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 A B S T R A C T

Human movement analysis, driven by computer vision and pose tracking technologies, is gaining acceptance 
in healthcare, rehabilitation, sports, and daily activity monitoring. While most approaches focus on qualitative 
analysis (e.g., pattern recognition), objective motion quantification can provide valuable insights for diagnosis, 
progress tracking, and performance assessment. This paper introduces PyBodyTrack, a Python library for motion 
quantification using mathematical methods in real-time and pre-recorded videos. It simplifies video manage-
ment and integrates with position estimators like MediaPipe, YOLO, and OpenPose. PyBodyTrack enables seam-
less motion quantification through standardized metrics, facilitating its integration into various applications.
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1. Motivation and significance

Human movement analysis is an expanding field with applications 
in biomechanics, healthcare, sports, motion-based interfaces, and daily 
activity tracking, among others. Motion analysis in healthcare can be 
employed for early detection and diagnosis of medical conditions, such 
as brain injuries affecting the motor system, or in rehabilitation thera-
pies, where it serves as an indicator of patient progress. Additionally, 
it has applications in everyday scenarios, such as in sports, where it is 
used to ensure the correct execution of exercises [1,2].

From a methodological perspective, motion analysis can be ap-
proached qualitatively (e.g., identifying movement patterns or as-
sessing whether an activity is performed correctly) or quantitatively 
(e.g., measuring the total or partial amount of detected movement). 
Although research on motion analysis is expanding, most studies focus 
on qualitative aspects, while standardized and accessible libraries that 
enable precise movement quantification in measurement units remain 
a challenge [3–5].

To address current limitations in movement quantification, we in-
troduce PyBodyTrack, an open-source library designed for pose-based 
motion analysis. PyBodyTrack supports real-time video capture and 
batch processing of pre-recorded videos, providing key movement met-
rics: MOS (Movement per Second), MOF (Movement per Frame), MOL
(Movement per Landmark), NMI (Normalized Movement Index), and
RAM (Raw Amount of Movement). By leveraging pose estimators such 
as MediaPipe®,1 YOLO®,2 and OpenPose®,3 the library extracts pre-
cise body coordinates, enabling structured movement analysis through 
distance-based and optical flow methods. Its seamless integration with 
Pandas facilitates efficient data handling for statistical and machine 
learning applications.

PyBodyTrack democratizes access to advanced motion analysis tools 
for researchers, developers, and professionals in fields like rehabilita-
tion, sports science, and pediatric care. Its modular architecture allows 
for customization of movement metrics and adaptation to specific 
research needs, such as studying different populations (e.g., neonates, 
athletes) or integrating domain-specific metrics for motor control, re-
habilitation, or biomechanics.

Thus, PyBodyTrack not only combines flexibility with ease of use to 
foster innovation in movement analysis applications, but also aims to 
drive research and development in the field, promoting an ecosystem 
of accessible, efficient and scalable tools for future applications.

1.1. Related work

Various software tools and libraries have been developed for human 
movement analysis, ranging from manual tracking applications to deep 
learning-based solutions.

One widely used tool is Kinovea, an open-source software for mo-
tion analysis in sports and rehabilitation. It provides functionalities 
such as slow-motion playback, video annotations, and motion tracking 
through video overlays for comparing gestures. However, its reliance 
on manual and semi-automated tracking, without deep learning-based 
pose estimation, limits its capacity for fully automated and real-time 
movement quantification [6]. In contrast, PyBodyTrack leverages pose 
estimation models such as MediaPipe, YOLO, and OpenPose to ex-
tract precise body coordinates and compute movement metrics without 
manual intervention, making it more suitable for large-scale research 
applications.

Several Python libraries address mobility analysis from different 
perspectives. scikit-mobility and Trackintel focus on large-scale mobil-
ity modeling rather than detailed motion quantification [5,7], while

1 https://ai.google.dev/edge/mediapipe/solutions/guide
2 https://docs.ultralytics.com/es
3 https://github.com/CMU-Perceptual-Computing-Lab/openpose

MovingPandas enables spatial trajectory analysis but lacks integrated 
pose estimation [8]. Unlike these, PyBodyTrack extracts precise body 
coordinates and computes movement metrics in real-time.

In addition to software-based solutions, hardware-assisted systems 
have been developed for movement tracking. MOVE-HUMAN is a spe-
cialized system for three-dimensional human movement capture in 
workplace environments. It employs a stereo vision setup with two syn-
chronized digital cameras and custom software to reconstruct and an-
alyze worker movement, primarily for ergonomic risk assessments [9]. 
While effective for occupational studies, its dependence on dedicated 
hardware limits its accessibility. In contrast, PyBodyTrack requires only 
a video input, making it a more flexible solution applicable across 
diverse domains such as biomechanics, healthcare, and sports.

Compared to these existing solutions, PyBodyTrack stands out by 
offering a fully automated, deep learning-based, open-source approach 
to human movement quantification.

2. Software description

PyBodyTrack is a Python library for quantifying human body move-
ment from video frames, whether in real-time or pre-recorded. It uti-
lizes deep learning-based pose tracking to detect and monitor body 
landmarks without physical contact.

With a high-level interface, it allows developers to capture frames, 
apply pose estimation, extract body coordinates, and analyze move-
ment using built-in methods. PyBodyTrack is available via pip, released 
under the Apache 2.0 license, and its source code, examples, and 
documentation can be found on GitHub.

2.1. Software architecture

Fig.  1 illustrates the architecture of the PyBodyTrack library. This 
library consists of various modules, organized according to the required 
functionalities. These modules (or sub-modules) include:

(a) bodyparts. Defines body part specifications (e.g., nose, left 
knee) for different pose estimators (MediaPipe, YOLO, Open-
Pose) and groups landmarks into nine body regions.

(b) enums. Contains enumerated types for pose estimators and input 
modes (live capture or pre-recorded video).

(c) methods. Implements mathematical approaches for movement 
quantification.

(d) poseestimators. Provides pose tracking implementations for 
MediaPipe, YOLO, and OpenPose, encapsulated in classes for 
simplified usage.

(e) observer. Enables real-time movement quantification using an 
observer design pattern [10] to send results at predefined frame 
intervals.

(f) posetracker. Manages video capture and processing, abstracting 
complexities for developers.

(g) utils. Offers utility methods for dataframe cleaning, date han-
dling, and data extraction.

(h) BodyTracking. The core class for executing all functionalities, 
allowing users to specify capture mode, pose estimator, and 
real-time processing while abstracting technical complexities.

The use of PyBodyTrack or its integration into other systems is 
illustrated in the workflow shown in Fig.  2.

PyBodyTrack supports two data acquisition methods:
real-time recording from a camera or processing a pre-recorded video 
(1). The library iterates over video frames (2), applies a pose estimator 
(3) to extract movement data, and assigns a Unix Epoch timestamp to 
each entry. Supported pose estimators include MediaPipe, YOLO, and 
OpenPose.

Data capture operates in two modes (4): (1) Real-time processing, 
where information is transmitted every X frames (e.g., 24–30 fps), and
(2) Batch processing, where the entire video is analyzed at once.
2 
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Fig. 1. PyBodyTrack architecture.

Fig. 2. PyBodyTrack workflow.

The extracted data are preprocessed and stored in a Pandas
DataFrame (5), which serves as input for movement quantification 
methods (6). These methods fall into two categories: (1) distance-
based and (2) optical flow-based. Table  1 summarizes the supported 
methods, including their descriptions and main equations. Distance-
based methods, such as Euclidean distance, rely on simple calculations, 
whereas optical flow methods (Lucas–Kanade, Farnebäck) involve more 
complex processing.

Finally, each computational method provides a total movement 
value, which, when integrated with the DataFrame, enables further 
movement metric calculations (7), as detailed in Table  1.

2.2. Software functionalities

The library’s key features include:

• Two operation modes: real-time recording (camera) or playback 
(pre-recorded video). For video playback, a specific time inter-
val (start and end seconds) can be selected, avoiding manual 
trimming.

• Multiple pose estimators: Users can choose between YOLO, 
MediaPipe, and OpenPose, allowing flexibility in accuracy, speed, 
and computational requirements. Thus, PyBodyTrack does not 
evaluate the accuracy of these estimators, but rather uses their 
output directly for motion quantification.

• Custom landmark selection: Beyond full-body and predefined 
regions (e.g., torso, upper body), users can specify custom land-
marks, enhancing adaptability for diverse motion analysis needs.

• Nine movement quantification methods: Implemented as class 
methods with uniform input parameters, these methods oper-
ate independently of each other and the data source, allowing 
multiple applications for comparison across population groups.

• Real-time data access: An Observer pattern enables real-time 
subscription to processed data from video or camera sources. 
In real-time mode, the FPS depends on the camera and system 
performance, as PyBodyTrack processes frames as they arrive.

• Comprehensive output metrics: Provides total quantified move-
ment and raw movement data but also other useful metrics like 
a normalized movement index or the amount of movement per 
second.
3 
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Table 1
Summary of computational methods and movement metrics of PyBodyTrack.
 Mathematical Methods
 Method Description Equation  
 Euclidean 
Distance [11]

Measures the direct displacement 
between two points in a 
three-dimensional space.

𝑑𝐸 =
√

(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2  

 Manhattan 
Distance [12]

Calculates the total absolute 
difference between coordinates, 
following a grid-based path.

𝑑𝑀 = |𝑥2 − 𝑥1| + |𝑦2 − 𝑦1| + |𝑧2 − 𝑧1|  

 Chebyshev 
Distance [13]

Determines the maximum 
difference along any coordinate 
axis.

𝑑𝐶 = max{|𝑥2 − 𝑥1|, |𝑦2 − 𝑦1|, |𝑧2 − 𝑧1|}  

 Minkowski 
Distance [14]

Generalizes Euclidean and 
Manhattan distances with a 
parameter 𝑝.

𝑑𝑀 =
(

|𝑥2 − 𝑥1|
𝑝 + |𝑦2 − 𝑦1|

𝑝 + |𝑧2 − 𝑧1|
𝑝)1∕𝑝  

 Mahalanobis 
Distance [15]

Computes distance considering 
variable correlations using the 
covariance matrix.

𝑑𝑀𝐻 =
√

(𝐴 − 𝐵)𝑇𝑆−1(𝐴 − 𝐵)  

 Differential 
Acceleration 
[16]

Evaluates changes in acceleration 
of reference points across 
consecutive frames.

𝐷𝐴𝑐𝑐 =
∑𝑁

𝑖=1
∑

𝑑∈{𝑥,𝑦,𝑧} |𝐴
(𝑑)
𝑑𝑖𝑓𝑓 |  

 Angular 
Displacement 
[17]

Measures angular variation of 
reference points between 
consecutive frames.

𝐷𝐴𝑎𝑛𝑔𝑢𝑙𝑎𝑟 =
∑𝑁

𝑖=1
∑

|𝜃𝑖|  

 Lucas–Kanade 
[18]

A differential method for 
estimating optical flow based on 
spatial and temporal gradients.

𝐿𝐾 = (𝐴𝑇𝐴)−1𝐴𝑇 𝑏  

 Farnebäck [19] Estimates motion by analyzing 
optical flow based on pixel 
displacement.

𝐹 =
∑

𝑥,𝑦 |𝐅(𝑥, 𝑦)|  

 Movement Metrics
 MOS (Amount of 
Movement per 
Second)

Calculates the movement rate by 
dividing the total movement by 
the duration of the analyzed 
period.

MOS = 𝑀
𝑡𝑛−𝑡0

where 𝑀 is the total movement, and 𝑡𝑛 − 𝑡0
represents the duration of the analyzed period, 
with 𝑡0 being the initial timestamp and 𝑡𝑛 the 
final timestamp.

 

 MOF (Amount of 
Movement per 
Frame)

Computes the movement rate by 
dividing the total movement by 
the number of intervals between 
analyzed frames.

MOF = 𝑀
𝑁−1

where 𝑀 is the total movement, and 𝑁 − 1
represents the number of intervals between 
frames, with 𝑁 being the total number of 
frames.

 

 MOL (Amount of 
Movement per 
Landmark)

Computes the movement rate by 
dividing the total movement by 
the number of analyzed 
landmarks.

MOL = 𝑀
𝐿

where 𝑀 is the total movement, and 𝐿
represents the number of landmarks used in 
the analysis.

 

 NMI (Normalized 
Movement 
Index)

Computes the movement rate by 
dividing the total movement by 
the product of the analyzed 
period duration and the number 
of landmarks.

NMI = 𝑀
(𝑡𝑛−𝑡0 )⋅𝐿

where 𝑀 is the total movement, 𝑡𝑛 − 𝑡0
represents the duration of the analyzed period, 
and 𝐿 is the number of landmarks used in the 
analysis.

 

 RAM (Raw 
Amount of 
Movement)

The original movement value 
returned by the method.

 

3. Illustrative examples

This section presents four illustrative examples from different ap-
plication areas. MediaPipe was used as the pose estimator due to its 
comprehensive coverage and highest number of body landmarks (33 
vs. 16 in YOLO and 25 in OpenPose). Each example utilizes data from 
a specific dataset, which is indicated accordingly.

3.1. Motion quantification in sports applications

The movement was quantified for common gym exercises funda-
mental in sports. Videos from Kaggle datasets and YouTube [20,21] 
were used, covering plank, leg extension, bicep curl, skull crushers, 
bench press, chin-ups, military press, and squat. Each exercise included 
10 repetitions, except the plank, which was held for 10 s.

Relevant body landmarks were selected per exercise (e.g., torso and 
arms for bicep curls, full body for squats). Movement was measured us-
ing the Euclidean distance method with a smoothing filter and Kalman 
filters.

Fig.  3 shows processed frames and a bar chart of the normal-
ized movement index (NMI). As expected, the plank involved minimal 
movement, while squats had the highest. This quantification can aid 
in automatic repetition counting or, combined with biometric data, 
support calorie estimation

3.2. Movement quantification in daily activities

This example showcases PyBodyTrack’s ability to quantify move-
ment in daily activities like sitting and walking using data from [22]. 
4 
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Fig. 3. Movement quantification in sports applications.

Fig. 4. Movement quantification in daily activities.

Fig.  4 presents the activities and their normalized movement index 
(NMI) in a bar chart.

Movement was measured using the Euclidean distance method with 
a smoothing filter and Kalman filters.

Quantifying movement beyond sports (Example 1) has valuable 
applications in healthcare, such as monitoring motor function in reha-
bilitation, and in workplaces to assess task performance.

This approach allows contactless, device-free tracking, eliminating 
the need for wearable sensors like accelerometers, which have been the 
predominant trend in recent years [23].

3.3. Progress monitoring in preterm neonates

Neonatal progress is typically assessed through weight, size, and 
growth metrics, but recent studies suggest movement quantity could 
be an additional medical indicator [24].
5 
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Fig. 5. PyBodyTrack for movement quantification of preterm infants.

PyBodyTrack was applied to a preterm neonate at two time points 
— hospital admission and discharge — using data collected with the 
solution presented in [25], accessible via NeoVault [26].4

Videos from both time points were analyzed, selecting random 30-
second segments for processing. Fig.  5 displays frames after applying
PyBodyTrack.

The Chebyshev method yielded 4,221 movement units (NMI: 3.917) 
at hospital admission and 7,249 units (NMI: 5.12) at discharge, repre-
senting a 71.74% increase.

These results highlight a significant increase in movement over 
time, suggesting that PyBodyTrack could be a valuable tool in hospital 
settings.

Listing 1 illustrates its application in this case.

Listing 1: Example of using PyBodyTrack for movement quantification 
in neonates.

1 import threading, time
2 from pybodytrack.BodyTracking import BodyTracking
3 from pybodytrack.enums.PoseProcessor import

PoseProcessor
4 from pybodytrack.bodyparts import body_parts as bp
5 from pybodytrack.enums.VideoMode import VideoMode
6 from pybodytrack.methods.methods import Methods
7

8 # Define the video path
9 video = "PATH TO VIDEO"
10

11 # Initialize BodyTracking using Mediapipe in VIDEO
mode with standard landmarks (whole body)

12 bt = BodyTracking(
13 processor=PoseProcessor.MEDIAPIPE, mode=

VideoMode.VIDEO,
14 path_video=video, selected_landmarks=bp.

STANDARD_LANDMARKS
15 )
16 bt.set_times(10, 40) # Set start and end times in

seconds
17

18 # Create and start the tracking thread
19 t = threading.Thread(target=bt.start, kwargs={})
20 t.start()
21

22 try:
23 # Main thread loop: wait while tracking is active
24 while t.is_alive():
25 time.sleep(1)
26 except KeyboardInterrupt:
27 print("Stopping tracking...")

4 https://conversational.ugr.es/neovault

28 finally:
29 # Stop tracking and ensure the thread is properly

joined
30 bt.stop()
31 t.join()
32 if t.is_alive():
33 print("Tracker thread still alive. Force

stopping...")
34 bt.stop()
35 ’’’
36 Note: The use of threads is not mandatory with

PyBodyTrack in video mode (only in real-time),
but it speeds up processing and visualization.

37 ’’’
38 # Retrieve data and compute movement metrics
39 df = bt.getData()
40 m = Methods.chebyshev_distance(df, filter=True,

distance_threshold=2.0)
41 n = bt.normalized_movement_index(m, len(bp.

STANDARD_LANDMARKS))
42 print("Raw movement:", m, "- NMI:", n)

3.4. Real-time fall detection

This example demonstrates PyBodyTrack for real-time fall detection 
using a camera. A 3.5-year-old child simulated a fall to test the system’s 
effectiveness.

The Euclidean distance method was applied with a Kalman filter 
but without smoothing (threshold: 0 units). Movement was quantified 
every 8 frames, yielding three data points per second.

Fig.  6 displays movement data over time alongside the child’s 
postural state during the simulation.

Extrapolating this example, PyBodyTrack could be highly useful for 
fall detection in the elderly and for continuous movement monitoring 
in rehabilitation sessions.

Since real-time quantification in PyBodyTrack relies on the Observer 
component, a subclass was implemented to demonstrate its use. List-
ing 2 illustrates how PyBodyTrack captures and processes real-time 
movement data.

Listing 2: Example of real-time capture and processing with 
PyBodyTrack for fall detection.

1

2 import json, threading, time, pandas as pd
3 from pybodytrack.BodyTracking import BodyTracking
4 from pybodytrack.enums.PoseProcessor import

PoseProcessor
5 from pybodytrack.bodyparts import body_parts as bp
6 from pybodytrack.enums.VideoMode import VideoMode
7 from pybodytrack.methods.methods import Methods
6 
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Fig. 6. PyBodyTrack applied to real-time fall detection.

8 from pybodytrack.observer.Observer import
Observer

9

10 # Global list to store results
11 res_json = []
12

13 class CustomObserver(Observer):
14 def __init__(self, block_size=30):
15 super().__init__()
16 self.pkg_count = 0 # Counter for processed

frames
17 self.block_size = block_size # Number of

frames per block
18

19 def handleMessage(self, msg):
20 # If new landmark data is received, process it

in a new thread
21 if msg.what == 1:
22 threading.Thread(target=self.

processBuffer, args=(msg.obj,), daemon=True).
start()

23 else:
24 print("Error:", msg.obj)
25

26 def processBuffer(self, block):
27 # Convert the incoming block to a DataFrame
28 df = pd.DataFrame(block)
29 # Update the package counter with the block

size
30 self.pkg_count += self.block_size
31 # Compute the Euclidean distance as a movement

measure
32 mv = Methods.euclidean_distance(df, filter=

True, distance_threshold=0.0)
33 # Normalize the movement index using the

number of standard landmarks
34 nmi = body_tracking.

normalized_movement_index(mv, len(bp.
STANDARD_LANDMARKS))

35 # Append the result with time, movement, and
normalized movement index to the global
results

36 res_json.append({"time": self.pkg_count, "
movement": mv, "nmi": nmi})

37

38 # Set up body tracking for fall detection using a
camera

39 output = "results_falldetection.json"
40 body_tracking = BodyTracking(
41 processor=PoseProcessor.MEDIAPIPE, mode=

VideoMode.CAMERA,
42 path_video=None, selected_landmarks=bp.

STANDARD_LANDMARKS
43 )
44 fps = 8 # Frames per second
45 observer = CustomObserver(block_size=fps)
46 observer.startLoop() # Start the observer loop
47

48 # Start body tracking in a separate thread, passing
the observer and fps

49 t = threading.Thread(target=body_tracking.start,
kwargs={’observer’: observer, ’fps’: fps})

50 t.start()
51

52 try:
53 # Main thread idle loop while tracking is active
54 while t.is_alive():
55 time.sleep(1)
56 except KeyboardInterrupt:
57 print("Stopping tracking...")
58 body_tracking.stop()
59 finally:
60 # Ensure tracking stops and the thread is

properly joined
61 body_tracking.stop()
62 t.join()
63 if t.is_alive():
64 print("Force stopping...")
65 body_tracking.stop()
7 
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66

67 # Write the results to a JSON file
68 with open(output, "w", encoding="utf-8") as f:
69 json.dump(res_json, f, indent=4)

4. Impact

Position estimation methods based on computer vision are highly 
powerful tools for acquiring body movement data without physical 
contact, whether in real time or from pre-recorded videos. Currently, 
numerous studies explore these techniques, as the extracted data have 
a wide range of applications, including healthcare, sports, daily activity 
monitoring, and any field where human motion analysis is relevant [27,
28].

This work introduces PyBodyTrack, a library that simplifies and 
enhances movement estimation and quantification. It allows for the 
analysis of either the entire body or specific regions using various 
mathematical approaches, both from pre-recorded videos and real-time 
sources. Its primary goal is to provide a set of objective, numerical 
motion metrics to support applications in different professional do-
mains. To illustrate its potential, four case studies have been conducted 
in different contexts: sports activity monitoring, daily task analysis, 
neonatal development assessment, and fall detection. These examples 
highlight its versatility and ease of use. It is important to note that, 
for the presented case studies — and for any potential new application 
— a preliminary calibration phase was necessary to select the most 
appropriate combination of analysis parameters. This phase involves 
testing different methods, time windows, and body regions using rep-
resentative examples from the target context. Such calibration ensures 
that the resulting movement quantification is meaningful and adapted 
to the specific characteristics of each use case.

PyBodyTrack is the first open-source library designed to quantify 
movement without requiring prior knowledge of pose tracking or com-
puter vision. In addition to integrating multiple motion estimation 
methods, it allows users to customize the analyzed body regions and 
apply advanced data-processing filters. The library incorporates three 
position estimators (MediaPipe, OpenPose, and YOLO) and provides 
configurable options that combine different analytical approaches (Eu-
clidean, Chebyshev, Farnebäck), body region selection (full body, torso, 
limbs), and specific filters (threshold distance, Kalman filter parame-
ters). This flexibility enables motion quantification optimization based 
on the target population or activity under study.

One known limitation is that distance-based quantification methods 
may be sensitive to the subject’s distance from the camera, as pose 
estimators typically return coordinates in pixel space. To address this, 
users are encouraged to maintain a fixed camera–subject distance or ap-
ply normalization techniques based on body proportions (e.g., shoulder 
width). Incorporating such variations during the calibration phase can 
also help ensure stable and meaningful measurements across different 
scenarios.

On the other hand, it is also worth noting that the evaluation 
of PyBodyTrack’s performance should be adapted to each application 
domain. Comparative validation should consider population-specific 
benchmarks—for example, using the General Movements Assessment
(GMA) for neonates [29] or functional mobility tests like the Timed Up 
and Go (TUG) test for older adults [30].

Due to its seamless integration with third-party software and broad 
applicability, PyBodyTrack has the potential to make a significant im-
pact. It can be used both as a standalone tool for researchers and 
developers and as an integrated component in independent applications 
aimed at human motion analysis.

This library is part of the doctoral research of one of the authors. 
Initially, the project focused on neonatal movement quantification as 

an indicator of favorable development within the European project 
PARENT.5 Over time, the research evolved into the current version of
PyBodyTrack, expanding its applicability and scope.

5. Conclusions

PyBodyTrack is an open-source Python library designed to quantify 
movement in specific activities using a set of objective metrics. The 
library supports both real-time analysis via a camera and the process-
ing of pre-recorded videos. It enables motion capture using different 
pose estimators, provides multiple adjustable movement quantification 
methods, and allows the selection of specific body regions for analysis.

Beyond its core functionality, PyBodyTrack is designed to be used 
either as a standalone tool or integrated into other solutions, allowing 
developers to incorporate motion capture and quantification capabil-
ities without prior knowledge of computer vision. As an open-source 
tool, it also offers users the flexibility to modify or adapt it to specific 
use cases, including adding new mathematical methods or integrating 
additional pose estimators.

PyBodyTrack has been successfully validated in four different ap-
plication scenarios, demonstrating its potential across various fields. 
Currently, we are working on expanding its capabilities, including 
motion analysis based on angle variations between body segments, as 
well as identifying new successful applications to further validate its 
usefulness and impact. In addition, we plan to incorporate qualitative 
analysis features into the library, enabling the detection of human 
behavior and more complex movement patterns.
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