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1 | INTRODUCTION

1.1 | Background and motivation
Several decades ago, the need for performance-based
approaches in seismic design grew significantly in
response to the substantial damage and economic losses
caused by moderate earthquakes, particularly those
resulting from the Loma Prieta, Northridge, and Hyogo-
Ken Nambu events. This realization triggered the devel-
opment of displacement-based methods for seismic
design and evaluation, as noted in various studies.!™

In order to support the development and application of
robust numerical models for simulating inelastic structural
responses, the Pacific Earthquake Engineering Research
Center (PEER) introduced OpenSees (Open System for
Earthquake Engineering Simulation), an open-source,
object-oriented software framework (opensees.berkeley.
edu). This framework includes a comprehensive suite of
modules designed to facilitate the implementation of
models and simulation techniques for both structural and

This paper presents a precise and straightforward solution for simulating the
behavior of reinforced concrete (RC) beam-column elements subjected to
bending and shearing forces. The solution is compatible with the fiber element
formulation used within object-oriented software frameworks like OpenSees.
The solution applies to both elastic and plastic deformation domains. In order
to validate the effectiveness of the beam-column element proposed, a bench-
mark test available in the literature has been employed.

fiber elements, performance-based design, RC beam-column elements, shear deformation

geotechnical earthquake engineering. For the analysis of
reinforced concrete (RC) structures, OpenSees uses fiber
elements as a mathematical method to integrate cross-
sectional responses and updates the relationships between
bending moments, axial force, and curvature in a stepwise
manner. Fiber elements effectively capture the nonlinear
behavior of materials, making them suitable for modeling
RC structures subjected to seismic events. However, the
usefulness of these elements is limited when accounting
for the interaction between axial-flexural and shear behav-
ior.* Recently, new elements for RC columns and walls
have been developed using OpenSees to address this
interaction.’

Numerous studies in the literature have sought to
improve the understanding of shear-bending interaction.
These works focus on various approaches, including
finite element formulations,® analytical models,” RC
walls,® and fiber element models.’

Building on the concept of effective shear strain (yeg),
a computational beam-column element with shear fibers
has been formulated to capture shear-bending interaction.
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The model is robust, visually intuitive, and applicable to
both fixed and rotational compression field models. It
employs coupled stiffness using FE theory while remain-
ing uncoupled in failure mode, effectively addressing shear
behavior in fiber beam-column elements. By incorporating
shear deformation, it can detect if shear failure appears
before bending failure. A detailed benchmark test is ana-
lyzed in Section 5.

This compact RC beam-column element has been
designed for performance-based seismic design and eval-
uation across elastic and plastic domains.

1.2 | Objective of the study

Building on the finite element formulation of the Timo-
shenko beam and a quasi-Timoshenko model previously
developed by the authors,'® this work introduces a new
RC beam-column element that is applicable in both elas-
tic and plastic domains. Equilibrium relations of bending
moments, forces, and curvatures are computed by using
the numerical integration of the cross-sectional response.
Additionally, a novel shear cross-section concept is intro-
duced to calculate the relationship between shear force
and shear strain, improving visualization and accuracy.
The resulting beam-column element effectively simulates
the bending and shear behavior of RC elements, advanc-
ing current methods for design and evaluation.

2 | THEORETICAL BACKGROUND
AND BASIS FOR THIS STUDY

The formulation by Popovics et al. is used'' for modeling
concrete behavior, while the confinement effect is incor-
porated using the mechanical model created by Mander
et al.'2 The steel model for reinforcing bars is bilinear,
with a 1% strain-hardening ratio. The theoretical founda-
tion of this new element is based on the Timoshenko
beam, as detailed in section 39 of Timoshenko's book,"*
with its linear formulation refined by Reddy as a finite
element.* The relationship between shear strain and
shear reinforcement is derived from the quasi-
Timoshenko beam model developed by the authors,
which is based on the truss model proposed and validated
by Ueda.”

Both models'”'® support the idea that shear deforma-
tion is negligible when compared to bending deformation
provided that the shear reinforcement remains in the
elastic range. However, once the shear reinforcement
yields, shear deformation becomes significant.

In this study, the strut angle is determined by using
the assumption that cracks align with the principal

compression stress direction once the tensile strength of
concrete is exceeded,'® which is physically sound for the
considered study case. However, alternative compression
field theories'” or'® may also be considered, which
account for concrete softening and/or tension
stiffening."®

3 | ANALYTICAL MODELS: A
DETAILED DESCRIPTION

This study employs a finite element-based formulation to
model bending and shear deformations'* and applies it
to RC beam-column elements, considering both longitu-
dinal and transverse reinforcement layouts. In order to
ensure a self-contained document with uniform notation,
Appendix A summarizes the development of the Timo-
shenko beam-column finite element. This formulation is
applicable, in a stepwise manner, across both elastic and
plastic deformation ranges. The NEHRP Seismic Design
Technical Brief® classifies the most commonly used
beam-column element models (Figure 1). The methodol-
ogy proposed is straightforward and well-suited for sce-
narios involving distributed plasticity, particularly with
fiber elements (or fiber sections), as shown in case (d) of
Figure 1.

3.1 | The elastic beam-column element
for bending and shear deformation

In the matrix representation of the behavior of a beam-
column element, the element stiffness matrix k connects
the nodal displacement vector d to the nodal force vector
f (see Figure 2). For a plane beam-column element with
three degrees of freedom (DOF) per node, the stiffness
matrix formulation is as follows:

f—kd
7= [N, Vi, Mi, N}, Vj, Mj] (1)

T
d’ = [u;,v;, 0, u;,v;, 0]

K matrix (Equation (A19)) is derived in the appendix
using a finite element formulation that accounts for both
bending and shear deformations. Several finite beam ele-
ments exist in the literature that consider the Timo-
shenko beam theory (TBT). Each of these elements
differs from the others in the choice of the interpolation
functions used for transverse deflection and rotation; in
this work, Equations (A10) and (A11) are used."*

The stiffness matrix of the structure, K, is obtained by
assembling the k matrices of all its elements.
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FIGURE 1

Idealized models of beam-column elements. NEHRP Seismic Design Technical Brief No 4.2

FIGURE 2

' X8 zcotB

(a) Shear deformation

Nodal displacements and nodal forces in a planar beam-column element.

Idealized shear deformation

-

(b) Effective shear strain

FIGURE 3 Effective shear strain.

3.2 | The quasi-TBT for RC beam-
column elements

In the beam-column RC element model considered in
Reference [10] shear strain is caused by the deforma-
tion of the shear reinforcement and the effective area
of concrete surrounding the reinforcement. Without

any loss of generality, the shear reinforcement is con-
sidered to be perpendicular to the centerline of the
non-deformed beam-column element. An effective
shear strain (y.gr) is defined, which is a function of the
angle of the crack (0), the lever arm (z), and the elon-
gation of the shear reinforcement (vy), see Figure 3.
During the considered shear deformation, all the
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FIGURE 4 Response of shear reinforcement.

stirrups involved (shown in blue) deform by the same
amount (vy).

In accordance with traditional nomenclature, the
authors have used 6 as the rotational degree of freedom
in the nodes, and also as the angle of the crack in con-
crete elements. Readers will have to differentiate between
the two meanings by considering the context in which
they are presented.

The procedure proposed applies to both rotating and
fixed-angle models. In the rotating angle model, the angle
must be recalculated at each loading step using any avail-
able compression field theories from the literature.'® A
previously developed example of a four-point bending
test demonstrates the good performance of this quasi-
Timoshenko beam model.'°

Vs

~ zcotd
Vs
e=—
Z

Veff
— € =7, COLO (2)

As previously mentioned, shear deformation in RC
beam-columns results from the elongation of the ten-
sioned shear reinforcement, specifically the deformation
of the stirrup legs (see Figure 3). Additionally, the contri-
bution of the surrounding concrete in tension, within the
effective area Ao is considered (tension stiffening
effect), as shown in Figure 4. As stated by the new EN
1992,%' the effective area of concrete in tension perpen-
dicular to the bar is limited to a distance from the bar
that is smaller than 5¢, with ¢ representing the diameter
of the bar. In this work, the linear approximation for
tension  stiffening proposed by Hdz-Gil and
Herndndez-Montes*® is used. Since this model was

calibrated using the approximate deflection expressions
from current standards, it also accounts for the bond-slip
effect within the beam-column element. However, it does
not consider the bond-slip that occurs at the element
ends, such as at the end of a cantilever beam, like the
one analyzed in Section 5.

Similar to the traditional cross-section used for bend-
ing, a shear cross-section can be defined (see Figure 4).
This shear cross-section includes all the stirrup legs and
the surrounding effective concrete areas that contribute
to shear deformation over a length of zcot6.

In Figure 3a, as the right side of the beam moves
downward as a result of shear deformation, all the blue
stirrup legs elongate. Due to tension stiffening, the effec-
tive cross-section of each leg includes both the reinfor-
cing bar and the surrounding concrete. Consequently,
the shear deformation involves the combined cross-
sections of all the stirrup legs, forming the shear cross-
section, as illustrated in Figure 4.

It is important to note that, due to the relatively short
length of the stirrup legs (approximately z), the deforma-
tion, during shear failure, before bar break, is quite small.
Consequently, in order to prevent shear failure and pro-
mote bending failure, American codes (ACI-318) use a
lower safety factor (¢ factor) for shear failure compared
to that used for bending. However, having a tool capable
of capturing the shear response, especially in
performance-based design, is still an essential element.

If the number of legs of each stirrup is denoted as n,
(e.g., m; = 3 in Figure 4), the area of the transverse rein-
forcing bars is Ag, and the effective area surrounding the
bar contributing to tension is A the equilibrium of
vertical forces results in the following shearing force'’:
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V(vew) =

The first and second terms on the right of the equa-
tion correspond to the contributions of steel and con-
crete, respectively.

3.3 | Struts angle, 0

The 0 angle can be deduced from any of the compression
field theories.’® A sound simplification can be made in the
case of columns, where shear cracks can appear without
any prior concrete deterioration. This phenomenon occurs
because, unlike in beams, in which bending causes con-
crete to crack, the concrete sections of columns are typi-
cally fully compressed before shear cracking occurs. In the
case of columns, 6 is adopted as the angle of the principal
direction of compression at the centerline of the beam-
column element when a crack occurs (see Figure 5).

The Mohr circle in Figure 5 enables the shear stress
that induces tensile cracking in concrete (Equation (4))
and the crack angle (¢) (Equation (5)) as a function of the
axial force, N to be calculated. Equation (5) clearly shows
that when N =0, 0=45°, and as the wvalue of
N increases, the 0 angle decreases from 45°.

(4)
/£2 N
tan(2¢9):ﬁ —2 Jatfaa (5)

Ox

[z

Figure 6 illustrates the influence of the axial load on
the angle of a crack. In the highlighted column, the first
crack appeared during an interstory movement to the
right when the column was fully compressed. The crack
(and the principal direction of compression) inclined
toward the vertical axis (see Figure 6 and Equation (5)).
After this crack had occurred, the stress state in the con-
crete changed, and the axial force was probably primarily
withstood by the rebars. From that point onward, the
concrete was no longer subjected to axial force. Conse-
quently, during a subsequent movement to the left, the
crack orientation was closer to 45°.

Detailed examples of how the angle of the crack is
calculated by applying different compression field theo-
ries can be found in References [10,16].

4 | THE RC BEAM-COLUMN
ELEMENT

Figure 7 presents the flowchart outlining the construc-
tion of the RC beam-column element for both elastic and
plastic deformations in bending and shear. A nonlinear
concrete model is used, incorporating tension stiffening,
along with a bilinear model for steel. It is a control-
displacement element, as the flow chart starts with a dis-
placement increment at i degree of freedom (AD;). Linear
elastic formulation is used in each of the displacement
steps considered (i.e., AF=K AD;). Matrix K is the
assemblage of k element matrices (defined in Equation (-
A19)), and Ky is the stiffness bending matrix, that is,
when  shear deformation is not considered
(or equivalently, when the ratio between flexural and
shear stiffnesses is zero, see Equation (A13) for
B = EI/GAx, = 0).
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FIGURE 6 A parking structure during the Northridge earthquake on January 17, 1994.
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FIGURE 7 Flow chart for the construction of the RC beam-column element.
In Equation (A5), GAk, (or shear stiffness) represents Af =kAd (6)

the slope of the shear force versus shear strain graph
(V-y). Figure 8 provides an example of the V-y.g
graph from,'® which illustrates three stages: pre-cracking,
pre-yield, and post-yield. Both the tension stiffening of
concrete and steel plasticization are considered in
the construction of Figure 8, using C25 concrete and
B400 steel. In the quasi-Timoshenko beam model pro-
posed for the RC beam-column element, the y.¢ effective
shear strain is considered (see Equation (3)) instead of vy,
with the slope of the V-y.s graph denoted as «
(i.e., a = dV/dys), as shown in Figures 7 and 8. A crack
angle () of 45° was assumed in this example.

A numerical approach for considering the variation of
the coefficients of matrix k in Equations (1) and (A19)
involves dividing the displacement into multiple steps,
considering the variation of the EI and GAx; coefficients
from one step to the next:

As EI and GAk, are functions of the actions
(i.e., EI = EI(N, M) and GAx; = GAxky(V)), they vary
throughout the displacement process.

In Equation (A4), EI (or bending stiffness) represents
the slope of the moment-curvature diagram, as curvature,
by definition, is the variation in rotation caused by bend-
ing. Moment-curvature diagrams are constructed for con-
stant values of the N axial force. Numerical processes
equivalent to the use of moment-curvature graphs can be
employed (i.e., equilibrium and compatibility equations
at a cross-sectional level). However, in this study,
moment-curvature diagrams are used for better visualiza-
tion; see Figure 7. Moreover, concrete tension stiffening
and softening, confinement effects, bond-slip, and steel
plasticization are considered to obtain moment-curvature
diagrams.'®
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FIGURE 8 Example of a V-y.g curve.

In order to initiate the algorithm in Figure 7, the ini-
tial slopes of both the V-y. and moment-curvature
curves are used. Additionally, the crack angle (6) is calcu-
lated from Equation (5). This angle can either be kept
constant or varied, depending on the compression field
theory applied, as mentioned in Section 3.3. Because the
moment-curvature graph presents negative slopes for
large deformations, the problem is solved by using dis-
placement increments (AD) rather than by using loading
increments, with i as the control degree of freedom.

4.1 | Flow chart description

The flowchart in Figure 7 begins with a linear elastic
analysis, calculating the displacement vector D in
response to an initial external force vector F,. The proce-
dure follows a displacement-controlled approach.
Figure 7 shows that for each displacement increment
AD;, where i corresponds to the controlled degree of free-
dom, the AF force increment is computed using the stiff-
ness matrix K, i.e., AF = K AD;. Vector F is obtained by
adding the successive AF to F,,.

Using AF, K, and Kg, the AD and ADg displacement
vectors are calculated, with ADg as the incremental dis-
placement only caused by bending, and AD as the incre-
mental displacements caused by bending and shear. The
incremental displacement caused by shear, ADyg, is then
obtained as the difference between AD and ADg. In each
step, the D, D, and Dg displacement vectors are obtained
from the summation of AD, ADg, and ADg, respectively.

Shear failure

T T/

0 1
0.000 0.002 0.004 0.006 0.008 0.010 0.012 Yeff

For each beam-column element, the curvature and
the effective shear strain are obtained from the d, dg, and
ds element displacement vectors, which are obtained
from the global displacement vectors. The angle of the
strut (0) in each element can be obtained as a function of
N, M, and V applied to the element from Equation (5), or
from any of the compression field theories.’® The slopes
of the V-y.¢ and moment-curvature curves (i.e., a and EI,
with @ = GAx; in traditional approaches) are calculated
for each value of y.¢ and curvature, respectively. Finally,
K and Ky are updated before the following displacement
increment. The procedure has been implemented in
Mathematica software.*

5 | VALIDATION TEST

In order to validate the RC beam-element presented
above, Specimen 7 tested by Tanaka,* and studied by
Fenves™ is analyzed here. The properties of the materials
are summarized in Table 1. A brief description of the
geometry of the specimen is depicted in Figure 9, adapted
from page 154 of Reference [24]. The tip of the cantilever
is subjected to a compressive axial load (2904 kN) and a
variable shear force. Regarding the length of the element,
there is a portion near the fixed end (L; = 540 mm, with
the first stirrup located at 30 mm from the fixed end)
where the stirrups are more closely spaced (6 stirrups at
90 mm); the rest are spaced at 180 mm. Stirrups are
12 mm diameter and longitudinal bars are 20 mm diame-
ter. The test results are plotted in black in Figure 10.
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TABLE 1 Characteristics of materials.
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FIGURE 10
specimen, adapted from Reference [24] (in black). Monotonic

Experimental results of the cyclic test of the

displacement-controlled response using the new RC beam-column
element (in red).

The stirrups spaced at 180 mm are intended to with-
stand the shear force, which remains constant along the
length of the column. In contrast, the stirrups spaced at
90 mm are designed to resist shear and to provide con-
finement to the concrete core. The confinement effect
becomes significant only in the lower part of the column,
where a substantial bending moment is present.

Ju (MPa) Jy (MPa) Ju MPa)
675 325 429

The specimen is divided into 3 beam-column ele-
ments (4 nodes), see Figure 11. Due to the two different
separations of the transverse reinforcement, two element
types are considered. The longitudinal reinforcement is
the same for both element types; however, because of the
two different confinements given by the transverse rein-
forcement, the moment-curvature curves are slightly dif-
ferent (see Figure 11). The calculated response to the
monotonic increase in displacement is shown in red in
Figure 10. The force-displacement curves tested and cal-
culated align closely up to a shear force of 350 kN.
Beyond this point, the discrepancy may be attributed to
bond-slip effects. As observed in the test, failure occurs as
a result of bending.

According to Equation (5), the crack (or strut) angle
is 29.2°. This value is adopted as the strut angle for the
red curve in Figure 10 (i.e., § = 29.2°).

In this study, pushover analyses are performed using
both 6 = 29.2° and 6 = 45°, with the latter included
solely for comparison to highlight the influence of the
angle on the response of the RC member. Figure 12 illus-
trates that the shear-y.g curves differ for both element
types and for the two crack angles considered.

The pushover curves (top displacement versus shear
force) corresponding to the specimen studied (see
Figure 9) for the two cases considered (6 = 29.2° and
0 = 45°) are shown in Figure 13. For 0 = 29.2°, failure
occurs as a result of bending. However, for 8 = 45° (blue
curve in Figure 13), the stirrups reach the pre-yield state
at V' =280 kN (see Figures 8 and 13), exhibiting signifi-
cant shear deformation. The shear reinforcements then
enter the post-yield stage at V = 400 kN, leading to col-
lapse at a top displacement of 20 mm. The new RC
beam-column element captures the potential for both
bending and shear failures. In the example analyzed, if
the axial force were removed (see line in blue in
Figure 13), the structure would exhibit shear failure
instead of bending failure.

Figure 12 for 6 = 29.2° shows that at V' = 600 kN, the
transverse reinforcement is at the end of the pre-yield
stage for the element type 2, while the concrete is cracked
as a result of shear forces (see V-y¢ graphs in Figure 8).

An experimental campaign will soon be conducted to
evaluate how accurately the proposed theory reflects real
behavior when a set of beam-column elements fail in
shear rather than in bending.
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FIGURE 11 Moment-curvature diagrams for the two types of elements.
Element Type 1 (stirrups @90 mm) Element Type 2 (stirrups @180 mm)
V (kN o V (kN)
1400( ) 06=29.2 1400
1200 1200
1000 1000
800 6=45° 800 0=29.2°
600 600}
400 400 6=45°
200 200 r//
0000 0.001 0002 0003 0008 ot e SheAr SN O 0001 0002 0003  0.004 cCtve shear strain
FIGURE 12 Shearing force-effective shear strain curves.
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FIGURE 13 Monotonic displacement-controlled response for
6 = 29.2° and 0 = 45°.

6 | CONCLUSIONS

Shear deformation in the structural analysis of RC struc-
tures has always been considered to be negligible when
compared with bending deformation. Nevertheless, shear
capacity has to be considered because, due to the short
length of transversal reinforcement, maximum strain can
be easily reached. In the performance-based design of an
RC beam-column, a formulation like the one presented
here guarantees that shear failure is detected.

The importance of shear behavior in RC
beam-column elements depends on their transverse
reinforcement. In certain cases, shear behavior becomes
non-negligible and must be considered in structural

analyses. Traditionally, shear stiffness (GAks) has been
assumed to be constant, and shear deformation has been
addressed by considering specific displacement and
rotation fields that meet the conditions of the system of
differential equations used in the TBT. However, given
the unique features of RC elements, their shear stiffness
cannot be assumed to be constant; in fact, it varies both
along the response curve and the length of the element
(influenced by the reinforcement layout). This paper has
presented a procedure which considers the shear defor-
mation of RC elements in the elastic and plastic
domains. The methodology proposed is straightforward
and can be easily implemented in fiber element software
packages.

NOMENCLATURE
A cross-section area
A eff effective area of concrete or area of concrete con-

tributing to tension stiffening, defined as a rect-
angular area perpendicular to the bar extending
over a distance from the bar smaller than 5.0¢
Ag area of steel
Ay area of the vertical leg
total displacements of element and structure
displacements of element and structure induced
by bending
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ds, Dg  displacements of element and structure induced
by shear

) bar diameter (in mm)

E modulus of elasticity

E. secant modulus of elasticity of concrete

E; modulus of elasticity of reinforcing steel

fe compressive strength of concrete

. concrete strength in tension

f; modulus of rupture of concrete

£, steel yield stress

f, steel ultimate stress

F, F, force vector, initial force vector

G shear modulus

I moment of inertia

k, K element and structural mechanical stiffness
matrix considering shear deformation

kg, Kg  Bernoulli element and structural mechanical
stiffness matrix considering (i.e., not consider-
ing shear deformation)

L length of element

N axial force

M bending moment

|4 shearing force

n number of legs per stirrup

s distance between vertical bars

u longitudinal deflection

v transverse deflection

Z lever arm

a shear stiffness, slope of the V—y curve

p traditional ratio between flexural and shear
stiffnesses

y shear rotation, shear strain

Yeft effective shear strain

I'; integration constants

Ks shear correction factor

Oy concrete longitudinal stress (in x-axis)

Osv stress in vertical reinforcing steel

% crack angle and rotation degree of freedom

caused by bending
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Al | FINITE ELEMENT FORMULATION OF
THE TIMOSHENKO BEAM
Unlike the Euler-Bernoulli beam theory, in which defor-
mation is entirely caused by bending and in-plane
stretching, the TBT includes a state of transverse shear
strain that is assumed to be constant throughout the
thickness of the beam."?

Without any loss of generality, a cantilever beam subjected
to a uniformly distributed g transverse load** is considered,
based on the following field of displacements (Figure Al):

APPENDIX A

u(x,y) = —y0(x) (A1)
V) ~v(x) (x2)
P — )+ o) (a3)

where u(x, y) in Equation (A1) is the horizontal displacement
of a fiber located at y from the centerline (see red points in
Figure Al), and u(x) in Equation (A2) is the transverse deflec-
tion of the centerline of the beam. Figure Al shows that the x-
coordinate is taken along the length of the beam. All the
points in the same cross-section are assumed to have the same
displacements in the y-axis. In the expressions above, 8(x) is
the rotation caused by bending, or the angle of the centerline
with the x-axis induced by bending, and y(x) is the shear strain
(that is, the angle of the centerline with the x-axis caused by
the shear deformation), as shown in Figure Al. Therefore, the
angle of the centerline (ie., dv(x)/dx) is the summation of
bending and shearing effects, Equation (A3). Equations (Al)
and (A2) are also present in the Bernoulli beam formulation,
and Equation (A3) characterizes the Timoshenko beam.

Establishing the balance of internal moments and
transverse forces, assuming linear elasticity:

J
M(x):/Ayadi:/AyEedi: AyEa—sz

= —/Eyzd%x)dA: g0

(A35)

with G as the shear modulus, 7 as the average shear
stress, and kg as a shear correction factor to compensate
for the error caused by the assumption of constant shear
stress (and strain) on the beamcross-section (ks = 5/6 for

85U801 SUOLILLOD 3A 12810 3 dedldde ayy Aq peusenob e sejoile WO ‘88N Jo se|ni Joj Afeq1 8UlUO A8]IM UO (SUORIPUOD-PUR-SWLB)ALO" A8 1M Ae.q|1|BU{UO//SANY) SUONIPUOD PUe SWB | 8L 88S *[5202/60/60] U0 A%eid18ulluO A8]IM ‘BpeueID 8d PepsBAIUN AQ 8720/ 00NS/Z00T OT/I0P/W0 A8 | imAeIq Ul juo//Sdiy Wolj pepeojumod ‘0 ‘8v9.LTS.LT


https://www.nist.gov/publications/nehrp-seismic-design-technical-brief-no-4-nonlinear-structural-analysis-seismic-design
https://www.nist.gov/publications/nehrp-seismic-design-technical-brief-no-4-nonlinear-structural-analysis-seismic-design
https://doi.org/10.33586/hya.2023.3097
https://doi.org/10.33586/hya.2023.3097
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://doi.org/10.1061/(asce)0733-9445(2006)132:2(244)
https://doi.org/10.1061/(asce)0733-9445(2006)132:2(244)
mailto:mlgil@ugr.es
mailto:emontes@ugr.es
https://doi.org/10.1002/suco.70248
https://doi.org/10.1002/suco.70248

GIL-MARTIN and HERNANDEZ-MONTES

Shearing deformation

Bending deformation

FIGURE A1 Displacement field of the TBT.

rectangular cross sections’’). In Equation (A5), a con-
stant state of transverse shear strain throughout the
thickness of the beam is assumed.

For the purpose of derivation, both EI and GAx, are
assumed to be constant. Note that both terms can be
assumed to be constant in incremental studies when con-
sidering small enough increments of loading.

Considering equilibrium of moments and transverse
forces over a segment of beam:

dl\i(cx) —V(x) =0— EI¢ (x) + GAx,(V (x) —0(x)) =0
(A6)
av
;”:_mqmu$mm—a@»=—q (A7)
The two  second-order coupled  equations,

Equations (A6) and (A7), are the governing equations of the
TBT. The solution for the system of differential equations is:

gx? gx*  EI

= — — I A8
) = G AR T 24ET GAm ¥ (A8)
I r
+ <€x3+72x2+1“3x+1“4>
qx* T,
9(x):@+7x +F2X+F3 (Ag)

with I'; as integration constants depending on the bound-
ary conditions of the problem.

Normally,*® the element finite formulation is based
on shape functions for v and 6, which are determined

using the exact homogeneous form of the equilibrium
equations of a Timoshenko beam subjected to a uni-
formly distributed transverse load'* (i.e., placing g = 0 in
Equation (A7)). The displacement and rotation field solu-
tions for the homogeneous system of equations are those
indicated in Equations (A8) and (A9), that is:

EI I'n 5 I,
v(x)=— I'1x —xX°+—x"4+I3x+1T Al0
() GAK51+<6 X A ) (ALD)
I,
H(X) :7)(: +F2x+r3 (All)

If the displacement and rotation fields in
Equations (A10) and (A11) are adopted,'* then a constant
state of transverse shear strain is obtained:

ElI

7o) =V () ~0x) =~ A

r (A12)

For a two-node beam, the above fields can be
expressed in matrix form as:

() o
0(x)
x3/6—xp x*/2 x 1)

/2 x 10
T ={I, 13,4}

with: P= < (A13)

And the transverse nodal displacements and rotations
can be obtained as (see Figure 3 in the paper):
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' = {Vl, 61,v2, 92}

with :
v =(0)
0, = 0(0) (A14)
v, =v(L)
0, =0(L)

with L as the length of the beam element. Equation (A14)
can be rewritten in matrix form as:

0 0 01
0 0 10

§=Clwith C=| s (A15)
L}/6—pL 1?/2 L 1

L?/2 L 10

Considering Equations (A13) and (A15), the following
equality is obtained:

{v(X) } —PF—PC'5— N (Al6)

with :

JibL

By applying the virtual work principle, the stiffness
matrix of an element with constant values of EI and GAx,
is obtained as:

EI O 2FI
J 0 GAx, L*(1+12p/L7)

6 3L -6 3L
3L 2L*+6f —3L L*>—¢6

b b (A18)
-6 —3L 6 -3L

3L L*—6f —3L 2L>+6p

In the previous development, axial force was ignored.
If the DOF in Figure 3 are considered, k can be extended
to the well-known stiffness matrix of a beam-column
element:

B 1 ((Lx)(L2+Lx2x2+12/3) (L—x)x(L*—Lx+68) x(3Lx—2x*+128) —(L—x)x(Lx+6p)

L(L*+12p) 6x(—L+x)

With N as the shape function matrix (Hermite cubic
shape function matrix if § tends to 0, or equivalently, if
shear stiffness GAx, tends to infinity).

Considering the above expressions, the bending curva-
ture of the beam and the shear strain can be written as:

¢ 0'(x)
= =QIr'=QC'6=B3%
)~

(x 100)
with: Q=
- 000

dB=— 1
an T L(L*412p)
—6(L—2x) —2(2L> —3Lx+6p) 6(L—2x) —2(L*>—3Lx—6p)
—12p —6pL 12p —6pL

(A17)

(L—x)(L* —3Lx+12p)

6x(—L+x)  x(—2L%+3Lx+12p) )

= 0 0 = 0 0
L L
N 12EI 6EI 12EI 6EI
i D+12Lp LA+12p L3+120p  LP+12p “"
Vi o 6EI AEI(L*+3f) _ 6El  2EI(L’-6f) vi
M; L2+128 L3+1208 L2+128  LP+12L8 0 d
N.f ,IE 0 0 ‘E 0 0 uj
L L
4] v
12EI 6EL 12EI 6EI
M; T2l L[*+128 ’+120p LP+12p | L9
6EI 2EI(L? — 6p3) 6El  4EI(L*+3p)
L2+128 LP+1208 L*+12p L*+12L5 |
(A19)

If p =0, the shearing effect is not considered, and
k is the traditional matrix based on the Bernoulli beam
theory (kg).
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