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Spectral unmixingasapreprocessingstep
for SVM-based material identification in
historical manuscripts
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Whenperformingmaterial identification fromhyperspectral images, a commonchallenge is themixing
of spectral signals at boundaries between materials. This study investigates spectral unmixing as a
preprocessing step to improve machine learning-based classification of inks and writing supports in
documents. Hyperspectral data of mock-ups and historical samples were acquired in the VNIR and
SWIR ranges, includingmetallo-gallate, carbon-containing, and non-carbon-containing inks (sepia or
mixtures with iron gall) applied to paper and parchment. A subtractive mixing model with automatic
endmember extraction was used to generate presence maps and exclude pixels below a
concentration threshold. Three support vectormachine classifiers were trained using (1) unprocessed
reflectance spectra, (2) reconstructed spectra from unmixing, and (3) pure unmixed spectra.
Reconstructed spectra provided the best overall performance and classificationmaps, while unmixed
spectra outperformed in ink identification, particularly bleed-through detection. Unmixing also
revealed areas of lower classification confidence, offering potential for broader hyperspectral
applications.

Understanding the material composition of manuscripts and historical
documents remains fundamental for their study, conservation, and
authentication1. Inks and writing support analysis allows researchers to
detect alterations, address degradation processes effectively2, establish a
plausible date, and understand the historical context3. This makes ink and
writing support analysis a key tool for codicologists and historians who
explore both the content and material composition of manuscripts. His-
torically, different types of inks have been used across cultures and periods,
revealing much about sociocultural and technological shifts in document
production4.

The use of hyperspectral imaging (HSI) to obtain compositional
information has gained prominence in recent years. HSI combines
spectroscopy and imaging technologies, yielding spatial information
across a wide spectral range. It typically ranges from the ultraviolet to
the short-wave infrared (SWIR), in a non-invasive and relatively fast
data acquisition. The reflectance spectrum captured by HSI is char-
acteristic of the material under study, enabling both material iden-
tification and spatial mapping. Initially, the targeted fields were
remote sensing5, food industry6, and medicine7 among others8. In
addition, HSI has been successfully applied in various cultural heri-
tage contexts, including ink and pigment identification in historical
documents9–12 and artworks13–16.

Reflectance spectra have great potential for material classification even
without any additional pre-processing steps, since they containmuch of the
necessary information for characterizing the constituent materials. Never-
theless, especially for ink identification, spectral similarity in the visible
range, the use of different recipes for the same ink type, and the degradation
stateof thematerials can complicate the process. In particular, ink thickness,
ink concentration or stroke width variations across different parts of text
introduce further complexity. For instance, at the edges of strokes, in thin
traces, or in degraded areaswhere the ink layer is partially lost or the support
has been affected by corrosion, the interaction between ink and writing
support is stronger, either because the ink contributes less or because it
produces changes in the spectra of the writing support in these areas. This is
more prominent in the SWIR region, where radiation can penetrate certain
inks, such asmetallo-gallate types, making them distinguishable from other
ink types and the writing support itself 9,17. As a result, the spectral response
of the ink may vary depending on the type and condition of the writing
support, since modern and aged materials have different reflectance
properties18.

In pixel-wise classification, assigning a single material label to mixed
pixels, where both ink and writing support contribute to the spectrum in
different ways19, is often inaccurate. This leads to classification errors and
biased performance evaluation. Previous studies have shown that such areas
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are frequently misclassified, for example, as pencil marks20 or as different
types of ink9,21. These limitations reduce the accuracy of classifiers trained
and tested directly on unprocessed spectral data.

The difficulty in detecting boundaries betweenmaterials is not specific
to cultural heritage applications but is also reported inother domains ofHSI.
Sifnaios et al.22 estimated that 97.45% of classification errors occur at the
borders of objects and background. In remote sensing, severalmethodshave
been proposed to detect edges or boundaries23,24, most of them based on
neural networks and deep learning approaches. While these methods can
model complex patterns, theyoften require large annotateddatasets and can
be affected by overfitting, underfitting, class imbalance, high computational
cost, and limited interpretability.

In close-range HSI, the application of linear spectral unmixing (LSU)
was proposed as the first step for detecting the boundaries of different
objects25. The goal of spectral unmixing is to decompose the measured
spectrum into constituent pure component spectra (endmembers) and their
proportions (concentrations), with results highly dependent on the selected
input endmembers. Unlike typical supervised classification tools such as
SAM (Spectral AngleMapper), LSU generates abundancemaps rather than
discrete class labels. Spectral unmixing offers advantages over deep learning
methods for regression modeling, including physical interpretability,
computational efficiency, and ease of implementation26,27. This approach
has been successfully applied in the analysis of pigment mixtures in
paintings15,16,19,28–30, but its application to documents of historical interest
remains underexplored.

This study addresses a limitation in the hyperspectral analysis of the
written parts in historical documents: classification errors that occur when
ink and writing support materials simultaneously contribute to the reflec-
tance spectrumof a pixel. Tomitigate this issue, we developed an automatic
preprocessing step based on spectral unmixing, applied prior to classifica-
tion andmodel evaluation, to separate the spectral contributions of ink and

writing support during both training and testing. Support Vector Machine
(SVM) was selected as the classification algorithm, based on prior evidence
identifying it as the most effective traditional machine learning model for
historical ink classification9. A total of five classes were defined to allow
preliminary material identification in most common cases for historical
documents: puremetallo-gallate inks (MGP), carbon-containing inks (CC),
non-carbon-containing inks (NCC), parchment, and paper. The proposed
methodology, with two variants, improves classification accuracy and
robustness, and besides it also identifies pixels affected by spectral mixing.
This additional information allows researchers to recognize areas where
classification confidence may be lower. Although the approach is demon-
strated in the context of ink analysis in historical documents, the funda-
mental challenge of mixed pixel classification is common across HSI
applications, suggesting broader applicability of this preprocessing strategy
for improving material classification reliability in contexts where the pre-
sence of mixed spectra compromises classification approaches.

Methods
Hyperspectral imaging capture and data preparation
The training and test samples used in this study are identical to those
presented in López-Baldomero et al.9, enabling direct comparison with
previous resultswithin certain limits imposedbymethodological differences
between the approach in9 and the one described in this study. Mock-up
samples were created following traditional historical recipes31,32 (see
refs. 18,20 for details). They consist in metallo-gallate inks, sepia, and
carbon-based inks, along with their mixtures, applied to different writing
support materials (parchment and papermanufactured from either cotton,
linen, hemp or a mixture of cotton and linen) (see Fig. 1 (a) and Figures 7
and 8 in ref.18). Historical documents were obtained from two archives, the
Provincial Historical Archive and the Archive of the Royal Chancellery, in
Granada, Spain. All documents contained different ink types applied to

Fig. 1 | Examples of samples from different subsets. aMock-ups of historical inks
on cotton paper and parchment; b historical documents: (1) manuscript from the
Provincial Historical Archive of Granada, (2) illuminated manuscript from the

Archive of the Royal Chancellery of Granada, (3) family tree document from the
same archive; c hyperspectral image acquisition of an illuminated manuscript using
the Pika IR+ (SWIR) camera.
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various writing supports, with materials previously characterized using
complementary analytical techniques, including Scanning Electron
Microscopy (SEM), FourierTransform Infrared (FTIR) spectroscopy,X-ray
fluorescence (XRF), and optical microscopy (OM)33–36. The document sets
comprised: (1) 15th-century Arabic manuscripts, (2) lawsuits of nobility
from the 15th-17th centuries, and (3) a genealogical tree book from the
16th-17th centuries (see Fig. 1 (b)).

Hyperspectral imaging was performed using two line-scan cameras
from Resonon Ltd. (Bozeman, Montana, USA): a Pika L covering the visible
to near-infrared range (VNIR: 380–1080 nm)with 300 spectral channels and
a sensor size of 900 pixels/line, and a Pika IR+ covering the short-wave
infrared range (SWIR: 888–1732 nm) with 368 spectral channels and a
sensor size of 640 pixels/line. Considering the working distances of the two
cameras, this results in pixel sizes of 0.16 and 0.22mm for the VNIR and
SWIR cameras, respectively. An example of the setup is shown in Fig. 1 (c).
The system included a linear translation stage to move the object and four
halogen lamps for illumination. Due to low signal-to-noise ratios at the
spectral extremes, theacquired spectrawere cropped, resulting in121spectral
bands in the VNIR range (400–1000 nm) and 161 bands in the SWIR range
(900–1700 nm), both with 5 nm sampling intervals after linear interpolation
for obtaining regularly spaced bands. Reflectance calibration was performed
using a 90% reflectance reference tile made by Sphere Optics Zenith Lite.

Spatial registration betweenVNIR and SWIR full document pageswas
performed using the MATLAB Registration Estimator App (R2023a, The
MathWorks, Inc., Natick, MA, USA) to ensure pixel-wise correspondence
across spectral ranges. Each VNIR cube, with higher spatial resolution, was
registered onto the SWIRcube tominimize spatial artifacts in the fuseddata.
Hence, the final spatial resolution of the registered cubes was that of the
original SWIRcubes. Small regions of interestweremanually extracted from
registered images, and semi-automatic ground truth annotation was per-
formed to identify areas containing different materials, following the
methodology detailed in López-Baldomero et al.9.

For data fusion, a low-level approach was initially applied by con-
catenating VNIR (400–950 nm) and SWIR (955–1700 nm) ranges. How-
ever, differences in sensor characteristics, spectral bandwidths, signal-to-
noise ratios, and slight registration misalignments due to movement of the
sample between VNIR and SWIR captures, affecting the Bidirectional
ReflectanceDistribution Function (BRDF)37 created a spectral discontinuity
in the 950-955 nm transition region. To address this issue, a logistic splicing
correction method38 was applied to achieve smooth spectral concatenation
between the two ranges.

Unmixing preprocessing
As mentioned in the Introduction, spectral unmixing methods involve
decomposing amixedpixel ormixed target spectrum, composedof different
pure spectral signals, into its constituent spectra, known as endmembers
(EMs), and determining their relative concentrations. Unmixing requires
assuming amixingmodelϒ(λ) = f(E(λ,q),C(q)) on aper-pixel basis39, where
E(λ, q) = [ρ1(λ), ρ2(λ), …, ρq(λ)] denotes the spectral library containing
spectral reflectances for each of the q EMs, and CðqÞ ¼ ½α1; α2; :::; αq�>
represents the concentration vector of individual abundances. In our case,
these abundances refer to the mixing weights, that is, the relative optical
contributions of each EMwithin themixed spectrumof a pixel. The process
consists of two main steps: EM extraction and concentration estimation.

The EM extraction methods aim to estimate the spectra of the main
raw constituent materials present in a scene. In the context of historical
documents, where ink is applied on paper or parchment supports, two
distinct EMs are expected: one corresponding to the ink and one to the
support material. Note that the inkmay consist of a mixture of different ink
types; however, in thiswork, our objective during the unmixing step is not to
identify individual ink components, but to separate the spectral contribu-
tions of ink and writing support in order to assist the subsequent classifi-
cation performed by the SVM model. Therefore, the first step of our
unmixing preprocessing approach was to automatically extract these two
EMs from each sample:

1. Ink EM (EM1): The ink reflectance spectrum was extracted using
ground truth (GT) annotations combinedwithmorphological erosion.
The erosion was applied to select pixels from the central areas of ink
strokes (white region in Fig. 2a.), removing edge pixels where spectral
mixingoccurs.A square structuring element of 5 pixelswas selected for
border removal, reduced to 3 pixels for samples with very thin strokes.
The spectra of the selected pixels were then averaged to obtain the
reflectance spectrum of EM1 (ρ1), the ink EM. The resulting spectrum,
along with its standard deviation, is shown below a. in Fig. 2. This
approach ensured that only pixels with minimal writing support
contribution were included in the ink EM.

2. Support EM (EM2): A clean area of the writing support was auto-
matically identified by sliding a 10 × 10 square window over the GT
and selecting the area that contained only background pixels and
maximized the minimum distance to the nearest ink pixel (red square
in Fig. 2b.).When a 10 × 10 square could not be accommodated due to
spatial constraints, a 4 × 25 pixel rectangle was used instead. The
spectra within this area were averaged to form EM2 (ρ2), the writing
support EM.The resulting spectrum, alongwith its standard deviation,
is shown below b. in Fig. 2.

As described above, the extraction of EMs relies on the availability of
GT annotations. These can be obtained using different binarization tech-
niques, such as those evaluated in ref.40, followed by themanual assignment
of class labels to each material, as further explained in9. Once the EMs were
extracted, the relative contribution of each to the observedmixed spectra of
each pixel (i.e. concentration maps) was calculated. This was done using a
spectral mixing model, which describes how the spectral signatures of dif-
ferent EMs combine to form the observed spectrum. In this case, a sub-
tractive mixing model41 was selected, as it provided the best results in
previous studies19:

ϒ ¼
Yq

i¼1

ραii ð1Þ

Where ϒ is the spectral reflectance of the mixture, q is the number of
candidate EMs, ρi is the spectral reflectance of the ith EM, and αi its con-
centration. This model offers several advantages, including straightforward
implementation, clear physical interpretability, computational efficiency,
and mathematical tractability that facilitates optimization and analysis.
Other mixing models can be used, including the Kubelka-Munk model.
However, its assumptions regarding layer thickness, homogeneity, and
optical properties are not compatible with the characteristics of historical
documents studied and the data available in this work42.Moreover, its pixel-
wise application is computationally demanding, making it impractical for
large hyperspectral datasets15.

The concentration of each EMwas calculated through an optimization
process using the fmincon function with the interior-point algorithm43

implemented in MATLAB®. The cost function combined two spectral
comparison metrics: the complement of the Goodness-of-Fit coefficient
(cGFC 44) and the RMSE19, as proposed in30. The sum-to-one constraint
(
Pq

i¼1 αi ¼ 1) and a lower bound of zero for the concentrations αi were
added to the optimization.

After generating the concentration maps for both EMs, threshold
values were applied to create presencemaps. Based on results frommultiple
preliminary tests, only pixels with an ink concentration greater than 50% or
a writing support concentration greater than 90% were kept. This excludes
pixels at the edges of ink strokes, where it is difficult to assign a clear label as
either ink or support due to material mixing.

Machine learning models and train/test split
Support Vector Machine (SVM) classifiers were employed due to their
superior performance for hyperspectral ink classification in previous work9.
Three SVMmodels were trained using identical configurations: a Gaussian
kernel function with a box constraint parameter of 10, as determined
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through previous optimization. Five different classes were included: pure
metallo-gallate inks (MGP), carbon-containing inks (CC), non-carbon-
containing inks (NCC), parchment andpaper, to develop classifiers versatile
enough for most historical documents.

To ensure training data quality, pixels falling outside the concentration
thresholds established in the unmixing preprocessing step (previous sub-
section) were excluded from the training set, thereby avoiding spectra with
significant ink-support mixing that could introduce classification ambi-
guity. Three different models were then trained based on different spectral
processing approaches (see Fig. 2 lower row):
• Model 1: Unprocessed spectra—This model used the unprocessed

reflectance spectra, as in9, but only considering pixels within the pre-
viously computed presence maps for ink and writing support.

• Model 2: Reconstructed spectra—In this approach, the spectra within
the presence maps were reconstructed using the subtractive mixing
model after the preprocessing unmixing step. Each spectrum was
calculated as the product of the EMs raised to their respective con-
centration coefficients.

• Model 3: Pure spectra—For each pixel within the presence maps, the
spectral contributions of ink and writing support were separated, with
each component obtained as its corresponding EM raised to its con-
centration coefficient. Unlike in Model 2, no product of the two EM
contributionswas calculated; instead, theywere kept separate.Thefinal
spectrum retained either the ink or support component, depending on
which had the highest concentration.

The same train-test split methodology used in ref.9 was applied for
direct comparison,with the keydifference that only pixels fromthepresence

maps were utilized for both training and testing. In addition to the original
three ink classes (MGP, CC, NCC), two writing support material classes
(paper and parchment) were incorporated. A total of 109 hyperspectral
samples were used for training and 36 for testing, corresponding to a
75%–25% train-test split. The class-wise distribution of training and test
samples is detailed in Table 1. Partitioning was performed at the document
level, ensuring that different samples extracted from the same document
fell into the same subset. This prevented bias in the training-test split
by avoiding situations where test samples had training counterparts from
the same document, thereby ensuring robust performance evaluation.Once
the spectra were prepared according to each model’s preprocessing
approach, they were randomly shuffled before training to prevent learning
order bias and enhance model generalization. The dataset presents class
imbalance, as shown in Table 1. However, preliminary experiments indi-
cated that usual class balancing techniques did not improve classification
performance9.

Performance evaluation
Model evaluation was performed on the test set following the same pre-
processing pipeline applied during training. For each test sample, the
reflectance spectra underwent automatic unmixing preprocessing to extract
EMs and calculate concentration and presence maps. The preprocessed
spectra were then fed into each of the three trained models: unprocessed
spectra (Model 1), reconstructed spectra (Model 2), and pure spectra
(Model 3). The classification results were used to generate pixel-wise clas-
sification maps for visual inspection.

To ensure fair andmeaningful evaluation, unmixingwas applied to the
test samples and presence maps with the same concentration thresholds as

Fig. 2 | Workflow illustrating the steps involved in the process. From sample data capture and merging, unmixing pre-processing (EM extraction and presence maps), to
training and testing the SVM classification models, with resulting classification maps and performance metrics.
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for testing were obtained (50% for ink and 90% for writing support).
Only pixels in the presence maps were used for performance metric
calculations.

This evaluation strategy addresses a fundamental challenge in mixed-
pixel classification: pixels outside the presence maps contain significant
spectral mixing of both ink and support materials, making single-label
assignment inherently ambiguous and potentially misleading. By excluding
these pixels from evaluation, the performance metrics reflect the models’
ability to classify clearly identifiable material regions, providing a more
realistic assessment of classification performance. This exclusion does not
compromise the identification of either ink or writing support, as the
materials present in the excluded pixels are assumed to be the same as
those in the classified regions. In rare cases, such as the presence of thin
strokes made with a different material (e.g., a different ink), this assump-
tionmay not hold. However, such cases can be detected through inspection
of the presence maps generated during the unmixing step, and the

concentration thresholds can be locally adapted to include thin strokes in a
given area of the sample.

Model performance was assessed using two complementary approa-
ches: micro- and macro-averaged performance metrics, as explained in9.
Themicro-average approach treats all individual pixels equally, regardless of
their class membership, without considering differences in the number of
instances per class. In micro-averaging, accuracy, precision, recall, and F1-
score are mathematically equivalent because they are all calculated as the
ratio of correctly classified pixels to the total number of pixels across all
classes. The macro-average approach gives each class equal weight in the
final average, ensuring that performance is balancedacross allmaterial types
or classes.Macro-average is computed as the arithmeticmean of themetrics
for individual classes45, making it a better measure of performance for
imbalanced datasets. In this study, micro-accuracy, macro-accuracy,
macro-recall, macro-precision, and macro-F1-score were calculated to
provide a comprehensive and more complete performance evaluation.

Fig. 3 | Classification maps obtained using SVM models, comparing different
spectral processing approaches (Models 1, 2, and 3). Ground Truth (GT) images
are shown in column 4, where black pixels indicate uncertain areas. False RGB

images [605, 535, 430] nm are included in column 5. Purple: metallo-gallate ink
(MGP); yellow: carbon-containing ink (CC); orange: non-carbon-containing ink
(NCC); dark gray: parchment; light gray: cotton-linen paper.

Table 1 | Training and test data distribution for the three ink classes: pure metallo-gallate inks (MGP), carbon-containing inks
(CC), and non-carbon-containing inks (NCC); and the two writing support materials: parchment and paper.

Class Train Test Total

Samples Pixels Samples Pixels Samples Pixels

MGP 49 200592 14 61528 63 262120

CC 45 299938 17 182833 62 482771

NCC 28 161899 7 19854 35 181753

Parchment 62 753220 12 229818 74 983038

Paper 47 761781 24 416683 71 1178464

Total 109 2177430 36 910716 145 3088146
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The full methodology workflow described in this section is illustrated
in Fig. 2.

Results
Figure 3 presents examples of classification maps obtained using the three
SVMmodels with different spectral processing approaches, along with the
correspondingGTand falseRGB images. The classificationmaps reveal that
Model 2 generally produces more uniform classification of both ink-
containing and support areas across all studied samples compared to the
other models. Model 1 exhibits several classification errors: it tends to
misclassify some carbon-containing (CC) mock-ups as non-carbon-
containing (NCC) ink (first and third rows), and vice versa in one of the
historical samples (7th row),while portionsof the sepia pure sample (second
row) are incorrectly classified asmetallo-gallate ink (MGP). These issues are
resolved in both Models 2 and 3. However, Model 3 presents its own
challenges. It tends to classify stroke edges as MGP, making the strokes
appear thicker than they actually are (particularly evident in rows 4 and 6).
Additionally, Model 3 shows difficulties with writing support classification
in historical samples, where portions of the support material are mis-
classified as MGP (see the last two rows in Fig. 3). This misclassification
occurs particularly in areas with low support concentration according to
unmixing (represented as black pixels in the GT images). This behavior is
understandable, asModel 3 is trainedwith pure spectra, and the spectrumof
MGP ink is the most similar to that of the writing support material, given
that this ink becomes transparent in the infrared region. Notably, in rows 6
and 8, Model 3 detects bleed-through in both samples, that is, text or ink
from the document’s reverse side thatwas not originally included in theGT.
Model 3 shows the highest sensitivity to this phenomenon, which is logical
given its training with highly pure spectra (separated ink and writing sup-
port), enabling it to detect any spectral variations present in the document.
This sensitivity represents a potential advantage, as it could be further
explored to distinguish bleed-through text from front-side annotations,
offering an additional application of the model. However, if bleed-through
detection is not desired, the effect could be mitigated by adjusting the

classification thresholds or implementing adaptive rather than fixed
thresholds (e.g., 50% for ink and 90% for writing support) depending on
sample type or location within the sample. Alternatively, binarization could
be applied to distinguish foreground from background, thereby better
delimiting ink and writing support regions.

One of the key contributions of this study lies precisely in identifying
and excluding areas where classificationwould be unreliable (represented as
black areas in the GT images). For Model 3, these regions are typically
located along stroke edges and are oftenmisclassified asMGP. To refine the
classification maps in these areas, we implemented a post-processing
approach based on the unmixing results previously obtained. Specifically,
weused the concentrationmaps to reassign the classificationof pixelswithin
uncertain regions, labeling each pixel as ink or writing support depending
on which component showed the highest concentration. Once the material
type was identified, the pixel was assigned the specificmaterial (one of three
inks or two writing supports that was most frequent in its local
neighborhood.

Figure 4 presents the results for selected samples after applying this
post-processing method. The bleed-through information disappears in
rows 4 and 5, while stroke edges appear better delineated. The last column
includes false-color RGB images usingVNIR bands at [605, 535, 430] nmas
red, green, and blue channels, respectively, to better visualize bleed-through
effects. This approach effectively resolves the edge issues seen in Model 3
without affecting classification in central stroke regions, and therefore does
not alter the performancemetrics reported in Table 2. However, it sacrifices
bleed-through detection, and very thin strokes may remain difficult to
identify, as shown in row 1.

Table 2 presents themean performancemetrics for the SVMmodels in
the five-class classification task, distinguishing betweenmetallo-gallate pure
(MGP), carbon-containing ink (CC), non-carbon-containing ink (NCC),
parchment, and paper. The results demonstrate the influence of different
spectral preprocessing approaches on classification performance, with
metrics computed only for pixels within the presence maps as previously
described. It can be observed that all macro-metrics for Model 2 exceed

Fig. 4 | Classification maps obtained with SVMModel 3, before (column 1) and
after (column 2) applying unmixing-based classification for uncertain pixels.
Ground Truth (GT) images are shown in column 3, where black pixels indicate
uncertain areas. False RGB images [605, 535, 430] nm are included in column 4.

Purple: metallo-gallate ink (MGP); yellow: carbon-containing ink (CC); orange:
non-carbon-containing ink (NCC); dark gray: parchment; light gray: cotton-
linen paper.
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those of Model 1, while only the macro-precision of Model 3 surpasses
Model 2, with other metrics remaining similar. Specifically, there is an
approximately 4% difference in Macro-F1 when comparing Model 1 to
Model 2, suggesting that unmixing preprocessing can significantly enhance
classification performance in machine learning models. Micro-accuracy is
the only metric where Model 1 shows a slightly higher value than Model 3.
This can be explained by the fact that micro-accuracy does not account for
class imbalance, meaning that classes with more representation in the test
set, such as writing support classes, have a greater influence on the final
metric. In this case, Model 3 performed worse when classifying the most
represented classes. An analysis of the classification maps in Fig. 3 suggests
that this discrepancy may be due to the misclassification of the support
material in some historical samples (see Fig. 3 last two rows), as discussed in
the classification map analysis.

For comparisonwith previouswork9, paper andparchment pixelswere
excluded from the test results, and performance metrics were recalculated
(see Table 3). However, the presence of writing support classes may still
influence the predictions, as ink pixels could be misclassified as support.
This accounts for the slightly inferior results obtained forModel 1 compared
to those in ref.9, with a 91.79%Macro-F1.When writing support classes are
excluded from calculations, Model 2 clearly outperforms Model 1, and
Model3 surpassesModel 2 across all evaluatedmetrics. Specifically,Model3
achieves more than 8% higher F1-score compared to Model 1, reaching
98.82%, and outperforms the SVM model with cleaning post-processing
proposed in ref.9.

Model 1 was designed to closely resemble the one in ref.9, but with
adjusted training and test data tomake itmore comparable toModels 2 and
3 after preprocessing. The differences betweenModel 1 in this study and the
one used in ref.9 are as follows: (i) training was conducted using only pixels
from areas with high ink or writing support concentration (presencemaps);
(ii) the labels parchment and paper were included, not just the ink labels
(MGP, CC, NCC); (iii) performance metrics for the test evaluation were
calculated using only areas with high ink or support concentration. Addi-
tionally, the results presented here do not include the post-processing
cleaning step proposed in ref.9. After incorporating the cleaning post-
processing (by applying a median filter), results for Models 1 and 2
improved across all performance metrics for the five-class problem,
achieving 98.43% Macro-F1 with Model 2 and 97.38% with Model 1.
However, Model 3 showed reduced performance across all studied metrics

because classification errors at stroke edges propagated into central stroke
regions. Therefore, this type of cleaning is not recommended for Model 3.
To specifically address classification errors in stroke edges, a more effective
approach is that presented in Fig. 4, which incorporates ink or writing
support concentration information derived from the unmixing step.

Discussion
This study explored spectral unmixing as a preprocessing technique to
improve the machine learning-based classification of historical inks and
writing supports in hyperspectral imaging. We specifically assessed how
spectral unmixing mitigates classification errors caused by mixed spectral
contributions from ink and support materials. Three SVM models were
developed and compared: Model 1 using unprocessed spectra, Model 2
using reconstructed spectra after unmixing, and Model 3 using pure
unmixed spectra. The classification task distinguished between metallo-
gallate pure ink (MGP), carbon-containing ink (CC), non-carbon-
containing ink (NCC), parchment, and paper across both mock-up sam-
ples and historical documents.

Our results demonstrate that unmixing preprocessing improves clas-
sification performance over conventional unprocessed spectral approaches.
Model 2 achieved the best overall five-class classification performance
(Macro-F1: 97.58%) compared to Model 1 (93.70%), while Model 3
demonstrated superior ink-specific classification with an 8% improvement
inMacro-F1 overModel 1, surpassing previous results9. Classificationmaps
revealed that Model 2 provides the most uniform classification across both
ink and writing support regions, while Model 3 excels in identifying the
central ink stroke regions and detecting bleed-through.

By decomposing complex spectra into pure component signatures,
spectral unmixing effectively addressed the challenge of mixed spectra,
enabling more precise identification of historical materials. This not only
improves technical performance but also adds value for end users in fields
such as conservation science, restoration, and historical research, where
reliable ink classification can help preservation strategies and contribute to
understanding document provenance and writing practices. Although
demonstrated in the context of historical documents, this preprocessing
strategy has broad potential to enhance material classification in different
fields affected by mixed spectra.

The main limitations include reduced classification accuracy at the
edges of ink strokes, requiring post-processing for cleaner classification
maps. In this study, a post-processing method based on unmixing infor-
mation was implemented, which improved the results for Model 3.
Regarding computational efficiency, the training of each SVM model
required ~3 h, prediction about 8min, while the unmixing-based pre-
processing step added around 3min per sample.

Future research could explore the adoption of adaptive thresholds to
optimize unmixing parameters for individual samples, the automation of
the structuring element size used to select the ink EM, or the imple-
mentation of a voting-based classification strategy, whereby the pre-
dominant material is inferred from the majority label assigned to its EMs.
Additionally, integrating spectral unmixing into binarization pipelines
holds significant potential, especially considering the ability of Model 2 to
effectively separate ink and writing support regions.

Data availability
The datasets analyzed in this study are available in https://doi.org/10.6084/
m9.figshare.28319165. The datasets generated during the current study are
available from the corresponding author upon reasonable request.
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