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In quantum field theories, field redefinitions are often employed to remove redundant operators in the
Lagrangian, making calculations simpler and physics more evident. This technique requires some care
regarding, among other things, the choice of observables, the range of applicability, and the appearance and
disappearance of solutions of the equations of motion (EOM). Many of these issues can already be studied
at the classical level, which is the focus of this work. We highlight the importance of selecting appropriate
observables and initial/boundary conditions to ensure the physical invariance of solutions. A classical
analog to the Lehmann-Symanzik-Zimmermann (LSZ) formula is presented, confirming that some
observables remain independent of field variables without tracking redefinitions. Additionally, we address,
with an example, the limitations of noninvertible field redefinitions, particularly with nonperturbative
objects like solitons, and discuss their implications for classical and quantum field theories.
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I. INTRODUCTION

The standardway to set up amodel of physics is to specify
its action. The path integral then provides the implementa-
tion as a quantum theory. One of the advantages of this
formalism is that one can freely choose the coordinates. In
the context of field theory, this means that one can do
arbitrary field redefinitions.
For practical purposes, it is useful to specify the complete

model with as few parameters as possible. Ideally, the terms
in the Lagrangian should also have a reasonably simple
physical interpretation. This is particularly relevant in the
case of effective field theories, which often feature a large
number of parameters and potentially complicated higher-
dimensional operators.An important step in achieving this is
to only include operators that lead to different physical
effects, i.e., to remove redundant operators. A trivial
example of this is to remove terms from the Lagrangian
that are related by partial integration as they (given suitable
boundary conditions) lead to the same action.
Less trivially, it is common in effective field theories

(EFTs) to employ the equations of motion (EOM) or field
redefinitions to simplify and find a nonredundant operator

base [1,2] (for some examples where this is done explicitly
see, Higgs EFT [3,4], StandardModel EFT [5–10], or axion
EFTs [10–16]).1 While the foundations for these procedures
have been laid long ago in seminal papers [22–29] we
believe it useful to give a coherent and hopefully simple
description of the nontrivial steps taken by doing so, using a
language common in current phenomenological studies.
We find that many of the subtleties regarding the

applications of field redefinitions can already be discussed
at the classical level, on which we focus in this work. For
this purpose, we set up a theoretical basis based on classical
objects instead of working with the semiclassical approxi-
mation of quantum ones. This provides an alternative
perspective in which concepts that might otherwise seem
essential to the formalism (such as scattering amplitudes,
asymptotic states, the infinite past/future limit, etc.) are
unnecessary. To the best of our knowledge, this is the first
time that these results have been presented in this form.
For pedagogical purposes and to provide a more com-

plete picture of the issues we discuss, we have included
several known results together with our findings in this
paper. However, to make it clear in advance, we highlight
here our main contributions:

(i) Our classical version of the LSZ formula generalizes
the classical limit of previous results at the quantum
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1Field redefinitions have also been used in the context of exact
renormalization group equations to simplify the description and
to elucidate the physical content, e.g., [17–21].
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level, particularly on the assumptions about the
interpolating fields, the operators whose correlation
functions give scattering amplitudes in the on-shell
limit. On the one hand, we provide an alternative
formulation that automatically clarifies the meaning
of the LSZ formula in a purely classical context. A
partially similar formulation for quantum field
theory can be found in [30], assuming that the
interpolating field is the elementary field itself.
On the other hand, our results can be compared to
more conventional versions of the quantum LSZ
formula, which typically assume that the interpolat-
ing field is either a perturbation of the elementary
field, an ultralocal function of it, or at least a
polynomial in it and its derivatives. Our assumptions
include all these possibilities as particular cases.

(ii) Our proof of the classical LSZ formula follows a
different path from the one usually presented in the
literature. It has some similarities to (but is more
general than) the classical version of [30]. In this
sense, it is a new approach that makes it easier to
identify potential issues that arise when some of the
assumptions are not satisfied. For example, extra care
is needed in nontrivial backgrounds such as solitons
or instantons. In this case, it is unclear if field
redefinitions leave scattering amplitudes unchanged.

(iii) We provide explicit counterexamples to potential
generalizations of the invariance under field redefi-
nitions that arise from our LSZ result. In particular,
field redefinitions that are not one-to-one generate
field theories that are not equivalent to the original
one. A manifestation of this is the appearance of new
solutions, notably extra nonperturbative objects such
as solitons. To our knowledge, these solutions have
not been constructed before. One may hope that the
redefined theory is essentially the same in that the
original physics could be recovered utilizing some
natural restriction, such as boundary conditions. In
general, this turns out not to be the case.

(iv) Although not usually formally stated, two pieces of
the standard lore from different contexts are incom-
patible: that the S-matrix fully defines the theory and
that correlation functions are measurable. We point
out this inconsistency through explicit examples in
which off-shell correlation functions depend on the
field transformation while the corresponding scatter-
ing amplitudes do not.

Let us now briefly outline the steps taken in this work. In
Sec. II, we present a classical analog to the key result that
allows the construction of redefinition-invariant observ-
ables in quantum field theory: the LSZ formula. This
section also sets the notation and essential concepts for the
rest of the paper. In Sec. III, we discuss two senses in which
physics is invariant under redefinitions. First, all physical
quantities must be independent of the parametrization used
in field space. However, one should be careful to redefine

not only the action but also all observables in the theory.
Second, a stronger result is also possible: thanks to the LSZ
theorem, there is a set of observables that is invariant under
field redefinitions. Importantly, this includes cross sections.
One can redefine the action but not these observables, and
they will still take the same values. In Sec. IV, we use a
mechanical toy model to illustrate the main points of the
previous sections. In Sec. V, we study the issues that arise
when field redefinitions are used beyond their range of
applicability. Typically, spurious solutions appear. Some
might be eliminated through additional boundary condi-
tions, but not all can. Some solutions to the original theory
might also be lost. We also consider the case of extended
field solutions, such as solitons, where eliminating spurious
extra solutions is not always successful. We conclude in
Sec. VI and briefly examine the quantum theory.

II. CLASSICAL VERSION
OF THE LSZ THEOREM

In quantum field theory, the key fact that ensures the
invariance of scattering amplitudes under field redefinitions
is the LSZ theorem. More precisely, the LSZ theorem links
scattering to poles in correlation functions, and it is those
that do not change under a field redefinition. While
intuition dictates that a classical version of LSZ should
exist, such a result is not trivially obtained from the
quantum case. In fact, the LSZ formula deals with scatter-
ing amplitudes between asymptotic multiparticle states,
which do not really exist classically. Thus, the most one can
get by taking the classical limit on it is a tree-level
semiclassical formula involving such states. Instead, in
this section, we construct and prove a version of this result
that relies purely on classical concepts.

A. Physical picture

We consider a classical field theory for a field ϕ with
action S½ϕ�. For simplicity, we assume that ϕ is a single
scalar field, although all results here may be readily
extended to collections of fields with nonvanishing spin.
We follow the usual setup employed in the study of
quantum field theories and introduce an additional coupling
of some local combination of the fields F½ϕ� to an external
source J so that the total action of the theory is given by

SJ½ϕ� ¼ S½ϕ� þ Fx½ϕ�Jx; ð2:1Þ

where we have used DeWitt notation, in which the
spacetime point is denoted as a regular index

ψx≡ψx≡ψðxÞ; ϕxψx≡
Z

ddxϕðxÞψðxÞ: ð2:2Þ

We will generally use this notation throughout this paper,
but we will switch to the more traditional notation ψðxÞ,
whenever it helps clarify the meaning of a given formula.
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The source J is typically regarded as a formal parameter
to obtain correlation functions through functional deriva-
tives of a generating functional. It can also be given a more
physical meaning in two ways. First, it can be viewed as an
external field driving ϕ to set it up for the conditions of an
experiment. For example, setting J to a combination of
plane waves simulates a scattering process. Second, it
can be used to model a situation where the field can be
measured only through the combination F½ϕ�, but not
directly. For this purpose, one can promote J to a dynamical
field, playing the role of a measurement apparatus, and
observe the effects of ϕ on it.
The classical dynamics of the ϕ field are governed by the

following equation of motion�
δS
δϕx þ

δFy

δϕx Jy

�
ϕ¼ϕJ

¼ 0: ð2:3Þ

Clearly, the solution ϕJ to this equation depends on the
source J. By focusing on the properties of ϕJ, we
automatically incorporate the physical picture in which
one can only act on the system through the source term
FxJx. One needs to restrict the set of available observables
to introduce the idea that one can only measure the system
through this term. The only valid observables should be
derived from the self-interactions of J, viewed as an
external field, once ϕ has been integrated out. In other
words, in the classical theory, it is evaluated at its solution
to the equation of motion, ϕJ, in the presence of the source
J. The action containing those self-interactions is

W½J� ¼ SJ½ϕJ�: ð2:4Þ

All observables must be derived fromW½J�. We assume that
both ϕJ and W½J� can be expanded as power series in J.
They are thus fully determined by their functional deriv-
atives at J ¼ 0,

hϕðxÞFðx1Þ � � �FðxnÞiS ≡ δnϕJðxÞ
δJðx1Þ � � � δJðxnÞ

����
J¼0

; ð2:5Þ

hFðx1Þ � � �FðxnÞiS ≡ δnW
δJðx1Þ � � � δJðxnÞ

����
J¼0

: ð2:6Þ

Here, the left-hand side is to be read as a definition where
the notation is chosen to mimic the one used in quantum
field theory (see Sec. II D, where we discuss the connection
to quantum field theory in more detail). Moreover, we want
to emphasise that these functions are computed using
the action S and the combination of fields F in the source
term. We note that later F will be our field redefinition’s
interpolating field (see next subsection).
The above notation also makes explicit that

hϕðxÞFðx1Þ � � �iS ¼hFðxÞFðx1Þ� � �iS when F½ϕ� ¼ ϕ. This
is the case because we can directly derive ϕJ ¼ δW=δJ by

using the equations of motion. We will call the h� � �iS
Green’s functions since they play the role of the connected
Green’s functions in a quantum theory. Intuitively,
hϕðxÞFðx1Þ � � �FðxnÞiS measures the response of the field
ϕ at the point x to the source J acting at points x1, …, xn,
while hFðx1Þ � � �FðxnÞiS is the strength of the self-
interaction Jðx1Þ � � � JðxnÞ induced by the field ϕ. The
hϕF � � �Fi functions are mainly used in this section,
because of their connection to the intuitive physical picture.
The hF � � �Fi functions are the natural choice for the
discussion of field redefinitions as they are simply the
transformed object coupling to the same source. Hence, for
most of the rest of this paper will focus on them.
Below, we will study the dependence of ϕJ and W½J� on

the Fourier modes of J. Specifically, we will see that, for a
wide variety of possibilities for F, the positions and
residues of the poles ϕJ and W½J� have in momentum
space are independent of the concrete choice of F. The
situation is analogous to that of a driven anharmonic
oscillator. When the driving force contains a mode with
the resonant frequency—in our case, when the source has
an on-shell mode, with p2 ¼ m2, wherem is the mass of the
field—the amplitude of the oscillations diverges. That is,
both the solution to the EOM and the Green’s functions
have a pole when the source goes on-shell.2 This pole is
reached for a general coupling to the source JF½ϕ�, as long
as F½ϕ� features an oscillation at the same frequency as ϕ.
All other frequencies in F½ϕ� are not resonant and do not
change the pole.
For convenience,wewillworkwith the Fourier transforms

hϕ̃ðpÞF̃ðp1Þ � � �iS and hF̃ðp1Þ � � �iS of hϕðxÞFðx1Þ � � �iS
and hFðx1Þ � � �iS. From them, one may reconstruct the full
solution ϕJ and the functional W½J� through

ϕ̃JðpÞ ¼
X∞
n¼0

1

n!

Z
d4p1 � � �d4pnhϕ̃ðpÞF̃ðp1Þ � � � F̃ðpnÞiS

× J̃ðp1Þ � � � J̃ðpnÞ: ð2:7Þ

W½J� ¼
X∞
n¼0

1

n!

Z
d4p1 � � � d4pnhF̃ðp1Þ � � � F̃ðpnÞiS

× J̃ðp1Þ � � � J̃ðpnÞ: ð2:8Þ

where ϕ̃J and J̃ are the Fourier transforms of ϕJ and J,
respectively.

B. Interpolating fields

For the results of this section to be applicable, we need to
impose some general conditions on the functional F. We
follow the nomenclature employed in quantum field theory

2It should be noted that this is not the only pole: additional
ones may be present, at the points at which sums of frequencies
contained in J reach the frequency of resonance of the oscillator.
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and call such a suitable functional an interpolating field
(see, e.g., [31,32]). In the quantum case, the defining
condition for interpolating fields is that the overlap
h0jF½ϕ�jpi of the states it creates with one-particle states
is nonvanishing. Here, we provide a definition purely in
classical terms. The functional derivative of F with respect
to ϕ may be viewed as a linear differential operator acting
on test functions ψ . Our requirement is that this operator is
nonsingular for all ϕ.
Definition 1. A local functional of the fields F½ϕ� is

called an interpolating field whenever

δFy

δϕx ψy ¼ 0 ⇔ ψðxÞ≡ 0: ð2:9Þ

The fact that δF=δϕ is nonsingular in the sense of
Eq. (2.9) is equivalent to the existence of an inverse
differential operator ðδF=δϕÞ−1. In fact, using the inverse
function theorem, one can see that F is a one-to-one
mapping, and an inverse functional F−1½ϕ� should exist.
These properties will become important in Sec. III, where
we will require that field redefinitions are of the form
ϕ ¼ F½φ�, with F being an interpolating field.
Beyond Eq. (2.9), we require that F is local. This means

that Fx½ϕ� may only depend on a finite number of
derivatives ∂

NϕðxÞ of the field at the point x. Whenever
derivatives are present in F, the left-hand side of Eq. (2.9)
becomes a differential equation that may have nontrivial
solutions, which forbids it from being an interpolating field.
However, if we are working with the field theory only
through perturbation theory, Eq. (2.9) only has to be true
perturbatively, allowing for interpolating fields with deriv-
atives. Thus, there are two main ways to construct an
interpolating field:
(1) F is ultralocal, meaning it has no derivatives so that

it can be written as Fx½ϕ� ¼ fðϕðxÞÞ. Additionally, f
is required to be invertible function (f0ðϕÞ ≠ 0
everywhere). An example of this is Fx½ϕ� ¼ ϕðxÞ þ
gϕ3ðxÞ.

(2) F is a power series in a perturbative parameter λ,
with the λ0 order being ultralocal and invertible.
Only at order λ and higher may contain a finite
number of derivatives. An example of this is
Fx½ϕ� ¼ ϕðxÞ þ λ□ϕðxÞ. It should be noted that,
in order for any result relying on the interpolating
nature of F to work, all quantities, including the
action and all observables, should be perturbative
series in λ, too.

The second situation is commonly encountered when work-
ing with effective field theories, where λ is the perturbative
parameter of the effective theory, usually proportional to the
inverse of the cutoff scale. In the literature, field redefinitions
are usually assumed to be either of the first type [22–26,28]
or the second one [1,2,27,29]. Here, we discuss both
possibilities in aunifiedway through thegeneral definition1.

We also note that a typical assumption in the quantum
formulations is that F is a polynomial, or a least a power
series, in the fields. This is not required in the results we
present here.

C. Results

With these preliminaries, we can present several results
for a generic classical field theory in the same spirit as the
LSZ formula for a quantum one. We will prove them in
Appendix A.
We make a common set of assumptions for all results:
(1) The action S is local.
(2) The trivial field configuration ϕ≡ 0 is a solution to

the equation of motion (2.3) with J ¼ 0. We assume
this is the leading order in the expansion of ϕJ in
power of J. That is, hϕðxÞiS ¼ 0. This choice
usually corresponds to the lowest energy state,
i.e.,for J ¼ 0 we are in the QFT vacuum state.

(3) F is an interpolating field.
(4) The linearized equation of motion arising from S is

the Klein-Gordon equation. Explicitly

δ2S

δϕ̃pδϕ̃q

����
ϕ¼0

¼ δdðpþqÞðp2−m2Þð1−λEðpÞÞ;

ð2:10Þ

where EðpÞ is a polynomial in p that may only be
nonzero if F is perturbative with small parameter λ.

Our first result is about the on-shell poles of the
hϕðpÞFðp1Þ � � �iS functions.
Theorem 1. In the limit p2

1 → m2; � � � ; p2
n → m2, we have

the asymptotic relation

hϕ̃ðp1ÞF̃ðp2Þ � � �iS∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zϕðp1Þ

p
p2
1−m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZFðp2Þ

p
p2
2−m2

� � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZFðpnÞ

p
p2
n−m2

×δ4ðp1þ���þpnÞAðp1;…;pnÞ;
ð2:11Þ

with the following properties:
(i)

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZFðpÞ

p
≠ 0 is a polynomial in p which, in general,

depends both on F and S.
(ii) Aðp1;…; pnÞ is an analytic function of the mo-

menta, except possibly when sums of subsets of
them go on-shell ðpi1 þ pi2 þ � � �Þ2 → m2. It de-
pends on S but not on F. Additionally,

Aðp1; p2Þ ¼ p2
1 −m2: ð2:12Þ

One may reformulate this theorem in intuitive terms
as follows: if the source is taken to be a combina-
tion of plane waves with momenta p1;…; pn, then
hϕðp1ÞFðp2Þ � � �FðpnÞiS has a pole when all of these
momenta are put on-shell. Near the pole, the field splits
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into factors: a normalization ∼Zn=2 related to the sourced
field F, and an amplitude A completely determined by
the action only.
Theorem 2. In the limit p2

1 → m2; � � � ; p2
n → m2, we have

the asymptotic relation

hF̃ðp1Þ � � � F̃ðpnÞi ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZFðp1Þ

p
p2
1 −m2

� � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZFðpnÞ

p
p2
n −m2

× δ4ðp1 þ � � � þ pnÞAðp1;…; pnÞ:
ð2:13Þ

Theorems 1 and 2 ensure that, up to factors of
ffiffiffiffiffiffi
ZF

p
, the

positions and residues of the on-shell poles of the field
solution and Green’s functions are independent of the
interpolating field used to act on the system and perform
measurements.

D. Connection to quantum field theory

The definitions and results presented above, which, in
principle, apply to classical field theories, can be directly
related to similar ones in quantum field theories at the
tree level. Although the tree-level approximation is widely
known to be related to the classical limit of quantum theories,
this is usually a semiclassical statement [28,33–35], where
this means that this approximation is applied to objects that
can only be defined in quantum field theory, such as quantum
states and observables, viewed as elements and operators in a
Hilbert space, respectively. To build a bridge toQFT, we here
provide a connection between some of these objects and
those we have defined above, which instead refer to proper-
ties of the classical fields ϕ and J.
The tree-level approximation to the generating functional

in a quantum theory is given by3

Z½J� ¼ 1

N

Z
DϕeiSJ ½ϕ� ¼ eiSJ ½ϕJ � þOðℏÞ; ð2:14Þ

where we have included a normalization factor N for
convenience. The functional W½J� ¼ SJ½ϕJ� generates the
functional for tree-level connected Green’s functions.
Therefore, the relation between the (connected) quantum
(left side) and classical (right side) Green’s functions is

h0jTfFx1 ½Φ� � � �Fxn ½Φ�gj0ic ¼ inhFðx1Þ� � �FðxnÞiSþOðℏÞ:
ð2:15Þ

More precisely, the left-hand side denotes the connected
part of the vacuum expectation value for the time-ordered
product of the operators Fxi ½Φ�, with ΦðxÞ being the

operator representing the quantum field ϕ. Similarly,

h0jTfΦxFx1 ½Φ� � � �Fxn ½Φ�gj0ic
¼ inhϕðxÞFðx1Þ � � �FðxnÞiS þOðℏÞ: ð2:16Þ

Using this relation in theorems 1 and 2, one obtains a
statement about the momentum dependence of these time-
ordered vacuum expectation values in the on-shell limit.
The quantum LSZ formula gives rise to the same depend-
ence in this limit. Our results provide an alternative proof of
this structure at tree level. Additionally, as discussed in the
introduction and in Sec. II B, the different previous for-
mulations of LSZ/field redefinition-invariance at the quan-
tum level make some additional assumptions about F on
top of the ones we make, so our proof gives a more general
result in the classical limit.
Additionally, by comparing Eqs. (2.11) and (2.13) to

their quantum version, we can extract the quantum objects
that correspond to the functions ZFðpÞ and Aðp1;…; pnÞ.
On the one hand, theorem 2 gives,

hF̃ðpÞF̃ðqÞiS ∼
δdðpþ qÞ
p2 −m2

ZFðpÞ: ð2:17Þ

On the other hand, the Källén-Lehmann representation
specifies

h0jTfF̃½Φ�ðpÞF̃½Φ�ðqÞgj0i∼δdðpþqÞ
p2−m2

jh0jF½Φ�ðx0Þjpij2;

ð2:18Þ

where we have denoted p ¼ ðE;pÞ and x0 is an arbitrary
spacetime point. Comparing both equations, we obtain

jh0jF½Φ�ðx0Þjpij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZFðpÞ

p
þOðℏÞ: ð2:19Þ

The fact that ZFðpÞ ≠ 0, which comes from the assumption
thatF is an interpolating field in the classical sense, as shown
in theAppendixA, implies thatF½Φ� is an interpolating field
in the quantum sense. That is, h0jF½Φ�ðx0Þjpi ≠ 0. For theA
functions, we write pi ¼ ðEi;piÞ, and assume that
E1; � � � ; Ek > 0 and Ekþ1; � � � ; En < 0 Then, we have

hin;p1;…;pkj−pkþ1;…;−pn;outi¼Aðp1;…;pnÞþOðℏÞ;
ð2:20Þ

where j � � � ; ini and j � � � ; outi denote the asymptotic multi-
particle in and out states. In physical terms,ZF quantifies the
strength of the oscillation in F½ϕ� with the same resonant
frequency as ϕ.

3In other words, the only path taken is the one that corresponds
to a saddle point of the equation and, therefore, fulfils the
classical equation of motion.

FIELD REDEFINITIONS IN CLASSICAL FIELD THEORY … PHYS. REV. D 111, 076019 (2025)

076019-5



III. FIELD REDEFINITIONS WITH
INTERPOLATING FIELDS

In this section, we consider a field redefinition of the
form

ϕ ¼ F½φ�; ð3:1Þ

where F is an interpolating field. After the redefinition, one
ends up with a theory whose action Ŝ is given by

Ŝ½φ� ¼ S½F½φ��: ð3:2Þ

Naively, the theories defined by S and Ŝ should be
equivalent. However, some care is needed regarding the
observables under consideration. One has to either redefine
all observables together with the action or consider a subset
of all observables that remain invariant even without this
additional redefinition, thanks to the classical LSZ theorem
proven above.

A. Redefining observables

Consider a theory defined by the action S with a trivial
source term ϕxJx and the corresponding action with a
source after the redefinition

SJ½ϕ� ¼ S½ϕ� þ ϕxJx;

ŜJ½φ�≡ SJ½F½φ�� ¼ Ŝ½φ� þ Fx½φ�Jx: ð3:3Þ

We are interested in the solutions ϕJ and φJ to the EOMs
derived from these two actions. We will see that these
solutions are in one-to-one correspondence. The EOMs are
given by

0¼ δSJ
δϕx

����
ϕJ

; 0¼ δŜJ
δφx

����
φJ

: ð3:4Þ

We may use the relation between S and Ŝ and the
interpolating property of F to rewrite these equations in
a different form

0¼ δGy

δϕx

����
ϕJ

δŜJ
δφy

����
G½ϕJ �

; 0¼ δFy

δφx

����
φJ

δSJ
δϕx

����
F½φJ �

; ð3:5Þ

where we have denotedG≡ F−1 for simplicity. Noting that
F and G are interpolating fields again, we know that the
two differential operators δG=δϕ and δF=δφ are non-
singular, so the two equations are equivalent to

0¼ δŜJ
δφy

����
G½ϕJ �

; 0¼ δSJ
δϕx

����
F½φJ �

: ð3:6Þ

In this form, it is clear that any solution φJ of the new EOM
induces a solution of the old EOM through ϕJ ¼ F½φJ�, and

vice versa, any solution ϕJ to the new EOM induces a
solution to the old one through φJ ¼ G½ϕJ� ¼ F−1½ϕJ�. In
this sense, the dynamics are unchanged.
However, there is one point where we need to be careful

in a slightly trivial way. In general, ϕx ≠ φx. Considering
the same observable, we need to use the relation between
the two fields, i.e.,φx ¼ Gx½ϕ�. This holds for any observ-
able in the theory. Let O½φ� denote a generic observable. In
general, we will have O½φJ� ≠ O½ϕJ�. Instead, the correct
relation is

O½ϕJ� ¼ Ô½φJ�; where Ô½φ�≡O½F½φ��: ð3:7Þ

This is automatically obtained if one only considers the
valid observables defined in Sec. II: the Green’s functions
derived from W½J�. Let us differentiate between the W½J�
for the original and the redefined theory by denoting itW½J�
and Ŵ½J�, respectively. We then have

W½J� ¼ SJ½ϕJ� ¼ SJ½F½φJ�� ¼ ŜJ½φJ� ¼ Ŵ½J�; ð3:8Þ

where we have used that ϕJ ¼ F½φJ�. This leads to the
following equivalence of Green’s functions4:

hϕðx1Þ � � �ϕðxnÞiS ¼ hFðx1Þ � � �FðxnÞiŜ: ð3:9Þ

This equivalence only holds because we have kept track of
the redefinition in the source terms. If, instead of doing that,
we had naively set the source term in the redefined theory to
φxJx, as

S̄J½φ� ¼ Ŝ½φ� þ φxJx; ð3:10Þ

we would have obtained a different set of Green’s func-
tions. Using W̄½J� to denote the corresponding functional
for the theory defined by S̄J, we would, in general, have

W½J�≠ W̄½J�; hϕðx1Þ � � �ϕðxnÞiS ≠ hφðx1Þ� � �φðxnÞiŜ:
ð3:11Þ

B. Redefinition-invariant observables

So far, we have only provided a more precise formu-
lation that physical quantities are independent of how the
field space is parametrized. A stronger statement can be
obtained using the classical LSZ theorems in Sec. II. We
wish to turn the inequality Eq. (3.11) into equality through
suitable modifications. The correct way to do this is to

4Following a similar argument, one may obtain a relation for
the Green’s functions of the type hϕF � � �Fi that arise in a theory
in which the source couples to a general interpolating field F.
Performing a redefinition ϕ ¼ F−1½φ�, one may turn the source
term into a linear one φxJx, at the price of modifying the response
field: hϕðxÞFðx1Þ � � �FðxnÞiS ¼ hF−1ðxÞφðx1Þ � � �φðxnÞiŜ.
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replace Green’s functions with the classical LSZ ampli-
tudes A. We have 3 sets of normalization factors Z and
amplitudes A arising from the three different theories we
have considered in Sec. III A:

(i) In the original theory, we have Zϕ and A, arising
from the on-shell limit of the Green’s functions
generated by W½J�.

(ii) In the redefined theory with a redefined source term,
we have ẐF and Â, arising from the Green’s
functions of Ŵ½J�.

(iii) In the theory with redefined action but a naive source
term, we have Z̄φ, Ā, coming from the Green’s
functions of W̄½J�.

The amplitudes constitute an observable that remains
invariant even without applying the redefinition to it. In
other words, if one is only interested in them, one can
perform the naive redefinition procedure, applying it only
to the action and forgetting about its effects on the source
term. The proof is simple. Due to the identityW½J� ¼ Ŵ½J�,
which makes all Green’s functions the same in both
theories, we have that ZϕðpÞ ¼ ẐFðpÞ and Aðp1; � � �Þ ¼
Âðp1; � � �Þ. Now, the only difference between the Ŵ½J� and
W̄½J� theories is the source terms. But, according to
theorem 1, the amplitudes only depend on the action,
and so Âðp1; � � �Þ ¼ Āðp1; � � �Þ. Therefore,

Aðp1;…; pnÞ ¼ Āðp1;…; pnÞ: ð3:12Þ

One may reformulate this result in a form closer to that of
Eq. (3.11) as

hϕ̃ðp1Þ � � � ϕ̃ðpnÞiSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zϕðp1Þ � � �ZϕðpnÞ

p ∼
hφ̃ðp1Þ � � � φ̃ðpnÞiŜffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z̄φðp1Þ � � � Z̄φðpnÞ

q ;

for p2
1; � � �p2

n → m2: ð3:13Þ

A natural recipe for working with redefinition-invariant
quantities in classical field theories arises from this result.
First, one should only measure the system’s response to
sources that are linear combinations of (perhaps near) on-
shell plane waves. In other words, the equivalence between
theories with and without redefined source terms holds for
cross sections and related quantities.5 Second, the two-point
Green’s function can be used to obtain the normalization
factor Z. This factor should be employed to normalize the
on-shell Green’s functions as in Eq. (3.13). Then, one can
perform field redefinitions in the action without additional
steps, and all the normalized measurements will remain
invariant.

C. Using equations of motion vs field redefinitions

Finally let us comment on another commonly employed
technique to remove redundant operators from the
Lagrangian (see [3–10,13,14] for some examples where
this is done): using the equation of motion on suitable terms
in the Lagrangian. This can, at best, be an approximation. A
simple counterexample to this being an exact procedure is
the free Dirac field or, for that matter, any free field theory.
One can easily convince oneself that inserting the solution
to the equation of motion into the Lagrangian yields a
vanishing result and, therefore, no useful Lagrangian.
It is, therefore, worthwhile to understand how one can

use this as an approximate procedure and the corresponding
limitations. This is, of course, not new. It has been
discussed (in the context of quantum field theory) in
Ref. [1] and more recently emphasized in Ref. [2].
Following our spirit of collecting such results into a simple
and coherent picture, let us recall the main argument.
The point is that, at leading order, an effective operator

can be removed by a variable change, i.e., a field redefi-
nition. To see this we follow [1,2] and consider a pertur-
bative redefinition

ϕ ¼ F½φ� ¼ φþ λH½φ� ð3:14Þ

where λ is a small parameter, all quantities in the theory are
regarded as power series, i.e., we are considering an
interpolating field. This can now be inserted into the action
and expanded in the perturbative parameter,

Ŝ½φ� ¼ S½FðφÞ� ¼ S½φ� þ λH½φ� δS
δϕ

����
ϕ¼φ

þ λ2H½φ�2 δ
2S½ϕ�
ðδϕÞ2

����
ϕ¼φ

þ…: ð3:15Þ

The first term on the right-hand side is the original action as
a function of the new field φ. The second is proportional to
the equation of motion. It is, therefore, clear that at the
leading order, we can now remove any operator that
multiplies the equation of motion by choosing a suitable
λH. Evidently, this procedure only works at leading order.
The second (and higher) terms provide corrections.

IV. MECHANICAL EXAMPLES

A. Perturbative redefinition
in the harmonic oscillator

To illustrate the issues discussed so far, we consider a toy
mechanical example (that is, a field theory in 1þ 0
dimensions) in which the only degree of freedom is the
1-dimensional position of a single particle. To match the
usual notation, we employ the symbols x and y to denote
the position before and after the redefinition. They play the
role of the fields ϕ and φ above. Similarly, the time t

5In general, correlation functions differ when not LSZ ampu-
tated, see the example in Eq. (4.26). It is not a priori clear to us
that those are not measurable.
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corresponds to the spacetime point x in the previous
discussion. For simplicity, we focus first on the theory
without a source. The action and the correspondingEOMare

S½x� ¼ 1

2

Z
dtðẋ2þω2x2Þ; ẍþω2x¼ 0: ð4:1Þ

The redefinition we consider is

x ¼ F½y� ¼ yþ λẏ: ð4:2Þ

For F to be an interpolating field, one needs to interpret λ
as a perturbative parameter and expand all quantities as a
power series in it. This is the second option in Sec. II to
construct an interpolating field. In Sec. V, we will return to
this example and discuss the issues arising from a non-
perturbative treatment. Sticking to perturbation theory for
now, we may explicitly construct the inverse of F

y¼G½x�≡F−1½x� ¼ x−λẋþλ2ẍ− � � � ¼
X∞
k¼0

ð−λÞkxðkÞ:

ð4:3Þ

We can also compute the functional derivative δF=δy at this
point. As we know, this is a nonsingular linear differential
operator. The action of both this operator and its inverse on
a test function fðtÞ can also be explicitly written as

δFτ

δyt
fτ ¼ ft−λḟt;

δGτ

δyt
fτ ¼ ftþλḟtþλ2f̈tþ…¼

X∞
k¼0

λkfðkÞt : ð4:4Þ

After the redefinition, the action becomes

Ŝ½y� ¼ S½FðyÞ� ¼ 1

2

Z
dt
�
ẏ2 þ ω2y2 þ 2λðẏ ÿþω2yẏÞ

þ λ2ðÿ2 þ ω2ẏ2Þ�
¼ 1

2

Z
dt
�
ẏ2 þ ω2y2 þ λ2ðÿ2 þ ω2ẏ2Þ�

þ λ
�
ẏ2 þ ω2y2

�
boundary ð4:5Þ

The corresponding EOM is

ð1 − λ2∂2t Þðÿþ ω2yÞ ¼ 0: ð4:6Þ

There is a perturbative one-to-one correspondence between
the solutions of the original EOM (4.1) and the redefined
EOM (4.6). This can be checked by perturbatively solving
the two equations and noting that the solutions match.

(i) If x solves the harmonic oscillator, so do its deriv-
atives. This implies y ¼ F−1ðxÞ is also a solution to
the harmonic oscillator, and thus to δS0=δy ¼ 0.

(ii) If y ¼ y0 þ λy1 þ � � � solves δŜ=δy ¼ 0, then y0 and
y1 solve the harmonic oscillator equation (because
the corrections in δŜ=δy start at λ2). But then, at
every order n, we will have the harmonic oscillator
equation for yn plus a second derivative of the
harmonic oscillator equation for yn−2. So all orders
solve it, and then x ¼ FðyÞ does it too. The only way
to avoid this is by having nonperturbative terms,
e.g., et=λ, in the solutions. Therefore, any extra
solutions are always nonperturbative.

Let us now include the source terms. Let xJ and yJ be the
solutions to the equations of motion with sources

0¼
�
δS
δxt

−Jt

�����
x¼xJ

; 0¼
�
δŜ
δyt

−JtþλJ̇t

�����
y¼yJ

: ð4:7Þ

By the same argument as before, there should be a one-to-
one correspondence between them at the perturbative level,
given by xJ ¼ F½yJ� and yJ ¼ F−1½xJ�. This can be seen
explicitly. xJ is easy to compute

xJðtÞ ¼
Z

dE
e−iEt

E2 − ω2
J̃ðEÞ ð4:8Þ

For yJ, we can use a diagrammatic approach. In momentum
space, there are 1=ðE2 − ω2Þ propagators, two-legged
insertions of −λ2E2ðE2 − ω2Þ and sources ð1þ iλEÞJ̃ðEÞ,
where J̃ðEÞ ¼ R

dte−iEtJðtÞ. Each two-legged insertion
adds an additional propagator, so the net effect is just a
−λ2E2 factor. We thus have

yJðtÞ¼
Z

dE
e−iEt

E2−ω2
½1−λ2E2þλ4E4− �� ��ð1þ iλEÞJ̃ðEÞ:

ð4:9Þ

Transforming back to x space gives the solution to the
original theory

Ft½yJ� ¼ yJðtÞ þ λẏJðtÞ

¼
Z

dEð1 − iλEÞ e−iEt

E2 − ω2
½1 − λ2E2 þ λ4E4 − � � ��

× ð1þ iλEÞJ̃ðEÞ

¼
Z

dE
e−iEt

E2 − ω2
J̃ðEÞ ¼ xJðtÞ: ð4:10Þ

Going in the other direction, we obtain

F−1
t ½xJ� ¼ xJðtÞ−λẋJðtÞþλ2ẍJðtÞþ �� �

¼
Z

dE½1þ iλE−λ2E2þ�� �� e−iEt

E2−ω2
J̃ðEÞ¼ yJðtÞ:

ð4:11Þ
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Wemay also check that both solutions satisfy theorem1.The
n-point functions for n > 2 are all zero, so the only non-
trivial case is

hx̃ðE1Þx̃ðE2Þi ¼
δðE1 þ E2Þ
E2 −m2

; ð4:12Þ

hỹðE1ÞF̃ðE2Þi ¼
δðE1 þ E2Þ
E2 −m2

ð1 − λ2E2
2 þ λ4E4

2 þ � � �Þ
× ð1þ iλE2Þ: ð4:13Þ

Clearly, both functions satisfy the theorem since they have a
pole at E2

2 → m2. The normalization factor for them is,
however, differentffiffiffiffiffiffiffiffiffiffiffiffi

ZxðEÞ
p

¼ 1;ffiffiffiffiffiffiffiffiffiffiffiffiffi
ẐFðEÞ

q
¼ð1−λ2E2

2þλ4E4
2þ�� �Þð1þ iλE2Þ ð4:14Þ

We can also consider the theory after the naive redefi-
nition procedure outlined above. If we perform the redefi-
nition in the action but not in the source terms, the solution
ȳJ is different from yJ

0¼
�
δS0

δyt
−Jt

�����
y¼ȳJ

;

ȳJðtÞ¼
Z

dE
e−iEt

E2−ω2
½1−λ2E2þλ4E4− � � ��J̃ðEÞ: ð4:15Þ

However, in agreement with theorem 1, it still has a pole at
E2 → ω2. The difference is again the normalization factor,

which now reads

ffiffiffiffiffiffiffiffiffiffiffiffi
ẐyðEÞ

q
¼ 1þ λ2ω2 þ λ4ω4 þ � � � ð4:16Þ

B. Classical LSZ in the anharmonic oscillator

To get a nontrivial application of the LSZ theorems with
nonvanishing higher-point functions, we consider now two
theories with the same action

S½x� ¼ 1

2

Z
dt

�
ẋ2 þ ω2x2 þ g

3
x3
�
: ð4:17Þ

But different source terms

SJ½x� ¼ S½x�þxtJt S̄J½x� ¼ S½x�þFt½x�Jt; ð4:18Þ

where Ft½x� ¼ xðtÞ þ λðẋðtÞ þ xðtÞ2=2Þ. As discussed
before, we assume that λ is a perturbative parameter to
make F an interpolating field. The Green’s functions of
these theories can be computed diagrammatically. The
Feynman rules for internal lines and vertices are

ð4:19Þ

The rules for external vertices of both theories are different,
corresponding to the two different interpolating fields x and
F½x� coupled to the source in them. We use the following
notation for them:

ð4:20Þ

First, we compute the 2-point functions

ð4:21Þ

ð4:22Þ

As expected from theorem 1, they both have a pole (with a positive sign) at E2 → ω2, so we know that the physical
frequency in both cases isω. The residue at this pole is different. The fact that x̄J comes with a nontrivial source means it has
a nontrivial normalization ffiffiffiffiffiffiffiffiffiffiffiffi

ZxðEÞ
p

¼ 1;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZFðEÞ

p
¼ 1þ iλE: ð4:23Þ

This will play a role in the higher-point Green’s functions. The 3-point ones are
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ð4:24Þ

ð4:25Þ

¼ δðE1 þ E2 þ E3Þ
�
g
1þ iλE1

E2
1 − ω2

1þ iλE2

E2
2 − ω2

1þ iλE3

E2
3 − ω2

þ λ
1þ iλE1

E2
1 − ω2

1þ iλE2

E2
2 − ω2

þ λ
1þ iλE2

E2
2 − ω2

1þ iλE3

E2
3 − ω2

þ λ
1þ iλE1

E2
1 − ω2

1þ iλE3

E2
3 − ω2

	
: ð4:26Þ

The two correlation functions are, in general, different.
However, as dictated by theorem 2, they agree on-shell.
This makes it clear that, if correlations functions are
measurable, it is impossible for the S-matrix to contain
sufficient information to recover the full theory. That is, in
the limit E1; E2 → ω, we have the asymptotic relation

hx̃ðE1Þx̃ðE2Þx̃ðE3ÞiSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZxðE1ÞZxðE2ÞZxðE3Þ

p ∼
δðE1þE2þE3ÞAðE1;E2;E3Þ
ðE2

1−ω2ÞðE2
2−ω2ÞðE2

3−ω2Þ

∼
hF̃ðE1ÞF̃ðE2ÞF̃ðE3ÞiSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZFðE1ÞZFðE2ÞZFðE3Þ

p ;

ð4:27Þ

where AðE1; E2; E3Þ ¼ g. It may be noted that the Dirac
delta makes both functions vanish on-shell unless ω ¼ 0,
making this relation trivial for ω > 0. However, after
stripping the delta and normalizing with Zx and ZF, the
positions and residues at their on-shell poles still match for
all ω.
The diagrammatic approach gives an intuitive picture of

how the classical LSZ theorem works. Two theories that
differ only on the source terms will have the same Feynman
rules for internal lines and vertices. The only difference
between them comes from external vertices. There can be
two types: those with a single leg and those with multiple
legs. The latter is irrelevant in the on-shell limit because
they will give contributions with fewer poles than neces-
sary, as in the second line of Eq. (4.26). The contributions
of the single-legged external vertices amount to a factor offfiffiffiffi
Z

p
per vertex.

To show the importance of the condition that F is an
interpolating field, let us briefly consider two examples of
noninterpolating fields and see how the LSZ formula
breaks down. If F½x� ¼ x2, the 2-point function hFFi
vanishes (and is thus clearly different from hxxi), because
there is no tree diagram in which the 2 external points have

2 legs. Similarly, if F½x� ¼ ẋ and ω ¼ 0, these two
functions are different since, stripping out the delta func-
tion, hx̃ðE1Þx̃ð−E1ÞiS has a pole at E1 ¼ 0, while
hF̃ðE1ÞF̃ð−E1ÞiS is constant.

V. ISSUES WITH NONINVERTIBLE
FIELD REDEFINITIONS

In Sec. III, we have assumed that the field redefinition
functional F½φ� is an interpolating field. If this is not the
case, F will not be a one-to-one mapping of the field space
itself, and physics will not be preserved by the redefini-
tion. This section studies how this happens and presents
potential procedures to (partially) fix it. We divide the
discussion into two parts. First, we focus on field
redefinitions that change the EOM, leading to new
solutions, some of which can be eliminated through
boundary conditions. Second, we study the case in which
a field redefinition generates a new EOM equivalent
locally to the original one but changes the field space
so that the solutions may differ globally.
The new solutions discussed in this section will have, in

general, observable effects. They represent field configu-
rations in spacetime that are allowed in the redefined
theory, but have no correspondence in the original one.
Notably, the solitons we will discuss below behave as
classically stable field configurations. Measuring the field
itself at different points time, for example, would allow to
determine whether it behaves like one of the new
solutions, i.e., solitons, and thus distinguish between
the two theories. However, the Green’s functions with
trivial background (condition 2 in Sec. II C) are not
affected by the presence of these solutions because, by
definition, they are not trivial. Instead, they may be viewed
as background fields φJ¼0 that generate different sets of
Green’s functions to the ones that would be obtained using
the solutions of the original theory.
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A. Nonperturbative redefinitions with derivatives

Consider a local nonperturbative field redefinition,
which may be written as

ϕx ¼ Fx½φ� ¼ fðφðxÞ; ∂φðxÞ;…; ∂NφðxÞÞ; ð5:1Þ

where f is an ordinary function of N þ 1 variables. F will
not be an interpolating field if a nontrivial field configu-
ration φ̌ exists such that some nontrivial ψ solves the
following differential equation:

0 ¼ δFx

δφy

����
φ̌

ψy ⇔ 0 ¼
XN
n¼0

∂fðxÞ
∂ð∂nφÞ

����
φ̌

∂
nψðxÞ; ð5:2Þ

where we have used the shorthand notation

∂
nψ ≡ ∂μ1 � � � ∂μnψ ;

∂fðxÞ
∂ð∂nφÞ

����
φ̌

≡ ∂f
∂ð∂nφÞ ðφ̌ðxÞ; ∂φ̌ðxÞ;…; ∂Nφ̌ðxÞÞ: ð5:3Þ

Additionally, contraction over the spacetime indices μj is
understood. Clearly, the functional F is not invertible at φ̌
because the operator δFx=δφy is singular at that point in
field space. Although F is local, it is not an interpolat-
ing field.
It is sufficient to consider the case in which J ¼ 0 for the

purpose of this section. The EOM generated by the new
action Ŝ½φ� ¼ S½F½φ�� is

0 ¼ δŜ
δφx

����
φ0

¼ δS
δϕy

����
F½φ0�

δFy

δφx

����
φ0

: ð5:4Þ

In terms of f, this equation is

0 ¼
XN
n¼0

∂fðxÞ
∂ð∂nφÞ

����
φ0

∂
n δS
δϕðxÞ

����
F½φ0�

: ð5:5Þ

This is just Eq. (5.2) with φ̌ ¼ φ0 and ψ ¼ δS=δϕjF½φ0�.
This equation has typically more solutions than the original
EOM δS=δϕ ¼ 0. We classify these solutions into
two types:
(1) Field configurations φ0 such that ϕ0 ¼ F½φ0� is a

solution to the original EOM. That is,

δS
δϕðxÞ

����
F½φ0�

¼ 0: ð5:6Þ

Essentially, φ0 gives rise to the same physics as ϕ0 in
the original theory. A difference with the original
theory is that now there might be several different
solutions φ0, φ0

0 that correspond to the same original
field ϕ0. This is because F is not one-to-one, so it is
possible that F½φ0� ¼ F½φ0

0� when φ0 ≠ φ0
0.

(2) Field configurations φ0 that do not solve the original
EOM,

δS
δϕðxÞ

����
F½φ0�

≠ 0; ð5:7Þ

for some x, but solve the new EOM. That is, they
satisfy Eq. (5.4) or, equivalently, Eq. (5.5). This is
possible only because δF=δφ is singular: there are
nontrivial solutions to Eq. (5.2). φ0 is not related to
any solution ϕ0 of the original theory through F.
Thus, it may generate new physics.

The existence of more solutions in the redefined theory
than in the original one can be understood by noticing that
the redefined EOM has a higher degree. Let di and ei be the
number of derivatives and fields, respectively, in each term
in the action S ¼ P

i Si; and let M be the number of
derivatives of the term with the most derivatives in F. Then,
the degree of the original EOM is

degðEOMÞ ¼ degðSÞ ¼ max
i

di ≡D; ð5:8Þ

while the degree of the redefined EOM is

degðEÔMÞ¼ degðŜÞ¼max
i
ðdiþeiMÞ≤DþEM; ð5:9Þ

where E≡maxiei. For N > 0, we always have
degðŜÞ > degðSÞ. If the terms in the action are at least
quadratic in the fields (ei ≥ 2), there is a better lower
bound: degðŜÞ ≥ Dþ 2M.
A specific solution of the original theory is usually

determined by a set of degðSÞ boundary conditions. The
natural procedure to do the same in the redefined theory is
to perform the redefinition in the original boundary con-
ditions to obtain boundary conditions for the redefined field
φ. The number of boundary conditions generated this way
is degðSÞ < degðŜÞ, which is typically not enough to select
a single solution in the redefined EOM.
Nevertheless, one can eliminate the unphysical solutions

(of the second type in the classification above) by imposing
additional boundary conditions.6 To see how, note first that
Eq. (5.2) has degree N. Thus, N boundary conditions are
generally required to determine a solution uniquely. In
particular, one can fix ψðxÞ≡ 0 by setting ∂

nψðxÞ ¼ 0 (for
all n ≤ N) at the boundary. As we know, the EOM (5.5) is
just Eq. (5.2) for ψ ¼ δS=δϕ. A set of conditions that
eliminates the unphysical solutions is then

∂
n δS
δϕðxÞ

����
F½φ0�

¼ 0; ð5:10Þ

6More precisely, in the following, we will have in mind initial
conditions at a time t.

FIELD REDEFINITIONS IN CLASSICAL FIELD THEORY … PHYS. REV. D 111, 076019 (2025)

076019-11



for all n < N and x in the boundary surface. This is,
however, additional information that needs to be provided
together with the redefined action Ŝ and the redefined
boundary conditions.
To provide a more concrete example of this discussion,

we consider an action S that is quadratic in the field and an
F that is linear. Then, counting the number of solutions of
each kind is particularly clear. We have M ¼ N, and

degðŜÞ ¼ degðSÞ þ 2N; ð5:11Þ

so the number of extra solutions is 2N. Half are of the first
type, leaving the physics unchanged, and the other half are
of the unphysical second type. This can be seen by noticing
that the degree of Eq. (5.6) is degðSÞ þ N, while the degree
of Eq. (5.2) is N.
Let us now briefly return to the harmonic oscillator

example from Sec. IVA. We consider the same field
redefinition x ¼ F½y� ¼ yþ λẏ, but we do not assume that
λ is a small parameter, so we allow solutions to depend
on it nonperturbatively. In this setup, the conditions for
Eq. (5.11) are satisfied, with degðSÞ ¼ 2 and N ¼ 1. Thus,
we know there should be 2 independent solutions for the
original theory and 4 for the redefined one, with 3 being of
the first type and 1 of the second type. Indeed, the original
EOM and its 2 solutions are

ẍþ ω2x ¼ 0; x�ðtÞ ¼ e�iωt: ð5:12Þ

The redefined EOM is Eq. (4.6), which we reproduce here
for completeness

ð1 − λ2∂2t Þðÿþ ω2yÞ ¼ 0: ð5:13Þ

Its four independent solutions are

y�ðtÞ ¼ e�iωt; z�ðtÞ ¼ e�t=λ: ð5:14Þ

The three solutions of the first type are y� and z−. Indeed, it
can be checked that F½y�� ¼ ð1� iλωÞx� and F½z−� ¼ 0,
all of which are solutions to the original EOM. The only
solution of the second type is zþ. It gives F½zþ� ¼ 2zþ,
which is not a solution to the original EOM. Finally,
Eq. (5.10) should eliminate zþ but not the others.
Specializing it for the present case, we get

fλy… þ ω2ðyþ λẏÞ þ ÿgjt¼0 ¼ 0: ð5:15Þ

The solutions y� and z− satisfy this condition, but, as
expected, zþ does not.

B. Redefinitions that do not preserve the field space

Let us switch our focus to redefinitions that are not one-
to-one but do not change the EOM in the sense that the
solutions to the redefined theory correspond locally (via F)

to solutions of the original theory, except at isolated points.
We study this possibility through a concrete example: a free
real scalar field in 1þ 1 dimensions with mass 1, whose
action is

S½ϕ� ¼ 1

2

Z
d2x½ð∂μϕÞ2 − ϕ2� ð5:16Þ

We consider a field redefinition without derivatives7

ϕ ¼ F½φ� ¼ φþ φ2: ð5:17Þ

The functional F is not one-to-one; thus, it cannot be an
interpolating field. This is easy to see since for ϕ > −1=4,
there are two values of φ such that F½φ� ¼ ϕ. They are
given by

φ ¼ G�½ϕ�≡ −1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ϕ

p
2

: ð5:18Þ

For ϕ ¼ −1=4, the inverse is unique: −1=4 ¼ G�½−1=2�.
For ϕ < −1=4 no real φ such that F½φ� ¼ ϕ exists. Thus, all
the solutions of the original theory in which ϕðxÞ < −1=4
at some point x will be missing in the redefined theory.
The redefinition can nevertheless be made one-to-one in

a restricted domain for fields in the ranges ϕ ≥ −1=4 and
φ ≥ −1=2, for example. However, this requires providing
additional information and the redefined action to recover
the selected portion of the original theory. We will con-
centrate here on an alternative possibility: given the
redefined action only, does one only get solutions for it
that map to solutions of the original theory, or do new
solutions (and thus new physics) arise?
After the redefinition, the action is

Ŝ½φ� ¼ S½F½φ�� ¼ 1

2

Z
d2x½ð1þ2φÞ2ð∂μφÞ2−φ2ð1þφÞ2�:

ð5:19Þ

It is immediately clear that the potential for the redefined
theory has two degenerate minima at φ ¼ 0 and φ ¼ −1.
Typically, theories with degenerate minima (and a finite
barrier separating them) contain solitons connecting them.
Wewill see that this is the case for the redefined theory. The
same is not true for the original theory, which has a single
minimum at ϕ ¼ 0.
We will thus study the nontrivial finite-energy static

solutions, called solitons, of the redefined theory and
compare them with the ones for the original theory. Let
x ¼ ðt; zÞ. Then, the energy functionals for static field

7We remark that the field variable is dimensionless in two
dimensions. Therefore, the field redefinition does not necessarily
contain a dimensionful redefinition parameter. That said, this is
not crucial for the observations made in the following.
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configurations in both theories are

E½ϕ� ¼ 1

2

Z
dz½ð∂zϕÞ2 þ ϕ2�; ð5:20Þ

Ê½φ� ¼ 1

2

Z
dz½ð1þ 2φÞ2ð∂zφÞ2 þ φ2ð1þ φÞ2�: ð5:21Þ

For a static ϕ to have finite energy, it must be true that
ϕ → 0 when z → �∞. Similarly, a finite-energy φ must be
such that φ → −1=2� 1=2 as z → �∞.
The original theory only has two independent static

solutions, both of which have infinite energy

ϕ�ðzÞ ¼ −
e�z

4
: ð5:22Þ

Here, we have chosen a normalization that will be con-
venient for the following discussion. Using ϕ�, we can
construct a soliton in the redefined theory

φsðzÞ ¼


G−½ϕ−�ðzÞ if z ≤ 0;

Gþ½ϕþ�ðzÞ if 0 < z:
ð5:23Þ

We display this solution in Fig. 1. We show that this is
indeed a static solution of the redefined theory in
Appendix B. It can also be directly checked that the energy
of φs is finite.
The physics of the redefined theory is then clearly

different from the original one since it contains solitons,

while the original one does not.8 Remarkably, transforming
φs back into the original field a ϕs ¼ F½φs� (shown in
Fig. 1) does not generate a solution to the original one, as
argued in Appendix B. Indeed, while ϕs is locally a
solution everywhere in the domain z ≠ 0, it does not solve
the EOM at z ¼ 0.
One might try to eliminate the extra solutions by means

of boundary conditions, as in Sec. VA. For example, one
could impose that φ → 0 in both directions x → �∞,
which restricts the solutions to those that look like the
trivial one at infinity. This, however, does not work because
soliton-antisoliton solutions with this property can be
constructed

φdðzÞ ¼ φs

�
d
2
− z

�
þ φs

�
d
2
þ z

�
þ 1: ð5:24Þ

This is an approximate finite-energy static solution when
the distance d between the solitons is large. We display it in
Fig. 1. Again, no analog for this type of solution exists in
the original theory. This means the two theories cannot be
rendered equivalent through boundary conditions.

FIG. 1. Top left: soliton solution of the redefined theory φs. Top right: field configuration ϕs ¼ F½φs�, which is not a solution of the
original theory. Bottom: soliton-antisoliton solution φd with the same boundary conditions as the trivial solution.

8Solitons are particlelike objects that will generally have
observable effects. Their presence can be determined, for
instance, by measuring the field at different points in space; or
through the exchange of their energy, momentum or charge with
other degrees of freedom that couple to the field.
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VI. CONCLUSIONS AND BRIEF OUTLOOK
TO THE QUANTUM THEORY

We have examined the properties and conditions for the
applicability of field redefinitions in field theories, focusing
on the classical case, which already contains several
features such transformations have in quantum field the-
ories. One of the central results we have presented is a
classical analog for the LSZ theorem, using only purely
classical concepts. This result is connected to the semi-
classical approximation of the quantum LSZ theorem.
Any field redefinition preserves the physics if it is a one-

to-one mapping and depends locally on the field. We have
discussed two ways this statement can be made more
concrete. First, the physics of a given field theory should
be independent of the parametrization used for the fields.
Indeed, as we have seen explicitly, the solutions to the
original and the redefined EOM correspond one to one.
However, one should be careful when comparing observ-
ables before and after the redefinition. For them to be
preserved in general, theymust all be redefined togetherwith
the action. The second sense inwhich physics is invariant is a
stronger statement: there is a set of observables (the
positions and residues at the on-shell poles of Green’s
functions) whose value remains unchanged under these
transformations without any additional steps. This is a
consequence of the LSZ theorem, and focusing on this
smaller set of essential observables that crucially contain
cross sections simplifies the study of field theories. We have
illustrated these results using two toy mechanical examples.
We have also investigated issues when the redefinition is

not a one-to-one mapping. Some solutions to the EOM
might disappear in this case. New solutions may also
appear. These solutions are unphysical from the point of
view of the original theory but can correspond to new
phenomena contained in the new theory. Some can be
eliminated by providing additional boundary conditions,
which are additional information on top of the redefined
version of the action and the original boundary conditions.
Other spurious solutions survive this type of procedure. We
have provided an example of this in which the new

solutions are solitons. When studying nonperturbative
solutions, performing only valid redefinitions in the sense
we have discussed is crucial.
The insights gained from this classical analysis provide a

foundation for further exploration of quantum field theo-
ries. The classical results we have presented apply to
quantum systems at the tree level through the connection
between the classical Green’s functions and the semi-
classical approximation of vacuum expectation values of
operator products discussed in Sec. II D. They can also be
extended to incorporate quantum effects, but additional
issues arise. This includes the impact of field redefinitions
on the Jacobian factor in the path integral, their interaction
with renormalization and anomalies, and the effects of the
field space domain in the path integration. We leave those
interesting aspects for further work.
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APPENDIX A: PROOFS OF THE
CLASSICAL LSZ THEOREMS

1. Theorem 1

First, let us study the properties of the solution ϕJ to the
EOM (2.3) as a power series in J. Expanding the left-hand
side of this equation in powers of J and requiring that each
coefficient in the series vanishes, one gets an infinite set of
equations of the form

0 ¼



δn

δJ̃p1
� � � δJ̃pn

�
δSJ
δϕ̃p

����
ϕJ

��
J¼0

ðA1Þ

¼



δn

δJ̃p1
� � � δJ̃pn

�
δS

δϕ̃p

����
ϕJ

�
þ
X

i

δn−1

δJ̃p1
� � � δJ̃pi−1

δJ̃piþ1
δJ̃pn

�
δFpi

δϕ̃p

����
ϕJ

��
J¼0

; ðA2Þ

where we have used the DeWitt notation ψp ≡ ψp ≡ ψðpÞ for momenta in the same way we used it before for positions.
This set of equations can be solved iteratively. We find it convenient to use the following simplified notation to do so. First,
we drop the tilde e· symbols and the ·S subindices for Green’s functions everywhere. Second, we split

S½ϕ� ¼ −
1

2
ϕxδxyð□þm2Þϕy þ Sint½ϕ�: ðA3Þ

CRIADO, JAECKEL, and SPANNOWSKY PHYS. REV. D 111, 076019 (2025)

076019-14



Finally, we define

Sp1���pn
≡ δnSint
δϕp1 � � �δϕpn

����
ϕ¼0

; Fp
p1���pn ≡ δnFp

δϕp1 � � �δϕpn

����
ϕ¼0

:

ðA4Þ
Importantly, note that the field derivatives are evaluated at
ϕ ¼ 0. This corresponds to evaluating in vacuum, as stated
in the second point of Sec. II C. Due to the locality of S and
F these two objects are just finite-degree polynomials in the
momenta. Additionally, assumption 4 in Section II C
implies that Spq ¼ OðλÞ if F is λ-dependent [see also
Eq (2.10)], and Spq ¼ 0 otherwise.
We are now ready to focus on the iterative solution’s

starting point, the case n ¼ 1. Eq. (A2) reduces to

hϕpFqi ¼ −ΔpkFq
k þ λEðpÞhϕpFqi; ðA5Þ

where Δpk ¼ δpk=ðp2 −m2Þ and EðpÞ is defined in
Eq. (2.10) and encapsulates the allowed perturbative
momentum dependent corrections to the Klein-Gordon
equation a linear order in the fields. If the field redefinition
is nonperturbative, the second term on the right-hand side
vanishes, and this equation provides an explicit formula for
hϕpFqi. Otherwise, the second term is OðλÞ, and the
equation can be used to obtain hϕpFqi perturbatively in
λ. Explicitly, the solution is, in that case

hϕpFqi ¼ −
X∞
N¼0

λNEðpÞNΔpkFq
k: ðA6Þ

A diagrammatic representation of this equation is shown in
Fig. 2. At any rate, the solution has the desired structure for
theorem 1, with a delta function for p and q and a pole
when they go on-shell. The residue is guaranteed to be
nonvanishing because F is an interpolating field, which
implies that Fq

k ≠ 0.
The next step is to proceed by induction: we assume that

theorem 1 is true for all the m-point functions
hϕpFp1 � � �Fpmi with m < n and prove it for n-point
function hϕpFp1 � � �Fpni. For n > 1, Eq. (A2) provides
the kind of relation we need. Schematically

hϕpFp1 � � �Fpni

¼−Δpk

�X
Skk1k2���hϕk1Fq1 � � �Fqm1 i

× hϕk2Fqm1þ1 � � �Fqm1þm2 i � � �

þ
X

Fp
kk1k2���hϕk1Fq1 � � �Fqm1 ihϕk2Fqm1þ1 � � �Fqm1þm2 i � � �

	
;

ðA7Þ

where the first sum is over all partitionsm1 þm2 þ � � � ¼ n
with mj > 0, and all permutations of the momenta

ðp1;…; pnÞ → ðq1;…; qnÞ; while the second sum is over
all 0 < i ≤ n, all partitions m1 þm2 þ � � � ¼ n − 1, and all
permutations ðp1;…; pi−1; piþ1;…; pnÞ → ðq1;…; qn−1Þ.
The terms in the first sum are products ofm-point functions
with m < n. By the induction assumption, they will have a
pole in all the external momenta pj when they go on-shell.
The terms in the second sum are also products of m-point
functions, but they will be missing the pole when the
momentum pi goes on-shell, so they are irrelevant for the
asymptotic behavior in the on-shell limit. This proves that
the n-point function has the desired pole structure. We
present a diagrammatic version of this formula in Fig. 2.
A small caveat arises where F is only perturbatively an

interpolating field. The first sum has terms with m ¼ n in
this case. However, such terms will be OðλÞ instead of the
rest, Oðλ0Þ. One then needs to proceed as for Eq. (A5) and
solve the equation perturbatively in λ. Then, the leading
order has the correct pole structure. The higher orders
inherit this structure from the leading one.
To complete the proof for theorem 1, it remains to show

that the residue at the on-shell pole splits as displayed in
Eq. (2.11). To see this, consider replacing the m-point
functions in Eq. (A7) by the right-hand side of their own
version of Eq. (A5) repeatedly. At the end of this process,
the right-hand side of the equation will only contain 2-point
functions hϕpFqi. That is,

hϕpFp1 � � �Fpni ¼ ΔpqSqk1���knhϕk1Fp1i � � � hϕknFpni
þ λEðpÞhϕpFp1 � � �Fpni þ F-terms:

ðA8Þ

where F-terms denotes terms in which Fp
p1��� appears

explicitly, and thus have less poles than the first term,
and Sqk1���kn is a function of the momenta, constructed as a
product of the functions Δq1q2 and Sq1q2���, where the qj are
sums of subsets of the kj. The perturbative (in λ) solution to
this equation is

hϕpFp1 � � �Fpni¼
X∞
N¼0

λNEðpÞNΔpqSqk1���kn

× hϕk1Fp1i � � � hϕknFpniþF-terms: ðA9Þ

The diagram for this equation is displayed in Fig. 2. If F is
λ-independent, only the N ¼ 0 term appears. Conservation
of momentum dictates that Sqk1���kn has a global δdðpþ
k1 þ � � � þ knÞ factor, so we can write

Sk1���kn ¼ δdðk1 þ � � � þ knÞAk1���kn : ðA10Þ

Ak1���kn is a function of momenta that depends only on the
action S and is analytic everywhere except when sums of
momenta go on-shell.
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Beyond that we can see from Eq. (A9) that the
new pole in p always comes together with the same
prefactor that can be associated with Z and reflects the
only λ-dependence of the pole. Using theorem 1 to
define the Z factors for the 2-point functions, our
solution for the n-point one satisfies Eq. (2.11), finishing
the proof.

2. Theorem 2

We first notice the following relation:

δW
δJx

¼ δSJ
δϕy

����
ϕJ

δϕy
J

δJx
þ δSJ

δJx

����
ϕJ

¼ Fx½ϕJ�; ðA11Þ

(a)

(b)

(c)

(d)

FIG. 2. Diagrammatic representation of the equations in the proof of theorem 1. Lines represent DeWitt momentum indices, with those
pointing to the right (left) corresponding to upper (lower) ones. Panel (a) provides the definitions of the basic building blocks. Panel
(b) gives the graphical representation of Eq. (A6) for the 2-point functions. Panel (c) represents Eq. (A7) relating the n-point function to
m-point ones withm < n. Panel (d) shows the diagrammatic version of Eq. (A9) for the n-point function. AΔ line in all diagrams means
a pole when the corresponding momentum goes on-shell.
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where the first equality comes from the definition of W½J�,
and the second one from the fact that ϕJ is a solution to the
EOM and δSJ=δJ ¼ F. The n-point function can then be
computed as

hFp1 � � �Fpni ¼ δn−1

Jp2
� � � Jpn

Fp1 ½ϕJ�
����
J¼0

¼ Fp1
q hϕqFp2 � � �Fpni þ Fð2Þ-terms; ðA12Þ

where Fð2Þ-terms denotes terms with a factor of Fp1
q1���qn with

n ≥ 2, and thus several factors of hϕq1Fpj � � �i. The first
term on the right-hand side has a pole when p2

1 → m2, but
none of the Fð2Þ-terms does, so they are irrelevant for the
asymptotic behavior of the n-point function in the on-shell
limit. Substituting the solution Eq. (A9) into Eq. (A12)
gives

hFp1 � � �Fpni ¼ Sk1���knhϕk1Fp1i � � � hϕknFpni þ F-terms:

ðA13Þ

Applying theorem 1 to the 2-point functions that appear
here, together with Eq. (A10), proves theorem 2.

APPENDIX B: SPURIOUS SOLITON SOLUTIONS

Wewill show here that the field configuration φs defined
in Sec. V B is a solution to the redefined theory Ŝ, while its
cousin ϕs ¼ F½φs� is not a solution of the original theory S.
Let us first give a precise definition of what counts as a

solution. Throughout the paper, we have interpreted the
EOM δS=δϕ as a differential equation whose solutions
must be sufficiently smooth for the derivatives appearing in
δS=δϕ to be well-defined. We provide here a slightly more
general definition. A solution to the theory defined by S is
function ϕ that extremizes S. That is,

δS
δϕx ψ

x ¼ 0; ðB1Þ

for all test functions ψ . If ϕ is assumed to be smooth, this is
equivalent to interpreting δS=δϕ as a differential equation
over ϕ. However, one may allow ϕ to be singular at certain
points and interpret δS=δϕ as a distribution acting on ψ .
This useful for dealing with ϕs and φs, since both of them
are singular at z ¼ 0: the spatial derivative ∂zϕs is discon-
tinuous there, while ∂zφs diverges.
This definition is mathematically valid, but it may raise

questions regarding its physical interpretation. To address
this, one can always regularize ϕs and φs by deforming
them in a small region near z ¼ 0 to make them smooth. ϕs
and φs can then be understood as a coarse-grained
approximation to the smooth solutions. For simplicity,
we will not discuss this regularization in detail here and
instead focus on the singular functions directly.

Substituting the actions S and Ŝ of Sec. V B into
Eq. (B1), and focussing on the case of static solutions,
the corresponding EOMs readR

dzf∂2zϕ − ϕgψ ¼ 0; ðB2Þ
R
dzfð1þ 2φÞ2∂2zφþ 2ð1þ 2φÞð∂zφÞ2
− φð1þ φÞð1þ 2φÞgψ ¼ 0:

ðB3Þ

For any ψ whose support does not contain z ¼ 0, only the
smooth region of ϕ and φ is relevant. Then, both equations
are equivalent to the vanishing of the corresponding
differential equations in brackets. The equation for ϕ
clearly satisfied by ϕs, because ϕ� are both smooth
solutions to their EOM. Additionally, in this region, the
EOM for φ is equivalent to the EOM for F½φ� because in it
φ ≠ −1=2, making F locally one-to-one. Thus φs is also a
solution there.
It only remains to see what happens when the support of

ψ contains z ¼ 0. It is sufficient to consider the limit when
ϵ → 0 of a family of test functions ψϵ defining a small
window around the origin, as

ψϵðxÞ ¼


1 if − ϵ ≤ x ≤ ϵ

0 otherwise
: ðB4Þ

Equations (B2) and (B3) are then equivalent to the
vanishing of the following integrals

Iϵ½ϕ� ¼
δS
δϕx ψ

x
ϵ ¼

Z
ϵ

−ϵ
dzf∂2zϕ − ϕg; ðB5Þ

Îϵ½φ� ¼
δŜ
δφx ψ

x
ϵ

¼
Z

ϵ

−ϵ
dzfð1þ 2φÞ2∂2zφþ 2ð1þ 2φÞð∂zφÞ2

− φð1þ φÞð1þ 2φÞg; ðB6Þ

when ϵ → 0. We remark that, because of the singularities at
z ¼ 0, one cannot evaluate Iϵ½ϕs� and Îϵ½φs� by taking the
expression for the integrand at z ≠ 0 and performing
the integral over it naively. However, this can be done
for the terms without derivatives in both equations since
they are nonsingular.
For the ∂

2
zϕ term, a valid manipulation, in the sense of

distributions, is to apply the fundamental theorem of
calculus, which gives

lim
ϵ→0

Iϵ½ϕs� ¼ lim
ϵ→0

½∂zϕsðϵÞ − ∂zϕsð−ϵÞ� ¼ −1=2: ðB7Þ

This result can be obtained by noticing that ∂2zϕ contains a
Dirac delta at z ¼ 0, since the first derivative ∂zϕ has a
finite jump. Eq. (B7) implies that Eq. (B2) is not satisfied
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for ϕ ¼ ϕs and ψ ¼ ψϵ, so ϕs is not a solution of the
original theory.
Regarding the ð1þ 2φÞ2∂2zφ term, another valid manipu-

lation is to perform integration by parts. This gives

lim
ϵ→0

Îϵ½φs� ¼ lim
ϵ→0



½ð1þ2φsÞ2∂zφs�þϵ

−ϵ

−2

Z
ϵ

−ϵ
dzð1þ2φsÞð∂zφsÞ2

�
: ðB8Þ

Now, because only small values of z are involved, we may
substitute the following small-z approximation of φs

φsðzÞ ¼
signðzÞ ffiffiffiffiffijzjp

− 1

2
þOðz3=2Þ: ðB9Þ

The first term then clearly vanishes, and we are left with

lim
ϵ→0

Îϵ½φs� ¼−
1

8
lim
ϵ→0

Z
ϵ

−ϵ
dz

signðzÞffiffiffiffiffijzjp ¼−
1

4
lim
ϵ→0

h ffiffiffiffiffi
jzj

p iþϵ

−ϵ
¼ 0:

ðB10Þ

Therefore, φs is a solution of the redefined theory.
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