SoftwareX 31 (2025) 102272

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original Software Publication

PyBodyTrack: A python library for multi-algorithm motion quantification
and tracking in videos

Angel Ruiz-Zafra *?>", Janet Pigueiras-del-Real *, Jose Heredia-Jimenez ¢,
Syed Taimoor Hussain Shah ¢, Syed Adil Hussain Shah ', Lionel C. Gontard >#

a Department of Software Engineering, University of Granada, Granada, 18071, Spain

b Department of Condensed Matter Physics, University of Cddiz, Cddiz, 11510, Spain

¢ Department of Physical Education & Sports, University of Granada, 18071 Granada, Spain

4 Human Behavior & Motion Analysis Lab (HubemaLab), University of Granada, 51001 Ceuta, Spain

¢ PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, 10129, Italy
f Department of Research and Development (R&D), GPI SpA, Trento, 38123, Italy

8 IMEYMAT, University of Cadiz, Cddiz, 11510, Spain

ARTICLE INFO ABSTRACT

Keywords: Human movement analysis, driven by computer vision and pose tracking technologies, is gaining acceptance
Motion quantification in healthcare, rehabilitation, sports, and daily activity monitoring. While most approaches focus on qualitative
Pose “’aCkm'g. analysis (e.g., pattern recognition), objective motion quantification can provide valuable insights for diagnosis,
Computer vision progress tracking, and performance assessment. This paper introduces PyBodyTrack, a Python library for motion

Human movement analysis

. quantification using mathematical methods in real-time and pre-recorded videos. It simplifies video manage-
Python library

ment and integrates with position estimators like MediaPipe, YOLO, and OpenPose. PyBodyTrack enables seam-
less motion quantification through standardized metrics, facilitating its integration into various applications.

Code metadata

Current code version 2025.3.3

Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-25-00184

Permanent link to Reproducible Capsule https://colab.research.google.com/drive/1-XW_-IOAOICfwuKssuBBBAeVdZyELOTy
Legal Code License Apache 2.0

Code versioning system used Git

Software code languages, tools, and services used Python

Compilation requirements, operating environments & dependencies Python 3.9, mediapipe==0.10.21, numpy==2.2.4, opencv-python==4.11.0.86

pandas==2.2.3, scipy==1.15.2, ultralytics==8.3.78, setuptools==44.1.1
If available Link to developer documentation/manual
Support email for questions angelrzafra@gmail.com

Software metadata

Current software version 2025.3.3

Permanent link to executables of this version For example: https://github.com/combogenomics/DuctApe/releases/tag/DuctApe-0.16.4
Permanent link to Reproducible Capsule https://github.com/bihut/PyBodyTrack/

Legal Software License Apache 2.0

Computing platforms/Operating Systems Any platform that supports Python

Installation requirements & dependencies mediapipe, numpy, opencv, pandas, scipy, ultralytics, setuptools

If available, link to user manual - if formally published include a reference to the https://github.com/bihut/PyBodyTrack/tree/main/docs/build/html

publication in the reference list
Support email for questions angelrzafra@gmail.com

* Corresponding author.
E-mail address: angelr@ugr.es (A. Ruiz-Zafra).

https://doi.org/10.1016/j.s0ftx.2025.102272

Received 19 March 2025; Received in revised form 18 June 2025; Accepted 11 July 2025

Available online 24 July 2025

2352-7110/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://orcid.org/0000-0003-2626-2212
https://github.com/ElsevierSoftwareX/SOFTX-D-25-00184
https://colab.research.google.com/drive/1-XW_-IOAOICfwuKssuBBBAeVdZyELOTy
mailto:angelrzafra@gmail.com
https://github.com/combogenomics/DuctApe/releases/tag/DuctApe-0.16.4
https://github.com/bihut/PyBodyTrack/
https://github.com/bihut/PyBodyTrack/tree/main/docs/build/html
mailto:angelrzafra@gmail.com
mailto:angelr@ugr.es
https://doi.org/10.1016/j.softx.2025.102272
https://doi.org/10.1016/j.softx.2025.102272
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

A. Ruiz-Zafra et al.
1. Motivation and significance

Human movement analysis is an expanding field with applications
in biomechanics, healthcare, sports, motion-based interfaces, and daily
activity tracking, among others. Motion analysis in healthcare can be
employed for early detection and diagnosis of medical conditions, such
as brain injuries affecting the motor system, or in rehabilitation thera-
pies, where it serves as an indicator of patient progress. Additionally,
it has applications in everyday scenarios, such as in sports, where it is
used to ensure the correct execution of exercises [1,2].

From a methodological perspective, motion analysis can be ap-
proached qualitatively (e.g., identifying movement patterns or as-
sessing whether an activity is performed correctly) or quantitatively
(e.g., measuring the total or partial amount of detected movement).
Although research on motion analysis is expanding, most studies focus
on qualitative aspects, while standardized and accessible libraries that
enable precise movement quantification in measurement units remain
a challenge [3-5].

To address current limitations in movement quantification, we in-
troduce PyBodyTrack, an open-source library designed for pose-based
motion analysis. PyBodyTrack supports real-time video capture and
batch processing of pre-recorded videos, providing key movement met-
rics: MOS (Movement per Second), MOF (Movement per Frame), MOL
(Movement per Landmark), NMI (Normalized Movement Index), and
RAM (Raw Amount of Movement). By leveraging pose estimators such
as MediaPipe®," YOLO®,> and OpenPose®,* the library extracts pre-
cise body coordinates, enabling structured movement analysis through
distance-based and optical flow methods. Its seamless integration with
Pandas facilitates efficient data handling for statistical and machine
learning applications.

PyBodyTrack democratizes access to advanced motion analysis tools
for researchers, developers, and professionals in fields like rehabilita-
tion, sports science, and pediatric care. Its modular architecture allows
for customization of movement metrics and adaptation to specific
research needs, such as studying different populations (e.g., neonates,
athletes) or integrating domain-specific metrics for motor control, re-
habilitation, or biomechanics.

Thus, PyBodyTrack not only combines flexibility with ease of use to
foster innovation in movement analysis applications, but also aims to
drive research and development in the field, promoting an ecosystem
of accessible, efficient and scalable tools for future applications.

1.1. Related work

Various software tools and libraries have been developed for human
movement analysis, ranging from manual tracking applications to deep
learning-based solutions.

One widely used tool is Kinovea, an open-source software for mo-
tion analysis in sports and rehabilitation. It provides functionalities
such as slow-motion playback, video annotations, and motion tracking
through video overlays for comparing gestures. However, its reliance
on manual and semi-automated tracking, without deep learning-based
pose estimation, limits its capacity for fully automated and real-time
movement quantification [6]. In contrast, PyBodyTrack leverages pose
estimation models such as MediaPipe, YOLO, and OpenPose to ex-
tract precise body coordinates and compute movement metrics without
manual intervention, making it more suitable for large-scale research
applications.

Several Python libraries address mobility analysis from different
perspectives. scikit-mobility and Trackintel focus on large-scale mobil-
ity modeling rather than detailed motion quantification [5,7], while

1 https://ai.google.dev/edge/mediapipe/solutions/guide
2 https://docs.ultralytics.com/es
3 https://github.com/CMU-Perceptual-Computing-Lab/openpose

SoftwareX 31 (2025) 102272

MovingPandas enables spatial trajectory analysis but lacks integrated
pose estimation [8]. Unlike these, PyBodyTrack extracts precise body
coordinates and computes movement metrics in real-time.

In addition to software-based solutions, hardware-assisted systems
have been developed for movement tracking. MOVE-HUMAN is a spe-
cialized system for three-dimensional human movement capture in
workplace environments. It employs a stereo vision setup with two syn-
chronized digital cameras and custom software to reconstruct and an-
alyze worker movement, primarily for ergonomic risk assessments [9].
While effective for occupational studies, its dependence on dedicated
hardware limits its accessibility. In contrast, PyBodyTrack requires only
a video input, making it a more flexible solution applicable across
diverse domains such as biomechanics, healthcare, and sports.

Compared to these existing solutions, PyBodyTrack stands out by
offering a fully automated, deep learning-based, open-source approach
to human movement quantification.

2. Software description

PyBodyTrack is a Python library for quantifying human body move-
ment from video frames, whether in real-time or pre-recorded. It uti-
lizes deep learning-based pose tracking to detect and monitor body
landmarks without physical contact.

With a high-level interface, it allows developers to capture frames,
apply pose estimation, extract body coordinates, and analyze move-
ment using built-in methods. PyBodyTrack is available via pip, released
under the Apache 2.0 license, and its source code, examples, and
documentation can be found on GitHub.

2.1. Software architecture

Fig. 1 illustrates the architecture of the PyBodyTrack library. This
library consists of various modules, organized according to the required
functionalities. These modules (or sub-modules) include:

(a) bodyparts. Defines body part specifications (e.g., nose, left
knee) for different pose estimators (MediaPipe, YOLO, Open-
Pose) and groups landmarks into nine body regions.

(b) enums. Contains enumerated types for pose estimators and input
modes (live capture or pre-recorded video).

(c) methods. Implements mathematical approaches for movement
quantification.

(d) poseestimators. Provides pose tracking implementations for
MediaPipe, YOLO, and OpenPose, encapsulated in classes for
simplified usage.

(e) observer. Enables real-time movement quantification using an
observer design pattern [10] to send results at predefined frame
intervals.

(f) posetracker. Manages video capture and processing, abstracting
complexities for developers.

() utils. Offers utility methods for dataframe cleaning, date han-
dling, and data extraction.

(h) BodyTracking. The core class for executing all functionalities,
allowing users to specify capture mode, pose estimator, and
real-time processing while abstracting technical complexities.

The use of PyBodyTrack or its integration into other systems is
illustrated in the workflow shown in Fig. 2.

PyBodyTrack supports two data acquisition methods:
real-time recording from a camera or processing a pre-recorded video
(1). The library iterates over video frames (2), applies a pose estimator
(3) to extract movement data, and assigns a Unix Epoch timestamp to
each entry. Supported pose estimators include MediaPipe, YOLO, and
OpenPose.

Data capture operates in two modes (4): (1) Real-time processing,
where information is transmitted every X frames (e.g., 24-30 fps), and
(2) Batch processing, where the entire video is analyzed at once.

https://ai.google.dev/edge/mediapipe/solutions/guide
https://docs.ultralytics.com/es
https://github.com/CMU-Perceptual-Computing-Lab/openpose

A. Ruiz-Zafra et al.

SoftwareX 31 (2025) 102272

PyBodyTrack

.methods

(.body_parts) (.PosePr)

.VideoMode

| S—

.poseestimators .observer

(.MediaPipeProcessor) (.Observer)

(.Message)

(.YoloProcessor)

(.OpenPoseProcessor)

@ ultralytics tijj megiapipe

Pose Estimators

YOLO
3):

1 . S
A 5 Pose Tracking \
- Real-Time Live : Set of Frames - '
' Video Capture i . : H
. Person Camera | E :
s ' u R : B = — — .
E) Q ‘ | 2 :

. Recording... : '

4 ,:::::::::::""1;:::::::::::::‘--, l.I andas cleaned

.1 Full-session : Real-time pose 0 I'i P Dataframe
! pose data E : data 0 m
4 1ot i 5
) ' ! T

N J . ’

6
7

Resulting Metrics

Distance-based Methods

Optical Flow

(RAM (Raw Amount of Movement)) : [Euclid] [Rk

-] ! © Methods

) (m

(MOS (Amount of movement per second))

(MOF (Amount of movement per frame) >

- [Chebyshev} [Mahalanobis} [Diff. Accel. j :

s
1

(MOL (Amount of movement per Iandmark))
C nmi tindex))

.| Ang. Displac.

Fig. 2. PyBodyTrack workflow.

The extracted data are preprocessed and stored in a Pandas
DataFrame (5), which serves as input for movement quantification
methods (6). These methods fall into two categories: (1) distance-
based and (2) optical flow-based. Table 1 summarizes the supported
methods, including their descriptions and main equations. Distance-
based methods, such as Euclidean distance, rely on simple calculations,
whereas optical flow methods (Lucas-Kanade, Farneback) involve more
complex processing.

Finally, each computational method provides a total movement
value, which, when integrated with the DataFrame, enables further
movement metric calculations (7), as detailed in Table 1.

2.2. Software functionalities

The library’s key features include:

» Two operation modes: real-time recording (camera) or playback
(pre-recorded video). For video playback, a specific time inter-
val (start and end seconds) can be selected, avoiding manual
trimming.

Multiple pose estimators: Users can choose between YOLO,
MediaPipe, and OpenPose, allowing flexibility in accuracy, speed,
and computational requirements. Thus, PyBodyTrack does not
evaluate the accuracy of these estimators, but rather uses their
output directly for motion quantification.

Custom landmark selection: Beyond full-body and predefined
regions (e.g., torso, upper body), users can specify custom land-
marks, enhancing adaptability for diverse motion analysis needs.
Nine movement quantification methods: Implemented as class
methods with uniform input parameters, these methods oper-
ate independently of each other and the data source, allowing
multiple applications for comparison across population groups.
Real-time data access: An Observer pattern enables real-time
subscription to processed data from video or camera sources.
In real-time mode, the FPS depends on the camera and system
performance, as PyBodyTrack processes frames as they arrive.
Comprehensive output metrics: Provides total quantified move-
ment and raw movement data but also other useful metrics like
a normalized movement index or the amount of movement per
second.

A. Ruiz-Zafra et al.

Table 1
Summary of computational methods and movement metrics of PyBodyTrack.

SoftwareX 31 (2025) 102272

MATHEMATICAL METHODS

Method

Description

Equation

Euclidean
Distance [11]

Measures the direct displacement
between two points in a
three-dimensional space.

dE = \/(Xz —x 2+ =)+ (2 —2))?

Manhattan
Distance [12]

Calculates the total absolute
difference between coordinates,
following a grid-based path.

dM =%, = x|+ 1y, = nl+lz -z

Chebyshev
Distance [13]

Determines the maximum
difference along any coordinate
axis.

dC =max{|x;, = x|, |y, =1, 1z, — 1}

Minkowski
Distance [14]

Generalizes Euclidean and
Manhattan distances with a
parameter p.

1/,
dM:(|X2*X1|P+|YZ*J’||p+|22*11|p) ’

Mahalanobis
Distance [15]

Computes distance considering
variable correlations using the
covariance matrix.

dMH =+/(A- B)TS-(A- B)

Differential Evaluates changes in acceleration Dace = 3 eiens 1451
Acceleration of reference points across

[16] consecutive frames.

Angular Measures angular variation of DA gutar = 2y 21611
Displacement reference points between

[17] consecutive frames.

Lucas-Kanade

A differential method for

LK = (ATA)1ATb

[18] estimating optical flow based on
spatial and temporal gradients.

Farnebick [19] Estimates motion by analyzing F=% IFxyl
optical flow based on pixel
displacement.

Movement Metrics

MOS (Amount of Calculates the movement rate by MOS = M

Movement per
Second)

dividing the total movement by
the duration of the analyzed
period.

=
where M Ts the total movement, and 1, — 1,
represents the duration of the analyzed period,
with #, being the initial timestamp and ¢, the
final timestamp.

MOF (Amount of
Movement per
Frame)

Computes the movement rate by
dividing the total movement by
the number of intervals between
analyzed frames.

MOF =

where M is the total movement, and N — 1
represents the number of intervals between
frames, with N being the total number of
frames.

MOL (Amount of
Movement per
Landmark)

Computes the movement rate by
dividing the total movement by
the number of analyzed
landmarks.

MOL = &

where M is the total movement, and L
represents the number of landmarks used in
the analysis.

NMI (Normalized

Computes the movement rate by

NMI= —M
(t,~1y)-L

Movement dividing the total movement by where M is the total movement, , — f,

Index) the product of the analyzed represents the duration of the analyzed period,
period duration and the number and L is the number of landmarks used in the
of landmarks. analysis.

RAM (Raw The original movement value

Amount of returned by the method.

Movement)

3. Ilustrative examples

This section presents four illustrative examples from different ap-
plication areas. MediaPipe was used as the pose estimator due to its
comprehensive coverage and highest number of body landmarks (33
vs. 16 in YOLO and 25 in OpenPose). Each example utilizes data from
a specific dataset, which is indicated accordingly.

3.1. Motion quantification in sports applications

The movement was quantified for common gym exercises funda-
mental in sports. Videos from Kaggle datasets and YouTube [20,21]
were used, covering plank, leg extension, bicep curl, skull crushers,
bench press, chin-ups, military press, and squat. Each exercise included
10 repetitions, except the plank, which was held for 10 s.

Relevant body landmarks were selected per exercise (e.g., torso and
arms for bicep curls, full body for squats). Movement was measured us-
ing the Euclidean distance method with a smoothing filter and Kalman
filters.

Fig. 3 shows processed frames and a bar chart of the normal-
ized movement index (NMI). As expected, the plank involved minimal
movement, while squats had the highest. This quantification can aid
in automatic repetition counting or, combined with biometric data,
support calorie estimation

3.2. Movement quantification in daily activities

This example showcases PyBodyTrack’s ability to quantify move-
ment in daily activities like sitting and walking using data from [22].

A. Ruiz-Zafra et al.

SoftwareX 31 (2025) 102272

Plank Bench Press Bicep Curl
6.63
64
g5
°
£
c
S
5 41
=
o
5
£
2
= 2.14
2 21
1.15
11 0.74 0.75
0.36
0.05 018
0 -
& x
S &S ® & N @ F
N & 2 < % <
Q & & & < & < &
& & 0 & o S
) & of &
N ‘9\\ «
Leg Extension @ Military Press
Fig. 3. Movement quantification in sports applications.
174.45
175 1
150
?
$ 125
£
c
S
2 100
5
&
£ ;
5 Vacuuming
=
Z 50
254
10.88
1.02 5.36
R <& &
& ¥ &
) q0 c,\)
‘é\(‘ 3°
&
& Military Press

Washing Dishes

Fig. 4. Movement quantification in daily activities.

Fig. 4 presents the activities and their normalized movement index
(NMI) in a bar chart.

Movement was measured using the Euclidean distance method with
a smoothing filter and Kalman filters.

Quantifying movement beyond sports (Example 1) has valuable
applications in healthcare, such as monitoring motor function in reha-
bilitation, and in workplaces to assess task performance.

This approach allows contactless, device-free tracking, eliminating
the need for wearable sensors like accelerometers, which have been the
predominant trend in recent years [23].

3.3. Progress monitoring in preterm neonates
Neonatal progress is typically assessed through weight, size, and

growth metrics, but recent studies suggest movement quantity could
be an additional medical indicator [24].

A. Ruiz-Zafra et al.

SoftwareX 31 (2025) 102272

(a) Frame obtained from the hospital admission
video

(b) Frame obtained from the hospital discharge
video

Fig. 5. PyBodyTrack for movement quantification of preterm infants.

PyBodyTrack was applied to a preterm neonate at two time points
— hospital admission and discharge — using data collected with the
solution presented in [25], accessible via NeoVault [26].*

Videos from both time points were analyzed, selecting random 30-
second segments for processing. Fig. 5 displays frames after applying
PyBodyTrack.

The Chebyshev method yielded 4,221 movement units (NMI: 3.917)
at hospital admission and 7,249 units (NMI: 5.12) at discharge, repre-
senting a 71.74% increase.

These results highlight a significant increase in movement over
time, suggesting that PyBodyTrack could be a valuable tool in hospital
settings.

Listing 1 illustrates its application in this case.

Listing 1: Example of using PyBodyTrack for movement quantification
in neonates.

1 | import threading, time

2 | from pybodytrack.BodyTracking import BodyTracking

3 | from pybodytrack.enums.PoseProcessor import
PoseProcessor

from pybodytrack.bodyparts import body_parts as bp

from pybodytrack.enums.VideoMode import VideoMode

from pybodytrack.methods.methods import Methods

Define the video path
video = '"PATH TO VIDEO"

11 | # Initialize BodyTracking using Mediapipe in VIDEO
mode with standard landmarks (whole body)
12 | bt = BodyTracking(

13 processor=PoseProcessor.MEDIAPIPE, mode=
VideoMode.VIDEO,

14 path_video=video, selected_landmarks=bp.
STANDARD_LANDMARKS

15 1)

16 |bt.set_times(10, 40) # Set start and end times in

seconds

18 |# Create and start the tracking thread
19 |t = threading.Thread(target=bt.start, kwargs={})
20 |t.start()

22 | try:

23 # Main thread loop: wait while tracking is active
24 while t.is_alive():

25 time.sleep(1)

26 | except KeyboardInterrupt:

27 print ("Stopping tracking...")

4 https://conversational.ugr.es/neovault

28 | finally:

29 # Stop tracking and ensure the thread is properly
joined

30 bt.stop()

31 t.join()

32 if t.is_alive():

33 print ('Tracker thread still alive. Force
stopping..."

34 bt.stop()

35 390

36 | Note: The use of threads is not mandatory with
PyBodyTrack in video mode (only in real-time),
but it speeds up processing and visualization.

37 PR

38 | # Retrieve data and compute movement metrics

39 | df = bt.getData()

40 |m = Methods.chebyshev_distance(df, filter=True,

distance_threshold=2.0)

41 |n=bt.normalized_movement_index(m, len(bp.

STANDARD_LANDMARKS))

42 | print ('Raw movement:", m, "- NMI:", n)

3.4. Real-time fall detection

This example demonstrates PyBodyTrack for real-time fall detection
using a camera. A 3.5-year-old child simulated a fall to test the system’s
effectiveness.

The Euclidean distance method was applied with a Kalman filter
but without smoothing (threshold: 0 units). Movement was quantified
every 8 frames, yielding three data points per second.

Fig. 6 displays movement data over time alongside the child’s
postural state during the simulation.

Extrapolating this example, PyBodyTrack could be highly useful for
fall detection in the elderly and for continuous movement monitoring
in rehabilitation sessions.

Since real-time quantification in PyBodyTrack relies on the Observer
component, a subclass was implemented to demonstrate its use. List-
ing 2 illustrates how PyBodyTrack captures and processes real-time
movement data.

Listing 2: Example of real-time capture and processing with
PyBodyTrack for fall detection.

import json, threading, time, pandas as pd

from pybodytrack.BodyTracking import BodyTracking

from pybodytrack.enums.PoseProcessor import
PoseProcessor

5 | from pybodytrack.bodyparts import body_parts as bp

6 | from pybodytrack.enums.VideoMode import VideoMode

7 | from pybodytrack.methods.methods import Methods

S W oN e

https://conversational.ugr.es/neovault

A. Ruiz-Zafra et al.

23
24
25
26
27
28
29

31

32

33

2. Normal pace 3. Random arm
walking movements

N

4. Simulated fall,
lying on the ground

SoftwareX 31 (2025) 102272

(5. Getting up) [6. Running]

R

. Normal pace
walking

2000 -

1500 4

Movement

1000 4

500 1

7. Normal pace
walking (again)

400

Frames

600 800

Fig. 6. PyBodyTrack applied to real-time fall detection.

from pybodytrack.observer.Observer import
Observer

Global list to store results
res_json = []

class CustomObserver (Observer) :
def __init__(self, block_size=30):
super () .__init__(Q)
self.pkg_count =0
frames
self.block_size = block_size # Number of
frames per block

Counter for processed

def handleMessage(self, msg):

If new landmark data is received, process it
in a new thread
if msg.what ==

threading.Thread(target=self.
processBuffer, args=(msg.obj,), daemon=True) .
start ()
else:

print ("Error:", msg.obj)

def processBuffer(self, block):
Convert the incoming block to a DataFrame
df = pd.DataFrame (block)
Update the package counter with the block
size
self.pkg_count += self.block_size
Compute the Euclidean distance as a movement
measure
mv = Methods.euclidean_distance(df, filter=
True, distance_threshold=0.0)
Normalize the movement index using the
number of standard landmarks
nmi = body_tracking.
normalized_movement_index(mv, len(bp.
STANDARD_LANDMARKS))

35

36

37
38

39
40
41

42

43
44
45
46
47
48

49

50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65

Append the result with time, movement, and
normalized movement index to the global
results

res_json.append({"time": self.pkg_count, "
movement": mv, "nmi": nmi})

Set up body tracking for fall detection using a
camera
output = '"results_falldetection. json"
body_tracking = BodyTracking(
processor=PoseProcessor .MEDIAPIPE, mode=
VideoMode.CAMERA,
path_video=None, selected_landmarks=bp.
STANDARD_LANDMARKS
)
fps =8 # Frames per second
observer = CustomObserver (block_size=fps)
observer.startLoop() # Start the observer loop

Start body tracking in a separate thread, passing
the observer and fps

t = threading.Thread(target=body_tracking.start,
kwargs={’observer’: observer, ’fps’: fps})

t.start ()

try:
Main thread idle loop while tracking is active
while t.is_alive():
time.sleep(1)
except KeyboardInterrupt:
print ("Stopping tracking...")
body_tracking.stop()
finally:
Ensure tracking stops and the thread is
properly joined
body_tracking.stop()
t.join()
if t.is_alive():
print ('Force stopping..."
body_tracking.stop()

A. Ruiz-Zafra et al.

66

67 |# Write the results to a JSON file

s | with open(output, '"w", encoding="utf-8") as f:
69 json.dump(res_json, f, indent=4)

4. Impact

Position estimation methods based on computer vision are highly
powerful tools for acquiring body movement data without physical
contact, whether in real time or from pre-recorded videos. Currently,
numerous studies explore these techniques, as the extracted data have
a wide range of applications, including healthcare, sports, daily activity
monitoring, and any field where human motion analysis is relevant [27,
28].

This work introduces PyBodyTrack, a library that simplifies and
enhances movement estimation and quantification. It allows for the
analysis of either the entire body or specific regions using various
mathematical approaches, both from pre-recorded videos and real-time
sources. Its primary goal is to provide a set of objective, numerical
motion metrics to support applications in different professional do-
mains. To illustrate its potential, four case studies have been conducted
in different contexts: sports activity monitoring, daily task analysis,
neonatal development assessment, and fall detection. These examples
highlight its versatility and ease of use. It is important to note that,
for the presented case studies — and for any potential new application
— a preliminary calibration phase was necessary to select the most
appropriate combination of analysis parameters. This phase involves
testing different methods, time windows, and body regions using rep-
resentative examples from the target context. Such calibration ensures
that the resulting movement quantification is meaningful and adapted
to the specific characteristics of each use case.

PyBodyTrack is the first open-source library designed to quantify
movement without requiring prior knowledge of pose tracking or com-
puter vision. In addition to integrating multiple motion estimation
methods, it allows users to customize the analyzed body regions and
apply advanced data-processing filters. The library incorporates three
position estimators (MediaPipe, OpenPose, and YOLO) and provides
configurable options that combine different analytical approaches (Eu-
clidean, Chebyshev, Farneback), body region selection (full body, torso,
limbs), and specific filters (threshold distance, Kalman filter parame-
ters). This flexibility enables motion quantification optimization based
on the target population or activity under study.

One known limitation is that distance-based quantification methods
may be sensitive to the subject’s distance from the camera, as pose
estimators typically return coordinates in pixel space. To address this,
users are encouraged to maintain a fixed camera—subject distance or ap-
ply normalization techniques based on body proportions (e.g., shoulder
width). Incorporating such variations during the calibration phase can
also help ensure stable and meaningful measurements across different
scenarios.

On the other hand, it is also worth noting that the evaluation
of PyBodyTrack’s performance should be adapted to each application
domain. Comparative validation should consider population-specific
benchmarks—for example, using the General Movements Assessment
(GMA) for neonates [29] or functional mobility tests like the Timed Up
and Go (TUG) test for older adults [30].

Due to its seamless integration with third-party software and broad
applicability, PyBodyTrack has the potential to make a significant im-
pact. It can be used both as a standalone tool for researchers and
developers and as an integrated component in independent applications
aimed at human motion analysis.

This library is part of the doctoral research of one of the authors.
Initially, the project focused on neonatal movement quantification as

SoftwareX 31 (2025) 102272

an indicator of favorable development within the European project
PARENT.® Over time, the research evolved into the current version of
PyBodyTrack, expanding its applicability and scope.

5. Conclusions

PyBodyTrack is an open-source Python library designed to quantify
movement in specific activities using a set of objective metrics. The
library supports both real-time analysis via a camera and the process-
ing of pre-recorded videos. It enables motion capture using different
pose estimators, provides multiple adjustable movement quantification
methods, and allows the selection of specific body regions for analysis.

Beyond its core functionality, PyBodyTrack is designed to be used
either as a standalone tool or integrated into other solutions, allowing
developers to incorporate motion capture and quantification capabil-
ities without prior knowledge of computer vision. As an open-source
tool, it also offers users the flexibility to modify or adapt it to specific
use cases, including adding new mathematical methods or integrating
additional pose estimators.

PyBodyTrack has been successfully validated in four different ap-
plication scenarios, demonstrating its potential across various fields.
Currently, we are working on expanding its capabilities, including
motion analysis based on angle variations between body segments, as
well as identifying new successful applications to further validate its
usefulness and impact. In addition, we plan to incorporate qualitative
analysis features into the library, enabling the detection of human
behavior and more complex movement patterns.

CRediT authorship contribution statement

Angel Ruiz-Zafra: Writing — original draft, Software, Conceptual-
ization. Janet Pigueiras-del-Real: Writing — review & editing, Inves-
tigation, Data curation. Jose Heredia-Jimenez: Validation, Investiga-
tion, Data curation. Syed Taimoor Hussain Shah: Writing — review &
editing, Validation, Data curation. Syed Adil Hussain Shah: Writing
- review & editing, Visualization, Data curation. Lionel C. Gontard:
Writing — review & editing, Supervision, Methodology, Conceptualiza-
tion.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is part of the “PremAtuRe nEwborn motor and cogNitive
impairment: Early diagnosis PARENT project”. The PARENT project has
received funding from the European Union’s Horizon 2020 research and
innovation programme under the Maria Sklodowska-Curie Innovative
Training Network 2020, Grant Agreement N° 956394.

References

[1] Cronin NJ, Walker J, Tucker CB, Nicholson G, Cooke M, Merlino S, et al. Fea-
sibility of OpenPose markerless motion analysis in a real athletics competition.
Front Sport Act Living 2024;5:1298003.

[2] Tacchino C, Impagliazzo M, Maggi E, Bertamino M, Blanchi I, Campone F, et al.
Spontaneous movements in the newborns: a tool of quantitative video analysis
of preterm babies. Comput Methods Programs Biomed 2021;199:105838.

[31 ROCHA D, AGUILERA A. Freemotionlibs una biblioteca para el andlisis del
movimiento. uct [online]. 2013, vol. 17, n. 68.

5 https://parenth2020.com/

http://refhub.elsevier.com/S2352-7110(25)00239-0/sb1
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb1
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb1
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb1
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb1
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb2
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb2
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb2
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb2
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb2
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb3
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb3
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb3
https://parenth2020.com/

A. Ruiz-Zafra et al.

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Werling K, Bianco NA, Raitor M, Stingel J, Hicks JL, Collins SH, et al.
AddBiomechanics: Automating model scaling, inverse kinematics, and inverse
dynamics from human motion data through sequential optimization. PLoS One
2023;18(11):e0295152.

Martin H, Hong Y, Wiedemann N, Bucher D, Raubal M. Trackintel: An open-
source python library for human mobility analysis. Comput Environ Urban Syst
2023;101:101938.

Nor Adnan NM, Ab Patar MNA, Lee H, Yamamoto S-1, Jong-Young L, Mahmud J.
Biomechanical analysis using kinovea for sports application. In: IOP conference
series: materials science and engineering, vol. 342, IOP Publishing; 2018,
012097.

Pappalardo L, Simini F, Barlacchi G, Pellungrini R. Scikit-mobility: A python
library for the analysis, generation, and risk assessment of mobility data. J Stat
Softw 2022;103:1-38.

Graser A. Movingpandas: efficient structures for movement data in python.
GIForum 2019;1:54-68.

Boné M, Ros R, Marin J, Martinez J, Alvarez J. Move-human: sistema portatil
para captura y andlisis tridimensional del movimiento humano en puestos de
trabajo basado estéreo-vision y simulacién 3D con modelos biomecénicos. In:
VIII Congreso Internacional de Ingenieria de Proyectos: Bilbao 6-8 de octubre de
2004. Actas. Asociacién Espafola de Ingenieria de Proyectos (AEIPRO); 2005, p.
131.

Gamma E, Helm R, Johnson R, Vlissides J. Design patterns: elements of reusable
object-oriented software. Pearson Deutschland GmbH; 1995.

Liberti L, Lavor C, Maculan N, Mucherino A. Euclidean distance geometry and
applications. SIAM Rev 2014;56(1):3-69.

Suwanda R, Syahputra Z, Zamzami EM. Analysis of euclidean distance and
manhattan distance in the K-means algorithm for variations number of centroid
K. J Phys: Conf Ser 2020;1566(1):012058.

Wang YC, Xing Y, Zhang J. Voronoi treemap in Manhattan distance and
Chebyshev distance. Inf Vis 2023;22(3):246-64.

Thant AA, Aye SM, Mandalay M. Euclidean, Manhattan and Minkowski dis-
tance methods for clustering algorithms. Int J Sci Res Sci Eng Technol
2020;7(3):553-9.

Todeschini R, Ballabio D, Consonni V, Sahigara F, Filzmoser P. Locally centred
Mahalanobis distance: a new distance measure with salient features towards
outlier detection. Anal Chim Acta 2013;787:1-9.

Maczék B, Vadai G, Dér A, Szendi I, Gingl Z. Detailed analysis and comparison
of different activity metrics. PLoS One 2021;16(12):e0261718.

Dubost V, Beauchet O, Manckoundia P, Herrmann F, Mourey F. Decreased trunk
angular displacement during sitting down: an early feature of aging. Phys Ther
2005;85(5):404-12.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

SoftwareX 31 (2025) 102272

Lucas BD, Kanade T. An iterative image registration technique with an applica-
tion to stereo vision. In: IJCAI’81: 7th international joint conference on artificial
intelligence, vol. 2, 1981, p. 674-9.

Farnebédck G. Two-frame motion estimation based on polynomial expansion. In:
Image analysis: 13th scandinavian conference, SCIA 2003 Halmstad, Sweden,
June 29-July 2, 2003 proceedings 13. Springer; 2003, p. 363-70.
Philosopher0808. Gym workout exercises video dataset. 2023, URL https:
//www.kaggle.com/datasets/philosopher0808/gym-workoutexercises-video. [Ac-
cessed 10 March 2025].

Riccio R. Real-time exercise recognition dataset. 2023, URL https://www.kaggle.
com/datasets/riccardoriccio/real-time-exercise-recognition-dataset. [Accessed 10
March 2025].

Mazhar S. Human activity recognition video dataset. 2023, URL https://www.
kaggle.com/datasets/sharjeelmazhar/human-activity-recognition-video-dataset.
[Accessed 10 March 2025].

Ruiz-Zafra A, Orantes-Gonzélez E, Noguera M, Benghazi K, Heredia-Jimenez J.
A comparative study on the suitability of smartphones and imu for mobile,
unsupervised energy expenditure calculi. Sensors 2015;15(8):18270-86.

Kadam AS, Nayyar SA, Kadam SS, Patni BC, Khole MC, Pandit AN, et al. General
movement assessment in babies born preterm: Motor optimality score-revised
(MOS-R), trajectory, and neurodevelopmental outcomes at 1 year. J Pediatr: X
2023;8:100084.

Pigueiras-del Real J, Gontard LC, Benavente-Fernandez I, Lubian-Lopez SP,
Gallero-Rebollo E, Ruiz-Zafra A. NRP: A multi-source, heterogeneous, automatic
data collection system for infants in neonatal intensive care units. IEEE J Biomed
Heal Informatics 2023;28(2):678-89.

Pigueiras-del Real J, Ruiz-Zafra A, Benavente-Fernandez I, Lubidn-Lépez SP,
Shah SAH, Shah STH, et al. NeoVault: empowering neonatal research through a
neonate data hub. BMC Pediatr 2024;24(1):787.

Saraswat S, Malathi G. Pose estimation based fall detection system using
mediapipe. In: 2024 10th international conference on communication and signal
processing. IEEE; 2024, p. 1733-8.

Luangaphirom T, Lueprasert S, Kaewvichit P, et al. Real-time weight training
counting and correction using MediaPipe. Adv Comput Intell 2024;4(3). http:
//dx.doi.org/10.1007/543674-024-00070-w.

Prechtl HF, Einspieler C, Cioni G, Bos AF, Ferrari F, Sontheimer D. An
early marker for neurological deficits after perinatal brain lesions. Lancet
1997;349(9062):1361-3.

Greene BR, O’Donovan A, Romero-Ortuno R, Cogan L, Scanaill CN, Kenny RA.
Quantitative falls risk assessment using the timed up and go test. IEEE Trans
Biomed Eng 2010;57(12):2918-26.

http://refhub.elsevier.com/S2352-7110(25)00239-0/sb4
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb4
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb4
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb4
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb4
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb4
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb4
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb5
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb5
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb5
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb5
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb5
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb6
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb6
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb6
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb6
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb6
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb6
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb6
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb7
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb7
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb7
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb7
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb7
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb8
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb8
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb8
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb9
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb9
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb9
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb9
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb9
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb9
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb9
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb9
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb9
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb9
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb9
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb10
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb10
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb10
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb11
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb11
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb11
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb12
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb12
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb12
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb12
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb12
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb13
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb13
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb13
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb14
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb14
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb14
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb14
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb14
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb15
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb15
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb15
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb15
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb15
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb16
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb16
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb16
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb17
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb17
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb17
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb17
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb17
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb18
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb18
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb18
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb18
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb18
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb19
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb19
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb19
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb19
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb19
https://www.kaggle.com/datasets/philosopher0808/gym-workoutexercises-video
https://www.kaggle.com/datasets/philosopher0808/gym-workoutexercises-video
https://www.kaggle.com/datasets/philosopher0808/gym-workoutexercises-video
https://www.kaggle.com/datasets/riccardoriccio/real-time-exercise-recognition-dataset
https://www.kaggle.com/datasets/riccardoriccio/real-time-exercise-recognition-dataset
https://www.kaggle.com/datasets/riccardoriccio/real-time-exercise-recognition-dataset
https://www.kaggle.com/datasets/sharjeelmazhar/human-activity-recognition-video-dataset
https://www.kaggle.com/datasets/sharjeelmazhar/human-activity-recognition-video-dataset
https://www.kaggle.com/datasets/sharjeelmazhar/human-activity-recognition-video-dataset
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb23
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb23
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb23
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb23
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb23
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb24
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb24
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb24
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb24
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb24
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb24
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb24
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb25
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb25
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb25
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb25
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb25
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb25
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb25
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb26
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb26
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb26
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb26
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb26
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb27
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb27
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb27
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb27
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb27
http://dx.doi.org/10.1007/s43674-024-00070-w
http://dx.doi.org/10.1007/s43674-024-00070-w
http://dx.doi.org/10.1007/s43674-024-00070-w
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb29
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb29
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb29
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb29
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb29
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb30
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb30
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb30
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb30
http://refhub.elsevier.com/S2352-7110(25)00239-0/sb30

	PyBodyTrack: A python library for multi-algorithm motion quantification and tracking in videos
	Motivation and significance
	Related Work

	Software description
	Software architecture
	Software functionalities

	Illustrative examples
	Motion Quantification in Sports Applications
	Movement Quantification in Daily Activities
	Progress Monitoring in Preterm Neonates
	Real-Time Fall Detection

	Impact
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

