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 A B S T R A C T

Sparse Principal Component Analysis (sPCA) is a popular matrix factorization that combines variance 
maximization and sparsity with the ultimate goal of improving data interpretation. In this series of papers we 
show that the factorization with sPCA can be complex to interpret even when confronted with simple data. In 
the first paper in this series, we demonstrated that sPCA models have limitations with respect to factorizing 
sparse and noise-free data accurately when loadings are overlapping. In the second paper, we showed that 
sPCA algorithms based on deflation can generate artifacts in high order components. We also show that scores 
orthogonalization and the incorporation of orthonormal loadings are suitable means to avoid large artifacts. 
Both approaches constrain the set of possible sPCA solutions in a very similar but poorly understood way. In 
particular, we study in this paper the sPCA solution by Zou et al., which according to our results represent 
the best sPCA algorithm of those considered in the series. Here, we provide new derivations on the model 
equations, the computation and interpretation of the model parameters and the selection of metaparemeters 
in practical cases, making sPCA an even more powerful data modeling tool.
1. Introduction

Model interpretation is a critical step in sparse principal component 
analysis (sPCA) [1–3]. In this series of papers ‘‘All sparse PCA models 
are wrong, but some are useful’’, we have identified and discussed 
modeling problems and interpretation challenges affecting the most 
popular implementations of sPCA.

In the first paper of the series [4], we illustrated the limitations of 
sPCA models for factorizing noise-free and exactly sparse data (with 
many exact zero values) when the true loadings overlap. It was shown 
that even in this simple case, there are severe precautions that need 
to be taken when interpreting the models. We also observed that the 
most commonly-used implementations of sPCA either underestimate 
or overestimate the correlation between pairs of loadings and scores; 
and we proposed adjustments for the estimation of the scores and the 
explained variance which, albeit not fully correcting for these problems, 
may significantly increase the quality of model estimation.

In the second paper [5], we focused on the use of deflation, a 
popular algorithmic approach within sPCA and many other multivari-
ate algorithms. Sparse loadings, like any form of constrained loadings, 
may be outside the rowspace of the data and we showed that, as 
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a consequence, deflation can lead to the inclusion of artifacts (fake 
patterns not found in the data) in the estimated loadings from the 
second component onwards. The inclusion of spurious information in 
the sparse components may result in loss of accuracy and lead to wrong 
interpretation of the sPCA model.

This type of problem does not manifest when the sparse loadings 
are orthogonal, which in particular is the case when there is no overlap,
i.e., when loadings of different components do not share common (non-
zero) variables. Generally speaking, we found that deflation-based sPCA 
algorithms are not an adequate choice when the data conforms to 
non-orthogonal sparse loadings structures.

We provided two diagnostics that can be used to detect and quantify 
the inclusion of spurious information in practical applications: the 
percentage of artifacts and the angle with the data rowspace [5]. When 
reporting deflation-based sPCA results in the literature, we suggested 
also reporting the diagnostics, to gauge the appropriateness of fitting 
a sparse model to the data. With this suggestion we imply that models 
with large values for these diagnostics are probably not adequate for 
data interpretation.
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In reviewing sPCA algorithms, we identified two algorithmic ap-
proaches that can control the departure of sPCA from the data rows-
pace, namely: the use of orthonormal loadings in the sPCA algo-
rithm [6,7], and the version with scores orthogonalization of the Pe-
nalized Matrix Decomposition (PMD) [2]. We showed how the use of 
these two approaches together with our corrections can outperform 
deflation-based sPCA in terms of (sparse) modeling and data fitting. 
Both approaches constrain the set of possible sPCA solutions in a very 
similar but poorly understood way, since their assumptions on the data 
generation process are quite different [8], which can actually lead to 
an incorrect interpretation of the models.

Underlying the use and interpretation of sparse component models, 
and of sparse PCA modeling in particular, is the idea that a sparse 
model is simpler to interpret because the number of selected vari-
ables is smaller, and often much smaller, than the original number 
of variables. However, sparsity, interpretation, and interpretability are 
actually distinct concepts.

Interpretability is a property of a (data analysis) method related 
to its capacity to produce and present results that can be interpreted 
within the body of actual knowledge. The interpretation of the model, 
i.e., the interpretation of the results, is the interplay between the pre-
sented results by a method and the domain expert with the goal of in-
ferring meaning from the results, thereby enlarging the understanding 
of the studied system.

The reduction in the number of variables, i.e., the sparsity of the 
model, is taken as a proxy for enhanced interpretability, since it is 
often assumed that only a subset of measured variables is related to 
the problem being studied [9], as measured variables may include 
informative, redundant and non-informative variables. This can be 
defined as the ‘‘sparse truth’’ assumption.

A legitimate question to ask is whether sparsity is the true reality for 
a given studied system (either biological, chemical, physical, or other) 
and whether this is visible in the data. We can use a sparse model under 
the expectation that the underlying truth is inherently sparse and under 
the assumption that it is able to capture this type of sparseness. Yet, 
a more practical and widely applicable approach is to assume that the 
underlying truth and subsequent data is not necessarily sparse, and that 
the sparse model only approximates this truth and is, hopefully, more 
interpretable than a non-sparse model.

In the present paper, that conclude this series, we address the 
problem of model interpretation: upon characterization of the algebraic 
properties of the sPCA solution, we investigate which model param-
eters carry more or more accurate information about the underlying 
truth and how they should be interpreted. We focus on the particular 
sPCA solution by Zou et al. [6], which outperforms other solutions 
in explained variance [7] and interpretation [2]. We also revisit the 
results of Guerra-Urzola et al. [10], which showed limited performance 
of the sPCA solution by Zou et al.under certain conditions. Our analyses 
illustrate that sPCA can indeed yield good performance when following 
our strategy even in those conditions.

The rest of the paper is organized as follows. Section 2 reviews the 
sPCA algorithm proposed by Zou et al. [6] and motivates our choice 
of focusing on this method based on the incorporation of orthonormal 
loadings. Section 3 provides a derivation of the underlying model by 
Zou et al., and deals with the definition and interpretation of the scores, 
loadings and explained variance. Section 4 presents the analysis of a 
benchmark experimental data set and  revisits some of the results by 
Guerra-Urzola et al. Section 5 provides a general discussion of the series 
and concluding remarks.

2. Sparse PCA algorithms

We detail below the sPCA algorithm by Zou et al. [6], which imple-
ments a  simultaneous1 approach to extract multiple sparse components 
2 
making use of auxiliary non-sparse loadings. In Appendix, we briefly 
describe the sequential version of the Zou et al. algorithm [7], and 
a sequential sPCA variant based on scores orthogonalization [2]. All 
these methods showed superior modeling capabilities when compared 
to deflation-based approaches in the second paper of the series [5], but 
the sequential version generally captures less variance than the sPCA 
algorithm by Zou et al.and the orthogonalization algorithm [2] is more 
difficult to interpret.

The sPCA algorithm by Zou et al.(in the following we will refer 
to this approach as SPCA-Z , with capital ‘S’ and ‘Z’ to differentiate it 
from the general sPCA approach) makes use of non-sparse orthonormal 
loadings to extract sparse components in a simultaneous fashion. The 
SPCA-Z model is based on the reformulation of the problem of finding 
an sPCA solution as a regularized regression problem with a criterion 
close to the (naive) elastic net [12], which is a combination of the lasso 
and the ridge constraints. To fit an sPCA model with 𝐴 components to 
an 𝑁 × 𝐽 (observations × variables) data matrix 𝐗, the optimization 
problem is given by

argmin
𝐏,𝐐

‖𝐗 − 𝐗𝐏𝐐T
‖

2
𝐹 + 𝜆2

𝐴
∑

𝑎=1
‖𝐩𝑎‖22 + 𝜆1

𝐴
∑

𝑎=1
‖𝐩𝑎‖1 𝑠.𝑡. 𝐐T𝐐 = 𝐈, (1)

where 𝐏 and 𝐐 are the 𝐽 × 𝐴 matrices of sparse and orthonormal 
loadings, respectively, 𝐩𝑎 is the 𝑎th column vector (𝐽 × 1) in 𝐏, 𝐈 is 
the 𝐴 × 𝐴 identity matrix and ‖ ∗ ‖𝐹 , ‖ ∗ ‖2 and ‖ ∗ ‖1 are the 
Frobenius norm of a matrix, the 2-norm and the 1-norm of a vector, 
respectively.  The sparsity of the solution depends on the relative 
importance provided to these norms by the parameters 𝜆2 and 𝜆1, 
respectively. We maintain the notation of the sparse loadings (𝐏) to 
be consistent with our previous papers of the series, and we will refer 
to those as sparse weights, following Park et al. [8].

The numerical solution proposed for Eq. (1) is a biconvex opti-
mization where sparse weights and orthonormal loadings are obtained 
using an alternating approach, which guarantees convergence to a 
local minimum. In the first step, we use the equivalence argmin𝐏 ‖𝐗 −
𝐗𝐏𝐐T

‖

2
𝐹 ≡ argmin𝐏 ‖𝐗𝐐 − 𝐗𝐏‖2𝐹 , which holds for 𝐏 column-wise 

full-rank and comes from imposing the constraint 𝐐T𝐐 = 𝐈. This 
equivalence allows to solve 𝐏 for fixed 𝐐 in Eq. (1) as:

argmin
𝐏

‖𝐗𝐐 − 𝐗𝐏‖2𝐹 + 𝜆2
𝐴
∑

𝑎=1
‖𝐩𝑎‖22 + 𝜆1

𝐴
∑

𝑎=1
‖𝐩𝑎‖1, (2)

using 𝐴 independent elastic net regressions for which the response is 
𝐗𝐪𝑎 and the corresponding sparse vectors 𝐩𝑎 are estimated.

In the second step, the orthonormal loadings in 𝐐 are found for fixed 
𝐏 as the solution to the Procrustes problem:

argmin
𝐐

‖𝐗 − 𝐗𝐏𝐐T
‖

2
𝐹 𝑠.𝑡. 𝐐T𝐐 = 𝐈, (3)

which is the polar decomposition: 

𝐐 = 𝐔𝐕T, (4)

where 𝐔 and 𝐕 are the 𝐽 × 𝐴 and 𝐴 × 𝐴 matrices with the left and 
right singular vectors, respectively, from the (truncated) Singular Value 
Decomposition of the 𝐽 × 𝐴 matrix 𝐗T𝐗𝐏

𝐗T𝐗𝐏 = 𝐔𝐒𝐕T, (5)

where 𝐒 is 𝐴 × 𝐴. The two steps are iterated until convergence.

1 The term simultaneous here means that the model fits all components 
at once, rather than in a sequential fashion, where one component is fitted 
at a time followed by deflation or orthogonalization. In other areas [11], a 
simultaneous approach is referred to as a block approach.
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3. Interpretation of the solution of the SPCA-Z algorithm

Concerning the original presentation of the SPCA-Z algorithm, we 
note the following four interrelated issues:

1. The scores are computed in such a way that the resulting esti-
mated variances are inaccurate, as we have previously shown
[4].

2. Only the sparse weights 𝐏 are considered for the interpretation 
of case studies [6,13].

3. The orthonormal loadings 𝐐 are used as a mere computational 
aid for model fitting and later discarded, leading to a loss of 
information which is fundamental for the interpretation of the 
resulting sparse model.

4. As a consequence, the model used for interpretation is inconsis-
tent with the model underlying the fitting procedure, as we will 
derive mathematically later on.

By addressing points 1 to 4 in this section, we will show how the 
interpretability of the sPCA solution obtained from the SPCA-Z al-
gorithm can be enhanced by taking advantage of a careful algebraic 
characterization.

3.1. The model underlying SPCA-Z

We derive the model underlying the solution at convergence of 
the SPCA-Z algorithm, for a model fitted with 𝐴 components to an 
𝑁 ×𝐽 data matrix 𝐗 and resulting in sparse weights 𝐏 and orthonormal 
loadings in 𝐐. Given 𝐙 the 𝑁 × 𝐴 matrix of scores, defined by Zou et 
al.as 

𝐙 = 𝐗𝐏, (6)

a least squares approximation for 𝐗 can be stated in the general form 

𝐗 = 𝐙𝐑T + 𝐄, (7)

for 𝐑 a 𝐽 × 𝐴 matrix satisfying 

𝐑 = 𝐗T𝐙(𝐙T𝐙)−1, (8)

where the superscript−1 indicates matrix inversion. Substituting 𝐙 = 𝐗𝐏
into (8) we obtain 

𝐑 = 𝐗T𝐗𝐏(𝐏T𝐗T𝐗𝐏)−1. (9)

At convergence, Eq. (5) holds for the found 𝐏, thus substituting (5) into 
(9) we get 

𝐑 = 𝐔𝐒𝐕T(𝐏T𝐔𝐒𝐕T)−1. (10)

Post-multiplying both members of (10) first by 𝐏T𝐔𝐒𝐕T and then by 
𝐕𝐒−1𝐕T we arrive at: 

𝐑𝐏T𝐔𝐕T = 𝐔𝐕T. (11)

At convergence, also Eq. (4) holds, thus substituting 𝐐 = 𝐔𝐕T into (11) 
and post-multiplying by (𝐏T𝐐)−1 we arrive to an expression for 𝐑 in 
terms of 𝐏 and 𝐐: 

𝐑 = 𝐐(𝐏T𝐐)−1. (12)

Finally, plugging (6) and (12) into (7) gives us the expression for the 
SPCA-Z model (at convergence) as function of 𝐗, the sparse weights 𝐏
and orthonormal loadings in 𝐐 : 

𝐗 = 𝐗𝐏(𝐐T𝐏)−1𝐐T + 𝐄. (13)
3 
3.2. Definition and interpretation of the scores

Eq. (13) can be broken down into equivalent matrix factorizations 
of 𝐗, with different interpretational properties, all of them of the form:
𝐗 = 𝐀ℎ𝐁ℎ + 𝐄. (14)

If we set 𝐀1 = 𝐗𝐏 and 𝐁1 = (𝐐T𝐏)−1𝐐T, we maintain the sparse 
weights and we get scores in 𝐀1 that are directly connected to them 
and so they are nicely interpretable. Unfortunately,  components in 𝐁1
will likely be non orthogonal, and the interpretation of pairs or groups 
of components may be misleading.

If we set 𝐀2 = 𝐗𝐏(𝐐T𝐏)−1 and 𝐁2 = 𝐐T, we give up on sparse 
weights as 𝐏(𝐐T𝐏)−1 is not sparse, and the scores 𝐀2 lose their direct 
interpretation from the sparse weights, but due to the orthogonality of 
𝐁2 we can safely interpret pairs/groups of components. Furthermore, it 
turns out that 𝐀2 are the scores that best approximate the Euclidean 
distance between the observations in 𝐗. This will be shown in the 
remaining of this section.

For standardized variables, the Pearson’s correlation coefficient and 
the Euclidean difference are functionally and inversely related.2 Thus, 
finding the scores that best approximate the matrix of the correla-
tion among observations 𝐗𝐗T is equivalent to finding the scores that 
best approximate the Euclidean distance. This leads to the following 
minimization problem: 
argmin

𝐀ℎ

‖𝐗𝐗T − 𝐀ℎ𝐀T
ℎ‖

2
𝐹 . (15)

In particular, the Euclidean distance for 𝐀2 holds 
‖𝐗𝐗T − 𝐗𝐏(𝐐T𝐏)−1(𝐏T𝐐)−1𝐏T𝐗T

‖

2
𝐹 , (16)

and using the fact that 𝐐T𝐐 = 𝐈 we arrive at
‖𝐗𝐗T − 𝐗𝐏(𝐐T𝐏)−1𝐈(𝐏T𝐐)−1𝐏T𝐗T

‖

2
𝐹 = (17)

‖𝐗𝐗T − 𝐗𝐏(𝐐T𝐏)−1𝐐T𝐐(𝐏T𝐐)−1𝐏T𝐗T
‖

2
𝐹 .

Comparing the second equation in (17) with Eq. (7) we can re-write 
the former as 
‖𝐗𝐗T − 𝐗𝐏𝐑T𝐑𝐏T𝐗T

‖

2
𝐹 . (18)

Formula (18) corresponds to the least squares solution for the approx-
imation of 𝐗𝐗T given 𝐏, and thus we can conclude that the scores 𝐀2
provide the best approximation in the low dimensional space of the 
distance between observations in the original data space.

The definition of the scores as 𝐀2 = 𝐗𝐏(𝐐𝑇𝐏)−1 explicitly brings 
back the relevance of the orthonormal loadings in 𝐐: we will now 
show that this has interesting consequences for the interpretation of 
the sparse components. It is worth noting the connection of these scores 
(and of the SPCA-Z model itself in Eq. (13)) with the well-known Partial 
Least Squares (PLS) regression model [14,15], where the sparse weights 
in SPCA-Z take the role of the weights in PLS, and the orthonormal 
loadings in SPCA-Z take the role of the so-called PLS loadings.

3.3. The role and interpretation of the orthonormal loadings

Zou et al.use the orthonormal loadings in 𝐐 as a mere computa-
tional trick. Yet, we have previously shown that they are an inherent 
part of the true underlying SPCA-Z model, and that they can provide 
scores with some desirable properties. For this reason, we attempt a 
characterization of the properties of 𝐐.

To assess 𝐐 at convergence, i.e., when the sparse weights 𝐏 have 
been found, we reconsider problem (3). Using the equivalence of the 
trace operator tr and the Frobenius norm, the minimization problem 

2 For two standardized variables 𝑥 and 𝑦 measured on 𝑁 replicates it 
holds that corr(𝑥, 𝑦) = 1 − 𝑑2(𝑥,𝑦)

2𝑁
, with corr(𝑥, 𝑦) and 𝑑2(𝑥, 𝑦) are the Pearson’s 

correlation and the Euclidean distance between 𝑥 and 𝑦, respectively.
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can be re-expressed in terms of the trace of the product of the matrices 
appearing in Eq. (3)

argmin
𝐐

{

tr(𝐗T𝐗) + tr(𝐐𝐏T𝐗T𝐗𝐏𝐐T) − 2tr(𝐗T𝐗𝐏𝐐T)
}

. (19)

Using the fact that the trace is invariant under cyclic permutation and 
that at convergence 𝐐T𝐐 = 𝐈, equation (19) can be expressed as: 

argmin
𝐐

{

tr(𝐗T𝐗) + tr(𝐏T𝐗T𝐗𝐏) − 2tr(𝐐T𝐗T𝐗𝐏)
}

. (20)

 Since the first two terms of Eq. (20) do not depend on 𝐐, minimizing it 
amounts to maximizing tr(𝐐T𝐗T𝐗𝐏). This can be interpreted as finding 
those orthonormal vectors in 𝐐 that maximize the covariance between 
the scores 𝐙 = 𝐗𝐏 and the auxiliary scores given by 𝐗𝐐.

When the minimization problem is rephrased in this way, we believe 
that the actual role of 𝐐 becomes apparent: to provide auxiliary scores 
mostly correlated with 𝐙 and the role of 𝐐T𝐗T is to capture all the 
(possible) variance related to it. Hence, the orthonormal loadings in 
𝐐 should not be considered just as a computational convenience, but 
rather as a fundamental part of the sparse model.

3.3.1. Interpreting sparse solutions in terms of  representatives and asso-
ciates

The final goal of sPCA modeling is to arrive at simpler and more 
interpretable models, where interpretability is usually gauged in terms 
of the (limited) number of non-zero weights. The non-zero weights for 
a given sparse principal component identify the variables that represent
the structure of a sparse component, and for this reason we term them
representatives.

On the other hand, 𝐐 represents a subspace in the rowspace of the 
data, and maintains the SPCA-Z model in that subspace. Therefore, 
orthonormal loadings complement 𝐏 for the competing objective of 
maximizing variance in 𝐗. In practice, this means that loadings 𝐐 are 
responsible  for modeling the variance in the data that is correlated 
to 𝐏. To provide an intuitive interpretation of this fact, we use the 
term associates to designate the variables with zero weight but a loading 
significantly different to zero in a given component. That is, variables 
that are correlated to the component score. While weights in 𝐏 only 
contain representatives, the corresponding loadings in 𝐐 contain both
representatives and associates. 

To understand the connection between representatives and associates, 
the interpretation of the sparse factorization must be carried over 
simultaneously at both the sparse weights 𝐏 and orthonormal loadings 
in 𝐐, because considering only the sparse weights can result in the 
loss of important information. Note that, for instance, as we force a 
component towards sparseness, some of the representatives are discarded 
from 𝐏 but they may still being captured in the corresponding 𝐐. This 
is also related to another feature of the SPCA-Z approach: the potential 
non-uniqueness of the solution. Park et al. [8] have shown that when 
the number of variables is larger than the number of observations, 
different sets of variables can results in the equivalent sparse solutions 
(see Eqs. (8) and (9) in Appendix of that paper.). In those equivalent 
solutions, some of the representatives are exchanged with some associates
giving the same exact data approximation. Thus, care should be taken 
in considering the representatives more relevant than the associates in 
interpretation.

We advocate for a broader and more comprehensive interpretation 
of the SPCA-Z solution that includes the associates. When interpreting 
a sparse model it should be possible to unequivocally identify the 
subset of variables connected to a given component. This problem is 
particularly important when sPCA is used for data exploration with the 
goal of finding groups of variables associated with the data patterns 
observed, like in the case of biomarker discovery. This is consistent 
with other sparsity factorizations based on the identification of groups 
of correlated variables [16].
4 
3.4. Model selection using explained variance

An inherent problem of model fitting procedures where regulariza-
tion parameters are involved is the choice of the optimal values for those 
parameters given the data to be analyzed, where optimality has to be 
defined in terms of some desired model properties. In the framework 
of sPCA this translates to finding the optimal trade-off between spar-
sity and variance of the solutions, including the determination of the 
number of components.

In the original publication, Zou et al. [6] suggest an interesting ap-
proach to set the level of sparsity when analyzing an experimental data 
set. They consider the trade-off between the sparsity in a component 
(i.e., number of non-zero weights in 𝐏) and the proportion of vari-
ance captured by that component. Taking as reference the explained 
variance by the components of a normal PCA model, they require the 
weights 𝐏 to be as sparse as possible without reducing too much the 
variance with respect to the reference (this is shown in Figure 2 of [6]).

The rationale behind this criterion is that if a sparse model provides 
a reasonable factorization of the data (which happens if the data is in-
herently sparse with respect to an sPCA decomposition), the proportion 
of explained variance by the model should be large, where large can 
mean comparable to that captured by a standard PCA model. Then, if 
the data does not conform to an sPCA model, the variance captured by 
the model is expected to be low.

Zou et al.calculate the total explained variance by a sparse model 
with 𝐴 components only considering the sparse weights 𝐏, using the 
QR decomposition of 𝐙 = 𝐗𝐏. This calculation underestimates the 
true amount of explained variance by the sparse model if only 𝐏 is 
considered [4]. Yet, if 𝐐 is also considered, as follows from the true 
underlying model in SPCA-Z , the variance is even larger. The actual 
model for the SPCA-Z is given by Eq. (13), for which the total explained 
variance follows 
𝑇 𝑜𝑡𝑉𝑝𝑞𝐴 = tr(𝐁2𝐀T

2𝐀2𝐁T
2 ). (21)

where the subscript 𝑝𝑞 makes explicit that the model variance makes 
use of both sparse weights and orthonormal loadings, and where we 
intentionally used the factorization following Eq. (14) that retains 
orthonormal loadings to allow for the computation of component-wise 
variance. 

The underestimation of the explained variance has a profound 
impact on model selection. As a result, the desired trade-off between 
sparsity and explained variance is biased towards the latter, leading to 
suboptimal solutions with a number of non-zero weights much larger 
than what can be actually obtained without decreasing significantly 
the amount of explained variance. We will show this in Section 4, 
contextually to the analysis of an experimental data set.

3.5. Model selection in multi-component sPCA models using the razor plot

The selection of metaparameters in sPCA multi-component models 
is a real computational and practical challenge [16], since reducing 
the sparsity of the components (allowing for more non-zero weights) 
or adding more components are viable ways to increase the explained 
variance, but they affect the interpretability of a model differently. 
Besides, each component of a model may be fit with a different level 
of sparsity.

As the goal of sPCA is often exploratory, and given that the ex-
plained variance is an established criterion for the assessment of the 
quality of sPCA [17], it seems reasonable to follow the criterion sug-
gested by Zou et al.: finding the sparsest model with explained variance 
close to an unconstrained PCA model. For this purpose, we make use 
of the razor plot [18].

The razor plot is a (multidimensional) extension of the scree-plot, 
where the number of parameters to be estimated is summarized as the 
number of free parameters [19]. In the case of sPCA, both the number 
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of components 𝐴 and the number of non-zero weights per component 
𝑛𝑧𝑎 need to be optimized. We define the optimization criterion 𝑓 as 

𝑓 =
∑

𝑎
𝑛𝑧𝑎 − 𝐴. (22)

where 𝑛𝑧𝑎 is the number of non-zero weights in 𝐩𝑎. 𝑓 takes values 
between 0 (all component have a single non-zero weight) and (𝐽−1)⋅𝐴.

To compute a razor plot, sPCA models are fit for different values 
of the meta-parameters3 and the explained variance is calculated for 
each model. This is a computationally intensive operation if we want 
to consider all possible combinations in the number of non-zero weights 
for the components. The computational burden is simplified if, without 
loss of generality, we restrict the number of non-zero weights in the 
𝑎2th component to be less or equal to the number of non-zero weights 
in the 𝑎1th component for 𝑎1 < 𝑎2.

Once all model variants are computed, they are grouped by the 
value of 𝑓 . The best model in terms of explained variance is chosen 
from the group, and the rest are discarded. The razor plot shows the 
explained variance of the set of best models as a function of 𝑓 . An 
alternative plot that we introduce in this paper selects the best model 
for each combination of 𝑓 and 𝐴, and visualizes the corresponding 
explained variance as a surface. In any of the two visualizations, our 
selection criterion is to pick the sparsest model (lowest 𝑓 ) for which 
the explained variance is close enough to the reference, where the 
reference is the explained variance of the corresponding PCA model 
(or any other target reference that can be deemed appropriate; e.g., the 
total variance in the data) and ‘close enough’ can be determined by a 
suitable threshold.

The rationale in the definition of 𝑓 in Eq. (22), in which 𝐴 is 
subtracted, is motivated by the fact that interpretability is favored 
by including more components for a fixed total number of non-zero 
weights. To give an example: a model with six components with one 
non-zero weight each is easier to interpret that a model with two com-
ponents with three non-zero weights each. This observation agrees with 
sparse modeling approaches that try to avoid uncorrelated variables 
with high loadings in the same component [16,18].

Building a razor plot can be time consuming if the number of 
variables is very large and the parameter space to search is extensive. 
We noticed that if a data set complies with an sPCA structure, that is, 
if a relevant part of its variance can be captured by a set of sparse 
components, we do not need to explore the whole range of values of 
𝑓 . Rather, we can make a search that consistently assesses all models 
in increasing order of 𝑓 and stops when the difference between the 
explained variance and the reference variance is smaller than a given 
threshold, say 5%. We have experimentally seen that if an sPCA model 
is suitable for a data set, we can compute this type of ‘truncated’ 
razor plot extremely quickly, while providing essentially the same 
information shown in complete razor plots. If the computation does not 
stop after a reasonable amount of time, this indicates that the sparse 
model is probably not a good modeling choice.

4. Putting sparse principal component analysis at work

Equipped with the theoretical results derived in the previous sec-
tions, we present a re-analysis of the so-called ‘‘pitprops’’ data set on 
which the functioning of SPCA-Z was first illustrated [6]. The goal is to 
show how the use of sparse weights 𝐏 and the orthonormal loadings in 
𝐐 as representatives and associates leads to better (more interpretable) 
sparse models.  Subsequently, we revisit some of the results of Guerra-
Urzola et al. [10], which showed limited performance of the sPCA 
solution by Zou et al.under certain conditions. All results are easily 
reproducible using the software described in Section 6, which includes 
Matlab routines to facilitate the application of sPCA to other data sets.

3 Including 𝜆  in Eq. (1), which does not affect 𝑓 in Eq. (22).
2

5 
Fig. 1. Model calibration using explained variance. Proportion of explained variance 
(PEV) as function of model sparsity (i.e.,  number of non-zero weights in 𝐏) for the 
first component of the sPCA model fitted to the pitprops data. Variance is calculated 
with approach of Zou et al.using only the sparse weights 𝐏, 𝑃𝐸𝑉𝑝, and Eq. (21) using 
both the sparse weights 𝐏 and orthonormal loadings in 𝐐, 𝑃𝐸𝑉𝑝𝑞 .

4.1. Analysis of the pitprops data

The data set contains 180 measurements of 13 functional variables 
measured on pitprops (lengths of lumber used to prop up the roofs 
of coal mines tunnels). First proposed by Jeffers [20], this data set 
has been widely used in the sPCA literature as a benchmark (see, for 
instance,  [6,11,21–24]).

The sparse weights 𝐏 and the orthonormal loadings in 𝐐 obtained by 
fitting a six-dimensional (𝐴 = 6) SPCA-Z model to the data are given in 
Table  1. We choose six components for consistency with Zou et al.and 
because most authors tend to agree about the relevance of the first 
six components for this data set (see [25], Chapter 8.7.1). We set the 
ridge penalty to 0 also for consistency with Zou et al.To the best of our 
knowledge, only the correlation matrix is known for this data set, so 
actual scores will not be discussed for data interpretation.

The explained variance by the first six sparse components, calcu-
lated both with the approach of Zou et al.and with Eq. (21), is given in 
Table  2, together with the explained variance by a standard PCA model 
as a reference.

The original approach by Zou et al.which only includes the sparse 
weights 𝐏 underestimates the explained variance, in line with the 
discussion in the first paper of this series [4]. The explained variance 
by the full model is given by Eq. (21) and, as shown in Table  2, is larger 
than the explained variance using only the 𝐏: this happens because the 
orthonormal loadings in 𝐐 contribute to the variance calculation. The 
total variance is actually very close to the one captured by a PCA model 
with six components.

This has relevant implications for model calibration, as the use of 
the full model permits to explain a larger amount of variance than 
what was computed by Zou et al.with the same level of non-zero ele-
ments. Again, this means that we can probably arrive at a sparser, and 
potentially more interpretable, model than what Zou et al.originally 
determined.

4.1.1. Model calibration
The calibration of the level of sparsity (number of non-zero weights) 

is a fundamental step to obtain a meaningful sPCA model. For the 
model fit to the pitprops data, Zou et al.proposed seven non-zero 
weights for the first component. As described in Section 3.4 they pro-
posed to explore the explained variance (per component) as a function 
of the number of non-zero weights.

Fig.  1 shows the explained variance by the first component, calcu-
lated with the approach of Zou et al.and with Eq. (21). We can observe 
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Table 1
Sparse weights 𝐏 (left side) and orthonormal loadings in 𝐐 (right side) for a six-dimensional sPCA model fitted to the pitprop data represented by the correlation matrix among 
13 variables measured on lumber lengths [20]. Empty cells indicate zero weights. The 𝐏 table is the same as Table 3 in [6], where 𝐏 are termed loadings.
 Variable Sparse weights 𝐏 Orthonormal loadings in 𝐐
 sPC1 sPC2 sPC3 sPC4 sPC5 sPC6 sPC1 sPC2 sPC3 sPC4 sPC5 sPC6  
 topdiam −0.477 −0.460 0.110 0.016 −0.051 −0.075 0.166  
 length −0.476 −0.475 0.057 0.022 −0.054 −0.078 0.188  
 moist 0.785 −0.032 0.709 −0.138 0.007 0.024 −0.053 
 testsg 0.619 0.029 0.676 0.139 0.023 0.039 −0.014 
 ovensg 0.177 0.641 0.212 −0.018 0.623 −0.008 0.118 0.123  
 ringtop 0.589 −0.043 0.066 0.597 −0.033 −0.132 −0.033 
 ringbut −0.250 0.492 −0.243 −0.069 0.459 0.022 0.001 −0.113 
 bowmax −0.344 −0.021 −0.349 −0.095 −0.061 −0.083 0.173 −0.122 
 bowdist −0.416 −0.421 −0.021 −0.010 −0.084 −0.035 −0.022 
 whorls −0.400 −0.395 −0.075 0.027 0.269 0.132 −0.151 
 clear −1 0.003 −0.003 −0.003 −0.951 0.017 −0.026 
 knots 0.013 −1 0.004 −0.006 −0.013 0.022 −0.952 −0.033 
 diaknot −0.016 1 −0.002 −0.010 −0.023 0.028 0.022 0.930  
Table 2
Explained variance per component for a six-dimensional sPCA model fit to the pitprops 
data. PCA refers to explained variance by the successive components of a standard PCA 
model. 
 Percent of explained variance per component
 sPC Zou et al. Eq. (21) PCA 
 1 28.0 28.1 32.5 
 2 14.0 15.5 18.3 
 3 13.3 15.6 14.4 
 4 7.4 8.6 8.5  
 5 6.8 8.6 7.0  
 6 6.2 8.8 6.3  
 Total 75.8 85.2 87.0 

that, if the full model is taken into account to calculate variance, 
with a single non-zero (sparse) weight more variance is captured than 
what was estimated with the approach of Zou et al.for seven non-zero 
weights. The variance plot in Fig.  1 clearly shows the benefit of using 
the true model for calibration:  even for a somehow conservative choice 
of the level of sparsity in this single component (five non-zero elements, 
two less than the choice of Zou et al.) it explains 31% of the variance, 
which is very close to the variance of the first principal component.

4.1.2. A closer look to the relationship between weights and loadings
In Section 3.3 we have discussed the role of the 𝐐 to maximize 

the correlation between the scores 𝐙 = 𝐗𝐏 and the auxiliary scores 
given by 𝐗𝐐. Because of the way 𝐏 and 𝐐 are constructed, with the 
weights 𝐏 being sparse while 𝐐 is not, this correlation is dependent 
on the sparsity level. This is shown in Fig.  2 for the first component 
at different sparsity levels and where the correlation between 𝐗𝐩1 and 
𝐗𝐪1 is shown. For a sparse model with just one non-zero element in 𝐩1
(Fig.  3(a)), the correlation between scores is low. This is related to how 
variance is captured in the model: the more sparsity, the less variance 
can be described by 𝐏 and thus less correlation between 𝐗𝐩1 and 𝐗𝐪1. 
This situation of maximum sparsity corresponds to the leftmost value of 
𝑃𝐸𝑉𝑝𝑞 in Fig.  1, with 𝑃𝐸𝑉𝑝𝑞 = 26%. For a sparsity level of five non-zero 
weights in 𝐩1 there is a much stronger correlation (Fig.  3(b)) and larger 
explained variance (𝑃𝐸𝑉𝑝𝑞 = 31%, Fig.  1). For a non-sparse model,
i.e., a standard PCA model, the correlation between 𝐗𝐩1 and 𝐗𝐪1 (Fig. 
3(c)) is perfect since in this case weights and loadings coincide (𝐏 = 𝐐), 
and the explained variance is maximized.

4.1.3. Interpretation of a single sparse component: representatives and
associates

Let us follow with the interpretation of a single sPCA component 
with five non-zero weights in terms of representative and associates. Fig. 
3(a) and (b) show the sparse weights 𝐩1 and orthonormal loadings 𝐪1
for the first component, respectively. The non-zero weights in 𝐩1 corre-
spond to the representatives: topdiam, length, ringbut, bowdist
6 
and whorls. The associated orthonormal loadings 𝐪1 have also high 
values in correspondence with these variables: in fact we have seen in 
Fig.  2(c) that there is a relatively high correlation between 𝐪1 and 𝐩1. 
However, we also note that other two variables ringtop and bowmax
have high orthonormal loadings: these are the associates, which are 
related with the representatives but have not been selected within the 
sparse weights. In Fig.  3(c) we show a correlation map of the variance 
captured by the component, which allows to interpret how variables 
associate in the component: the correlation between ringtop and
bowmax and all the representatives in 𝐩1 is apparent. This plot is useful 
to identify if all representatives and associates are correlated or they form 
subgroups; an indication that the component may be broken down into 
a larger number of sparser components.

Recall that Zou et al.selected seven non-zero weights in the first 
component, as shown in Table  1. All the representatives in our com-
ponent and the associate bowmax are also present in first component 
of the Zou’s. Yet, the latter also includes ovensg, and does not include 
our other associate ringtop. Inspection of the correlation map of the 
original data in Fig.  3(d) reveals that this variable is not correlated with 
any of the other variables in the component, while ringtop is indeed 
correlated to ringbut. Again, only interpreting the sparse weights is 
not optimal.

4.1.4. Multi-component sPCA model selection for the pitprops data using 
the Razor plot

The razor plot for the pitprops data set in shown in Fig.  4. Fig. 
4(a) shows the razor plot against the value of 𝑓 . The plot shows that 
for 𝑓 > 6, the gain in explained variance is small (𝑃𝐸𝑉𝑝𝑞 = 85.3%), 
and it is already almost equal to the one explained by a standard PCA 
model with six components (𝑃𝐸𝑉 = 86%, orange bar in the plot), with 
a difference smaller than 1%. More insights may be obtained using a 
razor plot as function of 𝑓 and the number of components, as shown 
in Fig.  4(b). This plot is more informative since it shows the interplay 
between model dimensionality and sparsity: an explained variance of 
almost 80% can be obtained with a model with six components with 
just one non-zero weight per component. This result shows that the 
pitprops data is an excellent example to apply sPCA, which probably 
explains its popularity.

The razor plot can also be used as a visual diagnostic to assess 
whether a data set is sparse in an sPCA sense. If the razor plot suggests 
that a large value of 𝑓 (i.e., a large number of non-zero weights and/or 
a large number of components) is needed to explain an amount of 
variance similar to that explained by a standard PCA model, then we 
may conclude that the data set being analyzed is not sparse and, as 
such, sPCA should probably not be used.

Generating the data in Fig.  4, exploring models up to 𝑓 = 78, 
took approximately four hours on a standard desktop computer without 
parallelization. For very large data sets the problem becomes rapidly 
intractable. Truncated razor plots like those shown in Fig.  5 can be 
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Fig. 2. Scores 𝐗𝐩1 vs. pseudo-scores 𝐗𝐪1 for the first component of the SPCA-Z model fitted to the pitprops data for different levels of sparsity: (a) one non-zero weight (NZW), 
(b) five non-zero weights, and (c) first PC (i.e., thirteen non-zero weights).
obtained in less than one second, while providing essentially the same 
information shown in Fig.  4. The simpler model satisfying the threshold 
is a model with six components and two non-zero weights per com-
ponent (𝑓 = 6), explaining 95% of the variance of a reference PCA 
model. Fig.  6 shows the sparse weights 𝐩𝑎 and the orthonormal loadings 
𝐪𝑎 for the six components together with the correlation matrix of the 
factorization components.

It should be noted that this solution is different from the one shown 
in Table  1 and Fig.  3, because the model selection with the razor 
plot allows us to take into consideration the overall complexity of 
the model, rather than fitting one component at a time. Fig.  7 shows 
how combining the contributions of each sparse component (Fig.  7(a)) 
provides a good approximation of the sample correlation in the data 
𝐗T𝐗 (Fig.  7(b)), indicating the appropriateness of the sparse model to 
fit this data set.

4.2. Revisiting the results of Guerra-Urzola et al. [10]

Guerra-Urzola et al. [10] performed a systematic comparison of 
several sparse PCA methods where they considered diverse data gen-
eration schemes that could lead to seemly similar sparse data. They 
report a poor performance of the sPCA version by Zou et al.under 
certain conditions: these results conflict with what we described in the 
first two papers of this series [4,5], where the performance and the 
characteristics of the Zou’s algorithm were investigated using a data 
simulation strategy that is closer in philosophy to situations that are 
the most challenging sPCA. For this reason we believe it interesting to 
reproduce part of their experiments.
7 
4.2.1. Simulation results
In the first part of their paper, Guerra-Urzola et al.present sim-

ulation results for three different types of conditions. We reproduce 
two of them here: (𝑖) when the sparse structure of the data reflects 
the type of sparse structure addressed by sPCA (matching sparsity), 
thus generating data which should be easy to model, and (𝑖𝑖) when 
there is a mismatch between generated and estimated sparse struc-
tures (mismatching sparsity), resulting in a more challenging case. To 
compare the different models they define several performance indexes, 
including: the squared relative error (SRE) of the model parameters 
(SRE_LW for the sparse weights and SRE_S for the scores), which should 
be as low as possible; the percentage of explained variance (PEV), 
which should be close to, but not exceed, the variance accounted by 
the generated data (VAF);  and the cosine similarity, which should be 
as close to one as possible (CS_LW for sparse weights and CS_S for 
scores). We reproduced the experiment in a configuration point of the 
simulation where the performance of sPCA was particularly poor: for 
two components, 500 observations, 1000 variables, 80% of sparsity and 
80% of VAF (we provide the code that allows to reproduce any other 
configuration, see Section 6).

Table  3 shows the performance results of sPCA for two values of 
𝜆2 in Eq. (1). For 𝜆2 = 1, the results are consistent with those by 
Guerra-Urzola et al.and thus very poor, but for 𝜆2 = ∞, the performance 
is competitive with the best sparse methods reported in their study. 
It turns out that, in our previous papers of this series, we always 
considered 𝜆2 = ∞ (i.e., soft-thresholding), since chemometrics data is 
often very wide with many more variables (columns) than observations 
(rows): this is the suggested 𝜆  configuration by Zou et al.for this type 
2
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Fig. 3. Overview of the first component of the sPCA model for the pitprops data set: (a) sparse weights 𝐩1, (b) orthonormal loadings 𝐪1, (c) correlation matrix of the model 
factorization 𝐫1𝐩T1𝐗T𝐗𝐩1𝐫T1 , and (d) data correlation matrix 𝐗T𝐗.
Fig. 4. Calibration of a multi-component sPCA model for the pitprops data: (a) razor plot with explained variance 𝑃𝐸𝑉𝑝𝑞 as function of the optimization criterion 𝑓 (22); and (b) 
razor plot with explained variance 𝑃𝐸𝑉𝑝𝑞 as function of 𝑓 and the number of sparse components. The explained variance by a standard PCA model with six components is given 
as a reference.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
of data. This result shows that the choice of 𝜆2 can be relevant in certain 
examples, and that sPCA can still provide good performance for both 
matching and mismatching sparse data generation.

4.2.2. Multi-component sPCA model selection for the Big Five data using 
the Razor plot

Guerra-Urzola et al.also presented results for two real data sets. 
The first one is the Big Five personality dimensions data [26] publicly 
available from the R-package qgraph [27], which contains the scores 
of 500 individuals on five sets of 48 items associated to the Big Five 
8 
personality traits (Neuroticism, Extraversion, Openness to Experience, 
Agreeableness, and Conscientiousness). To assess the performance of 
sparse methods in this case study, Guerra-Urzola et al.considered an 
optimal result if ‘‘most nonzero loadings (or weights) belong to one 
particular item set ’’ and all item sets were modeled.

We computed the razor plot for the following set of parameters:

• Numbers of non-zero weights considered per component, 𝑛𝑧𝑎, 
from 1 to 240 (the total of variables) in steps of 24.

• Values of 𝜆  considered: [0, 1, 10, 100, 10000,∞].
2
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Fig. 5. Calibration of a multi-component sPCA model for the pitprops data: (a) truncated razor plot with explained variance 𝑃𝐸𝑉𝑝𝑞 as function of the optimization criterion 𝑓
(22); and b) truncated razor plot with explained variance 𝑃𝐸𝑉𝑝𝑞 as function of 𝑓 and the number of sparse components. The explained variance by a standard PCA model with 
six components is given as a reference.
Table 3
Performance of the Zou’s sPCA algorithm using the Guerra-Urzola et al. [10] simulation 
for two values of 𝜆2 in Eq. (1) and two conditions: matching sparsity and mismatching 
sparsity; Alg-I and Alg-II refer to the data generating procedures defined as Algorithm 
1 and Algorithm 2 in [10]. Performance is expressed as squared relative error of the 
sparse weights (SRE_LW) and the scores (SRE_S), the percentage of explained variance 
(PEV) and the cosine similarity of sparse weights (CS_LW) and of scores (CS_S)).
 𝜆2 Matching sparsity (Alg-II) Mismatching sparsity (Alg-I)
 SRE_LW SRE_S PEV CS_LW CS_S PEV  
 1 0.22 0.03 0.80 0.56 0.76 0.80  
 ∞ 0.17 0.03 0.80 1.00 1.00 0.80  

• Threshold of 5% below the variance of a 5 PC model (24.75%).

Fig.  8(a) shows the truncated razor plot: the PEV increases fast up to 
𝑓 = 120 and reaches the threshold at 𝑓 = 216. This plot was computed 
in less than five minutes. The selected model has five components, the 
first four with 49 𝑛𝑧𝑎 (recall potential values start in one and increase 
in steps of 24), which is the closest situation to select one group of 48 
item per component. The last component has 25 𝑛𝑧𝑎.

In this optimal configuration, all 𝜆2 values provide solutions with 
similar PEV, with 𝜆2 = 10 slightly outperforming the others, reason why 
this choice is selected. The optimal sparse configuration according to 
Guerra-Urzola et al.was for the sPCA-rSVD algorithm [23], with 0.73 of 
sparsity and 18% of PEV. In comparison, our sPCA configuration attains 
0.82 of sparsity and 24% of PEV, with more captured variance and less 
non-zero parameters. Fig.  9 shows the sparse weights of this model, 
where each component is mainly associated to a single personality trait.

In Table  4, we compare the maximum ratio of nonzero load-
ings/weights in one particular item set in the sPCA-rSVD and sPCA 
models by Guerra-Urzola et al. [10] (results taken from Table  4 of their 
article) with our sPCA configuration. Following the criteria of Guerra-
Urzola et al.our configuration outperforms traditional sPCA and the 
alleged optimal algorithm in terms of the percentage of association 
of one component to one personality trait (see the last row in the 
Table  4) and the PEV captured. Yet, the openness dimension is not 
properly recovered, which can be interpreted as a disadvantage or the 
need to add more components. As shown in Fig.  10A the reconstructed 
map 𝐑𝐏T𝐗T𝐗𝐏𝐑T computed from our model shows a characteristic 
diagonal block shape that justifies the correlation within traits, but also 
shows a tendency for negative correlation between Neuroticism and 
Extraversion, and other more moderate relations between traits, which 
are relevant for the full understanding of the data.
9 
4.2.3. Multi-component sPCA model selection for the gene expression data 
using the Razor plot

The last example used by Guerra-Urzola et al.is a data set containing 
gene expression of 13 male autistic individuals (6 with autism caused 
by a fragile X mutation (FMR1-FM) and 7 with autism caused by a 
15q11–q13 duplication (dup15q)) and 14 controls [28], available at 
NCBI GEO database with accession number GSE7329. The data sets 
contains 41675 gene probes (Guerra-Urzola et al.report 43893 probes, 
probably by mistakenly including some control probes).

In their analysis Guerra-Urzola et al.selected three components, for 
which PCA captures 32% of the variance. They selected the GPower 
method [11] as their reference sparse configuration for this data, 
with 0.97 of sparsity and 31% of PEV. We repeated the analysis 
with three components in PCA capturing 33% of the variance (this 
small discrepancy is probably due to the different number of variables 
considered).

We computed the razor plot for the following set of parameters:

• Numbers of non-zero weights considered per component, 𝑛𝑧𝑎, 
taking into account the matrix rank (26) and the number of 
variables: [1, 4, 7, 10, 13, 16, 19, 22, 25, 41675].

• Values of 𝜆2 considered: [0, 1, 10, 100, 10000,∞].
• Threshold of 3% below the variance of a 3 PC model (33%).

The computation of the truncated razor plot took 72 seconds, and 
all 𝜆2 values provided very similar results (we chose 𝜆2 = 0). The 
optimal output was 3 components with 4 non-zero weights each, for 
a total sparsity of 0.9999, capturing 32.6% of the variance: this model 
outperforms that obtained by Guerra-Urzola et al.in their optimal con-
figuration. Note that Guerra-Urzola et al.did not run sPCA on these data 
due to the computational burden of the algorithm.

The component scores for the PCA and sPCA models are given in 
Fig.  11, showing a very similar separation between the three group of 
subjects. The ability to summarize data of sPCA may seem remarkable 
in this case study (like Guerra-Urzola et al.suggested for the GPower 
algorithm [11]), but in a closer inspection the auxiliary loadings (see 
Fig.  10B for an example) allows us to fully understand what is truly 
happening.

For each component, 4 non-zero weights are enough to model the 
data, but these are only representatives connected to a much higher 
number of other associates, which can (and some of them quite probably 
will) be more relevant to understand the underlying disease biology 
than the selected representatives. Clearly, this is the consequence of 
having a very large number of potential biomarkers measured on a very 
limited number of samples (41 675 versus 27, in this example).
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Fig. 6. Multi-component sPCA model for the pitprops data sets. Sparse weights 𝐩1 ,𝐩2 ,… ,𝐩6 and orthonormal loadings 𝐪1 ,𝐪2 ,… ,𝐪6 together with the corresponding visual map of 
correlation matrix of the model factorization 𝐫𝑗𝐩T𝑗 𝐗T𝐗𝐩𝑗𝐫T𝑗  for each component. This model has been selected using the truncated Razor plot shown in Fig.  5.
5. Conclusion

This series of three papers ‘‘All sparse PCA models are wrong, but 
some are useful’’ presents a combination of theoretical derivations, 
numerical simulations and real data analyses with the aim of improving 
our understanding on how to make the most of the interpretational 
capabilities of sparse PCA. The first paper showed that sPCA implemen-
tations underperform in situations where they were expected to provide 
a perfect solution. The second paper showed why deflation-based sPCA 
10 
implementations are the most affected by model inaccuracies. This 
result made us select alternative implementations for the study in this 
third paper, and in particular we focused in the most popular imple-
mentation of sPCA, the one by Zou et al.. Here, we reviewed this version 
of sPCA, and provided new derivations on the model equations, the 
computation and interpretation of scores, the interpretation of weights 
and loadings and the selection of metaparameters. We believe that with 
these additions, sPCA becomes a more mature and well-understood 
method that can more safely be applied in critical analyses.
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Fig. 7. Correlation map of the variables of the pitprops given by (a) the reconstruction (𝐑𝐏T𝐗T𝐗𝐏𝐑T) with the six-dimensional model shown in Fig.  6 and (b) the data 𝐗T𝐗.
Fig. 8. Truncated razor plot (a) and performance (PEV) of the group of optimal model variants with different 𝜆2 value (b) for the sparse PCA model of the Big Five personality 
data [26] (48 items measured on 500 individuals).
Table 4
Sparse PCA model of the Big Five personality data. Each column represents the number of items in each loading/weight that have a nonzero 
value in each trait. The components were ordered following Guerra-Urzola et al. [10], Table 4.
 SPCArSVD [10] sPCA [10] Our sPCA
 𝐰1 𝐰2 𝐰3 𝐰4 𝐰5 𝐰1 𝐰2 𝐰3 𝐰4 𝐰5 𝐰1 𝐰2 𝐰3 𝐰4 𝐰5 
 Openness 0 9 1 4 𝟒𝟏 0 17 4 13 𝟐𝟓 4 5 2 5 0  
 Conscientiousness 9 3 11 𝟒𝟑 2 15 0 𝟐𝟔 𝟐𝟒 8 9 11 𝟐𝟐 11 2  
 Extraversion 17 19 21 6 9 15 10 15 6 16 1 0 5 0 𝟐𝟑 
 Agreeableness 4 𝟐𝟗 𝟐𝟑 2 5 6 𝟐𝟕 13 10 3 𝟑𝟒 5 5 5 0  
 Neuroticism 𝟑𝟒 4 8 9 7 𝟐𝟖 10 6 11 12 1 𝟐𝟖 15 𝟐𝟖 0  
 Total nonzero 64 64 64 64 64 64 64 64 64 64 49 49 49 49 25 
 % in one item set 𝟓𝟑 𝟒𝟓 𝟑𝟔 𝟔𝟕 𝟔𝟒 𝟒𝟒 𝟒𝟐 𝟒𝟏 𝟑𝟖 𝟑𝟗 𝟔𝟗 𝟓𝟕 𝟒𝟓 𝟓𝟕 𝟗𝟐 
11 
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Fig. 9. Sparse weights for the 5 components of the sPCA model fitted to the Big Five personality data.
Fig. 10. (a) Reconstruction (𝐑𝐏T𝐗T𝐗𝐏𝐑T) of the overall correlations patterns among the 240 original variables of the Five personality dimensions data given by the five-dimensional 
SPCA model. The order of traits is Neuroticism, Extraversion, Openness, Agreeableness, and Conscientiousness. (b) Auxiliary loadings for component 1 in sPCA Gene Expression 
Data. Non-zero sparse weights are NM_020156, NM_012247, NM_001008756, NM_000690.
6. Software

The results can be reproduced with the scripts at https://github.
com/josecamachop/SparsePCAIII. The code makes use of the MEDA 
Toolbox v1.8 at https://github.com/codaslab/MEDA-Toolbox and the 
SPASM Toolbox at https://www2.imm.dtu.dk/projects/spasm. The
MEDA Toolbox v1.8 also includes the implementation of sPCA based 
on soft-thresholding (routine spca) and the Razor plot (routine ra-
zorPlot) without dependence on any other software package. The 
script https://github.com/josecamachop/SparsePCAIII/pitpropsMEDA.
m illustrates its use.
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Fig. 11. Scatter plot of PCA scores (a)–(b) and of sPCA scores (c)–(d) for the in the Gene Expression Data. FMR1-FM indicates subjects with autism caused by a fragile X mutation; 
dup15q indicates subjects with autism caused by a 15q11–q13 duplication.
de Granada’’. Funding for open access charge: Universidad de Granada 
/ CBUA

Appendix. Other sPCA algorithms related to SPCA-Z

In the previous papers of the series, we found three sPCA implemen-
tation generally superior to the rest, which were deflation-based. The 
SPCA-Z algorithm is one of them. The second is a sequential variant of 
SPCA-Z, in which the loadings are computed one at a time, published 
as part of the SPASM Toolbox [7]. This approach combines deflation 
with the use of orthonormal loadings, speeding up computation at the 
expense of a reduction in explained variance. This reduction represents 
a loss of modeling accuracy. The third is a variant of the popular 
Penalized Matrix Decomposition (PMD) by Witten et al. [2]. The variant 
is an alternative to projection deflation by computing orthogonalized 
scores. Yet, authors claim that it is not clear whether orthogonality is 
a desirable property.

We recently showed that orthogonal scores actually improve the 
estimation of sPCA by avoiding severe departures of the loadings from 
the data rowspace [5]. While PMD with orthogonal scores is somehow 
similar to SPCA-Z, in the later we have the combination of sparse 
weights and orthonormal loadings in which we rely for interpretation. 
For these reasons, and given that deflation-based approaches are gen-
erally inferior to these three sPCA variants [5], we will focus the paper 
on SPCA-Z.

Data availability

A link to the code and data is provided in the paper.
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