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ABSTRACT

Feature engineering (FE) plays a crucial role in Machine Learning pipelines, yet it remains a time-consuming
process requiring heavy domain expertise. While Automated Machine Learning (AutoML) has automated model
selection and hyperparameter tuning, it often overlooks FE, which is particularly needed in specialised domains
such as Energy Consumption Forecasting (ECF). To address this limitation, we introduce AutoEnergy, a novel,
domain-aware FE algorithm tailored for ECF. AutoEnergy automatically generates interpretable features from
timestamps and past consumption values through rule-based transformations, integrating them with AutoML
for fully automated ECF modelling while reducing human intervention. The performance of AutoEnergy was
evaluated using eighteen diverse real-world energy consumption datasets spanning residential, commercial, in-
dustrial, and grid power domains. Through extensive benchmarking against baseline AutoML without FE and es-
tablished FE methods, namely TSFresh (with TSEfficient and TSMinimal configurations) and FeatureTools (FT),
AutoEnergy demonstrated significant improvements in both predictive accuracy and computational efficiency.
AutoEnergy achieved forecasting error reductions of 19.52% to 84.72 % compared to benchmarking methods,
with strong performance on smaller datasets and statistical validation via Friedman and Wilcoxon tests. AutoEn-
ergy demonstrated notable computational efficiency by running 1.31 and 4.41 times faster than FT and TSEff,
respectively. Although 1.58 times slower than TSMin, AutoEnergy achieved 82.38 % lower forecasting errors.
Integrating AutoEnergy with the state-of-the-art Tabular Prior Data Fitted Network (TabPFN) resulted in signif-
icant forecasting error reductions across test sets. These findings highlight AutoEnergy’s potential to improve
AutoML performance while reducing reliance on domain expertise for FE, paving the way for fully automated
ML pipelines in ECF applications.

1. Introduction and background

Feature Engineering (FE) is a crucial step in developing machine
learning (ML) pipelines, as it transforms raw data into informative fea-
tures that enhance model performance [1,2]. This is because raw data
are often not ideal in their original form for algorithms to learn effec-
tively [3,4]. Furthermore, real-world datasets are often small or limited
due to data collection limitations, privacy issues, or resource constraints
[5,6]. In such scenarios, FE could compensate for the limited data by
extracting informative features. Moreover, FE may improve computa-
tional efficiency by eliminating noisy, redundant, and irrelevant data
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[7,8]. Finally, FE may improve not only predictive accuracy but also
explainability [9].

Despite these advantages, FE remains a time-consuming process that
is prone to human error while relying heavily on domain expertise
and iterative experimentation [7,10]. Deep learning algorithms [11,12],
while capable of automatically learning useful representations from raw
data, lack interpretability and typically require large datasets to perform
well, a condition that is often infeasible in real-world scenarios [5,13].
This has led to a growing interest in automated FE methods [14].

Modern Automated Machine Learning (AutoML) frameworks [15]
such as AutoGluon [16], H20 [17], and FLAML [18] offer streamlined
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solutions for ML pipeline development through automated model selec-
tion and hyperparameter tuning. Nevertheless, these solutions often as-
sume that data preparation and feature generation have been completed
and the data are ready for training. As a result, tasks such as FE and the
integration of domain knowledge are largely left to human practitioners
[14].

Furthermore, many general-purpose AutoML systems are proposed
for broad applicability across ML tasks, but their focus on generalisa-
tion often limits their effectiveness in specialised domains [19]. Such
limitations become particularly evident in domains that require inter-
pretable features, such as energy consumption forecasting (ECF) of time
series data, where understanding the factors influencing energy con-
sumption is important for well-informed decisions. This challenge may
be attributed to the complex nature of power usage patterns, which
can involve various linear and nonlinear relationships, fluctuating be-
haviours, and potential dependencies on temporal and environmental
factors [20,21]. Therefore, domain-relevant FE could be a beneficial ap-
proach for AutoML to excel in modelling ECF problems.

1.1. Feature engineering in supervised learning for energy consumption
forecasting

To better understand the FE process and its objectives in super-
vised learning contexts, it can be formally defined as follows: given a
dataset D = {(x;,y;)} ,11 ) with N instances, the objective is to find a fea-
ture transformation function ¢ : X — X’ that improves the performance
of a learning algorithm A when trained on the transformed dataset
D’ = {(¢(x;), yi)}i’i ,- Here, x; represents the input features, y; denotes
the corresponding target values, X is the original feature space, and X’
is the transformed feature space [14].

In ECF, implementing FE begins with identifying key raw features,
which vary across studies. Yet, historical data and weather information
are consistently identified as the most significant ones [22]. Historical
data offers insights into consumption patterns, while weather data re-
flects environmental factors, such as outdoor temperature that affect
energy usage. Some studies; however, have improved forecasting mod-
els by engineering features from raw data, such as time-based and pe-
riodic features, to capture energy temporal patterns more comprehen-
sively [23,24].

Nonetheless, manually extracting these features often requires both
energy domain expertise and data science skills [7,8]. Energy domain
experts identify the key factors influencing energy consumption, while
data scientists validate these insights through data analysis and extract
the relevant features from the raw data. Consequently, there is a press-
ing need to automate FE in ECF problems to streamline the process,
reduce human bias, and enhance model performance without requiring
extensive domain-specific knowledge for each new data.

1.1.1. Automated feature engineering

Automated FE encompasses a range of approaches aimed at reduc-
ing manual intervention in the feature generation process by leveraging
algorithmic solutions [25]. The concept of automated FE, as proposed
by [8], may involve two key steps: first, generating a comprehensive
search space of possible feature processing operations, and second, em-
ploying optimisation techniques to identify the most effective FE strat-
egy. These operations, which include transformations such as aggrega-
tion functions and arithmetic operations, can be combined to create a
set of new informative features. Although the literature lacks explicit
and comprehensive categorisations of automated FE methods relevant
to ECF problems, we may broadly classify the current landscape into the
following categories:

e Traditional Statistical Methods: these methods apply statistical and
mathematical transformations to create new features through dimen-
sionality reduction or statistical computations. For example, Prin-
cipal Component Analysis (PCA) [26] and wavelet decomposition
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[27] are widely employed in ECF to improve performance and au-
tomate FE. However, these methods present significant challenges
when applied to ECF problems. While PCA effectively reduces data
dimensionality, it often obscures the intuitive relationship between
the transformed principal components and the original data features,
complicating interpretation. Similarly, wavelet decomposition gen-
erates coefficients that are more complex and less interpretable than
the raw data, requiring specialised domain knowledge for proper in-
terpretation. These interpretability challenges are particularly criti-
cal in ECF, where understanding the factors influencing energy use
is essential for developing effective policies and solutions.

e Learning-Based Methods: these methods primarily utilise artificial
neural networks to learn and automatically generate new features
from raw data. A prominent example is Autoencoders, which have
been studied in ECF [11,28,29]. However, Autoencoders require
large datasets and produce abstract features with unclear ties to the
original data, hindering explainability. While post hoc methods such
as LIME [30] which is limited to local interpretability and SHAP [31]
offer insights, their reliability is debated [32,33]. LIME’s explana-
tions, for example, depend heavily on parameter choices and may
exclude important features [34], further emphasising the need for
inherently interpretable features for ECF.

e Hybrid Semi-Automated Methods: the CAAFE method [14] is an ex-
ample of a context-aware semi-automated FE approach designed for
tabular data. This method integrates human expertise (i.e., domain
knowledge) with large language models (LLMs) to streamline the
FE process. While some steps in this method are automated, human
intervention is still necessary to guide the process and make criti-
cal decisions. Such methods face two key challenges: computational
limitations when handling datasets with a large number of attributes,
and the potential for LLM hallucinations during feature generation.

e Heuristic-Based Methods: these search-based algorithms rely on pre-
defined rules to generate new features. For example TSfresh (TS)
[35], a widely used automated FE method in the literature, applies
various time series characterisation techniques to compute features
without the need for manual intervention. This algorithm charac-
terises time series data in terms of data point distribution, correlation
properties, stationarity, entropy, and nonlinear time series analysis.
However, this method can be computationally expensive and risk
overfitting due to the large number of generated features [36,37].
Another widely recognised search-based FE method is Featuretools
(FT) which was developed based on the Deep Feature Synthesis al-
gorithm [38]. This algorithm applies a series of transformation func-
tions to create new features. These functions include mathematical
operations such as summing, averaging, and counting functions. Al-
though it has shown promising results in domains such as education
and e-commerce, particularly in predicting student dropout, project
excitement, and repeat buyer behaviour, its application in domains
such as ECF remains unexplored.

Nevertheless, the literature lacks clarity regarding what automated
truly means in the context of FE in supervised learning. That said, this
work focuses on heuristic-based methods as benchmarks for comparison
with the proposed method for the following four key reasons: (a) they
represent established FE techniques directly applicable to ECF problems
without additional training or human intervention, (b) the proposed
method aligns with the heuristic-based approaches by employing rule-
based criteria for FE, (c) these methods generally maintain traceable FE
processes supporting interpretable energy consumption analysis and (d)
they are potentially more readily integrated into AutoML frameworks,
thus enabling more practical automated pipelines.

1.2. Research novelty and contributions

Given the aforementioned limitations, this work proposes
AutoEnergy, a domain-aware automated FE method that constitutes a
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novel synthesis to: (a) improve AutoML performance through domain-
specific FE optimised for ECF; (b) minimise the human intervention
and domain expertise required by automating the time-consuming,
manual FE process; and (c) maintain interpretability through a
heuristic search design, generating human-readable and traceable
features. The key novelty of the proposed FE algorithm lies not in the
individual components (i.e., feature types), but in its fully automated,
expert-free, domain-aware feature extraction, optimised selection, and
strategic integration tailored to ECF problems, enabling end-to-end
automated ECF modelling when integrated with AutoML. The method
automatically generates features by applying a series of FE functions
to the dataset’s timestamps and target variables (i.e. past consumption
values). To assess the proposed method on AutoML performance, a
comprehensive set of eighteen real-world datasets, representing various
energy consumption patterns in different domains (e.g., residential and
commercial buildings, wind turbines, industrial settings, food storage
facilities, and grid power consumption), was utilised !. Additionally, the
proposed method was systematically compared with well-established
FE methods in the literature, namely TS and FT, assessing both (a)
predictive accuracy and (b) computational efficiency. This thoroughly
evaluated the method’s overall effectiveness and practical applicability
in real-world ECF tasks. While our previous exploratory study [39]
laid the foundation for this paper, the novelty and contributions of the
current work are as follows:

¢ An improved automated FE method tailored for ECF is introduced
with a higher degree of automation in feature extraction and opti-
mised selection compared to our previous work, as introduced and
explained in Section 2. It considerably improves AutoML perfor-
mance, as demonstrated by comparisons with and without the pro-
posed FE method, as shown in Subsection 4.1. Additionally, the im-
pact of the proposed FE method on the state-of-the-art Tabular Prior
Data Fitted Network (TabPFN) algorithm [40] was also examined. 2

e Compared to our previous investigation, this work includes compre-
hensive benchmarking against existing FE methods. The proposed
FE method achieves a superior reduction in forecasting errors and
computational efficiency for ECF problems compared to the bench-
marking methods, as shown in Subsection 4.2.

e Compared to our previous study, this work incorporates a wider
range of energy consumption datasets, including new energy systems
and settings such as steel manufacturing environments and food and
drinks cold facilities. This allows for a more extensive evaluation of
the proposed method’s applicability and effectiveness across differ-
ent settings and environments.

The structure of the remaining sections of this paper is as follows:
Section 2 outlines the proposed method for automating FE for ECF prob-
lems, Section 3 provides details of the experimental design, including
the datasets used, benchmarking methods, and evaluation criteria. Anal-
ysis and discussion of findings are presented in Section 4. To conclude,
Section 5 summarises key insights.

2. AutoEnergy: an automated end-to-end feature engineering
algorithm

This section outlines the problem under investigation in Subsec-
tion 2.1 and subsequently details the proposed method to address it in
Subsection 2.2.

1 All results in this work are reproducible as the code and datasets used
are publicly available on GitHub. See https://github.com/Nasser-Alkhulaifi/
AutoEnergy

2 TabPFN is a foundation model that leverages transformer-based meta-
learning, designed specifically for tabular data problems and recognised as a
state-of-the-art AutoML framework.
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2.1. Problem definition

Given a dataset D consisting of N instances, where each instance is
represented by a tuple (z;, y;), with ; denoting a timestamp and y; the
corresponding target variable, we define the dataset as follows:

D= {(Il,yl),(tz,yz),---,(IN,yN)} (€]

The aim is to develop an algorithm that implements an automated FE
process to enhance the performance of a predictive model M within an
AutoML framework.

2.2. AutoEnergy: the proposed feature engineering method

The proposed FE method, as illustrated Fig. 1, applies a set of FE
functions {GeneratedFeatures; }j"i , Which process the timestamp #; and
the target variable y; in D to generate a series of feature subsets F,,;j'
The complete feature vector F for each instance i is then created by
concatenating these feature subsets:

M
F = @GeneratedFeaturesj(t,-,y,»), Vvie{l,...,N} 2)
j=1

where @ denotes the concatenation operation, combining all feature
subsets F:/ generated by the functions into a single feature vector for
each instance.

Following this, the predictive model M is trained using these com-
plete feature vectors F] along with their corresponding target variable
¥;» in an AutoML framework:

M :AutoML({(F;,y/)}fil) ®

Although many of these features exist in the literature, the proposed
algorithm is fully automated, expert-free, domain-aware feature extrac-
tion, optimised selection, and strategic integration tailored to ECF prob-
lems, enabling end-to-end automated ECF modelling when integrated
with AutoML. In particular, for lag and rolling-window statistical fea-
tures, as described in the following subsections:

2.2.1. Temporal, sine and cosine transform-derived features

These features exploit temporal data to identify patterns influenced
by time, such as distinguishing between on-peak vs off-peak hours and
weekdays vs weekends, as shown in Fig. 1. In the first function, namely
Frpve, of Algorithm 1, time-based features are extracted from the times-
tamp 7; such as the hour of the day as outlined in steps 5-8. These time-
related features provide insights into temporal patterns and trends in
the data. The second function, namely Fgycyicar, of Algorithm 1, ap-
plies Fourier-based transformations, which has been used in time series
feature encoding [4], to temporal variables through steps 9-22, where
’hour of day’ ranges from 0 to 23, and ’day of week’ ranges from 0 (Mon-
day) to 6 (Sunday) to represent the daily and weekly seasonal cycle. This
transformation is justified by the following key principles:

e The Fourier series theorem establishes that periodic patterns, such
as energy consumption’s daily and weekly seasonality, can be ap-
proximated through a combination of sinusoidal components. This
mathematical foundation serves as an approach for capturing cycli-
cal consumption patterns across various temporal frequencies.

Sine/cosine transformations map temporal features onto a unit circle
(where hour 0 and hour 23 become adjacent points), thus preserv-
ing the natural circular topology of time, see Fig. 2. This mathemat-
ical property ensures that every time point has a unique, continuous
representation while maintaining the cyclical relationship between
adjacent time periods. More importantly, this transformation is bi-
jective and information-preserving: each hour maps to distinct coor-
dinates with no averaging or smoothing of features, as demonstrated
by the uniform Euclidean distances (0.26) between all adjacent hours
in Fig. 2 (d). The continuous appearance of the sine/cosine func-
tions reflects their inherent mathematical properties rather than any
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Fig. 1. The proposed Algorithm 1 for generating temporal, sine, and cosine transform-derived features is illustrated in subfigure (A), while the proposed Algorithm 2

for generating lag and nested window features is illustrated in subfigure (B).

Algorithm 1 Temporal, sine and cosine transform-derived features.

Input: DataFrame D with ¢ (timestamps) and y (target variable)
Output: DataFrame with temporal and cyclical features

1: D' <D
2: Featuresigme < Fiime(Ds 1)
3: Featurescycical < Feyclical(Featuresgme)
4: D' « D' append Featuresgpye, Features ycical
5: function Fp,:(D,1)
6: Featuresgye < Extract time-based features from ¢
7: return Featuresye
8: end function
9: function Foyqyica (Featuresgpne)
10: Features yclical < empty list
11: for feature f in Featuresy do
12: if f is ’hour of day’ then
. (2xnf
13: fsm <—sm<j>
2n f
14: Jeos < €OS e
15: else if f is ’day of week’ then
. [ 2=x
16: fsin < sin <Tf>
2
17: Jeos < COS (g)
18: end if
19: Append fgy,, feos tO Features ycjical
20: end for
21: return Featurescyclical

22: end function

loss of temporal resolution; each of the 24 hours retains its unique
identity in the transformed space. Unlike linear encoding of hours
(0-23), which may create a misleading maximum distance between
hour 23 and hour 0, the circular transformation ensures these tempo-
rally adjacent hours maintain their true neighbouring relationship.
This continuous representation aligns with the physical reality of
energy usage patterns, where consumption often changes gradually
due to thermal inertia and operational behaviours unless disrupted
by sudden events.

2.2.2. Lags and nested window features
The proposed algorithm utilises an automated approach to identify
statistically significant lags and computes rolling statistics across nested

window sizes using Kendall’s tau correlation. These features capture
temporal dependencies and multi-scale statistical characteristics in the
energy time series data, as shown in Algorithm 2, and Fig. 1 and as
follows:

A: In the first function, namely Fjagg(y) of Algorithm 2, and as out-
lined in steps 10-13, the algorithm employs Kendall’s tau correlation to
automatically identify statistically significant lags of y; (i.e. the target
variable). This process is inspired by the FRESH (Feature Extraction and
Scalable Hypothesis Testing) algorithm [41], ensuring that only useful
lags are retained. Kendall’s tau is a rank-based correlation statistic to
assess the strength and direction of association between two variables,
where its p-value tests the null hypothesis that there is no association
between the current and lag values. It is defined as:

= (C-D) )

VC+D+T)-(C+D+0U)

where C is the number of concordant pairs, D is the number of discor-
dant pairs, T is the number of ties only in the first variable, and U is the
number of ties only in the second variable. This approach is justified by
the following:

Algorithm 2 Lags and nested window features.

Input: DataFrame D with target variable y
Output: DataFrame with lag and window features
D <D
: top_lags < Flags(y)
: Features),g; < Create features using rop_lags
top_windows — Fa(y) > Find optimal window sizes
Featuresg,; < empty list
for window_size in top_windows do
Compute rolling statistics of y over window_size
Add computed statistics to Featuresg
: end for
: function F, ,q5(y)
Compute statistical significance for each lag
return top 10 significant lags
: end function
: function Fyp,15(»)
max_window_size < |length(y)/3]
Evaluate rolling windows up to max_window_size
return top 10 significant window sizes
: end function

> Find significant lags

—
HQWYRNDITHWNY

e e R e e
PN AN




(b) First-Orde:

N. Alkhulaifi et al.

(a) Ordinal Representation of Hour (one Week = 168 hours)
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r Fourier Series Representation of Hour (n=1)
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Fig. 2. Ordinal versus Fourier-based cyclical encoding of temporal features demonstrating information preservation without smoothing. (a) Ordinal representation

of hours (0-23) over one week (168 hours) showing a discontinuous pattern with artificial jumps between hour 23 and 0. (b) First-order Fourier series transformation
using sin(2zh/24) and cos(2zh/24) providing continuous cyclical features. (c) Unit circle mapping where each hour maps to unique coordinates, proving a bijective
(one-to-one) transformation with no information loss. (d) Euclidean distances between all 24 consecutive hour pairs after transformation, showing identical distance
of 0.26 for every transition, mathematically confirming that the Fourier encoding preserves all temporal information without averaging or smoothing effects. The

mation and containing computational complexity. It prevents the

apparent continuity reflects the inherent mathematical properties of trigonometric functions, not any loss of temporal resolution.

¢ Non-parametric robustness: Kendall’s tau assumes no specific
distribution, which is suitable for energy data that may not fol-
low normal distributions due to irregular consumption patterns. It
demonstrates superior robustness to outliers compared to Pearson
correlation [42], where the latter is sensitive to such anomalies and
consumption spikes, which is critical for energy data that frequently

contain these irregularities.

e Statistical significance: hypothesis testing on Kendall’s tau coeffi-
cients with a p-value threshold of 0.05 ensures that only lags ex-
hibiting statistically significant correlations with the target variable
y; are retained. Lags with (p < .05) indicate less than a 5% proba-
bility that the observed correlation is due to chance. This statistical

filter ensures that the selected lags preserve genuine temporal depen-
dencies and provides an additional layer of validation for the chosen

lags.
e Computational efficiency: to handle large datasets effectively and
avoid highly correlated lags (i.e., reduce multicollinearity), only the

top ten lags with the lowest p-values among the significant lags are

generated.
B: In the second function, namely Fgpars(y) of Algorithm 2, and as out-
lined in steps 14-18, the algorithm incorporates a nested rolling window
approach to compute statistical features at multiple time scales. It eval-
uates a range of window sizes up to one-third of the series length. How-
ever, it is worth acknowledging that this cap is empirical and justified

by the following:

o Sensitivity analysis: an experiment was conducted across multiple
window size thresholds (one-quarter, one-third, one-half, and the
full sequence length) to systematically evaluate the impact of the
maximum nested-window length on model performance and FE pro-

it

cessing time. Although this approach is not theoretically optimal,
remains empirically grounded, as it preserves the automated eleme
of FE while offering a practical trade-off balance between forecasti

accuracy and processing efficiency.
e Computational efficiency and multi-scale pattern capture: limit

the maximum window to one-third of the series length attempts to
balance capturing short-term fluctuations, medium-term variations,
and longer-term trends while avoiding redundant historical infor-

creation of excessively large windows that a) produce substantial

overlap between consecutive rolling statistics, leading to multi-

collinearity; b) increase memory requirements and computational
overhead without proportional gains in predictive value; and c) risk
over-fitting by incorporating overly broad temporal contexts that
may not reflect underlying energy-consumption patterns.

o Statistical significance: the algorithm computes Kendall’s tau cor-
relations for the rolling-window statistics and retains window sizes
with p < 0.05. This statistical filter further ensures that, irrespective
of the maximum window-size threshold, only relationships that are

statistically significant are preserved, providing an additional layer

of validation for the selected window sizes.
For the retained window sizes, the algorithm computes the followin

rolling statistics:

¢ Rolling mean:

X =

¢ Rolling maximum:

max = max(xy,X,, ..., X,)
¢ Rolling minimum:
min = min(xy, x5, ..., X,)

¢ Rolling kurtosis:
1
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Table 1
Notations and definitions for all mathematical symbols, variables, and
notation used throughout Section 2.

Symbol Definition

D Dataset composed of N instances

N Total number of instances in the dataset

M Number of feature engineering functions

1 Timestamp associated with the i-th instance

Vi Target variable associated with the i-th instance

F, Feature subset generated from ¢, using the j-th FE function
F; Complete feature vector for the i-th instance

[$3) Concatenation operation

M Predictive model trained within an AutoML framework
Frve Temporal feature extraction function

Feycuear Cyclical feature extraction function

Fiags Lag feature extraction function

Fyrats Rolling window statistical feature extraction function

T Kendall’s tau correlation coefficient

C,D,T,U Concordant pairs, discordant pairs, ties in first/second variable
n Size of the rolling window

X; Values within the current rolling window

X Rolling mean

s Rolling standard deviation

where n is the size of the rolling window, and x; are the values within the
current window. By calculating these statistics for each retained window
size, the algorithm captures different aspects of temporal dynamics in
the energy data.

2.3. Considerations

The design of the proposed FE method adheres to the following con-
siderations:

e Computational efficiency: the algorithm handles large datasets by
limiting the number of generated lags and window sizes based on
statistical significance.

¢ Avoidance of data leakage: features at time r; are computed using
only data available up to ¢;, preventing look-ahead bias.
Interpretability: the generated features have the potential to aid in
model explainability. For instance, lag features capture direct histor-
ical dependencies, while rolling statistics quantify concepts such as
trend (mean), volatility (standard deviation), extremes (max/min),
and distribution shape (skewness/kurtosis) over specific time win-
dows, enabling domain experts to understand how each feature con-
tributes to the model’s predictions. In other words, rolling means can
reveal baseline consumption patterns, standard deviations can iden-
tify periods of irregular usage, and lag features can capture recurring
behaviours such as daily routines or equipment cycling patterns, al-
lowing energy engineers to understand the factors driving consump-
tion in their systems. Table 1 shows the notations and definitions for
all mathematical symbols, variables, and notations used.

3. Experimental design

This section outlines the experimental design adopted in this work,
including the dataset used in Subsection 3.1, benchmarking methods in
Subsection 3.2, detailed experimental procedure in Subsection 3.3, and
lastly the evaluation criteria and statistical tests in Subsection 3.4.

3.1. Datasets

Due to the limited availability of standardised benchmark datasets
for ECF using AutoML, this study evaluated the proposed FE method
using real-world datasets from related research and repositories. Eigh-
teen energy datasets were employed, spanning a range of energy do-
mains, including residential buildings (e.g., home appliances), indus-
trial and manufacturing facilities (e.g., steel factory), food and drink
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cold storage facilities, urban or regional energy use, and renewable en-
ergy sources (e.g., wind turbines). Table 2 and Fig. 3 provide further
details about the datasets used. These datasets provide a comprehen-
sive representation of different energy systems, encompassing both uni-
variate and multivariate data with varying sample sizes and temporal
resolutions.

3.2. Benchmarking feature engineering methods

To demonstrate the effectiveness of the proposed FE method, this
study compares key FE methods from the literature, namely TS and FT,
as discussed in Subsection 1.1.1, with the proposed method. These FE
methods were selected as they represent leading open-source solutions
that have been successfully applied to a variety of forecasting prob-
lems, thus providing a robust benchmark across different FE approaches.
While energy-specific FE approaches exist in the literature [53], these
are predominantly manual, expert-driven methodologies lacking auto-
mated elements to minimise domain knowledge reliance, streamline
ML model development, and improve AutoML performance. There-
fore, TS and FT serve as the most comparable automated FE baselines
available for systematic comparison, as they share AutoEnergy’s auto-
mated nature while offering extensive documentation and accessible
implementations that ensure reproducible and methodologically sound
comparative evaluation. This combination of automation capabilities
and implementation accessibility makes them the most appropriate
benchmarks for rigorous evaluation against the proposed FE method.
It is noteworthy that the TS method offers three primary configurations
for FE: a) MinimalFCParameters (TSMin), which includes a limited num-
ber of features suitable for quick tests; b) EfficientFCParameters (TSEff),
which comprises all features generated by the TS method except those
marked with the "high_comp_cost" attributes®; and ¢) ComprehensiveFC-
Parameters (TSComp), which includes all generated features by the TS
method.

In this work, AutoGluon [16] was selected as the AutoML frame-
work due to its superior performance in previous research [39], where
it outperformed other AutoML methods. This selection is justified by:
A) logical scientific progression that builds upon previously established
findings and maintains focus alignment on comprehensive evaluation of
different FE methods against the proposed FE method within the same
AutoML framework; B) methodological complexity arising from using
multiple AutoML frameworks with different architectures, optimisation
strategies, and ensemble approaches, which may introduce confounding
variables that obscure the true impact of automated FE contributions
(i.e., results performance variations may reflect differences between
the AutoML frameworks rather than the contribution of the FE meth-
ods); and C) computational feasibility challenges associated with eval-
uating multiple AutoML frameworks across eighteen diverse datasets
with multiple FE pipelines. Nevertheless, TabPFN [40], a state-of-the-
art AutoML framework, was incorporated as an additional experiment
within the study design to further assess the robustness and potential
generalisability of the proposed FE method. In this experiment, all FE
methods and models were trained using Python 3.11.4

3.3. Experimental procedure

The experimental procedure and steps conducted in this work, as
shown in Fig. 4, are as follows:
Stage One: Partitioning each dataset into two segments: 80 % was al-
located to training the AutoGluon models (i.e., train dataset), while
the remaining 20% was reserved for assessing model performance

3 Features with high computational costs, see: https://tsfresh.readthedocs.io/
en/latest/api/tsfresh.feature_extraction.html#tsfresh.feature_extraction.settings.
ComprehensiveFCParameters.

4 All computational experiments were performed on a system featuring an
x86_64 architecture, 64 GB of RAM, and dual Quadro RTX 5000 GPUs.


https://tsfresh.readthedocs.io/en/latest/api/tsfresh.feature_extraction.html#tsfresh.feature_extraction.settings.ComprehensiveFCParameters
https://tsfresh.readthedocs.io/en/latest/api/tsfresh.feature_extraction.html#tsfresh.feature_extraction.settings.ComprehensiveFCParameters
https://tsfresh.readthedocs.io/en/latest/api/tsfresh.feature_extraction.html#tsfresh.feature_extraction.settings.ComprehensiveFCParameters
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Overview of the eighteen energy datasets used in this study. Column Dataset lists the dataset name. Column Description summarises
the energy system and domain. Column Type indicates whether the dataset is univariate (Uni) or multivariate (Multi(k), where
k is the number of additional features, e.g., weather variables). Column N gives the total number of samples. Column Resolution
shows the sampling interval (m = minutes, h = hours). Column Total Duration (days) gives the total time span covered by the

dataset in whole days. Column Ref. cites the source.

Dataset Description Type N Resolution Total Duration (days) Ref.
AEP Power consumption by American Electric Power Uni 121,269 1h 5053 [43]
Appliances Energy consumption data from home appliances Multi (27) 19,735 10m 138 [44]
CAISO _Elec Electricity load by California ISO Uni 26,304 1h 1096 [45]
COMED Energy usage by Commonwealth Edison Uni 57,735 1h 2406 [43]
DEOK Energy consumption by Duke Energy OH/KY Uni 57,735 1h 2406 [43]
EKPC Energy usage by East Kentucky Power Uni 45,330 1h 1889 [43]
FDCS_1 Energy usage by Food and Drinks Cold Storage Multi (9) 1944 1h 81 [46]
FDCS_2 Energy usage by Food and Drinks Cold Storage Multi (9) 2472 1h 103 [46]
FE Power consumption by FirstEnergy Uni 62,870 1h 2620 [43]
NI Northern Illinois Hub energy usage Uni 58,450 1h 2436 [43]
PJME Energy use in PJM East Region Uni 145,362 1h 6057 [43]
PIMW Power consumption in PJM West Uni 143,202 1h 5967 [43]
Solar_Home Ausgrid solar home electricity Uni 17,568 30m 366 [47]
Steel Energy usage by AEWOO Steel Co. Multi (8) 8760 1h 365 [48]
TCity Power usage in Tetouan Multi (3) 52,416 10m 364 [49]
UNICON La Trobe University electricity consumption Multi (4) 8663 1h 361 [50]
Victoria Electricity demand of 5 AU states Multi (1) 20,352 1h 848 [51]
WindT Wind turbine SCADA systems Multi (2) 50,530 10m 351 [52]
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Fig. 3. The energy datasets used in this study are depicted in histograms of the target variable with colour-coded bars representing normalised bin positions. Red and
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(distribution asymmetry), and kurtosis (tailedness). The colour gradient in the histogram bars represents the distribution of values from low (left) to high (right).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

on newly, previously unseen data (i.e., test dataset). This train-test
validation method was selected due to its simplicity and computa-
tional efficiency, particularly given the extensive experimental de-
sign involving 18 datasets, each subjected to five FE methods. More-
over, in AutoGluon, cross-validation is inherently integrated, elimi-
nating the need for a separate validation set, as models are trained
on multiple folds of data, with each instance evaluated against the
hold-out fold that was not used during training to generate out-of-
fold predictions, which are then used to calculate the final cross-
validation score [16]. It is also important to note that the data were
not shuffled, as the energy consumption data exhibit temporal pat-

terns, making it essential to preserve the chronological order of the
timestamps.

Stage Two: This stage involves two steps. In the first step, AutoGluon
models were trained without FE (No.Feat). This serves as a baseline
scenario to assess AutoGluon’s forecasting capabilities with minimal
input, utilising the TimeSeriesPredictor. This class, as shown in Fig. 4, in-
cludes different forecasting methods, including statistical-based, neural
network-based, hybrid, and ensemble methods. This deliberately simpli-
fied configuration is designed to replicate AutoML’s performance under
conditions that simulate: (a) a worst-case scenario (i.e., the absence of
domain-specific FE knowledge), and (b) an initial testing phase where
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Fig. 4. Experimental design. See Subsection 3.3 for a detailed explanation of the experimental setup.

the model learns with limited data. In the second step, both benchmark-
ing FE methods, as described in Subsection 3.2, and the proposed FE
method as described in Subsection 2.2, were applied to all datasets as a
preprocessing step before training the AutoGluon models with the Tab-
ularPredictor class.

Stage Three: In this final stage of the experimental procedure, the per-
formance of all trained AutoGluon models was evaluated using the test
sets and the evaluation metrics outlined in Subsection 3.4.

Special Case TabPFN: While TabPFN is highly effective [40], it oper-
ates within specific architectural constraints, exhibiting superior per-
formance exclusively on datasets containing up to 10,000 samples
and 500 features. Given these limitations, the experimental procedure
(see Fig. 5) comparing TabPFN with versus without the proposed FE
algorithm was confined to eight datasets that satisfied these specifica-
tions, as shown in Table 4.

3.4. Evaluation metrics and statistical tests

In this work, the Normalised Root Mean Squared Error (nRMSE) is
used to evaluate and compare the proposed FE method versus the bench-
marking methods described in Subsection 3.2. This quantitative metric,
as depicted in Eq. 11, offers a standardised measure of error magnitude.

Its normalised nature facilitates quantitative performance comparisons
across diverse datasets, regardless of the varying scales of their respec-
tive y; values.

n

i 1(yi - }A’i)z

nRMSE = an

Ymax ~ Ymin

where y; is the observed or actual values in the dataset; y; is the val-
ues predicted by the model; n: the total number of observations in the
dataset, y,,« and y., are The highest and lowest observed values in the
dataset, respectively.

In addition to nRMSE, the study evaluates the computational effi-
ciency of each FE method by measuring their processing times. This as-
sessment is crucial for understanding the practical applicability of these
methods in real-world scenarios, where computational resources may be
limited, rapid processing is critical, or when dealing with large datasets.
By comparing the execution times across different FE methods, the study
provides valuable insights into their scalability and performance trade-
offs. In other words, this evaluation helps identify methods that achieve
low forecasting errors while maintaining computational cost, thereby
offering a comprehensive evaluation of each method’s overall effective-
ness and efficiency.
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Fig. 5. Experimental design with TabPFN. See "Special Case TabPFN" in Subsection 3.3 for a detailed explanation of this particular case.

To support the experimental findings statistically, non-parametric
hypothesis tests were employed to identify significant differences be-
tween the methods [54]. The Friedman Aligned-ranks test [55] is
employed to examine the presence of statistically significant differ-
ences among the FE methods, with the significance level set at a =
0.05. Following this, the Bonferroni post hoc procedure is applied to
determine which specific FE methods have significant differences in
the one-versus-many (1 % n) comparisons performed, where one method
(i.e., AutoEnergy) is compared against n other FE methods. Furthermore,
the Wilcoxon Signed-Rank test [56,57] was employed with a = 0.05 to
further investigate potential differences between pairs of FE methods
that were not identified as significant by the previous tests, ensuring a
comprehensive statistical analysis.®

4. Results and analysis

This section presents an analysis and discussion of the experimental
results. Subsection 4.1 discusses the overall impact of AutoEnergy on the
performance of AutoGluon and TabPFN. Subsequently, Subsection 4.2
provides a comparative evaluation of the proposed FE method against
benchmark approaches, considering both forecasting errors and process-
ing time. This is followed by Subsection 4.3, which discusses compu-
tational efficiency and sensitivity analysis, and finally, Subsection 4.4
presents the feature importance analysis and statistical testing.

4.1. Impact of AutoEnergy on AutoML predictivity

The performance comparison between AutoEnergy and benchmark
FE methods across eighteen test sets is presented in Table 3 and Fig. 6.
Despite the diversity in dataset characteristics across different energy
settings and environments (detailed in Table 2 and Fig. 3), AutoEnergy
consistently enhanced AutoGluon’s performance compared to the base-
line (i.e., without FE). The results show an average nRMSE reduction of
83.22 %, with improvements (i.e., reduction in forecasting errors) rang-
ing from 28.22% for the Appliances dataset to 98.39 % for the PJME
dataset compared to the baseline.

This improvement is complemented by a 53.69% enhancement
in prediction stability, as indicated by the lower standard deviation
(0.0358vs 0.0773). This shows the contribution of the proposed FE
method to improving AutoGluon’s predictive accuracy. Moreover, the
results in Table 4 indicate that automated FE can further enhance the
performance of state-of-the-art AutoML methods such as TabPFN [40].
In six of the eight datasets that satisfy TabPFN’s constraints, integrating
AutoEnergy with TabPFN yielded the lowest forecasting errors, outper-
forming FT, TSEff, and TSMin FE methods. The only exceptions were

5 For more information on Machine Learning statistical tests, visit SCI2S’s
website on Statistical Inference in Computational Intelligence and Data Mining
https://sci2s.ugr.es/sicidm

the Steel and Victoria datasets, where TSMin and FT achieved lower er-
rors, respectively. When considered alongside the AutoGluon results in
Table 3 and Fig. 6, these findings indicate that AutoEnergy can poten-
tially generalise across diverse AutoML frameworks, which differ in ar-
chitecture, model-selection mechanisms, hyper-parameter optimisation
strategies, and ensemble approaches.

The consistent improvements across diverse energy systems may sug-
gest that underlying consumption patterns share common characteris-
tics that AutoEnergy’s proposed functions, explained in Subsection 2.2,
can effectively capture and transform raw energy data into useful pre-
dictive features for training AutoML models. Such findings demonstrate
AutoEnergy’s effectiveness in automating the FE process for ECF prob-
lems without requiring domain expertise. Meanwhile, the limited effec-
tiveness of AutoML frameworks in specialised domains such as ECF can
be attributed to their general-purpose design, which prioritises broad
applicability across ML tasks at the expense of domain-specific optimi-
sations that FE methods, such as AutoEnergy, can provide.

4.2. Comparison with benchmark methods

The proposed AutoEnergy FE method demonstrated an overall supe-
rior performance across test sets compared to the benchmarking meth-
ods. This is evident by achieving a mean nRMSE of 0.0338 compared
to FT (0.042), TSMin (0.1918), and TSEff (0.1535), as presented in
Table 3. This represents average reductions in forecasting errors of
19.52%, 82.38%, and 77.98 %, respectively, over these methods. In
terms of computational efficiency (i.e., time needed for FE), AutoEn-
ergy achieved a mean processing time of 471.94 seconds, which was
1.31x faster (23.72 % improvement) than FT (618.68s) and 4.41x faster
(77.31% improvement) than TSEff (2079.81s), though 1.58x slower
(57.78 % slower) than TSMin (299.12s). While the latter showed faster
processing time, AutoEnergy reduced forecasting errors by 82.38 % on
average compared to TSMin.

As shown in Table 3, processing time varies substantially across
datasets, primarily driven by dataset size (i.e., the number of samples).
Table 2 provides an overview of the characteristics of the eighteen en-
ergy datasets, including their sample sizes. Notably, larger datasets re-
quire significantly more intensive computations during automated FE.
This relationship is evident in specific examples: high-sample datasets
such as PJME (N = 145,362; AutoEnergy = 2,061s; FT = 2,492.4s;
TSEff = 4,663.4s) exhibit considerably longer processing times due to
the computational scaling of automated FE operations, whereas smaller
datasets such as FDCS_1 (N = 1,944; AutoEnergy = 2s; FT = 14.6s;
TSEff = 2s) are processed much faster. Importantly, this pattern is not
unique to AutoEnergy but is consistently observed across all benchmark-
ing methods. This observation is further supported by Fig. 7, which
shows that all FE methods display strong positive Pearson correla-
tions (r = 0.93-0.97) between dataset size and processing time. This
systematic relationship confirms that the computational overhead is in-
trinsic to automated FE, rather than a limitation specific to AutoEnergy.
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Table 3

Results obtained on all the test sets (N =18). nRMSE values and processing times in seconds (lower is better) for the proposed AutoEnergy method compared to
other FE methods. Bold values highlight the lowest nRMSE and fastest processing time for each dataset. nRMSE gives more weight to larger errors due to the
squaring operation, making it more sensitive to outliers. It is normalised by the range (max-min) of the target variable, allowing for fair comparison of forecasting
error across datasets with different scales. In Appendices A and A.1 provides additional results of RMSE, MAE, MAPE and R”. Note that the TScomp configuration is
not reported, as it proved computationally infeasible in our experiments (runs crashed after several hours of running due to excessive memory use). We include this
note to highlight the practical computational limits of exhaustive FE approaches (e.g., TScomp) in real-world energy forecasting and to underscore the importance

of considering computational feasibility and practicality in future work.

FE Methods
Dataset AutoEnergy FT TSMin TSEff No.Feat

nRMSE Time nRMSE Time nRMSE Time nRMSE Time nRMSE Time
AEP 0.0096 1585.90 0.0113 1576.84 0.1659 636.50 0.1737 4280.70 0.1856 0.00
Appliances 0.0870 44.33 0.0824 382.34 0.1831 177.06 0.1529 1411.01 0.1212 0.00
CAISO_Elec 0.0163 88.30 0.0232 211.91 0.2495 211.06 0.1074 1468.03 0.2036 0.00
COMED 0.0150 372.41 0.0151 558.55 0.1535 352.04 0.1579 2506.55 0.1905 0.00
DEOK 0.0150 360.22 0.0151 561.21 0.1535 361.33 0.1579 2502.54 0.1905 0.00
EKPC 0.0135 226.76 0.0155 416.53 0.1931 295.27 0.2208 2089.80 0.1499 0.00
FDCS_1 0.0861 2.03 0.0914 14.65 0.1893 22.80 0.0996 51.06 0.2711 0.00
FDCS_2 0.1173 2.79 0.1266 18.62 0.1944 25.21 0.1786 66.12 0.2571 0.00
FE 0.0097 427.77 0.0119 625.56 0.1719 262.22 0.1766 2035.33 0.1513 0.00
NI 0.0070 376.61 0.0083 564.64 0.1732 425.00 0.1693 3111.96 0.2074 0.00
PJME 0.0059 2061.00 0.0068 2492.46 0.2104 666.59 0.1979 4663.42 0.3675 0.00
PIMW 0.0100 2205.06 0.0117 2321.66 0.1834 676.22 0.1784 4304.59 0.1682 0.00
Solar_Home 0.0808 39.66 0.0860 133.49 0.2065 131.43 0.1673 853.15 0.1507 0.00
Steel 0.0104 13.95 0.0122 62.22 0.0122 49.94 0.0132 266.38 0.2040 0.00
TCity 0.0123 320.00 0.0922 506.37 0.2478 439.00 0.1759 3276.16 0.2760 0.00
UNICON 0.0408 13.23 0.0421 61.29 0.3090 50.78 0.2137 263.87 0.2875 0.00
Victoria 0.0100 55.47 0.0110 158.34 0.2911 170.75 0.1138 1088.43 0.1877 0.00
WindT 0.0614 299.46 0.0930 469.73 0.1647 431.06 0.1084 3197.56 0.4115 0.00
Mean 0.0338 471.94 0.0420 618.68 0.1918 299.12 0.1535 2079.81 0.2212 0.0
Std. Dev. 0.0358 705.75 0.0404 744.73 0.0633 216.15 0.0495 1507.69 0.0773 0.0
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prediction error, treating all deviations equally and offering insight into prediction consistency that complements the scale-sensitive nRMSE in Table 3.
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Fig. 7. Pearson correlation between dataset size (i.e., number of samples) and processing time for each method across all eighteen energy datasets. Markers represent

individual datasets.

Table 4

nRMSE for TabPFN without FE versus with FE methods across datasets
that satisfy the TabPFN constraints (N < 10,000, D < 500). Lower values
are better. Boldface indicates the best results. In Appendices A and A.2
provides additional results of RMSE, MAE, MAPE and R?.

Dataset TabPFN  AutoEnergy FT TSEff  TSMin
Appliances 0.1412  0.0710 0.0712  0.1153 0.1497
FDCS_1 0.1549 0.0718 0.0778 0.0984 0.1822
FDCS_2 0.1504  0.1128 0.1278 0.1514 0.1620
Steel 0.0080  0.0081 0.0082 0.0135 0.0076
TCity 0.2691 0.0184 0.0212 0.0701 0.2299
UNICON 0.2226  0.0391 0.0422  0.2026 0.1963
Victoria 0.1496  0.0158 0.0146 0.0994 0.1453
WindT 0.1792  0.0841 0.0974 0.1595 0.1269

AutoEnergy’s performance advantage is less pronounced on datasets
with skewed distributions that also include exogenous features (Appli-
ances with 27 features and Steel with 8 features, see Table 2). These
additional features, such as weather-related, already capture useful pre-
dictive information, thereby reducing the relative improvement that Au-
toEnergy’s temporal FE can provide. Furthermore, the skewed distri-
butions in these datasets may suggest that consumption patterns are
dominated by extreme values or specific operational modes, where
exogenous variables are likely stronger predictors than temporal pat-
terns. When datasets already contain informative variables that directly
influence consumption, the marginal benefit of AutoEnergy is likely
to be diminished, though AutoEnergy maintains competitive perfor-
mance, achieving the lowest nRMSE for the Steel dataset while re-
maining competitive for the Appliances dataset, where FT performs
best.

Table 5 reveals that capping the nested window length at one-third of
each series offers a favourable accuracy-cost trade-off for ECF across the
eighteen datasets, as evidenced by its lowest average nRMSE of 0.1758
and second-fastest processing time overall. It achieves the minimum er-
ror in 6 of 18 datasets, versus 1, 4, and 7 for the quarter, full-length
and half caps, respectively, yet the latter was considerably slower in
processing time compared to the one-third cap. Although such findings
remain data-dependent, with some datasets showing sub-optimal results
under the one-third constraint, this configuration consistently delivers
near-optimal performance across diverse energy datasets representing
different energy systems, offering a balance between forecasting accu-
racy and computational efficiency for automated FE in ECF tasks; it thus
minimises the need for expert input and manual intervention, enabling
fully automated, end-to-end ECF systems.
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4.3. Computational efficiency and sensitivity analysis

While computational efficiency claims are often dataset-dependent,
AutoEnergy shows promising results in scalability relative to other ex-
isting well-established FE methods. For instance, for the two datasets ex-
ceeding 140,000 samples (PJME = 145,362; PJMW = 143,202 - see Ta-
ble 2 for dataset characteristics), AutoEnergy maintained computational
feasibility across those cases. More precisely, it achieved faster process-
ing times (2,061s and 2,205s, respectively) compared to FT (2,492s and
2,322s) and significantly outperformed TSEff (4,663s and 4,305s). How-
ever, more rigorous scalability evaluation on very large datasets (e.g.,
millions of samples) and streaming data scenarios is therefore recom-
mended for future work to fully establish the method’s scalability char-
acteristics. It is worth noting, though, that automated FE methods such
as AutoEnergy are particularly beneficial for smaller datasets, where
raw data often lacks sufficient informative patterns, whereas very large
datasets may inherently contain rich relationships that could reduce the
relative necessity for extensive FE.

As real-world datasets are often small due to cost and privacy con-
cerns [5,6], AutoEnergy’s performance on small datasets is particularly
noteworthy. For the three smallest datasets (FDCS_1: 1,944 samples,
FDCS_2: 2,472 samples, and UNICON: 8,663 samples), AutoEnergy re-
duces nRMSE error to an average of 0.0814, showing significant im-
provements compared to baseline (0.2719, 70.06 % lower error), TSMin
(0.2309, 64.75% lower error), TSEff (0.1640, 50.36 % lower error),
and FT (0.0867, 6.11% lower error). Regarding the processing time
for these datasets, AutoEnergy generates features in 6.02 seconds on
average, which is 21.1x faster than TSEff (127.02s), 5.5x faster than
TSMin (32.93s), and 5.2x faster than FT (31.52s). Although this ob-
servation is data-dependent, AutoEnergy shows better performance on
small datasets, improving both forecasting accuracy and computational
efficiency compared to the benchmarking methods. This superior per-
formance could be attributed to AutoEnergy being specifically designed
for ECF problems, compared to the benchmarking FE methods.

4.4. Analysis of feature importance and statistical testing

The importance and distribution of the top 20 features across the ex-
amined energy datasets, computed by AutoGluon, are shown in Fig. 8,
where feature importance is calculated using permutation importance
[16]. It measures the decrease in model performance when the val-
ues of a specific feature are randomly shuffled, thereby quantifying
each feature’s contribution to predictive accuracy in a model-agnostic
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Sensitivity analysis results (NRMSE and processing time) for the time series fraction constraint defining the candidate range for nested
window statistical feature generation, where only features with statistically significant Kendall’s tau correlation within this range are
retained to generate the final model input features. The examined lengths are: quarter (1_4), one-third (1_3), half (1_2), and full sequence
length (1). This experiment evaluates the impact of varying maximum rolling window fractions on predictive model performance and
efficiency, using solely the nested window features as inputs to isolate their standalone contributions and inform optimal parameter
selection. See Subsubsection 2.2.2 for more details.

Dataset Maximum Length

1/4 1/3 1/2 1

nRMSE Time nRMSE Time nRMSE Time nRMSE Time
AEP 0.2241 1498.01 0.2229 1634.39 0.2227 1816.42 0.3124 2110.72
Appliances 0.2492 40.28 0.2447 44.35 0.2966 50.82 0.2429 63.48
CAISO _Elec 0.2002 85.50 0.1776 92.99 0.1669 104.12 0.1849 125.12
COMED 0.1519 367.54 0.1513 388.01 0.1498 439.48 0.1826 517.67
DEOK 0.1508 359.59 0.1501 384.05 0.1465 432.18 0.1811 511.69
EKPC 0.1625 224.61 0.1560 243.71 0.1735 279.53 0.2243 326.94
FDCS_1 0.1723 1.73 0.1626 1.85 0.1729 2.10 0.1690 2.68
FDCS_2 0.1558 2.32 0.1545 2.46 0.1507 2.79 0.1509 3.55
FE 0.2009 432.82 0.2180 460.15 0.1674 524.25 0.1708 617.90
NI 0.1906 378.06 0.1977 412.28 0.2182 464.61 0.1812 537.66
PJME 0.2289 2030.82 0.2289 2173.77 0.2289 2427.23 0.1883 2808.38
PIMW 0.1876 1826.87 0.1863 1987.15 0.1871 2219.01 0.1887 2570.72
Solar_Home 0.1766 38.03 0.1892 41.23 0.2003 46.85 0.1660 57.38
Steel 0.0117 13.54 0.0112 14.60 0.0121 16.54 0.0122 20.39
TCity 0.2574 275.11 0.2078 297.74 0.2349 332.94 0.2088 389.78
UNICON 0.2458 12.90 0.2458 13.90 0.2133 15.73 0.2594 19.56
Victoria 0.1377 53.73 0.1395 57.58 0.1711 65.52 0.1680 79.12
WindT 0.1294 247.24 0.1217 267.58 0.1348 300.13 0.1483 355.55
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Fig. 8. Comparison of the top 20 most important features across datasets, grouped into three categories: Temporal, Sine and Cosine Transform-Derived Features (TSC
- generated using Algorithm 1), Lags and Nested Window Features (LNW - generated using Algorithm 2), and Other (e.g., weather features). The left panel displays
the feature count with numerical annotations, while the right panel shows the cumulative normalised importance (as a proportion of total importance) of these
categories. This visualisation emphasises the relative significance of each feature category within the top 20 features of each dataset. LNW features dominate the
importance analysis, likely due to their ability to capture essential temporal dependencies in energy consumption patterns. Specifically, lag features model historical
influences, such as thermal inertia [58], where past usage affects near-future demand due to gradual changes. Meanwhile, the effectiveness of nested window
features suggests that energy consumption operates over multiple temporal scales: short-term windows capture immediate operational fluctuations, while longer-
term windows reflect underlying trends and seasonal variations. Together, these characteristics enhance the predictive power of LNW features for ECF problems.

Detailed feature importance analysis can be found in the supplementary material.
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nRMSE Processing Time
NoFeat4.28 |
TSMin - 4.08 | 7/] 1.89
TSEff- 3.61 7] 4.00
FT- 1.97 7 2.78
AutoEnregy- 1.06 [ /] 1.33

Mean Friedman Ranks

Related-Samples Friedman's Two-Way Analysis of Variance by Ranks Summary

Metric Test Statistic Degree Of Freedom |Asymptotic Sig.(2-sided test)
nRMSE 57.883 4 <.001
Processing Time 43.867 3 <.001

Fig. 9. Comparisons between the proposed FE algorithm and other FE methods using the Friedman Average Ranking (lower is better).

manner °. The results reveal that features generated by AutoEnergy are
the most predictive, even though eight of the eighteen datasets have ad-
ditional features such as weather attributes. In particular, statistically
significant lags and nested window features, as explained in Subsec-
tion 2.2.2, appear to be the dominant predictors contributing to model
performance. This may suggest that lag features effectively capture
historical influences, such as thermal inertia in buildings [58], where
past consumption directly affects immediate future demand due to
gradual changes in heating or cooling systems, revealing that energy
behaviours may exhibit persistence and path-dependency rather than
abrupt shifts. Meanwhile, the effectiveness of nested window features
may indicate that energy consumption operates across multiple tempo-
ral scales (i.e., short-term windows capture immediate operational fluc-
tuations while longer-term windows encode baseline trends and sea-
sonal adjustments). Because these temporally explicit predictors may
map directly to operational concepts such as “daily average demand,”
practitioners can trace a model’s output back to concrete, intuitive
drivers, thereby markedly enhancing interpretability. In spite of that,
feature importance is often dataset-dependent, so this observation may
vary across different datasets and settings. Further feature-importance
scores and details, including eighteen tables (one for each dataset), are
provided in the supplementary material.

Beyond feature-importance rankings, the engineering of temporal,
cyclical, lag, and nested features by AutoEnergy, as explained in Sub-
section 2.2, enhances interpretability and transparency in several use-
ful ways. First, sinusoidal time encodings (sine/cosine of hour-of-day
and day-of-week) map directly to familiar operational cycles; their ef-
fects, therefore, can be read as “daily/weekly seasonality” rather than
opaque latent factors. Second, lagged and windowed statistics (e.g.,
load at r — 24h or the previous 24-hour mean) preserve units and time
scales, making the direction and magnitude of their influence pre-
dictable (higher recent demand plausibly raises near-term forecasts),
which may support counterfactual “what-if” reasoning and analysis.
Third, AutoEnergy’s design is a rule-based (heuristic) search algorithm
that applies explicit, auditable transformations (temporal shifts, rolling
aggregates, and trigonometric projections), keeping provenance clear
and making each generated feature human-readable, traceable, and re-
producible, thereby strengthening the interpretability advantage of the
method. Finally, because the generated features are emitted as standard
tabular columns with fixed names and units, they can be integrated di-
rectly into AutoML frameworks that provide built-in feature-importance
tools (e.g., AutoGluon), enabling non-experts to see how engineered fea-
tures influence forecasts and thereby preserving interpretability in fully
automated, end-to-end ECF workflows.

® For more information, see https://auto.gluon.ai/dev/api/autogluon.
tabular.TabularPredictor.feature_importance.html and https://auto.gluon.ai/
dev/api/autogluon.timeseries.TimeSeriesPredictor.feature_importance.html.
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To evaluate the statistical significance of performance differences,
both the Friedman and the Wilcoxon tests were conducted as detailed in
Subsection 3.4. Friedman’s test revealed significant differences among
the methods (p < 0.001), with AutoEnergy achieving the best mean
rank for nRMSE (1.06), followed by FT (1.97), TSEff (3.61), TSMin
(4.08), and NoFeat (4.28), as presented in Fig. 9. Post hoc analy-
sis using Bonferroni correction demonstrated that AutoEnergy signifi-
cantly outperformed TSEff, TSMin, and NoFeat in terms of nRMSE (all
p < 0.001), as shown in Table 6. While the Friedman test with Bonfer-
roni adjustment showed no significant difference between AutoEnergy
and FT (p = 0.820), the pairwise Wilcoxon test, which specifically ex-
amines the direct comparison between these two methods, revealed a
statistically significant improvement (p = 0.001) as depicted in Table 7.
The discrepancy may stem from the Friedman test’s omnibus design
and conservative Bonferroni adjustment: the original AutoEnergy-FT
comparison was non-significant pre-adjustment (p = .082), and the cor-
rection further attenuated this effect (p = .820), whereas the Wilcoxon
test, focused solely on this pairwise comparison without multiple-
testing penalties, thereby detected a statistically significant difference
(p=.001) that the more conservative post hoc analysis may have
overlooked.

In terms of computational efficiency, as presented in Fig. 9, Fried-
man’s test ranked AutoEnergy first (1.33), with post hoc tests show-
ing significant improvements over FT (p=0.005) and TSEff (p <
0.001), while the difference with TSMin was not statistically signifi-
cant (p =1.000), a finding also confirmed by the Wilcoxon test (p =
0.446). Although TSMin achieved better processing times, AutoEnergy’s
superiority in accuracy, demonstrated earlier through its substantial re-
duction in forecasting errors, remained noticeable. These results pro-
vided statistical evidence supporting AutoEnergy’s favourable balance
between accuracy and computational efficiency for ECF problems com-
pared to the benchmarking methods.

Table 6

Friedman test results for nRMSE and processing time comparisons.
Comparison Test Statistic Std. Error Std. Test Statistic ~ Sig. Adj. Sig.*
nRMSE
AutoEnergy-FT -0.917 0.527 -1.739 0.082  0.820
AutoEnergy-TSEff  -2.556 0.527 -4.849 <0.001 0.000
AutoEnergy-TSMin -3.028 0.527 -5.745 <0.001 0.000
AutoEnergy-NoFeat -3.222 0.527 -6.114 <0.001 0.000
Processing Time
AutoEnergy-TSMin -0.556 0.430 -1.291 0.197  1.000
AutoEnergy-FT -1.444 0.430 -3.357 <0.001 0.005
AutoEnergy-TSEff  -2.667 0.430 -6.197 <0.001 0.000

Note: Each row tests the null hypothesis that distributions are the same.
“Bonferroni-adjusted significance values.


https://auto.gluon.ai/dev/api/autogluon.tabular.TabularPredictor.feature_importance.html
https://auto.gluon.ai/dev/api/autogluon.tabular.TabularPredictor.feature_importance.html
https://auto.gluon.ai/dev/api/autogluon.timeseries.TimeSeriesPredictor.feature_importance.html
https://auto.gluon.ai/dev/api/autogluon.timeseries.TimeSeriesPredictor.feature_importance.html

N. Alkhulaifi et al.

Table 7
Wilcoxon Signed Ranks test results comparing AutoEnergy with
other FE methods for nRMSE and processing time.

Metric ~ Comparison Z Asymp. Sig. (2-tailed)
nRMSE

FT - AutoEnergy -3.202>  0.001

TSESff - AutoEnergy -3.724° <0.001

TSMin - AutoEnergy -3.724P <0.001

NoFeat - AutoEnergy ~ -3.724°  <0.001
Processing Time

FT - AutoEnergy -3.680P <0.001

TSEff - AutoEnergy -3.724° <0.001

TSMin - AutoEnergy -0.762°>  0.446

b Based on negative ranks.

5. Conclusion

This work proposed AutoEnergy, an automated FE method designed
specifically for ECF to improve AutoML performance. This algorithm
automatically generates interpretable features from timestamps and his-
torical energy consumption values while reducing reliance on domain
expertise for FE. Through comprehensive evaluation across eighteen di-
verse real-world energy datasets, encompassing residential buildings,
wind turbines, industrial settings, and grid power consumption, AutoEn-
ergy demonstrated significant enhancement of AutoML’s predictive per-
formance compared to existing FE methods.

The experimental results revealed that AutoEnergy achieved supe-
rior forecasting accuracy with a mean nRMSE of 0.0338, represent-
ing substantial reductions in forecasting errors of 19.52%, 82.38 %,
77.98 %, and 84.72% compared to FT, TSMin, TSEff, and baseline ap-
proaches, respectively. These improvements were statistically validated
through both the Friedman and the Wilcoxon tests. In terms of computa-
tional efficiency, AutoEnergy demonstrated better processing times, av-
eraging 471.94 seconds across the test sets, performing 1.31x and 4.41x
faster than FT and TSEff, respectively. Notably, the method exhibited ex-
ceptional performance on small datasets, which is particularly relevant
given the common constraints of data availability in real-world energy
applications.

The superior performance of AutoEnergy can be attributed to its
domain-specific design, where the proposed functions detailed in Sec-
tion 2 generate interpretable features that effectively capture under-
lying consumption patterns across diverse energy systems, leading to
improved AutoGluon performance. This was further validated through
its integration with the state-of-the-art TabPFN algorithm, where Au-
toEnergy achieved forecasting error reductions ranging from 2.1 % to
92.8 % across different datasets compared to using TabPFN without Au-
toEnergy. These findings highlight that while general-purpose AutoML
frameworks prioritise broad applicability, domain-specific FE methods
can significantly enhance performance for specialised tasks such as ECF,
offering an effective balance between accuracy and computational effi-
ciency.

While AutoEnergy demonstrates superior performance in ECF ap-
plications, several limitations should be acknowledged. First, the algo-
rithm’s FE process is specifically tailored to energy time series data,
which may limit its generalisability to other domains without substan-
tial modifications. Future work may examine AutoEnergy in other appli-
cation domains or energy-like domains such as pollution and air qual-
ity forecasting. Second, while AutoEnergy has demonstrated strong per-
formance on datasets of up to approximately 145k samples (e.g., the
PJME and PJMW datasets), an evaluation of its scalability on much
larger datasets and real-time streaming scenarios remains necessary to
confirm its computational efficiency under industrial-scale workloads.
Third, while the empirical sensitivity analysis provides evidence sup-
porting the one-third sequence-length constraint for nested window fea-
tures, this parameter remains heuristically determined rather than the-
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oretically optimised, suggesting that future research should explore bet-
ter optimisation methods that could dynamically adjust the maximum
window length based on underlying temporal patterns and series char-
acteristics. Finally, despite the comprehensive experimental evaluation
encompassing five distinct pipelines across eighteen diverse datasets and
comparison against well-established benchmarking methods, it remains
impractical to exhaustively compare AutoEnergy against all existing FE
methods, particularly given the rapid evolution of AutoML techniques
and the diverse approaches to different types of data and domains. That
said, AutoEnergy can be seen as a step towards end-to-end, fully auto-
mated ML models for ECF and similar forecasting problems.
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Appendix A. Additional results of four additional metrics (RMSE,
MAE, MAPE, and R?).

The following metrics are commonly used to evaluate the predictive
performance of regression models:
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RMSE and MAE results for various feature engineering methods using AutoGluon across all test sets. Lower is better. Bold
indicates best results. These results are complementary to those presented in Table 3.

FE Methods
Dataset AutoEnergy FT TSMin TSEff No.Feat
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
AEP 125.88 90.310 148.90 112.09 2515.3 1962.9 2633.5 2054.9 2445.8 1959.3
Appliances 72.205 26.727 68.366 23.436 151.98 78.951 126.89 53.078 100.58 69.336
CAISO _Elec 573.73 368.86 818.03 592.44 8785.4 7376.6 3782.1 2943.9 7171.6 5677.0
COMED 64.451 28.250 64.819 31.482 658.33 534.51 676.95 541.09 816.74 664.80
DEOK 65.096 28.533 65.468 31.797 664.91 539.85 683.72 546.50 824.91 671.45
EKPC 35.211 26.018 40.448 30.771 505.42 411.83 578.16 482.25 391.87 314.65
FDCS_1 243.44 167.72 258.66 184.84 535.56 461.58 281.64 183.11 766.88 583.88
FDCS_2 345.89 246.55 373.22 283.55 573.15 476.24 526.69 422.81 758.16 668.23
FE 75.202 48.521 92.156 61.690 1326.0 1062.4 1362.6 1099.0 1167.6 906.03
NI 101.35 61.563 119.97 84.023 2503.8 1972.6 2448.3 1955.9 2998.8 2367.1
PJME 220.78 148.42 253.55 188.43 7858.0 5770.4 7392.1 5491.2 13,728 11,465
PIMW 59.313 44.096 69.084 52.694 1132.3 892.57 1101.2 860.49 995.97 794.60
Solar_Home 0.20367 0.14167 0.21669  0.15633 0.52050 0.44938 0.42167 0.35878 0.37987 0.30742
Steel 6.5323 3.3761 6.5576 3.7719 5.5918 3.0670 7.0883 4.2280 109.38 76.673
TCity 360.15 263.27 2704.0 2233.1 7269.4 5907.7 5161.6 4140.5 8099.1 6903.9
UNICON 0.93407 0.68319  0.96273 0.70705 7.0677 5.2662 4.8874 3.6194 6.5745 5.4347
Victoria 48.557 31.940 53.593 36.121 1415.5 1141.7 553.51 423.68 912.61 707.86
WindT 221.48 112.34 335.26 218.04 593.74 447.32 390.85 261.25 1483.6 1322.4
Mean 145.54 94.280 304.04 231.60 2027.5 1613.4 1539.2 1192.4 2376.1 1952.9
Table A.9

MAPE(%) and R? Results for various feature engineering methods using AutoGluon across all test sets. Lower MAPE and higher R? are better.
Bold indicates best results. These results are complementary to those presented in Table 3.

FE Methods
Dataset AutoEnergy FT TSMin TSEff No.Feat
MAPE% R2 MAPE% R2 MAPE% R2 MAPE% R2 MAPE% R2
AEP 0.62000%  0.99730  0.77000%  0.99630  12.940%  0.040100  13.440%  -0.052300 13.660%  -0.0014000
Appliances  18.030% 0.37090  14.350%  0.43610  82.030%  -1.7868 46.070%  -0.94280 90.740%  -0.22070
CAISO Elec  1.9900 % 0.99010  3.0200% 0.97990  32.960%  -1.3214 14.770%  0.56980 31.570%  -0.54690
COMED 1.0500 % 0.98920  1.1500% 0.98910  18.270%  -0.15890 17.920%  -0.22540 21.640%  -0.72930
DEOK 1.0605 % 0.97931 1.1615% 0.97921  18.453%  -0.15731 18.099%  -0.22315 21.856%  -0.72201
EKPC 1.7400 % 0.99180  2.0600% 0.98920  30.440%  -0.72100 36.180%  -1.2520 21.660%  -0.010600
FDCS_1 21.760% 0.82470  20.810%  0.80210  137.90%  0.15150 25.350%  0.76530 168.05%  -0.73980
FDCS_2 27.620% 0.60140  32.510% 0.53590  64.640%  -0.094500  52.570%  0.075700  98.190%  -0.91520
FE 0.63000%  0.99660  0.83000%  0.99490  14.310%  -0.052800  14.820%  -0.11170 11.640%  0.17650
NI 0.52000%  0.99820  0.71000%  0.99740  17.430%  -0.14990 17.560%  -0.099500  20.330%  -0.61260
PJME 0.47000%  0.99880  0.61000%  0.99850  17.390%  -0.44900 16.380%  -0.28230 41.430%  -3.4767
PIMW 0.80000%  0.99640  0.97000%  0.99520  15.810%  -0.18400 15.040%  -0.11970 14.520%  -0.0035000
Solar Home  25.740% 0.59270  28.950% 0.53890  108.63%  -1.6604 86.690%  -0.74600 60.000%  -0.41700
Steel 6.0600 % 0.99730  6.4200% 0.99730  5.3300%  0.99800 8.7300%  0.99690 220.76%  0.25290
TCity 0.93000%  0.99660  7.1100% 0.80770  18.630%  -0.38970 13.660%  0.29930 24.050%  -0.72510
UNICON 1.7300% 0.96560  1.7900% 0.96350  12.200%  -0.96770 8.5500%  0.059100  13.670%  -0.70260
Victoria 0.70000%  0.99680  0.78000%  0.99610  22.790%  -1.7180 8.7500%  0.58440 15.040%  -0.12980
WindT 127.32% 0.97280  514.93% 0.93760  145.91%  0.80430 144.05%  0.91520 7235.3%  -0.22200
Mean 13.264% 0.90369  35.496% 0.88582  43.104%  -0.43439 31.025%  0.011589  451.33%  -0.54184
D ( v, — 9, ) 2 A.1. Additional results across all test sets with AutoGluon.
R2=1- '=1—"2 (A.4)
n -
X (vi-79) Tables A.8 and A.9 present comprehensive evaluation results us-

where y; denotes the actual value, j; denotes the predicted value, j is
the mean of the actual values, and » is the total number of observa-
tions. MAE (Mean Absolute Error) measures the average magnitude of
prediction errors without considering their direction. RMSE (Root Mean
Squared Error) penalises larger errors more heavily, making it sensitive
to outliers. MAPE (Mean Absolute Percentage Error) expresses errors as
a percentage of actual values, providing scale-independent interpretabil-
ity; however is undefined when any y;, = 0. R? (Coefficient of Determi-
nation) indicates the proportion of variance in the dependent variable
explained by the model, with values closer to 1 representing a better
fit.
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ing four additional metrics (RMSE, MAE, MAPE, and R?) across all 18
datasets, providing multiple perspectives on FE methods’ performance
with AutoGluon. These results are complementary to those presented in
Table 3.

A.2. Additional results across all test sets with TabPFN.

Tables A.10 and A.11 present a comprehensive evaluation using
four additional metrics (RMSE, MAE, MAPE, and R?) across all 18
datasets, providing multiple perspectives on FE methods’ performance
with TabPFN. These results are complementary to those presented in
Table 4.
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Table A.10
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RMSE and MAE results for various feature engineering methods using TabPFN Across all test sets. Bold indicates the
best per row and metric. These results are complementary to those presented in Table 4.

Methods
Dataset TabPFN TabPFN_AutoEnergy TabPFN_FT TabPFN_TSEff TabPFN_TSMin

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Appliances 117.18 102.10 58.891 24.478 59.070 24.179 95.739 74.172 124.23 111.26
FDCS_1 444.96 321.52 206.34 127.91 223.44 153.03 282.83 200.28 523.57 414.20
FDCS_2 443.46 343.62 332.63 238.43 376.95 277.53 446.51 348.85 477.77 373.33
Steel 4.2997 1.8133 4.3478 1.9157 4.3778 2.1459 7.2560 4.1050 4.0600 1.7699
TCity 6936.3 5547.4 473.57 191.57 545.77 379.33 1807.3 1343.5 5925.3 4732.0
UNICON 5.0920 4.1715 0.89409 0.62719 0.96541 0.67900 4.6337 3.7580 4.4883 3.7482
Victoria 709.85 588.43 74.830 28.601 69.195 39.349 471.69 364.28 689.46 548.88
WindT 645.94 346.10 303.05 150.93 351.15 153.10 574.87 405.29 457.21 334.79
Mean 1163.4 906.89 181.82 95.557 203.86 128.67 461.36 343.02 1025.8 814.99

Table A.11

MAPE(%) and R? results for various feature engineering methods using TabPFN across all test sets. Bold indicates the best per row and
metric. hese results are complementary to those presented in Table 4.

Methods
Dataset TabPFN TabPFN_AutoEnergy TabPFN_FT TabPFN_TSEff TabPFN_TSMin

MAPE% R2 MAPE% R2 MAPE% R2 MAPE% R2 MAPE% R2
Appliances 146.00 % -0.57350 19.610% 0.60250 18.830% 0.60010 97.080 % -0.050400 161.76%  -0.76870
FDCS_1 88.250 % 0.50360 17.600 % 0.89330 30.150 % 0.87480 43.360 % 0.79940 179.56 % 0.31270
FDCS_2 46.260 % 0.34480 28.400 % 0.63130 37.090 % 0.52660 46.650 % 0.33570 52.540%  0.23940
Steel 1.7000 % 0.99880 2.1500% 0.99880 2.6400 % 0.99880 5.4200 % 0.99670 1.7900%  0.99900
TCity 19.460 % -0.21430 0.70000 % 0.99430 1.4100 % 0.99250 4.2800 % 0.91760 17.220% 0.11390
UNICON 10.700 % -0.021300 1.5800 % 0.96850 1.7100 % 0.96330 9.4400 % 0.15420 9.6000%  0.20650
Victoria 12.420 % 0.34320 0.60000%  0.99270 0.84000%  0.99380  7.4000 % 0.71000 11.260%  0.38040
WindT 247.27 % 0.77000 91.090 % 0.94940 156.86 % 0.93200 234.74% 0.81780 165.61%  0.88480
Mean 71.507 % 0.26891 20.216 % 0.87885 31.191% 0.86024 56.046 % 0.58513 74.917%  0.29600
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