
accim: a Python library for adaptive setpoint temperatures in building performance 

simulations 

Daniel Sánchez-García1*, David Bienvenido-Huertas2 and William O’Brien3 

1Grupo Termotecnia, Higher School of Engineering, University of Cádiz, Cádiz, Spain 

2Department of Building Construction, University of Granada, Granada, Spain 

3Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario, Canada 

*Author to whom correspondence should be addressed;  

Abstract 

Building performance simulations (BPS) can be used to estimate the energy required to deliver indoor 
environmental conditions acceptable for the occupants. Although the adaptive approach has been historically 
addressed only to naturally-ventilated spaces, recent research has found it could also be applied to air-conditioning 
spaces. Thus, it is possible to use setpoint temperatures based on adaptive comfort models as energy saving 
measures. This study presents a seamless methodology based on the use of accim, an open-source software tool 
to automate the use of adaptive setpoint temperatures in building performance simulations. accim allows to use 
script-based workflows to perform all actions within the development of a simulation-based thermal comfort study. 
A case study is used to demonstrate the capabilities of accim. The results show accim provides a wide range of 
new possibilities for developing studies related to the energy implications of adaptive thermal comfort. 

Keywords: adaptive thermal comfort; building performance simulation; adaptive setpoint temperatures; 

computational approach; Python 

1. Introduction 

1.1. Research context 

Building performance simulation (BPS) is being used more and more often throughout the life of a building for 
energy saving measures and building energy consumption analysis, among others. It has become more important 
in the formulation of regulations that support the goal of lowering energy usage and emissions in the construction 
industry, as well as in the design and operation of low energy, high performance buildings (Hong, Langevin, and 
Sun 2018). Building energy modelling software programmes may generally be divided into: (i) software programmes 
with built-in simulation engines, such as EnergyPlus (Crawley et al. 2001), TRNSYS (Beckman et al. 1994) or ESP-
r (University of Strathclyde 2002); (ii) Graphical User Interfaces for some specific simulation engine, such as 
eQUEST (Hirsch), Designbuilder (DesignBuilder Software Ltd 2021), OpenStudio (Guglielmetti, Macumber, and 
Long 2011) or Modelkit (Big Ladder Software Ltd) among others; (iii) parametric and optimisation tools, such as  
jEplus (Yi) and GenOpt (Wetter 2001); and (iv) plugins that provide specific performance analysis for other 
applications, such as the Python package eppy (Santosh et al. 2004), MLE+ (Bernal et al. 2012), EpXL (Schild) or 
Ladybug Tools (Roudsari) among others. 

Computational repeatability, reproducibility and replicability has grown more crucial to academics, designers, and 
practitioners as BPS gets more integrated into various elements of the design of architecture and the procedures 
involved in making decisions. The lack of a computational environment containing crucial software and applications 
to conduct it, as well as a workflow in which BPS and data analysis are integrated, are the major causes of issues 
in simulation reproducibility. There are currently very few instances in the literature that address how to do 
reproducible research in the BPS area. 

Also, it is important to consider not just the energy type but also the way buildings are used (Allouhi et al. 2015). To 
address this need, adjustments in setpoint temperatures have been considered as a widespread energy saving 
measure (Monge Palma et al. 2023; Hoyt, Arens, and Zhang 2015). As a means of promoting natural gas 
independence, several governments, notably the Greek and Spanish ones, restricted the heating setpoint 
temperatures to 19 and the cooling setpoint temperatures to 27°C in August 2022. This may be the most recent 
example of setpoint temperature adjustments made to conserve energy. Also, the Danish government adopted 
heating-setpoint energy-saving policies for public buildings, that fixed it at 19°C. Within this research field, adaptive 
comfort models have recently been introduced as a strategy for incorporating buildings' resilience into decreased 
energy usage, especially when considering climate change scenarios. According to the requirements of ASHRAE 
55 (ANSI/ASHRAE 2020) and EN16798-1 (European committee for standardization 2019) and based on 1998 de 
Dear’s and Brager’s first regression model (de Dear and Brager 1998), adaptive comfort models are appropriate 
exclusively for spaces with natural ventilation, given these must also be non-cooled/non-heated spaces. However, 
certain considerations must be given. Since there were so few mixed-mode (MM) building information in the initial 
RP-884 database, the 1998 research lacked enough information on them to draw any firm conclusions. Some 
studies previously shed light on the reconciliation of adaptive comfort and air-conditioning (Yun, Lee, and Steemers 



2016; Mui and Chan 2003). Also, after the development of the ASHRAE Global Thermal Comfort Database II 
(Földváry Ličina et al. 2018), Parkinson et al. (Parkinson, de Dear, and Brager 2020) re-examined the original 
ASHRAE adaptive model in 2020 considering this larger database. All three types of buildings, that is air-
conditioned (AC), naturally-ventilated (NV), and mixed-mode (MM), showed outstanding concordance with the 
adaptive model when the independent variable was inside temperature instead of outside temperature. This led to 
an evaluation of the constraints related to the adaptive comfort models in MM and AC constructions to be 
reevaluated. The results from 1998 could only agree with the 2020 re-evaluation if the significant association 
between the internal and exterior temperatures in NV spaces was acknowledged. Therefore, what the 1998 
research understood to be an adaptation to the exterior environment was an adaptation to the indoor environment, 
which in turn, was closely related to the outdoor environment. As such, the use of adaptive setpoint temperatures 
(Sánchez-García, Rubio-Bellido, et al. 2019) may help to achieve thermal comfort. 

Adaptive setpoint temperatures can be explained as setpoint temperatures that take the values of the adaptive 
comfort limits, therefore making sure the temperature falls within adaptive comfort zone all the time the HVAC 
system is active, but with an energy consumption lower than the resulting from PMV-based ones. These have been 
applied using:  

(i) very basic methods, such as the manually separate simulation of each month and the later merge of 
results to obtain the simulation throughout the year (Sánchez-Guevara Sánchez, Mavrogianni, and 
Neila González 2017), in which ASHRAE’s simplified monthly mean prevailing mean outdoor 
temperature method for the calculation of the adaptive comfort limits was used instead of the daily 
weighted-mean method;  

(ii) intermediate methods, which could use the daily weighted-mean prevailing outdoor temperature, but a 
time-consuming, difficult, and error-susceptible manual process that involved the following steps 
needed to be carried out (Sánchez-García, Bienvenido-Huertas, et al. 2019): setpoint temperatures 
were first calculated using an Excel spreadsheet; an Schedule:Compact object had to be created, so 
that setpoint temperatures could be pasted in it; the EPW file for the location in question was chosen; 
and finally, the adaptive setpoint simulation for each pair of setpoints and climate zone was run. The 
handling of other files was also necessary. Besides, each time an adaptive setpoint temperature (AST) 
and EnergyPlus Weather (EPW) file were combined, which might be hundreds or thousands of times, 
this procedure had to be repeated.  

There are also some studies in which adaptive setpoint temperatures were applied, however the method was not 
described (Wang, Pattawi, and Lee 2020; Kramer et al. 2015; Dhaka, Mathur, and Garg 2012). Then, methods 
progressed using the Energy Management System (EMS) module of EnergyPlus, that could automate some parts 
of that process, which led to the development of the Adaptive-Comfort-Control-Implementation Script (ACCIS) 
(Sánchez-García, Martínez-Crespo, et al. 2023). This EMS script allows the calculation of the adaptive comfort limit 
values and implementation on the adaptive setpoint temperatures as simulations are run. Also, the user can 
customise the adaptive setpoint temperature using different arguments, which allow the user to select the comfort 
model, acceptability levels as well as certain parameters related to mixed-mode, such as minimum outdoor 
temperature or maximum wind speed (Sánchez-García, Martínez-Crespo, et al. 2023). Nonetheless, there were 
still some tasks that remained manual, mainly related to existing elements in the model, which could not be 
automated with EMS. These tasks were automated with a Python parser for EnergyPlus building energy models, 
named eppy (Santosh et al. 2004), which allows to translate objects into lists. As a result, the Python package 
named accim (Sánchez-García, Bienvenido-Huertas, and Rubio-Bellido 2021) was developed, which allowed to 
fully automate the implementation of adaptive setpoint temperatures.  

The main use of accim is the implementation of adaptive setpoint temperatures as energy-saving measures. These 
are especially relevant to two topics: (i) energy poverty, since vulnerable households (those whose energy 
consumption is below half of the median) usually minimise the use of air-conditioning units and use natural 
ventilation instead, and therefore are more suitable for adaptive comfort conditions (Bienvenido-Huertas, Sánchez-
García, Rubio-Bellido, and Pulido-Arcas 2021; Bienvenido-Huertas, Sánchez-García, Rubio-Bellido, and Marín-
García 2021; Bienvenido-Huertas, Sánchez-García, and Rubio-Bellido 2021); and (ii) climate change, given the 
need to reduce the building energy consumption to help its mitigation, and the adaptation of human being to warmer 
environments. An example of the former, is the application of adaptive setpoint temperatures based on the 
EN16798-1 considering all occupant expectations, which led to energy poverty reductions ranging between 43% 
for Category I and 98.5% for Category III in Seville (Bienvenido-Huertas, Sánchez-García, and Rubio-Bellido 2021). 
An example of the latter is the use of accim to analyse energy savings based on the use of an adaptive local comfort 
model for Japan compared to the international ASHRAE 55 adaptive model in present and future scenarios. accim 
simplified the creation of tables and figures to present these results. The findings revealed that total energy demand 
decreased by 18% to 91% in cold climate zones but increased by 17% to 51% in warm climate zones, depending 
on the specific Representative Concentration Pathway scenario (Sánchez-García, Bienvenido-Huertas, et al. 2023). 

1.2. Research gap 



The fields of adaptive thermal comfort and building energy efficiency have evolved largely independently, with 
extensive research dedicated to each. Adaptive thermal comfort studies focus on optimizing occupant satisfaction, 
while energy efficiency research emphasizes reducing energy consumption and greenhouse gas emissions in 
buildings. However, there is a notable lack of studies that integrate these two domains to explore their 
interdependencies systematically. 

The use of adaptive setpoint temperatures offers a potential solution for reconciling thermal comfort and energy 
efficiency objectives. By adapting setpoint temperatures to align with comfort models, this approach aims to balance 
occupant satisfaction with energy savings. Despite its potential, the practical application of adaptive setpoint 
temperatures has been hindered by fragmented methodologies. Tools like ACCIS have automated portions of the 
process, but the overall workflow—spanning data preparation, simulation, and analysis—remained largely manual 
and inconsistent. 

This fragmentation highlights a critical gap in the literature: the lack of a unified methodology to seamlessly integrate 
adaptive thermal comfort and energy efficiency studies. Addressing this gap is essential to advance both fields and 
to enable more efficient and reproducible research at the intersection of comfort and energy performance. 

1.3. Research aim 

Thus, there is a necessity of procedures to ease the development of studies considering adaptive thermal comfort 
and energy demand. This Python library aims to fill this gap, not only by providing the tools, but also a seamless 
methodology to efficiently automate the entire process. This library has been partially presented in two previous 
studies: in the first one, the module used to apply the adaptive setpoint temperatures in the building energy models 
was explained (Sánchez-García, Bienvenido-Huertas, and Rubio-Bellido 2021), which only represents a step of 
the entire process; then, in the second one, the EMS code was explained in a deeper level (Sánchez-García, 
Martínez-Crespo, et al. 2023), in which the interactions among the objects were described.  

However, the present paper expands the scope to capture the entire simulation process, and bases its originality 
statement in the following points: (i) it presents an overview of accim, considering the remaining modules not 
previously presented, (ii) provides a seamless Python-based methodology to ease the development of energy and 
thermal comfort studies, and (iii) demonstrates its capabilities providing an example of adaptive comfort and energy 
demand study from preparation of data to analysis and visualization of results.  

As a result, this study introduces a Python-based approach that fully automates the adaptive setpoint simulation 
process, integrating key steps such as weather data preprocessing, adaptive setpoint application, simulation 
execution, and result analysis. Section 2 firstly presents an overview of the modules for data analysis, simulations 
and implementation of adaptive setpoint temperatures, and secondly describes the case study used in this work. 
Section 3 firstly describes the application of the methodology; secondly, analyses the results of the case study and 
lastly compares accim to the main alternative method. Section 4 discusses the results and Section 5 describes the 
limitations. 

2. Methodology 

2.1. Modules for data analysis, simulations and implementation of adaptive setpoint temperatures 

The Python package accim is mainly composed of three modules: accim.data, accim.sim and accim.run. 

The structure and use of the main user-callable classes, methods and functions of the project are: 

• data 

o data_preprocessing 

▪ rename_epw_files: prior to simulation, the EPW files need to be formatted to follow a 

certain file name pattern. This is necessary for the later analysis of the CSV files resulting 
from simulation, considering variables such as city and climate change future scenario. 

o data_postprocessing 

▪ Table: allows to read the CSV files and generate a pandas DataFrame instance. 

• format_table: allows to filter the columns of the DataFrame instance. 

• scatter_plot: generates a PNG file containing a scatter plot based on multiple 

arguments. 

• scatter_plot_with_baseline: similar to method scatter_plot, but allows 

to compare some specific variant with the others. 

• time_plot: generates a PNG file containing a line plot with time on the x-axis. 

• wrangled_table: allows to perform multiple reshaping methods to obtain 

summary tables. 

• sim 

o accis 



▪ addAccis: used to apply adaptive setpoint temperatures based on multiple input 

arguments. 

• run 

o run 

▪ runEp: used to automatically run simulations and generate results in suitable format. 

Although the classes, methods and functions have been briefly explained above, a more detailed description can 
be found in Appendix A. When all of these are used, a seamless and script-based methodology can be carried 
out to automatically perform all actions required to develop a study based on adaptive setpoint temperatures. 

2.2. Case study 

In this work, a case study is presented to demonstrate the capabilities of accim. The full process, from data pre-
processing to data analysis is carried out. In this case study, the aim is the analysis of energy demand resulting 
from the use of adaptive setpoint temperatures based on a local adaptive comfort model for office buildings in India, 
named IMAC-C (Manu et al. 2016), and the comparison with ASHRAE 55 adaptive model and static setpoints from 
the Indian Building Code (Bureau of Indian Standards 2016), in different operation modes. In this study, 2 different 
locations, a present and a future scenario, are considered, resulting in 4 different EPW files (Table 1). 

The building energy model used is the 2018 IECC DOE Commercial Reference Building Prototype Small Office 
(U.S. Department of Energy 2023)  (Table 1). It has 6 thermal zones: a thermal zone in the centre of the building 
(CORE_ZN), surrounded by 4 thermal zones (PERIMETER_ZN_1 to 4), all of them air-conditioned and located on 
the ground floor, and a non-air-conditioned attic (Figure 1). Since this is a well-known model, no further details are 
provided, however these are available online in (U.S. Department of Energy 2023). 

Some of the objectives of this case study include the simulation considering MM, something that accim performs 
with Airflow Network objects, so that natural ventilation is calculated considering wind pressure coefficients among 
other factors instead of the assumption of a natural ventilation flow rate based on a schedule. However, the original 
building energy model from DOE do not consider such objects, and therefore have been imported to DesignBuilder 
and then exported to account for them. The MM used in accim is change-over, and therefore do not allow air-
conditioning and natural ventilation to be used at the same time. Specifically, windows are opened when all the 
following conditions are met at each simulation timestep: 

• If no heating and no cooling are needed 

• if outdoor temperature < min outdoor temperature; min outdoor temperature is calculated using a delta 
value from the heating setpoint temperature, and it is used to prevent from introducing air excessively 
cold. So, for instance, if that delta value was set to 5 and heating setpoint was 18°C, when outdoor 
temperature fell below 13°C windows would be closed. 

• if outdoor temperature < operative temperature 

• if wind speed < max wind speed; max wind speed is set as a value, which when exceeded, windows are 
closed to prevent from introducing high-speed airflows 

• if operative temperature < cooling setpoint temperature 

• if operative temperature > ventilation setpoint temperature (VST, usually equal to the neutral or comfort 
temperature) 

 

Table 1: Input files. 

Extension Filename 

EPW 

Current_Ahmedabad-hour.epw 

Current_Shimla-hour.epw 

RCP852100_Ahmedabad-hour.epw 

RCP852100_Shimla-hour.epw 

IDF SmallOffice_NewDelhi.idf 

EPW: EnergyPlus Weather file 
IDF: Input Data File 

 



 

Figure 1. 2018 IECC DOE Commercial Reference Building Prototype Small Office. (a) View of thermal zones. (b) 
Overall view. 

3. Use of the methodology 

In this section, the case study is carried out using the proposed methodology based on the use of accim. Firstly, 
the process is briefly explained, focusing on input and outputs. Secondly, the results of the case study are analysed. 
Lastly, the proposed methodology is compared with other alternative methods. 

3.1. Applying the methodology 

The process for this study comprises three main phases: data pre-processing, running simulations, and data 
analysis, each carefully designed to ensure a systematic and accurate investigation of building performance under 
varying conditions (Figure 2). A detailed version of this section is available in Appendix B. 

The first phase, data pre-processing, involves organizing and preparing the required input files. EPW files are 
renamed using a structured format that reflects their geographic location, representative climate scenario, and time 
frame (Table 2). This ensures that the files are not only easy to identify but also compatible with subsequent 
simulation tools. User interaction plays a crucial role during this step, as the system proposes new names based 
on extracted metadata, and the user must validate or amend these suggestions. In parallel, adaptive setpoint 
temperatures are incorporated into the building model files. This adjustment generates multiple versions of building 
Input Data Files (IDFs), representing different adaptive scenarios (Table 3). The output IDFs are named based on 
the settings input by the user and described in Table 4. 

Table 2: Input and output EPW files. 

Extension Input Output 

EPW 

Current_Ahmedabad-hour.epw India_Ahmedabad_Present.epw 

Current_Shimla-hour.epw India_Shimla_Present.epw 

RCP852100_Ahmedabad-hour.epw India_Ahmedabad_RCP85-2100.epw 

RCP852100_Shimla-hour.epw India_Shimla_RCP85-2100.epw 

 



Table 3: Input and output IDF files. 

E
x
te

n
s
io

n
 

In
p
u
t 

Output 

ID
F

 

S
m

a
llO

ff
ic

e
_
N

e
w

D
e
lh

i 

SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_2[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X.idf 

SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_1[VC_0[VO_0.0[MT_50.0[MW_50.0[AT_0.1[NS_X.idf 

SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_3[HM_0[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X.idf 

SmallOffice_NewDelhi[CS_IND IMAC C NV[CA_80[CM_0[HM_0[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X.idf 

SmallOffice_NewDelhi[CS_INT ASHRAE55[CA_80[CM_3[HM_0[VC_X[VO_X[MT_X[MW_X[AT_0.1[NS_X.idf 

 

Table 4: Description of output IDF files. 

C
o
m

fS
ta

n
d
 

C
o
m

fM
o

d
 

H
V

A
C

m
o

d
e
 

D
e
fi
n

it
io

n
 

A
c
ro

n
y
m

 

CS_IND IMAC C NV 
CM_3 

HM_2 
adaptive setpoints based on IMAC-C horizontally extended beyond 

applicability limits, in MM operation 
IND_Adap_MM 

HM_1 
adaptive setpoints based on IMAC-C horizontally extended beyond 

applicability limits, in NV operation 
Ind_Adap_NV 

HM_0 
adaptive setpoints based on IMAC-C horizontally extended beyond 

applicability limits, in AC operation 
IND_Adap_AC 

CM_0 HM_0 
PMV-based or nearly static setpoint temperatures based on Indian 

Building Code, in AC operation 
IND_Stat_AC 

CS_INT ASHRAE55 CM_3 HM_0 
adaptive setpoints based on ASHRAE 55 horizontally extended beyond 

applicability limits, in AC operation 
ASH_Adap_AC 

 

In the second phase, running simulations, the prepared input files are used to execute building performance 
simulations. This step involves systematically combining the modified building models with the formatted climate 
data to simulate a variety of scenarios. Each simulation run generates a unique output file that reflects the interplay 
of climatic conditions and adaptive building strategies. In this case study, the process resulted in twenty distinct 
simulations, derived from combinations of five building models and four climate scenarios. The simulations were 
executed automatically, leveraging predefined parameters to ensure consistency and minimize manual intervention. 
The output files generated during this phase form the foundation for subsequent analysis, encapsulating detailed 
information about energy demand and indoor thermal conditions for each scenario. The simulation outputs are 
stored in a structured format to facilitate streamlined analysis in the next phase. 

The final phase, data analysis, involves interpreting the simulation results through both quantitative and visual 
methods. The energy demand data is first organized into comprehensive tables, highlighting the performance 
differences among various adaptive strategies. These tables not only summarize energy consumption but also 
calculate energy savings achieved through adaptive measures, offering valuable insights into their efficiency under 
different conditions. Beyond tabular data, visualizations play a pivotal role in conveying the findings. Scatter plots 
and time-series graphs are used to illustrate the relationships between adaptive strategies, energy demand, and 
indoor comfort levels. These visual tools help uncover patterns, such as the effectiveness of adaptive cooling 
strategies in reducing energy use while maintaining comfort.  

In conclusion, based on input files (i.e. EPW and IDF files) and using the script-based methodology, the tool 
provides insights into the comparison of different adaptive approaches, revealing these influence energy 
performance and occupant well-being across diverse climates and scenarios. These insights are presented in the 
next section. 



 

Figure 2. Overall process for the development of the case study 

 

3.2. Results of the case study 

The results of the study, if arranged in table format, contains data on energy demand for each simulation, as well 
as the comparison of these in terms of energy saving. In this case, for clarity purposes, that table has been divided 
into Table 5 and Table 6. 

Table 5 presents absolute energy demand values, revealing significant differences across adaptive and static 
strategies under varying climatic conditions. In Ahmedabad, the static setpoint configuration (IND_Stat_AC) exhibits 
the highest cooling energy demand, with 283.83 kWh/m² in the present scenario. In contrast, IND_Adap_MM 
reduces this demand to 122.32 kWh/m², reflecting its superior performance. Under future climatic conditions 
(RCP85-2100), IND_Adap_MM continues to outperform, reducing energy demand to 190.9 kWh/m², compared to 
340.09 kWh/m² for IND_Stat_AC. Similarly, in Shimla, IND_Adap_MM demonstrates its efficiency by achieving 
cooling energy demands as low as 48.78 kWh/m² (present scenario) and 75.88 kWh/m² (RCP85-2100). These 
results emphasize the versatility of IND_Adap_MM in optimizing energy consumption across diverse climatic 
contexts. 

Table 6 offers a comparative analysis of energy savings achieved by mixed-mode adaptive settings 
(IND_Adap_MM) relative to other configurations, including both static (IND_Stat_AC) and air-conditioned adaptive 
(IND_Adap_AC and ASH_Adap_AC) settings. Savings are presented as percentages, with positive values 
indicating reductions and negative values reflecting increases in energy demand. For clarity purposes, the 
calculation of the percentages is shown for each setting in cooling, heating and total energy demand (i.e. 1-
(IND_Adap_MM/IND_Stat_AC)).  For cooling demand in Ahmedabad, savings with IND_Adap_MM range from 44% 
to 57% in the present scenario, depending on the baseline configuration, and from 24% to 44% under the RCP85-
2100 scenario. Similarly, in Shimla, IND_Adap_MM achieves cooling energy savings ranging from 68% to 71% in 
the present scenario and from 60% to 62% under RCP85-2100. These values emphasize the adaptability of 
IND_Adap_MM, consistently delivering significant reductions in cooling demand across diverse climates and future 
projections. 

The negative values observed in Table 6 correspond to increases in energy demand, primarily in heating scenarios. 
For instance, IND_Adap_MM shows a slight increase in heating demand compared to IND_Stat_AC in Shimla 
(10.42 kWh/m² vs. 6.62 kWh/m²). This increase results in a percentage change of -57%, which appears significant 
but is inconsequential due to the very small absolute values involved. Such variations, while mathematically notable, 
have negligible practical implications given the low heating energy demands in these scenarios. 



Overall, the results in Table 5 and Table 6 confirm that IND_Adap_MM offers substantial energy savings across 
different settings, particularly in cooling demand, which is a critical factor in hot climates. The strategy demonstrates 
remarkable adaptability, ensuring reduced energy consumption and enhanced indoor comfort even under extreme 
climate projections. These findings reinforce the importance of adopting IND_Adap_MM as a cornerstone of 
sustainable building practices, particularly in the face of evolving climate challenges. 

Table 5. Simulation results (part I): energy demand values. 

EPW_City_or_subcountry Ahmedabad Shimla 

EPW_Scenario Present RCP85 Present RCP85 

EPW_Year Present 2100 Present 2100 

Building_Total_Cooling 
Energy Demand 

(kWh/m2) (summed) 

IND_Stat_AC 283.83 340.09 151.41 200.27 

IND_Adap_AC 217 250.84 167.47 191.53 

IND_Adap_MM 122.32 190.9 48.78 75.88 

ASH_Adap_AC 250.7 291.64 163.01 199.53 

Building_Total_Heating 
Energy Demand 

(kWh/m2) (summed) 

IND_Stat_AC 0 0 6.62 1.08 

IND_Adap_AC 0 0 0.04 0 

IND_Adap_MM 1.08 0.09 10.42 2.44 

ASH_Adap_AC 0 0 0.61 0 

Building_Total_Total 
Energy Demand 

(kWh/m2) (summed) 

IND_Stat_AC 283.83 340.09 158.03 201.35 

IND_Adap_AC 217 250.84 167.52 191.53 

IND_Adap_MM 123.39 191 59.2 78.33 

ASH_Adap_AC 250.7 291.64 163.62 199.53 

 

Table 6. Simulation results (part II): energy saving. 

EPW_City_or_subcountry Ahmedabad Shimla 

EPW_Scenario Present RCP85 Present RCP85 

EPW_Year Present 2100 Present 2100 

Building_Total_Cooling 
Energy Demand (%) 

(summed) 

1-(IND_Adap_MM/IND_Stat_AC) 0.57 0.44 0.68 0.62 

1-(IND_Adap_MM/IND_Adap_AC) 0.44 0.24 0.71 0.6 

1-(IND_Adap_MM/ASH_Adap_AC) 0.51 0.35 0.7 0.62 

Building_Total_Heating 
Energy Demand (%) 

(summed) 

1-(IND_Adap_MM/IND_Stat_AC) -inf -inf -0.57 -1.26 

1-(IND_Adap_MM/IND_Adap_AC) -inf -inf -233.02 -inf 

1-(IND_Adap_MM/ASH_Adap_AC) -inf -inf -16.09 -inf 

Building_Total_Total 
Energy Demand (%) 

(summed) 

1-(IND_Adap_MM/IND_Stat_AC) 0.57 0.44 0.63 0.61 

1-(IND_Adap_MM/IND_Adap_AC) 0.43 0.24 0.65 0.59 

1-(IND_Adap_MM/ASH_Adap_AC) 0.51 0.35 0.64 0.61 

-inf: infinite, resulting from division by zero 

 

The performance outcomes of adaptive setpoint strategies in building energy simulations are also depicted in Figure 
3, Figure 4 and Figure 5, offering valuable insights into energy demand and indoor comfort dynamics across various 
scenarios. These figures highlight the comparative advantages of IND_Adap_MM against other configurations while 
illustrating patterns and relationships critical for understanding energy-saving potential and thermal performance. 

These trends are shown in Figure 3, which organizes data by setpoint settings and climatic scenarios. The figure 
highlights the ability of adaptive strategies like IND_Adap_MM to reduce energy use while maintaining indoor 
comfort, allowing temperatures to fluctuate within acceptable ranges. For instance, in Ahmedabad under RCP85-
2100, IND_Adap_MM achieves significantly lower cooling energy demands compared to static setpoints while 
maintaining similar comfort levels. This figure includes a simulation of free-running conditions in the middle row, 
providing insights into the operative temperatures that would occur without an HVAC system. It also illustrates the 
extent to which adaptive comfort limits would be exceeded. Similar data is captured in time-series plots in Figure 4, 
offering insights into the temporal distribution of heating and cooling loads. This figure also provides insights into 
the responsive nature of the adaptive setpoints, changing daily based on the prevailing mean outdoor temperature 
variations. 

 



 

Figure 3. Adaptive comfort scatterplots 

 

Figure 4. Adaptive comfort time-series plots 



The comparative performance of IND_Adap_MM against other configurations is depicted in scatter plots that 
compare hourly energy demands, with IND_Adap_MM serving as the baseline. This comparison is detailed in 
Figure 5, where the x-axis represents IND_Adap_MM values and the y-axis corresponds to the energy demand of 
other configurations. Points that align along the diagonal represent similar energy usage, while deviations indicate 
differences. In Ahmedabad, many points cluster near the 25% line, demonstrating that IND_Adap_MM requires just 
a quarter of the energy used by static and other adaptive configurations for cooling in numerous cases. A similar 
trend is observed in Shimla, where IND_Adap_MM consistently shows substantial savings in cooling energy 
demand, reinforcing its position as the most energy-efficient configuration under various scenarios. 

 

Figure 5. Comparison of hourly energy demands 

 

3.3. Comparison with alternative methods 



The main non-automated approach involves defining setpoints using a Schedule:Compact object, where adaptive 
setpoints are pre-calculated externally and stored in a CSV file for import into EnergyPlus. This method allows for 
more flexibility compared to manual monthly simulations, as users can input time-varying schedules that better 
reflect local climate conditions. However, the workflow is still error-prone and time-consuming, as it involves 
calculating the setpoints, formatting the CSV file, and ensuring compatibility with the EnergyPlus model. While this 
method simplifies some aspects of adaptive comfort implementation, it remains dependent on manual intervention 
and does not fully automate the process, making it challenging for large-scale studies or simulations with diverse 
scenarios. 

Compared to the previous method, the accim Python library represents a step forward by fully automating the 
implementation of adaptive setpoint temperatures in EnergyPlus. It integrates every aspect of the workflow, from 
weather file preprocessing and adaptive setpoint implementation to the automated simulation and result 
visualization. By streamlining these processes, accim eliminates the manual steps required in other methods and 
significantly reduces the risk of errors. It also supports advanced customization, allowing users to define parameters 
such as comfort models, acceptability thresholds, and mixed-mode operation rules directly within the script. While 
accim requires some familiarity with Python programming, its comprehensive approach and scalability make it an 
efficient and accessible solution for balancing thermal comfort and energy efficiency across multiple locations and 
scenarios. 

4. Discussion 

The highly customizable input arguments that accim can admit coupled with the capability to compute the adaptive 
setpoint temperature values “on the go” provides a wide range of new opportunities to investigate the energy 
implications of adaptive thermal comfort in AC or MM buildings. In particular, new research possibilities are opened, 
considering the use of adaptive thermal comfort to alleviate energy poverty and mitigate the climate change. Since 
accim allows handling a large number of simulations using adaptive setpoint temperatures, it allows to perform 
studies with numerous locations, therefore re-scaling the possibilities from local to national, continental, or even 
global scope.  

Classical investigations are based on the search for a case study, the development of a simulation model, its 
validation and obtaining results through limited approaches in operational patterns. With the newly developed 
methodology, the analysis approach can be virtually unlimited for operational patterns. The great versatility of the 
methodology allows it to be adapted to any operational pattern and adaptive thermal comfort model developed in 
future years. This allows future regional models to be developed to be included in energy analysis studies and not 
have a single focus on thermal comfort, as up to now. Through the developed methodology, the duality of energy 
analysis and thermal comfort can be implemented more efficiently in future research. In addition, the methodology 
seeks independence from commercial software and optimizes the use of the free EnergyPlus tool. This favours the 
use of the methodology, by having an open-source methodology accessible to everyone. 

5. Limitations 

Limitations are firstly related to the building energy model itself. There are two ways to use accim: using a model 
with no HVAC system at all, in which accim will add an autosizable Variable Refrigerant Flow (VRF) system for 
each occupied zone, or using a building energy model with a fully modelled HVAC system. In the latter, if the HVAC 
system is not properly set and sized, the number of hours exceeding heating and/or cooling setpoints (i.e. unmet 
hours) might be unacceptable. 

Unrelated to the technical aspects of setpoint control there are a series of practical questions concerning the 
implementation of an adaptive setpoint temperature that remain unanswered. First, the adaptive comfort model was 
derived on field measurements in naturally ventilated buildings. While the adaptive comfort principles are assumed 
to apply to any occupant, the expectations of an occupant in an air-conditioned building may be more stringent 
compared to someone in a naturally ventilated building. The ±3.5K range embedded in the ASHRAE 55 adaptive 
model would likely be narrower in contexts with fewer adaptive opportunities. Second, recent attempts to 
understand long-term thermal comfort in air-conditioned buildings (Li et al. 2020) suggest that large variations in 
the indoor daily temperature range may lead to greater dissatisfaction for building occupants. While the magnitude 
of satisfactory temperature ranges is unclear, it’s unlikely to be the ±3.5K range permissible in the current adaptive 
model. Similarly, an acceptable rate of change in indoor temperatures across multiple days is not known but is 
assumed to be more conservative than that derived by the adaptive comfort model. Third, the limits of applicability 
in ASHRAE Standard 55 preclude the use of the adaptive comfort model in air-conditioned buildings. As a result, 
few engineers would consider implementing an experimental setpoint control without it being endorsed by the 
leading industry authority. Lastly, adaptive setpoint temperatures are based on the assumption that occupants will 
adapt to indoor temperature in fully air-conditioned or mixed-mode spaces as if they were on naturally ventilated 
spaces. Although there are strong evidence (Parkinson, de Dear, and Brager 2020; Sun et al. 2024; Yun, Lee, and 
Steemers 2016), experimental studies using adaptive comfort limits as setpoint temperatures are still needed to 
validate this approach. 



6. Conclusion 

BPS is a technique that is widely used to compare alternative design and retrofit choices and explore how buildings 
perform in terms of their environmental and energy implications. Additionally, adaptive comfort models have 
recently been put out as a strategy to reduce energy consumption, particularly when taking into account the usage 
of adaptive setpoint temperatures. However, using adaptive setpoint temperatures in building simulation requires a 
high level of technical expertise. 

This paper firstly aims to provide an overview of the unique open-source software solution available for automating 
and facilitating building performance simulations - especially with adaptive setpoint temperatures - and result 
interpretation. Secondly, it aims to provide a seamless and accessible Python-based methodology for users with 
basic experience programming, in which code snippets can be easily re-used for different studies. 

This research employs a case study to show the tool’s capabilities. In this study, the proposed methodology is firstly 
applied to carry out the case study, which involves data pre-processing, running the simulations and lastly  
generating figures and tables to analyse the data. Secondly, the data analysis shows the following conclusions: 

• In Ahmedabad, using mixed-mode adaptive setpoints (IND_Adap_MM) reduced cooling energy demand 
by up to 57% under present conditions and 44% in future scenarios (RCP85-2100). 

• In Shimla, the same approach achieved cooling energy demand reductions of up to 65% in current climates 
and 61% in future projections. 

Lastly, alternative methods are compared to accim. Unlike manual or partially automated approaches, accim offers 
a fully automated, error-resistant solution for implementing adaptive setpoint temperatures in building performance 
simulations. It streamlines the entire process—from data preparation to result analysis—reducing complexity, 
enhancing reproducibility, and supporting large-scale studies with minimal user intervention. 

This tool will be helpful for policymakers, at the integration of homes' energy performance into the low-carbon built 
environment, in particular when considering future scenarios under the influence of climate change. Future lines of 
research might include the development of the tool to include new thermal comfort models from around the world, 
new arguments to define custom adaptive comfort models and a new module for parametric and optimisation 
studies. 

Conflict of interest 

No potential competing interest was reported by the authors. 

Data availability 

The data that support the findings of this study are available in the following website, which contains the EPW and 
IDF files as well as a Jupyter Notebook containing all code snippets: 

https://github.com/dsanchez-
garcia/accim/tree/master/accim/sample_files/jupyter_notebooks/research_paper_case_study_v0-7-3 

Other data potentially interesting to the reader are: 

• Github repository: https://github.com/dsanchez-garcia/accim/tree/master 

• PyPI project: https://pypi.org/project/accim/ 

• Documentation: https://accim.readthedocs.io/en/master/ 

Acknowledgements 

The authors acknowledge the support provided by the Thematic Network 722RT0135 “Red Iberoamericana de 
Pobreza Energética y Bienestar Ambiental (RIPEBA)” financed by the call for Thematic Networks of the CYTED 
Program for 2021. Also, the authors would like to acknowledge the Thematic Network 723RT0151 “Red 
Iberoamericana de Eficiencia y Salubridad en Edificios” (IBERESE) financed by the call for Thematic Networks of 
the CYTED Program for 2022 for supporting this research. Finally, the authors would like to thank Prof. Dr. Thomas 
Parkinson, from University of Sydney’s IEQ Lab, for his assistance in the explanation of the assumption and 
limitations of adaptive setpoint temperatures.  

https://github.com/dsanchez-garcia/accim/tree/master/accim/sample_files/jupyter_notebooks/research_paper_case_study_v0-7-3
https://github.com/dsanchez-garcia/accim/tree/master/accim/sample_files/jupyter_notebooks/research_paper_case_study_v0-7-3
https://github.com/dsanchez-garcia/accim/tree/master
https://pypi.org/project/accim/
https://accim.readthedocs.io/en/master/


Appendix A. Detailed methodology 

At this appendix, the operation of all modules, classes, methods and functions will be explained in detail. Figure A1 
shows all relevant elements of the project for this study. Since accim.sim has already been explained in a previous 

study, accim.data and accim.run will be emphasized. All explanations are addressed to accim version 0.7.3, 

therefore these might be different for previous and newer versions. Similar documentation for the latest release can 
be found at the website (see Section Data availability). In order to help the reader not to get lost among the modules, 
classes, methods and functions, all processes described below have been broken down into numbered lists 
consistently with the workflows (Figure A2). The coding of those numbered lists follows the structure: 

A. (for each class, function, etc) 

 A.a (for every step within the process) 

  A.a.1 (when step above is divided in multiple branches) 

   A.a.1.1 (when step above is divided in multiple branches) 

  A.a.2 (and so on) 

The methods, functions and classes have been enumerated based on the process that should be followed for 
developing a comfort study to be consistent with Section 3; however, the methodology is explained following the 
project structure in Figure A1: module accim.sim contains function B, module accim.run contains function C, 

and accim.data contains class A, class D and methods E to G. 

 

Figure A1. Project structure. 

 



 

Figure A2. Flowchart of the entire process. 

1. accim.data 

This module contains 2 Python files: data_preprocessing and data_postprocessing. The first one is used 

to prepare the EPW files prior to running the simulations, while the second one is used to analyse the data resulting 
from the simulations. Both are explained in the following sections. 

1.1. data_preprocessing 

At the final stage, information related to the EPW files, such as location, RCP scenario and year (if climate change 
is considered) can be analysed. The data analytics module takes csv files with information delimited by a separator 
in its name, but to do so, the EPW file names need to be formatted prior to simulation following a certain pattern: 
Country_City_RCPscenario-Year.  

To do so, the class rename_epw_files can be used. Once the class has been instantiated, following process 

can be divided in 2 stages: steps A.a. to A.f, in which new names for the EPW files are proposed (Figure A3); and 
steps A.g. to A.j., in which the user needs to review the proposed names and make any corrections if necessary, 
and confirm actions to be performed (Figure A4). EPW names can be very different mainly depending on the source. 
In this case, EPWs have been downloaded EnergyPlus and OneBuilding websites, as well as Meteonorm software. 
These different sources have been considered to minimise the number of unexpected issues that may arise from 
the different patterns they follow. 

A.a. Existing EPW files in the folder are scanned, and a Pandas DataFrame instance (epw_df) is created to map 

the current EPW names. 
A.b. If climate change is considered in the EPW, then the current file name should contain some data regarding the 

RCP scenario and the year. Therefore, the current file name is scanned to search for any matches between 
the scenarios and year. Only RCP 2.6, 4.5, 6.0 and 8.5, and years from 2000 to 2100 in 10-years intervals are 
looked for. This tool does not consider the previous scenarios published in the Special Report on Emissions 
Scenarios (SRES), since these are already superseded and should not be used. If no match is found, then 
accim assumes the EPW is for present scenario and informs the user. Then, accim updates the Pandas 



DataFrame instance with this information, specifically the columns EPW_scenario, EPW_year and 

EPW_scenario_year. The data stored in EPW_scenario_year will be later used in the new EPW name, 

namely in the placeholder RCPscenario-Year. 
A.c. Next step is defining information for the placeholders Country and City. To do so, accim opens every EPW file 

and extracts and stores the latitude and longitude. 
A.d. Then accim obtains the address for these coordinates from OpenStreetMap. From that geographic data, accim 

extracts the country code. This is passed through pycountry.countries.get() to return the name of the 

country in English language, and be stored in column EPW_country, which will replace the placeholder 

Country. At this point, the address for those coordinates is also stored for later use. 
A.e. For the city information, accim searches for any matched between substrings within the current name and 

geographical information. If no match is found, then the string “UNKNOWN” is stored in the column 
EPW_city_or_subcountry, which will similarly replace the placeholder City. 

A.f. At this point, all required information to compose the new EPW names has been gathered (although there might 
be some “UNKNOWN” strings), and new names for the EPW files can be proposed. 

A.g. Since the new EPW names have been already proposed, accim needs to check if there are duplicated EPW 
new names and if there is missing information (previous “UNKNOWN” strings). If so, these will need to be 
corrected by the user in the next step. 

A.h. Then, the user is informed of the old and new EPW names. After reviewing them, the user is asked to enter the 
IDs of the EPWs which have not been properly renamed. 

A.i. Then, for each ID the user has previously entered, accim provides the address previously stored in Stage 1. 
This information as well as the old EPW name, which should contain information of the city, is helpful for the 
user, which is asked to enter the correct city name for that EPW file. At this point, the user also is asked to 
enter the correct city names for duplicate EPWs or those with missing information. 

A.j. Finally, accim informs the user of the full final list of EPW names. If some of these are not properly renamed 
yet, these can be excluded. The user is asked to enter the IDs if necessary and, at last, to confirm the copy 
and rename of the EPW files and deletion of the old ones. 

 

Figure A3. Flowchart for the steps of rename_epw_files (A), part 1. 



 

Figure A4. Flowchart for the steps of rename_epw_files (A), part 2. 

1.2. data_postprocessing 

The purpose of this module is to analyse and visualise the simulation results. Following sections provide a deeper 
insight of the processes at each step. This module is the only one that requires a basic understanding of Python 
syntax. The recommended procedure involves the use of an Integrated Development Environment (IDE). 

1.2.1. Table 

The class Table is used to generate a pandas DataFrame instance from the simulation results. The available 

arguments for class Table are shown in Table A1: 



Table A1. Arguments for class Table. 

Argument type Description Admissible values 

datasets list 
The list of csv files that need to be analysed. If omitted, 
accim will take into account all available csv files in the 
path. 

Any list 

source_concatenated_csv_filepath string 
The path of the csv already concatenated in case it has 
been generated 

Any string 

source_frequency string The frequency of the simulation results “hourly”, “daily”, 
“monthly” or 
“runperiod” frequency string The frequency of the analysed data 

frequency_agg_func string The function it performs when aggregating the csv rows “sum” or “mean” 

standard_outputs bool Used to filter only standard outputs for accim True or False 

concatenated_csv_name string 
accim concatenate the CSVs and export it with the 
entered name; if omitted, the csv is not exported 

Any string 

level list accim aggregates the zone results for block or building 
“block” and/or 
“building” 

level_agg_func list The function to be performed for level argument “sum” and/or “mean” 

level_excluded_zones list 
The list of zones that need to be excluded from level 
computations. 

Any list 

block_zone_hierarchy dict A dictionary to map the block/zone structure. Any dict 

split_epw_names bool 
Used to split the EPW name in the pattern 
Country_City_RCPscenario-Year 

True or False 

normalised_energy_units bool Used to show energy units per m2 True or False 

rename_cols bool Used to rename the columns to a more friendly format True or False 

energy_units_in_kwh bool Used to show energy units in kWh True or False 

 

Figure A5 shows the process that takes place when a Table instance is created. Given there are some CSV files 

at the path where the Table instance is created, which are going to be taken as input files, the process comprises 

the following steps, named consistently with Figure A5: 

D.a. Once the Table class has been instantiated (and stored in variable dataset_runperiod in this example), 

after some actions to avoid later errors, accim needs to know what the source of the data is. 
D.a.1. If the argument source_concatenated_csv_filepath has been entered when the class was 

instantiated, then accim will set some variables (source_frequency, frequency, 

frequency_agg_func and standard_outputs) based on the concatenated csv file name and create 

a DataFrame instance. 
D.a.2. Otherwise, accim checks if the datasets argument has been entered when the class was 

instantiated. 
D.a.2.1. If so, accim stores the csv files which have been specified in the list of the argument 

datasets. 
D.a.2.2. Otherwise, accim gets all available csv files in the folder which meets certain requirements 

in its name, in order to avoid other csv files resulting from EnergyPlus simulations, such as those 
related to zone sizing (ending with Zsz.csv) or tables (ending with Table.csv). 

D.a.2.3. Then, accim starts to iterate through every csv file from previous step. The loop includes, 
among other actions, to create a DataFrame instance, to filter the columns, to define which type of 
aggregation will be performed for each column, and finally, to perform the aggregations of rows. An 
example of this would be, defining that operative temperature should be averaged, and then average 
the rows to transform, for instance, hourly information into daily information. At last, concatenates all 
instances into a single DataFrame. 

D.b. Once the DataFrame has been instantiated, named df, accim performs a number of operations focused to 

detect if there have been errors when aggregating the rows. 
D.c. Then, accim needs to know if the argument concatenated_csv_name was entered when the class was 

instantiated. 
D.c.1. If so, accim exports the DataFrame instance into a csv file. This file is aimed to be read at step A.1, 

and therefore, allows to avoid unnecessary computational effort by skipping the A.2 branch if Table needs 

to be instantiated more than once. Afterwards, accim continues to next step. 



D.d. In this step, accim tries to detect the hierarchical pattern of blocks and zones (i.e. which zones belong to 
each block), which is going to be needed to compute totals for block and/or building levels. In case of IDFs 
generated with Designbuilder, the zones are generally named following the pattern “BlockX:ZoneY”, therefore 
probably only in this case the hierarchy would be detected. If it is not detected, the user is asked to enter all 
blocks names, and then, for each block, all thermal zones. If the user previously knows the IDF has been 
generated with other GUI, such as OpenStudio, and therefore the hierarchy is not going to be detected, it is 
possible to skip the information request by specifying the hierarchy as dictionary object in argument 
block_zone_hierarchy. 

D.e. Next, the user can exclude zones from level computations. This is useful, for instance, to exclude a 
naturally-ventilated space from the average of operative temperature in air-conditioned spaces. To do so, the 
user can use the argument level_excluded_zones, which takes a list of strings. If this argument is omitted, 

then the user will be asked to enter the zones to be excluded if necessary. Finally, accim will check the zones 
entered by the user actually exists in the data. 

D.f. At this point, the block/zone hierarchy and the excluded zones are known, and therefore, the level computations 
can be performed. The tool will detect if block totals have been requested in argument level, and if so, the 

function to be performed in argument level_agg_func (sum and/or mean). For instance, accim can sum all 

zones belonging to a certain block to provide the block total for a certain output. A similar approach is taken 
also for building level. 

D.g. Then, energy units are updated based on the user requests at arguments normalised_energy_units 

and energy_units_in_kwh. 

D.h. If the user requested normalising the energy units in argument normalised_energy_units, then accim 

will divide the energy outputs by floor area at zone, block and building levels. 
D.i. If requested at argument split_epw_names, accim will split the column EPW to make the columns for country, 

city and RCP scenario and year. To work properly, the EPW file name should be in the CSV file name, following 
the pattern Country_City_RCPscenario-Year, as previously shown in function rename_epw_files. 

D.j. Finally, if requested at argument rename_cols, all columns are renamed, so that the output is more user-

friendly and easier to read and understand. 
Therefore, the output of this process is a pandas DataFrame instance which can be accessed by the user at the 
variable df. In the example shown in Figure A5, the input csv files number is 4. Therefore, since “runperiod” have 

been specified at the argument frequency, rows have been aggregated grouped by the run period, resulting in 4 
rows at the variable df. For instance, if “monthly” were specified, the number of rows of df would be 4*12=48, i.e. 

one row per month. The number of columns in df is 99, which varies depending on multiple factors, such as the 

number of zones in the building, the building and/or block level aggregations and the functions requested, among 
others. 



 

Figure A5. Flowchart for class Table. 

1.2.2. format_table 

format_table is a method of class Table. It is used to prepare the DataFrame instance df for later analysis. 

Usually, df has an important number of columns which usually make it difficult to be handled. Therefore, this 

method filters the columns to keep those specified by the user. Arguments of format_table are shown in Table 

A2. 

Table A2. Arguments of format_table. 

Argument Type Description Admissible values 

type_of_table string Used to get already defined tables 
“all”, “energy demand”, “comfort hours”, 

“temperature” or “custom” 

custom_cols list 
Used if custom is used in type_of_table. The list 

of columns to keep. 
Any list 

 

Figure A6 shows the process that takes place then the format_table method is called: 

E.a. First, accim sets the index columns. These columns will not be deleted under any circumstances. 



E.b. Then, depending on the value entered at argument type_of_table, different columns are filtered. Entering 

certain arguments returns a predefined range of columns, which allows for an easier use of the method. 
E.b.1. If it is “all”, accim will return all columns. 
E.b.2. If it is “temperature”, accim will filter all columns in df that contains certain temperature terms. 

E.b.3. If it is “comfort hours”, accim will filter all columns in df that contains certain comfort terms. 

E.b.4. If it is “energy demand”, accim will filter all columns in df that contains certain energy demand 

terms. 
E.b.5. If it is “custom”, then accim will search for the columns entered in the argument custom_cols in 

all columns of the DataFrame instance df, and it will filter them. 

Finally, the DataFrame instance df is returned with filtered columns, which are those extracted from csv file names 

(treated as categorical values) and the ones requested when calling the method (treated as numerical values). In 
this example, the latter are: 

- “Building_Total_Cooling Energy Demand (kWh/m2) (summed)”. 
- “Building_Total_Heating Energy Demand (kWh/m2) (summed)”. 

At this point, the variable df is ready to be wrangled with the method wrangled_table or otherwise, it is ready 

to be the source of data to be visualised with methods scatter_plot, scatter_plot_with_baseline or 

time plot. 

 

Figure A6. Flowchart for method format_table. 

1.2.3. wrangled_table 

Once the DataFrame df has been formatted with format_table, it can be reshaped or pivoted with 

wrangled_table, to finally create an Excel file containing the data. Arguments of wrangled_table are shown 

in Table A3. 

Table A3. Arguments of wrangled_table. 

Argument Type Description Admissible values 

reshaping string Used to specify the reshaping method. Operation similar to pandas. 

"pivot", "stack", 

"unstack" or 

“multiindex” 

vars_to_gather list 
The list of variables to be analysed. It will combine the values of the 

variables entered into a single column. 
Any list 



baseline string 
The instance of all different combinations of variables that will be used 

as the baseline for comparison 
Any string 

comparison_cols list To calculate absolute or relative (%) differences. 
"absolute" and/or 

"relative" 

comparison_mode list 

The point of view to compare the data. Absolute and/or relative 

differences can be calculated based on the following logic: 

- for "others compared to baseline" 

o if "relative", 1-(variant/baseline) 

o if "absolute", baseline-variant 

- for "baseline compared to others", 

o if "relative", 1-(baseline/variant) 

o if "absolute", variant-baseline 

"others compared to 

baseline" and/or 

"baseline compared to 

others" 

check_index_and_cols bool 
Used if the user is not sure about the variables to be entered in 
vars_to_gather 

True or False 

vars_to_keep list The variable or variables to be shown in multiindex Any list 

rename_dict dictionary 

Used to replace strings in the entire DataFrame (values, index or rows, 

and columns). The dictionary should be in the format {“old string”: “new 

string”} 

Any dict 

excel_filename string The name of the exported excel file Any string 

 

Figure A7 shows the process that takes place when the method wrangled_table is called. Before calling the 

method, the user should be aware of the possibilities for analysing the data. For instance, following the example of 
the 4 CSV files, only 2 of the variables separated by delimiter “[“ change: 

- ComfMod, where possibilities are “CM_0” and “CM_3” (refers respectively to static and adaptive setpoint 

temperatures). 
- EPW, specifically the field EPW_city_or_subcountry, where the possibilities are “Aberdeen” and 

“London”. 
Therefore, all other variables do not seem interesting to be analysed. After calling the method, the following process 
starts: 

F.a. The tool needs to know what reshaping method should use. At this point, index has already been set based 

on the variables to be analysed. Therefore, if “multiindex” is used, accim does not perform any reshaping at all. 
It only provides a cleaned view of the DataFrame. 
F.a.1. If “pivot”, accim will call the DataFrame method pivot_table. At this point, the user must consider 

that not specifying some variable in argument vars_to_gather will result in the sum of the rows with 

the same value for that variable. For instance, in Figure A7, EPW_city_or_subcountry has not been 

specified in vars_to_gather, and therefore, for each possibility of ComfMod, the values of “Aberdeen” 

and “London” will be summed. 
F.a.2. If “unstack”, accim will call the DataFrame method unstack. Therefore, accim will keep the 

variables at vars_to_gather in the columns, and move the variables at vars_to_keep to the rows (or 

index). 
F.a.3. If “stack”, accim will call the DataFrame method stack. Therefore, accim will move all the variables 

in the columns to the rows, and keep a single column for all numerical values. This is useful for plotting 
data with libraries such as seaborn, since stacked data is the most suitable format. 

F.b. The next step consists of the computation of comparison columns based on the data entered in arguments 
comparison_mode, comparison_cols and baseline, and only takes place if reshaping method is “pivot” 

or “unstack”. In this example, all comparison columns were requested for all comparison modes. For instance, 
considering the mode “others compared to baseline”, the comparison columns relative and absolute allows to 
know the difference between the baseline (“CM_3”) and all other possibilities (in this case only “CM_0”) in terms 
of percentage (1-(CM_0/CM_3), in %) and the meter of the variable (in this case, CM_3 – CM_0, in 
kWh/m²·year). In this example, the relative and absolute differences show respectively an increase of 1.48 (i.e. 
148%) and 39.74 kWh/m²·year of “CM_0” respect the baseline “CM_3”. 

F.c. Then, all data, columns and indexes of the DataFrame are renamed following the dictionary containing old and 
new strings entered in argument rename_dict. This allows to improve the readability of the output file 

(although the user should know at this point “CM_0” and “CM_3” respectively refer to static and adaptive 
setpoint temperatures, others might not). 

F.d. Finally, accim exports the DataFrame instance to an Excel file named after the argument excel_filename. 

In this case, the output of this method is an Excel file named “testing_accim.xlsx”, and therefore it means this branch 
of data analysis ends at this point. 



 

Figure A7. Flowchart for method wrangled_table. 

1.2.4. scatter_plot, scatter_plot_with_baseline and time_plot 

Continuing from the end of format_table, data can be visualised. There are currently 3 methods to do so: 

scatter_plot, scatter_plot_with_baseline and time_plot, whose arguments are shown in Table A4. 

These figures are computed with matplotlib library, and can be composed of subplots as a function of the variables 
entered in arguments vars_to_gather_cols and vars_to_gather_rows. If not all the values resulting from 

the combination of variables are needed, the user can filter which values should be plotted in columns and rows 
respectively with the arguments detailed_cols and detailed_rows, as well as the order of those, with the 

arguments custom_cols_order and custom_rows_order. The process is shown in Figure A8, and it is 

composed of 2 stages: in the first one, (G.a. in flowchart) data to be plotted is gathered and organised in lists, while 
in the second one (G.b.), subplot axes are created, and data is finally plotted. However, this process is not relevant 
for the purpose of this research and has no novelty, therefore is not further explained. 



 

Figure A8. Flowchart of methods scatter_plot, scatter_plot_with_baseline and time_plot. 

Table A4. Arguments in common of all figure methods. 

Method Argument Type Description 

all 

vars_to_gather_cols list The list of variables to be gathered in columns 

vars_to_gather_rows list The list of variables to be gathered in rows 

detailed_cols list 
The list of specific values of vars_to_gather_cols to be plotted. Only used 

if not all values need to be plotted. 

detailed_rows list 
The list of specific values of vars_to_gather_rows to be plotted. Only used 

if not all values need to be plotted. 

custom_cols_order list An ordered list of column names from left to right. 

custom_rows_order list An ordered list of rows names from top to bottom. 

cols_renaming_dict dictionary 
Used to replace strings in the cols. The dictionary should be in the format {“old 

name”: “new name”} 

rows_renaming_dict dictionary 
Used to replace strings in the rows. The dictionary should be in the format {“old 

name”: “new name”} 

figname str  Used as the name of the PNG file to be generated 

figsize float  Used as the size of the figure 

dpi int  Used to specify the figure resolution 

confirm_graph bool  Used to skip figure confirmation. 

scatter_pl

ot 
data_on_x_axis string The column name to be plotted on x-axis 

scatter_pl

ot 

and 
time_plot 

data_on_y_main_axis list 

Multiple spines on the y-axis can be plotted. Therefore, lists with nested lists 

must be entered following the pattern: 

[ 

['name_on_1st_y_main_axis', [list of column names you want to plot]], 

['name_on_2nd_y_main_axis', [list of column names you want to plot]], 

etc 

] 

data_on_y_sec_axis list Similar to data_on_y_main_axis, but in secondary axis 

colorlist_y_main_axis list 
A structure similar to data_on_y_main_axis, but replacing the column 

names with the related colour using matplotlib colour notation 

colorlist_y_sec_axis list 
A structure similar to data_on_y_sec_axis, but replacing the column names 

with the related colour using matplotlib colour notation 

ratio_height_to_width float  
Used to specify the shape of the figure. The height will be multiplied by the 

number to provide the final height. 

supxlabel str  The label shown on the x-axis 

scatter_pl

ot_with_ba

seline 

data_on_y_axis_baseline

_plot 
list 

The columns to be plotted on y-axis. A list with column names must be entered 

following the pattern: ['first_column_name', 'second_column_name', etc] 

colorlist_baseline_plot

_data 
list 

Similar to data_on_y_axis_baseline_plot, but replacing column names 

with colors using matplotlib color notation 

baseline string 
The value resulting from vars_to_gather_cols to be compared with all 

other values 

 

The method scatter_plot is used to plot a scatter plot, as the name suggests. It allows to plot data in multiples 

spines in y-axis. The method scatter_plot_with_baseline is also used to plot a scatter plot, but in this case, 

it is mainly used to compare a value resulting from vars_to_gather_cols, used as a baseline, with all other 

values resulting from that combination of variables gathered in columns. Lastly, time_plot is used to make a line 

plot figure with time on the x-axis. The output of all methods is a PNG file. 

 



2. accim.sim 

This module contains several Python files, although only accis.py contains a function that can be used: 

addAccis. As the name suggests, this function is used to add an EMS script named Adaptive-Comfort-Control-

Implementation Script, which applies adaptive setpoint temperatures based on highly customisable input arguments 
specified by the user.  

The operation of this function is described in Figure A9: 

B.a. Given there is a path. 
B.b. In which one or multiple IDF files are located. 
B.c. The user needs to call that function, either specifying all arguments as shown in the figure, or no argument at 

all (i.e., accis.addAccis()). In the latter, the user will be requested to enter all information guided by 

clarificatory text in the Python console or CMD terminal. 
B.d. Then, accim will generate all output IDFs and will name them based on the arguments entered by the user, to 

finally save them in the same path where input IDFs were located. 
As stated above, this module has already been explained in previous studies (Sánchez-García, Bienvenido-Huertas, 
and Rubio-Bellido 2021; Sánchez-García, Martínez-Crespo, et al. 2023), therefore no further details are necessary. 

 

Figure A9. addAccis workflow. 



3. accim.run 

The tool also has a module to perform building energy simulations with EnergyPlus, named accim.run. This 

module contains a Python file, run.py, which contains among other functions, a function named runEp. This 

function allows to automatically run all combinations of IDF and EPW files within the path where the function is 
executed based on arguments (Table A5) specified by user, and names the output files following the pattern 
“IDF[EPW”, therefore using the character “[“ as a separator consistently with the whole package. It has been 
developed using eppy code (Santosh 2023) as a reference, but with modifications to suit the name requirements. 

Table A5. Arguments of runEp. 

Argument Type Definition Admissible values 

runOnlyAccim bool Allows to filter IDFs to only simulate outputs of accim True or False 

confirmRun bool Allows to skip run confirmation on terminal True or False 

num_CPUs integer The number of CPUs to be used Any integer 

EnergyPlus_version string The version of EnergyPlus. It must match the IDF version. 9.1 to 23.1 

 

Taking the renamed EPW files from process A and the IDFs with adaptive setpoint temperatures from process B 
as input files, in this case the process consists of the following steps, named consistently with Figure A10: 

C.a. If argument EnergyPlus_version has not been entered, accim asks the user to enter that information 

on CMD terminal. Then, it searches the IDD file in the default installation path, and stores it in a variable using 
the eppy method setiddname. 

C.b. If the user has not confirmed the simulation of only output IDFs from accim with argument runOnlyAccim, 

then accim asks for it on CMD terminal. Then, if requested, accim filters the IDFs. 
C.c. Then, accim informs the user of the simulation runs that are going to be performed, which consists of the 

combination of all renamed EPWs and filtered IDFs within the path where function is being executed. If the user 
has not confirmed the simulation runs with argument confirmRun, then accim asks for it on CMD terminal. 

C.d. Finally, if confirmed, accim proceeds with simulation runs, using the number of CPUs specified in argument 
num_CPUs. 

The output files are the typical files resulting from EnergyPlus simulation. However, the files that are needed in this 
procedure are the CSV files, which are ready to be analysed with the data module. 

 

Figure A10. Flowchart of runEp. 

 

 

  



Appendix B. In-depth details of the methodology based on accim 

B.1. Data pre-processing 

Prior to simulation, files need to be pre-processed. EPW files need to be renamed following the pattern 
Country_City_RCPscenario-Year, as previously mentioned. Also, adaptive setpoint temperatures need to be 
implemented in the IDF files. 

B.1.1. EPW files preparation 

EPW files can be renamed using the class rename_epw_files. The recommended process, suitable for users 

with no programming background, is: 

a. open a CMD dialog pointing at the path where the EPW files to be renamed are located. 
b. execute Python by entering “py” or “python”. 
c. import the package by entering “from accim.data.data_preprocessing import 

rename_epw_files”. 

d. call the function by entering “rename_epw_files()”. 

e. enter the required information on CMD dialog. 

Therefore, after instantiating the class, accim needs to interact with the user throughout the process, shown in 
Figure B1. The tool will try to identify if the EPW files are for some future RCP scenario, and if no match is found, it 
considers these for present scenario. Then, based on the addresses obtained from the coordinates, proposes new 
names for the EPW files, and asks the user if some of these need to be amended, and then, if some of these need 
to be excluded. In this case, the tool renamed correctly all EPW files at the first instance and no amendments were 
required. Therefore, the new EPW names are: India_Ahmedabad_Present, India_Shimla_Present, 
India_Ahmedabad_RCP85-2100 and India_Shimla_RCP85-2100. 



 

Figure B1. Flowchart for EPW formatting procedure using the class rename_epw_files 

B.1.2. ACCIS implementation 

The next step is applying the adaptive setpoint temperatures. To do so, the class addAccis needs to be used. 

Again, the recommended process, suitable for users with no programming background, is: 

a. open a CMD dialog pointing at the path where the IDF files to be handled are located. 
b. execute Python by entering “py” or “python”. 
c. import the package by entering “from accim.sim import accis”. 

d. instantiate the class by entering “accis.addAccis()”. 

e. enter the required information on CMD dialog (related to the arguments that have not been specified) 

In this case study, all arguments are specified as shown in Figure B2. As a result, 12 output IDFs are generated, 
although not all of them are necessary. The IDFs that are needed are listed in Table 2. Thus, the remaining should 
be removed to avoid unnecessary computational effort. 

 



 

Figure B2. Flowchart for the implementation of the ACCIS using the class addAccis. 



Table 2. Output IDFs from accim for the case study. 

C
o
m

fS
ta

n
d
 

C
o
m

fM
o

d
 

H
V

A
C

m
o

d
e
 

D
e
fi
n

it
io

n
 

A
c
ro

n
y
m

 

CS_IND IMAC C NV 

CM_3 

HM_2 
adaptive setpoints based on IMAC-C horizontally extended beyond 

applicability limits, in MM operation 
IND_Adap_MM 

HM_1 
adaptive setpoints based on IMAC-C horizontally extended beyond 

applicability limits, in NV operation 
Ind_Adap_NV 

HM_0 
adaptive setpoints based on IMAC-C horizontally extended beyond 

applicability limits, in AC operation 
IND_Adap_AC 

CM_0 HM_0 
PMV-based or nearly static setpoint temperatures based on Indian 

Building Code, in AC operation 
IND_Stat_AC 

CS_INT ASHRAE55 CM_3 HM_0 
adaptive setpoints based on ASHRAE 55 horizontally extended beyond 

applicability limits, in AC operation 
ASH_Adap_AC 

 

B.2. Running simulations 

Once EPWs have been formatted and adaptive setpoint temperatures have been implemented in the output IDFs, 
simulations can be automatically run using the function runEp. Again, the recommended process, suitable for users 

with no programming background, is: 

a. open a CMD dialog pointing at the path where the renamed EPWs and IDFs are located. 
b. execute Python by entering “py” or “python”. 
c. import the package by entering “from accim.run import run”. 

d. call the function by entering “run.runEp()”. 

e. enter the required information on CMD dialog (related to the arguments that have not been specified). 

Once the function has been called, the user might need to interact with accim to provide any missing argument. In 
this case, no interaction is needed, since all arguments have been specified as shown in Figure B3. The simulation 
output files have been saved in the same path. In this case study 20 simulations have been run (5 IDFs x 4 EPWs), 
therefore there must be 20 CSV files ready to be analysed. 



 

Figure B3. Flowchart for the simulation runs using the function runEp. 

B.3. Data analysis 

In the following subsections, the CSV files resulting from the simulation runs will be analysed, to provide a table to 
assess the energy demand differences, and to visualize the data in multiple figures. In this case, it is recommended 
to use an IDE instead of a CMD dialog. 

B.3.1. Tables 

The aim of this subsection is to create a table to understand how much energy is demanded in the different settings. 
To do so, the first step would be to generate a DataFrame instance using the class Table, which is going to be 

stored in variable dataset_runperiod as shown in Figure B4. Then, the method format_table needs to be 

executed, to filter only energy demand columns at building level, as shown in Figure B5. 

 



 

Figure B4. Flowchart for the instantiation of the class Table 



 

Figure B5. Flowchart for the use of format_table 

At this point, the user might have a vague idea of what table can be done with the available data, especially if there 
is a large number of categorical variables. In order to get a clearer idea of this, the user can call the method named 
gather_vars_query. This method has not been previously explained in the methodology since the aim is merely 

assist the user to clarify the analysis possibilities. In this case, when IDFs with adaptive setpoint were generated, 
the arguments where more than one value were requested were columns ComfStand, ComfMod and HVACmode 

(ComfStand=[2, 7], ComfMod=[0, 3], HVACmode=[0, 1, 2]). Thus, these are all the categorical variables that change 
regarding the IDFs and the possibilities that might be interesting to study, and therefore the variables that have 
been entered in vars_to_gather. Then, accim prints on screen the categorical variables that contains more than 

one different value (i.e. ComfMod, since values are “CM_0” and “CM_3”), and the different combinations based on 

the combined variables, joined by character “[“: 

- CS_IND IMAC C NV[CM_0[HM_0. 
- CS_IND IMAC C NV[CM_3[HM_0. 
- CS_IND IMAC C NV[CM_3[HM_2. 
- CS_INT ASHRAE55[CM_3[HM_0. 

Then, the wrangled table can be generated following Figure B6. 



 

Figure B6. Flowchart for the use of method wrangled_table 

Finally, an Excel spreadsheet named “testing_accim.xlsx” is created and saved in the same path where the method 
was called. This output has been broken down into 2 tables for clarity purposes: Table 5 shows the energy demand 
values obtained and Table 6 the percentage obtained with the use of MM. For instance, the latter shows that 
IND_Adap_MM provides savings in thermal energy demand ranging from 24 to 65% with respect to IND_Adap_AC 
depending on the location and climate scenario. 

 

B.3.2. Data visualization 

The aim of this subsection is to plot figures that represent the results of the building performance simulations with 
adaptive setpoint temperatures. Therefore, all 3 methods previously explained at the methodology section are 
applied. These need to be called after method format_table. However, the class Table instance created at the 

previous section had runperiod frequency, which would be translated into very simple and not interesting figures, 
and besides NV mode was not considered. Therefore, a new instance will be created in this case using hourly 
frequency, as shown on Figure B7. In this case, format_table will be called filtering the columns for the mean 

operative temperature of all air-conditioned zones, the adaptive setpoint temperatures, a value of running mean 
outdoor temperature of a single zone (since it is the same for all of them), and the building total heating and cooling 
energy demands. 



 

Figure B7. Flowchart for the instantiation of Table using hourly frequency, and use of method format_table. 

Once format_table has been called, the methods to create the figures can follow. The user might expect to 

obtain figures composed of multiple subplots. First, scatter_plot method will be used, in which the typical plot 

to show the linear regression of adaptive comfort models will be generated. As specified in the arguments in Figure 
B8, the variables ComfStand, ComfMod and HVACmode were gathered and the different combinations are plotted 

in rows, while EPW_City_or_subcountry and EPW_Scenario-Year combinations are plotted in the columns. 

Data on main y-axis (left) was heating and cooling energy demand with best fit lines, while setpoint temperatures 
and operative temperature were plotted on the secondary y-axis (right), following the colours specified in the 
arguments. Considering the frequency input argument was set to “hourly” when Table class was instantiated, 

all values refer to hourly basis. Finally, these were renamed following the dictionaries entered. The output is shown 
in Figure 3, and allows the user to compare indoor temperature values from the use of HVAC systems with adaptive 
setpoint temperatures based on whether IMAC-C or ASHRAE 55 with roughly static setpoints from the Indian 
Building Code (in top row of subplots) or no HVAC system at all (i.e. NV and free-running mode, in middle row of 
subplots). In the latter, the comfortable hours ranged from 37% in Ahmedabad in RCP8.5 2100 to 84% in Shimla 
Present, while in all other air-conditioned cases, the comfortable hours ranged from 99.88% to 100%. 



 

Figure B8. Flowchart for the use of method scatter_plot 

Using a similar code snippet but changing method to time_plot and omitting the argument data_on_x_axis, a 

figure with time on the x-axis can be generated (Figure B9). In this case, the argument sharex is also omitted, 

since the simulation period is the same for all cases. The output is shown in Figure 4. 



 
Figure B9. Flowchart for the use of method time_plot 

 



 

Finally, using scatter_plot_with_baseline as shown in Figure B10, a different scatter plot can be generated. 

In this case, it is mainly used to compare a baseline combination of variables, plotted on x-axis, with the remaining 
variants, plotted on y-axis. In the example below, the total heating and cooling energy demands will be compared 
using the combination “CS_IND IMAC C NV[CM_3[HM_2” (or IND_Adap_MM) as the baseline, since it is expected 
to provide the greater energy savings. The same Table instance will be used, however, to avoid plotting an empty 

energy demand figure for the combination “CS_IND IMAC C NV[CM_3[HM_1” (or IND_Adap_NV) since it is on 
naturally ventilated mode, the argument detailed_cols is used. In this argument, all the combinations to be 

plotted are specified, that is, all of them except the NV and the baseline. The output is represented in Figure 5, 
which compares the hourly energy demand values of the baseline combination “CS_IND IMAC C NV[CM_3[HM_2” 
(or IND_Adap_MM) against all other combinations. For instance, in this case, the figure shows that there is an 
important number of hourly cooling energy demand values moving away from the diagonal (or 100% line, in which 
values are similar for the baseline and other combinations) and gathering around the 25% line, in which baseline 
values are roughly a quarter of the other combinations. 

 
Figure B10. Flowchart for the use of the method scatter_plot_with_baseline 

 

  



References 

Allouhi, A., Y. El Fouih, T. Kousksou, A. Jamil, Y. Zeraouli, and Y. Mourad. 2015. “Energy Consumption and 
Efficiency in Buildings: Current Status and Future Trends.” Journal of Cleaner Production 109. Elsevier Ltd: 
118–130. doi:10.1016/j.jclepro.2015.05.139. 

ANSI/ASHRAE. 2020. ASHRAE Standard 55-2020 Thermal Environmental Conditions for Human Occupancy. 
Edited by ASHRAE Inc. ASHRAE Standard. Atlanta, GA, United States. 

Beckman, William A., Lars Broman, Alex Fiksel, Sanford A. Klein, Eva Lindberg, Mattias Schuler, and Jeff Thornton. 
1994. “TRNSYS The Most Complete Solar Energy System Modeling and Simulation Software.” Renewable 
Energy 5 (1–4). Pergamon: 486–488. doi:10.1016/0960-1481(94)90420-0. 

Bernal, Willy, Madhur Behl, Truong X. Nghiem, and Rahul Mangharam. 2012. “MLE+: A Tool for Integrated Design 
and Deployment of Energy Efficient Building Controls.” BuildSys 2012 - Proceedings of the 4th ACM 
Workshop on Embedded Systems for Energy Efficiency in Buildings, 123–130. doi:10.1145/2422531.2422553. 

Bienvenido-Huertas, David, Daniel Sánchez-García, and Carlos Rubio-Bellido. 2021. “Adaptive Setpoint 
Temperatures to Reduce the Risk of Energy Poverty? A Local Case Study in Seville.” Energy and Buildings 
231 (January). Elsevier B.V.: 110571. doi:10.1016/j.enbuild.2020.110571. 

Bienvenido-Huertas, David, Daniel Sánchez-García, Carlos Rubio-Bellido, and David Marín-García. 2021. 
“Potential of Applying Adaptive Strategies in Buildings to Reduce the Severity of Fuel Poverty According to 
the Climate Zone and Climate Change: The Case of Andalusia.” Sustainable Cities and Society 73 (October): 
103088. doi:10.1016/j.scs.2021.103088. 

Bienvenido-Huertas, David, Daniel Sánchez-García, Carlos Rubio-Bellido, and Jesús A. Pulido-Arcas. 2021. 
“Applying the Mixed-Mode with an Adaptive Approach to Reduce the Energy Poverty in Social Dwellings: The 
Case of Spain.” Energy 237 (December): 121636. doi:10.1016/j.energy.2021.121636. 

Big Ladder Software Ltd. “Modelkit.” https://bigladdersoftware.com/projects/modelkit/. 

Bureau of Indian Standards. 2016. National Building Code of India Volume 2. India. 

Crawley, Drury B., Linda K. Lawrie, Frederick C. Winkelmann, W. F. Buhl, Y. Joe Huang, Curtis O. Pedersen, 
Richard K. Strand, et al. 2001. “EnergyPlus: Creating a New-Generation Building Energy Simulation Program.” 
Energy and Buildings 33 (4): 319–331. doi:10.1016/S0378-7788(00)00114-6. 

de Dear, Richard J., and Gail Schiller Brager. 1998. “Developing an Adaptive Model of Thermal Comfort and 
Preference.” ASHRAE Transactions 104 (Pt 1A): 145–167. 
http://www.scopus.com/inward/record.url?scp=0031624196&partnerID=8YFLogxK. 

DesignBuilder Software Ltd. 2021. “DesignBuilder.” https://designbuilder.co.uk. 

Dhaka, Shivraj, Jyotirmay Mathur, and Vishal Garg. 2012. “Combined Effect of Energy Efficiency Measures and 
Thermal Adaptation on Air Conditioned Building in Warm Climatic Conditions of India.” Energy and Buildings 
55. Elsevier B.V.: 351–360. doi:10.1016/j.enbuild.2012.09.038. 

European Commission. 2002. Directive 2002/91/EC of the European Parliament and of the Council of 16 December 
2002 on the Energy Performance of Buildings. Official Journal of the European Communities. Vol. 1. Brussels, 
Belgium. 

European Commission. 2006. Action Plan for Energy Efficiency: Realising the Potential. Brussels, Belgium. 

European Commission. 2011. “A Roadmap for Moving to a Competitive Low Carbon Economy in 2050.” Brussels, 
Belgium. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52011DC0112. 

European committee for standardization. 2019. “EN 16798-1:2019 Energy Performance of Buildings. Ventilation for 
Buildings. Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of 
Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics.” 
https://en.tienda.aenor.com/norma-bsi-bs-en-16798-1-2019-000000000030297474. 

European Environment Agency. 2017. Final Energy Consumption by Sector and Fuel (2017). Copenhagen, 
Denmark. 

European Union. 2010. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on 
the Energy Performance of Buildings. Official Journal Of The European Union. Vol. 153. Brussels, Belgium. 

Földváry Ličina, Veronika, Toby Cheung, Hui Zhang, Richard de Dear, Thomas Parkinson, Edward Arens, 
Chungyoon Chun, et al. 2018. “Development of the ASHRAE Global Thermal Comfort Database II.” Building 
and Environment 142 (September). Pergamon: 502–512. doi:10.1016/J.BUILDENV.2018.06.022. 



Guglielmetti, Rob, Dan Macumber, and Nicholas Long. 2011. “Openstudio: An Open Source Integrated Analysis 
Platform.” In Proceedings of Building Simulation 2011: 12th Conference of International Building Performance 
Simulation Association, 442–449. https://www.osti.gov/biblio/1032670. 

Hirsch, J.J. “EQUEST: The QUick Energy Simulation Tool.” http://www.doe2.com/equest/. 

Hong, Tianzhen, Jared Langevin, and Kaiyu Sun. 2018. “Building Simulation: Ten Challenges.” Building Simulation, 
871–898. https://doi.org/10.1007/s12273-018-0444-x. 

Hoyt, Tyler, Edward Arens, and Hui Zhang. 2015. “Extending Air Temperature Setpoints: Simulated Energy Savings 
and Design Considerations for New and Retrofit Buildings.” Building and Environment 88 (June). Elsevier Ltd: 
89–96. doi:10.1016/j.buildenv.2014.09.010. 

Intergovernmental Panel on Climate Change. 2007. Climate Change 2007: The Physical Science Basis. 
Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate 
Change. 

Intergovernmental Panel on Climate Change. 2014. Climate Change 2014: Synthesis Report. Contribution of 
Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 
Edited by Intergovernmental Panel on Climate Change. Climate Change 2013 - The Physical Science Basis. 
Cambridge: Cambridge University Press. doi:10.1017/CBO9781107415324.004. 

Kramer, R. P., M. P.E. Maas, M. H.J. Martens, A. W.M. van Schijndel, and H. L. Schellen. 2015. “Energy 
Conservation in Museums Using Different Setpoint Strategies: A Case Study for a State-of-the-Art Museum 
Using Building Simulations.” Applied Energy 158. Elsevier Ltd: 446–458. doi:10.1016/j.apenergy.2015.08.044. 

Li, Peixian, Thomas Parkinson, Stefano Schiavon, Thomas M. Froese, Richard de Dear, Adam Rysanek, and 
Sheryl Staub-French. 2020. “Improved Long-Term Thermal Comfort Indices for Continuous Monitoring.” 
Energy and Buildings 224. Elsevier: 110270. doi:10.1016/j.enbuild.2020.110270. 

Manu, Sanyogita, Yash Shukla, Rajan Rawal, Leena E. Thomas, and Richard de Dear. 2016. “Field Studies of 
Thermal Comfort across Multiple Climate Zones for the Subcontinent: India Model for Adaptive Comfort 
(IMAC).” Building and Environment 98 (March). Elsevier Ltd: 55–70. doi:10.1016/j.buildenv.2015.12.019. 

Monge Palma, Rafael, José Sánchez Ramos, María del Carmen Guerrero Delgado, Teresa Rocío Palomo Amores, 
Laura Romero Rodríguez, and Servando Álvarez Domínguez. 2023. “Extending the Thermal Comfort Band 
in Residential Buildings: A Strategy towards a Less Energy-Intensive Society.” Applied Sciences 13 (12): 7020. 
doi:10.3390/app13127020. 

Mui, Kwok Wai Horace, and Wai Tin Daniel Chan. 2003. “Adaptive Comfort Temperature Model of Air-Conditioned 
Building in Hong Kong.” Building and Environment 38 (6). Pergamon: 837–852. doi:10.1016/S0360-
1323(03)00020-9. 

Parkinson, Thomas, Richard de Dear, and Gail Brager. 2020. “Nudging the Adaptive Thermal Comfort Model.” 
Energy and Buildings 206 (January). Elsevier B.V.: 109559. doi:10.1016/j.enbuild.2019.109559. 

Roudsari, Mostapha Sadeghipour. “Ladybug Tools.” https://www.ladybug.tools/. 

Sánchez-García, Daniel. 2021. “Accim’s Documentation.” https://accim.readthedocs.io/en/latest/index.html. 

Sánchez-García, Daniel, David Bienvenido-Huertas, Jesús A. Pulido-Arcas, and Carlos Rubio-Bellido. 2023. 
“Extending the Use of Adaptive Thermal Comfort to Air-Conditioning: The Case Study of a Local Japanese 
Comfort Model in Present and Future Scenarios.” Energy and Buildings 285 (April): 112901. 
doi:10.1016/j.enbuild.2023.112901. 

Sánchez-García, Daniel, David Bienvenido-Huertas, and Carlos Rubio-Bellido. 2021. “Computational Approach to 
Extend the Air-Conditioning Usage to Adaptive Comfort: Adaptive-Comfort-Control-Implementation Script.” 
Automation in Construction 131 (November). Elsevier: 103900. doi:10.1016/j.autcon.2021.103900. 

Sánchez-García, Daniel, David Bienvenido-Huertas, Mónica Tristancho-Carvajal, and Carlos Rubio-Bellido. 2019. 
“Adaptive Comfort Control Implemented Model (ACCIM) for Energy Consumption Predictions in Dwellings 
under Current and Future Climate Conditions: A Case Study Located in Spain.” Energies 12 (8). MDPI AG: 
1498. doi:10.3390/en12081498. 

Sánchez-García, Daniel, Jorge Martínez-Crespo, Ulpiano Ruiz-Rivas Hernando, and Carmen Alonso. 2023. “A 
Detailed View of the Adaptive-Comfort-Control-Implementation Script (ACCIS): The Capabilities of the 
Automation System for Adaptive Setpoint Temperatures in Building Energy Models.” Energy and Buildings 
288 (June): 113019. doi:10.1016/j.enbuild.2023.113019. 

Sánchez-García, Daniel, Carlos Rubio-Bellido, Juan Jesús Martín del Río, and Alexis Pérez-Fargallo. 2019. 
“Towards the Quantification of Energy Demand and Consumption through the Adaptive Comfort Approach in 



Mixed Mode Office Buildings Considering Climate Change.” Energy and Buildings 187 (March). Elsevier Ltd: 
173–185. doi:10.1016/j.enbuild.2019.02.002. 

Sánchez-Guevara Sánchez, Carmen, Anna Mavrogianni, and Fco Javier Neila González. 2017. “On the Minimal 
Thermal Habitability Conditions in Low Income Dwellings in Spain for a New Definition of Fuel Poverty.” 
Building and Environment 114: 344–356. doi:10.1016/j.buildenv.2016.12.029. 

Santosh, Philip. 2023. “Running EnergyPlus from Eppy.” Eppy Documentation. Accessed May 3. 
https://eppy.readthedocs.io/en/latest/runningeplus.html. 

Santosh, Philip, Tran Tuan, Eric Allen Youngson, and Jamie Bull. 2004. “Eppy Web Repository.” 
https://github.com/santoshphilip/eppy. 

Schild, P.G. “EpXL: EnergyPlus-Excel.” https://github.com/SchildCode/EpXL. 

Sun, Ruiji, Stefano Schiavon, Gail Brager, Edward Arens, Hui Zhang, Thomas Parkinson, and Chenlu Zhang. 2024. 
“Causal Thinking: Uncovering Hidden Assumptions and Interpretations of Statistical Analysis in Building 
Science.” Building and Environment 259 (July). Elsevier Ltd. doi:10.1016/j.buildenv.2024.111530. 

University of Strathclyde. 2002. The ESP-r System for Building Energy Simulation. 

U.S. Department of Energy. 2023. “Prototype Building Models.” Accessed June 3. 
https://www.energycodes.gov/prototype-building-models#Commercial. 

Wang, Chenli, Kaleb Pattawi, and Hohyun Lee. 2020. “Energy Saving Impact of Occupancy-Driven Thermostat for 
Residential Buildings.” Energy and Buildings 211 (March). Elsevier B.V.: 109791. 
doi:10.1016/j.enbuild.2020.109791. 

Wetter, Michael. 2001. “GenOpt - A Generic Optimization Program.” Seventh International IBPSA Conference, no. 
August: 601–608. 

Yi, Z. “JEplus.” http://www.jeplus.org/wiki/doku.php. 

Yun, Geun Young, Je Hyeon Lee, and Koen Steemers. 2016. “Extending the Applicability of the Adaptive Comfort 
Model to the Control of Air-Conditioning Systems.” Building and Environment 105. Elsevier Ltd: 13–23. 
doi:10.1016/j.buildenv.2016.05.027. 

  

 

 

 


