoting collaborative engagement.

*  Scalability to large expert panels: As consensus is computed within behavioural
groups, the model avoids exhaustive pairwise comparisons. This design ensures
efficiency and adaptability regardless of the number of participants involved.

The application of sentiment analysis in LSGDM has attracted increasing attention in
research. Nonetheless, studies addressing the integration of multidimensional behavioural
factors within flexible and dynamic decision-making frameworks remain scarce. The ap-
proach proposed herein distinguishes itself by classifying experts according to the affective
qualities of their textual inputs, specifically measuring both positivity and aggressiveness
through advanced LLMs. This contrasts with prior work such as [50], which relies on
unidimensional positivity scoring of words to categorise comments before group decision-
making. Similarly, while [51,52] develop consensus models that emphasise structural
preference aggregation and predefined cooperation parameters in the social and financial
domains, our methodology derives behavioural insights directly from the discourse of
experts, embedding sentiment analysis as a key component of consensus formation. More-
over, although [28] employs sentiment analysis within group decision contexts, it is limited
to a single emotional dimension, whereas our model’s multidimensional sentiment frame-
work facilitates more granular expert grouping and more accurate weight adjustments
reflective of communicative dynamics. Finally, building on the work of [53], which utilises
sentiment grouping focused on positivity, our method extends this paradigm by incorpo-
rating aggressiveness as an additional critical dimension, thus enhancing the behavioural
modelling capabilities and enabling a dual-purpose use of sentiment metrics for group-
ing and dynamic weighting, ultimately promoting a more equitable and precise group
decision-making process. In contrast with prior sentiment-aware GDM approaches—such
as [50], which relies on simple positivity scoring, or [28], which uses static emotional di-
mensions—our method introduces a dual-purpose sentiment extraction mechanism that
informs both expert grouping and group influence weighting. Furthermore, while models
such as [39,41] incorporate behavioural factors like trust or non-cooperation, they often
require predefined structures or rule-based mechanisms. By contrast, our model derives
behavioural insights directly from discourse using large-scale language models, enabling
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richer context-sensitive interpretation of interactional tone. This comparison underscores
the novelty of our approach as a flexible LLM-driven framework for behavioural modelling
in group decision-making.

To evaluate the robustness of the collective ranking to fluctuations in behavioural
weights, we performed a perturbation analysis in which each group weight was adjusted
by £10%, followed by renormalisation to preserve a total sum of 1. The resulting changes
in the quantifier-guided dominance degree (QGDD) scores revealed minimal variation: the
top-ranked alternative (x3 in our case study) consistently retained its position, while the
remaining alternatives exhibited shifts in ranking of at most one position. These findings
suggest that the proposed aggregation framework demonstrates satisfactory stability under
moderate deviations in behavioural weighting. Nevertheless, scenarios involving extreme
imbalance or adversarial manipulation of weights could lead to ranking volatility. Future
research should formalise sensitivity indices and develop weight-regularisation strategies
to guarantee decision resilience under such conditions.

A notable limitation of the present framework is its reliance on a single transformer-
based LLM for sentiment extraction and behavioural profiling. While this design choice
ensures computational efficiency and methodological simplicity, it also exposes the system
to potential biases and performance limitations inherent to a specific model. Future work
should explore ensemble-based approaches or the integration of multiple LLMs trained
on heterogeneous corpora. Such strategies could improve robustness by reducing model-
specific variance and enhancing generalisability across domains and linguistic contexts.
Additionally, incorporating confidence calibration and inter-model agreement metrics
would allow for more reliable behavioural assessments, ultimately strengthening the
fairness and interpretability of the consensus-building process.

6. Conclusions

This study introduces an innovative framework for LSGDM that incorporates the
computational modelling of expert behaviour—specifically the latent dimensions of aggres-
siveness and attitudinal polarity—into the decision-making architecture. Contemporary
approaches to GDM have traditionally prioritised preference aggregation and consen-
sus measurement while largely neglecting the rich behavioural signals embedded in the
deliberative discourse. Such omissions risk oversimplifying the social dynamics that un-
derpin collective decisions, particularly in settings marked by heterogeneity of opinion and
interaction style.

Our proposed methodology departs from conventional lexicon-based sentiment anal-
ysis by employing advanced LLMs capable of capturing nuanced pragmatic and affective
features in textual communication.

The case study presented in this work illustrates the potential of using large lan-
guage models (LLMs) to infer behavioural signals—such as clarity and trust—from expert
discourse and to incorporate them into the consensus-building process. However, we
acknowledge that the current implementation remains exploratory and serves primarily as
a conceptual and methodological proof of principle.

While the proposed framework offers a promising integration of behavioural mod-
elling and decision theory, further empirical validation is required to confirm its applicabil-
ity across diverse real-world contexts. In particular, systematic evaluations, comparative
benchmarks, and real-user deployments will be necessary to substantiate the benefits
suggested by this preliminary study.

An important limitation of the current framework lies in the potential bias of the
LLM-based sentiment analysis. Since large language models are trained on data that
may reflect cultural, linguistic, or social biases, the clarity and trust scores assigned to
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expert comments could be influenced by stylistic or regional variations. While we im-
plemented prompt standardisation and score normalisation to reduce variance, further
work is needed to ensure fairness and robustness across diverse populations. Future ex-
tensions of this method should incorporate bias detection protocols, multilingual fairness
benchmarks, and culturally adaptive calibration strategies to enhance the reliability of
behavioural assessments.

This integration of behavioural modelling with decision theory opens promising av-
enues for further inquiry. Notably, future work could focus on constructing a standardised
cross-domain behavioural corpus enriched through LLM-based annotation, which would
serve as a benchmark for evaluating interpersonal dynamics in deliberative contexts. Such
a resource would enhance the generalizability of behavioural GDM models and support
the development of more ethically grounded, socially aware decision-support systems.
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