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A soliton of the mean curvature flow in the product space S2 ×R is a surface whose 
mean curvature H satisfies the equation H = 〈N,X〉, where N is the unit normal 
of the surface and X is a Killing vector field of S2 × R. In this paper we consider 
the cases that X is the vector field tangent to the second factor and the vector field 
associated to rotations about an axis of S2, respectively. We give a classification of 
the solitons with respect to these vector fields assuming that the surface is invariant 
under a one-parameter group of vertical translations or rotations of S2.
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1. Introduction

Let ψ : Σ → R3 be an immersion of a surface Σ in Euclidean space R3. A variation {ψt : Σ → R3 :

t ∈ [0, T )}, T > 0, ψ0 = ψ, evolves by the mean curvature flow (MCF in short) if ∂ψt

∂t 
= H(ψt)N(ψt), 

where H(ψt) is the mean curvature of ψt and N(ψt) is its unit normal. The surface Σ is called a soliton 
of MCF if the evolution of Σ under a one-parameter family of dilations or isometries remains constant. An 
important type of solitons are the translators whose shape is invariant by translations along a direction 
�v ∈ R3. Translators are characterized by the equation H = 〈N,�v〉, where H and N are the mean curvature 
and unit normal of Σ respectively. Translators play a special role in the theory of MCF because they are, 
after rescaling, a type of singularities of the MCF according to Huisken and Sinestrari [6]. In the meantime, 
the development of the theory of solitons of the MCF in other ambient spaces has been developed. Without 
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to be complete, we refer: a general product space M2 × R [10]; hyperbolic space [3,4,9,12]; the product 
H2 ×R [1,2,5,8]; the Sol space [15]; the Heisenberg group [16]; the special linear group [11].

In this paper, we focus on the MCF in the product space S2 ×R, where S2 is the unit sphere of R3. We 
consider surfaces evolving under MCF by isometries of the ambient space in S2 ×R. We give the following 
definition.

Definition 1.1. Let X ∈ X(S2 ×R) be a Killing vector field. A surface Σ in S2 ×R is said to be a X-soliton 
if its mean curvature H and unit normal vector N satisfy

H = 〈N,X〉. (1)

In our paper we adopt the convention that H represents the sum of the principal curvatures of the 
surface. Let (x, y, z, t) denote the global coordinates in R3 ×R, where S2 ×R is embedded. Recall that the 
dimension of the space of Killing vector fields in S2 × R is 4. One relevant Killing vector field is V = ∂t, 
which is tangent to the fibers of the natural submersion S2 ×R → S2. Other Killing vector fields arise from 
the rotations of S2. Upon coordinates renaming, we consider the vector field R = −y∂x + x∂y, which is the 
infinitesimal generator of the rotations, with unit angular speed, about the z-axis of S2.

Examples of solitons are the following.

(1) Vertical cylinders over geodesic of S2 are V -solitons. Indeed, let Σ = C × R ⊂ S2 × R be a surface 
constructed as a cylinder over a curve C ⊂ S2. Then the mean curvature of Σ is H = κ, where κ the 
curvature of C. Since the unit normal vector N of Σ is orthogonal to ∂t, then 〈N,V 〉 = 0. Thus Σ is a 
V -soliton if and only if κ = 0, that is, if C is a geodesic of S2.

(2) Slices S2 × {t0}, t0 ∈ R, are R-solitons. Notice that H = 0 because a slice is totally geodesic. Since 
N = ∂t, then 〈N,R〉 = 0, proving that H = 〈N,R〉.

In this article, we are interested in examples of V -solitons and R-solitons that are invariant by a one-
parameter group of isometries of S2 × R. Here we consider two types of such surfaces. First, surfaces 
invariant by vertical translations in the t-coordinate (vertical surfaces). Second, rotational surfaces, which 
are invariant by a group of rotations about an axis of S2. Under these geometric conditions, we give a 
full classification of V -solitons (Sect. 3) and R-solitons (Sect. 4). In Theorem 3.2 we prove that vertical 
V -solitons are trivial in the sense that they are vertical cylinders over geodesics of S2. Similarly, rotational 
R-solitons are slices S2 × {t0} or rotational minimal surfaces (Theorem 4.4). The most interesting cases 
of solitons are rotational V -solitons and vertical R-solitons. In Theorems 3.4 and 4.2 we show the main 
properties of these solitons. In particular, we prove that they are not embedded and they are asymptotic to 
the cylinder (S1 × {0}) ×R at infinity.

2. Preliminaries

In this section, we compute each one of the terms of Eq. (1) for vertical and rotational surfaces. The 
isometry group of S2 × R is isomorphic to Isom(S2) × Isom(R). The group Isom(S2) is generated by the 
identity, the antipodal map, rotations and reflections. The group Isom(R) contains the identity, translations, 
and reflections. Therefore there are two important one-parameter groups of isometries in S2 × R: vertical 
translations in the factor R and rotations in the factor S2. This leads to two types of invariant surfaces.

(1) Vertical surfaces. A vertical translation is a map of type Tλ : S2 × R → S2 × R defined by Tλ(p, t) =
(p, t+λ), where λ is fixed. This defines a one-parameter group of vertical translations T = {Tλ : λ ∈ R}. 
A vertical surface is a surface Σ invariant by the group T , that is, Tλ(Σ) ⊂ Σ for all λ ∈ R. The 
generating curve of Σ is a curve α : I ⊂ R → S2 in the unit sphere S2. Let us write this curve as
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α(s) = (cosu(s) cos v(s), cosu(s) sin v(s), sin u(s)), (2)

for some smooth functions u = u(s) and v = v(s). Then a parametrization of Σ is

Ψ(s, t) = (cosu(s) cos v(s), cosu(s) sin v(s), sin u(s), t), s ∈ I, t ∈ R. (3)

In what follows, we parametrize the curve β(s) = (u(s), v(s)) to have

u′(s) = cosu(s) cos θ(s), v′(s) = sin θ(s).

(2) Rotational surfaces. After a choice of coordinates on S2, a rotation in S2 ×R about the z-axis is a map 
Rϕ : S2 ×R → S2 ×R, given by

Rϕ =

⎛
⎜⎜⎜⎝

cosϕ − sinϕ 0 0
sinϕ cosϕ 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ .

The set R = {Rϕ : ϕ ∈ R} of all Rϕ, is a one-parameter group of rotations, that is SO(2). A rotational 
surface is a surface Σ invariant by the group R, namely, Rϕ(Σ) ⊂ Σ for all ϕ ∈ R. The generating curve 
of Σ is a curve α : I ⊂ R → S2 ×R contained in the xzt-hyperplane which we suppose parametrized by

α(s) = (cosu(s), 0, sin u(s), v(s)), s ∈ I ⊂ R, (4)

where u = u(s) and v = v(s) are smooth functions. Then a parametrization of Σ is

Ψ(s, ϕ) = (cosu(s) cosϕ, cosu(s) sinϕ, sin u(s), v(s)), s ∈ I, ϕ ∈ R. (5)

From now on, we suppose that the curve β(s) = (u(s), v(s)) is parametrized by the Euclidean arc length, 
that is,

u′(s) = cos θ(s), v′(s) = sin θ(s),

for some smooth function θ = θ(s). Notice that θ′ is the curvature of β as a planar curve of R2.

We now compute the mean curvature H and the unit normal vector N for vertical surfaces and for 
rotational surfaces.

Proposition 2.1. Suppose that Σ is a vertical surface parametrized by (3). Then the unit normal vector N is 
expressed as

N = (cos θ sin v − sin θ sin u cos v,− cos θ cos v − sin θ sin u sin v, sin θ cosu, 0), (6)

and the mean curvature H is given by

H = sin u sin θ − θ′

cosu 
. (7)

Proof. Suppose that Σ is parametrized by (3). Then the tangent plane at each point of Σ is spanned by 
{Ψs,Ψt}, where
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Ψs = (− cosu(cos θ sin u cos v + sin θ sin v), cosu(sin θ cos v − cos θ sin u sin v), cos θ cos2 u, 0),

Ψt = (0, 0, 0, 1). (8)

A straightforward computation yields the expression for the unit normal vector as stated in equation (6).
As usual, denote by gij the coefficients of the first fundamental form of Ψ, where

g11 = 〈Ψs,Ψs〉, g12 = 〈Ψs,Ψt〉, g22 = 〈Ψt,Ψt〉.

The formula of H is

H = g22b11 − 2g12b12 + g11b22
g11g22 − g122 ,

where bij are the coefficients of the second fundamental form, namely,

b11 = −〈Ns,Ψs〉, b12 = −〈Ns,Ψt〉, b22 = −〈Nt,Ψt〉.

A computation of gij gives g11 = (cosu)2, g22 = 1 and g12 = 0. In particular, cosu(s) �= 0 for all s ∈ I. 
Then g11g22 − g2

12 = (cosu)2. For the coefficients of the second fundamental, we have b12 = b22 = 0 and

b11 = cosu(sin θ sin u− θ′). (9)

Then the mean curvature H is (7). �
Proposition 2.2. Suppose that Σ is a rotational surface parametrized by (5). Then the unit normal vector N
is defined by

N(s, ϕ) = (sin θ sin u cosϕ, sin θ sin u sinϕ,− sin θ cosu, cos θ), (10)

and the mean curvature H is expressed as

H = θ′ − sin θ tan u. (11)

Proof. From (5), the basis {Ψs,Ψt} at each tangent plane of Σ is

Ψs(s, ϕ) = (−u′ sin u cosϕ,−u′ sin u sinϕ, u′ cosu, v′),

Ψϕ(s, ϕ) = (− sinϕ cosu, cosϕ cosu, 0, 0).
(12)

Thus g11 = 1, g12 = 0 and g22 = cos2 u; in particular, cosu �= 0. As a consequence, the unit normal vector 
N is (10). The computation of the coefficients of the second fundamental form gives

b11 = θ′

b12 = 0

b22 = − sin θ sin u cosu.

(13)

Hence we deduce the expression of H given in (11). �



R. López, M.I. Munteanu / Differential Geometry and its Applications 99 (2025) 102243 5

3. The class of V -solitons

Let V be the vector field given by

V = ∂t. (14)

The fact that V is tangent to the fibers of the submersion S2 ×R → S2 confers special properties to V . For 
example, V -solitons of S2 ×R can be viewed as weighted minimal surfaces in a space with density: see [10, 
Sect. 2] in a general context of product spaces. So, let etdA and etdV the area and volume of S2 ×R with a 
weight et, where t is the last coordinate of the space. Considering the energy functional Ω �→ E(Ω) =

∫
Ω etdA

defined for compact subdomains Ω ⊂ Σ, a critical point of this functional, also called a weighted minimal 
surface, is a surface characterized by the equation H − 〈N,∇t〉 = 0, where ∇ is the gradient in S2 × R. 
Since ∇t = ∂t = V , we have proved that a weighted minimal surface in (S2 × R, et〈, 〉) is a V -soliton. One 
property of weighted minimal surfaces is that they satisfy a principle of tangency as a consequence of the 
Hopf maximum principle for elliptic equations of divergence type. In our context, the tangency principle 
asserts that if two V -solitons Σ1 and Σ2 touch at some interior point p ∈ Σ1 ∩Σ2 and one surface is in one 
side of the other around p, then Σ1 and Σ2 coincide in a neighborhood of p. The following result proves 
that slices are the only closed V -solitons.

Theorem 3.1. There are no closed (compact without boundary) V -solitons in S2 ×R.

Proof. Let ψ : Σ → S2 × R be a closed V -soliton. Define on Σ the height function h : Σ → R by h(q) =
〈ψ(q), ∂t〉. It is known that for any surface of S2 ×R, the Laplacian of h is Δh = H〈N, ∂t〉 [18].

Using that Σ is a V -soliton, then Δh = 〈N, ∂t〉2 = 〈N,V 〉2. Integrating on Σ, the divergence theorem 
yields 

∫
Σ〈N,V 〉2 dΣ = 0. Thus 〈N,V 〉 = 0 on Σ and H = 0. In particular, Δh = 0. By the maximum 

principle, h is a constant function, namely h(q) = t0, for some t0 ∈ R. This proves that Σ ⊂ S2 × {t0} and 
hence, Σ = S2 × {t0}. However, a slice S2 × {t0} is not a V -soliton. �

We begin with the study of V -solitons invariant by the group T . We prove that any vertical V -soliton 
is trivial in the sense that it is a minimal surface. Even more, we prove that it is a cylinder of type 
S1 ×R ⊂ S2 ×R.

Theorem 3.2. Suppose that Σ is a vertical surface. Then Σ is a V -soliton if and only if its generating curve 
is a geodesic of S2 and Σ is a vertical surface on a geodesic of S2.

Proof. Let Σ be a vertical surface. Since the vertical lines are fibers of the submersion S2 × R → S2, the 
mean curvature H of Σ is H = κ, where κ is the curvature of α. Moreover, the unit normal vector is 
horizontal, hence 〈N,V 〉 = 0. This proves the result. �

We now study V -solitons of rotational type. As we have indicated in the previous section, we can assume 
that the rotation axis is the z-axis. Thus a rotational surface Σ can be parametrized by (5).

An immediate example of rotational V -soliton is the cylinder C = (S1×{0})×R. This surface corresponds 
with the curve (u(s), v(s)) = (0, s), s ∈ R, in (4). Thus α(s) = (1, 0, 0, s) is the vertical line through the 
point (1, 0, 0) ∈ S2. The unit normal N is orthogonal to V . Since the generating curve is a geodesic of S2, 
the surface is minimal, proving that C is a V -soliton. This surface is also a vertical R-soliton (Theorem 4.2). 
We now characterize rotational V -solitons in terms of its generating curve α.

Proposition 3.3. Let Σ be a rotational surface in S2 ×R. If Σ is parametrized by (5), then Σ is a V -soliton 
if and only if the generating curve α satisfies
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Fig. 1. The (u, θ)-phase plane of (16). Left: the red points are the equilibrium points (0,±π
2 ), where the surface is the cylinder C. 

Right: two trajectories in the phase plane thought the points (0, 0.5) (black) and (0, 0) (red). (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

⎧⎪⎪⎨
⎪⎪⎩
u′ = cos θ

v′ = sin θ

θ′ = sin θ tan u + cos θ

(15)

Proof. This is an immediate consequence of Proposition 2.2. Indeed, from the expression of N in (10), we 
have

〈N,V 〉 = cos θ.

Using (11), then Eq. (1) is θ′ = sin θ tan u + cos θ. �
We now study the solutions of (15), describing their main geometric properties. Recall that cosu �= 0

by regularity of the surface (Proposition 2.2). Since the last equation of (15) does not depend on v, we 
can study the solutions α of (15) projecting in the (u, θ)-plane, which, in turn, gives rise to the following 
autonomous planar ordinary system:

{
u′ = cos θ

θ′ = sin θ tan u + cos θ.
(16)

The phase plane of (16) is depicted in Fig. 1, left. By regularity of the surface, u(s) ∈ (−π/2, π/2). Thus 
the phase plane of (16) is the set

A = {(u, θ) : u ∈ (π2 
,
π

2 
), θ ∈ R}.

The trajectories of (16) are the solutions γ(s) = (u(s), θ(s)) of (16) when regarded in A and once initial 
conditions (u0, θ0) ∈ A have been fixed. These trajectories foliate A as a consequence of the existence and 
uniqueness of the Cauchy problem of (16).

The equilibrium points of (16) are (u, θ) = (0, π
2 ) and (u, θ) = (0,−π

2 ). The rest of equilibrium points can 
be obtained by translations by multiples of π along the u and θ-coordinates. If (u, θ) = (0, π

2 ), then u(s) = 0, 
v(s) = s. For this trajectory, the generating curve α is the vertical fiber at (1, 0, 0) ∈ S2 parametrized with 
increasing variable s, v(s) = s. Consequently, the corresponding surface is the vertical right cylinder C and 
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this solution is already known. If (u, θ) = (0,−π
2 ), then v(s) = −s and the generating curve is again the 

above vertical line but parametrized by decreasing variable s. The surface is the cylinder C again.
The qualitative behavior of the trajectories near the equilibrium points is analyzed, as usually, by the 

linearized system (see [14, Ch. 1] as a general reference). At the point (u, θ) = (0, π
2 ), we find

(
0 −1
1 −1

)

as the matrix of the linearized system. The eigenvalues of this matrix are the two conjugate complex numbers 
1
2 (−1±i

√
3). Since the real parts are negative, then the point (0, π2 ) is a stable spiral. Thus all the trajectories 

will move in towards the equilibrium point as s increases. Similarly, for the point (u, θ) = (0,−π
2 ), the matrix 

of the corresponding linearized system is
(

0 1
−1 1

)
.

The eigenvalues of this matrix are 1
2 (1 ± i

√
3) and the point (0,−π

2 ) is an unstable spiral. In Fig. 1, right 
we show as the trajectories start in the unstable spiral (0,−π

2 ) and end in the stable spiral (0, π2 ).
In order to give initial conditions at s = 0, notice that if we do a vertical translation in R4 of the 

generating curve α, the surface is a translated from the original. This vertical translation is simply adding 
a constant to the last coordinate function v = v(s). Thus, at the initial time s = 0, we can assume v(0) = 0. 
On the other hand, the fact that the trajectories go from (0,−π

2 ) towards (0, π2 ) implies that the function θ
attains the value 0. Therefore we can consider that the function θ at the initial point s = 0 takes the value 
0, θ(0) = 0. So, let

u(0) = v(0) = θ(0) = 0. (17)

It is immediate from (15) that

ū(s) = −u(−s), v̄(s) = v(−s), θ̄(s) = −θ(−s)

is also a solution of (15) with the same initial conditions (17). Thus the graphic of β(s) = (u(s), v(s)) is 
symmetric about the v-axis.

Given initial conditions (17), we know that (u(s), θ(s)) goes to the stable spiral (0, π2 ). Then the right 
hand-sides of (16) (also in (15)) are bounded functions, proving that the domain of solutions is R. Since 
|v′(s)| → 1, then lims→±∞ v(s) = ∞ by symmetry of β. Thus lims→±∞ β(s) = (0,∞), that is β is asymptotic 
to the v-axis at infinity. The projection of α on the factor S2 converges to (1, 0, 0). This implies that Σ is 
asymptotic to the cylinder C.

Because (0, π/2) is a stable spiral, the function θ(s) converges to π/2 oscillating around this value, and 
the same occurs for the function u(s) around u = 0. In particular, the graphic of β intersects infinitely many 
times the v-axis. By the symmetry of β with respect to the v-axis, we deduce that β has (infinitely many) 
self-intersections.

We claim that the coordinate function v(s) of β has no critical points except s = 0. We know

v′′(s) = θ′(s) cos θ(s) = sin θ(s) cos θ(s) tan u(s) + cos2 θ(s).

If v′(s) = 0 at s = s0, then sin θ(s0) = 0, hence v′′(s0) = 1. Thus all critical points are local minimum 
deducing that s = 0 is the only minimum. Once we have proved that v′ �= 0 for all s �= 0, then each branch 
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Fig. 2. Generating curves of rotational V -solitons with initial conditions (17). Left: the curve β. Middle and right: projection of the 
generating curve α on the xzt-space (middle) and as a subset of the cylinder S1 × R (right).

of β, that is, β(0,∞) and β(−∞, 0), are graphs on the v-axis. This proves that β is a bi-graph on the v-axis. 
See Fig. 2.

If u(0) = u0 �= 0 and θ(0) = 0, then we know that (u(s), θ(s)) converges towards the point (0, π2 ). Since 
this point is a stable spiral, the curve β meets again the v-axis being asymptotic to this axis.

We summarize the above arguments.

Theorem 3.4. Let Σ be a rotational V -soliton. Then Σ is the cylinder C or Σ is parametrized by (5) with the 
following properties:

(1) The curve β(s) = (u(s), v(s)) has self-intersections and it is asymptotic to the v-axis at infinity. In case 
that β satisfies the initial conditions (17), then β is a symmetric bi-graph with respect to the v-axis.

(2) The surface Σ is not embedded with infinitely many intersection points with the z-axis.
(3) The surface Σ is asymptotic to the cylinder C at infinity.

In Fig. 3 we plot the surface Σ after the stereographic projection pr of the first factor S2 into R2, 
pr : S2 ×R → R2 ×R, pr(x, y, z, t) = ( x 

1−z ,
y

1−z , t).

4. The class of R-solitons

In this section we study R-solitons, where the vector field R is

R = −y∂x + x∂y. (18)

Notice that R is a Killing vector field whose infinitesimal isometries are rotations about the z-axis. Following 
our scheme, we will classify R-solitons that are vertical surfaces and next, rotational surfaces.

First, suppose that Σ is a vertical R-soliton. We know that Σ is parametrized by (3) and that the 
generating curve α is contained in S2, see (2). By (3) it is immediate that the curve α is a R-soliton to 
the curve shortening flow in S2. Such curves were originally studied in Section 2.3 of [7]. More recently, 
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Fig. 3. A rotational V -soliton after the stereographic projection pr. The surface after rotating β in the interval [0,∞) (left) and in 
the interval (−∞, 0] (middle). Right: the full surface.

properties of these curves were obtained in [17] by using the Frenet frame of α. In order to be self-contained, 
we restate some these properties in Theorem 4.2 by presenting a different proof thanks to an autonomous 
system of ordinary differential equations. The behavior of the trajectories of this system in Proposition 4.1
leads to the desired properties.

A first observation is that a vertical cylinder over the geodesic S1 × {0} of S2 is an example of vertical 
R-soliton. To be precise, let (u(s), v(s)) = (0, s). Then α(s) = (cos s, sin s, 0) in (2) and the surface is the 
vertical cylinder over α which we have denoted by C in the previous section. This surface is minimal and it 
is immediate that N is orthogonal to R. Thus C is a R-soliton. Recall that C is also a rotational V -soliton.

Proposition 4.1. Suppose that Σ is a vertical surface parametrized by (3). Then Σ is a R-soliton if and only 
if the generating curve α satisfies

⎧⎪⎪⎨
⎪⎪⎩
u′ = cosu cos θ

v′ = sin θ

θ′ = sin θ sin u + (cosu)2 cos θ.

(19)

Proof. The expression of the unit normal N is given in (3). Thus

〈N,R〉 = − cosu cos θ.

Since the expression of H is given in (7), then Eq. (1) becomes θ′ = sin θ sin u + (cosu)2 cos θ, proving the 
result. �

As in the previous section, we project the solutions of (19) on the (u, θ)-plane, obtaining the autonomous 
system of differential equations

{
u′ = cosu cos θ

θ′ = sin θ sin u + (cosu)2 cos θ.
(20)

The equilibrium points are (u, θ) = (0,±π/2) together the points (u, θ) = (±π
2 , 0) and translations of length 

π of these points in the θ variable. The equilibrium points (u, θ) = (0,±π/2) corresponds with the solution 
u(s) = 0 and v(s) = ±s. In this case, and by the observation pointed out before this theorem, the surface Σ
is the vertical cylinder C. In contrast, the equilibrium points (u, θ) = (±π

2 , 0) do not correspond with surfaces 
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Fig. 4. Left: the (u, θ)-phase plane of (20). The red points are the equilibrium points (0,±π
2 ) and (±π

2 , 0). Right: two trajectories 
in the (u, θ)-phase plane.

because regularity is lost. In fact, coming back to the parametrization (3), the map Ψ is the parametrization 
of the vertical fiber at (0, 0, 1) ∈ S2.

The phase plane of (20) is the set A = (−π, π)× (−π, π) in the (u, θ)-plane by the periodicity of θ. If we 
now compute the linearized system at the points (u, θ) = (0,±π

2 ), we find that they have the same character 
that the ones of the system (15). Thus we have that (u, θ) = (0, π

2 ) is a stable spiral and (u, θ) = (0,−π
2 ) is 

an unstable spiral. See Fig. 4.
For the points (π2 , 0) and (−π

2 , 0), the linearized systems are

(
−1 0
0 1

)
, 

(
1 0
0 −1

)
,

respectively. Since the eigenvalues are two real numbers with opposite signs, then both equilibrium points 
are saddle points ([14, Ch. 1]). See Fig. 4. A solution α of (19) for given initial conditions corresponds with 
a trajectory in the (u, θ)-phase plane. In Fig. 4, right, we show two trajectories. The red one acrosses the 
point (0, 0) which corresponds with the initial conditions (u(0), v(0)) = (0, 0) and θ(0) = 0 in (19). From 
this trajectory, we deduce that the u-coordinate of α is bounded. On the other hand, the angle coordinate 
θ goes from −π/2 to π/2, that is, from an unstable spiral point to a stable one. In the limit, θ = π/2, 
the angle θ of the curve α acrosses several times the value π/: see Fig. 5, left. Since the arguments now 
are similar as in the proof of Theorem 3.4, we omit the details. Fig. 5 shows generating curves of vertical 
R-solitons: see also Figs. 5 and 6 in [7].

Theorem 4.2. Let Σ be a vertical R-soliton. Then Σ is the cylinder C or Σ is parametrized by (3) with the 
following properties:

(1) The curve β(s) = (u(s), v(s)) has self-intersections and it is asymptotic to the v-axis at infinity. In 
the case when β satisfies the initial conditions (17), then β is a symmetric bi-graph with respect to the 
v-axis.

(2) The surface Σ is not embedded with infinitely many intersection points with the z-axis.
(3) The surface Σ is asymptotic to the cylinder C at infinity.

Remark 4.3. The vector field R in (18) corresponds with the evolution of the mean curvature flow where 
the angular speed is unitary. Suppose now that instead R, we consider λR, where λ > 0 represents the 



R. López, M.I. Munteanu / Differential Geometry and its Applications 99 (2025) 102243 11

Fig. 5. Generating curves of vertical R-solitons with initial conditions (17). Left: solution curve β(s) = (u(s), v(s)). Middle: the 
generating curve α. Right: the generating curve α contained in the unit sphere S2.

angular speed. If Σ is a vertical surface which it is also a λ-soliton, the equation that satisfies the generating 
curve is (19) with the difference that the third equation is now θ′ = sin θ sin u + λ(cosu)2 cos θ. However, 
the presence of λ does not affect neither the equilibrium points, which are the same, nor their nature. In 
conclusion, we can assure that the qualitative properties of the vertical solitons for the vector λR are the 
same as those described in Theorem 4.2.

The second type of R-solitons of our study is those surfaces that are invariant by a one-parameter group 
of rotations of the first factor S2. Since we have defined in (18) the vector field R as the rotation about the 
direction (0, 0, 1) ∈ S2, we cannot a priori prescribe the rotational axis of the surface.

Theorem 4.4. The only rotational R-solitons are:

(1) Slices S2 × {t0}, t0 ∈ R, viewed as rotational surfaces with respect to any axis of S2 and;
(2) Rotational minimal surfaces about the z-axis.

Proof. Let Σ be a rotational R-soliton. In order to have manageable computations of the mean curvature 
H and the unit normal N of Σ, we will assume in this proof that the rotation axis of Σ is the z-axis. 
In particular, the surface is parametrized by (5). In consequence, the vector field R is now arbitrary (not 
necessarily given by (18)) because there is no a priori relation with the z-axis. The vector field R is 
determined by an orthonormal basis B = {E1, E2, E3} of R3. Let p = (x1, x2, x3, t) ∈ Σ ∈ S2 ×R ⊂ R3 ×R, 
where (x1, x2, x3) are coordinates of R3 with respect to B. Then the vector field R can be expressed by

R(p) = −x2E1 + x1E2 = −〈p,E2〉E1 + 〈p,E1〉E2.

We now write E1 and E2 with respect to the canonical basis of R3,

Ei = (cosmi cosni, cosmi sinni, sinmi), i = 1, 2,

where mi, ni ∈ R. The unit normal N and the mean curvature H of Σ were computed in (10) and (11), 
respectively. Then



12 R. López, M.I. Munteanu / Differential Geometry and its Applications 99 (2025) 102243 

〈N,R〉 = −〈Ψ, E2〉〈N,E1〉 + 〈Ψ, E1〉〈N,E2〉
=(sinm1 cosm2 sinn2 − cosm1 sinn1 sinm2) sin θ sinϕ

+ (sinm1 cosm2 cosn2 − cosm1 cosn1 sinm2) sin θ cosϕ.

(21)

Looking now at the soliton equation (1), we have that the right hand-side of (1), that is, 〈N,R〉, the variable 
ϕ does appear because of (21). However in the left hand-side of (1), the mean curvature H, formula (11), does 
not depend on ϕ. This implies that the coefficients of sinϕ and cosϕ in (21) must vanish. Both coefficients 
contain the factor sin θ. This gives the following discussion of cases.

(1) Case sin θ(s) = 0 for all s. Then u(s) = s and v(s) is a constant function, v(s) = t0, t0 ∈ R. This proves 
that Σ is a slice S2 × {t0}.

(2) Case sin θ(s0) �= 0 at some s0. Then in an interval around s = s0, we deduce

sinm1 cosm2 sinn2 − cosm1 sinn1 sinm2 = 0,

sinm1 cosm2 cosn2 − cosm1 cosn1 sinm2 = 0.

Both identities imply E1 ×E2 = (0, 0, 1). Thus R coincides with the vector field defined in (18) and the 
rotation axis is the z-axis. Moreover, the right hand-side of (1) is 0, proving that the surface is minimal. 
This proves the result. �

Remark 4.5. Minimal surfaces in S2×R of rotational type with respect to an axis in the first factor S2 were 
classified by Pedrosa and Ritoré [13].
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