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 a b s t r a c t

Feature engineering (FE) plays a crucial role in Machine Learning pipelines, yet it remains a time-consuming 
process requiring heavy domain expertise. While Automated Machine Learning (AutoML) has automated model 
selection and hyperparameter tuning, it often overlooks FE, which is particularly needed in specialised domains 
such as Energy Consumption Forecasting (ECF). To address this limitation, we introduce AutoEnergy, a novel, 
domain-aware FE algorithm tailored for ECF. AutoEnergy automatically generates interpretable features from 
timestamps and past consumption values through rule-based transformations, integrating them with AutoML 
for fully automated ECF modelling while reducing human intervention. The performance of AutoEnergy was 
evaluated using eighteen diverse real-world energy consumption datasets spanning residential, commercial, in-
dustrial, and grid power domains. Through extensive benchmarking against baseline AutoML without FE and es-
tablished FE methods, namely TSFresh (with TSEfficient and TSMinimal configurations) and FeatureTools (FT), 
AutoEnergy demonstrated significant improvements in both predictive accuracy and computational efficiency. 
AutoEnergy achieved forecasting error reductions of 19.52% to 84.72% compared to benchmarking methods, 
with strong performance on smaller datasets and statistical validation via Friedman and Wilcoxon tests. AutoEn-
ergy demonstrated notable computational efficiency by running 1.31 and 4.41 times faster than FT and TSEff, 
respectively. Although 1.58 times slower than TSMin, AutoEnergy achieved 82.38% lower forecasting errors. 
Integrating AutoEnergy with the state-of-the-art Tabular Prior Data Fitted Network (TabPFN) resulted in signif-
icant forecasting error reductions across test sets. These findings highlight AutoEnergy’s potential to improve 
AutoML performance while reducing reliance on domain expertise for FE, paving the way for fully automated 
ML pipelines in ECF applications.

1.  Introduction and background

Feature Engineering (FE) is a crucial step in developing machine 
learning (ML) pipelines, as it transforms raw data into informative fea-
tures that enhance model performance [1,2]. This is because raw data 
are often not ideal in their original form for algorithms to learn effec-
tively [3,4]. Furthermore, real-world datasets are often small or limited 
due to data collection limitations, privacy issues, or resource constraints 
[5,6]. In such scenarios, FE could compensate for the limited data by 
extracting informative features. Moreover, FE may improve computa-
tional efficiency by eliminating noisy, redundant, and irrelevant data 
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[7,8]. Finally, FE may improve not only predictive accuracy but also 
explainability [9].

Despite these advantages, FE remains a time-consuming process that 
is prone to human error while relying heavily on domain expertise 
and iterative experimentation [7,10]. Deep learning algorithms [11,12], 
while capable of automatically learning useful representations from raw 
data, lack interpretability and typically require large datasets to perform 
well, a condition that is often infeasible in real-world scenarios [5,13]. 
This has led to a growing interest in automated FE methods [14].

Modern Automated Machine Learning (AutoML) frameworks [15] 
such as AutoGluon [16], H2O [17], and FLAML [18] offer streamlined 
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solutions for ML pipeline development through automated model selec-
tion and hyperparameter tuning. Nevertheless, these solutions often as-
sume that data preparation and feature generation have been completed 
and the data are ready for training. As a result, tasks such as FE and the 
integration of domain knowledge are largely left to human practitioners 
[14].

Furthermore, many general-purpose AutoML systems are proposed 
for broad applicability across ML tasks, but their focus on generalisa-
tion often limits their effectiveness in specialised domains [19]. Such 
limitations become particularly evident in domains that require inter-
pretable features, such as energy consumption forecasting (ECF) of time 
series data, where understanding the factors influencing energy con-
sumption is important for well-informed decisions. This challenge may 
be attributed to the complex nature of power usage patterns, which 
can involve various linear and nonlinear relationships, fluctuating be-
haviours, and potential dependencies on temporal and environmental 
factors [20,21]. Therefore, domain-relevant FE could be a beneficial ap-
proach for AutoML to excel in modelling ECF problems.

1.1.  Feature engineering in supervised learning for energy consumption 
forecasting

To better understand the FE process and its objectives in super-
vised learning contexts, it can be formally defined as follows: given a 
dataset 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 with 𝑁 instances, the objective is to find a fea-
ture transformation function 𝜙 ∶ 𝑋 → 𝑋′ that improves the performance 
of a learning algorithm 𝐴 when trained on the transformed dataset 
𝐷′ = {(𝜙(𝑥𝑖), 𝑦𝑖)}𝑁𝑖=1. Here, 𝑥𝑖 represents the input features, 𝑦𝑖 denotes 
the corresponding target values, 𝑋 is the original feature space, and 𝑋′

is the transformed feature space [14].
In ECF, implementing FE begins with identifying key raw features, 

which vary across studies. Yet, historical data and weather information 
are consistently identified as the most significant ones [22]. Historical 
data offers insights into consumption patterns, while weather data re-
flects environmental factors, such as outdoor temperature that affect 
energy usage. Some studies; however, have improved forecasting mod-
els by engineering features from raw data, such as time-based and pe-
riodic features, to capture energy temporal patterns more comprehen-
sively [23,24].

Nonetheless, manually extracting these features often requires both 
energy domain expertise and data science skills [7,8]. Energy domain 
experts identify the key factors influencing energy consumption, while 
data scientists validate these insights through data analysis and extract 
the relevant features from the raw data. Consequently, there is a press-
ing need to automate FE in ECF problems to streamline the process, 
reduce human bias, and enhance model performance without requiring 
extensive domain-specific knowledge for each new data.

1.1.1.  Automated feature engineering
Automated FE encompasses a range of approaches aimed at reduc-

ing manual intervention in the feature generation process by leveraging 
algorithmic solutions [25]. The concept of automated FE, as proposed 
by [8], may involve two key steps: first, generating a comprehensive 
search space of possible feature processing operations, and second, em-
ploying optimisation techniques to identify the most effective FE strat-
egy. These operations, which include transformations such as aggrega-
tion functions and arithmetic operations, can be combined to create a 
set of new informative features. Although the literature lacks explicit 
and comprehensive categorisations of automated FE methods relevant 
to ECF problems, we may broadly classify the current landscape into the 
following categories:

• Traditional Statistical Methods: these methods apply statistical and 
mathematical transformations to create new features through dimen-
sionality reduction or statistical computations. For example, Prin-
cipal Component Analysis (PCA) [26] and wavelet decomposition 

[27] are widely employed in ECF to improve performance and au-
tomate FE. However, these methods present significant challenges 
when applied to ECF problems. While PCA effectively reduces data 
dimensionality, it often obscures the intuitive relationship between 
the transformed principal components and the original data features, 
complicating interpretation. Similarly, wavelet decomposition gen-
erates coefficients that are more complex and less interpretable than 
the raw data, requiring specialised domain knowledge for proper in-
terpretation. These interpretability challenges are particularly criti-
cal in ECF, where understanding the factors influencing energy use 
is essential for developing effective policies and solutions.

• Learning-Based Methods: these methods primarily utilise artificial 
neural networks to learn and automatically generate new features 
from raw data. A prominent example is Autoencoders, which have 
been studied in ECF [11,28,29]. However, Autoencoders require 
large datasets and produce abstract features with unclear ties to the 
original data, hindering explainability. While post hoc methods such 
as LIME [30] which is limited to local interpretability and SHAP [31] 
offer insights, their reliability is debated [32,33]. LIME’s explana-
tions, for example, depend heavily on parameter choices and may 
exclude important features [34], further emphasising the need for 
inherently interpretable features for ECF.

• Hybrid Semi-Automated Methods: the CAAFE method [14] is an ex-
ample of a context-aware semi-automated FE approach designed for 
tabular data. This method integrates human expertise (i.e., domain 
knowledge) with large language models (LLMs) to streamline the 
FE process. While some steps in this method are automated, human 
intervention is still necessary to guide the process and make criti-
cal decisions. Such methods face two key challenges: computational 
limitations when handling datasets with a large number of attributes, 
and the potential for LLM hallucinations during feature generation.

• Heuristic-Based Methods: these search-based algorithms rely on pre-
defined rules to generate new features. For example TSfresh (TS) 
[35], a widely used automated FE method in the literature, applies 
various time series characterisation techniques to compute features 
without the need for manual intervention. This algorithm charac-
terises time series data in terms of data point distribution, correlation 
properties, stationarity, entropy, and nonlinear time series analysis. 
However, this method can be computationally expensive and risk 
overfitting due to the large number of generated features [36,37]. 
Another widely recognised search-based FE method is Featuretools 
(FT) which was developed based on the Deep Feature Synthesis al-
gorithm [38]. This algorithm applies a series of transformation func-
tions to create new features. These functions include mathematical 
operations such as summing, averaging, and counting functions. Al-
though it has shown promising results in domains such as education 
and e-commerce, particularly in predicting student dropout, project 
excitement, and repeat buyer behaviour, its application in domains 
such as ECF remains unexplored.

Nevertheless, the literature lacks clarity regarding what automated
truly means in the context of FE in supervised learning. That said, this 
work focuses on heuristic-based methods as benchmarks for comparison 
with the proposed method for the following four key reasons: (a) they 
represent established FE techniques directly applicable to ECF problems 
without additional training or human intervention, (b) the proposed 
method aligns with the heuristic-based approaches by employing rule-
based criteria for FE, (c) these methods generally maintain traceable FE 
processes supporting interpretable energy consumption analysis and (d) 
they are potentially more readily integrated into AutoML frameworks, 
thus enabling more practical automated pipelines.

1.2.  Research novelty and contributions

Given the aforementioned limitations, this work proposes
AutoEnergy, a domain-aware automated FE method that constitutes a 
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novel synthesis to: (a) improve AutoML performance through domain-
specific FE optimised for ECF; (b) minimise the human intervention 
and domain expertise required by automating the time-consuming, 
manual FE process; and (c) maintain interpretability through a 
heuristic search design, generating human-readable and traceable 
features. The key novelty of the proposed FE algorithm lies not in the 
individual components (i.e., feature types), but in its fully automated, 
expert-free, domain-aware feature extraction, optimised selection, and 
strategic integration tailored to ECF problems, enabling end-to-end 
automated ECF modelling when integrated with AutoML. The method 
automatically generates features by applying a series of FE functions 
to the dataset’s timestamps and target variables (i.e. past consumption 
values). To assess the proposed method on AutoML performance, a 
comprehensive set of eighteen real-world datasets, representing various 
energy consumption patterns in different domains (e.g., residential and 
commercial buildings, wind turbines, industrial settings, food storage 
facilities, and grid power consumption), was utilised 1. Additionally, the 
proposed method was systematically compared with well-established 
FE methods in the literature, namely TS and FT, assessing both (a) 
predictive accuracy and (b) computational efficiency. This thoroughly 
evaluated the method’s overall effectiveness and practical applicability 
in real-world ECF tasks. While our previous exploratory study [39] 
laid the foundation for this paper, the novelty and contributions of the 
current work are as follows:

• An improved automated FE method tailored for ECF is introduced 
with a higher degree of automation in feature extraction and opti-
mised selection compared to our previous work, as introduced and 
explained in Section 2. It considerably improves AutoML perfor-
mance, as demonstrated by comparisons with and without the pro-
posed FE method, as shown in Subsection 4.1. Additionally, the im-
pact of the proposed FE method on the state-of-the-art Tabular Prior 
Data Fitted Network (TabPFN) algorithm [40] was also examined. 2

• Compared to our previous investigation, this work includes compre-
hensive benchmarking against existing FE methods. The proposed 
FE method achieves a superior reduction in forecasting errors and 
computational efficiency for ECF problems compared to the bench-
marking methods, as shown in Subsection 4.2.

• Compared to our previous study, this work incorporates a wider 
range of energy consumption datasets, including new energy systems 
and settings such as steel manufacturing environments and food and 
drinks cold facilities. This allows for a more extensive evaluation of 
the proposed method’s applicability and effectiveness across differ-
ent settings and environments.

The structure of the remaining sections of this paper is as follows: 
Section 2 outlines the proposed method for automating FE for ECF prob-
lems, Section 3 provides details of the experimental design, including 
the datasets used, benchmarking methods, and evaluation criteria. Anal-
ysis and discussion of findings are presented in Section 4. To conclude, 
Section 5 summarises key insights.

2.  AutoEnergy: an automated end-to-end feature engineering 
algorithm

This section outlines the problem under investigation in Subsec-
tion 2.1 and subsequently details the proposed method to address it in 
Subsection 2.2.

1 All results in this work are reproducible as the code and datasets used 
are publicly available on GitHub. See https://github.com/Nasser-Alkhulaifi/
AutoEnergy
2 TabPFN is a foundation model that leverages transformer-based meta-

learning, designed specifically for tabular data problems and recognised as a 
state-of-the-art AutoML framework.

2.1.  Problem definition

Given a dataset  consisting of 𝑁 instances, where each instance is 
represented by a tuple (𝑡𝑖, 𝑦𝑖), with 𝑡𝑖 denoting a timestamp and 𝑦𝑖 the 
corresponding target variable, we define the dataset as follows:
 =

{

(𝑡1, 𝑦1), (𝑡2, 𝑦2),… , (𝑡𝑁 , 𝑦𝑁 )
}

(1)

The aim is to develop an algorithm that implements an automated FE 
process to enhance the performance of a predictive model  within an 
AutoML framework.

2.2.  AutoEnergy: the proposed feature engineering method

The proposed FE method, as illustrated Fig. 1, applies a set of FE 
functions {GeneratedFeatures𝑗}𝑀𝑗=1 which process the timestamp 𝑡𝑖 and 
the target variable 𝑦𝑖 in  to generate a series of feature subsets 𝐅′

𝑖,𝑗 . 
The complete feature vector 𝐅′

𝑖 for each instance 𝑖 is then created by 
concatenating these feature subsets:

𝐅′
𝑖 =

𝑀
⨁

𝑗=1
GeneratedFeatures𝑗 (𝑡𝑖, 𝑦𝑖), ∀𝑖 ∈ {1,… , 𝑁} (2)

where ⨁ denotes the concatenation operation, combining all feature 
subsets 𝐅′

𝑖,𝑗 generated by the functions into a single feature vector for 
each instance.

Following this, the predictive model  is trained using these com-
plete feature vectors 𝐅′

𝑖 along with their corresponding target variable 
𝑦𝑖, in an AutoML framework:
 = AutoML

(

{(𝐅′
𝑖 , 𝑦𝑖)}

𝑁
𝑖=1

)

(3)

Although many of these features exist in the literature, the proposed 
algorithm is fully automated, expert-free, domain-aware feature extrac-
tion, optimised selection, and strategic integration tailored to ECF prob-
lems, enabling end-to-end automated ECF modelling when integrated 
with AutoML. In particular, for lag and rolling-window statistical fea-
tures, as described in the following subsections:

2.2.1.  Temporal, sine and cosine transform-derived features
These features exploit temporal data to identify patterns influenced 

by time, such as distinguishing between on-peak vs off-peak hours and 
weekdays vs weekends, as shown in Fig. 1. In the first function, namely 
𝐹TIME, of Algorithm 1, time-based features are extracted from the times-
tamp 𝑡𝑖 such as the hour of the day as outlined in steps 5–8. These time-
related features provide insights into temporal patterns and trends in 
the data. The second function, namely 𝐹CYCLICAL, of Algorithm 1, ap-
plies Fourier-based transformations, which has been used in time series 
feature encoding [4], to temporal variables through steps 9–22, where 
’hour of day’ ranges from 0 to 23, and ’day of week’ ranges from 0 (Mon-
day) to 6 (Sunday) to represent the daily and weekly seasonal cycle. This 
transformation is justified by the following key principles: 

• The Fourier series theorem establishes that periodic patterns, such 
as energy consumption’s daily and weekly seasonality, can be ap-
proximated through a combination of sinusoidal components. This 
mathematical foundation serves as an approach for capturing cycli-
cal consumption patterns across various temporal frequencies.

• Sine/cosine transformations map temporal features onto a unit circle 
(where hour 0 and hour 23 become adjacent points), thus preserv-
ing the natural circular topology of time, see Fig. 2. This mathemat-
ical property ensures that every time point has a unique, continuous 
representation while maintaining the cyclical relationship between 
adjacent time periods. More importantly, this transformation is bi-
jective and information-preserving: each hour maps to distinct coor-
dinates with no averaging or smoothing of features, as demonstrated 
by the uniform Euclidean distances (0.26) between all adjacent hours 
in Fig. 2 (d). The continuous appearance of the sine/cosine func-
tions reflects their inherent mathematical properties rather than any 
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Fig. 1. The proposed Algorithm 1 for generating temporal, sine, and cosine transform-derived features is illustrated in subfigure (A), while the proposed Algorithm 2 
for generating lag and nested window features is illustrated in subfigure (B).

Algorithm 1 Temporal, sine and cosine transform-derived features.
Input: DataFrame  with 𝑡 (timestamps) and 𝑦 (target variable)
Output: DataFrame with temporal and cyclical features
1: ′ ← 
2: 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠time ← 𝐹time(, 𝑡)
3: 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠cyclical ← 𝐹cyclical(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠time)
4: ′ ← ′ append 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠time, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠cyclical
5: function 𝐹time(, 𝑡)
6:  𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠time ← Extract time-based features from 𝑡
7:  return 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠time
8: end function
9: function 𝐹cyclical(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠time)
10:  𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠cyclical ← empty list
11:  for feature 𝑓 in 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠time do
12:  if 𝑓 is ’hour of day’ then
13:  𝑓sin ← sin

(

2𝜋𝑓
24

)

14:  𝑓cos ← cos
(

2𝜋𝑓
24

)

15:  else if 𝑓 is ’day of week’ then
16:  𝑓sin ← sin

(

2𝜋𝑓
7

)

17:  𝑓cos ← cos
(

2𝜋𝑓
7

)

18:  end if
19:  Append 𝑓sin, 𝑓cos to 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠cyclical
20:  end for
21:  return 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠cyclical
22: end function

loss of temporal resolution; each of the 24 hours retains its unique 
identity in the transformed space. Unlike linear encoding of hours 
(0–23), which may create a misleading maximum distance between 
hour 23 and hour 0, the circular transformation ensures these tempo-
rally adjacent hours maintain their true neighbouring relationship. 
This continuous representation aligns with the physical reality of 
energy usage patterns, where consumption often changes gradually 
due to thermal inertia and operational behaviours unless disrupted 
by sudden events.

2.2.2.  Lags and nested window features
The proposed algorithm utilises an automated approach to identify 

statistically significant lags and computes rolling statistics across nested 

window sizes using Kendall’s tau correlation. These features capture 
temporal dependencies and multi-scale statistical characteristics in the 
energy time series data, as shown in Algorithm 2, and Fig. 1 and as 
follows:
A: In the first function, namely 𝐹LAGS(𝑦) of Algorithm 2, and as out-
lined in steps 10–13, the algorithm employs Kendall’s tau correlation to 
automatically identify statistically significant lags of 𝑦𝑖 (i.e. the target 
variable). This process is inspired by the FRESH (Feature Extraction and 
Scalable Hypothesis Testing) algorithm [41], ensuring that only useful 
lags are retained. Kendall’s tau is a rank-based correlation statistic to 
assess the strength and direction of association between two variables, 
where its p-value tests the null hypothesis that there is no association 
between the current and lag values. It is defined as:

𝜏 =
(𝐶 −𝐷)

√

(𝐶 +𝐷 + 𝑇 ) ⋅ (𝐶 +𝐷 + 𝑈 )
(4)

where 𝐶 is the number of concordant pairs, 𝐷 is the number of discor-
dant pairs, 𝑇  is the number of ties only in the first variable, and 𝑈 is the 
number of ties only in the second variable. This approach is justified by 
the following: 

Algorithm 2 Lags and nested window features.
Input: DataFrame  with target variable 𝑦
Output: DataFrame with lag and window features
1: ′ ← 
2: 𝑡𝑜𝑝_𝑙𝑎𝑔𝑠 ← 𝐹lags(𝑦) ⊳ Find significant lags
3: 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠lags ← Create features using 𝑡𝑜𝑝_𝑙𝑎𝑔𝑠
4: 𝑡𝑜𝑝_𝑤𝑖𝑛𝑑𝑜𝑤𝑠 ← 𝐹stats(𝑦) ⊳ Find optimal window sizes
5: 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠stats ← empty list
6: for 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒 in 𝑡𝑜𝑝_𝑤𝑖𝑛𝑑𝑜𝑤𝑠 do
7:  Compute rolling statistics of 𝑦 over 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒
8:  Add computed statistics to 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠stats
9: end for
10: function 𝐹lags(𝑦)
11:  Compute statistical significance for each lag
12:  return top 10 significant lags
13: end function
14: function 𝐹stats(𝑦)
15:  𝑚𝑎𝑥_𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒 ← ⌊length(𝑦)∕3⌋
16:  Evaluate rolling windows up to 𝑚𝑎𝑥_𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒
17:  return top 10 significant window sizes
18: end function
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Fig. 2. Ordinal versus Fourier-based cyclical encoding of temporal features demonstrating information preservation without smoothing. (a) Ordinal representation 
of hours (0–23) over one week (168 hours) showing a discontinuous pattern with artificial jumps between hour 23 and 0. (b) First-order Fourier series transformation 
using sin(2𝜋ℎ∕24) and cos(2𝜋ℎ∕24) providing continuous cyclical features. (c) Unit circle mapping where each hour maps to unique coordinates, proving a bijective 
(one-to-one) transformation with no information loss. (d) Euclidean distances between all 24 consecutive hour pairs after transformation, showing identical distance 
of 0.26 for every transition, mathematically confirming that the Fourier encoding preserves all temporal information without averaging or smoothing effects. The 
apparent continuity reflects the inherent mathematical properties of trigonometric functions, not any loss of temporal resolution.

• Non-parametric robustness: Kendall’s tau assumes no specific
distribution, which is suitable for energy data that may not fol-
low normal distributions due to irregular consumption patterns. It 
demonstrates superior robustness to outliers compared to Pearson 
correlation [42], where the latter is sensitive to such anomalies and 
consumption spikes, which is critical for energy data that frequently 
contain these irregularities.

• Statistical significance: hypothesis testing on Kendall’s tau coeffi-
cients with a p-value threshold of 0.05 ensures that only lags ex-
hibiting statistically significant correlations with the target variable 
𝑦𝑖 are retained. Lags with (𝑝 < .05) indicate less than a 5% proba-
bility that the observed correlation is due to chance. This statistical 
filter ensures that the selected lags preserve genuine temporal depen-
dencies and provides an additional layer of validation for the chosen 
lags.

• Computational efficiency: to handle large datasets effectively and 
avoid highly correlated lags (i.e., reduce multicollinearity), only the 
top ten lags with the lowest p-values among the significant lags are 
generated.

B: In the second function, namely 𝐹STATS(𝑦) of Algorithm 2, and as out-
lined in steps 14–18, the algorithm incorporates a nested rolling window 
approach to compute statistical features at multiple time scales. It eval-
uates a range of window sizes up to one-third of the series length. How-
ever, it is worth acknowledging that this cap is empirical and justified 
by the following:

• Sensitivity analysis: an experiment was conducted across multiple 
window size thresholds (one-quarter, one-third, one-half, and the 
full sequence length) to systematically evaluate the impact of the 
maximum nested-window length on model performance and FE pro-
cessing time. Although this approach is not theoretically optimal, it 
remains empirically grounded, as it preserves the automated element 
of FE while offering a practical trade-off balance between forecasting 
accuracy and processing efficiency.

• Computational efficiency and multi-scale pattern capture: limiting 
the maximum window to one-third of the series length attempts to 
balance capturing short-term fluctuations, medium-term variations, 
and longer-term trends while avoiding redundant historical infor-

mation and containing computational complexity. It prevents the
creation of excessively large windows that a) produce substantial 
overlap between consecutive rolling statistics, leading to multi-
collinearity; b) increase memory requirements and computational 
overhead without proportional gains in predictive value; and c) risk 
over-fitting by incorporating overly broad temporal contexts that 
may not reflect underlying energy-consumption patterns.

• Statistical significance: the algorithm computes Kendall’s tau cor-
relations for the rolling-window statistics and retains window sizes 
with p < 0.05. This statistical filter further ensures that, irrespective 
of the maximum window-size threshold, only relationships that are 
statistically significant are preserved, providing an additional layer 
of validation for the selected window sizes.
For the retained window sizes, the algorithm computes the following 

rolling statistics:
• Rolling mean:

𝑥̄ = 1
𝑛

𝑛
∑

𝑖=1
𝑥𝑖 (5)

• Rolling standard deviation:

𝑠 =

√

√

√

√

1
𝑛 − 1

𝑛
∑

𝑖=1
(𝑥𝑖 − 𝑥̄)2 (6)

• Rolling maximum:
max = max(𝑥1, 𝑥2,… , 𝑥𝑛) (7)

• Rolling minimum:
min = min(𝑥1, 𝑥2,… , 𝑥𝑛) (8)

• Rolling kurtosis:

Kurt =
1
𝑛
∑𝑛

𝑖=1(𝑥𝑖 − 𝑥̄)4

( 1𝑛
∑𝑛

𝑖=1(𝑥𝑖 − 𝑥̄)2)2
− 3 (9)

• Rolling skewness:

Skew =
1
𝑛
∑𝑛

𝑖=1(𝑥𝑖 − 𝑥̄)3

( 1𝑛
∑𝑛

𝑖=1(𝑥𝑖 − 𝑥̄)2)3∕2
(10)
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Table 1 
Notations and definitions for all mathematical symbols, variables, and 
notation used throughout Section 2.
 Symbol  Definition
  Dataset composed of 𝑁 instances
𝑁  Total number of instances in the dataset
𝑀  Number of feature engineering functions
𝑡𝑖  Timestamp associated with the 𝑖-th instance
𝑦𝑖  Target variable associated with the 𝑖-th instance
𝐅′
𝑖,𝑗  Feature subset generated from 𝑡𝑖 using the 𝑗-th FE function

𝐅′
𝑖  Complete feature vector for the 𝑖-th instance

⨁  Concatenation operation
  Predictive model trained within an AutoML framework
𝐹TIME  Temporal feature extraction function
𝐹CYCLICAL  Cyclical feature extraction function
𝐹LAGS  Lag feature extraction function
𝐹STATS  Rolling window statistical feature extraction function
𝜏  Kendall’s tau correlation coefficient
𝐶,𝐷, 𝑇 , 𝑈  Concordant pairs, discordant pairs, ties in first/second variable
𝑛  Size of the rolling window
𝑥𝑖  Values within the current rolling window
𝑥̄  Rolling mean
𝑠  Rolling standard deviation

where 𝑛 is the size of the rolling window, and 𝑥𝑖 are the values within the 
current window. By calculating these statistics for each retained window 
size, the algorithm captures different aspects of temporal dynamics in 
the energy data.

2.3.  Considerations

The design of the proposed FE method adheres to the following con-
siderations:

• Computational efficiency: the algorithm handles large datasets by 
limiting the number of generated lags and window sizes based on 
statistical significance.

• Avoidance of data leakage: features at time 𝑡𝑖 are computed using 
only data available up to 𝑡𝑖, preventing look-ahead bias.

• Interpretability: the generated features have the potential to aid in 
model explainability. For instance, lag features capture direct histor-
ical dependencies, while rolling statistics quantify concepts such as 
trend (mean), volatility (standard deviation), extremes (max/min), 
and distribution shape (skewness/kurtosis) over specific time win-
dows, enabling domain experts to understand how each feature con-
tributes to the model’s predictions. In other words, rolling means can 
reveal baseline consumption patterns, standard deviations can iden-
tify periods of irregular usage, and lag features can capture recurring 
behaviours such as daily routines or equipment cycling patterns, al-
lowing energy engineers to understand the factors driving consump-
tion in their systems. Table 1 shows the notations and definitions for 
all mathematical symbols, variables, and notations used.

3.  Experimental design

This section outlines the experimental design adopted in this work, 
including the dataset used in Subsection 3.1, benchmarking methods in 
Subsection 3.2, detailed experimental procedure in Subsection 3.3, and 
lastly the evaluation criteria and statistical tests in Subsection 3.4.

3.1.  Datasets

Due to the limited availability of standardised benchmark datasets 
for ECF using AutoML, this study evaluated the proposed FE method 
using real-world datasets from related research and repositories. Eigh-
teen energy datasets were employed, spanning a range of energy do-
mains, including residential buildings (e.g., home appliances), indus-
trial and manufacturing facilities (e.g., steel factory), food and drink 

cold storage facilities, urban or regional energy use, and renewable en-
ergy sources (e.g., wind turbines). Table 2 and Fig. 3 provide further 
details about the datasets used. These datasets provide a comprehen-
sive representation of different energy systems, encompassing both uni-
variate and multivariate data with varying sample sizes and temporal
resolutions.

3.2.  Benchmarking feature engineering methods

To demonstrate the effectiveness of the proposed FE method, this 
study compares key FE methods from the literature, namely TS and FT, 
as discussed in Subsection 1.1.1, with the proposed method.  These FE 
methods were selected as they represent leading open-source solutions 
that have been successfully applied to a variety of forecasting prob-
lems, thus providing a robust benchmark across different FE approaches. 
While energy-specific FE approaches exist in the literature [53], these 
are predominantly manual, expert-driven methodologies lacking auto-
mated elements to minimise domain knowledge reliance, streamline 
ML model development, and improve AutoML performance. There-
fore, TS and FT serve as the most comparable automated FE baselines 
available for systematic comparison, as they share AutoEnergy’s auto-
mated nature while offering extensive documentation and accessible
implementations that ensure reproducible and methodologically sound 
comparative evaluation. This combination of automation capabilities 
and implementation accessibility makes them the most appropriate 
benchmarks for rigorous evaluation against the proposed FE method. 
It is noteworthy that the TS method offers three primary configurations 
for FE: a) MinimalFCParameters (TSMin), which includes a limited num-
ber of features suitable for quick tests; b) EfficientFCParameters (TSEff), 
which comprises all features generated by the TS method except those 
marked with the "high_comp_cost" attributes3; and c) ComprehensiveFC-
Parameters (TSComp), which includes all generated features by the TS 
method.

In this work, AutoGluon [16] was selected as the AutoML frame-
work due to its superior performance in previous research [39], where 
it outperformed other AutoML methods. This selection is justified by: 
A) logical scientific progression that builds upon previously established 
findings and maintains focus alignment on comprehensive evaluation of 
different FE methods against the proposed FE method within the same 
AutoML framework; B) methodological complexity arising from using 
multiple AutoML frameworks with different architectures, optimisation 
strategies, and ensemble approaches, which may introduce confounding 
variables that obscure the true impact of automated FE contributions 
(i.e., results performance variations may reflect differences between 
the AutoML frameworks rather than the contribution of the FE meth-
ods); and C) computational feasibility challenges associated with eval-
uating multiple AutoML frameworks across eighteen diverse datasets 
with multiple FE pipelines. Nevertheless, TabPFN [40], a state-of-the-
art AutoML framework, was incorporated as an additional experiment 
within the study design to further assess the robustness and potential
generalisability of the proposed FE method. In this experiment, all FE 
methods and models were trained using Python 3.11.4

3.3.  Experimental procedure

The experimental procedure and steps conducted in this work, as 
shown in Fig. 4, are as follows:
Stage One: Partitioning each dataset into two segments: 80% was al-
located to training the AutoGluon models (i.e., train dataset), while 
the remaining 20% was reserved for assessing model performance 

3 Features with high computational costs, see: https://tsfresh.readthedocs.io/
en/latest/api/tsfresh.feature_extraction.html#tsfresh.feature_extraction.settings.
ComprehensiveFCParameters.
4 All computational experiments were performed on a system featuring an 

x86_64 architecture, 64 GB of RAM, and dual Quadro RTX 5000 GPUs.
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Table 2 
Overview of the eighteen energy datasets used in this study. Column Dataset lists the dataset name. Column Description summarises 
the energy system and domain. Column Type indicates whether the dataset is univariate (Uni) or multivariate (Multi(𝑘), where 
𝑘 is the number of additional features, e.g., weather variables). Column N gives the total number of samples. Column Resolution
shows the sampling interval (m = minutes, h = hours). Column Total Duration (days) gives the total time span covered by the 
dataset in whole days. Column Ref. cites the source.
 Dataset  Description  Type  N  Resolution  Total Duration (days)  Ref.
 AEP  Power consumption by American Electric Power  Uni  121,269  1h  5053  [43]
 Appliances  Energy consumption data from home appliances  Multi (27)  19,735  10m  138  [44]
 CAISO_Elec  Electricity load by California ISO  Uni  26,304  1h  1096  [45]
 COMED  Energy usage by Commonwealth Edison  Uni  57,735  1h  2406  [43]
 DEOK  Energy consumption by Duke Energy OH/KY  Uni  57,735  1h  2406  [43]
 EKPC  Energy usage by East Kentucky Power  Uni  45,330  1h  1889  [43]
 FDCS_1  Energy usage by Food and Drinks Cold Storage  Multi (9)  1944  1h  81  [46]
 FDCS_2  Energy usage by Food and Drinks Cold Storage  Multi (9)  2472  1h  103  [46]
 FE  Power consumption by FirstEnergy  Uni  62,870  1h  2620  [43]
 NI  Northern Illinois Hub energy usage  Uni  58,450  1h  2436  [43]
 PJME  Energy use in PJM East Region  Uni  145,362  1h  6057  [43]
 PJMW  Power consumption in PJM West  Uni  143,202  1h  5967  [43]
 Solar_Home  Ausgrid solar home electricity  Uni  17,568  30m  366  [47]
 Steel  Energy usage by AEWOO Steel Co.  Multi (8)  8760  1h  365  [48]
 TCity  Power usage in Tetouan  Multi (3)  52,416  10m  364  [49]
 UNICON  La Trobe University electricity consumption  Multi (4)  8663  1h  361  [50]
 Victoria  Electricity demand of 5 AU states  Multi (1)  20,352  1h  848  [51]
 WindT  Wind turbine SCADA systems  Multi (2)  50,530  10m  351  [52]

Fig. 3. The energy datasets used in this study are depicted in histograms of the target variable with colour-coded bars representing normalised bin positions. Red and 
green dashed lines indicate the mean and standard deviation, respectively. Annotated statistics include coefficient of variation (CV: relative variability), skewness 
(distribution asymmetry), and kurtosis (tailedness). The colour gradient in the histogram bars represents the distribution of values from low (left) to high (right). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

on newly, previously unseen data (i.e., test dataset). This train-test
validation method was selected due to its simplicity and computa-
tional efficiency, particularly given the extensive experimental de-
sign involving 18 datasets, each subjected to five FE methods. More-
over, in AutoGluon, cross-validation is inherently integrated, elimi-
nating the need for a separate validation set, as models are trained 
on multiple folds of data, with each instance evaluated against the 
hold-out fold that was not used during training to generate out-of-
fold predictions, which are then used to calculate the final cross-
validation score [16]. It is also important to note that the data were 
not shuffled, as the energy consumption data exhibit temporal pat-

terns, making it essential to preserve the chronological order of the
timestamps.
Stage Two: This stage involves two steps. In the first step, AutoGluon 
models were trained without FE (No.Feat). This serves as a baseline 
scenario to assess AutoGluon’s forecasting capabilities with minimal
input, utilising the TimeSeriesPredictor. This class, as shown in Fig. 4, in-
cludes different forecasting methods, including statistical-based, neural 
network-based, hybrid, and ensemble methods. This deliberately simpli-
fied configuration is designed to replicate AutoML’s performance under 
conditions that simulate: (a) a worst-case scenario (i.e., the absence of 
domain-specific FE knowledge), and (b) an initial testing phase where 
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Fig. 4. Experimental design. See Subsection 3.3 for a detailed explanation of the experimental setup.

the model learns with limited data. In the second step, both benchmark-
ing FE methods, as described in Subsection 3.2, and the proposed FE 
method as described in Subsection 2.2, were applied to all datasets as a 
preprocessing step before training the AutoGluon models with the Tab-
ularPredictor class.
Stage Three: In this final stage of the experimental procedure, the per-
formance of all trained AutoGluon models was evaluated using the test 
sets and the evaluation metrics outlined in Subsection 3.4.
Special Case TabPFN: While TabPFN is highly effective [40], it oper-
ates within specific architectural constraints, exhibiting superior per-
formance exclusively on datasets containing up to 10,000 samples 
and 500 features. Given these limitations, the experimental procedure 
(see Fig. 5) comparing TabPFN with versus without the proposed FE
algorithm was confined to eight datasets that satisfied these specifica-
tions, as shown in Table 4.

3.4.  Evaluation metrics and statistical tests

In this work, the Normalised Root Mean Squared Error (nRMSE) is 
used to evaluate and compare the proposed FE method versus the bench-
marking methods described in Subsection 3.2. This quantitative metric, 
as depicted in Eq. 11, offers a standardised measure of error magnitude. 

Its normalised nature facilitates quantitative performance comparisons 
across diverse datasets, regardless of the varying scales of their respec-
tive 𝑦𝑖 values.

𝑛𝑅𝑀𝑆𝐸 =

√

1
𝑛
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2

𝑦max − 𝑦min
(11)

where 𝑦𝑖 is the observed or actual values in the dataset; 𝑦̂𝑖 is the val-
ues predicted by the model; 𝑛: the total number of observations in the 
dataset, 𝑦max and 𝑦min are The highest and lowest observed values in the 
dataset, respectively.

In addition to nRMSE, the study evaluates the computational effi-
ciency of each FE method by measuring their processing times. This as-
sessment is crucial for understanding the practical applicability of these 
methods in real-world scenarios, where computational resources may be 
limited, rapid processing is critical, or when dealing with large datasets. 
By comparing the execution times across different FE methods, the study 
provides valuable insights into their scalability and performance trade-
offs. In other words, this evaluation helps identify methods that achieve 
low forecasting errors while maintaining computational cost, thereby 
offering a comprehensive evaluation of each method’s overall effective-
ness and efficiency.
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Fig. 5. Experimental design with TabPFN. See "Special Case TabPFN" in Subsection 3.3 for a detailed explanation of this particular case.

To support the experimental findings statistically, non-parametric 
hypothesis tests were employed to identify significant differences be-
tween the methods [54]. The Friedman Aligned-ranks test [55] is 
employed to examine the presence of statistically significant differ-
ences among the FE methods, with the significance level set at 𝛼 =
0.05. Following this, the Bonferroni post hoc procedure is applied to 
determine which specific FE methods have significant differences in
the one-versus-many (1 ∗ 𝑛) comparisons performed, where one method 
(i.e., AutoEnergy) is compared against 𝑛 other FE methods. Furthermore, 
the Wilcoxon Signed-Rank test [56,57] was employed with 𝛼 = 0.05 to 
further investigate potential differences between pairs of FE methods 
that were not identified as significant by the previous tests, ensuring a 
comprehensive statistical analysis.5

4.  Results and analysis

This section presents an analysis and discussion of the experimental 
results. Subsection 4.1 discusses the overall impact of AutoEnergy on the 
performance of AutoGluon and TabPFN. Subsequently, Subsection 4.2 
provides a comparative evaluation of the proposed FE method against 
benchmark approaches, considering both forecasting errors and process-
ing time. This is followed by Subsection 4.3, which discusses compu-
tational efficiency and sensitivity analysis, and finally, Subsection 4.4 
presents the feature importance analysis and statistical testing.

4.1.  Impact of AutoEnergy on AutoML predictivity

The performance comparison between AutoEnergy and benchmark 
FE methods across eighteen test sets is presented in Table 3 and Fig. 6. 
Despite the diversity in dataset characteristics across different energy 
settings and environments (detailed in Table 2 and Fig. 3), AutoEnergy 
consistently enhanced AutoGluon’s performance compared to the base-
line (i.e., without FE). The results show an average nRMSE reduction of 
83.22%, with improvements (i.e., reduction in forecasting errors) rang-
ing from 28.22% for the Appliances dataset to 98.39% for the PJME 
dataset compared to the baseline.

This improvement is complemented by a 53.69% enhancement 
in prediction stability, as indicated by the lower standard deviation 
(0.0358 vs 0.0773). This shows the contribution of the proposed FE 
method to improving AutoGluon’s predictive accuracy.  Moreover, the 
results in Table 4 indicate that automated FE can further enhance the 
performance of state-of-the-art AutoML methods such as TabPFN [40]. 
In six of the eight datasets that satisfy TabPFN’s constraints, integrating 
AutoEnergy with TabPFN yielded the lowest forecasting errors, outper-
forming FT, TSEff, and TSMin FE methods. The only exceptions were 

5 For more information on Machine Learning statistical tests, visit SCI2S’s 
website on Statistical Inference in Computational Intelligence and Data Mining 
https://sci2s.ugr.es/sicidm

the Steel and Victoria datasets, where TSMin and FT achieved lower er-
rors, respectively. When considered alongside the AutoGluon results in 
Table 3 and Fig. 6, these findings indicate that AutoEnergy can poten-
tially generalise across diverse AutoML frameworks, which differ in ar-
chitecture, model-selection mechanisms, hyper-parameter optimisation 
strategies, and ensemble approaches.

The consistent improvements across diverse energy systems may sug-
gest that underlying consumption patterns share common characteris-
tics that AutoEnergy’s proposed functions, explained in Subsection 2.2, 
can effectively capture and transform raw energy data into useful pre-
dictive features for training AutoML models. Such findings demonstrate 
AutoEnergy’s effectiveness in automating the FE process for ECF prob-
lems without requiring domain expertise. Meanwhile, the limited effec-
tiveness of AutoML frameworks in specialised domains such as ECF can 
be attributed to their general-purpose design, which prioritises broad 
applicability across ML tasks at the expense of domain-specific optimi-
sations that FE methods, such as AutoEnergy, can provide.

4.2.  Comparison with benchmark methods

The proposed AutoEnergy FE method demonstrated an overall supe-
rior performance across test sets compared to the benchmarking meth-
ods. This is evident by achieving a mean nRMSE of 0.0338 compared 
to FT (0.042), TSMin (0.1918), and TSEff (0.1535), as presented in 
Table 3. This represents average reductions in forecasting errors of 
19.52%, 82.38%, and 77.98%, respectively, over these methods. In 
terms of computational efficiency (i.e., time needed for FE), AutoEn-
ergy achieved a mean processing time of 471.94 seconds, which was 
1.31x faster (23.72% improvement) than FT (618.68s) and 4.41x faster 
(77.31% improvement) than TSEff (2079.81s), though 1.58x slower 
(57.78% slower) than TSMin (299.12s). While the latter showed faster 
processing time, AutoEnergy reduced forecasting errors by 82.38% on 
average compared to TSMin.

As shown in Table 3, processing time varies substantially across 
datasets, primarily driven by dataset size (i.e., the number of samples). 
Table 2 provides an overview of the characteristics of the eighteen en-
ergy datasets, including their sample sizes. Notably, larger datasets re-
quire significantly more intensive computations during automated FE. 
This relationship is evident in specific examples: high-sample datasets 
such as PJME (N = 145,362; AutoEnergy = 2,061s; FT = 2,492.4s; 
TSEff = 4,663.4s) exhibit considerably longer processing times due to 
the computational scaling of automated FE operations, whereas smaller 
datasets such as FDCS_1 (N = 1,944; AutoEnergy = 2s; FT = 14.6s; 
TSEff = 2s) are processed much faster. Importantly, this pattern is not 
unique to AutoEnergy but is consistently observed across all benchmark-
ing methods. This observation is further supported by Fig. 7, which 
shows that all FE methods display strong positive Pearson correla-
tions (𝑟 = 0.93–0.97) between dataset size and processing time. This
systematic relationship confirms that the computational overhead is in-
trinsic to automated FE, rather than a limitation specific to AutoEnergy.
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Table 3 
Results obtained on all the test sets (N=18). nRMSE values and processing times in seconds (lower is better) for the proposed AutoEnergy method compared to 
other FE methods. Bold values highlight the lowest nRMSE and fastest processing time for each dataset. nRMSE gives more weight to larger errors due to the 
squaring operation, making it more sensitive to outliers. It is normalised by the range (max-min) of the target variable, allowing for fair comparison of forecasting 
error across datasets with different scales. In Appendices A and A.1 provides additional results of RMSE, MAE, MAPE and R2. Note that the TScomp configuration is 
not reported, as it proved computationally infeasible in our experiments (runs crashed after several hours of running due to excessive memory use). We include this 
note to highlight the practical computational limits of exhaustive FE approaches (e.g., TScomp) in real-world energy forecasting and to underscore the importance 
of considering computational feasibility and practicality in future work.

 FE Methods
Dataset  AutoEnergy  FT  TSMin  TSEff  No.Feat

nRMSE Time nRMSE Time nRMSE Time nRMSE Time nRMSE Time

AEP 0.0096 1585.90 0.0113 1576.84 0.1659 636.50 0.1737 4280.70 0.1856 0.00
Appliances 0.0870 44.33 0.0824 382.34 0.1831 177.06 0.1529 1411.01 0.1212 0.00
CAISO_Elec 0.0163 88.30 0.0232 211.91 0.2495 211.06 0.1074 1468.03 0.2036 0.00
COMED 0.0150 372.41 0.0151 558.55 0.1535 352.04 0.1579 2506.55 0.1905 0.00
DEOK 0.0150 360.22 0.0151 561.21 0.1535 361.33 0.1579 2502.54 0.1905 0.00
EKPC 0.0135 226.76 0.0155 416.53 0.1931 295.27 0.2208 2089.80 0.1499 0.00
FDCS_1 0.0861 2.03 0.0914 14.65 0.1893 22.80 0.0996 51.06 0.2711 0.00
FDCS_2 0.1173 2.79 0.1266 18.62 0.1944 25.21 0.1786 66.12 0.2571 0.00
FE 0.0097 427.77 0.0119 625.56 0.1719 262.22 0.1766 2035.33 0.1513 0.00
NI 0.0070 376.61 0.0083 564.64 0.1732 425.00 0.1693 3111.96 0.2074 0.00
PJME 0.0059 2061.00 0.0068 2492.46 0.2104 666.59 0.1979 4663.42 0.3675 0.00
PJMW 0.0100 2205.06 0.0117 2321.66 0.1834 676.22 0.1784 4304.59 0.1682 0.00
Solar_Home 0.0808 39.66 0.0860 133.49 0.2065 131.43 0.1673 853.15 0.1507 0.00
Steel 0.0104 13.95 0.0122 62.22 0.0122 49.94 0.0132 266.38 0.2040 0.00
TCity 0.0123 320.00 0.0922 506.37 0.2478 439.00 0.1759 3276.16 0.2760 0.00
UNICON 0.0408 13.23 0.0421 61.29 0.3090 50.78 0.2137 263.87 0.2875 0.00
Victoria 0.0100 55.47 0.0110 158.34 0.2911 170.75 0.1138 1088.43 0.1877 0.00
WindT 0.0614 299.46 0.0930 469.73 0.1647 431.06 0.1084 3197.56 0.4115 0.00

Mean 0.0338 471.94 0.0420 618.68 0.1918 299.12 0.1535 2079.81 0.2212 0.0
Std. Dev. 0.0358 705.75 0.0404 744.73 0.0633 216.15 0.0495 1507.69 0.0773 0.0

Fig. 6. Error analysis across test datasets. Each subplot shows the mean absolute error (MAE), computed as MAE = 1
𝑛

∑𝑛
𝑖=1 |𝑦𝑖 − 𝑦̂𝑖|, between true and predicted 

values. The black line represents the MAE (lower is better), while the shaded areas and error bars indicate error variability. MAE provides an average magnitude of 
prediction error, treating all deviations equally and offering insight into prediction consistency that complements the scale-sensitive nRMSE in Table 3.
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Fig. 7. Pearson correlation between dataset size (i.e., number of samples) and processing time for each method across all eighteen energy datasets. Markers represent 
individual datasets.

Table 4 
nRMSE for TabPFN without FE versus with FE methods across datasets 
that satisfy the TabPFN constraints (𝑁 ≤ 10,000, 𝐷 ≤ 500). Lower values 
are better. Boldface indicates the best results. In Appendices A and A.2 
provides additional results of RMSE, MAE, MAPE and R2.

Dataset  TabPFN  AutoEnergy  FT  TSEff  TSMin
Appliances  0.1412  0.0710  0.0712  0.1153  0.1497
FDCS_1  0.1549  0.0718  0.0778  0.0984  0.1822
FDCS_2  0.1504  0.1128  0.1278  0.1514  0.1620
Steel  0.0080  0.0081  0.0082  0.0135  0.0076
TCity  0.2691  0.0184  0.0212  0.0701  0.2299
UNICON  0.2226  0.0391  0.0422  0.2026  0.1963
Victoria  0.1496  0.0158  0.0146  0.0994  0.1453
WindT  0.1792  0.0841  0.0974  0.1595  0.1269

AutoEnergy’s performance advantage is less pronounced on datasets 
with skewed distributions that also include exogenous features (Appli-
ances with 27 features and Steel with 8 features, see Table 2). These 
additional features, such as weather-related, already capture useful pre-
dictive information, thereby reducing the relative improvement that Au-
toEnergy’s temporal FE can provide. Furthermore, the skewed distri-
butions in these datasets may suggest that consumption patterns are 
dominated by extreme values or specific operational modes, where 
exogenous variables are likely stronger predictors than temporal pat-
terns. When datasets already contain informative variables that directly 
influence consumption, the marginal benefit of AutoEnergy is likely 
to be diminished, though AutoEnergy maintains competitive perfor-
mance, achieving the lowest nRMSE for the Steel dataset while re-
maining competitive for the Appliances dataset, where FT performs
best.

Table 5 reveals that capping the nested window length at one-third of 
each series offers a favourable accuracy-cost trade-off for ECF across the 
eighteen datasets, as evidenced by its lowest average nRMSE of 0.1758 
and second-fastest processing time overall. It achieves the minimum er-
ror in 6 of 18 datasets, versus 1, 4, and 7 for the quarter, full-length 
and half caps, respectively, yet the latter was considerably slower in 
processing time compared to the one-third cap. Although such findings 
remain data-dependent, with some datasets showing sub-optimal results 
under the one-third constraint, this configuration consistently delivers 
near-optimal performance across diverse energy datasets representing 
different energy systems, offering a balance between forecasting accu-
racy and computational efficiency for automated FE in ECF tasks; it thus 
minimises the need for expert input and manual intervention, enabling 
fully automated, end-to-end ECF systems.

4.3.  Computational efficiency and sensitivity analysis

While computational efficiency claims are often dataset-dependent, 
AutoEnergy shows promising results in scalability relative to other ex-
isting well-established FE methods. For instance, for the two datasets ex-
ceeding 140,000 samples (PJME = 145,362; PJMW = 143,202 - see Ta-
ble 2 for dataset characteristics), AutoEnergy maintained computational 
feasibility across those cases. More precisely, it achieved faster process-
ing times (2,061s and 2,205s, respectively) compared to FT (2,492s and 
2,322s) and significantly outperformed TSEff (4,663s and 4,305s). How-
ever, more rigorous scalability evaluation on very large datasets (e.g., 
millions of samples) and streaming data scenarios is therefore recom-
mended for future work to fully establish the method’s scalability char-
acteristics. It is worth noting, though, that automated FE methods such 
as AutoEnergy are particularly beneficial for smaller datasets, where 
raw data often lacks sufficient informative patterns, whereas very large 
datasets may inherently contain rich relationships that could reduce the 
relative necessity for extensive FE.

As real-world datasets are often small due to cost and privacy con-
cerns [5,6], AutoEnergy’s performance on small datasets is particularly 
noteworthy. For the three smallest datasets (FDCS_1: 1,944 samples, 
FDCS_2: 2,472 samples, and UNICON: 8,663 samples), AutoEnergy re-
duces nRMSE error to an average of 0.0814, showing significant im-
provements compared to baseline (0.2719, 70.06% lower error), TSMin 
(0.2309, 64.75% lower error), TSEff (0.1640, 50.36% lower error), 
and FT (0.0867, 6.11% lower error). Regarding the processing time 
for these datasets, AutoEnergy generates features in 6.02 seconds on 
average, which is 21.1x faster than TSEff (127.02s), 5.5x faster than 
TSMin (32.93s), and 5.2x faster than FT (31.52s). Although this ob-
servation is data-dependent, AutoEnergy shows better performance on 
small datasets, improving both forecasting accuracy and computational 
efficiency compared to the benchmarking methods. This superior per-
formance could be attributed to AutoEnergy being specifically designed 
for ECF problems, compared to the benchmarking FE methods.

4.4.  Analysis of feature importance and statistical testing

The importance and distribution of the top 20 features across the ex-
amined energy datasets, computed by AutoGluon, are shown in Fig. 8, 
where feature importance is calculated using permutation importance 
[16]. It measures the decrease in model performance when the val-
ues of a specific feature are randomly shuffled, thereby quantifying 
each feature’s contribution to predictive accuracy in a model-agnostic
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Table 5 
Sensitivity analysis results (nRMSE and processing time) for the time series fraction constraint defining the candidate range for nested 
window statistical feature generation, where only features with statistically significant Kendall’s tau correlation within this range are 
retained to generate the final model input features. The examined lengths are: quarter (1_4), one-third (1_3), half (1_2), and full sequence 
length (1). This experiment evaluates the impact of varying maximum rolling window fractions on predictive model performance and 
efficiency, using solely the nested window features as inputs to isolate their standalone contributions and inform optimal parameter 
selection. See Subsubsection 2.2.2 for more details.

Dataset  Maximum Length
 1/4  1/3  1/2  1
 nRMSE  Time  nRMSE  Time  nRMSE  Time  nRMSE  Time

AEP  0.2241  1498.01  0.2229  1634.39  0.2227  1816.42  0.3124  2110.72
Appliances  0.2492  40.28  0.2447  44.35  0.2966  50.82  0.2429  63.48
CAISO_Elec  0.2002  85.50  0.1776  92.99  0.1669  104.12  0.1849  125.12
COMED  0.1519  367.54  0.1513  388.01  0.1498  439.48  0.1826  517.67
DEOK  0.1508  359.59  0.1501  384.05  0.1465  432.18  0.1811  511.69
EKPC  0.1625  224.61  0.1560  243.71  0.1735  279.53  0.2243  326.94
FDCS_1  0.1723  1.73  0.1626  1.85  0.1729  2.10  0.1690  2.68
FDCS_2  0.1558  2.32  0.1545  2.46  0.1507  2.79  0.1509  3.55
FE  0.2009  432.82  0.2180  460.15  0.1674  524.25  0.1708  617.90
NI  0.1906  378.06  0.1977  412.28  0.2182  464.61  0.1812  537.66
PJME  0.2289  2030.82  0.2289  2173.77  0.2289  2427.23  0.1883  2808.38
PJMW  0.1876  1826.87  0.1863  1987.15  0.1871  2219.01  0.1887  2570.72
Solar_Home  0.1766  38.03  0.1892  41.23  0.2003  46.85  0.1660  57.38
Steel  0.0117  13.54  0.0112  14.60  0.0121  16.54  0.0122  20.39
TCity  0.2574  275.11  0.2078  297.74  0.2349  332.94  0.2088  389.78
UNICON  0.2458  12.90  0.2458  13.90  0.2133  15.73  0.2594  19.56
Victoria  0.1377  53.73  0.1395  57.58  0.1711  65.52  0.1680  79.12
WindT  0.1294  247.24  0.1217  267.58  0.1348  300.13  0.1483  355.55

Fig. 8. Comparison of the top 20 most important features across datasets, grouped into three categories: Temporal, Sine and Cosine Transform-Derived Features (TSC 
- generated using Algorithm 1), Lags and Nested Window Features (LNW - generated using Algorithm 2), and Other (e.g., weather features). The left panel displays 
the feature count with numerical annotations, while the right panel shows the cumulative normalised importance (as a proportion of total importance) of these 
categories. This visualisation emphasises the relative significance of each feature category within the top 20 features of each dataset. LNW features dominate the 
importance analysis, likely due to their ability to capture essential temporal dependencies in energy consumption patterns. Specifically, lag features model historical 
influences, such as thermal inertia [58], where past usage affects near-future demand due to gradual changes. Meanwhile, the effectiveness of nested window 
features suggests that energy consumption operates over multiple temporal scales: short-term windows capture immediate operational fluctuations, while longer-
term windows reflect underlying trends and seasonal variations. Together, these characteristics enhance the predictive power of LNW features for ECF problems. 
Detailed feature importance analysis can be found in the supplementary material.
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Fig. 9. Comparisons between the proposed FE algorithm and other FE methods using the Friedman Average Ranking (lower is better).

manner 6. The results reveal that features generated by AutoEnergy are 
the most predictive, even though eight of the eighteen datasets have ad-
ditional features such as weather attributes. In particular, statistically 
significant lags and nested window features, as explained in Subsec-
tion 2.2.2, appear to be the dominant predictors contributing to model 
performance. This may suggest that lag features effectively capture
historical influences, such as thermal inertia in buildings [58], where 
past consumption directly affects immediate future demand due to 
gradual changes in heating or cooling systems, revealing that energy 
behaviours may exhibit persistence and path-dependency rather than 
abrupt shifts. Meanwhile, the effectiveness of nested window features 
may indicate that energy consumption operates across multiple tempo-
ral scales (i.e., short-term windows capture immediate operational fluc-
tuations while longer-term windows encode baseline trends and sea-
sonal adjustments). Because these temporally explicit predictors may 
map directly to operational concepts such as “daily average demand,” 
practitioners can trace a model’s output back to concrete, intuitive 
drivers, thereby markedly enhancing interpretability. In spite of that, 
feature importance is often dataset-dependent, so this observation may 
vary across different datasets and settings. Further feature-importance 
scores and details, including eighteen tables (one for each dataset), are 
provided in the supplementary material.

Beyond feature-importance rankings, the engineering of temporal, 
cyclical, lag, and nested features by AutoEnergy, as explained in Sub-
section 2.2, enhances interpretability and transparency in several use-
ful ways. First, sinusoidal time encodings (sine/cosine of hour-of-day 
and day-of-week) map directly to familiar operational cycles; their ef-
fects, therefore, can be read as “daily/weekly seasonality” rather than 
opaque latent factors. Second, lagged and windowed statistics (e.g., 
load at 𝑡 − 24ℎ or the previous 24-hour mean) preserve units and time 
scales, making the direction and magnitude of their influence pre-
dictable (higher recent demand plausibly raises near-term forecasts), 
which may support counterfactual “what-if” reasoning and analysis. 
Third, AutoEnergy’s design is a rule-based (heuristic) search algorithm 
that applies explicit, auditable transformations (temporal shifts, rolling 
aggregates, and trigonometric projections), keeping provenance clear 
and making each generated feature human-readable, traceable, and re-
producible, thereby strengthening the interpretability advantage of the 
method. Finally, because the generated features are emitted as standard 
tabular columns with fixed names and units, they can be integrated di-
rectly into AutoML frameworks that provide built-in feature-importance 
tools (e.g., AutoGluon), enabling non-experts to see how engineered fea-
tures influence forecasts and thereby preserving interpretability in fully 
automated, end-to-end ECF workflows.

6 For more information, see https://auto.gluon.ai/dev/api/autogluon.
tabular.TabularPredictor.feature_importance.html and https://auto.gluon.ai/
dev/api/autogluon.timeseries.TimeSeriesPredictor.feature_importance.html.

To evaluate the statistical significance of performance differences, 
both the Friedman and the Wilcoxon tests were conducted as detailed in 
Subsection 3.4. Friedman’s test revealed significant differences among 
the methods (p < 0.001), with AutoEnergy achieving the best mean 
rank for nRMSE (1.06), followed by FT (1.97), TSEff (3.61), TSMin 
(4.08), and NoFeat (4.28), as presented in Fig. 9. Post hoc analy-
sis using Bonferroni correction demonstrated that AutoEnergy signifi-
cantly outperformed TSEff, TSMin, and NoFeat in terms of nRMSE (all 
𝑝 < 0.001), as shown in Table 6. While the Friedman test with Bonfer-
roni adjustment showed no significant difference between AutoEnergy 
and FT (𝑝 = 0.820), the pairwise Wilcoxon test, which specifically ex-
amines the direct comparison between these two methods, revealed a 
statistically significant improvement (𝑝 = 0.001) as depicted in Table 7. 
The discrepancy may stem from the Friedman test’s omnibus design 
and conservative Bonferroni adjustment: the original AutoEnergy-FT 
comparison was non-significant pre-adjustment (𝑝 = .082), and the cor-
rection further attenuated this effect (𝑝 = .820), whereas the Wilcoxon 
test, focused solely on this pairwise comparison without multiple-
testing penalties, thereby detected a statistically significant difference 
(𝑝 = .001) that the more conservative post hoc analysis may have
overlooked.

In terms of computational efficiency, as presented in Fig. 9, Fried-
man’s test ranked AutoEnergy first (1.33), with post hoc tests show-
ing significant improvements over FT (𝑝 = 0.005) and TSEff (𝑝 <
0.001), while the difference with TSMin was not statistically signifi-
cant (𝑝 = 1.000), a finding also confirmed by the Wilcoxon test (𝑝 =
0.446). Although TSMin achieved better processing times, AutoEnergy’s
superiority in accuracy, demonstrated earlier through its substantial re-
duction in forecasting errors, remained noticeable. These results pro-
vided statistical evidence supporting AutoEnergy’s favourable balance 
between accuracy and computational efficiency for ECF problems com-
pared to the benchmarking methods.

Table 6 
Friedman test results for nRMSE and processing time comparisons.
 Comparison  Test Statistic  Std. Error  Std. Test Statistic  Sig.  Adj. Sig.𝑎
 nRMSE
 AutoEnergy-FT -0.917  0.527 -1.739  0.082  0.820
 AutoEnergy-TSEff -2.556  0.527 -4.849 <0.001  0.000
 AutoEnergy-TSMin -3.028  0.527 -5.745 <0.001  0.000
 AutoEnergy-NoFeat -3.222  0.527 -6.114 <0.001  0.000
 Processing Time
 AutoEnergy-TSMin -0.556  0.430 -1.291  0.197  1.000
 AutoEnergy-FT -1.444  0.430 -3.357 <0.001  0.005
 AutoEnergy-TSEff -2.667  0.430 -6.197 <0.001  0.000
Note: Each row tests the null hypothesis that distributions are the same.
𝑎Bonferroni-adjusted significance values.
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Table 7 
Wilcoxon Signed Ranks test results comparing AutoEnergy with 
other FE methods for nRMSE and processing time.
 Metric  Comparison  Z  Asymp. Sig. (2-tailed)
 nRMSE

 FT - AutoEnergy -3.202b  0.001
 TSEff - AutoEnergy -3.724b  <0.001
 TSMin - AutoEnergy -3.724b  <0.001
 NoFeat - AutoEnergy -3.724b  <0.001

 Processing Time
 FT - AutoEnergy -3.680b  <0.001
 TSEff - AutoEnergy -3.724b  <0.001
 TSMin - AutoEnergy -0.762b  0.446

b Based on negative ranks.

5.  Conclusion

This work proposed AutoEnergy, an automated FE method designed 
specifically for ECF to improve AutoML performance. This algorithm 
automatically generates interpretable features from timestamps and his-
torical energy consumption values while reducing reliance on domain 
expertise for FE. Through comprehensive evaluation across eighteen di-
verse real-world energy datasets, encompassing residential buildings, 
wind turbines, industrial settings, and grid power consumption, AutoEn-
ergy demonstrated significant enhancement of AutoML’s predictive per-
formance compared to existing FE methods.

The experimental results revealed that AutoEnergy achieved supe-
rior forecasting accuracy with a mean nRMSE of 0.0338, represent-
ing substantial reductions in forecasting errors of 19.52%, 82.38%, 
77.98%, and 84.72% compared to FT, TSMin, TSEff, and baseline ap-
proaches, respectively. These improvements were statistically validated 
through both the Friedman and the Wilcoxon tests. In terms of computa-
tional efficiency, AutoEnergy demonstrated better processing times, av-
eraging 471.94 seconds across the test sets, performing 1.31x and 4.41x 
faster than FT and TSEff, respectively. Notably, the method exhibited ex-
ceptional performance on small datasets, which is particularly relevant 
given the common constraints of data availability in real-world energy 
applications.

The superior performance of AutoEnergy can be attributed to its 
domain-specific design, where the proposed functions detailed in Sec-
tion 2 generate interpretable features that effectively capture under-
lying consumption patterns across diverse energy systems, leading to 
improved AutoGluon performance. This was further validated through 
its integration with the state-of-the-art TabPFN algorithm, where Au-
toEnergy achieved forecasting error reductions ranging from 2.1% to 
92.8% across different datasets compared to using TabPFN without Au-
toEnergy. These findings highlight that while general-purpose AutoML 
frameworks prioritise broad applicability, domain-specific FE methods 
can significantly enhance performance for specialised tasks such as ECF, 
offering an effective balance between accuracy and computational effi-
ciency.

While AutoEnergy demonstrates superior performance in ECF ap-
plications, several limitations should be acknowledged. First, the algo-
rithm’s FE process is specifically tailored to energy time series data, 
which may limit its generalisability to other domains without substan-
tial modifications. Future work may examine AutoEnergy in other appli-
cation domains or energy-like domains such as pollution and air qual-
ity forecasting. Second, while AutoEnergy has demonstrated strong per-
formance on datasets of up to approximately 145k samples (e.g., the 
PJME and PJMW datasets), an evaluation of its scalability on much 
larger datasets and real-time streaming scenarios remains necessary to 
confirm its computational efficiency under industrial-scale workloads. 
Third, while the empirical sensitivity analysis provides evidence sup-
porting the one-third sequence-length constraint for nested window fea-
tures, this parameter remains heuristically determined rather than the-

oretically optimised, suggesting that future research should explore bet-
ter optimisation methods that could dynamically adjust the maximum 
window length based on underlying temporal patterns and series char-
acteristics. Finally, despite the comprehensive experimental evaluation 
encompassing five distinct pipelines across eighteen diverse datasets and 
comparison against well-established benchmarking methods, it remains 
impractical to exhaustively compare AutoEnergy against all existing FE 
methods, particularly given the rapid evolution of AutoML techniques 
and the diverse approaches to different types of data and domains. That 
said, AutoEnergy can be seen as a step towards end-to-end, fully auto-
mated ML models for ECF and similar forecasting problems.

CRediT authorship contribution statement

Nasser Alkhulaifi: Writing – review & editing, Writing – origi-
nal draft, Visualization, Validation, Software, Methodology, Investiga-
tion, Formal analysis, Data curation, Conceptualization; Alexander L. 
Bowler: Writing – review & editing, Supervision, Conceptualization; Di-
renc Pekaslan: Writing – review & editing, Supervision; Nicholas J. 
Watson: Writing – review & editing, Supervision, Funding acquisition, 
Conceptualization; Isaac Triguero: Writing – review & editing, Valida-
tion, Supervision, Methodology, Investigation, Conceptualization.

Data availability

I have shared the link to my data/code at the Attach File step

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements

This work was supported in part by U.K. Engineering and Physical 
Sciences Research Council (EPSRC) for the University of Nottingham 
under Grant EP/S023305/1; in part by the EPSRC Centre for Doctoral 
Training in Horizon: Creating Our Lives in Data; in part by the TSI-
100927-2023-1 Project, funded by the Recovery, Transformation and 
Resilience Plan from the European Union Next Generation through the 
Ministry for Digital Transformation and the Civil Service. The work of 
Isaac Triguero was supported by the María Zambrano Fellowship funded 
by the Spanish Ministry of Universities and Next Generation Funds from 
the European Union. 

Supplementary material

Supplementary material associated with this article can be found in 
the online version at 10.1016/j.knosys.2025.114300. 

Appendix A.  Additional results of four additional metrics (RMSE, 
MAE, MAPE, and R²).

The following metrics are commonly used to evaluate the predictive 
performance of regression models:
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Table A.8 
RMSE and MAE results for various feature engineering methods using AutoGluon across all test sets. Lower is better. Bold 
indicates best results. These results are complementary to those presented in Table 3.

 FE Methods
 Dataset  AutoEnergy  FT  TSMin  TSEff  No.Feat

 RMSE  MAE  RMSE  MAE  RMSE  MAE  RMSE  MAE  RMSE  MAE
 AEP  125.88  90.310  148.90  112.09  2515.3  1962.9  2633.5  2054.9  2445.8  1959.3
 Appliances  72.205  26.727  68.366  23.436  151.98  78.951  126.89  53.078  100.58  69.336
 CAISO_Elec  573.73  368.86  818.03  592.44  8785.4  7376.6  3782.1  2943.9  7171.6  5677.0
 COMED  64.451  28.250  64.819  31.482  658.33  534.51  676.95  541.09  816.74  664.80
 DEOK  65.096  28.533  65.468  31.797  664.91  539.85  683.72  546.50  824.91  671.45
 EKPC  35.211  26.018  40.448  30.771  505.42  411.83  578.16  482.25  391.87  314.65
 FDCS_1  243.44  167.72  258.66  184.84  535.56  461.58  281.64  183.11  766.88  583.88
 FDCS_2  345.89  246.55  373.22  283.55  573.15  476.24  526.69  422.81  758.16  668.23
 FE  75.202  48.521  92.156  61.690  1326.0  1062.4  1362.6  1099.0  1167.6  906.03
 NI  101.35  61.563  119.97  84.023  2503.8  1972.6  2448.3  1955.9  2998.8  2367.1
 PJME  220.78  148.42  253.55  188.43  7858.0  5770.4  7392.1  5491.2  13,728  11,465
 PJMW  59.313  44.096  69.084  52.694  1132.3  892.57  1101.2  860.49  995.97  794.60
 Solar_Home  0.20367  0.14167  0.21669  0.15633  0.52050  0.44938  0.42167  0.35878  0.37987  0.30742
 Steel  6.5323  3.3761  6.5576  3.7719  5.5918  3.0670  7.0883  4.2280  109.38  76.673
 TCity  360.15  263.27  2704.0  2233.1  7269.4  5907.7  5161.6  4140.5  8099.1  6903.9
 UNICON  0.93407  0.68319  0.96273  0.70705  7.0677  5.2662  4.8874  3.6194  6.5745  5.4347
 Victoria  48.557  31.940  53.593  36.121  1415.5  1141.7  553.51  423.68  912.61  707.86
 WindT  221.48  112.34  335.26  218.04  593.74  447.32  390.85  261.25  1483.6  1322.4
 Mean  145.54  94.280  304.04  231.60  2027.5  1613.4  1539.2  1192.4  2376.1  1952.9

Table A.9 
MAPE(%) and 𝑅2 Results for various feature engineering methods using AutoGluon across all test sets. Lower MAPE and higher 𝑅2 are better. 
Bold indicates best results. These results are complementary to those presented in Table 3.

 FE Methods
 Dataset  AutoEnergy  FT  TSMin  TSEff  No.Feat

 MAPE%  R2  MAPE%  R2  MAPE%  R2  MAPE%  R2  MAPE%  R2
 AEP  0.62000%  0.99730  0.77000%  0.99630  12.940%  0.040100  13.440% -0.052300  13.660% -0.0014000
 Appliances  18.030%  0.37090  14.350%  0.43610  82.030% -1.7868  46.070% -0.94280  90.740% -0.22070
 CAISO_Elec  1.9900%  0.99010  3.0200%  0.97990  32.960% -1.3214  14.770%  0.56980  31.570% -0.54690
 COMED  1.0500%  0.98920  1.1500%  0.98910  18.270% -0.15890  17.920% -0.22540  21.640% -0.72930
 DEOK  1.0605%  0.97931  1.1615%  0.97921  18.453% -0.15731  18.099% -0.22315  21.856% -0.72201
 EKPC  1.7400%  0.99180  2.0600%  0.98920  30.440% -0.72100  36.180% -1.2520  21.660% -0.010600
 FDCS_1  21.760%  0.82470  20.810%  0.80210  137.90%  0.15150  25.350%  0.76530  168.05% -0.73980
 FDCS_2  27.620%  0.60140  32.510%  0.53590  64.640% -0.094500  52.570%  0.075700  98.190% -0.91520
 FE  0.63000%  0.99660  0.83000%  0.99490  14.310% -0.052800  14.820% -0.11170  11.640%  0.17650
 NI  0.52000%  0.99820  0.71000%  0.99740  17.430% -0.14990  17.560% -0.099500  20.330% -0.61260
 PJME  0.47000%  0.99880  0.61000%  0.99850  17.390% -0.44900  16.380% -0.28230  41.430% -3.4767
 PJMW  0.80000%  0.99640  0.97000%  0.99520  15.810% -0.18400  15.040% -0.11970  14.520% -0.0035000
 Solar_Home  25.740%  0.59270  28.950%  0.53890  108.63% -1.6604  86.690% -0.74600  60.000% -0.41700
 Steel  6.0600%  0.99730  6.4200%  0.99730  5.3300%  0.99800  8.7300%  0.99690  220.76%  0.25290
 TCity  0.93000%  0.99660  7.1100%  0.80770  18.630% -0.38970  13.660%  0.29930  24.050% -0.72510
 UNICON  1.7300%  0.96560  1.7900%  0.96350  12.200% -0.96770  8.5500%  0.059100  13.670% -0.70260
 Victoria  0.70000%  0.99680  0.78000%  0.99610  22.790% -1.7180  8.7500%  0.58440  15.040% -0.12980
 WindT  127.32%  0.97280  514.93%  0.93760  145.91%  0.80430  144.05%  0.91520  7235.3% -0.22200

 Mean  13.264%  0.90369  35.496%  0.88582  43.104% -0.43439  31.025%  0.011589  451.33% -0.54184

𝑅2 = 1 −
∑𝑛

𝑖=1
(

𝑦𝑖 − 𝑦̂𝑖
)2

∑𝑛
𝑖=1

(

𝑦𝑖 − 𝑦̄
)2

(A.4)

where 𝑦𝑖 denotes the actual value, 𝑦̂𝑖 denotes the predicted value, 𝑦̄ is 
the mean of the actual values, and 𝑛 is the total number of observa-
tions. MAE (Mean Absolute Error) measures the average magnitude of 
prediction errors without considering their direction. RMSE (Root Mean 
Squared Error) penalises larger errors more heavily, making it sensitive 
to outliers. MAPE (Mean Absolute Percentage Error) expresses errors as 
a percentage of actual values, providing scale-independent interpretabil-
ity; however is undefined when any 𝑦𝑖 = 0. 𝑅2 (Coefficient of Determi-
nation) indicates the proportion of variance in the dependent variable 
explained by the model, with values closer to 1 representing a better
fit.

A.1.  Additional results across all test sets with AutoGluon.

Tables A.8 and A.9 present comprehensive evaluation results us-
ing four additional metrics (RMSE, MAE, MAPE, and R²) across all 18 
datasets, providing multiple perspectives on FE methods’ performance 
with AutoGluon. These results are complementary to those presented in 
Table 3.

A.2.  Additional results across all test sets with TabPFN.

Tables A.10 and A.11 present a comprehensive evaluation using 
four additional metrics (RMSE, MAE, MAPE, and R²) across all 18 
datasets, providing multiple perspectives on FE methods’ performance 
with TabPFN. These results are complementary to those presented in 
Table 4.
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Table A.10 
RMSE and MAE results for various feature engineering methods using TabPFN Across all test sets. Bold indicates the 
best per row and metric. These results are complementary to those presented in Table 4.

 Methods
 Dataset  TabPFN  TabPFN_AutoEnergy  TabPFN_FT  TabPFN_TSEff  TabPFN_TSMin

 RMSE  MAE  RMSE  MAE  RMSE  MAE  RMSE  MAE  RMSE  MAE
 Appliances  117.18  102.10  58.891  24.478  59.070  24.179  95.739  74.172  124.23  111.26
 FDCS_1  444.96  321.52  206.34  127.91  223.44  153.03  282.83  200.28  523.57  414.20
 FDCS_2  443.46  343.62  332.63  238.43  376.95  277.53  446.51  348.85  477.77  373.33
 Steel  4.2997  1.8133  4.3478  1.9157  4.3778  2.1459  7.2560  4.1050  4.0600  1.7699
 TCity  6936.3  5547.4  473.57  191.57  545.77  379.33  1807.3  1343.5  5925.3  4732.0
 UNICON  5.0920  4.1715  0.89409  0.62719  0.96541  0.67900  4.6337  3.7580  4.4883  3.7482
 Victoria  709.85  588.43  74.830  28.601  69.195  39.349  471.69  364.28  689.46  548.88
 WindT  645.94  346.10  303.05  150.93  351.15  153.10  574.87  405.29  457.21  334.79
 Mean  1163.4  906.89  181.82  95.557  203.86  128.67  461.36  343.02  1025.8  814.99

Table A.11 
MAPE(%) and 𝑅2 results for various feature engineering methods using TabPFN across all test sets. Bold indicates the best per row and 
metric. hese results are complementary to those presented in Table 4.

 Methods
 Dataset  TabPFN  TabPFN_AutoEnergy  TabPFN_FT  TabPFN_TSEff  TabPFN_TSMin

 MAPE%  R2  MAPE%  R2  MAPE%  R2  MAPE%  R2  MAPE%  R2
 Appliances  146.00% -0.57350  19.610%  0.60250  18.830%  0.60010  97.080% -0.050400  161.76% -0.76870
 FDCS_1  88.250%  0.50360  17.600%  0.89330  30.150%  0.87480  43.360%  0.79940  179.56%  0.31270
 FDCS_2  46.260%  0.34480  28.400%  0.63130  37.090%  0.52660  46.650%  0.33570  52.540%  0.23940
 Steel  1.7000%  0.99880  2.1500%  0.99880  2.6400%  0.99880  5.4200%  0.99670  1.7900%  0.99900
 TCity  19.460% -0.21430  0.70000%  0.99430  1.4100%  0.99250  4.2800%  0.91760  17.220%  0.11390
 UNICON  10.700% -0.021300  1.5800%  0.96850  1.7100%  0.96330  9.4400%  0.15420  9.6000%  0.20650
 Victoria  12.420%  0.34320  0.60000%  0.99270  0.84000%  0.99380  7.4000%  0.71000  11.260%  0.38040
 WindT  247.27%  0.77000  91.090%  0.94940  156.86%  0.93200  234.74%  0.81780  165.61%  0.88480
 Mean  71.507%  0.26891  20.216%  0.87885  31.191%  0.86024  56.046%  0.58513  74.917%  0.29600
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