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Abstract

Black Chiloe’s giant garlic is a functional food produced by a mild Maillard reaction that con-
tains relevant bioactive molecules like organosulfur compounds (OSCs) and (poly)phenols
(PPs). Compared with raw garlic, black garlic has a higher content of PPs and S-allyl
cysteine (SAC), a key OSC due to its bioactivities. The objective of the present work was to
optimize by chemometric tools a green microwave-assisted extraction (MAE) of SAC and
PPs present in black Chiloe’s giant garlic to detect and identify novel bioactive molecules
with antioxidant and/or inhibitory activities over cyclooxygenase, α-glucosidase, and
acetylcholinesterase enzymes. The MAE factors were optimized using a central composite
design, establishing optimal PP and SAC yields at 67 ◦C, 0% ethanol, 12 min and 30 ◦C,
40% ethanol, 3 min, respectively. PP and SAC values were 9.19 ± 0.18 mg GAE/g DW and
2.55 ± 0.10 mg SAC/g DW. Applying effect-directed analysis using high-performance thin
layer chromatography-bioassay and mass spectrometry, the bioactive molecules present
in the MAE extract with antioxidant and inhibitory activities over cyclooxygenase, α-
glucosidase, and acetylcholinesterase enzymes were identified as N-fructosyl-glutamyl-S-
(1-propenyl)cysteine, N-fructosyl-glutamylphenylalanine, and Harmane.

Keywords: MAE; (poly)phenols; planar chromatography; S-allyl-cysteine; cyclooxygenase;
α-glucosidase; and acetylcholinesterase

1. Introduction
Chronic non-communicable diseases (CNCDs) are responsible for 74% of all deaths

worldwide [1]. The most relevant ones are cancer, type 2 diabetes, and cardiovascular and
chronic respiratory diseases, accounting for approximately 80% of all CNCD deaths [1].
Unhealthy diet is one of the most important risk factors for CNCD [1]. This association has
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driven the study of the relationship between human health and functional foods, finding a
key role for this type of foods in lowering the risk of suffering CNCD [2]. Numerous plants,
foods, and microorganisms have been studied to identify the presence of different types of
bioactive molecules with therapeutical potential, especially those with inhibitory activity
over enzymes like α-glucosidase (AG), acetylcholinesterase (AChE), and cyclooxygenase
(COX) related to CNCD, such as type 2 diabetes, Alzheimer’s diseases, and cardiovascular
pathologies [3]. A well-known functional food is garlic (Allium sativum), which is a common
spice with several health benefits, including antifungal, antibacterial, antiviral, antioxi-
dant, anti-inflammatory, anticancer, antidiabetic, antihypertensive, and neuroprotective
effects [4]. These bioactivities are associated with the presence of organosulfur compounds
(OSCs) and (poly)phenols (PPs). The most representative OSCs are S-allyl cysteine (SAC),
S-allyl cysteine sulfoxide (alliin), and γ-glutamyl-S-allyl cysteine (GSAC), which are respon-
sible for organoleptic and pharmacological properties [5,6]. In the case of PPs, it is possible
to find phenolic acids and flavonoids, both of which contribute to antioxidant activity [7]
preventing oxidative damage on a cellular level related to CNCD [5,8]. OSCs and PPs
are also present in Chiloe’s giant garlic (Allium ampeloprasum L.) [5,9], which resembles
common garlic in shape, flavor, and bioactive molecules profile but with a bigger bulb size,
and different quantities of bioactive molecules [5,10]. Chiloe’s giant garlic is sometimes
called great-headed or elephant garlic and locally “ajo chilote” because it is micro-cultivated
in Chiloé Island (Chile) [11]. This location has been recognized by the Food and Agriculture
Organization of the United Nations as a Globally Important Agricultural Heritage Site
of the world [12]. Giant garlic has a milder flavor and sweeter taste than common garlic
due to the decreased concentration of alliin, which is transformed into allicin, responsible
for garlic’s characteristic pungent flavor [6]. Compared with common garlic, giant garlic
has a higher concentration of PPs and γ-glutamyl peptides, and a lower concentration of
volatile OSCs derived from alliin [5,13,14]. One of the compounds derived from γ-glutamyl
peptides is SAC, which is produced from the hydrolysis of GSAC by the enzyme γ-glutamyl
transferase (GGT) [15]. SAC is a stable OSC with a similar structure to cysteine showing
high-water solubility and low toxicity, both of which are highly desirable properties for
the development of functional ingredients and/or nutraceutical products. SAC possesses
relevant biological activities, including antioxidant, antidiabetic, neurotrophic, hepato-
protective, and anticarcinogenic effects [16]. This bioactive molecule is present at higher
concentrations in aged and black garlics [17,18]. The latter, including black Chiloe’s giant
garlic, is a unique product obtained by subjecting whole garlic bulbs to mild Maillard
reaction conditions (high temperatures and humidity) over a period of 30 to 90 days [17].
This process generates novel bioactive molecules, many of which are still unknown. Black
garlic exhibits antiviral, antidiabetic, anti-obesity, anticancer, antimicrobial, antibacterial,
anti-inflammatory, antihypertensive, and antioxidant activities, as well as cardioprotec-
tive and neuroprotective properties [17,19]. Black garlic contains up to 10-fold more total
phenolic content (TPC) than raw garlic, with a significant increase in phenolic acids and
flavonoid content during thermal processing [20]. The same profile has been reported in
black giant garlic, even with higher PP concentration than common black garlic [21,22].
Black garlic production process increases from 6- to 46-fold the SAC content due to superior
GGT activity [17,23], which depends on the manufacturing conditions, variety/species of
garlic, agricultural practices, handling, and environmental conditions. As described for PPs,
black giant garlic has also shown a higher SAC content than common black garlic [24]; thus,
SAC and PP content could be considered proper chemical markers for black giant garlic
elaboration. The determination of both bioactive molecules is not trivial when considering
the complexity of black giant garlic as a matrix. Several efforts have been dedicated to de-
veloping reliable methods for SAC determination [25–27]. Advanced extraction techniques
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like ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE), have
important advantages over traditional extraction methods, including a significant reduction
in energy consumption, solvent volume, and time consumption. They require lower sample
amount and allow the use of green solvents. In particular, MAE is an environmentally
friendly technology that works better with green polar solvents like water and ethanol
and provides faster extractions because of the better mass transfer rate [28]. Optimization
of MAE using a chemometric tool (Design of Experiment—DOE) is essential to enhance
extraction yields. For this study, a response surface methodology based on a face-centered
central composite design (CCD) was selected because of its high efficiency and reduced
number of experiments. It is one of the most employed chemometric techniques for op-
timizing bioactive molecule extraction [29,30] and (bio)chemical reactions [31]. Bioactive
molecule detection and identification is usually a highly time-consuming procedure; to
shorten this process, hyphenation methods that couple analytical separation and bioas-
says have been developed/improved in the last decade. Effect-directed analysis (EDA)
on high-performance thin layer chromatography (HPTLC) is a promising approach for
discovering novel bioactive molecules, especially useful for complex matrices like black
garlic. This technique combines chromatographic separation with an enzymatic bioassay
in situ on the plate, enabling simultaneous separation and bioactivity assessment on a
single platform [32,33]. Additionally, HPTLC allows in situ chemical derivatization to
identify chemical groups [34] and direct coupling to mass spectrometry (MS) for prelimi-
nary structural identification [3,35]. The objective of the present work was to optimize by
chemometric tools a green MAE of SAC and PPs present in black Chiloe’s giant garlic to
detect and identify novel bioactive molecules with antioxidant and/or inhibitory activities
over cyclooxygenase, α-glucosidase, and acetylcholinesterase enzymes.

2. Materials and Methods
2.1. Reagents, Chemicals, and Standards

Cyclooxygenase 2 human (EC 1.14.99.1), α-glucosidase from Saccharomyces cerevisiae
(E.C. number 3.2.1.20), acetylcholinesterase from Electrophorus electricus (electric eel) (E.C.
number 3.1.17), Folin–Ciocalteu Reagent (2N), sodium bicarbonate (≥99%), ninhydrin,
2,2-diphenyl-1-picrylhydrazyl (DPPH), arachidonic acid (≥98.5%), N,N,N′,N′-tetramethyl-
p-phenylenediamine TMPD (≥98.5%), porcine hematin (≥90%), Tris–HCl, 1-naphthyl
acetate, Fast Blue B salt (≥95%), bovine serum albumin (BSA), gallic acid (≥98%), and
S-allyl-cysteine (≥98%) were purchased from Sigma (St. Louis, MO, USA). Addition-
ally, 2-naphthyl-α-D-glucopyranoside (≥99%, substrate) was obtained from Glycosynth
(Warrington, Cheshire, UK). Unless otherwise indicated, all solvents were p.a. ethanol,
methanol, n-butanol, hydrochloric acid (37%), acetic acid, formic acid, water (MS grade),
and acetonitrile (MS grade), purchased from Merck (Darmstadt, Germany). Positive control,
diclofenac (OPKO, Lot # 220,803), and donepezil (HETERO, Lot # DNP20073A), were pur-
chased from a local drugstore (Saludfarm, Chillán, Chile). Ultrapure water (18.2 MΩ cm)
was produced using a PURIST Ultrapure Water system from RephiLe (Shanghai, China).
The 96-well microplates were obtained from JET Biofil (Guangzhou, China).

2.2. Sample Preparation

All black Chiloe’s giant garlics were cultivated and elaborated on Chiloe Island
(42◦40′36′′ S to 73◦59′36′′ W). Sample preparation was performed following the proto-
col reported by Peterssen-Fonseca et al. [10]. Briefly, all samples were first blanched for
10 min with hot water (ca. 90 ◦C) in a self-sealing plastic bag to inactive enzymes (alliinase
and γ-glutamyl transpeptidase enzymes). Then, they were blended with a hand mixer and
turned into a slurry, which was frozen at −20 ◦C for 48 h and freeze-dried at −55 ◦C for
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24 h, using a Martin Christ (Osterode am Harz, Germany) Alpha 1–2 LD plus freeze dryer.
The dried samples were ground into a fine powder using a mortar and stored at −20 ◦C
until use.

2.3. Microwave-Assisted Extraction (MAE)

Extractions were performed using a Milestone (Sorisole, BG, Italy) Ethos X Microwave
extractor. The operational conditions for all experimental runs were performed using a
SK-15 rotor with contactless temperature and pressure sensors and a constant power of
500 W. Five minutes of initial heating and 5 min of final cooling. The most relevant MAE
factors, i.e., extraction temperature (30–70 ◦C), ethanol percentage in water (0–40% v/v),
and reaction time (3–12 min), were optimized using a face-centered CCD. Five hundred
milligrams of the freeze-dried sample were loaded into a high-pressure microwave vessel,
and 12 mL of the proper solvent mixture was added according to the experimental plan.
After each extraction, the extracts were filtered through Whatman (Piscataway, NJ, USA)
polyvinylidene difluoride (PVDF) 13 mm syringe filters (0.22 µm) and protected from light
at −20 ◦C until further analysis.

2.4. Total (Poly)phenol Content (TPC)

TPC was performed using the method described by Carrasco-Sandoval et al. [36] with
some modifications. Briefly, 15 µL of black garlic extract (or standard) was mixed with
100 µL of Folin–Ciocalteu reagent (0.2 N) and 100 µL of sodium bicarbonate (60 g/L) in
a 96-well microplate. After 90 min (protected from light), the optical density (OD) was
measured at 750 nm and 25 ◦C using a BioTek (Winooski, VT, USA) Epoch 2 microplate
reader. Standard calibration was established using gallic acid (0.02 to 0.30 mg/mL) and
results were expressed as mg of gallic acid equivalents (GAE) per 100 g of dry weight (DW).

2.5. Organosulfur Compound (OSC) Determination

OSCs were determined following the protocol N◦ F06A from CAMAG (Muttenz,
Switzerland). Briefly, samples and SAC standard (0.1 mg /mL in 0.01 mol/L HCl) solu-
tions were applied on an HPTLC silica gel 60 F254 plate using a CAMAG Automatic TLC
Sampler 4 (ATS4) or semi-automatic TLC sample, Linomat 5, with the following settings
for 10 × 10 cm and 20 × 20 cm plates: band length 5 mm, track distance 8.5 mm, dosage
speed 150 nL/s, and first application x-axis and y-axis at 10 mm. Chromatography was
performed in the CAMAG twin-through chamber up to a migration distance of 80 mm
using a mobile phase composed of n-butanol: water: acetic acid: formic acid (28:8:9:2
v/v/v/v). After separation, the plate was dried at 60 ◦C for 10 min on a CAMAG TLC
plate heater. Dried plates were derivatized by immersion for 3 s (3 cm/s) into a 0.3% m/v
ninhydrin ethanolic solution using CAMAG immersion device 3. The plate was then heated
for 20 min at 120 ◦C on a TLC plate heater. Detection was performed with CAMAG TLC in
Vis-absorption mode at 520 nm with a slit dimension of 4.0 mm × 0.1 mm and a scanning
speed of 20 mm/s. Instrument control and data acquisition and processing were performed
using WinCATS 1.4.7 software.

2.6. EDA-HPTLC-Bioassay

Black Chiloe’s giant garlic extracts were applied to HPTLC plates using the same
procedure and chromatographic separation described in Section 2.5. Before the bioassays,
the plates were dried for 1 h at 60 ◦C to eliminate the acid present in the mobile phase.
Positive controls were applied post-chromatography at 50 mm (y-axis). Based on the
retention factor (RF), the bands of interest were located on a second HPTLC plate (or section)
and identified as described in Section 2.7. For the antioxidant assay, the DPPH method
was carried out using the conditions reported by López et al. [37] using caffeic acid (100 ng
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per band) as a positive control. HPTLC plate sections were immersed for 3 s (3 cm/s) into
0.5 mM (0.1% m/v) DPPH methanolic solution using CAMAG Immersion Device 3. After
30 min of incubation at room temperature in the dark, antioxidant molecules were observed
as yellow bands on a purple background. Cyclooxygenase (COX) inhibitory assay was
performed following the method established for Oyarzún et al. [38] using diclofenac (1 µg
per band) as the positive control. All solutions were applied using a CAMAG Derivatizer.
After a 10 min incubation in a humidity chamber at 37 ◦C, inhibitory bands appeared as
colorless bands against a blue/purple background. α-glucosidase (AG) inhibitory assay
was performed according to the conditions described by Galarce-Bustos et al. [35], using
caffeic acid (100 ng per band) as the positive control. All solutions were applied using
a CAMAG Derivatizer. After incubation in a humidity chamber at 37 ◦C for 20 min, a
Fast Blue B salt (1 mg/mL) solution was sprayed onto the plate, and inhibitory molecules
were observed as colorless bands against a purple/pink background. Acetylcholinesterase
(AChE) inhibitory assay was performed following the method reported by Galarce-Bustos
et al. [3], using donepezil (100 ng per band) as the positive control. After 20 min of
incubation in a humidity chamber at 37 ◦C, a Fast Blue B salt solution (1 mg/mL) was
sprayed onto the plate, and inhibitory molecules were observed as colorless bands against
a pink/purple background.

2.7. Identification of Bioactive Molecules

Based on the retention factor (RF), all bands of interest were located on the second
HPTLC plate or section (without bioassay reagents) and marked using a soft pencil inside
of Spectroline (Melville, NY, USA) UV-cabinet. Bioactive molecules were identified in
two steps. First, the bands of interest were directly eluted and analyzed by MS; and second,
bands were eluted or scraped off to a micro-vial for liquid chromatography (LC) diode array
(DAD)-MS analysis. For the first step, bands were eluted by means of the Advion Plate
Express TLC/MS interface using methanol: 10 mM ammonium formate (19:1% v/v) as the
elution solvent at a flow rate of 0.1 mL/min for 2 min to the electrospray ionization (ESI)
source of Advion expression-L Compact MS and analyzed using the following conditions:
capillary voltage (−2.5; 3.5 kV), nebulizing gas nitrogen (N2) 3 L/min, drying gas flow
(N2) 10 L/min, DL temperature 200 ◦C, and block temperature 250 ◦C. Mass spectra were
acquired in full scan mode (m/z 100–2000) applying positive and negative ionization. The
plate background signals were subtracted for each analysis. Data were acquired through
Advion Mass Express and processed using Data Express software version 5.1. For the
second step, based on RF, all bands of interest were removed and extracted in methanol:
water solution (7:3 v/v), filtered (0.22 µm), and injected for analysis into a Waters (Milford,
MA, USA) Arc LC-system coupled to 2489 UV-Vis and QDa (single quadrupole) detectors.
Chromatography was carried out using a binary mobile phase composed of water (A) and
acetonitrile (B), both acidified with 0.1% v/v formic acid, following the method proposed
by Liu et al. [39] on a Phenomenex (Torrance, CA, USA) Kinetex 3.5 µm XB-C18 core-
shell column (150 mm × 4.6 mm, 100 Å) set at 30 ◦C. MS analysis was carried out using
the following settings: ESI (+) capillary voltage of 0.8 kV, cone voltage of 10 V, probe
temperature of 600 ◦C, source temperature of 120 ◦C in full scan mode (m/z 100–1200).
To complete the identification, the sample was analyzed using the same chromatographic
conditions in a Waters I-Class LC-system coupled to a 2998 PDA detector and an Ion
Mobility (IMS)-High Resolution (HR) Mass Spectrometer (Synapt XS 32K). The mass
spectrometer was set as follows: MSe in continuum mode, ESI (+), capillary voltage of
0.8 kV, cone voltage of 20 V, scan speed of 0.3 s in resolution mode. The collision energy
was set at 6 V for low energy and a ramp of 15–45 V for high energy (pseudo-MS/MS). For
mass correction, a locked mass solution of leucine enkephalin was applied at intervals of
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30 s. Before analysis, the mass detector was calibrated with sodium formate in the m/z
range of 50–1200. Data were acquired and processed using Waters Masslynx 4.2 software.

2.8. Docking and Molecular Dynamics Studies

The three-dimensional structures of human cyclooxygenase-2 (COX-2), acetyl-
cholinesterase (AChE), and α-glucosidase (AG) enzymes were retrieved from the Protein
Data Bank with the following codes: 5KIR, 1DX6, and 5NN3 [40–42]. The 3D chemical
structures of the isolated N-fructosylglutamylphenylalanine, N-fructosyl-glutamyl-S-(1-
propenyl) cysteine, and harmane compounds were built and optimized in gas phase at
the DFT level of theory using the B3LYP functional and the 6–31G(d,p) basis set, as imple-
mented in the Gaussian 09 package of programs [43]. Prior to docking studies, the RESP
charges for all compounds were calculated [44]. The docking studies were performed by
means of AutoDock 4.2 [45], and the docking grid maps were calculated using AutoGrid4.
The docking grids were centered on the catalytic residues defining a volume of 60 Å3 with
a 0.375 Å grid spacing. The AutoTors option of AutoDockTools was used to define rotatable
bonds. The genetic Lamarckian algorithm was used under the following conditions: popu-
lation size 50, maximum number of evaluations 2,500,000, maximum number of generations
27,000, rate of mutation 0.02, and rate of crossover 0.08. The calculations were performed
with dielectric as the default setting. The most stable conformations for each compound
were chosen according to the best docking score, the population of the conformation and
the activity documented in this study. The previously obtained complexes were inserted
into a TIP3P water box using the CHARMM-GUI server [46]. The ionic force considered the
addition of NaCl at 0.15 mol/L. Titratable residues were kept in their dominant protonation
state at pH 7.0. The FF19SB forcefield [47] was selected for molecular dynamics simulations
by means of AMBER18 suite of programs [48]. The protocol considered an initial minimiza-
tion of 5000 steps using the conjugate gradient method, followed by 2500 steps of steepest
descent. A heating step was then conducted from 0 to 310 K in an NPT assembly for 100 ps
using a harmonic restraint of 10.0 kcal/mol/Å2 for protein’s atoms. Subsequently, the
system was subjected to a 1 ns equilibration step without restrictions, allowing the system
to reach equilibrium. Additionally, production runs of 100 ns were conducted to calculate
the binding energy and the binding free energy (∆G) using MMPBSA.py a Phyton script
part of AmberTools19 [48,49].

2.9. Statistical Analysis

Data were evaluated using descriptive statistics [mean, standard deviation (SD), and
relative standard deviation (RSD)]. Calibrations were established by applying linear and
polynomial regression models. Statistical tests were performed at a significance level of
(α) 0.05 using Prism 10 software (GraphPad, San Diego, CA, USA). The response surface
methodology based on central composite design (CCD) was prepared and analyzed using
StatGraphics Centurion XV version 15.1.02 (Rockville, MD, USA).

3. Results and Discussion
3.1. Optimization of MAE Conditions for PP and OSC Extraction

Some studies have discussed the optimization of black garlic and black giant garlic
production parameters, focusing on achieving higher bioactive molecule content such as
SAC and PPs [50–52]. However, information concerning the optimization of the extraction
process is still limited. MAE was selected to perform PP and OSC extraction from black
Chiloe’s giant garlic because it presents important advantages over conventional and
other advanced extraction techniques. This extraction process offers fast and efficient
extraction with high yields using reduced solvent volumes and low sample amounts, with
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the possibility of using green solvents such as ethanol and water. According to preliminary
assays and earlier studies on black garlic, a response surface methodology based on
a face-centered CCD was established with three independent factors, i.e., temperature
(30 to 90 ◦C), ethanol percentage in water (0 to 40%), and extraction time (3 to 12 min)
[53,54]. The experimental plan consisted of 16 runs, including two central points (Table 1),
each performed in triplicate (n = 3) in random order to minimize the effects of uncontrolled
factors. The responses/variables studied were the TPC and SAC extraction yields, as
described in Sections 2.4 and 2.5.

Table 1. Experimental runs (n = 3) for central composite design showing independent variables and
experimental data for PP and SAC yields (mean ± SD).

Runs T◦ (◦C) Ethanol (%) Time (min) TPC (mg GAE/g DW) S-Allyl-Cysteine (mg/g DW)

1 30 40 3.0 8.21 ± 0.41 2.87 ± 0.24
2 90 20 7.5 8.72 ± 0.56 2.87 ± 0.01
3 30 0 12.0 9.01 ± 0.30 2.64 ± 0.01
4 60 20 7.5 9.42 ± 0.37 2.25 ± 0.03
5 30 0 3.0 8.32 ± 0.52 2.70 ± 0.15
6 60 40 7.5 8.68 ± 0.67 2.61 ± 0.11
7 90 0 3.0 8.52 ± 0.31 2.45 ± 0.05
8 60 20 3.0 9.83 ± 0.66 2.43 ± 0.08
9 90 40 3.0 8.76 ± 0.57 2.19 ± 0.17

10 90 40 12.0 8.85 ± 0.23 2.16 ± 0.24
11 30 40 12.0 7.93 ± 0.56 1.84 ± 0.11
12 60 20 12.0 8.64 ± 0.40 1.97 ± 0.09
13 30 20 7.5 8.61 ± 0.49 1.94 ± 0.17
14 90 0 12.0 9.69 ± 0.44 2.12 ± 0.20
15 60 20 7.5 9.79 ± 0.43 2.06 ± 0.02
16 60 0 7.5 9.53 ± 0.39 2.05 ± 0.16

Through response surface optimization (Figure 1), the optimal MAE conditions were
established for SAC and TPC (Table 2). According to the data, TPC and SAC optimal
extraction conditions were accomplished at 67 ◦C for 12 min and 0% v/v ethanol, and 30 ◦C
for 3 min and 40% v/v ethanol, respectively. Both equations (Figure S1, Supplementary
Materials) shown a non-significant lack of fit (p > 0.05) obtaining optimal TPC and SAC
concentrations of 9.19 ± 0.18 mg GAE/g DW and 2.55 ± 0.10 mg SAC/g DW, with an error
of 6.3% and 4.2%, respectively, showing proper fitting. These optimal conditions could be
explained by the specific nature of garlic. PPs are typically found linked to bulb cell walls
and/or forming glycosides; in both cases, MAE exerts a disruptive effect, facilitating its
extraction [55]. Additionally, in the case of black garlic, the mild Maillard reaction increases
the dielectric constant, accelerating the extraction process in the presence of water [56].

Figure 1. Response surface plots of MAE of PPs and SAC from black Chiloe’s giant garlic showing
the effect of independent variables on extraction yields. (A) TPC plot at 12 min; (B) SAC content plot
at 40% v/v ethanol.
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Table 2. Optimized conditions for MAE of SAC and PPs present in black Chiloe’s giant garlic.

TPC SAC

Temperature (30–90 ◦C) 67 30
Ethanol percentage
(0–40%) 0 40

Time (3–12 min) 12 3
Predicted yields (mg/g) 9.81 2.66
Experimental yield (mg/g) 9.19 ± 0.18 2.55 ± 0.10
Percentage of error (%) 6.3 4.2
Lack of fit (p-value) 0.36 0.22

Compared with conventional extraction techniques, maceration extraction of PPs from
raw and black garlics was optimized using a response surface methodology. The optimal
extraction conditions were 47 ◦C, 50% v/v ethanol for 6 h, and 90 ◦C, 55% v/v ethanol for
9.8 h, respectively [54,57]. Both optimal conditions required much higher extraction times
(9.8 h) than the proposed MAE method (12 min, 98% lower). Kim et al. [21] reported a TPC
value of 9.95 ± 0.06 mg GAE/g in black giant garlic, similar to the value reported in the
present work for black Chiloe’s giant garlic (9.19 ± 0.18 mg GAE/g DW). However, the
TPC value was obtained with a time-consuming extraction procedure (72 h, 3 consecutive
extractions of 24 h each), which was much more extensive than that reported in the present
work (12 min).

Compared with previous reports, the main advantage of the MAE-based method for
SAC extraction was the time required for proper extraction, needing only 3 min [58]. The
solvent composition is consistent with that of earlier studies [24,58]. The SAC concentration
found in black Chiloe’s giant garlic is 3- to 20-fold higher than that described for common
black garlic and 12-fold greater than that of Korean black giant garlic after a 72 h extraction
process [24,58]. These findings demonstrate the importance of optimizing the extraction
method and show the extraordinarily high SAC content in black Chiloe’s giant garlic.

3.2. Identification of Bioactive Molecules in Black Chiloe’s Giant Garlic

From optimized black Chiloe’s giant garlic extracts, bioactive molecules with antioxi-
dant and inhibitory activities over COX-2, AG, and AChE were detected and identified by
HPTLC-Bioassay and LC-HRMS, as described in Section 2.6. The identification process in-
cluded RF analysis, chemical identification, mass spectrometry, fragmentation analysis, and
mass error (Table 3). As shown in Figure 2, the band at RF 0.67 showed AChE inhibitory ac-
tivity with a m/z of 183.0928 [M+H]+ and main fragments at m/z 115.0533 (Figure 2A) corre-
sponding to the indole alkaloid derivative methyl-β-Carboline, most likely harmane, which
is a tryptophan-derived Maillard product previously reported in black garlic [59]. Harmane
possesses a broad spectrum of bioactivities, including AChE inhibition [60]. The band at RF

(0.3) exhibited both antioxidant and COX-2 inhibitory activities. MS analysis revealed a
main compound with m/z 453.1555 [M+H]+ and fragments at m/z 369.1176, 208.1655, and
145.0400, which was identified as N-fructosyl glutamyl-S-(1-propenyl) cysteine (Figure 2B).
This compound retains both biological properties of glutamyl-S-(1-propenyl) cysteine [38].
Similarly, a band at RF 0.4 showed α-glucosidase inhibitory activity (Figure 2) with an m/z
value of 457.1822 [M+H]+ and main fragments at m/z 373.1471 and 208.0655 (Figure 2C).
This compound was identified as N-fructosyl glutamyl-S-phenylalanine, which is more
than 2000 times more abundant in black garlic than in raw garlic [59]. Both compounds are
byproducts of the early stage of the Maillard reaction [59], and these data could be useful as
biomarkers for black garlic elaboration. Glycation of these glutamyl peptides seems to play
an important role in the pharmacokinetic profile and proteolytic stability and could also be
structurally related to anti-inflammatory and antidiabetic activity [61]. Since giant garlic has
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considerable higher glutamyl peptides content than common garlic [13], compounds such
as N-fructosyl glutamyl-S-(1-Propenyl) cysteine and N-fructosyl glutamylphenylalanine
and others bioactive Millard metabolites is expected to be produced in relevant amounts
in black Chiloe’s giant garlic. Since no commercial standards of N-fructosyl glutamyl-S-
(1-propenyl) cysteine and N-fructosyl glutamylphenylalanine were available, the possible
interactions were assessed by docking studies.

Table 3. Bioactive molecules present in black Chiloe’s giant garlic.

Band (RF) Bioactivity * Bioactive
Molecule

Molecular
Formula

Observed
m/z (u)

Theorical
m/z (u)

Mass Error
(ppm)

Fragments
m/z (u)

0.30 Antioxidant
and COXi

N-Fructosyl
Glutamyl-S-(1-

Propenyl)
cysteine

C17H28N2O10S 453.1555 453.1543 2.65
369.1176
208.1655
145.0400

0.40 AGi;
N-Fructosyl

Glutamylpheny-
lalanine

C20H28N2O10 457.1807 457.1822 −3.28
373.1471
208.0655
166.0913

0.67 AChEi Methyl-β-
Carboline C12H10N2 183.0928 183.0922 3.27 115.0553

* COXi, AGi, and AChEi correspond to cyclooxygenase, α-glucosidase, acetylcholinesterase enzyme inhibitors.

Figure 2. HPTLC chromatogram of optimized black Chiloe’s giant garlic extracts (S) and controls
(C) after derivatization with DPPH (A), and bioassays to detect inhibitors of COX-2 (B), AG (C), and
AChE (D), which were identified by mass spectra and fragmentation pattern as harmane, parent
ion at m/z 183.0928 [M+H]+ (A); N-fructosyl-glutamyl-S-(1-propenyl) cysteine, parent ion at m/z
453.1555 [M+H]+(B) and N-fructosyl-glutamylphenylalanine, parent ion at m/z 457.1822 [M+H]+ (C).
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3.3. Docking and Molecular Dynamics Analysis

In AG, a carbohydrate-hydrolase enzyme that releases a single alpha-glucose molecule
from non-reducing α-glucose residues (1→4-linked), Trp-516 and Asp-518 are identified as
critical residues for its catalytic functionality. The molecule N-fructosyl glutamylpheny-
lalanine forms hydrogen bonds between the N-fructosyl hydroxyl groups and Asp-518 of
the active site residue as illustrated in Figure S2 (yellow color, Supplementary Materials).
Similar to acarbose, AG inhibitor drug, the sugar structure stays in the same cavity bound
to Asp-518 with 5 hydrogen bond donor groups and a hydrogen bond acceptor from the
NH group [62]. The Trp-516 structure is implicated in the formation of a hydrophobic
region, wherein the N-fructosyl moiety remains (Figure S2, Supplementary Materials). The
COX-2 active site contains several key residues such as Arg-120 involved in the catalysis
and Tyr-355, which have been observed to form a hydrogen bond with arachidonic acid.
Tyr-385 plays a pivotal role in the transformation of polyunsaturated fatty acids (PUFA).
Glu-524 constitutes a component of the constriction separating the active site from the
membrane binding domain. Val-523 is an integral part of the binding cavity. Other amino
acids in the active site include Val-434, Leu-503, and Arg-513. The docking results indicate
that upon binding, the N-fructosyl-glutamyl-S-(1-propenyl) cysteine compound could
interact with active site residues as shown in Figure S3 (Supplementary Materials). In the
case of AChE, the active site contains the catalytic triad of amino acids, namely Ser-226,
Glu-327, and His-440. These amino acids are in a deep, narrow gorge at the bottom of the
enzyme. The active site is also lined with other amino acids that aid in substrate binding
and stabilization. Trp-86 is an aromatic amino acid that binds to the choline segment of the
substrate. Phe-295, Phe-297, and Trp-236 form an acyl-binding pocket that stabilizes the
acetyl group of acetylcholine. Also, Gly-121, Gly-122, and Ala-204 form an oxyanionic gap
that stabilizes the transition state of the substrate. Other residues such as Tyr-70, Tyr-121,
and Trp-279 form the peripheral anionic site (PAS). According to docking results observed
in Figure S4 (Supplementary Materials), the Harmane molecule is found interacting mainly
with His-440 in the active site (yellow).

It is important to note that docking studies are not able to indicate whether a molecule
will act as a substrate or inhibitor of an enzyme; however, they can provide an account
of which residues these molecules may interact with. In this regard, to elucidate the
dynamic characteristics of these molecular interactions, each docked complex was subjected
to molecular dynamics simulations, followed by binding free energy calculations (∆G).
The complexes with the most favorable binding free energy were subjected to further
analysis. All dynamics simulations revealed the same key interactions as obtained by
docking campaign. Moreover, the reported IC50 was compared with ∆G values, observing
reasonable correlations according to the negative total binding free energies reported
(Table 4). Thus, the identified compounds seem to be great prospects, especially fructosyl
glutamyl peptides. The energy values reveal favorable protein–protein complex in pure
water, but these results do not equal the real binding free energy since there is no estimation
of the (unfavorable) entropy contribution to binding. The Generalized Born approach
gives lower binding energies, suggesting that all enzyme complexes included in this
study are in a favorable bound state. Thus, given the established role of molecules as
enzyme inhibitors, as confirmed by HPTLC-Bioassay, the latter conclusion was supported
by dynamic simulations.
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Table 4. Calculated binding energies of enzyme inhibitors present in black Chiloe’s giant garlic
compared with commercial ones.

Complex Molecular Dynamics
IC50 Values Ref.

Enzyme Substrate ∆GMMGBSA (kcal/mol) ∆GMMPBSA (kcal/mol)

AG
Acarbose −8.2 −6.4 93.63 µM [63]

N-fructosyl glu-
tamylphenylalanine −27.5 −11.8 - *

AChE
Donepezil −34.5 −19.2 6.7 nM [64]
Harmane −11.2 −7.3 *

COX-2
Diclofenac −33.7 25.3 1.3 nM [65]

N-Fructosyl
Glutamyl-S-(1-

Propenyl) cysteine
−32.4 −24.4 - *

* This work.

4. Conclusions
To the best of our knowledge, the present work reports for the first time the optimiza-

tion of the MAE of PPs and SAC from black Chiloe’s giant garlic. This optimized technique
allowed the obtention of extracts with higher SAC concentrations than previous reports
(3- to 20-fold high) using reduced extraction times (3 min for SAC and 12 min for PPs),
which were at least 98% lower than previous reports. These results demonstrated the rele-
vance of advanced extraction technologies like MAE, especially using green solvents (water
and ethanol), which are emerging as promising techniques for the quality control of black
garlic elaboration. These optimized extracts exhibited multiple bioactivities, some of which
were described for the first time in black Chiloe’s giant garlic. A key point of this work
was the direct identification of bioactive molecules through EDA-HPTLC-Bioassay-MS,
reporting three novel associations between molecules and biological activity. Thanks to
this approach, it was possible to advance the general approximation of bioactive extracts
without identifying the molecule (s) responsible for the effect. The bioactive molecules
identified showed antioxidant and/or inhibitory activities on COX-2, AG, and AChE,
which established the therapeutic potential of this type of garlic as a food and/or functional
ingredient to reduce the risk of CNCD. Docking and molecular dynamics analysis showed
proper ∆G values compared with commercial inhibitors; thus, the identified compounds in
black Chiloe’s giant garlic seem to be great prospects specially fructosyl glutamyl peptides.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/antiox14080913/s1, Figure S1: Mathematical models for TPC
(mg GAE/g DW) and SAC (mg/g DW); Figure S2: N-fructosyl-glutamylphenylalanine (cyan) forms
hydrogen bonds between the N-fructosyl hydroxyl groups and the active site residue Asp-518
(yellow); Figure S3: Interaction of N-fructosyl-glutamyl-S-(1-propenyl) cysteine (cyan) with ac-
tive site residues Arg-120 and with Tyr-385 (yellow); Figure S4: Interaction of Harmane molecule
(cyan) with the His-440 residue (yellow). At this position, Harmane remains shielded by several
aromatic residues.
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