accim: a Python library for adaptive setpoint temperatures in building performance
simulations

Daniel Sanchez-Garcial’, David Bienvenido-Huertas? and William O’Brien®

1Grupo Termotecnia, Higher School of Engineering, University of Cadiz, Cadiz, Spain

2Department of Building Construction, University of Granada, Granada, Spain

3Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario, Canada
*Author to whom correspondence should be addressed,;

Abstract

Building performance simulations (BPS) can be used to estimate the energy required to deliver indoor
environmental conditions acceptable for the occupants. Although the adaptive approach has been historically
addressed only to naturally-ventilated spaces, recent research has found it could also be applied to air-conditioning
spaces. Thus, it is possible to use setpoint temperatures based on adaptive comfort models as energy saving
measures. This study presents a seamless methodology based on the use of accim, an open-source software tool
to automate the use of adaptive setpoint temperatures in building performance simulations. accim allows to use
script-based workflows to perform all actions within the development of a simulation-based thermal comfort study.
A case study is used to demonstrate the capabilities of accim. The results show accim provides a wide range of
new possibilities for developing studies related to the energy implications of adaptive thermal comfort.

Keywords: adaptive thermal comfort; building performance simulation; adaptive setpoint temperatures;
computational approach; Python

1. Introduction
1.1. Research context

Building performance simulation (BPS) is being used more and more often throughout the life of a building for
energy saving measures and building energy consumption analysis, among others. It has become more important
in the formulation of regulations that support the goal of lowering energy usage and emissions in the construction
industry, as well as in the design and operation of low energy, high performance buildings (Hong, Langevin, and
Sun 2018). Building energy modelling software programmes may generally be divided into: (i) software programmes
with built-in simulation engines, such as EnergyPlus (Crawley et al. 2001), TRNSYS (Beckman et al. 1994) or ESP-
r (University of Strathclyde 2002); (ii) Graphical User Interfaces for some specific simulation engine, such as
eQUEST (Hirsch), Designbuilder (DesignBuilder Software Ltd 2021), OpenStudio (Guglielmetti, Macumber, and
Long 2011) or Modelkit (Big Ladder Software Ltd) among others; (iii) parametric and optimisation tools, such as
jEplus (Yi) and GenOpt (Wetter 2001); and (iv) plugins that provide specific performance analysis for other
applications, such as the Python package eppy (Santosh et al. 2004), MLE+ (Bernal et al. 2012), EpXL (Schild) or
Ladybug Tools (Roudsari) among others.

Computational repeatability, reproducibility and replicability has grown more crucial to academics, designers, and
practitioners as BPS gets more integrated into various elements of the design of architecture and the procedures
involved in making decisions. The lack of a computational environment containing crucial software and applications
to conduct it, as well as a workflow in which BPS and data analysis are integrated, are the major causes of issues
in simulation reproducibility. There are currently very few instances in the literature that address how to do
reproducible research in the BPS area.

Also, it is important to consider not just the energy type but also the way buildings are used (Allouhi et al. 2015). To
address this need, adjustments in setpoint temperatures have been considered as a widespread energy saving
measure (Monge Palma et al. 2023; Hoyt, Arens, and Zhang 2015). As a means of promoting natural gas
independence, several governments, notably the Greek and Spanish ones, restricted the heating setpoint
temperatures to 19 and the cooling setpoint temperatures to 27°C in August 2022. This may be the most recent
example of setpoint temperature adjustments made to conserve energy. Also, the Danish government adopted
heating-setpoint energy-saving policies for public buildings, that fixed it at 19°C. Within this research field, adaptive
comfort models have recently been introduced as a strategy for incorporating buildings' resilience into decreased
energy usage, especially when considering climate change scenarios. According to the requirements of ASHRAE
55 (ANSI/ASHRAE 2020) and EN16798-1 (European committee for standardization 2019) and based on 1998 de
Dear’s and Brager’s first regression model (de Dear and Brager 1998), adaptive comfort models are appropriate
exclusively for spaces with natural ventilation, given these must also be non-cooled/non-heated spaces. However,
certain considerations must be given. Since there were so few mixed-mode (MM) building information in the initial
RP-884 database, the 1998 research lacked enough information on them to draw any firm conclusions. Some
studies previously shed light on the reconciliation of adaptive comfort and air-conditioning (Yun, Lee, and Steemers

2016; Mui and Chan 2003). Also, after the development of the ASHRAE Global Thermal Comfort Database Il
(Foldvary Licina et al. 2018), Parkinson et al. (Parkinson, de Dear, and Brager 2020) re-examined the original
ASHRAE adaptive model in 2020 considering this larger database. All three types of buildings, that is air-
conditioned (AC), naturally-ventilated (NV), and mixed-mode (MM), showed outstanding concordance with the
adaptive model when the independent variable was inside temperature instead of outside temperature. This led to
an evaluation of the constraints related to the adaptive comfort models in MM and AC constructions to be
reevaluated. The results from 1998 could only agree with the 2020 re-evaluation if the significant association
between the internal and exterior temperatures in NV spaces was acknowledged. Therefore, what the 1998
research understood to be an adaptation to the exterior environment was an adaptation to the indoor environment,
which in turn, was closely related to the outdoor environment. As such, the use of adaptive setpoint temperatures
(Sanchez-Garcia, Rubio-Bellido, et al. 2019) may help to achieve thermal comfort.

Adaptive setpoint temperatures can be explained as setpoint temperatures that take the values of the adaptive
comfort limits, therefore making sure the temperature falls within adaptive comfort zone all the time the HVAC
system is active, but with an energy consumption lower than the resulting from PMV-based ones. These have been
applied using:

0] very basic methods, such as the manually separate simulation of each month and the later merge of
results to obtain the simulation throughout the year (Sanchez-Guevara Sanchez, Mavrogianni, and
Neila Gonzalez 2017), in which ASHRAE’s simplified monthly mean prevailing mean outdoor
temperature method for the calculation of the adaptive comfort limits was used instead of the daily
weighted-mean method;

(ii) intermediate methods, which could use the daily weighted-mean prevailing outdoor temperature, but a
time-consuming, difficult, and error-susceptible manual process that involved the following steps
needed to be carried out (Sanchez-Garcia, Bienvenido-Huertas, et al. 2019): setpoint temperatures
were first calculated using an Excel spreadsheet; an Schedule:Compact object had to be created, so
that setpoint temperatures could be pasted in it; the EPW file for the location in question was chosen;
and finally, the adaptive setpoint simulation for each pair of setpoints and climate zone was run. The
handling of other files was also necessary. Besides, each time an adaptive setpoint temperature (AST)
and EnergyPlus Weather (EPW) file were combined, which might be hundreds or thousands of times,
this procedure had to be repeated.

There are also some studies in which adaptive setpoint temperatures were applied, however the method was not
described (Wang, Pattawi, and Lee 2020; Kramer et al. 2015; Dhaka, Mathur, and Garg 2012). Then, methods
progressed using the Energy Management System (EMS) module of EnergyPlus, that could automate some parts
of that process, which led to the development of the Adaptive-Comfort-Control-Implementation Script (ACCIS)
(Sanchez-Garcia, Martinez-Crespo, et al. 2023). This EMS script allows the calculation of the adaptive comfort limit
values and implementation on the adaptive setpoint temperatures as simulations are run. Also, the user can
customise the adaptive setpoint temperature using different arguments, which allow the user to select the comfort
model, acceptability levels as well as certain parameters related to mixed-mode, such as minimum outdoor
temperature or maximum wind speed (Sanchez-Garcia, Martinez-Crespo, et al. 2023). Nonetheless, there were
still some tasks that remained manual, mainly related to existing elements in the model, which could not be
automated with EMS. These tasks were automated with a Python parser for EnergyPlus building energy models,
named eppy (Santosh et al. 2004), which allows to translate objects into lists. As a result, the Python package
named accim (Sanchez-Garcia, Bienvenido-Huertas, and Rubio-Bellido 2021) was developed, which allowed to
fully automate the implementation of adaptive setpoint temperatures.

The main use of accim is the implementation of adaptive setpoint temperatures as energy-saving measures. These
are especially relevant to two topics: (i) energy poverty, since vulnerable households (those whose energy
consumption is below half of the median) usually minimise the use of air-conditioning units and use natural
ventilation instead, and therefore are more suitable for adaptive comfort conditions (Bienvenido-Huertas, Sanchez-
Garcia, Rubio-Bellido, and Pulido-Arcas 2021; Bienvenido-Huertas, Sanchez-Garcia, Rubio-Bellido, and Marin-
Garcia 2021; Bienvenido-Huertas, Sanchez-Garcia, and Rubio-Bellido 2021); and (ii) climate change, given the
need to reduce the building energy consumption to help its mitigation, and the adaptation of human being to warmer
environments. An example of the former, is the application of adaptive setpoint temperatures based on the
EN16798-1 considering all occupant expectations, which led to energy poverty reductions ranging between 43%
for Category | and 98.5% for Category Il in Seville (Bienvenido-Huertas, SAnchez-Garcia, and Rubio-Bellido 2021).
An example of the latter is the use of accim to analyse energy savings based on the use of an adaptive local comfort
model for Japan compared to the international ASHRAE 55 adaptive model in present and future scenarios. accim
simplified the creation of tables and figures to present these results. The findings revealed that total energy demand
decreased by 18% to 91% in cold climate zones but increased by 17% to 51% in warm climate zones, depending
on the specific Representative Concentration Pathway scenario (Sanchez-Garcia, Bienvenido-Huertas, et al. 2023).

1.2. Research gap

The fields of adaptive thermal comfort and building energy efficiency have evolved largely independently, with
extensive research dedicated to each. Adaptive thermal comfort studies focus on optimizing occupant satisfaction,
while energy efficiency research emphasizes reducing energy consumption and greenhouse gas emissions in
buildings. However, there is a notable lack of studies that integrate these two domains to explore their
interdependencies systematically.

The use of adaptive setpoint temperatures offers a potential solution for reconciling thermal comfort and energy
efficiency objectives. By adapting setpoint temperatures to align with comfort models, this approach aims to balance
occupant satisfaction with energy savings. Despite its potential, the practical application of adaptive setpoint
temperatures has been hindered by fragmented methodologies. Tools like ACCIS have automated portions of the
process, but the overall workflow—spanning data preparation, simulation, and analysis—remained largely manual
and inconsistent.

This fragmentation highlights a critical gap in the literature: the lack of a unified methodology to seamlessly integrate
adaptive thermal comfort and energy efficiency studies. Addressing this gap is essential to advance both fields and
to enable more efficient and reproducible research at the intersection of comfort and energy performance.

1.3. Research aim

Thus, there is a necessity of procedures to ease the development of studies considering adaptive thermal comfort
and energy demand. This Python library aims to fill this gap, not only by providing the tools, but also a seamless
methodology to efficiently automate the entire process. This library has been partially presented in two previous
studies: in the first one, the module used to apply the adaptive setpoint temperatures in the building energy models
was explained (Sanchez-Garcia, Bienvenido-Huertas, and Rubio-Bellido 2021), which only represents a step of
the entire process; then, in the second one, the EMS code was explained in a deeper level (Sanchez-Garcia,
Martinez-Crespo, et al. 2023), in which the interactions among the objects were described.

However, the present paper expands the scope to capture the entire simulation process, and bases its originality
statement in the following points: (i) it presents an overview of accim, considering the remaining modules not
previously presented, (ii) provides a seamless Python-based methodology to ease the development of energy and
thermal comfort studies, and (iii) demonstrates its capabilities providing an example of adaptive comfort and energy
demand study from preparation of data to analysis and visualization of results.

As a result, this study introduces a Python-based approach that fully automates the adaptive setpoint simulation
process, integrating key steps such as weather data preprocessing, adaptive setpoint application, simulation
execution, and result analysis. Section 2 firstly presents an overview of the modules for data analysis, simulations
and implementation of adaptive setpoint temperatures, and secondly describes the case study used in this work.
Section 3 firstly describes the application of the methodology; secondly, analyses the results of the case study and
lastly compares accim to the main alternative method. Section 4 discusses the results and Section 5 describes the
limitations.

2. Methodology
2.1. Modules for data analysis, simulations and implementation of adaptive setpoint temperatures

The Python package accim is mainly composed of three modules: accim.data, accim.sim and accim. run.
The structure and use of the main user-callable classes, methods and functions of the project are:

e data
o data preprocessing
* rename epw files: prior to simulation, the EPW files need to be formatted to follow a
certain file name pattern. This is necessary for the later analysis of the CSV files resulting

from simulation, considering variables such as city and climate change future scenario.
o data postprocessing

» Table: allows to read the CSV files and generate a pandas DataFrame instance.

e format table: allows to filter the columns of the DataFrame instance.

e scatter plot:generates a PNG file containing a scatter plot based on multiple
arguments.

e scatter plot with baseline:similarto method scatter plot, butallows
to compare some specific variant with the others.

e time plot:generates a PNG file containing a line plot with time on the x-axis.

e wrangled table: allows to perform multiple reshaping methods to obtain
summary tables.

e sim
o accis

» addAccis: used to apply adaptive setpoint temperatures based on multiple input
arguments.
° run
O run
* runEp: used to automatically run simulations and generate results in suitable format.

Although the classes, methods and functions have been briefly explained above, a more detailed description can
be found in Appendix A. When all of these are used, a seamless and script-based methodology can be carried
out to automatically perform all actions required to develop a study based on adaptive setpoint temperatures.

2.2. Case study

In this work, a case study is presented to demonstrate the capabilities of accim. The full process, from data pre-
processing to data analysis is carried out. In this case study, the aim is the analysis of energy demand resulting
from the use of adaptive setpoint temperatures based on a local adaptive comfort model for office buildings in India,
named IMAC-C (Manu et al. 2016), and the comparison with ASHRAE 55 adaptive model and static setpoints from
the Indian Building Code (Bureau of Indian Standards 2016), in different operation modes. In this study, 2 different
locations, a present and a future scenario, are considered, resulting in 4 different EPW files (Table 1).

The building energy model used is the 2018 IECC DOE Commercial Reference Building Prototype Small Office
(U.S. Department of Energy 2023) (Table 1). It has 6 thermal zones: a thermal zone in the centre of the building
(CORE_ZN), surrounded by 4 thermal zones (PERIMETER_ZN _1 to 4), all of them air-conditioned and located on
the ground floor, and a non-air-conditioned attic (Figure 1). Since this is a well-known model, no further details are
provided, however these are available online in (U.S. Department of Energy 2023).

Some of the objectives of this case study include the simulation considering MM, something that accim performs
with Airflow Network objects, so that natural ventilation is calculated considering wind pressure coefficients among
other factors instead of the assumption of a natural ventilation flow rate based on a schedule. However, the original
building energy model from DOE do not consider such objects, and therefore have been imported to DesignBuilder
and then exported to account for them. The MM used in accim is change-over, and therefore do not allow air-
conditioning and natural ventilation to be used at the same time. Specifically, windows are opened when all the
following conditions are met at each simulation timestep:

¢ If no heating and no cooling are needed

o if outdoor temperature < min outdoor temperature; min outdoor temperature is calculated using a delta
value from the heating setpoint temperature, and it is used to prevent from introducing air excessively
cold. So, for instance, if that delta value was set to 5 and heating setpoint was 18°C, when outdoor
temperature fell below 13°C windows would be closed.

o if outdoor temperature < operative temperature

o if wind speed < max wind speed; max wind speed is set as a value, which when exceeded, windows are
closed to prevent from introducing high-speed airflows

o if operative temperature < cooling setpoint temperature

o if operative temperature > ventilation setpoint temperature (VST, usually equal to the neutral or comfort
temperature)

Table 1: Input files.

Extension Filename
Current_Ahmedabad-hour.epw
Current_Shimla-hour.epw
RCP852100_Ahmedabad-hour.epw
RCP852100_Shimla-hour.epw

IDF SmallOffice_ NewDelhi.idf

EPW: EnergyPlus Weather file

IDF: Input Data File

EPW

(a) (b)

Figure 1. 2018 IECC DOE Commercial Reference Building Prototype Small Office. (a) View of thermal zones. (b)
Overall view.

3. Use of the methodology

In this section, the case study is carried out using the proposed methodology based on the use of accim. Firstly,
the process is briefly explained, focusing on input and outputs. Secondly, the results of the case study are analysed.
Lastly, the proposed methodology is compared with other alternative methods.

3.1. Applying the methodology

The process for this study comprises three main phases: data pre-processing, running simulations, and data
analysis, each carefully designed to ensure a systematic and accurate investigation of building performance under
varying conditions (Figure 2). A detailed version of this section is available in Appendix B.

The first phase, data pre-processing, involves organizing and preparing the required input files. EPW files are
renamed using a structured format that reflects their geographic location, representative climate scenario, and time
frame (Table 2). This ensures that the files are not only easy to identify but also compatible with subsequent
simulation tools. User interaction plays a crucial role during this step, as the system proposes new names based
on extracted metadata, and the user must validate or amend these suggestions. In parallel, adaptive setpoint
temperatures are incorporated into the building model files. This adjustment generates multiple versions of building
Input Data Files (IDFs), representing different adaptive scenarios (Table 3). The output IDFs are named based on
the settings input by the user and described in Table 4.

Table 2: Input and output EPW files.

Extension Input Output
Current_Ahmedabad-hour.epw India_Ahmedabad_Present.epw
Current_Shimla-hour.epw India_Shimla_Present.epw
EPW

RCP852100_Ahmedabad-hour.epw India_Ahmedabad_RCP85-2100.epw

RCP852100_Shimla-hour.epw India_Shimla_RCP85-2100.epw

Table 3: Input and output IDF files.

Output

Extension
Input

SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_2[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X.idf

SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_1[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X.idf

SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X.idf

SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_O[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X.idf

IDF
SmallOffice_ NewDelhi

SmallOffice_NewDelhi[CS_INT ASHRAES5[CA_80[CM_3[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X.idf

Table 4: Description of output IDF files.

o - 3 c
G o <] S €
E 5 < = S
o (@} Z [a) <
HM_2 adaptive setpoints bgsec! on !MAC-_C horlzontally extended beyond IND_Adap_MM
applicability limits, in MM operation
CM 3 HM_1 adaptive setpoints b?sed_lgn II_MAC-_C horlzontall_y extended beyond Ind_Adap_NV
CS IND IMAC C NV ‘ _ applicability limits, in NV‘operatlon
- adaptive setpoints based on IMAC-C horizontally extended beyond
HM_0 ASEC O IVIAL- . IND_Adap_AC
applicability limits, in AC operation
CM_0 HM_0 PMV-based or nearly s_tatlc setpo_lnt temperatgres based on Indian IND_Stat_AC
Building Code, in AC operation
CS_INT ASHRAES5 ~ CM_3 HM_0 adaptive setpoints based on ASHRAE 55 horizontally extended beyond ASH_Adap_AC

applicability limits, in AC operation

In the second phase, running simulations, the prepared input files are used to execute building performance
simulations. This step involves systematically combining the modified building models with the formatted climate
data to simulate a variety of scenarios. Each simulation run generates a unique output file that reflects the interplay
of climatic conditions and adaptive building strategies. In this case study, the process resulted in twenty distinct
simulations, derived from combinations of five building models and four climate scenarios. The simulations were
executed automatically, leveraging predefined parameters to ensure consistency and minimize manual intervention.
The output files generated during this phase form the foundation for subsequent analysis, encapsulating detailed
information about energy demand and indoor thermal conditions for each scenario. The simulation outputs are
stored in a structured format to facilitate streamlined analysis in the next phase.

The final phase, data analysis, involves interpreting the simulation results through both quantitative and visual
methods. The energy demand data is first organized into comprehensive tables, highlighting the performance
differences among various adaptive strategies. These tables not only summarize energy consumption but also
calculate energy savings achieved through adaptive measures, offering valuable insights into their efficiency under
different conditions. Beyond tabular data, visualizations play a pivotal role in conveying the findings. Scatter plots
and time-series graphs are used to illustrate the relationships between adaptive strategies, energy demand, and
indoor comfort levels. These visual tools help uncover patterns, such as the effectiveness of adaptive cooling
strategies in reducing energy use while maintaining comfort.

In conclusion, based on input files (i.e. EPW and IDF files) and using the script-based methodology, the tool
provides insights into the comparison of different adaptive approaches, revealing these influence energy
performance and occupant well-being across diverse climates and scenarios. These insights are presented in the
next section.

Input: Input:

2 EPW files IDF files
@
wv)
[}
8 Class: Class:
= rename_epw_files(...) addAccis(...)
s
o ¥
0 a Output/Input: QOutput/Input:
—————————— Formatted - IDFs with adaptive -
w EPW files setpoint temperatures
c
e
=
E g Function:
c runkp(...)
5 E
o wv
________________ Output/Input: e
CSV files
2
@
Q= Class:
©
“ra‘ = Table(...)
0O <

Method:
format_table(...)

Method: Method: Method: Method:
wrangled_table(...) scatter_plot(...) scatter_plot_with_baseline(...) time_plot(...)

Legend l \.L./

Output: QOutput:

_ Excel file PNG file
containing the containing

| Input/Output wrangled table the figure

Figure 2. Overall process for the development of the case study

3.2. Results of the case study

The results of the study, if arranged in table format, contains data on energy demand for each simulation, as well
as the comparison of these in terms of energy saving. In this case, for clarity purposes, that table has been divided
into Table 5 and Table 6.

Table 5 presents absolute energy demand values, revealing significant differences across adaptive and static
strategies under varying climatic conditions. In Ahmedabad, the static setpoint configuration (IND_Stat_AC) exhibits
the highest cooling energy demand, with 283.83 kWh/m? in the present scenario. In contrast, IND_Adap_MM
reduces this demand to 122.32 kWh/mz, reflecting its superior performance. Under future climatic conditions
(RCP85-2100), IND_Adap_MM continues to outperform, reducing energy demand to 190.9 kWh/m?, compared to
340.09 kWh/m? for IND_Stat_AC. Similarly, in Shimla, IND_Adap_MM demonstrates its efficiency by achieving
cooling energy demands as low as 48.78 kWh/m2 (present scenario) and 75.88 kWh/m2 (RCP85-2100). These
results emphasize the versatility of IND_Adap_MM in optimizing energy consumption across diverse climatic
contexts.

Table 6 offers a comparative analysis of energy savings achieved by mixed-mode adaptive settings
(IND_Adap_MM) relative to other configurations, including both static (IND_Stat AC) and air-conditioned adaptive
(IND_Adap_AC and ASH_Adap_AC) settings. Savings are presented as percentages, with positive values
indicating reductions and negative values reflecting increases in energy demand. For clarity purposes, the
calculation of the percentages is shown for each setting in cooling, heating and total energy demand (i.e. 1-
(IND_Adap_MM/IND_Stat_AC)). For cooling demand in Ahmedabad, savings with IND_Adap_MM range from 44%
to 57% in the present scenario, depending on the baseline configuration, and from 24% to 44% under the RCP85-
2100 scenario. Similarly, in Shimla, IND_Adap_MM achieves cooling energy savings ranging from 68% to 71% in
the present scenario and from 60% to 62% under RCP85-2100. These values emphasize the adaptability of
IND_Adap_MM, consistently delivering significant reductions in cooling demand across diverse climates and future
projections.

The negative values observed in Table 6 correspond to increases in energy demand, primarily in heating scenarios.
For instance, IND_Adap_MM shows a slight increase in heating demand compared to IND_Stat AC in Shimla
(10.42 kWh/m2 vs. 6.62 kWh/m?). This increase results in a percentage change of -57%, which appears significant
but is inconsequential due to the very small absolute values involved. Such variations, while mathematically notable,
have negligible practical implications given the low heating energy demands in these scenarios.

Overall, the results in Table 5 and Table 6 confirm that IND_Adap_MM offers substantial energy savings across
different settings, particularly in cooling demand, which is a critical factor in hot climates. The strategy demonstrates
remarkable adaptability, ensuring reduced energy consumption and enhanced indoor comfort even under extreme
climate projections. These findings reinforce the importance of adopting IND_Adap_MM as a cornerstone of
sustainable building practices, particularly in the face of evolving climate challenges.

Table 5. Simulation results (part I): energy demand values.

EPW_City_or_subcountry Ahmedabad Shimla
EPW_Scenario Present RCP85 Present RCP85
EPW_Year Present 2100 Present 2100

IND_Stat_AC 283.83 340.09 151.41 200.27
Building_Total_Cooling |ND Adap_AC 217 250.84 167.47 191.53
(k&v%?;?g)?su%anqu) IND_Adap_MM 122.32 190.9 48.78 75.88

ASH_Adap_AC 250.7 291.64 163.01 199.53

IND_Stat_AC 0 0 6.62 1.08
Builgrg_g';oéagEﬂﬁzting IND_Adap_AC 0 0 0.04 0
(kWh/m2) (summed) IND_Adap_MM 1.08 0.09 10.42 2.44

ASH_Adap_AC 0 0 0.61 0

IND_Stat_AC 283.83 340.09 158.03 201.35
Building_Total_Total IND_Adap_AC 217 250.84 167.52 191.53
(k\fv’;?;?%’)?su%anqu) IND_Adap_MM 123.39 191 59.0 78.33

ASH_Adap_AC 250.7 291.64 163.62 199.53

Table 6. Simulation results (part I1): energy saving.

EPW_City_or_subcountry Ahmedabad Shimla
EPW_Scenario Present RCP85 Present RCP85
EPW_Year Present 2100 Present 2100
. 0.57 0.44 0.68 0.62
Building_Total_Cooling 1-(IND_Adap_MM/IND_Stat_AC)
Energy Demand (%) 1-(IND_Adap_MM/IND_Adap_AC) 0.44 0.24 0.71 0.6
(summed) 1-(IND_Adap_MM/ASH_Adap_AC) 0.51 0.35 0.7 0.62
. -inf -inf -0.57 -1.26
Building_ Total_Heating 1-(IND_Adap_MM/IND_Stat_AC) fn fn .
Energy Demand (%) 1-(IND_Adap_MM/IND_Adap_AC) -inf -inf -233.02 -inf
(summed) 1-(IND_Adap_MM/ASH_Adap_AC) -inf -inf -16.09 -inf
Building_Total Total 1-(IND_Adap_MM/IND_Stat_AC) 0.57 0.44 0.63 0.61
Energy Demand (%) 1-(IND_Adap_MM/IND_Adap_AC) 0.43 0.24 0.65 0.59
(summed) 1-(IND_Adap_MM/ASH_Adap_AC) 051 0.35 0.64 0.61

-inf: infinite, resulting from division by zero

The performance outcomes of adaptive setpoint strategies in building energy simulations are also depicted in Figure
3, Figure 4 and Figure 5, offering valuable insights into energy demand and indoor comfort dynamics across various
scenarios. These figures highlight the comparative advantages of IND_Adap_MM against other configurations while
illustrating patterns and relationships critical for understanding energy-saving potential and thermal performance.

These trends are shown in Figure 3, which organizes data by setpoint settings and climatic scenarios. The figure
highlights the ability of adaptive strategies like IND_Adap_MM to reduce energy use while maintaining indoor
comfort, allowing temperatures to fluctuate within acceptable ranges. For instance, in Ahmedabad under RCP85-
2100, IND_Adap_MM achieves significantly lower cooling energy demands compared to static setpoints while
maintaining similar comfort levels. This figure includes a simulation of free-running conditions in the middle row,
providing insights into the operative temperatures that would occur without an HVAC system. It also illustrates the
extent to which adaptive comfort limits would be exceeded. Similar data is captured in time-series plots in Figure 4,
offering insights into the temporal distribution of heating and cooling loads. This figure also provides insights into
the responsive nature of the adaptive setpoints, changing daily based on the prevailing mean outdoor temperature
variations.

(D,) @amesadwal
g !] R 2 ! R 2 R
+

40
30
20

™

F/

=120

fi

10/10

/10

60/10

(g,
HITI g

L0/10

15

Shimla RCP85-2100

S0/10

Shimla RCP85-2100
T

10
1
i
i
L
i

€0/10

10/10

0,100 e T

0.050

40
30

40 00754
3 00501~

40 0.075

T0/10

b

e
o

110

+H

™

.

=)
v

1
il

60/10

°C)
°C)

(
(

L0/10

Shimla Present

) o

(i

10

'
'

I g,

Shimla Present

Shaapenet

S0/10

(|
|
il

£0/10

No Tolerance

M

T

re,

10/10

0.050

40 0.0751 i~

om0 €

E

1o

Ahmedabad RCP85-2100

35

60/10

L0/10

Prevailing mean outdoor temperature (°C)

S0/10

Building_Total_Cooling Energy Demand (kWh/m2) (summed)
Building_Total_Heating Energy Demand (kWh/m2) (summed)

Adaptive Heating Setpoint Temperature_No Tolerance
Building_Total_Zone Operative Temperature (°C) (mean)

Adaptive Cooling Setpoint Temperatu

Ahmedabad RCP85-2100

Figure 3. Adaptive comfort scatterplots

£0/10

D e
gy el
5

; .z ,,
- .

w o w o o ° 10/10
g 88 7] 2
S 5 ¢ 3 9 S
o o o o o o

°
g] R] 10/10

110

i “llao

(L

ik
35

30

60/10

it
i

Ahmedabad Present

t
<
o
w
o
a
i k: - L0/10
1 Qo i i
ke ! " “ o i i
i S b b " “
i i £ i I S0/10
1 1 r 1 1
.. i i < H H
il ! “ i : 10
g~ = €0/
TR R iR ! “ !
el bt H L e i i i ,
¢ H 10/10
82888 8 28888 8 ' ———
P P PPN P
338353 3 S 33d s S SEE2EEE8 SEE528888E8¢8 &
oV 3835 aNI o S 3 55333333233 3
AN depy” aNi OV 3eIS aNI AN"depy™ani Wi depy ani

(zw/ymy) puewaq A6iau3 (zw/ym») puewsaq A61au3

No Tolerance (°C)

—— Adaptive Heating Setpoint Temperature_No Tolerance (°C)

—— Building_Total_Zone Operative Temperature (°C) (mean)

~——— Building_Total_Cooling Energy Demand (kWh/m2) (summed)
Building_Total_Heating Energy Demand (kWh/m2) (summed)

—— Adaptive Cooling Setpoint Temperature,

Figure 4. Adaptive comfort time-series plots

The comparative performance of IND_Adap_ MM against other configurations is depicted in scatter plots that
compare hourly energy demands, with IND_Adap_MM serving as the baseline. This comparison is detailed in
Figure 5, where the x-axis represents IND_Adap_MM values and the y-axis corresponds to the energy demand of
other configurations. Points that align along the diagonal represent similar energy usage, while deviations indicate
differences. In Ahmedabad, many points cluster near the 25% line, demonstrating that IND_Adap_MM requires just
a quarter of the energy used by static and other adaptive configurations for cooling in numerous cases. A similar
trend is observed in Shimla, where IND_Adap_MM consistently shows substantial savings in cooling energy
demand, reinforcing its position as the most energy-efficient configuration under various scenarios.

IND_Stat_AC IND_Adap_AC ASH_Adap_AC

Ahmedabad Present

Ahmedabad RCP85-2100

Reference Hourly Energy Demand (kWh/m2)

Shimla Present

0.12 = = 7 ==

Shimla RCP85-2100

.00 P ! — ! o !
0.000 0.025 0.050 0.075 0.100 0.000 0.025 0.050 0.075 0.100 0.000 0.025 0.050 0.075 0.100
IND_Adap_MM Hourly Energy Demand (kWh/m?)

e Building_Total_Cooling Energy Demand (kWh/m2) (summed)
o Building_Total_Heating Energy Demand (kWh/m2) (summed)

Figure 5. Comparison of hourly energy demands

3.3. Comparison with alternative methods

The main non-automated approach involves defining setpoints using a Schedule:Compact object, where adaptive
setpoints are pre-calculated externally and stored in a CSV file for import into EnergyPlus. This method allows for
more flexibility compared to manual monthly simulations, as users can input time-varying schedules that better
reflect local climate conditions. However, the workflow is still error-prone and time-consuming, as it involves
calculating the setpoints, formatting the CSV file, and ensuring compatibility with the EnergyPlus model. While this
method simplifies some aspects of adaptive comfort implementation, it remains dependent on manual intervention
and does not fully automate the process, making it challenging for large-scale studies or simulations with diverse
scenarios.

Compared to the previous method, the accim Python library represents a step forward by fully automating the
implementation of adaptive setpoint temperatures in EnergyPlus. It integrates every aspect of the workflow, from
weather file preprocessing and adaptive setpoint implementation to the automated simulation and result
visualization. By streamlining these processes, accim eliminates the manual steps required in other methods and
significantly reduces the risk of errors. It also supports advanced customization, allowing users to define parameters
such as comfort models, acceptability thresholds, and mixed-mode operation rules directly within the script. While
accim requires some familiarity with Python programming, its comprehensive approach and scalability make it an
efficient and accessible solution for balancing thermal comfort and energy efficiency across multiple locations and
scenarios.

4. Discussion

The highly customizable input arguments that accim can admit coupled with the capability to compute the adaptive
setpoint temperature values “on the go” provides a wide range of new opportunities to investigate the energy
implications of adaptive thermal comfort in AC or MM buildings. In particular, new research possibilities are opened,
considering the use of adaptive thermal comfort to alleviate energy poverty and mitigate the climate change. Since
accim allows handling a large number of simulations using adaptive setpoint temperatures, it allows to perform
studies with numerous locations, therefore re-scaling the possibilities from local to national, continental, or even
global scope.

Classical investigations are based on the search for a case study, the development of a simulation model, its
validation and obtaining results through limited approaches in operational patterns. With the newly developed
methodology, the analysis approach can be virtually unlimited for operational patterns. The great versatility of the
methodology allows it to be adapted to any operational pattern and adaptive thermal comfort model developed in
future years. This allows future regional models to be developed to be included in energy analysis studies and not
have a single focus on thermal comfort, as up to now. Through the developed methodology, the duality of energy
analysis and thermal comfort can be implemented more efficiently in future research. In addition, the methodology
seeks independence from commercial software and optimizes the use of the free EnergyPlus tool. This favours the
use of the methodology, by having an open-source methodology accessible to everyone.

5. Limitations

Limitations are firstly related to the building energy model itself. There are two ways to use accim: using a model
with no HVAC system at all, in which accim will add an autosizable Variable Refrigerant Flow (VRF) system for
each occupied zone, or using a building energy model with a fully modelled HVAC system. In the latter, if the HVAC
system is not properly set and sized, the number of hours exceeding heating and/or cooling setpoints (i.e. unmet
hours) might be unacceptable.

Unrelated to the technical aspects of setpoint control there are a series of practical questions concerning the
implementation of an adaptive setpoint temperature that remain unanswered. First, the adaptive comfort model was
derived on field measurements in naturally ventilated buildings. While the adaptive comfort principles are assumed
to apply to any occupant, the expectations of an occupant in an air-conditioned building may be more stringent
compared to someone in a naturally ventilated building. The +3.5K range embedded in the ASHRAE 55 adaptive
model would likely be narrower in contexts with fewer adaptive opportunities. Second, recent attempts to
understand long-term thermal comfort in air-conditioned buildings (Li et al. 2020) suggest that large variations in
the indoor daily temperature range may lead to greater dissatisfaction for building occupants. While the magnitude
of satisfactory temperature ranges is unclear, it's unlikely to be the +3.5K range permissible in the current adaptive
model. Similarly, an acceptable rate of change in indoor temperatures across multiple days is not known but is
assumed to be more conservative than that derived by the adaptive comfort model. Third, the limits of applicability
in ASHRAE Standard 55 preclude the use of the adaptive comfort model in air-conditioned buildings. As a result,
few engineers would consider implementing an experimental setpoint control without it being endorsed by the
leading industry authority. Lastly, adaptive setpoint temperatures are based on the assumption that occupants will
adapt to indoor temperature in fully air-conditioned or mixed-mode spaces as if they were on naturally ventilated
spaces. Although there are strong evidence (Parkinson, de Dear, and Brager 2020; Sun et al. 2024; Yun, Lee, and
Steemers 2016), experimental studies using adaptive comfort limits as setpoint temperatures are still needed to
validate this approach.

6. Conclusion

BPS is a technique that is widely used to compare alternative design and retrofit choices and explore how buildings
perform in terms of their environmental and energy implications. Additionally, adaptive comfort models have
recently been put out as a strategy to reduce energy consumption, particularly when taking into account the usage
of adaptive setpoint temperatures. However, using adaptive setpoint temperatures in building simulation requires a
high level of technical expertise.

This paper firstly aims to provide an overview of the unique open-source software solution available for automating
and facilitating building performance simulations - especially with adaptive setpoint temperatures - and result
interpretation. Secondly, it aims to provide a seamless and accessible Python-based methodology for users with
basic experience programming, in which code snippets can be easily re-used for different studies.

This research employs a case study to show the tool’s capabilities. In this study, the proposed methodology is firstly
applied to carry out the case study, which involves data pre-processing, running the simulations and lastly
generating figures and tables to analyse the data. Secondly, the data analysis shows the following conclusions:

¢ In Ahmedabad, using mixed-mode adaptive setpoints (IND_Adap_MM) reduced cooling energy demand
by up to 57% under present conditions and 44% in future scenarios (RCP85-2100).

¢ In Shimla, the same approach achieved cooling energy demand reductions of up to 65% in current climates
and 61% in future projections.

Lastly, alternative methods are compared to accim. Unlike manual or partially automated approaches, accim offers
a fully automated, error-resistant solution for implementing adaptive setpoint temperatures in building performance
simulations. It streamlines the entire process—from data preparation to result analysis—reducing complexity,
enhancing reproducibility, and supporting large-scale studies with minimal user intervention.

This tool will be helpful for policymakers, at the integration of homes' energy performance into the low-carbon built
environment, in particular when considering future scenarios under the influence of climate change. Future lines of
research might include the development of the tool to include new thermal comfort models from around the world,
new arguments to define custom adaptive comfort models and a new module for parametric and optimisation
studies.

Conflict of interest
No potential competing interest was reported by the authors.
Data availability

The data that support the findings of this study are available in the following website, which contains the EPW and
IDF files as well as a Jupyter Notebook containing all code snippets:

https://github.com/dsanchez-
garcia/accim/tree/master/accim/sample files/jupyter notebooks/research paper case study v0-7-3

Other data potentially interesting to the reader are:

e Github repository: https://github.com/dsanchez-garcia/accim/tree/master
e PyPI project: https://pypi.org/project/accim/
e Documentation: https://accim.readthedocs.io/en/master/

Acknowledgements

The authors acknowledge the support provided by the Thematic Network 722RT0135 “Red Iberoamericana de
Pobreza Energética y Bienestar Ambiental (RIPEBA)” financed by the call for Thematic Networks of the CYTED
Program for 2021. Also, the authors would like to acknowledge the Thematic Network 723RT0151 “Red
Iberoamericana de Eficiencia y Salubridad en Edificios” (IBERESE) financed by the call for Thematic Networks of
the CYTED Program for 2022 for supporting this research. Finally, the authors would like to thank Prof. Dr. Thomas
Parkinson, from University of Sydney’s IEQ Lab, for his assistance in the explanation of the assumption and
limitations of adaptive setpoint temperatures.

https://github.com/dsanchez-garcia/accim/tree/master/accim/sample_files/jupyter_notebooks/research_paper_case_study_v0-7-3
https://github.com/dsanchez-garcia/accim/tree/master/accim/sample_files/jupyter_notebooks/research_paper_case_study_v0-7-3
https://github.com/dsanchez-garcia/accim/tree/master
https://pypi.org/project/accim/
https://accim.readthedocs.io/en/master/

Appendix A. Detailed methodology

At this appendix, the operation of all modules, classes, methods and functions will be explained in detail. Figure A1
shows all relevant elements of the project for this study. Since accim. sim has already been explained in a previous
study, accim.data and accim. run will be emphasized. All explanations are addressed to accim version 0.7.3,
therefore these might be different for previous and newer versions. Similar documentation for the latest release can
be found at the website (see Section Data availability). In order to help the reader not to get lost among the modules,
classes, methods and functions, all processes described below have been broken down into numbered lists
consistently with the workflows (Figure A2). The coding of those numbered lists follows the structure:

A. (for each class, function, etc)
A.a (for every step within the process)
A.a.l (when step above is divided in multiple branches)
A.a.1.1 (when step above is divided in multiple branches)
A.a.2 (and so on)

The methods, functions and classes have been enumerated based on the process that should be followed for
developing a comfort study to be consistent with Section 3; however, the methodology is explained following the
project structure in Figure Al: module accim.sim contains function B, module accim. run contains function C,
and accim.data contains class A, class D and methods E to G.

accim Color legend
+---data Package
| +---data postprocessing.py Module
| | | Tabl Python fi
| | | format table Class
| | | scatte r_[:' ot Method
| | | scatter plot with baseline Function
| | | time plot
| | | wrangl 3._3_L able
| +---data preprocessing.py
| | rena me_eg')w_[' iles
+___(;‘H
| | im €. pY
| | im se.py
| | im MS
\ | Lm i stingl
\ | im Exi ingt I
| | im IDI 2ra n
| | im Mai
| | im VR
| | im I
o is.py
\ | addAcci
+===rur
| run.py
| runkEp

Figure Al. Project structure.

Input: Input:

EPW files IDF files
Class: EPWs are A Adaptive setpoint Function:
rename_epw_files(...) formatted temperatures are applied JELLLYJSIEN]
Output/Input: Output/Input:
Formatted IDFs with adaptive
EPW files setpoint temperatures

Function:
runkp(...)

C

Output/Input:
CsV files

¥

A class Table
D instance is
created

y

The instance
E is formatted Method:

for later format_table(...)
analysis

Class:
Table(...)

The

F instance is G G
reshaped
Method: Method: Method: Method:
wrangled_table(...) scatter_plot(...) scatter_plot_with_baseline(...) time_plot(...)

Qutput: Output:
Excel file PNG file

containing the containing

wrangled table the figure

Figure A2. Flowchart of the entire process.
1. accim.data

This module contains 2 Python files: data preprocessing and data postprocessing. The first one is used
to prepare the EPW files prior to running the simulations, while the second one is used to analyse the data resulting
from the simulations. Both are explained in the following sections.

1.1. data_preprocessing

At the final stage, information related to the EPW files, such as location, RCP scenario and year (if climate change
is considered) can be analysed. The data analytics module takes csv files with information delimited by a separator
in its name, but to do so, the EPW file names need to be formatted prior to simulation following a certain pattern:
Country_City_RCPscenario-Year.

To do so, the class rename epw files can be used. Once the class has been instantiated, following process
can be divided in 2 stages: steps A.a. to A.f, in which new names for the EPW files are proposed (Figure A3); and
steps A.g. to A.j., in which the user needs to review the proposed names and make any corrections if necessary,
and confirm actions to be performed (Figure A4). EPW names can be very different mainly depending on the source.
In this case, EPWs have been downloaded EnergyPlus and OneBuilding websites, as well as Meteonorm software.
These different sources have been considered to minimise the number of unexpected issues that may arise from
the different patterns they follow.

A.a.Existing EPW files in the folder are scanned, and a Pandas DataFrame instance (epw df) is created to map
the current EPW names.

A.b.If climate change is considered in the EPW, then the current file name should contain some data regarding the
RCP scenario and the year. Therefore, the current file name is scanned to search for any matches between
the scenarios and year. Only RCP 2.6, 4.5, 6.0 and 8.5, and years from 2000 to 2100 in 10-years intervals are
looked for. This tool does not consider the previous scenarios published in the Special Report on Emissions
Scenarios (SRES), since these are already superseded and should not be used. If no match is found, then
accim assumes the EPW is for present scenario and informs the user. Then, accim updates the Pandas

DataFrame instance with this information, specifically the columns EPW scenario, EPW year and
EPW scenario year. The data stored in EPW _scenario year will be later used in the new EPW name,
namely in the placeholder RCPscenario-Year.

A.c.Next step is defining information for the placeholders Country and City. To do so, accim opens every EPW file
and extracts and stores the latitude and longitude.

A.d.Then accim obtains the address for these coordinates from OpenStreetMap. From that geographic data, accim
extracts the country code. This is passed through pycountry.countries.get () to return the name of the
country in English language, and be stored in column EPW country, which will replace the placeholder
Country. At this point, the address for those coordinates is also stored for later use.

A.e.For the city information, accim searches for any matched between substrings within the current name and
geographical information. If no match is found, then the string “UNKNOWN?” is stored in the column
EPW city or subcountry, which will similarly replace the placeholder City.

A.f. At this point, all required information to compose the new EPW names has been gathered (although there might
be some “UNKNOWN?” strings), and new names for the EPW files can be proposed.

A.g.Since the new EPW names have been already proposed, accim needs to check if there are duplicated EPW
new names and if there is missing information (previous “UNKNOWN?” strings). If so, these will need to be
corrected by the user in the next step.

A.h.Then, the user is informed of the old and new EPW names. After reviewing them, the user is asked to enter the
IDs of the EPWs which have not been properly renamed.

A.i. Then, for each ID the user has previously entered, accim provides the address previously stored in Stage 1.
This information as well as the old EPW name, which should contain information of the city, is helpful for the
user, which is asked to enter the correct city name for that EPW file. At this point, the user also is asked to
enter the correct city names for duplicate EPWs or those with missing information.

A.j. Finally, accim informs the user of the full final list of EPW names. If some of these are not properly renamed
yet, these can be excluded. The user is asked to enter the IDs if necessary and, at last, to confirm the copy
and rename of the EPW files and deletion of the old ones.

Input: EPW files
Current_BP039662-hour.epw
Current_GC03_Ponta_Grossa.epw
GBR_Aberdeen.Dyce.030910_IWEC.epw

rep26_2100_TOKYO_JA-hour.epw Legen d

Internal process
accim.data.data_preprocessing rename_epw_files Input/Output
|CurrentiﬁPUSESZ-hcur,epw 1

L |
A.a_ | Pandas DataFrame is instantiated |- ----------- |Current_GCO3_Ponta_Grossa.epw | = Ili Pandas DataFrame
|GBR_Aberdeen.Dyce.030910_IWEC.epw | 1
|rcp26721007T0KY07JA-huur.epw I

rename_epw_files()

e ey e e e R a
v W _names | |EPW_scenario [EPW_year|EPW_scenario_year
I 1
- Scan RCP scenarios (RCP2.6, RCP4.5, RCP6.0, RCP8.5) {Current_BP09662-hour.epw ... Present Present Present 1 Il
A_ b' - Scan Year (2000, 2010, 2020, 2030...2100) == -:Current_GCOS_Ponta_Grossa.epw ... Present Present Present : I .
- Set fields EPW_scenario, EPW_year and EPW_scenario_year |GBR_Aberdeen.Dyce.030910_IWEC.epw ... Present Present Present) []
l \rcp26_2100_TOKYO_JA-hour.epw ... RCP26 2100 RCP26-2100 1
A - Gets latitude and longitude
.C. | Gets address and country code from OpenStreetMap
A d Uses pycountry to transform the country code to country name, and
0. fstore itin epw_country NP names | [ePW_country [EPW city_or_subcountry |
1 I
l \\\ \Current_BP09662-hour.epw .. United-Kingdom UNKNOWN] [] 1
,‘:Current_GC03_Ponta_Grossa‘epw ... Brazil Ponta : [
’
- Tries to match any substring of EPW name with address passed e :GBR_Aberdeen‘Dyce.030910_|WEC.epw .. United-Kingdom Aberdeen : |
A e. through unidecode to determine the field EPW_City_or_subcountry. :rcp26721007T0KYOfJA-hcur.epw .. Japan UNKNOWN :
- If there is no match, the string “UNKNOWN” is set to thisfield. | == =" === == === - - - - - - - s e m s e m s m—m—mm === =
A f All required information have been gathered and i
=1+ Inew name is proposed in column EPW_new_names S~ -
EPW_country EPW_city_or_subcountry |[EPW_scenario_year |EPW_new_names
1Current_BP09662-hour.epw ... United-Kingdom UNKNOWN Present United-Kingdom_UNKNOWN_Present 1 II
1 1
1Current_GCO3_Ponta_Grossa.epw ... Brazil Ponta Present Brazil_Ponta_Present 1 Ill
1 1
1GBR_Aberdeen.Dyce.030910_IWEC.epw ... United-Kingdom Aberdeen Present United-Kingdom_Aberdeen_Present |]
1 1
1rcp26_2100_TOKYO_JA-hour.epw .. Japan UNKNOWN RCP26-2100 Japan_UNKNOWN_RCP26-2100 1

Figure A3. Flowchart for the steps of rename epw files (A), part 1.

Ag.

A.h.

Legend

- Checks if any of the new EPW names are duplicated
- Checks if the city or subcountry field of any of the new EPW names is “UNKNOWN"
- Adds the resulting EPWs to a list, so that these can be amended by the user in the next step

Internal process

Input/Output

The previous and new names of the EPW files and their unique IDs are:

The user is informed
of the old and new
EPW names, and
needs to enter the ID
of those which have
not been correctly
renamed.

1

| 1D: 0/ Current_BP09662-hour / United-Kingdom_UNKNOWN_Present

| ID:1/ Current_GC03_Ponta_Grossa / Brazil_Ponta_Present

| ID: 2/ GBR_Aberdeen.Dyce.030910_IWEC / United-Kingdom_Aberdeen_Present
| ID: 3/ rcp26_2100_TOKYO_JA-hour / Japan_UNKNOWN_RCP26-2100

"UNKNOWN" city or subcountry have been found in the renamed EPW files, therefore these need to be amended in the next stage.

If any of the city or subcountry names needs some amendment (if you are not happy with any of the available options, you can exclude it from

renaming at the next stage), please enter the EPW IDs separated by space: 01 3

Regarding the file ID: 0 / old name: Current_BP09662-hour / new name: United-Kingdom_UNKNOWN_Present, the address obtained from
coordinates is:
Cadfarch, Powys, Cymru / Wales, United Kingdom

The user is asked to
enter the correct city
or subcountry name
for each EPW, apart
from those
duplicated or with
unknown city or
subcountry.

Finally, the user is
informed of the new
names after
corrections.

Please enter the amended city or subcountry, which must be unique: Cadfarch

Regarding the file ID: 1 / old name: Current_GC03_Ponta_Grossa / new name: Brazil_Ponta_Present, the address obtained from coordinates is:
Praca Barao de Guarauna, Centro, Ponta Grossa, Regiao Geografica Imediata de Ponta Grossa, Regiao Geografica Intermediaria de Ponta
Grossa, Parana, Regiao Sul, 84010-050, Brasil

Please enter the amended city or subcountry, which must be unique: Ponta Grossa

Regarding the file ID: 3 / old name: rcp26_2100_TOKYO_JA-hour / new name: Japan_UNKNOWN_RCP26-2100, the address obtained from
coordinates is:

Dong Jing Hu noMen gurobarusukuea, Ying Tian Tong ri, Liu Ben Mu Yi Ding Mu , Hu noMen San Ding Mu, Ma Bu, Gang Qu , Dong Jing Du,,
105-0001, Ri Ben

Please enter the amended city or subcountry, which must be unique: Tokyo

The previous and new names of the EPW files after city or subcountry name amendments and their unique IDs are:

A

ID: 0 / Current_BP09662-hour / United-Kingdom_Cadfarch_Present
ID: 1/ Current_GC03_Ponta_Grossa / Brazil_Ponta-Grossa_Present
ID: 3 / rcp26_2100_TOKYO_JA-hour / Japan_Tokyo_RCP26-2100

The final list of previous and new names of the EPW files and their unique IDs is:

- The user is informed
of the final list of
previous and new
EPW names.

- In case some of the
new EPW names are
still wrong, these can
be excluded from
renaming.

- The user is asked to
confirm if the EPW
file or files should be
copied and renamed.
Finally, the user is
asked if the original
EPW files should be
deleted.

ID: 0 / Current_BP09662-hour / United-Kingdom_Cadfarch_Present

ID: 1/ Current_GCO03_Ponta_Grossa / Brazil_Ponta-Grossa_Present

ID: 2 / GBR_Aberdeen.Dyce.030910_IWEC / United-Kingdom_Aberdeen_Present
ID: 3/ rcp26_2100_TOKYO_JA-hour / Japan_Tokyo_RCP26-2100

If you want to exclude some EPWs from renaming, please enter the IDs separated by space, otherwise, hit enter to continue: (hit enter)

Do you want to rename the file or files? [y/n]: y

----- The file Current_BP09662-hour has been renamed to United-Kingdom_Cadfarch_Present

The file Current_GCO3_Ponta_Grossa has been renamed to Brazil_Ponta-Grossa_Present

The file GBR_Aberdeen.Dyce.030910_IWEC has been renamed to United-Kingdom_Aberdeen_Present
The file rcp26_2100_TOKYO_JA-hour has been renamed to Japan_Tokyo_RCP26-2100

Do you want to delete the original EPW file or files? [y/n]: v

The file Current_BP09662-hour.epw has been deleted.

The file Current_GCO03_Ponta_Grossa.epw has been deleted.

The file GBR_Aberdeen.Dyce.030910_IWEC.epw has been deleted.

The file rcp26_2100_TOKYO_JA-hour.epw has been deleted.

Output: renamed EPW files
United-Kingdom_Cadfarch_Present.epw
Brazil_Ponta-Grossa_Present.epw
United-Kingdom_Aberdeen_Present.epw
Japan_Tokyo_RCP26-2100.epw

Figure A4. Flowchart for the steps of rename epw files (A), part 2.

1.2. data_postprocessing

The purpose of this module is to analyse and visualise the simulation results. Following sections provide a deeper
insight of the processes at each step. This module is the only one that requires a basic understanding of Python
syntax. The recommended procedure involves the use of an Integrated Development Environment (IDE).

1.2.1.Table

The class Table is used to generate a pandas DataFrame instance from the simulation results. The available
arguments for class Table are shown in Table Al:

Table Al. Arguments for class Table.

Argument type Description Admissible values
The list of csv files that need to be analysed. If omitted,
datasets list accim will take into account all available csv files in the Any list
path.
source concatenated csv filepath string The path of the csv already concatenated in case it has Any string
- - = been generated

source_frequency string The frequency of the simulation results “hourly”, “daily”,
“monthly” or

frequency string The frequency of the analysed data “runperiod”

frequency agg func string The function it performs when aggregating the csv rows “sum” or “mean”

standard outputs bool Used to filter only standard outputs for accim True or False

concatenated csv name strin accim concatenate the CSVs and export it with the Anv strin

- - 9 entered name; if omitted, the csv is not exported Y 9

level list accim aggregates the zone results for block or building E:j)”%kmg andfor

level agg func list The function to be performed for level argument “sum” and/or “mean”

level excluded zones list The list (_)f zones that need to be excluded from level Any list

- - computations.
block zone hierarchy dict A dictionary to map the block/zone structure. Any dict
split epw names bool Used to split the EPW name in the pattern True or False
- = Country_City_RCPscenario-Year

normalised energy units bool Used to show energy units per m2 True or False

rename_cols bool Used to rename the columns to a more friendly format True or False

energy_units_in_kwh bool Used to show energy units in kWh True or False

Figure A5 shows the process that takes place when a Table instance is created. Given there are some CSV files
at the path where the Tab1e instance is created, which are going to be taken as input files, the process comprises
the following steps, named consistently with Figure A5:

D.a. Once the Table class has been instantiated (and stored in variable dataset runperiod in this example),

after some actions to avoid later errors, accim needs to know what the source of the data is.

D.a.l. If the argument source concatenated csv filepath has been entered when the class was
instantiated, then accim will set some Vvariables (source frequency, frequency,
frequency agg func and standard outputs) based on the concatenated csv file name and create
a DataFrame instance.

D.a.2. Otherwise, accim checks if the datasets argument has been entered when the class was
instantiated.

D.a.2.1.
datasets.

D.a.2.2. Otherwise, accim gets all available csv files in the folder which meets certain requirements
in its name, in order to avoid other csv files resulting from EnergyPlus simulations, such as those
related to zone sizing (ending with Zsz.csv) or tables (ending with Table.csv).

D.a.2.3. Then, accim starts to iterate through every csv file from previous step. The loop includes,
among other actions, to create a DataFrame instance, to filter the columns, to define which type of
aggregation will be performed for each column, and finally, to perform the aggregations of rows. An
example of this would be, defining that operative temperature should be averaged, and then average
the rows to transform, for instance, hourly information into daily information. At last, concatenates all
instances into a single DataFrame.

Once the DataFrame has been instantiated, named df, accim performs a number of operations focused to

detect if there have been errors when aggregating the rows.

D.c.Then, accim needs to know if the argument concatenated csv name was entered when the class was

instantiated.

D.c.1. If so, accim exports the DataFrame instance into a csv file. This file is aimed to be read at step A.1,

and therefore, allows to avoid unnecessary computational effort by skipping the A.2 branch if Table needs
to be instantiated more than once. Afterwards, accim continues to next step.

If so, accim stores the csv files which have been specified in the list of the argument

D.b.

D.d. In this step, accim tries to detect the hierarchical pattern of blocks and zones (i.e. which zones belong to
each block), which is going to be needed to compute totals for block and/or building levels. In case of IDFs
generated with Designbuilder, the zones are generally named following the pattern “BlockX:ZoneY”, therefore
probably only in this case the hierarchy would be detected. If it is not detected, the user is asked to enter all
blocks names, and then, for each block, all thermal zones. If the user previously knows the IDF has been
generated with other GUI, such as OpenStudio, and therefore the hierarchy is not going to be detected, it is
possible to skip the information request by specifying the hierarchy as dictionary object in argument
block zone hierarchy.

D.e. Next, the user can exclude zones from level computations. This is useful, for instance, to exclude a
naturally-ventilated space from the average of operative temperature in air-conditioned spaces. To do so, the
user can use the argument level excluded zones, which takes a list of strings. If this argument is omitted,
then the user will be asked to enter the zones to be excluded if necessary. Finally, accim will check the zones
entered by the user actually exists in the data.

D.f. At this point, the block/zone hierarchy and the excluded zones are known, and therefore, the level computations
can be performed. The tool will detect if block totals have been requested in argument 1evel, and if so, the
function to be performed in argument level agg func (sum and/or mean). For instance, accim can sum all
zones belonging to a certain block to provide the block total for a certain output. A similar approach is taken
also for building level.

D.g. Then, energy units are updated based on the user requests at arguments normalised energy units
and energy units in kwh.

D.h. If the user requested normalising the energy units in argument normalised energy units, then accim
will divide the energy outputs by floor area at zone, block and building levels.

D.i. Ifrequested atargument split epw names, accim will split the column EPW to make the columns for country,
city and RCP scenario and year. To work properly, the EPW file name should be in the CSV file name, following
the pattern Country_City_ RCPscenario-Year, as previously shown in function rename epw files.

D.j. Finally, if requested at argument rename cols, all columns are renamed, so that the output is more user-
friendly and easier to read and understand.

Therefore, the output of this process is a pandas DataFrame instance which can be accessed by the user at the

variable df. In the example shown in Figure A5, the input csv files number is 4. Therefore, since “runperiod” have

been specified at the argument frequency, rows have been aggregated grouped by the run period, resulting in 4

rows at the variable df. For instance, if “monthly” were specified, the number of rows of df would be 4*12=48, i.e.

one row per month. The number of columns in df is 99, which varies depending on multiple factors, such as the

number of zones in the building, the building and/or block level aggregations and the functions requested, among
others.

Input: CSV files

TestModel[CS_INT EN16798[CA_3[CM_0[HM_2[VC_0[VO_0[MT_50[MW_50[AT_0.1[NS_X[United-Kingdom_Aberdeen_Present.csv
TestModel[CS_INT EN16798[CA_3[CM_0O[HM_2[VC_0[VO_O[MT_50[MW_50[AT_0.1[N5_X[United-Kingdom_London_Present.csv
TestModel[CS_INT EN16798[CA_3[CM_3[HM_2[VC_0[VO_0[MT_50[MW_50[AT_0.1[NS_X[United-Kingdom_Aberdeen_Present.csv
TestModel[CS_INT EN16798[CA_3[CM_3[HM_2[VC_0[VO_O[MT_50[MW_50[AT_0.1[N5_X[United-Kingdom_London_Present.csv

Has the argument
—» concatenated_csv_name DC_
been entered?

—

No Yes

/

Export

concatenated [D.c.1.

CsV file

N

Scanning hierarchical

Legend

1
IlEI Pandas DataFrame

Has the argument pattern of block and D_d_
D .d. | source_concatenated_csv_filepath 20nes
been entered? ¥
4—“""/ \—""b Excluding zones from
Yes No level computations De .
v ¥
Has datasets Computing totals for
argument D a 2 block and building levels Df
been d.e. if requested

entered?
/ _“'““-b Renaming energy units g.
., Dg
¥

¥ N lizi its
lormalizing energy uni
Takes CSVs Takes all - D h
i ted .
D-a'z'l' from dataset Daz-z CsV files ! req:ese
¥ \/ Splitting EPW names if D.i
Reads concatenated Concatenates requested o
csv file. rows in CSV files. {
Pandas DataFrame D' d. 1' Pandas DataFrame D'a . 2 . 3 . B | i
object is created object is created Renam gt iimp=l D j
requested -
\ / Output:
D b Detection of errors when A pandas DataFrame
aggregating rows instance stored in
IlI variable df
T
—

Volume (m3)

0
E
L
£
E
o
=

=
o
o
[
o
c
o
™
~
w
=4
=]
N
-
b4
=]
=]
—
=

ComfStand

ComfMod

Date/time

Area (m2)
BLOCK1:ZONE1_Zone Floor

Area (m2)

Site Outdoor Air Drybulb
Temperature (°C)
Building_Total_PMV
(summed)
Building_Total_PPD (%)

=
<
[
g
N
-
w
&
=]
-
x
=]
(=]
=1
]

BLOCK1:ZONE2_Zone Air

10 TestModel CS_INT EN16798 CA_3CM_0 ... 01/01 01:00:00 126.71 105.33 36.2 30.1 84 ..66.3 0
11 TestModel CS_INT EN16798 CA_3CM_0 ... 01/01 01:00:00 126.71 105.33 36.2 30.1 10.24 .. 66.3 0O
|2 TestModel CS_INT EN16798 CA_3 CM_3 ... 01/01 01:00:00 126.71 105.33 36.2 30.1 84 ..663 O
13 TestModel CS_INT EN16798 CA_3 CM_3 ... 01/01 01:00:00 126.71 105.33 36.2 30.1 10.24 .. 66.3 0

Shape: 4 rows x 99 columns

Figure A5. Flowchart for class Table.

1.2.2.format_table

format table is a method of class Table. It is used to prepare the DataFrame instance df for later analysis.
Usually, df has an important number of columns which usually make it difficult to be handled. Therefore, this
method filters the columns to keep those specified by the user. Arguments of format table are shown in Table
A2.

Table A2. Arguments of format table.

Argument Type Description Admissible values
“all”, “energy demand”, “comfort hours”,
“temperature” or “custom”

type of table string Used to get already defined tables

Used if custom is used in type of table. The list

of columns to keep. Any list

custom cols list

Figure A6 shows the process that takes place then the format table method is called:

E.a.First, accim sets the index columns. These columns will not be deleted under any circumstances.

E.b.Then, depending on the value entered at argument type of table, different columns are filtered. Entering
certain arguments returns a predefined range of columns, which allows for an easier use of the method.

E.b.1. If it is “all”, accim will return all columns.

E.b.2. If it is “temperature”, accim will filter all columns in df that contains certain temperature terms.

E.b.3. If it is “comfort hours”, accim will filter all columns in df that contains certain comfort terms.

E.b.4. If it is “energy demand”, accim will filter all columns in df that contains certain energy demand
terms.

E.b.5. If it is “custom”, then accim will search for the columns entered in the argument custom cols in

all columns of the DataFrame instance df, and it will filter them.
Finally, the DataFrame instance df is returned with filtered columns, which are those extracted from csv file names
(treated as categorical values) and the ones requested when calling the method (treated as numerical values). In
this example, the latter are:

- “Building_Total_Cooling Energy Demand (kWh/m2) (summed)”.

- “Building_Total_Heating Energy Demand (kWh/m2) (summed)”.
At this point, the variable df is ready to be wrangled with the method wrangled table or otherwise, it is ready
to be the source of data to be visualised with methods scatter plot, scatter plot with baseline or
time plot.

E.b.

Input: E.a. B e —>| Filter calumns according to “temperature” | E.b.2.
A pandas Which string
5 Qutput:
 BaiEliemeE Caliing has hEE‘" “comfort hours” —>| Filter columns according ta “comfort hours” | E.b.3. pandas
instance stored [index % enteredin DataFrame df
in variable df columns. argument - ~
{output af type. of table? “encrgy demand” —#|_Filter columns according to "energy demand” | E.b.4. filtered

process D)

“custom” —>| Filter columns specified in custom_coals | E.b.5.

(m3)
{m2)

E-] - o
= Z 19 £
] & = =
o a3 = i
£ 2 E g
T
S o S 5
£ S a

(kWh/m2) (summed)

Building_Total_PMV {summed)
(kWh/m2) (summed)

BLOCK1:ZONE1_Zone Air Volume (m3)
BLOCK1:ZONE2_Zone Floor Area (m2)
BLOCK1:ZONE1_Zone Floor Area

Building_Total_PPD (%) {summed)
ComfStand
ComfMod
Building_Total_Cooling Energy Demand
Building_Total_Heating Energy Demand

BLOCK1:ZONE2_Zone Air Volume
Site Outdoor Air Drybulb Temperature (°C)

Building_Total_Zone Floor Area (m2) (summed)

TestModelCS_INT EN16798 CA_3 CM_0 .. 01/01 01:00:00 126.71 105.33 36.2 301 84 .. 663

H) o 0 1 | 0 TestModel CS_INTEN16798 CA 3
: 1 TestModelCS_INT EN16798 CA_3 CM_O .. 01/01 01:00:00 126.71 105.33 36.2 30.1 10.24 .. 66.3 0 0 : } 1 TestModel CS_INT EN16798 CA_3
i 2 TestModelCS_INT EN16798 CA_3 CM_3 .. 01/01 01:00:00 126.71 105.33 362 30.1 84 .. 663 0 o] i E 2 TestModel CS_INT EN16798 CA 3
L_3__TestModelCS INTEN16798 CA 3 €M.3 « 01/01 01:00:00 126,71 105,33 362 301 1024 ., 663 _ 0 _ 0 | | 3 __TestModel CSINTENIG798 CA3 €M.3
Shape: 4 rows x 99 columns Shape: 4 rows x 20 columns
Legend

[}
I.EI Pandas DataFrame

Figure A6. Flowchart for method format table.
1.2.3.wrangled_table

Once the DataFrame df has been formatted with format table, it can be reshaped or pivoted with
wrangled table, to finally create an Excel file containing the data. Arguments of wrangled table are shown
in Table A3.

Table A3. Arguments of wrangled table.

Argument Type Description Admissible values
"pivot", "stack",

reshaping string Used to specify the reshaping method. Operation similar to pandas. "unstack” or
“multiindex”

The list of variables to be analysed. It will combine the values of the

vars to gather list . . .
-9 variables entered into a single column.

Any list

The instance of all different combinations of variables that will be used

baseline string as the baseline for comparison Any string
comparison_cols list To calculate absolute or relative (%) differences. "?:Izgtgf and/or
The point of view to compare the data. Absolute and/or relative
differences can be calculated based on the following logic:
- for "others compared to baseline" "others compared to
. . o Iif "relative”, 1-(variant/baseline) baseline" and/or
comparison mode list
- o if "absolute", baseline-variant "baseline compared to
- for "baseline compared to others", others"
o if "relative”, 1-(baseline/variant)
o if "absolute", variant-baseline
check index and cols bool Used if the user is not sure about the variables to be entered in True or False
- - vars_to gather
vars_to_keep list The variable or variables to be shown in multiindex Any list
Used to replace strings in the entire DataFrame (values, index or rows,
rename dict dictionary and columns). The dictionary should be in the format {“old string”: “new Any dict
string”}
excel filename string The name of the exported excel file Any string

Figure A7 shows the process that takes place when the method wrangled table is called. Before calling the
method, the user should be aware of the possibilities for analysing the data. For instance, following the example of
the 4 CSV files, only 2 of the variables separated by delimiter “[* change:

- ComfMod, where possibilities are “CM_0" and “CM_3” (refers respectively to static and adaptive setpoint
temperatures).
- EPW, specifically the field EPW city or subcountry, where the possibilities are “Aberdeen” and
“London”.
Therefore, all other variables do not seem interesting to be analysed. After calling the method, the following process
starts:

F.a.The tool needs to know what reshaping method should use. At this point, index has already been set based
on the variables to be analysed. Therefore, if “multiindex” is used, accim does not perform any reshaping at all.
It only provides a cleaned view of the DataFrame.

F.a.l. If “pivot”, accim will call the DataFrame method pivot table. At this point, the user must consider
that not specifying some variable in argument vars to gather will result in the sum of the rows with
the same value for that variable. For instance, in Figure A7, EPW city or subcountry has not been
specified in vars to gather, and therefore, for each possibility of ComfMod, the values of “Aberdeen”
and “London” will be summed.

F.a.2. If “unstack”, accim will call the DataFrame method unstack. Therefore, accim will keep the
variables at vars to gather inthe columns, and move the variables at vars to keep to the rows (or
index).

F.a.3. If “stack”, accim will call the DataFrame method stack. Therefore, accim will move all the variables
in the columns to the rows, and keep a single column for all numerical values. This is useful for plotting
data with libraries such as seaborn, since stacked data is the most suitable format.

F.b.The next step consists of the computation of comparison columns based on the data entered in arguments
comparison mode, comparison cols andbaseline, and only takes place if reshaping method is “pivot”
or “unstack”. In this example, all comparison columns were requested for all comparison modes. For instance,
considering the mode “others compared to baseline”, the comparison columns relative and absolute allows to
know the difference between the baseline (“CM_3") and all other possibilities (in this case only “CM_0") in terms
of percentage (1-(CM_0/CM_3), in %) and the meter of the variable (in this case, CM_3 — CM_O0, in
kWh/mz2-year). In this example, the relative and absolute differences show respectively an increase of 1.48 (i.e.
148%) and 39.74 kWh/m?-year of “CM_0" respect the baseline “CM_3".

F.c.Then, all data, columns and indexes of the DataFrame are renamed following the dictionary containing old and
new strings entered in argument rename dict. This allows to improve the readability of the output file
(although the user should know at this point “CM_0" and “CM_3" respectively refer to static and adaptive
setpoint temperatures, others might not).

F.d.Finally, accim exports the DataFrame instance to an Excel file named after the argument excel filename.

In this case, the output of this method is an Excel file named “testing_accim.xlsx”, and therefore it means this branch

of data analysis ends at this point.

Shape: 4 rows x 20 columns

dataset_runperi

Legend

Internal process

Input/Output

2 = 3
H i< o
- o =
(7] ap =
- a

£ = | E
S S| 8
Q Q

I.!I Pandas DataFrame
1

Building_Total_Cooling Energy
Demand (kWh/m2) (summed)
Building_Total_Heating Energy
Demand {(kWh/m2) (summed)

"1 TestModel CS_INTEN16798 CA_3 CM_0

7 L 3_ TestModel CS_INTEN16798 CA 3 CM_3 .. 21.08_56.92 |
’
Input: P ’
pandas DataFrame df | __.~" EPW_City_or Variabl 1
filtered _subcountry ariable values

gl proves Bulding_Total_Cooling Energy Demand (kWh/m?) (summed) 1357 |

Building_Total_Heating Energy Demand (kWh/m2) (summed) 318.96

What has been
entered in
argument
reshaping?

“stack”

Building_Total_Heating Energy Demand (kWh/m2) (summed) 228.24 | IIEI
1

]
r

Building_Total_Heating Energy Demand (kWh/m2) (summed) 926 !

“multiindex” “stack” “unstack” “pivot”

F.a.3. F.a.2. F.a.1.

Building_Total_Cooling Energy Demand Building_Total_Heating Energy Demand
(kWh/m2) (summed) (kWh/m2) (summed)

|EPW City_or_subcountry
| Aberdeen 1357 569 138 788 058 788 31896 926 -244 22636 071 226.30

! London 52.94 21.08 -1.51 -31.86 0.6 31.86 228.24 56.92 -3.01 -171.32 0.75 171.32!

1
'

L}

I

i

! Building_Total_Heating Energy Demand (kWh/m2) (summed) 56.92 |
:

1

1

1

I

I

“unstack”

Compute
comparison
columns based on
arguments
comparison_mode,
comparison_cols

'
0
1
i
1
1
1
1
!
E 1
and baseline 1

I
1
]
1
1
1
1
]
1
I
1
1
1
'
[
1
]
'

Rename
DataFrame index, 1
columns and data A
based on argument /
rename_dict P

Adaptive
1-(Static/Adaptive)
Adaptive - Static
1-(Adaptive/Static)
Static - Adaptive

Exports DataFrame s
to Excel with name
based on argument

excel_filename

Output: ! -
Excel file named ‘\\ i ComfMod E:m-cg::;m Demand Demand
testing_aceim xlsx N E - L (kWh/mZ) (kWh/mZ)]
t-- £ {summed) {summed) 1
E h

Figure A7. Flowchart for method wrangled table.

1.2.4.scatter_plot, scatter_plot_with_baseline and time_plot

Continuing from the end of format table, data can be visualised. There are currently 3 methods to do so:
scatter plot, scatter plot with baseline and time plot, whose arguments are shown in Table A4.
These figures are computed with matplotlib library, and can be composed of subplots as a function of the variables
entered in arguments vars to gather cols and vars to gather rows. If not all the values resulting from
the combination of variables are needed, the user can filter which values should be plotted in columns and rows
respectively with the arguments detailed cols and detailed rows, as well as the order of those, with the
arguments custom cols order and custom rows order. The process is shown in Figure A8, and it is
composed of 2 stages: in the first one, (G.a. in flowchart) data to be plotted is gathered and organised in lists, while
in the second one (G.b.), subplot axes are created, and data is finally plotted. However, this process is not relevant
for the purpose of this research and has no novelty, therefore is not further explained.

dataset_runperiod.scatter_plot(...)

Input:
pandas DataFrame df
filtered
(output of process E)

Output:
PNG file

dataset_runperiod.scatter_plot_with_baseline(...)

dataset_runperiod.time_plot(...)

Legend

Input/Output

Figure A8. Flowchart of methods scatter plot, scatter plot with baseline and time plot.

Table A4. Arguments in common of all figure methods.

Method Argument Type Description
vars_to_gather_ cols list The list of variables to be gathered in columns
vars_to gather rows list The list of variables to be gathered in rows
detailed cols list The list of specific values of vars to gather cols to be plotted. Only used
- if not all values need to be plotted.
detailed rows list The list of specific values of vars to gather rows to be plotted. Only used
- if not all values need to be plotted.
custom cols order list An ordered list of column names from left to right.
all custom_rows_order list An ordered list of rows names from top to bottom.
. . - Used to replace strings in the cols. The dictionary should be in the format {“old
cols renaming dict dictionary . « .
- - name”: “new name
. . L Used to replace strings in the rows. The dictionary should be in the format {“old
rows renaming dict dictionary . « »
- - name”: “new name”}
figname str Used as the name of the PNG file to be generated
figsize float Used as the size of the figure
dpi int Used to specify the figure resolution
confirm graph bool Used to skip figure confirmation.
tt 1 i . .
iia er_p data on x_axis string The column name to be plotted on x-axis
Multiple spines on the y-axis can be plotted. Therefore, lists with nested lists
must be entered following the pattern:
[
data on y main axis list [name_on_1st_y main_axis', [list of column names you want to plot]],
['name_on_2nd_y_main_axis', [list of column names you want to plot]],
etc
scatter pl 1
ot data_on_y_sec_axis list Similar to data on vy main axis, butin secondary axis
apd A structure similar to data on y main axis, but replacing the column
time plot colorlist y main axis list K — = — .
- - - names with the related colour using matplotlib colour notation
. . . A structure similarto data on y sec axis, butreplacing the column names
colorlist y sec axis list R Nt .
- = with the related colour using matplotlib colour notation
ratio height_to width float Used to specify the shape of the figure. The height will be multiplied by the

number to provide the final height.
supxlabel str The label shown on the x-axis
The columns to be plotted on y-axis. A list with column names must be entered

data on y axis baseline

list . .
_plot following the pattern: [first_column_name’, 'second_column_name', etc]
scatter pl - - — = = = =
ot with Dba colorlist baseline plot list Similar to data on y axis baseline plot, but replacing column names
seline _data with colors using matplotlib color notation
. . The value resulting from vars to gather cols to be compared with all
baseline string - = -

other values

The method scatter plot is used to plot a scatter plot, as the name suggests. It allows to plot data in multiples
spines in y-axis. The method scatter plot with baseline is also used to plot a scatter plot, but in this case,
it is mainly used to compare a value resulting from vars to gather cols, used as a baseline, with all other
values resulting from that combination of variables gathered in columns. Lastly, time plot is used to make aline
plot figure with time on the x-axis. The output of all methods is a PNG file.

2. accim.sim

This module contains several Python files, although only accis.py contains a function that can be used:
addAccis. As the name suggests, this function is used to add an EMS script named Adaptive-Comfort-Control-
Implementation Script, which applies adaptive setpoint temperatures based on highly customisable input arguments
specified by the user.

The operation of this function is described in Figure A9:

B.a.Given there is a path.

B.b.In which one or multiple IDF files are located.

B.c.The user needs to call that function, either specifying all arguments as shown in the figure, or no argument at
all (i.e., accis.addAccis ()). In the latter, the user will be requested to enter all information guided by
clarificatory text in the Python console or CMD terminal.

B.d.Then, accim will generate all output IDFs and will name them based on the arguments entered by the user, to
finally save them in the same path where input IDFs were located.

As stated above, this module has already been explained in previous studies (Sanchez-Garcia, Bienvenido-Huertas,

and Rubio-Bellido 2021; Sanchez-Garcia, Martinez-Crespo, et al. 2023), therefore no further details are necessary.

B.a.

ccim.sim

B.d. Qutput IDFs

Model_A
I Model_A
§ Mogel A

CS_INT EN16798][[[[
cs_INT EN16798([|cA_3l[|cm_1][jHm 2|[|lve o
[[[[
[[[[

MW_50.0
MW_50.0

AT 0.1
AT 0.1

idf]
Adf|

CS_INT EN16798|[|CA _3{[|cM_2|([Hm 2|[|ve o
CS_INT EN16798

VO_0.0|[|MT_50.0

— — |— [—

[
VO_0.0|[|MT_50.0)

[

[

Model_B
Model_B
Model B
Model B

CS_INT EN16798
CS_INT EN16798
CS_INTEN16798
CS_INT EN16798

[
[
[
[
CS_INT EN16798|[|CA_3][|cMm_o|[
CS_INT EN16798([|cA_3l[|cm_1|[
[[[
[[[

[[
CA_3{[|cM_1|[
cA 3i[jcm 2|
cA 3l[|cM_3|[

Model_C
Model C
Model C
Model_C

CS_INT EN16798 CcM_2
CS_INT EN16798 CM_3

CA 3
CA 3

CAT.
1: CAT |

2 CATHI HVACmode:

gbpeﬁ:Tﬂ/”Lcc 0: Full air-conditioning

85 85“/:; ACG 1: Naturally ventilated VSToffset: MaxWindSpeed:
90: 90% AGC 2: Mixed-mode any number any number

Model_A|[|CS_INT EN16798|[|CA_1|[|CM_o|[|HM_2| [V€ _0|[|VO_0.0|[|MT_50.0|[[M\W._50.0|[|AT_0.1|.idf

Input ComfStand: ComfMod: VentCtrl: MinOToffset: il ASTtol_start
IDF J0: CS_ESP CTE 0: Static 0: Ventilates above any number | ASTtol_end_input
name | 1: CS_INT EN16798 1, 2, 3: Adaptive comfort temperature ASTtol_steps
2: CS_INT ASHRAES5 different modes’

3: Ventilates above
21: CS_CHL Perez-Fargallo| ACST with Venting

Opening Factor

Figure A9. addaccis workflow.

3. accim.run

The tool also has a module to perform building energy simulations with EnergyPlus, named accim.run. This
module contains a Python file, run.py, which contains among other functions, a function named runkp. This
function allows to automatically run all combinations of IDF and EPW files within the path where the function is
executed based on arguments (Table A5) specified by user, and names the output files following the pattern
“IDF[EPW”, therefore using the character “[“ as a separator consistently with the whole package. It has been
developed using eppy code (Santosh 2023) as a reference, but with modifications to suit the name requirements.

Table A5. Arguments of runEp.

Argument Type Definition Admissible values
runOnlyAccim bool Allows to filter IDFs to only simulate outputs of accim True or False
confirmRun bool Allows to skip run confirmation on terminal True or False
num_CPUs integer The number of CPUs to be used Any integer

EnergyPlus version string The version of EnergyPlus. It must match the IDF version. 9.1 to 23.1

Taking the renamed EPW files from process A and the IDFs with adaptive setpoint temperatures from process B
as input files, in this case the process consists of the following steps, named consistently with Figure A10:

C.a. If argument EnergyPlus version has not been entered, accim asks the user to enter that information
on CMD terminal. Then, it searches the IDD file in the default installation path, and stores it in a variable using
the eppy method setiddname.

C.b. Ifthe user has not confirmed the simulation of only output IDFs from accim with argument runOnlyAccim,
then accim asks for it on CMD terminal. Then, if requested, accim filters the IDFs.

C.c.Then, accim informs the user of the simulation runs that are going to be performed, which consists of the
combination of all renamed EPWs and filtered IDFs within the path where function is being executed. If the user
has not confirmed the simulation runs with argument confirmRun, then accim asks for it on CMD terminal.

C.d. Finally, if confirmed, accim proceeds with simulation runs, using the number of CPUs specified in argument
num_CPUs.

The output files are the typical files resulting from EnergyPlus simulation. However, the files that are needed in this

procedure are the CSV files, which are ready to be analysed with the data module.

C.a. C.b. C.c. C.d.

accim.run Input:

run.runEp(- Renamed EPW

files from

process A

- IDFs with

adaptive
setpoints from

process B

Output:
CsV files,
among typical
files from
EnergyPlus
simulations

)

Legend

Input/Output

Figure A10. Flowchart of runEp.

Appendix B. In-depth details of the methodology based on accim
B.1. Data pre-processing

Prior to simulation, files need to be pre-processed. EPW files need to be renamed following the pattern
Country_City RCPscenario-Year, as previously mentioned. Also, adaptive setpoint temperatures need to be
implemented in the IDF files.

B.1.1. EPW files preparation

EPW files can be renamed using the class rename epw files. The recommended process, suitable for users
with no programming background, is:

a. open a CMD dialog pointing at the path where the EPW files to be renamed are located.

b. execute Python by entering “py” or “python”.

C. import the package by entering “from accim.data.data preprocessing import
rename epw files”.

d. call the function by entering “rename epw files()”.

e. enter the required information on CMD dialog.

Therefore, after instantiating the class, accim needs to interact with the user throughout the process, shown in
Figure B1. The tool will try to identify if the EPW files are for some future RCP scenario, and if no match is found, it
considers these for present scenario. Then, based on the addresses obtained from the coordinates, proposes new
names for the EPW files, and asks the user if some of these need to be amended, and then, if some of these need
to be excluded. In this case, the tool renamed correctly all EPW files at the first instance and no amendments were
required. Therefore, the new EPW names are: India_Ahmedabad Present, India_Shimla_Present,
India_Ahmedabad_RCP85-2100 and India_Shimla_RCP85-2100.

Input:

EPW files
Current_Ahmedabad-hour.epw
Current_Shimla-hour.epw
RCP852100_Ahmedabad-hour.epw
RCP852100_Shimla-hour.epw

rename

rename_epw. fi

I Since no match has been found between RCP scenario Year and EPW file name, Present year has been assigned to the following EPW files:
: Current_Ahmedabad-hour.epw

| Current_Shimla-hour.epw

| The geolocation process has taken: 1.78 seconds (0.45 s/EPW)

| The previous and new names of the EPW files and their unique IDs are:

| ID: 0/ Current_Ahmedabad-hour / India_Ahmedabad_Present

I ID: 1/ Current_Shimla-hour / India_Shimla_Present

I ID: 2 / RCP852100_Ahmedabad-hour / India_Ahmedabad_RCP85-2100

: ID: 3/ RCP852100_Shimla-hour / India_Shimla_RCP85-2100

| If any of the city or subcountry names needs some amendment (if you are not happy with any of the available options, you can exclude it from
| renaming at the next stage), please enter the EPW IDs separated by space; otherwise, hit enter to omit: (hit enter)

-
The final list of previous and new names of the EPW files and their unique IDs is:

ID: 0/ Current_Ahmedabad-hour / India_Ahmedabad_Present

ID: 1/ Current_Shimla-hour / India_Shimla_Present

ID: 2 / RCP852100_Ahmedabad-hour / India_Ahmedabad_RCP85-2100

ID: 3/ RCP852100_Shimla-hour / India_Shimla_RCP85-2100

If you want to exclude some EPWSs from renaming, please enter the IDs separated by space, otherwise, hit enter to continue: (hit enter)

The file Current_Ahmedabad-hour has been renamed to India_Ahmedabad_Present 1
The file Current_Shimla-hour has been renamed to India_Shimla_Present 1
The file RCP852100_Ahmedabad-hour has been renamed to India_Ahmedabad_RCP85-2100 1
The file RCP852100_Shimla-hour has been renamed to India_Shimla_RCP85-2100 1

: The file Current_Ahmedabad-hour.epw has been deleted. 1
\ The file Current_Shimla-hour.epw has been deleted. 1
| The file RCP852100_Ahmedabad-hour.epw has been deleted. 1
| The file RCP852100_Shimla-hour.epw has been deleted. 1

Output:

_ renamed EPW files

India_Ahmedabad_Present.epw
India_Shimla_Present.epw
f———————=—=—=—=—===—~— | India_Ahmedabad_RCP85-2100.epw
; Printed on screen: entered by user | India_Shimla_RCP85-2100.epw

Figure B1. Flowchart for EPW formatting procedure using the class rename epw files
B.1.2. ACCIS implementation

The next step is applying the adaptive setpoint temperatures. To do so, the class addAccis needs to be used.
Again, the recommended process, suitable for users with no programming background, is:

a. open a CMD dialog pointing at the path where the IDF files to be handled are located.

b. execute Python by entering “py” or “python”.

c. import the package by entering “from accim.sim import accis’.

d. instantiate the class by entering “accis.addAccis ()”

e. enter the required information on CMD dialog (related to the arguments that have not been specified)

In this case study, all arguments are specified as shown in Figure B2. As a result, 12 output IDFs are generated,
although not all of them are necessary. The IDFs that are needed are listed in Table 2. Thus, the remaining should
be removed to avoid unnecessary computational effort.

Legend

Input:
IDF file(s)

———

- scriptType is “vif_mm”, since this option adds a generic VRF system for each
zone, and the input IDF was the geometry of the Small Office prototype for New
Delhi climate exported from DesignBuilder with a generic HVAC system.

- “temperature difference” in argument SupplyAirTempInputMethod specifies
the type of supply air temperature input method for the VRF systems. This is due
to the fact that, running simulations in hot weather with high cooling setpoint
temperatures might result in little cooling needs, sometimes too little to be used
with a generic cooling supply air temperature of 14” C.

- Output keep existingis setto False to not to generate unnecessary results.

- Output gen dataframe: In order to create a pandas DataFrame instance
including all Output:Variable objects, a boolean value (True or False) must be
specified.

- Output type is set to “standard”, in order to provide typical results. Other
options might be used when many simulations are carried out and file size needs
to be reduced, or when very specific results need to be exported for the testing of
the tool.

- Output fregs is set only to “hourly” since aggregation into other frequencies will
be performed later in data analysis. If additional frequencies were required, these
could be added to the list (i.e. ['hourly', 'daily’, 'monthly’, 'runperiod])

- EnergyPlus version is setto “23.1" since that is the version of SmallOffice.idf.

- TempCLrl is set to “temperature”, so that the operation of the HVAC system is
based on the operative temperature. If “pmv” was used, setpoints would be =0.5.

- comfstand requested values are 2 and 7, since these are the numbers
respectively for ASHRAE 55 and IMAC-C in NV mode.

- CAT is set only to 80, so that the offset of setpoint temperatures from neutral
temperature covers an 80% acceptability.

- comfMod requested values are 0 and 3, since these are respectively for static and
adaptive setpoints, and in this study, adaptive setpoints from IMAC-C and static
setpoints from Indian Building Code are to be compared.

- HVACmode requested values are 0, 1 and 2, since those are respectively for AC,
NV and MM operation modes. In this case study, may be interesting to evaluate
the energy performance of MM against AC. Also, may be interesting to see the
difference in comfort hours between NV and MM mode.

- VentCtrl, VSToffset, MinOToffset and MaxWindSpeed are arguments to
control the operation of MM. In this case, the windows are opened when operative
temperature exceeds the neutral temperature (ventctrl is 0) with no offset
(vsToffset is 0), and no restrictions in terms of minimum outdoor temperature
and maximum wind speed are set (MinOToffset and MaxWindSpeed are 50).

- ASTtol steps, ASTtol start and ASTtol end input are mainly used to
apply some tolerances to make sure there are no hours that fall outside the
comfort zone by a little extent. These can also be used to generate an array of
setpoint temperatures. In this case, it applies a +0.1° C offset to heating and
cooling setpoints.

r_The user needs to interact :
with accim. Arguments
need to be entered in the |
Python console, following 1
the requests of accim. 1

4

Input:
IDF file(s)
SmallOffice[CS_IND IMAC C NV[CA_80[CM_O[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X.idf
SmallOffice[CS_IND IMAC C NV[CA_80[CM_O[HM_1[VC_O[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X.idf
SmallOffice[CS_IND IMAC C NV[CA_80[CM_O[HM_2[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X.idf
SmallOffice[CS_IND IMAC C NV[CA_80[CM_3[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X.idf
SmallOffice[CS_IND IMAC C NV[CA_80[CM_3[HM_1[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X.idf
SmallOffice[CS_IND IMAC C NV[CA_80[CM_3[HM_2[VC_O0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X.idf
SmallOffice[CS_INT ASHRAESS[CA_80[CM_O[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X.idf
SmallOffice[CS_INT ASHRAES5[CA_80[CM_O[HM_1[VC_O[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X.idf
SmallOffice[CS_INT ASHRAES5[CA_80[CM_0[HM_2[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X.idf
SmallOffice[CS_INT ASHRAES5[CA_80[CM_3[HM_0[VC_X[VO_X[MT_X[MW_XI[AT_0.1[NS_X.idf
SmallOffice[CS_INT ASHRAESS[CA_80[CM_3[HM_1[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X.idf
SmallOffice[CS_INT ASHRAES5[CA_80[CM_3[HM_2[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X.idf

Figure B2. Flowchart for the implementation of the ACCIS using the class addAccis.

Table 2. Output IDFs from accim for the case study.

° - 3 c
g o 9 o §,
& = £ = g
— IS Q c o
g S <>(© 3]
o © T e <
HM_2 adaptive setpoints b{:\seq on !MAC-_C horlzontally extended beyond IND_Adap_ MM
applicability limits, in MM operation
cM. 3 HM_1 adaptive setpoints bz?\sed_ on I_MAC-_C horlzontally extended beyond Ind_Adap_NV
applicability limits, in NV operation
CS_IND IMAC C NV - - -
- adaptive setpoints based on IMAC-C horizontally extended beyond
HM_O OO : IND_Adap_AC
applicability limits, in AC operation
CM_0 HM_0 PMV-based or nearly s_tatlc setpo_lnt temperatL_Jres based on Indian IND_Stat_AC
Building Code, in AC operation
CS_INT ASHRAES5 CM_3 HM_0 adaptive setpoints based on ASHRAE 55 horizontally extended beyond ASH_Adap_AC

applicability limits, in AC operation

B.2. Running simulations

Once EPWs have been formatted and adaptive setpoint temperatures have been implemented in the output IDFs,
simulations can be automatically run using the function runEp. Again, the recommended process, suitable for users

with no programming background, is:

a. open a CMD dialog pointing at the path where the renamed EPWs and IDFs are located.

b. execute Python by entering “py” or “python”.

C. import the package by entering “from accim.run import run”.

d. call the function by entering “run. runkp () ”.

e. enter the required information on CMD dialog (related to the arguments that have not been specified).

Once the function has been called, the user might need to interact with accim to provide any missing argument. In
this case, no interaction is needed, since all arguments have been specified as shown in Figure B3. The simulation
output files have been saved in the same path. In this case study 20 simulations have been run (5 IDFs x 4 EPWS),
therefore there must be 20 CSV files ready to be analysed.

Legend Input:
renamed EPW files

_ India_Ahmedabad_Present.epw
India_Shimla_Present.epw accim.run
India_Ahmedabad_RCP85-2100.epw run.runEp(
India_Shimla_RCP85-2100.epw

Input:
IDF file(s)
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_O[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X.idf
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X.idf
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_1[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X.idf
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_2[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X.idf
SmallOffice_NewDelhi[CS_INT ASHRAESS5[CA_80[CM_3[HM_O[VC_X[VO_X[MT_X[MW_XIAT_0.1[NS_X.idf

- runOnlyAccim is set to True in order to run only output IDF files from addaccis function. Accim will filter IDF files with the character “[* in its |
I

name.
- confirmRun is set to True, since the user knows the what the amount of Simulation runs is going to be. Since there are 5 IDFs and 4 EPWs, 20 :
simulations will be run. "
- num CPUs is set to 4, in order to use 4 CPU cores. |
- EnergyPlus version is setto “23.1", since the IDF version is 23.1 1

Output:

CSV file(s)
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_O[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Ahmedabad_Present.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_O0[HM_O0[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Ahmedabad_RCP85-2100.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_0[HM_O0[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Shimla_Present.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_0[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Shimla_RCP85-2100.csv
SmallOffice_ NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_0[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Ahmedabad_Present.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_0[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Ahmedabad_RCP85-2100.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_0[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Shimla_Present.csv
SmallOffice_ NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_0[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Shimla_RCP85-2100.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_1[VC_0O[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Ahmedabad_Present.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_1[VC_O[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Ahmedabad_RCP85-2100.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_1[VC_O[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Shimla_Present.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_1[VC_O[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Shimla_RCP85-2100.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_2[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Ahmedabad_Present.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_2[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Ahmedabad_RCP85-2100.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_2[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Shimla_Present.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_2[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Shimla_RCP85-2100.csv
SmallOffice_NewDelhi[CS_INT ASHRAES5[CA_80[CM_3[HM_0[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Ahmedabad_Present.csv
SmallOffice_NewDelhi[CS_INT ASHRAESS5[CA_80[CM_3[HM_0[VC_X[VO_X[MT_X[MW_XIAT_0.1[NS_X[India_Ahmedabad RCP85-2100.csv
SmallOffice_NewDelhi[CS_INT ASHRAESS5[CA_80[CM_3[HM_0[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X][India_Shimla_Present.csv
SmallOffice_ NewDelhi[CS_INT ASHRAES5[CA_80[CM_3[HM_0[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Shimla_RCP85-2100.csv

Figure B3. Flowchart for the simulation runs using the function runEp.

B.3. Data analysis

In the following subsections, the CSV files resulting from the simulation runs will be analysed, to provide a table to
assess the energy demand differences, and to visualize the data in multiple figures. In this case, it is recommended
to use an IDE instead of a CMD dialog.

B.3.1. Tables

The aim of this subsection is to create a table to understand how much energy is demanded in the different settings.
To do so, the first step would be to generate a DataFrame instance using the class Table, which is going to be
stored in variable dataset runperiod as shown in Figure B4. Then, the method format table needs to be
executed, to filter only energy demand columns at building level, as shown in Figure B5.

Input:

CSV file(s)
SmallOffice_ NewDelhi[CS_IND IMAC C NV[CA_80[CM_O[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Ahmedabad_Present.csv
SmallOffice_ NewDelhi[CS_IND IMAC C NV[CA_80[CM_O[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Ahmedabad RCP85-2100.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_O[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Shimla_Present.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_O[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Shimla_RCP85-2100.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_0O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Ahmedabad_Present.csv
SmallOffice_ NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Ahmedabad_RCP85-2100.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Shimla_Present.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Shimla_RCP85-2100.csv
SmallOffice_ NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_1[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Ahmedabad_Present.csv
SmallOffice_ NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_1[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Ahmedabad_RCP85-2100.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_1[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Shimla_Present.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_1[VC_O[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Shimla_RCP85-2100.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_2[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Ahmedabad_Present.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_2[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Ahmedabad_RCP85-2100.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_2[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Shimla_Present.csv
SmallOffice_ NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_2[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Shimla_RCP85-2100.csv
SmallOffice_NewDelhi[CS_INT ASHRAES5[CA_80[CM_3[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Ahmedabad_Present.csv
SmallOffice_NewDelhi[CS_INT ASHRAE55[CA_80[CM_3[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Ahmedabad_RCP85-2100.csv
SmallOffice_ NewDelhi[CS_INT ASHRAES5[CA_80[CM_3[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Shimla_Present.csv
SmallOffice_NewDelhi[CS_INT ASHRAES55[CA_80[CM_3[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Shimla_RCP85-2100.csv

accim.da

dataset_runperiod = Table(
=[i iin listdir() i i.endwwith(

: - datasets is set to a list of all CSV files except those in which operation mode is NV, since energy demand is 0.

|- source frequency is set to “hourly”, since that is the frequency that has been used when the output IDFs were generated.

- frequency is set to “runperiod”, since the target table is intended to have only 1 row per simulation run.

1 - frequency agg func is set to “sum”, since all hourly energy demand values must be summed on a runperiod frequency basis.

I - standard outputs is set to True, to use only a controlled range of outputs.

I - level is set only to “building”, since the target table should show the sum of energy demand values from all thermal zones.

: - level agg func is set only to “sum”, since only summed values of all zones are necessary.

- level excluded zones is set to 'ATTIC:ATTIC'. If the user opens the IDF file, 2 blocks can be found: ATTIC and Block1. In this case, the
I block ATTIC contains only one zone named ATTIC as well, which is not air-conditioned. Therefore, it should be omitted in the calculations.

- split epw names is setto True, since the EPWs have previously formatted to analyse the locations and climate scenarios.

Output:
_ A Table instance stored in variable
dataset runperiocd, which contains a
DataFrame instance stored in variable d £
Input/Output
with shape 16 rows x 174 columns

Figure B4. Flowchart for the instantiation of the class Table

Input:

A Table instance stored in variable
dataset_runperiocd, which contains a
DataFrame instance stored in variable d£

with shape 16 rows x 174 columns

| format_table(

e e e e e e e e e e - - 1
type of table is set to “custom”, so that specifically |

1
1 the columns specified in custom cols are filtered. 1
! custom cols is a list of the columns that should be |
! kept, namely heating, cocling and total energy demand at !
: building level.

______________ ———

QOutput:

_ The Table instance stored in variable
dataset runperiod, in which the

variable 4t has been modified and now
has a shape of 16 rows x 21 columns

Figure B5. Flowchart for the use of format table

At this point, the user might have a vague idea of what table can be done with the available data, especially if there
is a large number of categorical variables. In order to get a clearer idea of this, the user can call the method named
gather vars query. This method has not been previously explained in the methodology since the aim is merely
assist the user to clarify the analysis possibilities. In this case, when IDFs with adaptive setpoint were generated,
the arguments where more than one value were requested were columns ComfStand, ComfMod and HVACmode
(ComfStand=[2, 7], ComfMod=[0, 3], HYACmode=[0, 1, 2]). Thus, these are all the categorical variables that change
regarding the IDFs and the possibilities that might be interesting to study, and therefore the variables that have
been entered in vars to gather. Then, accim prints on screen the categorical variables that contains more than
one different value (i.e. ComfMod, since values are “CM_0" and “CM_3"), and the different combinations based on
the combined variables, joined by character “[*

- CS_IND IMAC C NV[CM_O[HM_O.
- CS_IND IMAC C NV[CM_3[HM_0.
- CS_IND IMAC C NV[CM_3[HM_2.
CS_INT ASHRAE55[CM_3[HM_O.

Then, the wrangled table can be generated following Figure B6.

Input:
The Table instance stored in
variable dataset runperiod,
after calling format_table

!

dataset_runperiod.wrangled_table(

|- reshaping is set to “unstack”, since some variables in the
I rows should be moved to the columns.

I - vars_to gather is set to columns “ComfStand”, “ComfMod”
I and “HVACmode®, as previously showed in method
! gather vars query.

: - baseline is set to "CS_IND IMAC C NV[CM_3[HM_2", which
i is the setting that this case study intends to analyse.

|- vars_to keep is set to “EPW_City_or_subcountry”,
| *EPW_Scenario” and “EPW_Year”, since these are the
I remaining categorical variables apart from those specified in
I vars to gather,

. comparison mode is only set to “baseline compared to
: others”, since only the variance of the baseline respect to all
I other combinations must be shown.

|- comparison cols is only set to “relative”, since absolute
1 differences are not needed.

- rename dict is a dictionary following the acronyms from
I Table 7.

I transpose is set to True, since the original was not in a
: suitable shape.

Legend Output:
An Excel file named

containing the wrangled

Input/Output table

Figure B6. Flowchart for the use of method wrangled table

Finally, an Excel spreadsheet named “testing_accim.xlsx” is created and saved in the same path where the method
was called. This output has been broken down into 2 tables for clarity purposes: Table 5 shows the energy demand
values obtained and Table 6 the percentage obtained with the use of MM. For instance, the latter shows that
IND_Adap_MM provides savings in thermal energy demand ranging from 24 to 65% with respect to IND_Adap_AC
depending on the location and climate scenario.

B.3.2. Data visualization

The aim of this subsection is to plot figures that represent the results of the building performance simulations with
adaptive setpoint temperatures. Therefore, all 3 methods previously explained at the methodology section are
applied. These need to be called after method format table. However, the class Table instance created at the
previous section had runperiod frequency, which would be translated into very simple and not interesting figures,
and besides NV mode was not considered. Therefore, a new instance will be created in this case using hourly
frequency, as shown on Figure B7. In this case, format table will be called filtering the columns for the mean
operative temperature of all air-conditioned zones, the adaptive setpoint temperatures, a value of running mean
outdoor temperature of a single zone (since it is the same for all of them), and the building total heating and cooling
energy demands.

Input:

CSV file(s)
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_O[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Ahmedabad_Present.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_O[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Ahmedabad_RCP85-2100.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_O[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Shimla_Present.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_O[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Shimla_RCP85-2100.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Ahmedabad_Present.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Ahmedabad_RCP85-2100.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_O0[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Shimla_Present.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Shimla_RCP85-2100.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_1[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Ahmedabad_Present.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_1[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Ahmedabad_RCP85-2100.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_1[VC_O[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Shimla_Present.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_1[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Shimla_RCP85-2100.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_2[VC_O[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Ahmedabad_Present.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_2[VC_O[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Ahmedabad RCP85-2100.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_2[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Shimla_Present.csv
SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_2[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X[India_Shimla_RCP85-2100.csv
SmallOffice_NewDelhi[CS_INT ASHRAES55[CA_80[CM_3[HM_O[VC_X[VO_X[MT_X[MW_X[AT 0.1[NS_X[India_Ahmedabad_Present.csv
SmallOffice_NewDelhi[CS_INT ASHRAES5[CA_80[CM_3[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Ahmedabad_RCP85-2100.csv
SmallOffice_NewDelhi[CS_INT ASHRAES5[CA_80[CM_3[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Shimla_Present.csv
SmallOffice_NewDelhi[CS_INT ASHRAES55[CA_80[CM_3[HM_O[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X[India_Shimla_RCP85-2100.csv

accim.data.data_postprocessing
dataset_hourly = Table(

dataset_hourly.format_table(

=[

Lege nd Qutput:

_ The Table instance stored in variable

dataset hourly, in which the variable
df has been modified and now has a
shape of 175200 rows x 28 columns

Figure B7. Flowchart for the instantiation of Table using hourly frequency, and use of method format_table.

Once format table has been called, the methods to create the figures can follow. The user might expect to
obtain figures composed of multiple subplots. First, scatter plot method will be used, in which the typical plot
to show the linear regression of adaptive comfort models will be generated. As specified in the arguments in Figure
B8, the variables ComfStand, ComfMod and HVACmode were gathered and the different combinations are plotted
in rows, while EPW City or subcountry and EPW Scenario-Year combinations are plotted in the columns.
Data on main y-axis (left) was heating and cooling energy demand with best fit lines, while setpoint temperatures
and operative temperature were plotted on the secondary y-axis (right), following the colours specified in the
arguments. Considering the frequency input argument was set to “hourly” when Table class was instantiated,
all values refer to hourly basis. Finally, these were renamed following the dictionaries entered. The output is shown
in Figure 3, and allows the user to compare indoor temperature values from the use of HVAC systems with adaptive
setpoint temperatures based on whether IMAC-C or ASHRAE 55 with roughly static setpoints from the Indian
Building Code (in top row of subplots) or no HVAC system at all (i.e. NV and free-running mode, in middle row of
subplots). In the latter, the comfortable hours ranged from 37% in Ahmedabad in RCP8.5 2100 to 84% in Shimla
Present, while in all other air-conditioned cases, the comfortable hours ranged from 99.88% to 100%.

Input:
The Table instance stored in variable dataset hourly,
after calling format_table

- vars to gather rows is setto a list of the variables
to be combined and shown in the rows, in this case
“ComfStand”, “ComfMod” and “HVACmode". Therefore,
the result of this is composed of combinations based on
available data following the pattern
“ComfStand[ComfMod[HVACmode”, such as “CS_IND
IMAC C NV[CM_O[HM_0" among others.

- vars to gather cols is setto a list of the variables
to be combined and shown in the columns, in this case
“EPW_City_or_subcountry” and “EPW_Scenario-Year”.
Therefore, the result of this is composed of combinations
based on available data following the pattern
“EPW_City_or_subcountry[EPW_Scenario-Year”, such
as “Ahmedabad[Present” among others.

- data_on_x_axis is set to a string, which is the column
of the dataframe df to be plotted in the x-axis. In this
case, it is "BLOCK1:PERIMETERXZNX4_ASHRAE 55
Running mean outdoor temperature (* C)”, since the
desired plot should show the linear regression of the
adaptive comfort models.

- data on_ y main_ axis is setto a list with nested lists,
which considering multiple spines can be plotted, should
follow the pattern:

[

['name_on_1st_y_main_axis', [list of columns to plot]],
['name_on_2nd_y_main_axis', [list of columns to plot]],
etc

1

- data_on_y sec_axis is set to a list with nested lists,
similarly to data_on_y main_axis, butin this case,
plotted in the y-axis at the right of the figure.

- colorlist y main_axis and
colorlist_y sec_axis follow a structure similar to
data_on_y main_axis, but replacing the column
names with the related colour using matplotlib colour
notation

- best_fit_deg_y_main_axis also follows a structure
similarto data_on_y main_axis, but replacing the
column names with polynomial degree for the best fit line

- cols renaming dict is set to a dictionary containing
the original and the new names of the subplot columns in

dataset_hourly.scatter_plot(

", o«

1

1

1

1

1

1

1

1

1

1

: the format {“old name”: “new name”}

(" rows_renaming dict follows a logic similar to

| cols_renaming dict, but renames the subplot rows.
|- sharex and sharey are both set to False, so that the

1 range of values in x and y axis is adapted to each

| subplot individually

I - subxlabel is set to a string, which will be shown as the
: label of the x-axis, in this case, “Prevailing mean outdoor
| temperature (° C)”

|- figname is set to a string, which will be the name of the
1 PNG file generated, in this case

1 “testing_scatterplot_case_study.png”.

I - figsize is set to an integer, which is the size of each

! subplot.

. ratio height to width is setto an integer used to

: specify the shape of each subplot. The height will be

| multiplied by the number to provide the final height.

|- dpi is set to an integer, used to specify the figure

1 resolution

- confirm graph is set to True, to skip the confirmation

: to plot the figure

1

Output:
A PNG file named

“testing_scatterplot_case_study.png” | Input/Output |

Figure B8. Flowchart for the use of method scatter plot

Using a similar code snippet but changing method to time plot and omitting the argument data on x axis, a
figure with time on the x-axis can be generated (Figure B9). In this case, the argument sharex is also omitted,
since the simulation period is the same for all cases. The output is shown in Figure 4.

Input:
Legend The Table instance
stored in variable

after calling

| Input/Output | format_table

t_hourly.time_plot(
=
=l
=

Output:
A PNG file named
“testing_timeplot_case_study.png”

Figure B9. Flowchart for the use of method time plot

Finally, using scatter plot with baseline asshown in Figure B10, a different scatter plot can be generated.
In this case, it is mainly used to compare a baseline combination of variables, plotted on x-axis, with the remaining
variants, plotted on y-axis. In the example below, the total heating and cooling energy demands will be compared
using the combination “CS_IND IMAC C NV[CM_3[HM_2” (or IND_Adap_MM) as the baseline, since it is expected
to provide the greater energy savings. The same Table instance will be used, however, to avoid plotting an empty
energy demand figure for the combination “CS_IND IMAC C NV[CM_3[HM_1” (or IND_Adap_NV) since it is on
naturally ventilated mode, the argument detailed cols is used. In this argument, all the combinations to be
plotted are specified, that is, all of them except the NV and the baseline. The output is represented in Figure 5,
which compares the hourly energy demand values of the baseline combination “CS_IND IMAC C NV[CM_3[HM_2"
(or IND_Adap_MM) against all other combinations. For instance, in this case, the figure shows that there is an
important number of hourly cooling energy demand values moving away from the diagonal (or 100% line, in which
values are similar for the baseline and other combinations) and gathering around the 25% line, in which baseline
values are roughly a quarter of the other combinations.

Legend
Input:
The Table instance stored in

variable dataset hourly, after _
calling format_table Input/Output

- vars to gather rows and vars to gather cols

set_hourly.scatter_plot_with_baseline(are used in a similar way to methods scatter_plot and

time_plot

- detailed cols is set to a list containing the
combinations of variables to be shown in the columns.
Should be used when some combination is not
necessary.

- data on x axis is setto a string, which is the column
of the dataframe df to be plotted in the x-axis. In this
case, it is "BLOCK1:PERIMETERXZNX4_ASHRAE 55
Running mean outdoor temperature (° C)”, since the
desired plot should show the linear regression of the
adaptive comfort models.

- data on y main axisis settoalist containing the
columns to be plotted on y-axis. A list with column names
must be entered following the pattern:
[first_column_name', 'second_column_name', etc]

- colorlist baseline plot data is setto alist
similar to data_on_y axis baseline plot, but
replacing column names with colors using matplotlib color
notation

- baseline is set to a string, which will be the
combination of variables to be compared with all other
combinations

- cols_renaming dict and rows_renaming dict
are used in a similar way to methods scatter_plot and
time_plot.

- subxlabel is set to a string, which will be shown as the
label of the x-axis, in this case, representing the baseline

- subylabel is set to a string, which will be shown as the
label of the y-axis

- figname is set to a string, which will be the name of the
PNG file generated, in this case
“testing_scatterplotbaseline_case_study.png”.

- figsize, dpi and confirm graph are usedina
similar way to methods scatter_plot and time_plot

Output:
A PNG file named
“testing_scatterplotbaseline_case_study.png”

Figure B10. Flowchart for the use of the method scatter plot with baseline

References

Allouhi, A., Y. El Fouih, T. Kousksou, A. Jamil, Y. Zeraouli, and Y. Mourad. 2015. “Energy Consumption and
Efficiency in Buildings: Current Status and Future Trends.” Journal of Cleaner Production 109. Elsevier Ltd:
118-130. doi:10.1016/j.jclepro.2015.05.139.

ANSI/ASHRAE. 2020. ASHRAE Standard 55-2020 Thermal Environmental Conditions for Human Occupancy.
Edited by ASHRAE Inc. ASHRAE Standard. Atlanta, GA, United States.

Beckman, William A., Lars Broman, Alex Fiksel, Sanford A. Klein, Eva Lindberg, Mattias Schuler, and Jeff Thornton.
1994. “TRNSYS The Most Complete Solar Energy System Modeling and Simulation Software.” Renewable
Energy 5 (1-4). Pergamon: 486—488. d0i:10.1016/0960-1481(94)90420-0.

Bernal, Willy, Madhur Behl, Truong X. Nghiem, and Rahul Mangharam. 2012. “MLE+: A Tool for Integrated Design
and Deployment of Energy Efficient Building Controls.” BuildSys 2012 - Proceedings of the 4th ACM
Workshop on Embedded Systems for Energy Efficiency in Buildings, 123-130. doi:10.1145/2422531.2422553.

Bienvenido-Huertas, David, Daniel Sanchez-Garcia, and Carlos Rubio-Bellido. 2021. “Adaptive Setpoint
Temperatures to Reduce the Risk of Energy Poverty? A Local Case Study in Seville.” Energy and Buildings
231 (January). Elsevier B.V.: 110571. doi:10.1016/j.enbuild.2020.110571.

Bienvenido-Huertas, David, Daniel Sanchez-Garcia, Carlos Rubio-Bellido, and David Marin-Garcia. 2021.
“Potential of Applying Adaptive Strategies in Buildings to Reduce the Severity of Fuel Poverty According to
the Climate Zone and Climate Change: The Case of Andalusia.” Sustainable Cities and Society 73 (October):
103088. doi:10.1016/j.scs.2021.103088.

Bienvenido-Huertas, David, Daniel Sanchez-Garcia, Carlos Rubio-Bellido, and JesUs A. Pulido-Arcas. 2021.
“Applying the Mixed-Mode with an Adaptive Approach to Reduce the Energy Poverty in Social Dwellings: The
Case of Spain.” Energy 237 (December): 121636. doi:10.1016/j.energy.2021.121636.

Big Ladder Software Ltd. “Modelkit.” https://bigladdersoftware.com/projects/modelkit/.
Bureau of Indian Standards. 2016. National Building Code of India Volume 2. India.

Crawley, Drury B., Linda K. Lawrie, Frederick C. Winkelmann, W. F. Buhl, Y. Joe Huang, Curtis O. Pedersen,
Richard K. Strand, et al. 2001. “EnergyPlus: Creating a New-Generation Building Energy Simulation Program.”
Energy and Buildings 33 (4): 319-331. d0i:10.1016/S0378-7788(00)00114-6.

de Dear, Richard J., and Gail Schiller Brager. 1998. “Developing an Adaptive Model of Thermal Comfort and
Preference.” ASHRAE Transactions 104 (Pt 1A): 145-167.
http://www.scopus.com/inward/record.url?scp=0031624196&partnerID=8YFLogxK.

DesignBuilder Software Ltd. 2021. “DesignBuilder.” https://designbuilder.co.uk.

Dhaka, Shivraj, Jyotirmay Mathur, and Vishal Garg. 2012. “Combined Effect of Energy Efficiency Measures and
Thermal Adaptation on Air Conditioned Building in Warm Climatic Conditions of India.” Energy and Buildings
55. Elsevier B.V.: 351-360. doi:10.1016/j.enbuild.2012.09.038.

European Commission. 2002. Directive 2002/91/EC of the European Parliament and of the Council of 16 December
2002 on the Energy Performance of Buildings. Official Journal of the European Communities. Vol. 1. Brussels,
Belgium.

European Commission. 2006. Action Plan for Energy Efficiency: Realising the Potential. Brussels, Belgium.

European Commission. 2011. “A Roadmap for Moving to a Competitive Low Carbon Economy in 2050.” Brussels,
Belgium. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52011DC0112.

European committee for standardization. 2019. “EN 16798-1:2019 Energy Performance of Buildings. Ventilation for
Buildings. Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of
Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics.”
https://en.tienda.aenor.com/norma-bsi-bs-en-16798-1-2019-000000000030297474.

European Environment Agency. 2017. Final Energy Consumption by Sector and Fuel (2017). Copenhagen,
Denmark.

European Union. 2010. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on
the Energy Performance of Buildings. Official Journal Of The European Union. Vol. 153. Brussels, Belgium.

Foldvary LiCina, Veronika, Toby Cheung, Hui Zhang, Richard de Dear, Thomas Parkinson, Edward Arens,
Chungyoon Chun, et al. 2018. “Development of the ASHRAE Global Thermal Comfort Database 1I.” Building
and Environment 142 (September). Pergamon: 502—-512. doi:10.1016/J.BUILDENV.2018.06.022.

Guglielmetti, Rob, Dan Macumber, and Nicholas Long. 2011. “Openstudio: An Open Source Integrated Analysis
Platform.” In Proceedings of Building Simulation 2011: 12th Conference of International Building Performance
Simulation Association, 442-449. https://www.osti.gov/biblio/1032670.

Hirsch, J.J. “‘EQUEST: The QUick Energy Simulation Tool.” http://www.doe2.com/equest/.

Hong, Tianzhen, Jared Langevin, and Kaiyu Sun. 2018. “Building Simulation: Ten Challenges.” Building Simulation,
871-898. https://doi.org/10.1007/s12273-018-0444-x.

Hoyt, Tyler, Edward Arens, and Hui Zhang. 2015. “Extending Air Temperature Setpoints: Simulated Energy Savings
and Design Considerations for New and Retrofit Buildings.” Building and Environment 88 (June). Elsevier Ltd:
89-96. doi:10.1016/j.buildenv.2014.09.010.

Intergovernmental Panel on Climate Change. 2007. Climate Change 2007: The Physical Science Basis.
Contribution of Working Group | to the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change.

Intergovernmental Panel on Climate Change. 2014. Climate Change 2014: Synthesis Report. Contribution of
Working Groups I, Il and Il to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
Edited by Intergovernmental Panel on Climate Change. Climate Change 2013 - The Physical Science Basis.
Cambridge: Cambridge University Press. doi:10.1017/CB09781107415324.004.

Kramer, R. P., M. P.E. Maas, M. H.J. Martens, A. W.M. van Schijndel, and H. L. Schellen. 2015. “Energy
Conservation in Museums Using Different Setpoint Strategies: A Case Study for a State-of-the-Art Museum
Using Building Simulations.” Applied Energy 158. Elsevier Ltd: 446-458. doi:10.1016/j.apenergy.2015.08.044.

Li, Peixian, Thomas Parkinson, Stefano Schiavon, Thomas M. Froese, Richard de Dear, Adam Rysanek, and
Sheryl Staub-French. 2020. “Improved Long-Term Thermal Comfort Indices for Continuous Monitoring.”
Energy and Buildings 224. Elsevier: 110270. doi:10.1016/j.enbuild.2020.110270.

Manu, Sanyogita, Yash Shukla, Rajan Rawal, Leena E. Thomas, and Richard de Dear. 2016. “Field Studies of
Thermal Comfort across Multiple Climate Zones for the Subcontinent: India Model for Adaptive Comfort
(IMAC).” Building and Environment 98 (March). Elsevier Ltd: 55-70. doi:10.1016/j.buildenv.2015.12.019.

Monge Palma, Rafael, José Sanchez Ramos, Maria del Carmen Guerrero Delgado, Teresa Rocio Palomo Amores,
Laura Romero Rodriguez, and Servando Alvarez Dominguez. 2023. “Extending the Thermal Comfort Band
in Residential Buildings: A Strategy towards a Less Energy-Intensive Society.” Applied Sciences 13 (12): 7020.
doi:10.3390/app13127020.

Mui, Kwok Wai Horace, and Wai Tin Daniel Chan. 2003. “Adaptive Comfort Temperature Model of Air-Conditioned
Building in Hong Kong.” Building and Environment 38 (6). Pergamon: 837-852. doi:10.1016/S0360-
1323(03)00020-9.

Parkinson, Thomas, Richard de Dear, and Gail Brager. 2020. “Nudging the Adaptive Thermal Comfort Model.”
Energy and Buildings 206 (January). Elsevier B.V.: 109559. doi:10.1016/j.enbuild.2019.109559.

Roudsari, Mostapha Sadeghipour. “Ladybug Tools.” https://www.ladybug.tools/.
Sanchez-Garcia, Daniel. 2021. “Accim’s Documentation.” https://accim.readthedocs.io/en/latest/index.html.

Sanchez-Garcia, Daniel, David Bienvenido-Huertas, Jesus A. Pulido-Arcas, and Carlos Rubio-Bellido. 2023.
“Extending the Use of Adaptive Thermal Comfort to Air-Conditioning: The Case Study of a Local Japanese
Comfort Model in Present and Future Scenarios.” Energy and Buildings 285 (April): 112901.
doi:10.1016/j.enbuild.2023.112901.

Sanchez-Garcia, Daniel, David Bienvenido-Huertas, and Carlos Rubio-Bellido. 2021. “Computational Approach to
Extend the Air-Conditioning Usage to Adaptive Comfort: Adaptive-Comfort-Control-Implementation Script.”
Automation in Construction 131 (November). Elsevier: 103900. doi:10.1016/j.autcon.2021.103900.

Sanchez-Garcia, Daniel, David Bienvenido-Huertas, Ménica Tristancho-Carvajal, and Carlos Rubio-Bellido. 2019.
“Adaptive Comfort Control Implemented Model (ACCIM) for Energy Consumption Predictions in Dwellings
under Current and Future Climate Conditions: A Case Study Located in Spain.” Energies 12 (8). MDPI AG:
1498. doi:10.3390/en12081498.

Sanchez-Garcia, Daniel, Jorge Martinez-Crespo, Ulpiano Ruiz-Rivas Hernando, and Carmen Alonso. 2023. “A
Detailed View of the Adaptive-Comfort-Control-Implementation Script (ACCIS): The Capabilities of the
Automation System for Adaptive Setpoint Temperatures in Building Energy Models.” Energy and Buildings
288 (June): 113019. doi:10.1016/j.enbuild.2023.113019.

Sanchez-Garcia, Daniel, Carlos Rubio-Bellido, Juan Jesus Martin del Rio, and Alexis Pérez-Fargallo. 2019.
“Towards the Quantification of Energy Demand and Consumption through the Adaptive Comfort Approach in

Mixed Mode Office Buildings Considering Climate Change.” Energy and Buildings 187 (March). Elsevier Ltd:
173-185. doi:10.1016/j.enbuild.2019.02.002.

Sanchez-Guevara Sanchez, Carmen, Anna Mavrogianni, and Fco Javier Neila Gonzalez. 2017. “On the Minimal
Thermal Habitability Conditions in Low Income Dwellings in Spain for a New Definition of Fuel Poverty.”
Building and Environment 114: 344-356. doi:10.1016/j.buildenv.2016.12.029.

Santosh, Philip. 2023. “Running EnergyPlus from Eppy.” Eppy Documentation. Accessed May 3.
https://eppy.readthedocs.io/en/latest/runningeplus.html.

Santosh, Philip, Tran Tuan, Eric Allen Youngson, and Jamie Bull. 2004. “Eppy Web Repository.”
https://github.com/santoshphilip/eppy.

Schild, P.G. “EpXL: EnergyPlus-Excel.” https://github.com/SchildCode/EpXL.

Sun, Ruiji, Stefano Schiavon, Gail Brager, Edward Arens, Hui Zhang, Thomas Parkinson, and Chenlu Zhang. 2024.
“Causal Thinking: Uncovering Hidden Assumptions and Interpretations of Statistical Analysis in Building
Science.” Building and Environment 259 (July). Elsevier Ltd. doi:10.1016/j.buildenv.2024.111530.

University of Strathclyde. 2002. The ESP-r System for Building Energy Simulation.

U.S. Department of Energy. 2023. “Prototype Building Models.” Accessed June 3.
https://lwww.energycodes.gov/prototype-building-models#Commercial.

Wang, Chenli, Kaleb Pattawi, and Hohyun Lee. 2020. “Energy Saving Impact of Occupancy-Driven Thermostat for
Residential ~ Buildings.” Energy and Buildings 211 (March). Elsevier B.V.. 109791.
doi:10.1016/j.enbuild.2020.109791.

Wetter, Michael. 2001. “GenOpt - A Generic Optimization Program.” Seventh International IBPSA Conference, no.
August: 601-608.

Yi, Z. “JEplus.” http://www.jeplus.org/wiki/doku.php.

Yun, Geun Young, Je Hyeon Lee, and Koen Steemers. 2016. “Extending the Applicability of the Adaptive Comfort
Model to the Control of Air-Conditioning Systems.” Building and Environment 105. Elsevier Ltd: 13-23.
doi:10.1016/j.buildenv.2016.05.027.

