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Sparse Principal Component Analysis (sPCA) is a popular matrix factorization that combines variance
maximization and sparsity with the ultimate goal of improving data interpretation. In this series of papers we
show that the factorization with sPCA can be complex to interpret even when confronted with simple data. In
the first paper in this series, we demonstrated that SPCA models have limitations with respect to factorizing
sparse and noise-free data accurately when loadings are overlapping. In the second paper, we showed that
sPCA algorithms based on deflation can generate artifacts in high order components. We also show that scores
orthogonalization and the incorporation of orthonormal loadings are suitable means to avoid large artifacts.
Both approaches constrain the set of possible sPCA solutions in a very similar but poorly understood way. In
particular, we study in this paper the sPCA solution by Zou et al., which according to our results represent
the best sPCA algorithm of those considered in the series. Here, we provide new derivations on the model
equations, the computation and interpretation of the model parameters and the selection of metaparemeters
in practical cases, making sPCA an even more powerful data modeling tool.

1. Introduction a consequence, deflation can lead to the inclusion of artifacts (fake

patterns not found in the data) in the estimated loadings from the

Model interpretation is a critical step in sparse principal component

analysis (sPCA) [1-3]. In this series of papers “All sparse PCA models

are wrong, but some are useful”, we have identified and discussed

modeling problems and interpretation challenges affecting the most
popular implementations of sPCA.

In the first paper of the series [4], we illustrated the limitations of

second component onwards. The inclusion of spurious information in
the sparse components may result in loss of accuracy and lead to wrong
interpretation of the SPCA model.

This type of problem does not manifest when the sparse loadings
are orthogonal, which in particular is the case when there is no overlap,

sPCA models for factorizing noise-free and exactly sparse data (with
many exact zero values) when the true loadings overlap. It was shown
that even in this simple case, there are severe precautions that need
to be taken when interpreting the models. We also observed that the
most commonly-used implementations of sPCA either underestimate
or overestimate the correlation between pairs of loadings and scores;
and we proposed adjustments for the estimation of the scores and the
explained variance which, albeit not fully correcting for these problems,
may significantly increase the quality of model estimation.

In the second paper [5], we focused on the use of deflation, a
popular algorithmic approach within sPCA and many other multivari-
ate algorithms. Sparse loadings, like any form of constrained loadings,
may be outside the rowspace of the data and we showed that, as
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i.e., when loadings of different components do not share common (non-
zero) variables. Generally speaking, we found that deflation-based sPCA
algorithms are not an adequate choice when the data conforms to
non-orthogonal sparse loadings structures.

We provided two diagnostics that can be used to detect and quantify
the inclusion of spurious information in practical applications: the
percentage of artifacts and the angle with the data rowspace [5]. When
reporting deflation-based sPCA results in the literature, we suggested
also reporting the diagnostics, to gauge the appropriateness of fitting
a sparse model to the data. With this suggestion we imply that models
with large values for these diagnostics are probably not adequate for
data interpretation.
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In reviewing sPCA algorithms, we identified two algorithmic ap-
proaches that can control the departure of sPCA from the data rows-
pace, namely: the use of orthonormal loadings in the sPCA algo-
rithm [6,7], and the version with scores orthogonalization of the Pe-
nalized Matrix Decomposition (PMD) [2]. We showed how the use of
these two approaches together with our corrections can outperform
deflation-based sPCA in terms of (sparse) modeling and data fitting.
Both approaches constrain the set of possible sPCA solutions in a very
similar but poorly understood way, since their assumptions on the data
generation process are quite different [8], which can actually lead to
an incorrect interpretation of the models.

Underlying the use and interpretation of sparse component models,
and of sparse PCA modeling in particular, is the idea that a sparse
model is simpler to interpret because the number of selected vari-
ables is smaller, and often much smaller, than the original number
of variables. However, sparsity, interpretation, and interpretability are
actually distinct concepts.

Interpretability is a property of a (data analysis) method related
to its capacity to produce and present results that can be interpreted
within the body of actual knowledge. The interpretation of the model,
i.e., the interpretation of the results, is the interplay between the pre-
sented results by a method and the domain expert with the goal of in-
ferring meaning from the results, thereby enlarging the understanding
of the studied system.

The reduction in the number of variables, i.e., the sparsity of the
model, is taken as a proxy for enhanced interpretability, since it is
often assumed that only a subset of measured variables is related to
the problem being studied [9], as measured variables may include
informative, redundant and non-informative variables. This can be
defined as the “sparse truth” assumption.

A legitimate question to ask is whether sparsity is the true reality for
a given studied system (either biological, chemical, physical, or other)
and whether this is visible in the data. We can use a sparse model under
the expectation that the underlying truth is inherently sparse and under
the assumption that it is able to capture this type of sparseness. Yet,
a more practical and widely applicable approach is to assume that the
underlying truth and subsequent data is not necessarily sparse, and that
the sparse model only approximates this truth and is, hopefully, more
interpretable than a non-sparse model.

In the present paper, that conclude this series, we address the
problem of model interpretation: upon characterization of the algebraic
properties of the sPCA solution, we investigate which model param-
eters carry more or more accurate information about the underlying
truth and how they should be interpreted. We focus on the particular
sPCA solution by Zou et al. [6], which outperforms other solutions
in explained variance [7] and interpretation [2]. We also revisit the
results of Guerra-Urzola et al. [10], which showed limited performance
of the sPCA solution by Zou et al.under certain conditions. Our analyses
illustrate that sPCA can indeed yield good performance when following
our strategy even in those conditions.

The rest of the paper is organized as follows. Section 2 reviews the
sPCA algorithm proposed by Zou et al. [6] and motivates our choice
of focusing on this method based on the incorporation of orthonormal
loadings. Section 3 provides a derivation of the underlying model by
Zou et al., and deals with the definition and interpretation of the scores,
loadings and explained variance. Section 4 presents the analysis of a
benchmark experimental data set and revisits some of the results by
Guerra-Urzola et al. Section 5 provides a general discussion of the series
and concluding remarks.

2. Sparse PCA algorithms

We detail below the sPCA algorithm by Zou et al. [6], which imple-
ments a simultaneous' approach to extract multiple sparse components
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making use of auxiliary non-sparse loadings. In Appendix, we briefly
describe the sequential version of the Zou et al. algorithm [7], and
a sequential sPCA variant based on scores orthogonalization [2]. All
these methods showed superior modeling capabilities when compared
to deflation-based approaches in the second paper of the series [5], but
the sequential version generally captures less variance than the sPCA
algorithm by Zou et al.and the orthogonalization algorithm [2] is more
difficult to interpret.

The sPCA algorithm by Zou et al.(in the following we will refer
to this approach as SPCA-Z, with capital ‘S’ and ‘Z’ to differentiate it
from the general sPCA approach) makes use of non-sparse orthonormal
loadings to extract sparse components in a simultaneous fashion. The
SPCA-Z model is based on the reformulation of the problem of finding
an sPCA solution as a regularized regression problem with a criterion
close to the (naive) elastic net [12], which is a combination of the lasso
and the ridge constraints. To fit an SPCA model with A components to
an N X J (observations x variables) data matrix X, the optimization
problem is given by

A A
argmin [[X - XPQTI[} + 4 ) IIpall3 + 41 D Iplly s Q"Q=1L (1)

P.Q a=1 a=1
where P and Q are the J X A matrices of sparse and orthonormal
loadings, respectively, p, is the ath column vector (J/ x 1) in P, I is
the A x A identity matrix and || * ||, || * |, and || * ||, are the
Frobenius norm of a matrix, the 2-norm and the 1-norm of a vector,
respectively. The sparsity of the solution depends on the relative
importance provided to these norms by the parameters 4, and 4,,
respectively. We maintain the notation of the sparse loadings (P) to
be consistent with our previous papers of the series, and we will refer
to those as sparse weights, following Park et al. [8].

The numerical solution proposed for Eq. (1) is a biconvex opti-
mization where sparse weights and orthonormal loadings are obtained
using an alternating approach, which guarantees convergence to a
local minimum. In the first step, we use the equivalence argmin; || X —
XPQT|2. = argming [XQ — XP|1%,
full-rank and comes from imposing the constraint Q'Q = I This
equivalence allows to solve P for fixed Q in Eq. (1) as:

which holds for P column-wise

A A
argmin |XQ - XPI[} + 4, D lpali3 + 41 Y Ipally @

a=1 a=1
using A independent elastic net regressions for which the response is
Xq, and the corresponding sparse vectors p, are estimated.
In the second step, the orthonormal loadings in Q are found for fixed
P as the solution to the Procrustes problem:

argmin [X - XPQ"|2 sr. Q'Q=1L 3)
Q

which is the polar decomposition:
Q=UV", G

where U and V are the J X A and A X A matrices with the left and
right singular vectors, respectively, from the (truncated) Singular Value
Decomposition of the J x A matrix XTXP

XTXP = USVT, 5)

where S is A x A. The two steps are iterated until convergence.

1 The term simultaneous here means that the model fits all components
at once, rather than in a sequential fashion, where one component is fitted
at a time followed by deflation or orthogonalization. In other areas [11], a
simultaneous approach is referred to as a block approach.
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3. Interpretation of the solution of the SPCA-Z algorithm

Concerning the original presentation of the SPCA-Z algorithm, we
note the following four interrelated issues:

1. The scores are computed in such a way that the resulting esti-
mated variances are inaccurate, as we have previously shown
[4]1.

2. Only the sparse weights P are considered for the interpretation
of case studies [6,13].

3. The orthonormal loadings Q are used as a mere computational
aid for model fitting and later discarded, leading to a loss of
information which is fundamental for the interpretation of the
resulting sparse model.

4. As a consequence, the model used for interpretation is inconsis-
tent with the model underlying the fitting procedure, as we will
derive mathematically later on.

By addressing points 1 to 4 in this section, we will show how the
interpretability of the sPCA solution obtained from the SPCA-Z al-
gorithm can be enhanced by taking advantage of a careful algebraic
characterization.

3.1. The model underlying SPCA-Z

We derive the model underlying the solution at convergence of
the SPCA-Z algorithm, for a model fitted with A components to an
N xJ data matrix X and resulting in sparse weights P and orthonormal
loadings in Q. Given Z the N X A matrix of scores, defined by Zou et
al.as

7 =XP, (6)
a least squares approximation for X can be stated in the general form
X =ZR" +E, %)
for R a J x A matrix satisfying

R=X"2(Z"7)"", 8

where the superscript™! indicates matrix inversion. Substituting Z = XP
into (8) we obtain

R = XTXPPTX"XP)"!. (C)]

At convergence, Eq. (5) holds for the found P, thus substituting (5) into
(9) we get

R =USVT®PTUsVT)~L. (10)

Post-multiplying both members of (10) first by PTUSVT and then by
VS~!VT we arrive at:

RPTUVT = UVT. an

At convergence, also Eq. (4) holds, thus substituting Q = UVT into (11)
and post-multiplying by (PTQ)~! we arrive to an expression for R in
terms of P and Q:

R=QP'Q". (12)

Finally, plugging (6) and (12) into (7) gives us the expression for the
SPCA-Z model (at convergence) as function of X, the sparse weights P
and orthonormal loadings in Q :

X =XPWQ"P)"'QT +E. 13)
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3.2. Definition and interpretation of the scores

Eq. (13) can be broken down into equivalent matrix factorizations
of X, with different interpretational properties, all of them of the form:

X=A,B, +E. 14

If we set A, = XP and B, = (Q"P)"!QT, we maintain the sparse
weights and we get scores in A, that are directly connected to them
and so they are nicely interpretable. Unfortunately, components in B,
will likely be non orthogonal, and the interpretation of pairs or groups
of components may be misleading.

If we set A, = XP(Q™P)"! and B, = QT, we give up on sparse
weights as P(QTP)~! is not sparse, and the scores A, lose their direct
interpretation from the sparse weights, but due to the orthogonality of
B, we can safely interpret pairs/groups of components. Furthermore, it
turns out that A, are the scores that best approximate the Euclidean
distance between the observations in X. This will be shown in the
remaining of this section.

For standardized variables, the Pearson’s correlation coefficient and
the Euclidean difference are functionally and inversely related.? Thus,
finding the scores that best approximate the matrix of the correla-
tion among observations XXT is equivalent to finding the scores that
best approximate the Euclidean distance. This leads to the following
minimization problem:

argmin | XX" - A,AT|1%. (15)
Ap

In particular, the Euclidean distance for A, holds
IXX" - XPQ"P)"' (PTQ)~'PTX"|7, (16)
and using the fact that Q"Q = I we arrive at

IXX" - XPQ"P)"'I(PTQ)~'PX"|1}. = (€]
IXXT - XP(Q"P)"'QTQ(PTQ)"'PTX"|3..

Comparing the second equation in (17) with Eq. (7) we can re-write
the former as

[XXT - XPR'RP"XT|2. 18)

Formula (18) corresponds to the least squares solution for the approx-
imation of XXT given P, and thus we can conclude that the scores A,
provide the best approximation in the low dimensional space of the
distance between observations in the original data space.

The definition of the scores as A, = XP(Q"P)~! explicitly brings
back the relevance of the orthonormal loadings in Q: we will now
show that this has interesting consequences for the interpretation of
the sparse components. It is worth noting the connection of these scores
(and of the SPCA-Z model itself in Eq. (13)) with the well-known Partial
Least Squares (PLS) regression model [14,15], where the sparse weights
in SPCA-Z take the role of the weights in PLS, and the orthonormal
loadings in SPCA-Z take the role of the so-called PLS loadings.

3.3. The role and interpretation of the orthonormal loadings

Zou et al.use the orthonormal loadings in Q as a mere computa-
tional trick. Yet, we have previously shown that they are an inherent
part of the true underlying SPCA-Z model, and that they can provide
scores with some desirable properties. For this reason, we attempt a
characterization of the properties of Q.

To assess Q at convergence, i.e., when the sparse weights P have
been found, we reconsider problem (3). Using the equivalence of the
trace operator tr and the Frobenius norm, the minimization problem

2 For two standardized variables x and y measured on N replicates it
2,
holds that corr(x,y) =1 — %, with corr(x,y) and d?(x,y) are the Pearson’s
correlation and the Euclidean distance between x and y, respectively.
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can be re-expressed in terms of the trace of the product of the matrices
appearing in Eq. (3)

argmin {tr(X"X) + tr(QPTX"XPQ") - 2tr(X"XPQ") } . 19)
Q

Using the fact that the trace is invariant under cyclic permutation and
that at convergence QTQ = I, equation (19) can be expressed as:

argmin {trX"X) + tr(PTX"XP) - 2tr(Q"X"XP)} . (20)
Q

Since the first two terms of Eq. (20) do not depend on Q, minimizing it

amounts to maximizing tr(QTXTXP). This can be interpreted as finding
those orthonormal vectors in Q that maximize the covariance between
the scores Z = XP and the auxiliary scores given by XQ.

When the minimization problem is rephrased in this way, we believe
that the actual role of Q becomes apparent: to provide auxiliary scores
mostly correlated with Z and the role of QX" is to capture all the
(possible) variance related to it. Hence, the orthonormal loadings in
Q should not be considered just as a computational convenience, but
rather as a fundamental part of the sparse model.

3.3.1. Interpreting sparse solutions in terms of representatives and asso-
ciates

The final goal of sPCA modeling is to arrive at simpler and more
interpretable models, where interpretability is usually gauged in terms
of the (limited) number of non-zero weights. The non-zero weights for
a given sparse principal component identify the variables that represent
the structure of a sparse component, and for this reason we term them
representatives.

On the other hand, Q represents a subspace in the rowspace of the
data, and maintains the SPCA-Z model in that subspace. Therefore,
orthonormal loadings complement P for the competing objective of
maximizing variance in X. In practice, this means that loadings Q are
responsible for modeling the variance in the data that is correlated
to P. To provide an intuitive interpretation of this fact, we use the
term associates to designate the variables with zero weight but a loading
significantly different to zero in a given component. That is, variables
that are correlated to the component score. While weights in P only
contain representatives, the corresponding loadings in Q contain both
representatives and associates.

To understand the connection between representatives and associates,
the interpretation of the sparse factorization must be carried over
simultaneously at both the sparse weights P and orthonormal loadings
in Q, because considering only the sparse weights can result in the
loss of important information. Note that, for instance, as we force a
component towards sparseness, some of the representatives are discarded
from P but they may still being captured in the corresponding Q. This
is also related to another feature of the SPCA-Z approach: the potential
non-uniqueness of the solution. Park et al. [8] have shown that when
the number of variables is larger than the number of observations,
different sets of variables can results in the equivalent sparse solutions
(see Egs. (8) and (9) in Appendix of that paper.). In those equivalent
solutions, some of the representatives are exchanged with some associates
giving the same exact data approximation. Thus, care should be taken
in considering the representatives more relevant than the associates in
interpretation.

We advocate for a broader and more comprehensive interpretation
of the SPCA-Z solution that includes the associates. When interpreting
a sparse model it should be possible to unequivocally identify the
subset of variables connected to a given component. This problem is
particularly important when sPCA is used for data exploration with the
goal of finding groups of variables associated with the data patterns
observed, like in the case of biomarker discovery. This is consistent
with other sparsity factorizations based on the identification of groups
of correlated variables [16].
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3.4. Model selection using explained variance

An inherent problem of model fitting procedures where regulariza-
tion parameters are involved is the choice of the optimal values for those
parameters given the data to be analyzed, where optimality has to be
defined in terms of some desired model properties. In the framework
of sPCA this translates to finding the optimal trade-off between spar-
sity and variance of the solutions, including the determination of the
number of components.

In the original publication, Zou et al. [6] suggest an interesting ap-
proach to set the level of sparsity when analyzing an experimental data
set. They consider the trade-off between the sparsity in a component
(i.e., number of non-zero weights in P) and the proportion of vari-
ance captured by that component. Taking as reference the explained
variance by the components of a normal PCA model, they require the
weights P to be as sparse as possible without reducing too much the
variance with respect to the reference (this is shown in Figure 2 of [6]).

The rationale behind this criterion is that if a sparse model provides
a reasonable factorization of the data (which happens if the data is in-
herently sparse with respect to an sPCA decomposition), the proportion
of explained variance by the model should be large, where large can
mean comparable to that captured by a standard PCA model. Then, if
the data does not conform to an sPCA model, the variance captured by
the model is expected to be low.

Zou et al.calculate the total explained variance by a sparse model
with A components only considering the sparse weights P, using the
QR decomposition of Z = XP. This calculation underestimates the
true amount of explained variance by the sparse model if only P is
considered [4]. Yet, if Q is also considered, as follows from the true
underlying model in SPCA-Z , the variance is even larger. The actual
model for the SPCA-Z is given by Eq. (13), for which the total explained
variance follows

TothqA

= tr(B,ATA,B]). (21)
where the subscript pg makes explicit that the model variance makes
use of both sparse weights and orthonormal loadings, and where we
intentionally used the factorization following Eq. (14) that retains
orthonormal loadings to allow for the computation of component-wise
variance.

The underestimation of the explained variance has a profound
impact on model selection. As a result, the desired trade-off between
sparsity and explained variance is biased towards the latter, leading to
suboptimal solutions with a number of non-zero weights much larger
than what can be actually obtained without decreasing significantly
the amount of explained variance. We will show this in Section 4,
contextually to the analysis of an experimental data set.

3.5. Model selection in multi-component sPCA models using the razor plot

The selection of metaparameters in sPCA multi-component models
is a real computational and practical challenge [16], since reducing
the sparsity of the components (allowing for more non-zero weights)
or adding more components are viable ways to increase the explained
variance, but they affect the interpretability of a model differently.
Besides, each component of a model may be fit with a different level
of sparsity.

As the goal of sPCA is often exploratory, and given that the ex-
plained variance is an established criterion for the assessment of the
quality of sPCA [17], it seems reasonable to follow the criterion sug-
gested by Zou et al.: finding the sparsest model with explained variance
close to an unconstrained PCA model. For this purpose, we make use
of the razor plot [18].

The razor plot is a (multidimensional) extension of the scree-plot,
where the number of parameters to be estimated is summarized as the
number of free parameters [19]. In the case of sPCA, both the number



J. Camacho et al.

of components A and the number of non-zero weights per component
nz, need to be optimized. We define the optimization criterion f as

f= Z nz, — A. (22)

where nz, is the number of non-zero weights in p,. f takes values
between 0 (all component have a single non-zero weight) and (J/—1)- A.

To compute a razor plot, SPCA models are fit for different values
of the meta-parameters® and the explained variance is calculated for
each model. This is a computationally intensive operation if we want
to consider all possible combinations in the number of non-zero weights
for the components. The computational burden is simplified if, without
loss of generality, we restrict the number of non-zero weights in the
a,th component to be less or equal to the number of non-zero weights
in the a,th component for a, < a,.

Once all model variants are computed, they are grouped by the
value of f. The best model in terms of explained variance is chosen
from the group, and the rest are discarded. The razor plot shows the
explained variance of the set of best models as a function of f. An
alternative plot that we introduce in this paper selects the best model
for each combination of f and A, and visualizes the corresponding
explained variance as a surface. In any of the two visualizations, our
selection criterion is to pick the sparsest model (lowest f) for which
the explained variance is close enough to the reference, where the
reference is the explained variance of the corresponding PCA model
(or any other target reference that can be deemed appropriate; e.g., the
total variance in the data) and ‘close enough’ can be determined by a
suitable threshold.

The rationale in the definition of f in Eq. (22), in which A is
subtracted, is motivated by the fact that interpretability is favored
by including more components for a fixed total number of non-zero
weights. To give an example: a model with six components with one
non-zero weight each is easier to interpret that a model with two com-
ponents with three non-zero weights each. This observation agrees with
sparse modeling approaches that try to avoid uncorrelated variables
with high loadings in the same component [16,18].

Building a razor plot can be time consuming if the number of
variables is very large and the parameter space to search is extensive.
We noticed that if a data set complies with an sPCA structure, that is,
if a relevant part of its variance can be captured by a set of sparse
components, we do not need to explore the whole range of values of
/. Rather, we can make a search that consistently assesses all models
in increasing order of f and stops when the difference between the
explained variance and the reference variance is smaller than a given
threshold, say 5%. We have experimentally seen that if an SPCA model
is suitable for a data set, we can compute this type of ‘truncated’
razor plot extremely quickly, while providing essentially the same
information shown in complete razor plots. If the computation does not
stop after a reasonable amount of time, this indicates that the sparse
model is probably not a good modeling choice.

4. Putting sparse principal component analysis at work

Equipped with the theoretical results derived in the previous sec-
tions, we present a re-analysis of the so-called “pitprops” data set on
which the functioning of SPCA-Z was first illustrated [6]. The goal is to
show how the use of sparse weights P and the orthonormal loadings in
Q as representatives and associates leads to better (more interpretable)
sparse models. Subsequently, we revisit some of the results of Guerra-
Urzola et al. [10], which showed limited performance of the sPCA
solution by Zou et al.under certain conditions. All results are easily
reproducible using the software described in Section 6, which includes
Matlab routines to facilitate the application of sPCA to other data sets.

3 Including 4, in Eq. (1), which does not affect f in Eq. (22).
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Fig. 1. Model calibration using explained variance. Proportion of explained variance
(PEV) as function of model sparsity (ie., number of non-zero weights in P) for the
first component of the sPCA model fitted to the pitprops data. Variance is calculated
with approach of Zou et al.using only the sparse weights P, PEV,, and Eq. (21) using
both the sparse weights P and orthonormal loadings in Q, PEV,,.

4.1. Analysis of the pitprops data

The data set contains 180 measurements of 13 functional variables
measured on pitprops (lengths of lumber used to prop up the roofs
of coal mines tunnels). First proposed by Jeffers [20], this data set
has been widely used in the sPCA literature as a benchmark (see, for
instance, [6,11,21-24]).

The sparse weights P and the orthonormal loadings in Q obtained by
fitting a six-dimensional (A = 6) SPCA-Z model to the data are given in
Table 1. We choose six components for consistency with Zou et al.and
because most authors tend to agree about the relevance of the first
six components for this data set (see [25], Chapter 8.7.1). We set the
ridge penalty to O also for consistency with Zou et al.To the best of our
knowledge, only the correlation matrix is known for this data set, so
actual scores will not be discussed for data interpretation.

The explained variance by the first six sparse components, calcu-
lated both with the approach of Zou et al.and with Eq. (21), is given in
Table 2, together with the explained variance by a standard PCA model
as a reference.

The original approach by Zou et al.which only includes the sparse
weights P underestimates the explained variance, in line with the
discussion in the first paper of this series [4]. The explained variance
by the full model is given by Eq. (21) and, as shown in Table 2, is larger
than the explained variance using only the P: this happens because the
orthonormal loadings in Q contribute to the variance calculation. The
total variance is actually very close to the one captured by a PCA model
with six components.

This has relevant implications for model calibration, as the use of
the full model permits to explain a larger amount of variance than
what was computed by Zou et al.with the same level of non-zero ele-
ments. Again, this means that we can probably arrive at a sparser, and
potentially more interpretable, model than what Zou et al.originally
determined.

4.1.1. Model calibration

The calibration of the level of sparsity (number of non-zero weights)
is a fundamental step to obtain a meaningful sPCA model. For the
model fit to the pitprops data, Zou et al.proposed seven non-zero
weights for the first component. As described in Section 3.4 they pro-
posed to explore the explained variance (per component) as a function
of the number of non-zero weights.

Fig. 1 shows the explained variance by the first component, calcu-
lated with the approach of Zou et al.and with Eq. (21). We can observe
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Sparse weights P (left side) and orthonormal loadings in Q (right side) for a six-dimensional SPCA model fitted to the pitprop data represented by the correlation matrix among
13 variables measured on lumber lengths [20]. Empty cells indicate zero weights. The P table is the same as Table 3 in [6], where P are termed loadings.

Variable Sparse weights P Orthonormal loadings in Q

sPC1 sPC2 sPC3 sPC4 sPC5 sPC6 sPC1 sPC2 sPC3 sPC4 sPC5 sPC6
topdiam -0.477 —-0.460 0.110 0.016 —-0.051 -0.075 0.166
length -0.476 —-0.475 0.057 0.022 —-0.054 —-0.078 0.188
moist 0.785 -0.032 0.709 -0.138 0.007 0.024 —-0.053
testsg 0.619 0.029 0.676 0.139 0.023 0.039 -0.014
ovensg 0.177 0.641 0.212 —-0.018 0.623 —-0.008 0.118 0.123
ringtop 0.589 —0.043 0.066 0.597 —0.033 —0.132 —0.033
ringbut —-0.250 0.492 —-0.243 —0.069 0.459 0.022 0.001 -0.113
bowmax —-0.344 —-0.021 -0.349 —-0.095 —-0.061 —-0.083 0.173 —-0.122
bowdist —-0.416 —-0.421 -0.021 —-0.010 —0.084 —0.035 —0.022
whorls —-0.400 —-0.395 -0.075 0.027 0.269 0.132 -0.151
clear -1 0.003 —0.003 —-0.003 —-0.951 0.017 -0.026
knots 0.013 -1 0.004 —0.006 -0.013 0.022 —-0.952 —-0.033
diaknot -0.016 1 —-0.002 -0.010 -0.023 0.028 0.022 0.930

Table 2

Explained variance per component for a six-dimensional sPCA model fit to the pitprops
data. PCA refers to explained variance by the successive components of a standard PCA
model.

Percent of explained variance per component

sPC Zou et al. Eq. (21) PCA
1 28.0 28.1 32.5
2 14.0 15.5 18.3
3 13.3 15.6 14.4
4 7.4 8.6 8.5
5 6.8 8.6 7.0
6 6.2 8.8 6.3
Total 75.8 85.2 87.0

that, if the full model is taken into account to calculate variance,
with a single non-zero (sparse) weight more variance is captured than
what was estimated with the approach of Zou et al.for seven non-zero
weights. The variance plot in Fig. 1 clearly shows the benefit of using
the true model for calibration: even for a somehow conservative choice
of the level of sparsity in this single component (five non-zero elements,
two less than the choice of Zou et al.) it explains 31% of the variance,
which is very close to the variance of the first principal component.

4.1.2. A closer look to the relationship between weights and loadings

In Section 3.3 we have discussed the role of the Q to maximize
the correlation between the scores Z = XP and the auxiliary scores
given by XQ. Because of the way P and Q are constructed, with the
weights P being sparse while Q is not, this correlation is dependent
on the sparsity level. This is shown in Fig. 2 for the first component
at different sparsity levels and where the correlation between Xp, and
Xq, is shown. For a sparse model with just one non-zero element in p,
(Fig. 3(a)), the correlation between scores is low. This is related to how
variance is captured in the model: the more sparsity, the less variance
can be described by P and thus less correlation between Xp, and Xgq;.
This situation of maximum sparsity corresponds to the leftmost value of
PEV,, inFig. 1, with PEV,,, = 26%. For a sparsity level of five non-zero
weights in p, there is a much stronger correlation (Fig. 3(b)) and larger
explained variance (PEV,, = 31%, Fig. 1). For a non-sparse model,
i.e., a standard PCA model, the correlation between Xp, and Xq, (Fig.
3(c)) is perfect since in this case weights and loadings coincide (P = Q),
and the explained variance is maximized.

4.1.3. Interpretation of a single sparse component: representatives and
associates

Let us follow with the interpretation of a single sPCA component
with five non-zero weights in terms of representative and associates. Fig.
3(a) and (b) show the sparse weights p; and orthonormal loadings q;
for the first component, respectively. The non-zero weights in p, corre-
spond to the representatives: topdiam, length, ringbut, bowdist

and whorls. The associated orthonormal loadings q; have also high
values in correspondence with these variables: in fact we have seen in
Fig. 2(c) that there is a relatively high correlation between q; and p,.
However, we also note that other two variables ringtop and bowmax
have high orthonormal loadings: these are the associates, which are
related with the representatives but have not been selected within the
sparse weights. In Fig. 3(c) we show a correlation map of the variance
captured by the component, which allows to interpret how variables
associate in the component: the correlation between ringtop and
bowmax and all the representatives in p, is apparent. This plot is useful
to identify if all representatives and associates are correlated or they form
subgroups; an indication that the component may be broken down into
a larger number of sparser components.

Recall that Zou et al.selected seven non-zero weights in the first
component, as shown in Table 1. All the representatives in our com-
ponent and the associate bowmax are also present in first component
of the Zou’s. Yet, the latter also includes ovensg, and does not include
our other associate ringtop. Inspection of the correlation map of the
original data in Fig. 3(d) reveals that this variable is not correlated with
any of the other variables in the component, while ringtop is indeed
correlated to ringbut. Again, only interpreting the sparse weights is
not optimal.

4.1.4. Multi-component sPCA model selection for the pitprops data using
the Razor plot

The razor plot for the pitprops data set in shown in Fig. 4. Fig.
4(a) shows the razor plot against the value of f. The plot shows that
for f > 6, the gain in explained variance is small (PEqu = 85.3%),
and it is already almost equal to the one explained by a standard PCA
model with six components (PEV = 86%, orange bar in the plot), with
a difference smaller than 1%. More insights may be obtained using a
razor plot as function of f and the number of components, as shown
in Fig. 4(b). This plot is more informative since it shows the interplay
between model dimensionality and sparsity: an explained variance of
almost 80% can be obtained with a model with six components with
just one non-zero weight per component. This result shows that the
pitprops data is an excellent example to apply sPCA, which probably
explains its popularity.

The razor plot can also be used as a visual diagnostic to assess
whether a data set is sparse in an sPCA sense. If the razor plot suggests
that a large value of f (i.e., a large number of non-zero weights and/or
a large number of components) is needed to explain an amount of
variance similar to that explained by a standard PCA model, then we
may conclude that the data set being analyzed is not sparse and, as
such, sPCA should probably not be used.

Generating the data in Fig. 4, exploring models up to f = 78,
took approximately four hours on a standard desktop computer without
parallelization. For very large data sets the problem becomes rapidly
intractable. Truncated razor plots like those shown in Fig. 5 can be
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Fig. 2. Scores Xp, vs. pseudo-scores Xq, for the first component of the SPCA-Z model fitted to the pitprops data for different levels of sparsity: (a) one non-zero weight (NZW),

(b) five non-zero weights, and (c) first PC (i.e., thirteen non-zero weights).

obtained in less than one second, while providing essentially the same
information shown in Fig. 4. The simpler model satisfying the threshold
is a model with six components and two non-zero weights per com-
ponent (f = 6), explaining 95% of the variance of a reference PCA
model. Fig. 6 shows the sparse weights p, and the orthonormal loadings
q, for the six components together with the correlation matrix of the
factorization components.

It should be noted that this solution is different from the one shown
in Table 1 and Fig. 3, because the model selection with the razor
plot allows us to take into consideration the overall complexity of
the model, rather than fitting one component at a time. Fig. 7 shows
how combining the contributions of each sparse component (Fig. 7(a))
provides a good approximation of the sample correlation in the data
XTX (Fig. 7(b)), indicating the appropriateness of the sparse model to
fit this data set.

4.2. Revisiting the results of Guerra-Urzola et al. [10]

Guerra-Urzola et al. [10] performed a systematic comparison of
several sparse PCA methods where they considered diverse data gen-
eration schemes that could lead to seemly similar sparse data. They
report a poor performance of the sPCA version by Zou et al.under
certain conditions: these results conflict with what we described in the
first two papers of this series [4,5], where the performance and the
characteristics of the Zou’s algorithm were investigated using a data
simulation strategy that is closer in philosophy to situations that are
the most challenging sPCA. For this reason we believe it interesting to
reproduce part of their experiments.

4.2.1. Simulation results

In the first part of their paper, Guerra-Urzola et al.present sim-
ulation results for three different types of conditions. We reproduce
two of them here: (i) when the sparse structure of the data reflects
the type of sparse structure addressed by sPCA (matching sparsity),
thus generating data which should be easy to model, and (ii) when
there is a mismatch between generated and estimated sparse struc-
tures (mismatching sparsity), resulting in a more challenging case. To
compare the different models they define several performance indexes,
including: the squared relative error (SRE) of the model parameters
(SRE_LW for the sparse weights and SRE_S for the scores), which should
be as low as possible; the percentage of explained variance (PEV),
which should be close to, but not exceed, the variance accounted by
the generated data (VAF); and the cosine similarity, which should be
as close to one as possible (CS_LW for sparse weights and CS_S for
scores). We reproduced the experiment in a configuration point of the
simulation where the performance of sPCA was particularly poor: for
two components, 500 observations, 1000 variables, 80% of sparsity and
80% of VAF (we provide the code that allows to reproduce any other
configuration, see Section 6).

Table 3 shows the performance results of sPCA for two values of
A, in Eq. (1). For 4, = 1, the results are consistent with those by
Guerra-Urzola et al.and thus very poor, but for 1, = o, the performance
is competitive with the best sparse methods reported in their study.
It turns out that, in our previous papers of this series, we always
considered 4, = o (i.e., soft-thresholding), since chemometrics data is
often very wide with many more variables (columns) than observations
(rows): this is the suggested 4, configuration by Zou et al.for this type
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Fig. 4. Calibration of a multi-component sPCA model for the pitprops data: (a) razor plot with explained variance PEV,, as function of the optimization criterion f (22); and (b)
razor plot with explained variance PEV,, as function of f and the number of sparse components. The explained variance by a standard PCA model with six components is given
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of data. This result shows that the choice of 4, can be relevant in certain
examples, and that sPCA can still provide good performance for both
matching and mismatching sparse data generation.

4.2.2. Multi-component sPCA model selection for the Big Five data using
the Razor plot

Guerra-Urzola et al.also presented results for two real data sets.
The first one is the Big Five personality dimensions data [26] publicly
available from the R-package qgraph [27], which contains the scores
of 500 individuals on five sets of 48 items associated to the Big Five

personality traits (Neuroticism, Extraversion, Openness to Experience,
Agreeableness, and Conscientiousness). To assess the performance of
sparse methods in this case study, Guerra-Urzola et al.considered an
optimal result if “most nonzero loadings (or weights) belong to one
particular item set” and all item sets were modeled.

We computed the razor plot for the following set of parameters:

» Numbers of non-zero weights considered per component, nz,,
from 1 to 240 (the total of variables) in steps of 24.
« Values of 4, considered: [0, 1, 10, 100, 10000, co].
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six components is given as a reference.

Table 3

Performance of the Zou’s sPCA algorithm using the Guerra-Urzola et al. [10] simulation
for two values of 4, in Eq. (1) and two conditions: matching sparsity and mismatching
sparsity; Alg-I and Alg-II refer to the data generating procedures defined as Algorithm
1 and Algorithm 2 in [10]. Performance is expressed as squared relative error of the
sparse weights (SRE_LW) and the scores (SRE_S), the percentage of explained variance
(PEV) and the cosine similarity of sparse weights (CS_LW) and of scores (CS_S)).

Ay Matching sparsity (Alg-1I) Mismatching sparsity (Alg-1)

SRE_LW SRE_S PEV CS_LW CS_S PEV
1 0.22 0.03 0.80 0.56 0.76 0.80
oo 0.17 0.03 0.80 1.00 1.00 0.80

» Threshold of 5% below the variance of a 5 PC model (24.75%).

Fig. 8(a) shows the truncated razor plot: the PEV increases fast up to
f =120 and reaches the threshold at f = 216. This plot was computed
in less than five minutes. The selected model has five components, the
first four with 49 nz, (recall potential values start in one and increase
in steps of 24), which is the closest situation to select one group of 48
item per component. The last component has 25 nz,.

In this optimal configuration, all 4, values provide solutions with
similar PEV, with 4, = 10 slightly outperforming the others, reason why
this choice is selected. The optimal sparse configuration according to
Guerra-Urzola et al.was for the sPCA-rSVD algorithm [23], with 0.73 of
sparsity and 18% of PEV. In comparison, our sPCA configuration attains
0.82 of sparsity and 24% of PEV, with more captured variance and less
non-zero parameters. Fig. 9 shows the sparse weights of this model,
where each component is mainly associated to a single personality trait.

In Table 4, we compare the maximum ratio of nonzero load-
ings/weights in one particular item set in the sPCA-rSVD and sPCA
models by Guerra-Urzola et al. [10] (results taken from Table 4 of their
article) with our sPCA configuration. Following the criteria of Guerra-
Urzola et al.our configuration outperforms traditional sPCA and the
alleged optimal algorithm in terms of the percentage of association
of one component to one personality trait (see the last row in the
Table 4) and the PEV captured. Yet, the openness dimension is not
properly recovered, which can be interpreted as a disadvantage or the
need to add more components. As shown in Fig. 10A the reconstructed
map RPTXTXPR" computed from our model shows a characteristic
diagonal block shape that justifies the correlation within traits, but also
shows a tendency for negative correlation between Neuroticism and
Extraversion, and other more moderate relations between traits, which
are relevant for the full understanding of the data.

4.2.3. Multi-component sPCA model selection for the gene expression data
using the Razor plot

The last example used by Guerra-Urzola et al.is a data set containing
gene expression of 13 male autistic individuals (6 with autism caused
by a fragile X mutation (FMR1-FM) and 7 with autism caused by a
15q11-q13 duplication (dup15q)) and 14 controls [28], available at
NCBI GEO database with accession number GSE7329. The data sets
contains 41 675 gene probes (Guerra-Urzola et al.report 43 893 probes,
probably by mistakenly including some control probes).

In their analysis Guerra-Urzola et al.selected three components, for
which PCA captures 32% of the variance. They selected the GPower
method [11] as their reference sparse configuration for this data,
with 0.97 of sparsity and 31% of PEV. We repeated the analysis
with three components in PCA capturing 33% of the variance (this
small discrepancy is probably due to the different number of variables
considered).

We computed the razor plot for the following set of parameters:

» Numbers of non-zero weights considered per component, nz,,
taking into account the matrix rank (26) and the number of
variables: [1,4,7,10,13,16,19,22,25,41675].

+ Values of 4, considered: [0, 1, 10, 100, 10000, co].

» Threshold of 3% below the variance of a 3 PC model (33%).

The computation of the truncated razor plot took 72 seconds, and
all A, values provided very similar results (we chose 1, = 0). The
optimal output was 3 components with 4 non-zero weights each, for
a total sparsity of 0.9999, capturing 32.6% of the variance: this model
outperforms that obtained by Guerra-Urzola et al.in their optimal con-
figuration. Note that Guerra-Urzola et al.did not run sPCA on these data
due to the computational burden of the algorithm.

The component scores for the PCA and sPCA models are given in
Fig. 11, showing a very similar separation between the three group of
subjects. The ability to summarize data of sPCA may seem remarkable
in this case study (like Guerra-Urzola et al.suggested for the GPower
algorithm [11]), but in a closer inspection the auxiliary loadings (see
Fig. 10B for an example) allows us to fully understand what is truly
happening.

For each component, 4 non-zero weights are enough to model the
data, but these are only representatives connected to a much higher
number of other associates, which can (and some of them quite probably
will) be more relevant to understand the underlying disease biology
than the selected representatives. Clearly, this is the consequence of
having a very large number of potential biomarkers measured on a very
limited number of samples (41 675 versus 27, in this example).
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Fig. 6. Multi-component sPCA model for the pitprops data sets. Sparse weights p,,p,, ...

,ps and orthonormal loadings q,.q,, ...

,qe together with the corresponding visual map of

correlation matrix of the model factorization r/p}'XTXp /.r].T for each component. This model has been selected using the truncated Razor plot shown in Fig. 5.

5. Conclusion

This series of three papers “All sparse PCA models are wrong, but
some are useful” presents a combination of theoretical derivations,
numerical simulations and real data analyses with the aim of improving
our understanding on how to make the most of the interpretational
capabilities of sparse PCA. The first paper showed that sSPCA implemen-
tations underperform in situations where they were expected to provide
a perfect solution. The second paper showed why deflation-based sPCA

implementations are the most affected by model inaccuracies. This
result made us select alternative implementations for the study in this
third paper, and in particular we focused in the most popular imple-
mentation of sSPCA, the one by Zou et al.. Here, we reviewed this version
of sPCA, and provided new derivations on the model equations, the
computation and interpretation of scores, the interpretation of weights
and loadings and the selection of metaparameters. We believe that with
these additions, sPCA becomes a more mature and well-understood
method that can more safely be applied in critical analyses.
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Table 4
Sparse PCA model of the Big Five personality data. Each column represents the number of items in each loading/weight that have a nonzero
value in each trait. The components were ordered following Guerra-Urzola et al. [10], Table 4.

SPCArSVD [10] sPCA [10] Our sPCA

W W, Wy w, Ws W, W, W w, Ws Wy W, W3 Wy W5
Openness 0 9 1 4 41 0 17 4 13 25 4 5 2 5 0
Conscientiousness 9 3 11 43 2 15 0 26 24 8 9 11 22 11 2
Extraversion 17 19 21 6 9 15 10 15 6 16 1 0 5 0 23
Agreeableness 4 29 23 2 5 6 27 13 10 3 34 5 5 5 0
Neuroticism 34 4 8 9 7 28 10 6 11 12 1 28 15 28 0
Total nonzero 64 64 64 64 64 64 64 64 64 64 49 49 49 49 25
% in one item set 53 45 36 67 64 44 42 41 38 39 69 57 45 57 92

11
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Data. Non-zero sparse weights are NM_020156, NM_012247, NM_001008756, NM_000690.

6. Software

The results can be reproduced with the scripts at https://github.
com/josecamachop/SparsePCAIIL. The code makes use of the MEDA
Toolbox v1.8 at https://github.com/codaslab/MEDA-Toolbox and the
SPASM Toolbox at https://www2.imm.dtu.dk/projects/spasm. The
MEDA Toolbox v1.8 also includes the implementation of sPCA based
on soft-thresholding (routine spca) and the Razor plot (routine ra-
zorPlot) without dependence on any other software package. The
script https://github.com/josecamachop/SparsePCAIIl/pitpropsMEDA.
m illustrates its use.
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Fig. 11. Scatter plot of PCA scores (a)-(b) and of sPCA scores (c)-(d) for the in the Gene Expression Data. FMR1-FM indicates subjects with autism caused by a fragile X mutation;

dupl5q indicates subjects with autism caused by a 15q11-q13 duplication.
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Appendix. Other sPCA algorithms related to SPCA-Z

In the previous papers of the series, we found three sPCA implemen-
tation generally superior to the rest, which were deflation-based. The
SPCA-Z algorithm is one of them. The second is a sequential variant of
SPCA-Z, in which the loadings are computed one at a time, published
as part of the SPASM Toolbox [7]. This approach combines deflation
with the use of orthonormal loadings, speeding up computation at the
expense of a reduction in explained variance. This reduction represents
a loss of modeling accuracy. The third is a variant of the popular
Penalized Matrix Decomposition (PMD) by Witten et al. [2]. The variant
is an alternative to projection deflation by computing orthogonalized
scores. Yet, authors claim that it is not clear whether orthogonality is
a desirable property.

We recently showed that orthogonal scores actually improve the
estimation of sPCA by avoiding severe departures of the loadings from
the data rowspace [5]. While PMD with orthogonal scores is somehow
similar to SPCA-Z, in the later we have the combination of sparse
weights and orthonormal loadings in which we rely for interpretation.
For these reasons, and given that deflation-based approaches are gen-
erally inferior to these three sPCA variants [5], we will focus the paper
on SPCA-Z.

Data availability

A link to the code and data is provided in the paper.
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