
Academic Editor: Raimunda Nonata

Ribeiro Sampaio

Received: 26 May 2025

Revised: 30 June 2025

Accepted: 3 July 2025

Published: 6 July 2025

Citation: Galue-Parra, A.J.;

Jimenez-Falcao, S.; Arribas-Yuste, E.;

Marin, C.; Mendez-Arriaga, J.M. Sialic

Acid and Colchicine Functionalized

Silica Nanoparticles: A Novel

Approach to Leishmanicidal Selective

Treatments. Biomedicines 2025, 13, 1648.

https://doi.org/10.3390/

biomedicines13071648

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Sialic Acid and Colchicine Functionalized Silica Nanoparticles:
A Novel Approach to Leishmanicidal Selective Treatments
Adan Jesus Galue-Parra 1,2,†, Sandra Jimenez-Falcao 3,4,† , Esther Arribas-Yuste 3, Clotilde Marin 1,*
and Jose Manuel Mendez-Arriaga 3,*

1 Departamento de Parasitología, Universidad de Granada, Calle Severo Ochoa s/n, 18071 Granada, Spain;
adan.parra@icb.ufpa.br

2 Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Para,
Belém 66075-110, PA, Brazil

3 COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T.,
Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; sandra.jfalcao@upm.es (S.J.-F.);
esther.arribas@urjc.es (E.A.-Y.)

4 Organic Nanotechnology Laboratory, Departamento de Materiales y Producción Aeroespacial E.T.S.I
Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid, Spain

* Correspondence: cmaris@ugr.es (C.M.); jose.mendez.arriaga@urjc.es (J.M.M.-A.)
† These authors contributed equally to this work.

Abstract

Background/Objectives: Leishmaniasis remains a neglected tropical disease, with nearly
one million new cases annually and limited investment in research. Current treatments,
primarily based on pentavalent antimonials, are associated with severe side effects and
increasing resistance. This study aims to develop a novel therapeutic strategy using a
nanomaterial functionalized with sialic acid (SA) and colchicine (COL) to selectively target
Leishmania braziliensis parasites. Methods: A nanostructured system was engineered by
functionalizing its surface with SA and COL. SA was chosen to mimic host cell surfaces, en-
hancing parasite attraction, while COL was selected for its known leishmanicidal properties.
The nanomaterial was designed to concentrate extracellular parasites on its surface via SA-
mediated interactions, thereby increasing local COL efficacy. Results: The functionalized
nanomaterial demonstrated a dual mechanism: SA facilitated the selective accumulation of
Leishmania braziliensis parasites on the nanostructure surface, while COL exerted a cytotoxic
effect. This synergistic interaction resulted in enhanced parasite mortality in vitro, suggest-
ing improved selectivity and potency compared to conventional treatments. Conclusions:
The proposed nanomaterial offers a promising alternative for leishmaniasis treatment by
combining targeted parasite attraction with localized drug delivery. This strategy may
reduce systemic toxicity and improve therapeutic outcomes.

Keywords: parasite; leishmania; neglected diseases; sialic acid; colchicine; drug
delivery; nanoparticle

1. Introduction
Leishmaniasis is a parasitic disease that causes the most deaths in the world, second

only to malaria. In fact, its annual mortality rate is higher than 60,000, and 350 million
people are at risk of being infected. The transmission is carried out by dipteral insects,
specifically the genus Phlebotomus in the Old World and the genus Lutzomyia in the New
World [1].
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Leishmaniasis has traditionally been a developing-country disease because of poverty
and unhealthy conditions in these areas. Actually, it is currently endemic in nearly
100 countries, becoming a global problem as a clear example of “One Health” as a conse-
quence of the migration phenomenon, the intrusion of human infrastructure into natural
environments, and climate change. Nowadays, it affects all continents and is considered
one of the seven primary diseases, according to the World Health Organization (WHO) [2].
The coexistence of a high number of individuals in small spaces (conflict areas or refugee
camps) favors the transmission of this parasitic disease before reaching host countries.
Therefore, the historic prevalence of leishmaniasis explains the poor efforts put to develop
new efficient therapeutics to fight against the different manifestations of the disease, which
vary from the most dangerous visceral conditions to cutaneous (characterized by ulcers
and nodules) or mucocutaneous (chronic injuries in mouth, nose, or genital) [3,4]. To
date, few therapeutic approaches have been exploited, classified as non-antimonial and
antimonial drugs, but most of them present serious side effects or are non-affordable for
poor countries. As an example of non-antimonial or liposomal antiparasitic treatment,
Amphotericin B can be mentioned, which is a prodrug exhibiting alarming collateral kid-
ney failure and which triggers pharmaceutical resistance [5], as well as Miltefosine, an
alkyl phospholipid (hexadecyl phosphocholine) repositioned from the anticancer drug
but associated with teratogenicity and parasite resistance [6,7]. On the other hand, meglu-
mine antimoniate (Glucantime) is an antimonial drug and the most widely used to fight
against leishmaniasis [8,9], whose metabolism and mechanism of action are already under
study [10–12]. Nevertheless, vomiting, peripheral polyneuropathy, or allergic dermopathy
appear as side effects when using this treatment [13], along with possible drug resistance
and daily parenteral administration [14,15]. All these drawbacks urge the development of
new alternatives, increasing interest in recent years [16–18]. In this context, the discovery
in the last years of a vast number of possible targets, such as ADP phosphorylation or beta-
oxidation of fatty acids [19,20], has brought hope to the successful cure of leishmaniasis.
The L. braziliensis strain was selected for this study due to it being the principal causal agent
of diffuse leishmaniasis, which can produce hundreds or thousands of polymorphic skin
lesions in various body regions, and its frequent involvement of the nasal mucosa. This
pathology is highly stigmatizing and even potentially fatal. The affection is emerging out
of Brazil and South America, reaching Europe and the Middle East [21].

Transition metal complexes (specially ruthenium-based [22–26]) have extensively
been studied and reviewed [27–29] as promising candidates to fight against parasitic
diseases [30,31], such as the tropical members leishmaniasis, Chagas disease, or malaria. As
an example, our research group carried out research using 1,2,4-triazolo[1,5-a]pyrimidine
derivatives and their metal complexes to assay their intra- and extracellular impact in
leishmaniasis and Chagas disease [32–36]. In general, a synergistic effect is observed,
arising from the combination of triazolopyrimidine derivatives and different metal ions
when coordinated [37,38]. A step forward has been achieved, resulting from the support of
organic molecules of interest or metal complexes onto nanomaterials, which is a common
strategy used in biomedicine but not very extended in the parasitology area. The result
is the obtention of a more complex material with outstanding electric, mechanical, and
optical features [39,40], which is possible to tune in terms of size, porosity, and surface
functionalization [41,42], serving as a carrier for drug delivery [43]. One of the most widely
used nanometric supports is mesoporous silica nanoparticles, widely used in biomedicine
for drug delivery [44–46] but of recent use in parasitology, just for the last five years [47–49].

Sialic acid (SA) (Scheme 1) has been shown to be a fundamental molecule for parasites
in the phagocytizing process in host cells of organisms infected by parasites of the genus
Leishmania [50]. There is a clear relationship between the availability of this molecule in
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the cell membrane and the ability of the parasite to infect the host, and the necessity of the
parasite to capture and use SA molecules can be used as bait to improve the efficacy of the
proposed nanomaterial in this study [50]. The possibility of using sialic acid as a mechanism
to improve the interaction between the nanoparticle and the parasite is known [51,52], but
no concrete examples of success are reported. On the other hand, colchicine (Scheme 2) has
demonstrated effectiveness as an antiparasitic for toxoplasmosis [53], although its use is not
widespread for other types of parasitic infections. The use of these two drugs is not well
studied in a leishmaniasis infection despite their promising capabilities to fight the disease.
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The literature regarding the use of nanoparticles against parasitic infections is scarce,
and for the use of nanoparticles functionalized with specific parasite receptors, it is almost
non-existent. The use of sialic acid as a receptor in nanomaterials against viruses is known,
especially after the COVID-19 crisis, but the literature is focused on a different context
and area, far from leishmaniasis infections [54]. In the present work, the outstanding
possibilities of the combined use of sialic acid and colchicine were studied using silica
nanoparticles as a vehicle. Spectroscopic characterization, solution stability, and biological
assays of sialic acid and colchicine functionalized silica nanoparticles (MSN-SA and MSN-
SA-COL) were performed. The antiparasitic activity of the nanosystem was evaluated
against the extracellular and intracellular forms of L. braziliensis, as well as the evaluation
of their toxicity against Vero cells. The results reveal better specificity for parasites of the
sialic acid nanomaterial and a high selectivity index when compared with the commercial
drug Glucantime.
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2. Materials and Methods
2.1. Synthesis and Characterization of Functionalized Silica Nanoparticles

The synthesis of MCM-41 silica nanoparticles (MSNs) was carried out following
the procedure reported by Zhao et al. [55], with slight modifications [56]. To enhance
the coordination capacity of the proposed nanosystems, MSNs were covered with amine
groups from aminopropyl triethoxysilane ligand to obtain MSN-AP systems. The func-
tionalization of silica nanoparticles was performed following the methodology previously
reported by our group [57,58]. Sialic acid (SA) was covalently bonded to MSN-AP ma-
terials using 1.3 mg of N-acetylneuraminic acid dissolved in 50 mL of 0.1M MES buffer
(2-morpholinoethanesulfonic acid). Next, 1.63 g of 1-ethyl-3-(3-dimethylaminopropyl) car-
bodiimide hydrochloride (EDC) and 1.97 g of N-hydroxysuccinimide (NHS) were added.
The mixture was stirred at 25 ◦C for 45 min. Next, 0.9 g of aminated MSN-AP material
was added and allowed to react for 2 h at room temperature. Finally, the material was
centrifuged, washed twice with ethanol (EtOH), and left to dry in an oven for at least 8 h at
70 ◦C, obtaining the MSN-SA material. The final material, MSN-SA-COL, was prepared,
starting with 200 mg of MSN-SA and resuspending it in 50 mL of EtOH. Then, 10 mg of
colchicine was added to this suspension, stirring at a temperature between 23 and 27 ◦C for
24 h. The next day, the mixture was centrifuged to recover the solid, washed twice with
ethanol, and dried in air until constant weight.

2.1.1. TEM

The morphology of the synthesized material was characterized by TEM. Mesoporous
silica nanoparticles (MSNs) present a quasi-spherical appearance, with a mean diameter
between 80 and 130 nm and a wide size distribution (Figure 1). The surface of the nanopar-
ticles presents a hexagonal arrangement in the typical honeycomb pattern of pores present
in MCM-41 MSNs. Despite the mean diameter of 100 nm, the fusion of individual MSN
entities may give rise to bigger nanoparticles, as shown in the histogram.

Figure 1. Transmission electron microscopy of MCM-41 MSNs used (left) and mean diameter size
distribution of MSNs (right).

2.1.2. BET

Surface characterization of MSN and MSN-SA-COL was carried out by the analysis
of adsorption/desorption nitrogen isotherms at 77 K. Experimental data show the typical
IV isotherm for the MSN solid, which is characteristic of mesoporous materials. As a
consequence of the surface functionalization, a decrease in the surface area of the MSN
was observed after its modification with SA and COL, as can be seen in Figure 2, pro-
viding the typical appearance of materials with filled pores in the adsorption/desorption
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isotherm [59,60]. Surface parameters (Table 1) were obtained by fitting the results to the
Brunauer–Emmett–Teller (BET) isotherms; surface area, pore volume, and pore diameter
were 682 m2g−1, 0.52 cm3g−1, and 3.2 nm, respectively, for the nude MSN. As expected,
the anchoring of SA decreased all these three parameters, and further functionalization
with COL made these values even smaller as a consequence of the partial occupation of the
pores by the metallic complex.

Figure 2. N2 adsorption/desorption isotherms of MSN (orange) and MSN-SA-COL (green).

Table 1. Surface analysis of MSN and MSN-SA-COL obtained by N2 adsorption/desorption analysis.

Material SBET (m2g−1) Total Pore Volume (cm3g−1)

MSN 682 0.52
MSN-SA-COL 222 0.33

2.1.3. Spectroscopic Properties

Nanomaterials have been characterized using different spectroscopic techniques.
Firstly, an infrared analysis was carried out (Figure 3), confirming the subsequent func-
tionalizations until reaching the final material, MSN-SA-COL. It can be observed how
the band located between 3500–3000 cm−1, belonging to the OH and O groups, increases
as the sialic acid and colchicine molecules, rich in these groups, are supported on the
nanomaterial. These results confirm the incorporation of the organic molecules of interest
to the nanosystem.

 
Figure 3. IR spectra of MSN (orange), MSN-SA (blue), and MSN-SA-COL (green).
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A solid-state UV absorption spectrophotometry study of the nanomaterials was also
carried out (Figure 4). The spectra obtained showed an increase in the intensity of the
signals of the functionalized nanomaterials in the area between 200 nm and 300 nm due to
the presence of aromatic groups of the organic molecules incorporated into the structure
of the nanomaterial. These results confirm the incorporation of the organic molecules of
interest to the nanosystem.

 

Figure 4. Solid UV–visible spectra of MSN (orange), MSN-SA (blue), and MSN-SA-COL (green).

2.1.4. Thermogravimetry

A study of the thermal stability of the nanomaterials was also carried out using
thermogravimetry to verify the functionalization of the material. The results obtained
(Figure 5) show that the inorganic silica does not lose weight with increasing temperature
and remains practically unchanged throughout the process, with a weight variation of less
than 1% with respect to the initial weight of the silica at the initial temperature. However,
the two nanosystems with organic molecules (MSN-SA and MSN-SA-COL) experience a
greater weight loss. In the case of the MSN-SA material, a weight loss of 80% is observed
with respect to the initial weight, which corresponds to a 20% effective functionalization
with sialic acid. In the case of the MSN-SA-COL material, a 75% drop is observed with
respect to the weight of the nanomaterial at the initial temperature, which confirms the
functionalization of the extra 5% expected in the synthesis process with the incorporation
of colchicine.

Figure 5. Thermogravimetry curves of MSN (orange), MSN-SA (blue), and MSN-SA-COL (green).
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2.2. Biological Assays

Biological tests were performed with both extracellular (promastigote) and intracel-
lular (axenic amastigote) L. braziliensis strains. The promastigote forms of L. braziliensis
(MHOM/BR/1975/M2904) were cultured in vitro in RPMI 1640 medium supplemented
with 10% inactive fetal bovine serum (FBS) and were maintained in an air atmosphere at
28 ◦C in Roux flasks (Corning, NY, USA) with a surface area of 75 cm2.

The promastigotes were transformed into axenic amastigotes using the M199 medium
(Merck, Darmstadt, Germany), following the method described in [61]. According to the
methodology, after three days of culture, the promastigotes acquired the rounded shape of
axenic amastigotes, which were used for the anti-amastigote assay. The assay was carried
out for 48 h, counting in a Neubauer hemocytometer chamber.

The nanomaterials presented are not soluble due to their inorganic nature, so the
samples were finally suspended in the culture medium at 37 ◦C and ultrasonicated in a
sealed tube. They were subsequently tested at 0.025, 0.075, 0.1, and 0.5 mg/mL µM, leaving
some wells without drugs as a control, and incubated at 28 ◦C for 72 h before the final
parasite count by Neubauer hemocytometric chamber.

To study the toxicity of nanomaterials, Vero cells (Flow) were cultured in Roswell Park
Memorial Institute (RPMI) medium, which was supplemented with 10% inactivated fetal
bovine serum. The cells were incubated in a humidified atmosphere with 95% air and 5%
CO2 at 37 ◦C for several days. Cytotoxicity tests were performed in 96-well plates that
were measured in the ELISA reader. Inhibition of mammalian cell growth was studied
by testing the products at 0.025, 0.075, 0.1, and 0.5 mg/mL. First, cells were seeded in a
96-well plate (2500 or 3500 cells respectively/well) to a volume of 100 µL/well and then
incubated at 37 ◦C with 5% CO2 for 24 h. Complex solutions were prepared in advance,
corresponding to the average growing cells (RPMI 10% SBF for Vero cells) at twice the
highest concentration to be tested. The solutions were prepared in a sterile bath with
different channels, adding 100 µL of solution or complex medium (only adding medium
in the control wells) to the corresponding well. Subsequently, the plate was incubated at
37 ◦C with 5% CO2 for 48 h. Two days later, 20 µL of Alamar Blue dye (10% of the well
volume) was added to each well and incubated at 37 ◦C with 5% CO2 for an additional
day. The total incubation time once the products were added was 72 h, coinciding with the
selection period to have comparable SI results. The plate was read in an ELISA reader with
Alamar Blue. The percentage of viability was calculated in comparison with the control
culture. The IC50 was calculated by logarithmic regression analysis using GraphPad Prism
6.01 (GraphPad Software, La Jolla, CA, USA).

3. Results
3.1. Release Studies

The release behavior of colchicine (COL) was studied by a specific assay of MSN-AS-
COL. A suspension of 0.1 mg/mL of MSN-AS-COL nanomaterial in PBS buffer was studied.
This buffer was chosen as a model to mimic cell culture media that were subsequently
used and to avoid contamination using the M199 medium. After an initial sonication, the
sample was incubated at 37 ◦C and centrifuged at specific time intervals (Figure 6) in order
to analyze the absorption via UV spectroscopy at the maximum absorbance wavelength of
COL (244 nm) [62]. The experiment was conducted for 3 days, but the stabilization was
reached at 2 h, verifying the complete release of the loaded compound.
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Figure 6. Kinetic release profile in PBS of colchicine (COL) from MSN-AS-COL nanomaterial at
244 nm.

3.2. In Vitro Antiparasitic Activity and Toxicity

The inhibition of Leishmania spp. strain growth by MSNs and their derived nanomate-
rials was evaluated by cytotoxicity assays and promastigote screenings. The parasite model
chosen to carry out these assays was L. braziliensis, which was cultured in the presence of
the nanomaterials to be evaluated, and glucantime, sialic acid, and colchicine as controls.

Tables 2 and 3 resume the results of these biological assays.

Table 2. In vitro activity of nanomaterials against promastigote forms of Leishmania braziliensis and
Vero cells after 72 h of incubation at 37 ◦C.

Products IC50
a (Promastigote) IC50

a (Vero Cells) SI b SI Corrected c

MSN - ≥0.5 mg/mL - -
MSN-AS 0.08175 ± 12.46 mg/mL ≥0.5 mg/mL 6.12 7.58 (1)

MSN-AS-COL 0.05529 ± 19.05 mg/mL ≥0.5 mg/mL 9.04 57.89 (9)
Glucantime 64.88 ± 20.06 µM ≥400 µM 6.16 -

AS 149.9 ± 37.09 µM ≥400 µM 2.67 -
COL 19.68 ± 16.99 µM ≥400 µM 20.32 -

The results presented are averages of three separate determinations. a The concentration required to obtain 50%
inhibition, calculated through a linear regression analysis from the Kc values at the concentration employed.
b Selectivity index = IC50 against Vero cells/IC50 parasite (promastigote forms). c Selectivity index after correction
of active compound percentage in nanomaterials. Times that new formulation improves the drug reference
Glucantime are noted in brackets.

Table 3. In vitro activity of nanomaterials against axenic amastigote forms of Leishmania braziliensis
after 72 h of incubation at 37 ◦C.

Products IC50
a (Amastigote) SI b SI Corrected c

MSN - - -
MSN-AS 0.06274 ± 13.93 mg/mL 7.97 9.85 (0)

MSN-AS-COL 0.03607 ± 10.08 mg/mL 13.86 88.88 (4)
Glucantime 17.26 ± 14.21 µM 23.25 -

AS 130.30 ± 33.00 µM 3.07 -
COL 9.51 ± 11.20 µM 42.06 -

The results presented are averages of three separate determinations. a The concentration required to obtain 50%
inhibition, calculated through a linear regression analysis from the Kc values at the concentration employed.
b Selectivity index = IC50 against Vero cells/IC50 parasite (promastigote forms). c Selectivity index after correction
of active compound percentage in nanomaterials Times that new formulation improves the drug reference
Glucantime are noted in brackets.

A correction factor was applied to the nanomaterials in order to compare the concen-
trations of molecules of interest that were intervening with the effect they had when they
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were alone. In the case of SA in MSN-SA, since it represents only 20% of the weight, an
IC50 of 52.8 µM is obtained instead of 149.9 µM, which improves the selectivity index from
2.67 to 7.58. This is because the nanosystem formulation facilitates the retention of the
parasites on the surface of the silica thanks to the sialic acid receptors, and it is difficult
for their population to increase in the hostile inorganic environment. In the case of the
comparison between MSN-SA-COL and colchicine alone, the improvement, taking into
account the 5% functionalization with colchicine, is an IC50 that goes from 19.68 µM to
6.91 µM, improving its selectivity index from 20.32 to 57.89, which gives it a spectacular
efficacy against extracellular forms of L. braziliensis, being almost 10 times more effective
than the commercial drug. In the case of the amastigote forms, something similar occurs,
with a selectivity index of 9.85 instead of 3.07 when going from IC50 130.30 to 40.57 and an
SI of 88.88 instead of 42.06 due to the change from IC50 9.51 µM when colchicine is alone to
4.5 µM when it is on the nanomaterial (Tables 2 and 3).

4. Discussion
The synthesis of the sialic acid (SA) and colchicine (COL) nanomaterial is proposed to

be an innovative nanomaterial with a prophylaxis action to stop parasitic infection, with
a cellular environment mimic planned to fool the parasites to “infect” the bait, thanks to
the sialic acid receptors; and a second purpose is to combat an active infection, with the
liberation of colchicine. To check the efficacy of the materials, the toxicity of the isolated
elements of the nanosystem was tested, with no toxic effect of the silica nanoparticle on the
host Vero cells (Table 2) and an acceptable interaction of sialic acid and colchicine. There
were no effects in the parasite population of the clean nanoparticle MSN, a negligible value
of reduction with SA, but a moderate reduction of the parasite colony after assay with
COL, with an SI value around 20. These results support the hypothesis of a non-significant
role in the treatment of the nanocarrier (MSN) of the drug and the targeting (SA) to attract
parasites, and the antiparasitic activity can be attributed to COL.

Once the interaction of the subunits of the nanomaterials was established, the study
of the whole nanosystem was carried out. At this point, a mathematical correction was
necessary in order to compare the efficacy of the organic molecules supported in the
nanomaterial at identical concentrations due to the functionalization of the MSN-SA and
MSN-SA-COL being 20% for SA and 5% for COL. Here, at the same concentration levels, it
is possible to observe an increase in the selectivity index after interaction with MSN-SA and
MSN-SA-COL. The slight upgrade of the sialic acid material can be attributed to the high
concentration of the parasite targets in the same area due to their covalent coordination to
the silica surface, which is the principle of action of these nanomaterials. The extraordi-
nary increase in the efficacy of the colchicine material MSN-SA-COL with respect to free
colchicine is based on the same principle that the sialic acid justification. Thus, these data
showed that MSN-SA-COL meets the activity criteria that a new compound must fulfill to
be considered interesting for further studies in the fight against leishmaniasis [63,64]. The
efficacy of this compound is surely due to the fast liberation of the drug exposed in the
release experiment (Figure 6) combined with the attraction of the parasites to the surface
of the silica by the sialic acid, making the action of colchicine more selective and effective.
This excellent effectiveness is confirmed for intra- and extracellular forms of the parasite,
with 4- and 8-times efficacy increase, respectively, confirming the potential treatment in
early infection phases, as well as during an advanced-stage infection (Figure S1).

This is the first approach to this novel nanomaterial composition, with promising
expectations to open a new pathway to fight neglected parasitic diseases, such as leishmani-
asis. Further studies with different proportions of colchicine and sialic acid or even testing
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other antileishmanial drugs in the nanosystem will be performed in the future, searching
for the most effective and low-cost treatment for neglected diseases.

In addition to the promising results in terms of efficacy and selectivity, the rational
design of the MSN-SA-COL nanosystem represents a significant advancement in nan-
otechnology applied to neglected diseases. The synergistic combination of a biological
targeting agent like sialic acid with an active drug such as colchicine not only enhances the
bioavailability and specificity of the treatment but also potentially reduces systemic side
effects by concentrating the therapeutic action at the infection site. This smart approach
of targeted delivery and localized response could be extrapolated to other intracellular
parasites, paving the way for a versatile treatment platform for multiple infectious dis-
eases. The integration of controlled release strategies and molecular recognition within a
single nanoscale system marks a milestone in the development of more effective, safer, and
accessible therapies for vulnerable populations.

In conclusion, this new line of nanostructured compounds, with a specific target to the
parasites on their surface, combined with the loading of an active drug against infective
organisms, opens a promising new way of action against one of the neglected diseases with
more incidence in poor areas.

5. Patents
The results of these studies were presented to the Spanish Patent Office (Oficina

Española de Patentes y Marcas), with code P202430796 and reference ES1787.142-PRIO.
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