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ABSTRACT

Background: Advanced methods for causal inference, such as targeted maximum likelihood estimation (TMLE), require specific
convergence rates and the Donsker class condition for valid statistical estimation and inference. In situations where there is no
differentiability due to data sparsity or near-positivity violations, the Donsker class condition is violated. In such instances, the bias
of the targeted estimand is inflated, and its variance is anti-conservative, leading to poor coverage. Cross-validation of the TMLE
algorithm (CVTMLE) is a straightforward, yet effective way to ensure efficiency, especially in settings where the Donsker class
condition is violated, such as random or near-positivity violations. We aim to investigate the performance of CVTMLE compared
to TMLE in various settings.

Methods: We utilized the data-generating mechanism described in Leger et al. (2022) to run a Monte Carlo experiment under
different Donsker class violations. Then, we evaluated the respective statistical performances of TMLE and CVTMLE with different
super learner libraries, with and without regression tree methods.

Results: We found that CVTMLE vastly improves confidence interval coverage without adversely affecting bias, particularly in
settings with small sample sizes and near-positivity violations. Furthermore, incorporating regression trees using standard TMLE
with ensemble super learner-based initial estimates increases bias and reduces variance, leading to invalid statistical inference.
Conclusions: We show through simulations that CVTMLE is much less sensitive to the choice of the super learner library and
thereby provides better estimation and inference in cases where the super learner library uses more flexible candidates and is
prone to overfitting.

1 | Introduction Examples include the causal effect of immunotherapy on the

probability of survival after cancer diagnosis, the effect of smok-
In public health research, it is often of interest to assess the causal ing on rheumatoid arthritis, or the effect of childhood adversities
relationship between an exposure or treatment and an outcome. on mental health later in life. Estimates of these relationships
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are often learned from real-world data and can be complex to
ascertain, requiring machine-learning estimators, or be biased,
such as spurious associations if there are factors that influence
both the treatment and outcome variables. Randomized con-
trolled trials (RCTs) remove confounding due to randomization
of individuals to treatment groups. However, RCTs are not always
feasible, such as for ethical reasons, or the randomization process
may fail. When causality cannot be guaranteed by design, such
as in observational studies, causal inference methods based on
the g-formula should be used when the research question claims
causality, or to improve adjustment for confounding [1].

Methods used to estimate these causal effects can be broadly
categorized into those that estimate the exposure model based on
propensity scores [2-5], outcome model based on g-computation
[6-8], or doubly robust methods that estimate both exposure
and outcome models [9-11]. There are some exceptions, such
as proximal causal inference using negative control variables for
non-parametric identification of causal effects in the presence of
hidden confounding bias or settings where exchangeability does
not hold [12]. Doubly robust methods are so named because they
are consistent estimators of the causal effect as long as at least
one of the two models is correctly specified. For causal effect
estimation with machine learning, doubly robust methods bring
faster convergence rates, assuming both nuisance models are
correctly specified [13, 14]. Of the doubly robust methods, tar-
geted maximum likelihood estimation (TMLE) has been shown
to consistently provide the least biased estimate of the causal
effect in comparison to other doubly robust methods such as
inverse probability treatment weighting with regression adjust-
ment (IPTW-RA) or augmented inverse probability treatment
weighting (AIPTW) [11]. The advantages of TMLE have been
demonstrated theoretically, and in numerous simulation studies
and applied analyses [15, 16]. However, it is worth noting that
TMLE is not the only valid approach for doubly robust methods;
others exist, such as the Double-Debiased Machine Learning
algorithm [17]. As a plug-in estimator, TMLE respects the global
limits of the statistical model (e.g., limiting the possible range
of the targeted parameter). TMLE reduces bias through the use
of ensemble and machine-learning algorithms, and it has the
minimum asymptotic variance in the class of semiparametric
estimators. Statistical inference may be based on the efficient
influence curve (IC) or a targeted bootstrap [11, 18-21]. The
TMLE algorithm is generally applicable for a wide range of
causal estimands, such as time-varying effects, dynamic treat-
ment regimes, and mediation analysis, among others. However,
we focus only on point-treatment effects and the use of TMLE in
estimating the average treatment effect (ATE).

Oftentimes, the TMLE framework considers data-adaptive
ensemble machine learning algorithms for estimation of nui-
sance models (i.e., the outcome and treatment models) [22]. The
Influence Curve (IC) and the functional Delta Method, seen as
an extension of the Central Limit Theorem for functionals, are
used in the targeting step of the TMLE and to compute Wald-type
confidence intervals. This assumes that the remainder term, gen-
erated when examining the difference between the TMLE esti-
mator and the truth, is a sample average of a quantity converging
to 0 in probability. The Donsker condition exists for both the nui-
sance functions and their estimators, so TMLE’s consistency and
asymptotic normality rely on both of these being Donsker. This

is valid and provides a valid inference if the nuisance models sat-
isfy the Donsker class condition, that is, that they are not highly
flexible machine learning algorithms that are prone to overfitting.

In our setting, given the bias correction step, the data is used
twice: To estimate (i) the nuisance functions and (ii) the bias
reduction. Donsker class implies that the estimator of the nui-
sance functions are not too complex, including smooth paramet-
ric models, but also bounded monotone functions and smooth
functions with bounded partial derivatives, to avoid overfitting
[23]. This can become overly restrictive when we use arbitrar-
ily flexible machine learning algorithms to estimate the nuisance
parameters (i.e., Lasso, Random Forest, Boosting, etc.), which
are prone to overfitting and break the Donsker class condition.
In situations where the Donsker class condition is violated, the
variance is anti-conservative, leading to confidence intervals with
poor coverage [14, 24]. Cross-validation or cross-fitting of the
TMLE algorithm (CVTMLE) is a simpler, yet effective, way to
ensure efficiency, especially in settings where the Donsker class
condition is violated [14, 25]. Cross-validation is a statistical
learning technique widely used in regression and classification
problems to avoid over-fitting and improve the asymptotic con-
sistency and efficiency of estimations [26].

There are a couple of approaches to CVTMLE. One approach is
based on Zheng & van der Laan [27] who propose cross-validating
the entire TMLE algorithm and averaging all estimated treat-
ment effects and their variances, denoted here as CVTMLE]all].
More recently, Levy (2018) suggested that cross-validating the
initial outcome and exposure models (which we denote as
CVTMLE[Qg]) would be sufficient for a more computationally
efficient estimation of the target parameter, while retaining the
theoretical properties of TMLE, particularly in cases where more
complex machine learning algorithms are required [28]. We also
propose to relax the Donsker condition on the outcome process
only, CVTMLE|[Q], which corresponds to settings where the pro-
cess leading to assignment of the exposure or treatment is simple
or known, such as in clinical trials.

We aim to investigate the performance of CVTMLE[all],
CVTMLE[Qg], and CVTMLE[Q] compared to TMLE in settings
with varying degrees of violation of the Donsker class condition.
In Section 2, we describe TMLE and its cross-validated versions.
In Section 3, we outline the simulations of different settings likely
violating the Donsker class condition. In Section 4, we report
the respective performances of TMLE and CVTMLE when using
different SuperLearner libraries. In Section 5, we propose an
empirical example from the medical literature, and in Section 6,
we reflect on the meaning of our results for practice and provide
specific guidance.

2 | Methods

2.1 | Targeted Maximum Likelihood
Estimation

TMLE is a plug-in, semi-parametric, doubly robust method that
reduces the bias of an initial estimate by allowing for flexible
estimation using parametric or nonparametric data-adaptive
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machine-learning methods to target an estimate closer to the
true model specification [11]. Several tutorials for TMLE have
been published along with a systematic review describing its
applications [1, 16, 29-31].

TMLE is described in the Targeted Learning book by van der
Laan and Rose [18]. We briefly outline the algorithmic steps
when using TMLE for the average treatment effect (ATE) here.
Given the data structure O = (W, A,Y) observed on n individ-
ual records, where W represents a set or vector of confounders,
A is a binary treatment or exposure mechanism, and Y is the
outcome, we suppose our target parameter is the ATE, across
individuals. Using the potential outcomes framework, each indi-
vidual has two potential outcomes: The outcome that would have
been observed had the individual been exposed (A = 1) denoted
as Y (1), and the outcome that would have been observed had the
individual not been exposed (A = 0) denoted as Y (0).

To deal with a continuous outcome Y, the TMLE framework
transforms linearly the outcome within [0, 1] as follows: Y’ =
(Y — a)/(b — a), where b and a are respectively the maximum and
minimum values observed for Y. Then, the ATE is estimated on
the transformed outcome Y’, as usual, but the original limiting
normal distribution and confidence intervals are obtained after
multiplying by (b — a) to get the ATE in the original scale.

2.1.1 | Step 1:Predict the Outcome

TMLE fits the outcome model (i.e., Q%(A, W) = E(Y|A, W))
using the observed values of the outcome, given observed treat-
ment A and covariates W. To minimize model misspecifica-
tion, an ensemble of machine-learning algorithms (i.e., Super
Learner) can be used to estimate E(Y|A, W). Super Learner uses
cross-validation to find the best-fitting combinations of paramet-
ric and non-parametric models from a range of machine-learning
algorithms to provide initial predictions of the outcome for each
individual i (i.e., Q'(A, W)) [18, 19].

2.1.2 | Step 2:Predict the Treatment

A Super Learner, an ensemble of—potentially different—
machine learning algorithms, can also be used to fit the propen-
sity score model for the treatment (i.e., g(A, W) = P(A = 1|W))
and to predict treatment for each individual i [18, 19].

2.1.3 | Step 3A:Calculate Clever Covariates
Clever covariates (i.e., H(A,W)) are calculated using infor-
mation from the observed treatment and predictions from the

propensity score model.

HAW) = gf:;;) for A=1or A =0.

2.1.4 | Step 3B: Estimate the Fluctuation Parameter

The fluctuation parameter (e = {¢,, €; }) is estimated through a
maximum likelihood procedure using weights. An intercept-only

model is fit using the observed outcome (Y) as the dependent
variable with the logit of the initial prediction of Q?((A =1),W)
as an offset and the regression model is weighted by the clever
covariate, H (1, W). This process is repeated for A = 0 so that two
targeting models are fit [32-34].

When there is negligible remaining variability in Y — Q?(A, W),
the fluctuation parameter will be estimated as close to 0.

2.1.5 | Step 4: Update the Initial Predictions of the
Outcome

The fluctuation parameter is used to update the initial outcome
predictions for each individual i from QV(A, W) to Q/(A, W),
optimizing the bias-variance trade-off for the targeted parameter
(ATE):

For any A = (0,1} : Q'(A, W) = expit(logit(Q?(A, w)) + g(A—W))

2.1.6 | Step 5: Estimate the Target Parameter

Plug in the updated estimates of the predicted outcomes to the
target parameter mapping for the ATE:

/\—l - 1 Al
ATE = n; (Ql(1, W) - Ql(0,W))

2.1.7 | Step 6A: Estimate the Efficient Influence
Curve

To calculate 95% confidence intervals for the ATE, TMLE requires
an estimate of the standard error for the ATE. The standard error
is estimated based on the efficient influence curve (IC), which
characterizes variability and represents the most efficient func-
tion [18, 35-37]. The efficient IC identifies how much influence
asingle data point has on the performance of TMLE in estimating
the ATE. It is given by:

(A 1-AN\y_
{Care = (g(l,W) g(O,W))(Y QW)

+Q'(1, W) - Q'(0,W)

The efficient IC combines information from the outcome model
(Steps 1 and 4), the propensity score model (Step 2), and the esti-
mate of the target parameter (Step 5) to account for the variability
in the estimator.

2.1.8 | Step 6B: Estimate Standard Error

Then, the standard error (6 1) for the ATE is evaluated as:

Var(ICs)

° =
ATE
n

where 1721*(1 Ci7z) is the sample variance of the IC of the esti-
mated ATE.
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2.1.9 | Step 6C: Calculate Confidence Intervals

The 95% confidence interval for the ATE is calculated as:

95% CI = ATE + Z0A975(6'\ATE)

2.2 | Cross-Validated Targeted Maximum
Likelihood Estimation

TMLE is a doubly robust and efficient estimator, but is susceptible
to performance issues when the initial estimator of the outcome
or exposure model is too adaptive. In other words, if one or both of
these initial estimators are overfit, then there is negligible resid-
ual variation remaining for the targeting step [25]. Combining
cross-validation with TMLE addresses this issue because training

and validation are performed on independent sample subjects,
which retains a realistic residual variation in the validation set.

There are several approaches to CVTMLE, each differing by what
steps within TMLE are cross-validated [27, 28]. All approaches
start with K splits of the data. Each k (with k = {1, ...,K})
split defines each k fold, an indexing of the data into k sets for
algorithm training and validation. For a K-fold cross-validation
scheme, the data is split evenly into K subsets, the validation set
for a given fold k (V) is defined by the data in subset k, and the
data not in subset k is the training set for fold k (T},). Each subject
is part of one validation set and K — 1 training sets.

We present three approaches to CVIMLE, (i) the original
approach proposed by Zheng & van der Laan [27], (ii) one
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approach proposed by Levy [28], and (iii) an adaptation of Levy’s asymptotically [28]. CVTMLE]all] requires that steps 1-3 are
approach. While Zheng & van der Laan propose to cross-validate cross-validated.

the entire TMLE process, denoted CVTMLE]all], Levy suggests
that the calculation of the clever covariates and estimation of
fluctuation parameter is done only once on the entire data,
CVTMLE[Qg]. The third approach makes use of cross-validation
for estimating the outcome model only, and we denote this
approach CVTMLE[Q]. The process for performing all three
CVTMLEs is illustrated in Figure 1. All approaches impose
that Step 1 of the TMLE algorithm described earlier is modi-
fied to accommodate K-fold cross-validation of the initial esti-
mation of the outcome. For each cross-validation scheme, k,
(k=1{1,...,K}), estimate the outcome model (e.g., using the
SuperLearner) using the training set, Q?erk(A’ W). From this ini-
tial model, the outcome is predicted for all observations within
the corresponding validation set, Q?evk(A’W)' This process is
repeated for each cross-validation fold until each of the n obser-
vations in the original data set has a predicted initial outcome
Q?(A, W). In CVTMLE[Q)], the rest of the algorithm, steps 2-6c,
proceeds as in the standard TMLE algorithm. In CVTMLE[Qg],
there is further cross-validation of the initial estimation of the
treatment process (step 2), and steps 3-6¢ proceed as in stan- 3.2 | Data-Generating Mechanisms

dard TMLE. Levy highlights that although predictions from

the cross-validated sets are stacked, CVTMLE[Qg] preserves the We simulated scenarios of near-positivity violations using
plug-in characteristic of the TMLE estimator and performs well data-generating mechanisms described in Leger et al. [38].

3 | Simulations
3.1 | Setting

To evaluate the performance of TMLE and CVTMLE under
near-positivity violations, we perform a Monte Carlo simulation
experiment in which we vary the likely severity of the viola-
tion of the Donsker class condition. There are different situa-
tions more likely to exacerbate violations of the Donsker class
condition, such as: (i) data sparsity or small sample size, (ii)
near-positivity violations, and (iii) the use of highly data-adaptive
machine learning algorithms (e.g., tree-based algorithms, such as
random forests), all leading to non-differentiability of the influ-
ence curve. Table 1 expands on these different scenarios leading
to violation of the Donsker class condition and how the simula-
tions were specified to replicate such scenarios.

TABLE1 | Settings where the Donsker class condition is likely violated and how these were reproduced in simulations.

Impact on Donsker

Setting Description class condition Simulation
Sample size Small sample size requires a Donsker class condition is based (i) Large sample size (n = 1000)
greater number of folds to be used on asymptotic theory, which that does not require an increase
within CVTMLE to allow a large  assumes that the sample size goes in the number of folds (default of
enough training set. to infinity. 10 folds is used).
Small sample size can lead to (ii) Small sample size (n = 200)
random noise dominating the that requires an increase in the
signal that machine learning number of folds, but is kept at the
algorithms are attempting to default of 10 folds.
model.
Near-positivity There are groups of individuals Near-positivity violations can (i) High prevalence of A (i.e.,
violation with near-zero probability to be introduce abrupt changes, P[A = 1] = 0.8) created in
treated or untreated, which leads discontinuities, or irregularities in exposure model.
to gaps in the data with the empirical process (i.e., (ii) Extrapolation issue created by
unobserved or impossible estimation of the influence interaction in the outcome model
combinations of the function), disrupting its smooth between treatment and rare
exposure/outcome. convergence. covariate.
Complex machine Machine learning methods, such ~ Tree-based methods are highly Using random forests with and
learning algorithms as tree-based algorithms (e.g.,  data-adaptive and have a tendency without cross-validation of TMLE
random forests) used in the to overfit the data, especially in to see the impact of
SuperLearner for the outcome and smaller sample sizes. cross-validation on variance
propensity score models stabilization.
Non-differentiability Influence curve must be IC is derived based on the limiting Combination of small sample size,
of the Influence curve  continuous at every point in its behavior of the estimator. When near-positivity violation, and
(IO) domain, but fails to be the Donsker class condition is complex machine learning
differentiable at a bend, cusp, or violated, the empirical process algorithms used to estimate the
vertical tangent. does not converge to a smooth target parameter.

limiting distribution.
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First, we generated a vector of independent covariates
W =W, W, W3, W,, W5, W, W,, Wy, including six binary
covariates following Bernoulli distributions with probabilities
0.1 for W;, 0.4 for W,, 0.7 for W,, 0.5 for W;, 0.3 for W, 0.8
for W, and two continuous covariates, W, and W following a
Gaussian distribution with mean 0 and standard deviation 1.

The exposure A was generated according to a Bernoulli distribu-
tion with probability obtained from a logistic regression model,
using a logit link function, with the following linear predic-
tor: ay + oy Wy + o, W, + a, W, + agWy + a, W, + agWs. Where
a, was set to —0.45 or 1.05 to simulate the prevalence of exposed
patients at 50% or 80%, respectively. a;, the coefficient for W}
was set to /og(5) to impose a near-positivity violation particularly
given that W is generated with 10% prevalence. The rest of the
coefficients, a,, a,, a4, @;, ag, were set to log(1.5).

Near-positivity violation was determined from the values of the
propensity scores (Appendix Table Al) that were greater than
the cut-off for truncation at 0.975. With 80% prevalence of the
exposure there was, on average, 2.2 and 10.8 propensity scores
that exceeded 0.975 for samples of 200 and 1000, respectively.
With 50% prevalence of the exposure, there were, on average, no
propensity scores larger than the cut-off for truncation.

The outcome was generated from a Bernoulli distribution
with probability obtained from a logistic regression model,
using a logit link function, with the following linear predictor:
=08+ oA+ LW+ BWo + BsWs + BWy + s Ws + W +
P, A X W,. B4, the coefficient for the exposure was set to /og(1.75).
The interaction term A X W] is included with coefficient g, set
at 0 or 2 for the absence or presence of an extrapolation issue,
respectively. When there is a lack of information on a covariate
(e.g., W, with low prevalence) for certain levels of the exposure
(leading to near-positivity violation), the estimation of the expo-
sure effect relies on extrapolating the observed effect. Biases will
occur when the true exposure effect for the information that
is lacking in the covariate differs compared to the fitted model
that has been extrapolated into the values for the covariate that
lacks information [39-41]. The presence of an interaction term
between treatment A and covariate ], means that the effect
of treatment is modified between groups of individuals, likely
creating near-positivity violation if there is imbalance in the dis-
tribution of W, between individuals. The rest of the coefficients
were set to /og(1.5). The distribution for the probability of the
outcome is shown in Appendix Figure A1.

We simulated datasets of sample sizes n,,, = {200,1000} rep-
resenting small and large sample sizes, respectively, based on
Leger et al. [38]. We chose a large enough sample of repetitions
(7,5 = 1000) such that we obtained a small enough Monte Carlo
standard error without unfeasible computational time even for
n,,, = 200. The formula for the 95% confidence interval around
the mean estimate is [42]:

p(l1 —p)

p +1.96 *
Dyeps

Substituting p with the nominal coverage probability, 0.95 or 95%,
the estimated coverage should fall between 93.6% and 96.4%.

3.3 | Estimand, Methods, and Performance
Measures

The estimand of interest was the ATE estimated by the differ-
ence in risks of the outcome between exposed and unexposed,
ATE = 7, — #,, where 7, is the risk estimated in as the mean
of Qil(a, W). The true values, 7, and z,, were estimated by aver-
aging the values obtained from a univariate logistic model (the
exposure as the only covariate), fitted from data sets generated
above, except that the exposure A was simulated independently
of the covariates W [38]. The true risk difference of the outcome
between the exposed (r;) and unexposed (z,) was generated by
averaging the true risk differences (AT E;) across the repetitions.

We used four different estimation methods: TMLE and
CVTMLE[Q], CVTMLE[Qg] and CVTMLE][all]. All estimation
methods were used, by default, with the following algorithms
within the SuperLearner: (i) stepwise selection, (ii) generalized
linear modeling (glm), and (iii) a glm variant that included
second-order polynomials and two-by-two interactions of the
main terms included in the models. We also included additional
algorithms within the SuperLearner, such as Lasso (glmnet
R package), Random Forest (randomForest R package), and
Generalized Additive Models [all of which referred to as “RF”].
Therefore, the performances of eight methods were contrasted:
TMLE, CVTMLE[Q], CVTMLE[Qg], CVTMLEJall], TMLE-RF,
CVTMLE[Q]-RF, CVTMLE[Qg]-RF, CVTMLE[all|-RF. All sim-
ulated variables (ie., Wy, W,, W, W, Wi, W, W,, W) were
included a priori for all estimation methods.

We assessed the performance of each method using measures
of confidence interval coverage and relative bias [43]. The con-
fidence interval coverage is the proportion of confidence inter-
vals estimated around each repetition-specific estimate AT E (i.e.,
ATE,,, ATEupP) that include the true ATE. It is calculated as:

Coverage = Pr(AT E,,, < ATE < ATE,,,)

Mreps

1(ATEy,,, < ATE < ATE

estimated by upp‘,)

Mreps =1
Ideal confidence interval coverage is near 1 — a, where « is usu-
ally chosen as 0.05. To reach nominal coverage, we expect that
95%-confidence intervals would cover the true ATE in 95% of the

repetitions.

The relative bias is the relative difference between the estimated
ATE, E[AT E], and the true value of the ATE and is calculated as:

1 Mreps i~
E[ATE] - ATE _ szr; (ATE, - ATE,)

1 Mreps
ATE T IATE,

Relative Bias =

All analyses were performed in Stata statistical software (Stat-
aCorp, 2020, StataCorp LLC, College Station, TX). The Stata
code to run the simulations is available at: https://github.
com/mattyjsmith/CVTMLE We used the eltmle command to
perform all methods, the development version is available
at: https://github.com/migariane/eltmle [44]. Recent updates
include the functionality to assess positivity violations via covari-
ate balance tables. The command has been updated to perform
cross-validated TMLE[Qg], but it is a development version.
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4 | Results

We report the performance measures for all simulated scenarios
in Figures 2 and 3; the data-generating mechanisms (DGM) are
organized as described in Table 2.

4.1 | Relative Bias

With large sample sizes (Figure 2), and no extrapolation issue
(DGMs 1 and 2), there is negligible relative bias at less than 2%
for TMLE, CVTMLE[Q], CVTMLE[Qg], and CVTMLE]all], and
less than 5% for the same algorithms with Random Forests. With
extrapolation issues (DGMs 3 and 4), there was some increase in
relative bias. The relative bias was further increased when Ran-
dom Forests were used in the Super Learner to between 1%-14%.
Similar trends were observed for small sample sizes (Figure 3),
except the relative bias was noticeably larger for DGM 6, 7, and
8, over 10%.

4.2 | Coverage

With large sample sizes (Figure 2), and no extrapolation issue
(DGM 1 and 2), there was approximately 95% coverage for
all methods except those that include Random Forests as a
package in the Super Learner. Generally, with an increasing
severity of near-positivity violation, TMLE or TMLE-RF, and
CVTMLE[Q]-RF appear to perform worse. TMLE-RF consis-
tently showed undercoverage between 79% (DGM 8) and 92.4%

(DGM 2). In small sample sizes (Figure 3), TMLE and TMLE-RF
consistently showed undercoverage, which was more noticeable
with more extreme near-positivity violations (DGM 6,7, and 8).
CVTMLE|Q] showed good coverage, though slight undercover-
age in DGM 8. CVTMLE[Qg], CVTMLE[Qg]-RF, CVTMLE[all],
CVTMLE]all]-RF consistently showed an overcoverage (DGMs 5
to 8).

5 | Empirical Example

We aim to study the effect of chemotherapy treatment initia-
tion for patients diagnosed with diffuse large B-cell lymphoma
(DLBCL) between January 2014 and December 2017 on the prob-
ability of death at 6 months. We selected adult patients aged
18-85 years with a Charlson comorbidity score of 2 or less. Since
treatment was not initiated on the day of diagnosis for all patients,
we used a landmark time by which patients were assigned to be in
the treated group or the untreated group. The treated group was
defined as patients initiating treatment up to 21 days since diag-
nosis of DLBCL; those not treated within 21 days since diagnosis
were considered the untreated group. The outcome was all-cause
death at 6 months from the landmark time, conditional on surviv-
ing 21 days since diagnosis; thus, the maximum follow-up time
was 6 months and 21 days since diagnosis. Models were adjusted
for the following confounders: Age at diagnosis, sex, ethnicity
(white/other), cancer stage (I/II/III/IV), Charlson comorbidity
score (0, 1, or 2), and quintiles of the income domain of the depri-
vation score assigned to their small area of residence (1: least
deprived, 2, 3, 4, 5: most deprived). Information on performance
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( 0.1 ) ( 0.4 ) ( -0.2 ) (-8.5
> FA -o[; 5.1 1 -9.8
o~ ( ) ( | ) ( ) | ( ) |
~ 1.6 2 2.0 9.4
0 ’—- ) C ¥ () e
g Cq ( 0.4 ) L | 129 |
Ay Ay———
o -1.3* 2.3 " 6.2 -12.3
> ( *) ( (e e
"CB' 2.7 | 4.1 | 77 | -12.0 |
— ( ) ( ) ( ) (O
o -0l 32 | 34 | -12.6 [
o (O] (=) (= (o
-3.1 -4.7 -8.6 -14.1
( o « o (o — (oyr———
T T T T T T T T T T T T T T T
5 0 5 6 -4 -2 0 2 -10 -5 0 -5 -10 -5 0
935 94.9 93.9 94.5
( ) ( ) (@)
935 948 93.4 93.6
- ( ) (4 ( ) ( )
o 94.5 94. 94.0 93.1
= ¢ () ( Ey (
o [ % | ) ( 94‘]|7 ) . % I) U |
% 93.0 92.4 92.2 90.4
o | ] (= (o (
> 93.1 | 91.6 | 91.6 | 89.8 |
o | ( ) ( ) ( ) ( )
O ( 94.7 ) ( 95.6 ) (%0 | ) Q% |
93.7 °1 94|;o 92.6 92.3
( S—) (¢ —— ( o—
T T T T T T T T T T T T T T T T T
92 94 96 90 92 94 96 98 90 92 94 96 88 90 92 94 96
® TMLE CVTMLE[Q] = CVTMLE[Qg] A CVTMLETIall]
x TMLE-RF CVTMLE[Q]-RF © CVTMLE[Qg]-RF < CVTMLEJall]-RF
FIGURE2 | Relative bias and coverage of all TMLE and CVTMLE approaches under data-generating mechanisms 1-4.
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FIGURE3 | Relative bias and coverage of all TMLE and CVTMLE approaches under data-generating mechanisms 5-8.

TABLE 2 | Summary of data-generating mechanisms.
Sample Prevalence Extrapolation
DGM size (N) of exposure issue
1 1000 50% No
2 1000 80% No
3 1000 50% Yes
4 1000 80% Yes
5 200 50% No
6 200 80% No
7 200 50% Yes
8 200 80% Yes

status, bulky disease, and presence of B symptoms was either
not available or poorly recorded. There was no right censoring
(loss-to-follow-up) since we used national population-based can-
cer registry data for all patients diagnosed with cancer in Eng-
land, linked to death certification: Patients are assumed alive
until their record matches a death record.

In the cohort, 3073 (22.2%) patients initiated chemotherapy treat-
ment within 21 days of diagnosis, and 10,754 (77.8%) patients did
not. At six months after the landmark time, 519 (16.9%) treated
and 1442 (13.4%) untreated patients had died. We applied the
eight approaches of TMLE described in this simulation study to
estimate the ATE, measured as the risk difference in all-cause

6-month mortality between patients with DLBCL who initiated
treatment within 21 days since diagnosis compared to those who
did not initiate treatment.

We found that the risk of 6-month all-cause mortality is approxi-
mately 3% higher amongst those who initiated treatment within
21 days compared to those who did not, conditional on surviv-
ing 21 days since diagnosis of DLBCL (Table 3). Across the eight
methods used in this analysis, the estimate of the ATE ranged
from 2.84 (TMLE) to 3.17 (CVITMLE[Qg]-RF). All eight meth-
ods agreed on statistical significance and had estimate agreement
(i.e., estimates of the ATE from one method are contained within
the 95% CI for each of the other methods).

The distribution of patient characteristics was similar to DGM 2
or DGM 4 from the simulations, with a large sample size, approxi-
mately 80% prevalence of the exposure, and a possible interaction
between initiation of treatment and stage at diagnosis on 6-month
mortality.

These results are in line with previous results showing that earlier
treatment is associated with worse prognosis [45-50]. Although
counterintuitive that earlier treatment leads to a higher risk of
mortality, this paradoxical effect can be explained through a
lack of adjustment for the severity of disease. Highly aggressive
DLBCL tends not only to have a higher risk of mortality but also
to be treated earlier than less aggressive disease. Unless disease
severity is adjusted for, paradoxical findings such as these are
likely to occur.
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TABLE 3 | Risk of all-cause mortality within 6 months (from land-
mark time of 21 days) between those who initiated treatment within 21
days since diagnosis of DLBCL and those who did not initiate treatment.

Method ATE SE 95% CI P
Without random forests

TMLE 2.84 0.0074 (1.39,4.28) 0.0005
CVTMLE[Q] 2.90 0.0074 (1.45,4.35) 0.0004
CVTMLE[Qg] 2.85 0.0074 (1.39,4.31) 0.0005
CVTMLE][all] 3.00 0.0074 (1.55,4.45) 0.0002
With random forests

TMLE 3.11 0.0077 (1.59,4.62) 0.0002
CVTMLE[Q] 3.05 0.0075 (1.59,4.51) 0.0002
CVTMLE[Qg] 3.17 0.0079 (1.63,4.71) 0.0002
CVTMLE][all] 3.01 0.0079 (1.46,4.56) 0.0003

Note: Each of CVTMLE[Q], CVTMLE[Qg], and CVTMLE]Jall] used 10 folds during
sample splitting.

Abbreviations: 95% CI, Confidence interval; ATE, Average treatment effect; SE,
Standard error.

6 | Discussion

We found that combining targeted maximum likelihood estima-
tion with cross-validation (CVTMLE) improves coverage without
adversely affecting bias in comparison to standard TMLE results,
particularly in settings of small sample sizes and near-positivity
violations. In terms of bias and coverage, TMLE performs as
well as CVTMLE in large sample sizes but suffers when the
Donsker class condition is in question, with undercoverage in
cases of small sample sizes with extrapolation issues, or unbal-
anced prevalence of the exposure.

It has been advocated that researchers should use a richly
specified library of machine learning algorithms within the
SuperLearner to maximise the performance of the estimation
approach [51]. Previous research suggests that tree-based meth-
ods, such as random forests, should be used with care because
they tend to overfit the data [52]. In concordance, we found that
the use of random forests led to a severe undercoverage when
used with TMLE in all settings. If tree-based methods must
be utilized in the estimation step (i.e., due to the presence of
heterogeneous treatment effects) [53], we advocate for the use of
cross-validation to optimize the estimation of the standard error
and retrieve appropriate coverage, CVTMLE[Q], CVTMLE[Qg],
and CVTMLE[Qg]-RF led to coverages closest to 95% for most
data-generating mechanisms.

As shown in this simulation study, the choice of the method
to use is dependent on whether the data exhibits characteris-
tics that could lead to a violation of the Donsker class condition.
We provide a decision tree to guide the choice of estimation
method in applied settings depending on the prevalence of the
exposure, the finite sample size, and the presence of potential
extrapolation and/or near-positivity violations due to data spar-
sity (Figure 4). For example, in Branch (DGM 1) where there is
50% prevalence of the exposure, no extrapolation issue, and large
sample size, our results suggest that either of TMLE, CVTMLE|[Q,
Qg, All] and CVTMLE[Qg, All]-RF could be chosen to obtain a

reasonably unbiased estimate of the ATE with optimal coverage.
CVTMLE|Q] and CVTMLE|[Qg] are suitable choices for most of
the branches and can be the only appropriate choice, particularly
in settings with near-positivity violation and small sample sizes
(such as in Branches DGM 6, 7, and 8). However, cross-validation
is computationally intensive, and if there are other methods (e.g.,
standard TMLE) that would perform the analysis to a similar
degree of accuracy, then these other methods could be consid-
ered. Such instances occur with large sample sizes, where TMLE
is least biased and within the optimal coverage range.

We generated data with simple outcome and exposure models
to focus on and highlight the improvements in coverage when
using cross-validation with TMLE. Naimi et al. (2021) compared
the performance of TMLE between simple and complex models
[51]. In our simulation study, we did not include complex terms
other than an interaction between the exposure and a variable
causing the near-positivity violation. Further studies are needed
to explore the performance of these two methods in the context
of data generated by complex models and heterogeneous treat-
ment effects (i.e., inclusion of additional interactions, non-linear,
and time-dependent effects). We speculate that methods employ-
ing additional algorithms (e.g., random forests) might perform
better in terms of bias and, with cross-validation, coverage. More-
over, we considered only binary variables for the outcome and
exposure. The performance of these methods in settings with a
continuous exposure or outcome requires further exploration: We
speculate that the trends and patterns observed in this simulation
study are generalizable to continuous outcomes and exposures,
but this requires further research to confirm.

Doubly robust cross-validated estimators have been developed to
reduce overfitting and impose less restrictive complexity condi-
tions on the machine learning algorithms used to estimate nui-
sance functions [17, 24, 54]. Sample splitting requires that the
machine learning estimation of the nuisance parameters is fit-
ted on a partition of the data set separate from the data used
for calculating the target causal parameter. The role of the train
and test samples can be swapped, which is called cross-fitting.
Single cross-fitting only requires a division into training and
prediction splits, but double cross-fitting requires at least three
splits of the data. Either cross-fitting procedure can have differ-
ent folds (e.g., 5 or 10) [17, 24, 27, 55]. Implementation of sam-
ple splitting procedures can be dependent on the chosen ran-
dom number seed for random number generation that provides
a particular split to the data. Solutions have been proposed else-
where [56-58]; however, using a higher number of splits helps
to avoid such dependency [59]. Previous research has shown that
smaller sample sizes require an increase in the number of folds
when performing the Super Learner [60]. This is to allow a suf-
ficiently large training set to train the nuisance models. We did
not alter the default setting of 10 folds used within the Super
Learner, but the benefit of correctly specifying the number of
required folds for cross-validation within the Super Learner and
the cross-validation of TMLE is an area of ongoing research. We
contrasted 5 and 10-fold cross-validation schemes and did not
notice differences in performance between the various methods.

Compared to one-step algorithms, TMLE is a more complex
algorithm, making it less accessible to a lay audience. While
TMLE is available in several software [61, 62], to our knowledge,
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lack of differentiability of the influence curve and potentially violate the Donsker class condition.

the functionality to cross-validate TMLE is limited to only R
(tmle [63], tmle3 [64]) and Stata (eltmle [44]). Importantly, TMLE
R software defaults to CVTMLE[Qg]. Other packages exist
that can be adapted to cross-validate TMLE, such as Origami
[65] for TMLE3 [64] in R, but tutorials are sparse. We used
the eltmle command to perform all methods. The development
version, including the CVTMLE[Qg]| option, is available at:
https://github.com/migariane/eltmle [44].

This study was limited to only one estimator, but other doubly
robust estimators exist, such as augmented inverse probability
of treatment weighting (AIPTW) and Double-Debiased Machine
Learning. We considered only TMLE-based methods because (i)
of their better stability, and (ii) we aimed to specifically investi-
gate the undercoverage of TMLE [29]. CVTMLE helps to make
the estimator consistent in larger samples; however, performance
issues may still occur for finite samples [25]. For example, if
the data violates the positivity assumption (i.e., the probability
of being exposed, or unexposed, is too close to 0 or 1), which
is more likely in smaller samples, then instability of the inverse
weighting may occur in the targeting step. A simplistic approach
is to truncate the propensity score at 0.975 and 0.025. However,
collaborative-TMLE (C-TMLE) is another viable option [18, 66,
67]: C-TMLE adaptively estimates the propensity score based on
the outcome regression and mitigates practical positivity viola-
tions [52]. C-TMLE has been recently developed that perform a
model selection in estimating the propensity score model, which
prevents the targeting step from introducing instability into the
estimator of the outcome model. In this study, we focused on the
comparison of TMLE and CVTMLE,; further studies are needed
to compare these other methods.

We observed that TMLE produces an underestimate of the cov-
erage in settings with small sample sizes, the presence of an
extrapolation issue, or imbalances prevalence of the exposure;
however, combining cross-validation with TMLE allows a con-
sistent and reliable estimate of the coverage. The analysis of
high-dimensional data is an increasingly common activity for
applied researchers, which often requires handling complex rela-
tionships between variables, and is likely to incur many of

the data-generating mechanisms employed in this simulation
study. The implications of these findings suggest that it is not
only important to check all necessary distributions (e.g., over-
lap plots) before estimating the effect of interest but that applied
researchers should be cautious when choosing the appropriate
method to analyze high-dimensional data and strongly consider
using cross-validation, or similar, techniques to avoid issues with
undercoverage that may occur in standard TMLE.

7 | Conclusion

In conclusion, our simulation study reveals the benefits of
incorporating targeted maximum likelihood estimation with
cross-validation in addressing coverage issues, particularly for
small sample sizes and near-positivity violations. Notably, the
cross-validation of the outcome model (CVTMLE[Q]) and of
the outcome and treatment models, CVTMLE[Qg] yielded opti-
mal coverage estimates. Our results underscore the impor-
tance of cross-validation techniques, especially in the analysis
of high-dimensional data, cautioning researchers to consider
cross-validation to mitigate issues of undercoverage whenever
TMLE or TMLE with RF is implemented.
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Appendix A
Tables and Figures

The probability of the outcome for 50% prevalence is shown in
Figure A1A,C, and for 80% prevalence is shown in Figure A1B,D. A high
extrapolation issue, created by an interaction between the exposure A
and W, in the outcome model, is shown in Figure A1C,D, and leads
to non-parallel lines for the probabilities of the outcome by treatment
group. There was no extrapolation issue generated in scenarios depicted
in Figure A1A,B.
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FIGURE Al | Probability of the outcome given the exposure and Z1 (variable creating near-positivity violations), stratified by prevalence of the

exposure (i.e., 50% or 80%) and presence of extrapolation issue (i.e., none or high). (A) is 50% prevalence of the exposure with no extrapolation issue.

(B) is 80% prevalence of the exposure with no extrapolation issue. (C) is a 50% prevalence of the exposure with an extrapolation issue. (D) is an 80%

prevalence of the exposure with an extrapolation issue.

TABLE A1 | Summary statistics of propensity scores by sample size, prevalence of the exposure “P(A = 1)”, and exposure group.
Propensity scores n > 0.975
Sample size P(A=1) A Min Mean Max Mean Range
200 50% 1 0.222 0.554 0.921 0.0 (0,0)
0 0.178 0.452 0.845 0.0 (0,0)
80% 1 0.513 0.812 0.981 2.2 (0,9)
0 0.510 0.752 0.931 0.0 0,2)
1000 50% 1 0.182 0.554 0.945 0.0 0,1)
0 0.143 0.453 0.902 0.0 (0,0)
80% 1 0.454 0.813 0.987 10.8 (2,22)
0 0.440 0.753 0.963 0.2 0,3)

Note: The mean of “n > 0.975” is the average number of propensity scores, across the 1000 samples, that exceed the truncation value of 0.975. The range is the minimum

and maximum number of propensity scores, across the 1000 samples, that exceed the truncation value of 0.975.
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