
Computers & Operations Research 179 (2025) 107034

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Multi-armed bandit for the cyclic minimum sitting arrangement problem✩

Marcos Robles a , Sergio Cavero a , Eduardo G. Pardo a ,∗, Oscar Cordón b

a Universidad Rey Juan Carlos, Spain
b Universidad de Granada, Spain

A R T I C L E I N F O

Keywords:
Signed graphs
Cyclic minimum sitting arrangement
Multi-armed bandit
Variable neighborhood descent

A B S T R A C T

Graphs are commonly used to represent related elements and relationships among them. Signed graphs are a
special type of graphs that can represent more complex structures, such as positive or negative connections
in a social network. In this work, we address a combinatorial optimization problem, known as the Cyclic
Minimum Sitting Arrangement, that consists of embedding a signed input graph into a cycle host graph, trying
to locate in the embedding positive connected vertices closer than negative ones. This problem is a variant
of the well-known Minimum Sitting Arrangement where the host graph has the structure of a path graph. To
tackle the problem, we propose an algorithm based on the Multi-Armed Bandit method that combines three
greedy-randomized constructive procedures with a Variable Neighborhood Descent local search algorithm. To
assess the merit of our proposal, we compare it with the state-of-the-art method. Our experiments show that
our algorithm outperforms the best-known method in the literature to date, and the results are statistically
significant, establishing itself as the new state of the art for the problem.
1. Introduction

A Graph Layout Problem (GLP) consists of embedding a graph,
denoted as the input graph, into another graph, denoted as host graph,
while optimizing a certain objective function. An embedding (Cygan
et al., 2017), which is also known in the literature as arrangement (Petit,
2003), labeling (Chung, 1988), ordering (Ravi et al., 1991), or lay-
out (Dujmović and Wood, 2004; Pardo et al., 2018), consists of the
vertex assignment of an input graph to the vertices of a host graph (Díaz
et al., 2002). This embedding may require associating the edges of the
input graph with one or more paths in the host graph.

Problems belonging to the GLP family are of great interest to the
scientific community because they have applications in a wide range
of fields, such as Very Large Scale Integration (VLSI) design (Newton,
1981), assignment of network resources (Sahhaf et al., 2015) and graph
drawing (Petit, 2003), among others (Mitchison and Durbin, 1986; Ravi
et al., 1991). In fact, any real-life problem that requires mapping the
elements of a specific network into a particular layout could be modeled
as a GLP. These layouts are typically modeled as graphs with a well-
known structure, such as paths (Petit, 2003), cycles (Cavero et al.,
2021), grids (Shafaei et al., 2013), or trees (Shiloach, 1979), among

✩ This research has been partially supported by grants: PID2021-125709OA-C22 and PID2021-126605NB-I00, funded by MCIN/AEI/10.13039/501100011033
and ‘‘ERDF A way of making Europe’’; project CIAICO/2021/224, funded by Generalitat Valenciana; project M2988, funded by ‘‘Proyectos Impulso de la
Universidad Rey Juan Carlos 2022’’; the ‘‘Cátedra en Innovación y Digitalización Empresarial funded by Universidad Rey Juan Carlos and Second Episode’’
(Ref. MCA06); and ‘‘Red Española de optimización heurística 4.0 digitalización’’ (Ref. RED2022-134480-T); project CIRMA-CM (Ref. TEC-2024/COM-404) funded
by ‘‘Comunidad Autónoma de Madrid’’; and TSI-100930-2023-3 (MCA07) funded by ‘‘Ministerio para la Transformación Digital y de la Función Pública’’.
∗ Corresponding author.
E-mail addresses: marcos.robles@urjc.es (M. Robles), sergio.cavero@urjc.es (S. Cavero), eduardo.pardo@urjc.es (E.G. Pardo), ocordon@ugr.es (O. Cordón).

others. However, it is possible to find GLP in the literature defined on
unstructured host graphs (Sahhaf et al., 2015).

In this paper, we study a combinatorial optimization problem be-
longing to the GLP family. Particularly, we tackle the Cyclic Mini-
mum Sitting Arrangement (CMinSA) problem (Benítez et al., 2018),
a variant of the well-known Minimum Sitting Arrangement (MinSA)
problem (Cygan et al., 2012; Pardo et al., 2020). In both problems,
each of the edges in the input graph is assigned either a positive or a
negative sign. The main difference between them is that the MinSA is
defined on a path host graph (as it is represented in the example of
Fig. 1(b)) and the CMinSA is defined over a cycle host graph (as it is
represented in the example of Fig. 1(d)).

The goal of the CMinSA is to find an embedding where vertices of
the input graph connected by positive edges are placed in closer po-
sitions with respect to other adjacent vertices connected by a negative
edge. In this assignment, distance is measured as the number of vertices
of the shortest path connecting both vertices in the embedding. Every
time that the previous situation is not satisfied (i.e., for a given vertex
of the input graph, a vertex connected by a negative edge is placed
closer in the embedding than a vertex connected with a positive edge),
https://doi.org/10.1016/j.cor.2025.107034
Received 3 September 2024; Received in revised form 19 February 2025; Accepted
vailable online 1 March 2025
305-0548/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
 20 February 2025

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/cor
https://www.elsevier.com/locate/cor
https://orcid.org/0000-0002-8376-6209
https://orcid.org/0000-0002-5258-5915
https://orcid.org/0000-0002-6247-5269
https://orcid.org/0000-0001-5112-5629
mailto:marcos.robles@urjc.es
mailto:sergio.cavero@urjc.es
mailto:eduardo.pardo@urjc.es
mailto:ocordon@ugr.es
https://doi.org/10.1016/j.cor.2025.107034
https://doi.org/10.1016/j.cor.2025.107034
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2025.107034&domain=pdf
http://creativecommons.org/licenses/by/4.0/

M. Robles et al.

f

a

m
v
p
a
o
i

o

n

P
n
c

Computers and Operations Research 179 (2025) 107034
Fig. 1. (a) Example of a real application where chips and connectors (input graph) are placed in a circuit (path host graph). (b) Visual representation of the embedding resulting
rom the example of Fig. 1a. (c) Example of a social network of people (input graph) assigned to seats in a round table (cycle host graph). (d) Visual representation of the

embedding resulting from the example of Fig. 1c.
o

a
s
t
s
b
o
a

an error is quantified. Therefore, each vertex of the input graph can
produce zero, one, or multiple errors in the embedding. The goal of the
CMinSA is to minimize the objective function which is calculated as the
total number of errors in the embedding. The formal definition of the
CMinSA problem and its objective function is presented in Section 2.

In Fig. 1, we show two examples of real-world applications where
the problems can be modeled as a graph and it is necessary to embed
them into two different graphs with a known structure, one in a path
and the other in a cycle. Specifically, the example in Fig. 1(a) represents
 VLSI circuit made of chips and connectors (Newton, 1981), which

needs to be placed on a board. The chips and their connections can be
odeled as a graph (input graph) where the chips are represented as

ertices and the connections are represented as edges. Similarly, the
ositions to place the chips and their connections can also be modeled
s a graph (host graph). In this case, the host graph has the structure
f a path graph. For this example, the corresponding embedding of the
nput graph in the path host graph is represented in Fig. 1(b). In this

real-world problem, there are several objectives to optimize, such as the
number of connector crossings (Cavero et al., 2021) or the total length
f the connectors used (Petit, 2003).

The example in Fig. 1(c) represents a situation in which it is
ecessary to distribute a group of people on a circular table (Cavero

et al., 2022b; Lozano et al., 2013). This situation may arise in many
different and daily contexts, such as a wedding or conference banquet.
eople can be represented as a complex network of guests (a social
etwork) which might include relationships among them. This network
an be modeled as a graph, where the vertices represent the people
2
who are connected by edges that represent the relations between the
guests. In this case, a cycle host graph is used to represent the seats of
the table. The corresponding embedding from the real example shown
in Fig. 1(c) is represented in Fig. 1(d), where the embedding is done
on a cycle host graph. One possible objective of this problem is to seat
people who get along well as closely as possible (Cavero et al., 2022b),
r to avoid seating adversaries close to each other (Lozano et al., 2013).

To tackle the CMinSA, we present a novel approach that lever-
ges the strengths of three constructive methods and adaptive search
trategies. Our method combines randomized and adaptive multi-start
echniques, incorporating various constructive methods tailored to the
tructure of the input graph. The selection of these methods is guided
y a reinforcement learning algorithm derived from probability the-
ry and machine learning. Specifically, we use a Multi-Armed Bandit
lgorithm (Bouneffouf et al., 2020; Lattimore and Szepesvári, 2020;

Slivkins, 2019) that uses information from previous iterations to choose
the most effective constructive approach for a given input graph. This
ensures that our algorithm remains responsive to the unique character-
istics of each instance. Furthermore, the generated solutions undergo an
efficient intensification phase that explores two neighborhoods follow-
ing a Variable Neighborhood Descent scheme (Hansen et al., 2019). In
addition, the proposed local searches are enriched by a fast evaluation
of the objective function and a neighborhood reduction technique. Our
proposed algorithm consistently outperforms the current state-of-the-
art method for the problem, highlighting its potential to effectively

address the complexities of the CMinSA problem.

M. Robles et al.

a

w
o

f
s
v
t
w
a

c
(
p
t

g
t

𝑣
f

m

b

e
d

t

s
𝐸

Computers and Operations Research 179 (2025) 107034
In the following sections, we formally define the CMinSA (Section 2)
nd then review the literature on the problem (Section 3). Next, we

present our proposal encompassing a detailed explanation of our gen-
eral framework, heuristic and metaheuristic methods, and advanced
strategies (Section 4). Then, we describe the experimental setup, de-
tailing the instances used, and presenting a comprehensive comparison
with the best previous state-of-the-art method (Section 5). Finally,

e conclude presenting our most relevant findings and contribution,
utlining implications for future research (Section 6).

2. Problem definition

To formally define the CMinSA, we first need to establish some
undamental notation. Let 𝐺 = (𝑉𝐺 , 𝐸𝐺 , 𝐸+

𝐺 , 𝐸−
𝐺) be a signed, finite,

imple, and undirected input graph, where 𝑉𝐺 denotes the set of
ertices, and 𝐸𝐺 represents the set of edges, which is partitioned into
he subsets 𝐸+

𝐺 and 𝐸−
𝐺 . A signed graph is a specific type of graph

here each edge is assigned a weight of either +1 or −1. Edges with
 weight of +1 are denoted as positive edges and belong to the set 𝐸+

𝐺 .
It is worth mentioning that a pair of vertices 𝑢 and 𝑣 in 𝐺 such that
(𝑢, 𝑣) ∈ 𝐸+

𝐺 is called a pair of positively connected vertices. Analogously,
a pair of vertices 𝑢 and 𝑣 in 𝐺 such that (𝑢, 𝑣) ∈ 𝐸−

𝐺 is called a pair
of negatively connected vertices. Consequently, 𝐸𝐺 fulfills the condition
𝐸𝐺 = {𝐸+

𝐺 ∪ 𝐸−
𝐺}, indicating that it is the union of the sets of positive

and negative edges. For the sake of simplicity, in the rest of the paper,
we graphically label edges just with a ‘‘+ ’’ or ‘‘−’’ sign, representing
weights +1 and −1, respectively.

Given an input graph 𝐺, we can now define the host graph for the
CMinSA problem. Let 𝐻 = (𝑉𝐻 , 𝐸𝐻) be a finite, simple, and undirected
cycle graph, where 𝑉𝐻 and 𝐸𝐻 represent the sets of vertices and edges,
respectively. The cycle host graph must satisfy the following properties:

– |𝑉𝐻 | = |𝑉𝐺| ≥ 3, i.e., the number of vertices of the host graph
equals the number of vertices of the input graph.

– |𝐸𝐻 | = |𝑉𝐻 |, i.e., the number of edges equals the number of
vertices.

– The degree of every vertex in 𝑉𝐻 is 2, i.e., each vertex of 𝑉𝐻 is
connected to exactly two other vertices of 𝑉𝐻 .

– The edges of 𝐸𝐻 are arranged in a way that there is exactly one
cycle in the graph.

These properties ensure that the host graph has the same number
of vertices as the input graph, and that it is possible to find a bijection
between the vertices of the two graphs as it is commonly required in a
GLP.

In this context, a path in a graph is a sequence of vertices such that
each vertex is connected to the next vertex by an edge. Formally, given
two vertices 𝑣𝑖, 𝑣𝑗 ∈ 𝑉𝐻 , such that 1 ≤ 𝑖 < 𝑗 ≤ |𝑉𝐻 |, a path without
ycles from 𝑣𝑖 to 𝑣𝑗 is a sequence of vertices 𝑣𝑖, 𝑣𝑖+1,… , 𝑣𝑗 such that
𝑣𝑖, 𝑣𝑖+1) ∈ 𝐸𝐻 . Notice that no vertex appears more than once in the
ath. Note that since 𝐻 ′ is a cycle graph, there are two possible paths
o get from one vertex to any other.

Let 𝑃𝐻 be the set of all possible paths without cycles in the host
raph between any pair of vertices. Then, we denote by 𝑃𝑣𝑖 ,𝑣𝑗 ⊂ 𝑃𝐻 as
he subset of paths from 𝑣𝑖 to 𝑣𝑗 and 𝑝𝑚𝑖𝑛(𝑣𝑖, 𝑣𝑗) as the path with the

minimum cardinality in 𝑃𝑣𝑖 ,𝑣𝑗 (i.e, it is the ‘‘shortest path’’ from 𝑣𝑖 to
𝑗). Notice that in the case that |𝐻| is even, the set of shortest paths
rom 𝑣𝑖 to 𝑣𝑗 might have two elements. In this case, we evaluate both

paths using the objective function of the problem tackled and select the
one that minimizes it. If a tie remains, then the path which follows a
clockwise order is selected.

Given an input graph 𝐺 = (𝑉𝐺 , 𝐸𝐺) and a host graph 𝐻 = (𝑉𝐻 , 𝐸𝐻),
an embedding of 𝐺 into 𝐻 is a pair of functions (𝜑, 𝜓) that satisfy the
following conditions:

1. 𝜑 ∶ 𝑉 → 𝑉 is a bijection.
𝐺 𝐻

3
2. 𝜓 ∶ 𝐸𝐺 → 𝑃𝐻 is a function that maps each edge (𝑢, 𝑣) ∈ 𝐸𝐺 to a
path 𝑝 ∈ 𝑃𝐻 such that:

– 𝑝 is a path from 𝜑(𝑢) to 𝜑(𝑣) in 𝐻 .
– 𝑝 is a shortest path from 𝜑(𝑢) to 𝜑(𝑣) in 𝐻 .
– If there are multiple paths which results to be the short-

est, 𝑝 is chosen to minimize the number of errors in the
embedding (as defined by the objective function of the
problem).

– If there is still a tie, the path following a clockwise order
is selected.

In other words, an embedding is a mapping of the vertices of 𝐺 to
the vertices of 𝐻 using the function 𝜑, such that each edge in 𝐺 is

apped to a carefully selected shortest path in 𝐻 that connects the
corresponding vertices of the edge, using the function 𝜓 . The selection
of the path, when multiple shortest paths exist, is based on minimizing
errors and following a consistent tie-breaking rule.

Given a specific 𝜑, the function 𝜓 is uniquely determined by the
rules described above. Therefore, for the rest of the paper, we will often
refer to an embedding simply by its 𝜑 function, with the understanding
that the corresponding 𝜓 function is implicitly defined according to
these rules.

With the previous definitions at hand, the CMinSA looks for an em-
edding of the vertices of the input graph such that vertices connected

with positive edges are placed closer in the embedding than those with
a negative connection. Specifically, every time a negatively connected
vertex appears in the path between two positively connected vertices
a conflict occurs. This concept has previously been referred to in the
literature as an error in an input vertex for a particular embedding,
simply denoted as ‘‘error’’ (Aracena and Thraves Caro, 2023; Benítez
et al., 2018). Therefore, to compute the number of errors of a vertex
𝑣 ∈ 𝑉𝐺 we consider the paths that connect 𝑣 to any adjacent vertex in
𝐸+
𝐺 . Then, an error is produced if any other adjacent vertex, negatively

connected to 𝑣, is found in the considered paths. Therefore, the quality
of an embedding for the CMinSA is computed as the sum of the errors
associated with all the vertices of the input graph when embedded in
the host graph. Notice that one vertex might produce zero, one, or
multiple errors for a given embedding.

Formally, given three vertices 𝑢, 𝑣, and 𝑤 in 𝑉𝐺, where (𝑢, 𝑣) is an
edge in 𝐸+

𝐺 and (𝑢, 𝑤) is an edge in 𝐸−
𝐺 , an error occurs if 𝜑(𝑤) is in

𝜓((𝑢, 𝑣)). We mathematically denote the error of a vertex 𝑢 ∈ 𝑉𝐺 in an
mbedding 𝜑 as (𝑢, 𝜑). Finally, the objective function for a solution 𝜑,
enoted as (𝜑), is computed as follows:

(𝜑) =
∑

𝑢∈𝑉𝐺

(𝑢, 𝜑). (1)

Finally, the goal of the CMinSA problem is to find an embedding 𝜑∗,
among the set of all feasible embeddings 𝛷, that minimizes the overall
number of errors, which is formally defined as follows:

𝜑∗ = argmin
𝜑∈𝛷

(𝜑). (2)

To illustrate the concepts introduced in this section, let us consider
he example depicted in Fig. 2. Particularly, in Fig. 2(a) we show a

signed input graph, 𝐺′. Additionally, positive edges are represented
with blue dotted lines and negative edges with red dashed lines. In this
case, we have that 𝑉𝐺′ = {A,B,C,D,E}, and that
𝐸𝐺′ = {(A,B), (A,C), (A,D), (A,E), (D,E)}. The subset of positive edges
consists of the edges 𝐸+

𝐺′ = {(A,C), (A,E)} and the subset of negative
edges consists of the edges 𝐸−

𝐺′ = {(A,B), (A,D), (D,E)}.
Similarly, in Fig. 2(b) we show an example of a cycle host graph

𝐻 ′ for the graph 𝐺′ with 5 vertices and 5 edges since |𝑉𝐺′ | = 5. The
et of vertices of 𝐻 ′ is 𝑉𝐻 ′ = {1,2,3,4,5} and the set of edges is
𝐻 ′ = {(1,2), (2,3), (3,4), (4,5), (5,1)}.

Based on this cycle host graph, we depict an example of the compu-
tation of the paths between two vertices. In particular, the paths with-
out cycles from vertex 1 to vertex 4 are 𝑃 = {{1,2,3,4}, {1,5,4}}.
1,4

M. Robles et al.

i
c

s
e
a
n
𝑝
e
o

E
a

𝜑

s
e
a
n
𝑝
e
o

Computers and Operations Research 179 (2025) 107034
Fig. 2. Examples of a signed input graph and a cycle host graph.
a

Then, the shortest path that joins 1 and 4 is 𝑝𝑚𝑖𝑛(1,4) = {1,5,4} since
it is the path in 𝑃1,4 with the minimum cardinality.

Next, in Fig. 3, we show an example of an embedding (𝜑′, 𝜓 ′) of the
nput graph 𝐺′, previously introduced, into the host graph 𝐻 ′. In this
ase, 𝜑′ is defined as: 𝜑′(A) = 1, 𝜑′(B) = 2, 𝜑′(C) = 3, 𝜑′(D) = 4,

and 𝜑′(E) = 5. Similarly, 𝜓 ′ is defined as: 𝜓 ′((A,B)) = {{1,2}},
𝜓 ′((A,C)) = {{1,2,3}}, 𝜓 ′((A,D)) = {{1,5,4}}, 𝜓 ′((A,E)) = {{1,5}},
and 𝜓 ′((E,D)) = {{5,4}}.

To evaluate the solution for the CMinSA of the embedding 𝜑′ let us
first consider the vertex A. In this case, its positive neighbors are C and
E, assigned to vertices 3 and 5, respectively. Then, the paths that 𝜓 ′

assigns to the positive neighbors of A are 𝑝𝑚𝑖𝑛(𝜑′(A), 𝜑′(C)) = {1,2,3}
and 𝑝𝑚𝑖𝑛(𝜑′(A), 𝜑′(E)) = {5,1}, respectively. Additionally, negative
neighbors are B and D, assigned to vertices 2 and 4, respectively. Since
𝜑′(B) = 2 is on the path 𝑝𝑚𝑖𝑛(𝜑′(A), 𝜑′(C)), vertex A has an error,
so (A, 𝜑′) = 1. Similarly, we evaluate the vertices B, C, D, and E,
obtaining no errors in any of them.

It is worth mentioning that vertex B has only one adjacent vertex,
o it cannot produce errors. Analogously, vertex D has only negative
dges so it cannot produce errors either (this would also happen if
ll adjacent vertices were connected by positive edges). Vertex C does
ot have any errors because 𝜑′(D) = 4 is not included in the path
𝑚𝑖𝑛(𝜑′(C), 𝜑′(A)) = {3,2,1}. Finally, in the case of vertex E it has zero
rrors, because 𝜑′(D) = 4 is not in the path {5,1}. Therefore, the value
f the objective function for the solution is (𝜑′) = 1.

Finally, we evaluate the embedding 𝜑′ depicted in Fig. 3. Let us
first consider the vertex A. In this case, its positive neighbors are C and
, assigned to vertices 3 and 5, respectively. Then, the paths that 𝜓 ′

ssigns to the positive neighbors of A are 𝑝𝑚𝑖𝑛(𝜑′(A), 𝜑′(C)) = {1,2,3}
and 𝑝𝑚𝑖𝑛(𝜑′(A), 𝜑′(E)) = {5,1}, respectively. Additionally, negative
neighbors are B and D, assigned to vertices 2 and 4, respectively. Since
′(B) = 2 is on the path 𝑝𝑚𝑖𝑛(𝜑′(A), 𝜑′(C)), vertex A has an error,

so (A, 𝜑′) = 1. Similarly, we evaluate the vertices B, C, D, and E,
obtaining no errors in any of them.

It is worth mentioning that vertex B has only one adjacent vertex,
o it cannot produce errors. Analogously, vertex D has only negative
dges so it cannot produce errors either (this would also happen if
ll adjacent vertices were connected by positive edges). Vertex C does
ot have any errors because 𝜑′(D) = 4 is not included in the path
𝑚𝑖𝑛(𝜑′(C), 𝜑′(A)) = {3,2,1}. Finally, in the case of vertex E it has zero
rrors, because 𝜑′(D) = 4 is not in the path {5,1}. Therefore, the value
f the objective function for the solution is (𝜑′) = 1.

3. Literature review

The CMinSA problem was first introduced in 2018 as a decision
problem, aiming to determine whether a given input graph could be
4
Fig. 3. An example of an embedding of 𝐺′ in 𝐻 ′ denoted as (𝜑′ , 𝜓 ′).

embedded in a cycle graph without errors (Benítez et al., 2018). In this
seminal work, the authors demonstrated that an error-free embedding
is possible if the positive edges of the input graph form a circular arc
graph. This type of graph ensures that the vertices form intersecting
arcs, creating a cycle. However, it was not until 2022 that the Cyclic
Minimum Sitting Arrangement was explored as an optimization prob-
lem (Robles et al., 2022). In this study, the objective was to minimize
the number of errors in the embedding, and a Basic Variable Neighbor-
hood Search (BVNS) algorithm (Hansen et al., 2019) was proposed to
ddress the problem. This method was complemented by a constructive

procedure inspired by the properties of circular arc graphs identified by
Benitez (Benítez et al., 2018). The procedure begins by generating a list
of cliques based solely on the positive edges of the input graph. These
cliques are then assigned to consecutive positions in the embedding,
ensuring no errors occur. The vertices within each clique are ordered
by decreasing size and inserted sequentially. To date, these are the most
significant works focusing on the CMinSA.

It is worth mentioning that the CMinSA is closely related to its
linear variant, the MinSA, where the embedding is done on a path host
graph. The MinSA problem can be traced back to 2011, when the Sitting
Arrangement (SA) decision problem was first proposed (Kermarrec and
Thraves, 2011). This problem seeks to determine whether a signed
input graph can be embedded in a path host graph without errors.
Cygan et al. (2012) extended this work by examining the complexity of
the problem. They proved that it is NP-complete to decide if an input
signed graph has a valid 1-dimensional drawing for general graphs
and NP-hard to find the smallest valid dimension for such a drawing.
In addition, they conducted a study similar to Benítez et al. (2018),

M. Robles et al.

h

i
B

e

p

c
h
R

f

T
p
a

P
A

m
i
r
t
t
m
d
m
n
t
g
t

O
i
i

a
w

a

t
h
w

h
p

u
t
h
f

a

T

f
T
(
(
d

m

a
𝑡
t
a
t

Computers and Operations Research 179 (2025) 107034
focusing on specific types of graphs. They found that a complete graph
as a valid 1-dimensional space drawing if the positive edges form an

interval graph, which is analogous to a circular arc graph for a path host
graph. In 2015, the MinSA problem was introduced as an optimization
variant of the SA (Pardo et al., 2015). To tackle this problem, the
authors presented a Greedy Randomized Adaptive Search Procedure
(GRASP) (Resende and Ribeiro, 2016) that combines a greedy random-
zed construction followed by a local search method. Later, in 2020, a
VNS was proposed for the problem (Pardo et al., 2020), which remains

the state-of-the-art method for the MinSA. The literature on MinSA
provides valuable information to define new strategies for the CMinSA.

The relationship between the MinSA and CMinSA problems was
stablished in 2022 (Robles et al., 2022). This work demonstrated the

connection between the two problems and adapted the BVNS algo-
rithm, initially proposed for the MinSA (Pardo et al., 2020), to optimize
the CMinSA. Both MinSA and CMinSA pose significant challenges,
which is made evident due to their NP-hard complexity, that was
roven in Cygan et al. (2012). Therefore, exact algorithms such as

branch and bound/price methods or mathematical models have not
been employed to solve these problems due to their computational
omplexity, leading researchers to utilize heuristic methods. Notably,
euristic methods, such as greedy constructive procedures (Stützle and
uiz, 2018) or local search algorithms (Hansen et al., 2019), have been

crucial to obtain good quality solutions in reasonable computing times
or these problems.

Beyond the foundational work on CMinSA and MinSA, recent years
have seen a growing interest in problems involving graph embeddings.

hese problems, which share similar applications, characteristics, and
roperties with the CMinSA problem, can provide valuable insights
nd techniques for its resolution (Díaz et al., 2002; Pardo et al.,

2015). Among these, we find problems that involve embedding a non-
weighted graph into a cycle host graph, such as the Cyclic Bandwidth
roblem (CBP), the Cyclic Bandwidth Sum Problem (CBS), the Cyclic
ntiBandwidth Problem (CAB), and the Cyclic Cutwidth Minimization

Problem (CCMP).
The CBP aims to minimize the maximum distance between any two

adjacent vertices in the embedding (Lin, 1995), while the CBS aims to
inimize the sum of the distances between any two adjacent vertices

n the embedding (Cavero et al., 2022b). Both problems are closely
elated to the CMinSA problem since, as empirically observed, reducing
he distance between positively connected vertices helps to decrease
he number of errors in the solution. The CAB aims to maximize the
inimum distance between any two adjacent vertices in the embed-
ing (Cavero et al., 2022a). This situation is similar to CMinSA: when
aximizing the distance between negatively connected vertices, the
umber of errors in the solution is reduced. Finally, the CCMP aims
o minimize the congestion of each pair of adjacent vertices in the host
raph. In other words, it tries to avoid locating adjacent vertices of
he input graph far away in the host graph (Cavero et al., 2021). Like

the CBP or the CBS, the CCMP and the CMinSA can be compared in
the way in which adjacent vertices have to be as close as possible.

ne of the main differences between the CMinSA and the previously
ntroduced problems is that none of them have been studied for signed
nput graphs.

4. Algorithmic approach

In this section, we present the methodological background and our
lgorithmic proposal for tackling the CMinSA problem. Specifically,
e propose the use of a Multi-Armed Bandit hyperheuristic which

combines several heuristic procedures for generating and improving
solutions for the problem. The general framework, and the constructive
nd local search procedures are introduced next.
 t

5
4.1. Multi-Armed Bandit hyperheuristic

In this paper, we propose a Multi-Armed Bandit (MAB) hyperheuris-
ic for the CMinSA. To that aim, we briefly introduce the concept of
yperheuristic and the methodological principles behind MAB. Then,
e describe our specific adaptation of the methodology for the CMinSA.

Methodological background
A hyperheuristic operates as a high-level methodology that performs

a search over a space of heuristics, dynamically selecting or designing
low-level heuristics based on the problem studied. The fundamental
mechanism relies on a learning algorithm that processes feedback from
the search process to determine effective combinations of available
euristics and components (Almeida et al., 2020). This approach is
articularly relevant in online hyperheuristic implementations, where

decisions within the high-level search space are informed by contin-
ous feedback from the performance of low-level heuristics during
he search process, thereby managing the selection among various
euristic components with uncertain rewards. Such methodologies are
ormally categorized as selection hyperheuristics (Dokeroglu et al.,

2024), characterized by their dynamic heuristic selection mechanism
t each iteration of the optimization process.

MAB is a reinforcement learning algorithm, that has been used as a
well-established framework in the field of computer science, operations
research, economics, and statistics, since it provides a robust mecha-
nism for decision-making under uncertainty (Bouneffouf et al., 2020;
Lattimore and Szepesvári, 2020; Slivkins, 2019). The ‘‘Multi-Armed
Bandit’’ concept is derived from a gambler’s dilemma of choosing
among multiple slot machines, or ‘‘one-armed bandits’’, each with
uncertain payouts, also denoted as rewards (Clotfelter and Cook, 1993).

he challenge lies in the trade-off between sticking with a machine
that has yielded high payoffs in the past, or exploring other machines
that might offer higher future payoffs (Sutton and Barto, 2018). There
are several variants of the MAB framework. The most relevant is
the classic MAB. This method considers arms with unknown reward
distributions and aims to maximize long-term reward, by identifying
high-reward arms without wasting tries on low-reward arms, thus
minimizing the regret of choosing those low-reward arms. Notable
algorithms for the classic MAB include the Upper Confidence Bound
version 1 (UCB1) (Chu et al., 2011; Li et al., 2010), Epsilon-Greedy
strategy (Kuleshov and Precup, 2014), and the Softmax (Kuleshov and
Precup, 2014).

From an optimization perspective, the core challenge in the MAB
ramework is the trade-off between ‘‘exploration’’ and ‘‘exploitation’’.
hat is, the algorithm must balance the acquisition of new knowledge
exploration) with optimizing decisions based on existing knowledge
exploitation) to maximize the total value over a given time period
ivided into turns (Almeida et al., 2020; Meidani et al., 2022). In

the context of our work on the CMinSA, the MAB framework can be
particularly useful to guide the search process, helping to balance the
exploration of new solutions using different constructive approaches
with the exploitation through local search strategies.

In this research, we tested different variants of the MAB, in an
increasing order of complexity, finally opting for UCB1, since it was the

ost successful one (Chu et al., 2011; Li et al., 2010). UCB1 is a multi-
armed bandit algorithm, also known as ‘‘optimism under uncertainty’’.
This algorithm belongs to the subset of adaptative exploration MAB
methods, which defines lower and upper bounds in order to identify
underperforming arms as soon as possible. These bounds are defined
as 𝑈 𝐶 𝐵𝑡(𝑎) = �̄�(𝑎) + 𝑟𝑡(𝑎) and 𝐿𝐶 𝐵𝑡(𝑎) = �̄�(𝑎) − 𝑟𝑡(𝑎), where �̄�(𝑎) is the
verage reward of the arm 𝑎 and 𝑟𝑡(𝑎) is a confidence radius at turn
. Therefore, the decisions are made using information from previous
urns and a measure of uncertainty or variance. Specifically, the UCB1
lgorithm operates by maintaining only an upper confidence bound for
he expected reward of each arm. This bound is calculated based on

he 𝑈 𝐶 𝐵𝑡(𝑎) formula previously mentioned. The arm with the highest

M. Robles et al.

o

e
e
r
g

b

s
t

(
d
r
w

t
a
d

i
s
a
n
t
n

t

o

i
a
i

1
1
1
1
1
1
1
1

t

c
a

m
w
r

Computers and Operations Research 179 (2025) 107034
upper confidence bound is selected for the next turn. Since the goal
f the CMinSA is to minimize errors (instead of maximizing revenue)

we have to adapt UCB1. Instead of using the upper confidence bound,
we use the equivalent Lower Confidence Bound (LCB). The rest of the
algorithm is adjusted accordingly. Next, we detail the adapted UCB1.

Formally, let us denote 𝑁𝑡(𝑎) as the number of times the arm 𝑎 has
been played up to turn 𝑡. Let 𝑅𝑡,𝑎 denote the reward obtained from
mploying arm 𝑎 at turn 𝑡, where the reward is the objective function
valuation of the solution generated by that arm. Then, the average
eward received from arm 𝑎, from turn 𝑡′ = 1 up to 𝑡, denoted 𝑋𝑡(𝑎), is
iven by:

𝑋𝑡(𝑎) =
∑𝑁𝑡(𝑎)
𝑡′=1 𝑅𝑡′ ,𝑎
𝑁𝑡(𝑎)

. (3)

With this definition, the LCB for arm 𝑎 at turn 𝑡 is then calculated
y:

𝐿𝐶 𝐵𝑡(𝑎) = 𝑋𝑡(𝑎) −
√

2 ln 𝑡
𝑁𝑡(𝑎)

. (4)

The arm selected at turn 𝑡 is the one with the smallest LCB:

𝐴𝑡 = ar g min
𝑎
𝐿𝐶 𝐵𝑡(𝑎). (5)

This ensures that the algorithm explores arms that have not been
played often (since the uncertainty term

√

2 ln 𝑡
𝑁𝑡(𝑎)

is large when 𝑁𝑡(𝑎) is
mall) but also exploits arms that have a high average reward. Note
hat as the initial value of 𝑁𝑡 is 0 for all arms, the previous formula

would provoke a situation where there is a division by zero. To avoid
this drawback, initially all arms are played once in a random order to
have starting information. The logarithmic term ensures that all arms
will be explored infinitely often as 𝑡 goes to infinity, but the rate of
exploration decreases as the total number of turns increases. This allows
the algorithm to automatically converge to the optimal arm while still
maintaining some level of exploration. Therefore, the MAB could be
seen as an optimization problem itself, which aims for minimizing a
regret value over a certain number of decisions.

In this paper, the MAB framework is applied to the field of heuristic
optimization (Burke et al., 2013; Drake et al., 2020), to operate as
a hyperheuristic by providing a systematic approach to address the
uncertainty inherent in heuristic selection.

Algorithmic proposal
In this paper, the proposed MAB is configured with multiple heuris-

tics, each corresponding to an arm of the method, and the best one
is chosen during the runtime. A visual representation showing the
behavior of this proposal is shown in Fig. 4. This flowchart follows the
activity diagram standard described in the Unified Modeling Language
UML) (Jacobson et al., 1999). Consequently, each rectangular element
enotes a distinct task or activity within the process, while diamonds
epresent decision points depending on specific conditions. A rectangle
ith the upper right corner bent represents a comment, and it is related

to specific diagram components using a dotted line.
As it is shown in Fig. 4, three different arms are proposed for

ackling the CMinSA. Each arm consists of a construction phase and
n improvement phase. The construction phase of each arm uses a
ifferent constructive algorithm, denoted as Constructive 1, 2, and 3,

to generate a new initial solution constructed from scratch at each
teration. The solutions generated by arms 1 and 2 then undergo a sub-
equent local search. Finally, the resulting solutions from all three arms
re improved using a shared improvement procedure. It is important to
ote that only after the improvement phase is the result used to update
he LCB values, which will determine the selection of the arm in the
ext iteration.

We complement the previous description with the pseudocode for
he UCB1 method reported in Algorithm 1. The algorithm starts by

setting the running time (𝑡𝑖𝑚𝑒) and the number of turns (𝑡) to 0 (steps
1 and 2). Then it initializes the rewards (step 3) and the LCBs (step 4)
 o

6
for all arms by running each once, increasing the value of 𝑡 in one unit
for each arm run. Then, the best solution is set to an empty solution
(step 5).

In the main loop (steps 6–16), the algorithm selects the arm with
the lowest LCB (step 7). Then, it constructs a solution using the selected
arm (step 8) and improves the solution using the improving phase (step
9). Specifically, the construction phase (step 8) is the one that differs
among arms, differing on how solution construction is done. On the
ther hand, the improvement phase (step 9) is the same for all arms. If

the improved solution is better than the best solution, the best solution
s updated (steps 10 and 11). Finally, the average reward of that arm
nd the LCBs for all arms are updated, and the number of played turns
s incremented (steps 13, 14 and 15).

Finally, the main loop ends when the elapsed time reaches the
maximum time (step 16). The best solution is then returned (step 17).

Algorithm 1 Multi-Armed Bandit — UCB1
Input: Maximum time 𝑇 , input graph 𝐺
1: 𝑡𝑖𝑚𝑒 = 0
2: 𝑡 = 0 {Set current turn}
3: Initialize rewards 𝑋𝑡(𝑎) for all arms
4: Initialize 𝐿𝐶 𝐵𝑡(𝑎) for all arms
5: 𝜑∗ = ∅ {Initialize best solution}
6: while 𝑡𝑖𝑚𝑒 < 𝑇 do
7: 𝑎 = ar g min𝑎 𝐿𝐶 𝐵𝑡(𝑎) {Select an arm 𝑎}
8: 𝜑′ = ConstructivePhase(𝐺 , 𝑎) {Construction of solution 𝜑′

using arm 𝑎}
9: 𝜑′′ = ImprovementPhase(𝜑′) {Improvement of solution,

common to all arms}
0: if (𝜑′′) < (𝜑∗) then
1: 𝜑∗ = 𝜑′′

2: end if
3: Update reward 𝑋𝑡(𝑎) for arm 𝑎
4: Update lower confidence bounds 𝐿𝐶 𝐵𝑡(𝑎) for all arms
5: 𝑡 = 𝑡 + 1
6: end while
7: return 𝜑∗ {Best solution}

As a final remark, the method proposed in this paper is a selec-
ion hyperheuristic (Dokeroglu et al., 2024) since, at each step, it

dynamically selects a heuristic, generates a solution and evaluates its
performance. This frequent use of the best heuristic results in high-
quality solutions. Specifically, the UCB1 algorithm chooses the best
arm (constructive or constructive followed by local search) among
those available. Note that this strategy could also be extended to the
improvement phase. However, in this case, the experiment performed
has shown it to be unnecessary considering the local search procedures
proposed.

In Sections 4.2 and 4.3, we provide a detailed explanation of the
onstructive and improvement heuristics, respectively, of the UCB1
lgorithm.

4.2. Construction phase

This section introduces a construction phase for providing initial
solutions to our MAB algorithm. Particularly, the constructive pro-
cedure introduced in this proposal has been inspired by the GRASP

ethodology (Feo and Resende, 1995; Resende and Ribeiro, 2010),
hich can be easily tailored for the integration within MAB. Next, we

eview the methodological background of GRASP and then, we describe
ur specific proposal.

M. Robles et al. Computers and Operations Research 179 (2025) 107034
Fig. 4. UML activity diagram representing the MAB algorithm.
Methodological background
We focus our attention in the construction phase of GRASP method-

ology, which introduces a balance between greediness and randomness
in the construction phase. Specifically, solutions are constructed from
scratch by adding elements to the solution one by one. In order to select
the next element to be added to the solution, a greedy criterion 𝑔 is used
to evaluate the candidate elements, which are stored in a Candidate
List (CL). However, instead of adding the element which maximizes
the greedy criterion, a percentage of the best elements, determined by a
search parameter 𝛼, are selected conforming a Restricted Candidate List
(RCL), and one of them is chosen at random from the list. Therefore, the
parameter 𝛼 ∈ [0,1], which must be tuned experimentally, balances the
greediness/randomness of the procedure, i.e., in this case, higher values
of 𝛼 increase randomness, while lower values of 𝛼 favor greediness.

Algorithm 2 outlines the constructive algorithm proposed. It ini-
tializes an empty solution (step 1) and generates the CL of elements
from the input graph 𝐺 (step 2). Then it evaluates the candidates
using a greedy criterion 𝑔 to obtain the maximum and the minimum
values (steps 4 and 5) respectively. These values are used to compute
a threshold (𝑡ℎ, in step 6) using 𝛼. Based on this threshold, it generates
an RCL, which includes only those candidates 𝑣, whose evaluation of
𝑔, denoted as 𝑔(𝑣), met the condition 𝑔min ≤ 𝑔(𝑣) ≤ 𝑡ℎ (step 7). Finally,
a random element is selected from the RCL (step 8), and is added to
the solution being constructed (step 9). The process continues until a
solution is completed and then returned (step 12).

Algorithmic proposal
In this paper, we propose three different constructive procedures

based on GRASP. The main difference between each constructive is the
greedy criterion 𝑔 used to evaluate the candidates from the input graph,
to be added to the solution at each step (see steps 4 and 5 of Algorithm
2). The specific greedy criterion 𝑔, denoted as 𝑔1, 𝑔2, and 𝑔3, will be
further described in the following sections.

Given a vertex from the input graph selected with any of the pro-
posed criteria, then it has to be assigned to a vertex of the host graph.
The strategy we follow to perform this assignment is shared by all the
7
Algorithm 2 Constructive algorithm
Input: Parameter 𝛼, greedy criteria 𝑔, input graph 𝐺
1: 𝜑′ = ∅ {Initialize empty solution}
2: 𝐶 𝐿 = GenerateCandidateList(𝐺)
3: while 𝜑′ is not complete do
4: 𝑔max = ar g max𝑣 𝑔(𝑣)
5: 𝑔min = ar g min𝑣 𝑔(𝑣)
6: 𝑡ℎ = 𝑔min + 𝛼 ⋅ (𝑔max − 𝑔min)
7: 𝑅𝐶 𝐿 = GenerateRestrictedCandidateList(𝐶 𝐿, 𝑡ℎ)
8: 𝑣 = GetRandomCandidate(𝑅𝐶 𝐿)
9: 𝜑′ = 𝜑′ ∪ {𝑣} {Add a random candidate from RCL}

10: 𝐶 𝐿 = UpdateCandidateList(𝐶 𝐿, 𝑣)
11: end while
12: return 𝜑′

proposed constructive methods. In particular, in the first assignment,
we randomly select a host vertex. Then, each candidate vertex from the
input graph is assigned to a host vertex considering only the vertices
which are adjacent to an already assigned host vertex. Therefore, since
the host graph is a cycle, there are two possible host vertices at each
step, except for the first iteration (all host vertices are available) and
for the last iteration (there will be only one remaining host vertex
available). For the rest of the iterations, we try the embedding in both
possible host vertices and select the one which produces fewer error,
with ties broken at random. Next, we review the three constructive
procedures proposed, which compose the MAB hyperheuristic.

Constructive 1: Cliques generation. This approach is based on the
methodology initially proposed in Pardo et al. (2020). Particularly, it
uses the concept of cliques (i.e., a subset of vertices within a graph
where every pair of vertices is adjacent) as candidate elements for the
constructive procedure in Algorithm 2. This updated method tries to
generate as many cliques as possible from the input graph, within a
specified time limit, considering only the vertices connected by positive
edges. To that end, we use the Bron–Kerbosch algorithm (Conte,

M. Robles et al.

c
t
t
I
e

c
a

a
c

c
t

r
g
t

𝐶

t

i
i
s

b

t
i

u

𝐶
e

o
𝑂

c
n

c
m
s

c
c
p
t
o
i
c

𝑂
t
b
c
t

Computers and Operations Research 179 (2025) 107034
2013). Regarding the time limit, it is worth mentioning that, for large
instances constructing all possible cliques is not reasonable due to time
onstraints. Also, the main memory of the computer would run out due
o the large number of cliques, thus stopping the execution. To solve
hese problems, we apply a time limit to the Bron–Kerbosch algorithm.
n this case, since all vertices in a clique are connected by positive
dges, they can be embedded in consecutive adjacent host vertices in

the solution, without producing any error among them. Therefore, in
this constructive procedure, the candidate elements forming the CL (see
step 2 and step 10 in Algorithm 2) are groups of vertices (i.e., cliques)
instead of just simple vertices. Notice that, when performing multiple
iterations that involve different constructions, it is not necessary to
alculate the cliques again, since they can be computed once a priori
nd stored for future iterations.

The greedy criterion 𝑔1, provided to this first constructive procedure
s an input parameter, evaluates each candidate clique according to its
ardinality, with the objective of adding the cliques to the solution in

descending order of size. Formally, let 𝑞 be a clique, and let 𝑔1(𝑞) =
−|𝑞|. Notably, if a vertex is part of multiple cliques, when a clique
ontaining it is added to the solution, the vertex has to be removed from
he other cliques in the CL. This implies the update of the CL (see step

10 in Algorithm 2) after each insertion. Additionally, it is important to
emark that the vertices within each clique are embedded in the host
raph following a random order. Regarding the algorithmic complexity,
his method has a worst-case scenario of 𝑂(𝐵𝐾 +𝐶 ⋅ |𝑉𝐺|

3), where 𝐵𝐾 is
the complexity of the initial Bron–Kerbosch algorithm execution and

represents the maximum number of cliques of the graph for any
input graph. |𝑉𝐺|3 is the complexity of the steps required for adding
each selected clique to the partial solution under construction and
evaluate the associated objective function. The initial Bron–Kerbosch
algorithm execution complexity is 𝑂(3|𝑉𝐺 |∕3) (Tomita et al., 2006) and
he number of cliques is also 3|𝑉𝐺 |∕3 (Moon and Moser, 1965), therefore,

the resulting complexity would be 𝑂(3|𝑉𝐺 |∕3 + 3|𝑉𝐺 |∕3 ⋅ |𝑉𝐺|
3), which

can be simplified to just 𝑂(3|𝑉𝐺 |∕3 ⋅ |𝑉𝐺|
3). However, it is important

to note that, in practice, we let the Bron–Kerbosch algorithm run for
a short period of time and, therefore the number of cliques obtained
is relatively small, which makes this method suitable to be used in a
reduced time frame.

Subsequently, once a feasible solution has been constructed, a local
search procedure is conducted. This search involves swapping entire
cliques within the solution while preserving the internal order of the
embedded vertices.

Constructive 2: Community detection. This method refines Constructive
1, aiming to reduce the computational overhead linked to the Bron–
Kerbosch algorithm for clique generation. Instead of searching for
cliques, this approach adopts a community detection method to cluster
vertices within the input graph. We employed a tailored variant of the
Louvain method (Que et al., 2015), known for its rapid and scalable
dentification of communities in large networks. In this case, a previous
mplementation used to generate the communities has been adapted for
igned graphs (Esmailian and Jalili, 2015).

This algorithm diverges from the previous constructive method
y selecting the community that introduces the fewest errors in the

solution when embedding its vertices in the host graph. In formal terms,
the evaluation function 𝑔2 assesses a candidate community, designated
as 𝑜, in relation to a given incomplete solution, represented by the
function 𝑔2(𝜑′

1, 𝑜) = (𝜑′
2) wherein 𝜑′

2 represents the solution after
he addition of community 𝑜 to the solution 𝜑′

1, and the function
s defined in Eq. (1). As with Constructive 1, the vertices within each

selected community are embedded in the host graph in a random order.
Again, to select the host vertex to be assigned in each iteration, we

sed the same strategy explained in the description of Constructive 1.
The algorithmic complexity for this constructive method is 𝑂(𝐿 +
⋅ |𝑉𝐺|

3), where 𝐿 is the complexity of the Louvain method, used to
xtract the communities, 𝐶 represents the number of communities, and
 p

8
|𝑉𝐺|
3 represents the complexity of evaluating the objective function for

each community. The complexity of the Louvain method is 𝑂(|𝑉𝐺| ⋅
𝑙 𝑜𝑔(|𝑉𝐺|)) based on the efficiency shown on large networks (Blondel
et al., 2008), and the number of communities is at most |𝑉𝐺| non-
verlapping sets of vertices. Therefore, the resulting complexity is
(|𝑉𝐺| ⋅ 𝑙 𝑜𝑔(|𝑉𝐺|) + |𝑉𝐺| ⋅ |𝑉𝐺|

3), which is simplified to 𝑂(|𝑉𝐺|
4). In

practice, as the number of communities 𝐶 increases, the size of each
community decreases, reducing the computational time. If we compare
the algorithmic complexity of Constructive 1 and Constructive 2, we
observe that the complexity of Constructive 2 is smaller than the
omplexity of Constructive 1. This is in part due to the fact that the
umber of cliques greatly exceeds the number of communities.

Subsequently, once a feasible solution has been constructed, a lo-
al search procedure is conducted. This search involves alternating
ovements of swap and insert involving entire communities within the

olution, while preserving the internal order of the vertices embedded.

Constructive 3: Edge-based vertex selection. This constructive method
distinguishes itself from the previous ones in two key aspects: the
omposition of the CL and the greedy function used to evaluate the
andidate elements. Unlike the previous variants, where the CL com-
rised groups of vertices (cliques or communities) in this variant, in
his case the CL consists of individual vertices. Initially, it is composed
f all vertices of the input graph (𝑣 ∈ 𝑉𝐺). Consequently, the solution
s constructed by adding candidates to the solution one by one, and a
andidate is a vertex awaiting to be embedded in the host graph.

In this case, the greedy function used to evaluate candidate vertices,
denoted as 𝑔3, is based on the idea of quantifying the priority of incor-
porating a vertex into the solution under construction. This concept was
initially proposed by McAllister for the Minimum Linear Arrangement
problem (Mcallister, 1999) and has since been used to tackle various
other GLP variants (Cavero et al., 2022b, 2021). In this work, we have
adapted it to consider a signed input graph.

Before defining 𝑔3, let us introduce the following notation: given
a vertex 𝑢 ∈ CL, we denote as 𝐴+(𝑢) and 𝐴−(𝑢) to the sets of vertices
containing those adjacent vertices to 𝑢, already assigned to the solution,
which are connected by a positive or a negative edge, respectively.
Similarly, 𝑈+(𝑢) and 𝑈−(𝑢) contain those adjacent vertices to 𝑢 awaiting
to be assigned to the solution, connected by a positive or negative edge,
respectively. Formally,

• 𝐴+(𝑢) = {𝑣 ∈ 𝑉𝐺 ∶ (𝑢, 𝑣) ∈ 𝐸+
𝐺 ∧ 𝑣 ∉ CL},

• 𝑈+(𝑢) = {𝑣 ∈ 𝑉𝐺 ∶ (𝑢, 𝑣) ∈ 𝐸+
𝐺 ∧ 𝑣 ∈ CL},

• 𝐴−(𝑢) = {𝑣 ∈ 𝑉𝐺 ∶ (𝑢, 𝑣) ∈ 𝐸−
𝐺 ∧ 𝑣 ∉ CL},

• 𝑈−(𝑢) = {𝑣 ∈ 𝑉𝐺 ∶ (𝑢, 𝑣) ∈ 𝐸−
𝐺 ∧ 𝑣 ∈ CL}.

Then, the function 𝑔3 is defined as a linear combination of the four
criteria as follows:

𝑔3(𝜑′, 𝑢) = −𝑤1 ∗ |𝐴+(𝑢)| +𝑤2 ∗ |𝑈+(𝑢)| +𝑤3 ∗ |𝐴−(𝑢)| −𝑤4 ∗ |𝑈−(𝑢)|,
(6)

where 𝑤1, 𝑤2, 𝑤3, 𝑤4 are search parameters that weight the importance
of having more/less positive/negative adjacent vertices in the current
solution. The value of each parameter needs to be tuned experimentally
within the range [0,1], such that 𝑤1 +𝑤2 +𝑤3 +𝑤4 = 1.

Notice that in this case no specific local search is applied after
the construction step since, in contrast to the previous constructive
methods, it is based on single vertices instead of group of vertices.

In terms of time complexity, this procedure has a complexity of
(|𝑉𝐺|

3). The selected vertex is evaluated with the objective function
wice, resulting in a complexity of 𝑂(|𝑉𝐺|2), and all vertices must
e selected once, which has a complexity of 𝑂(|𝑉𝐺|). Comparing the
omplexity of the three proposed constructive procedures, we observe
hat the complexity of Constructive 3 is smaller than the other two

roposals.

M. Robles et al.

g
p
(
f
b

T
t
V

a
e

l
t
i
t

a
𝑁
i
n
t

n
n

o
i
t

t

s
T
v

t

w

Computers and Operations Research 179 (2025) 107034
4.3. Improvement phase

This section presents the improvement phase within our MAB al-
orithm. Particularly, the improvement procedure introduced in this
roposal has been inspired by the Variable Neighborhood Descent
VND) methodology (Hansen et al., 2019), which can be easily tailored
or the integration within MAB. Next, we review the methodological
ackground of VND and describe our specific proposal.

Methodological background
The improvement phase of our proposal is based on the concept of

local search procedure, which starts the search from an initial feasible
solution, previously obtained from the construction phase. A local
search method explores a particular neighborhood looking for a local
optimum, which is the best solution in that neighborhood. During the
search, the procedure performs deterministic movements in the current
solution which conduct to a neighboring solution. Then, that solution
is evaluated and, when an improvement is found, the method chooses
between immediate restart of the search process from the new solution
found or defer the start of a new local search upon finding the best
solution in the current iteration. This leads the method to the two well-
known exploration strategies: first improvement and best improvement,
respectively.

One of the most popular and effective metaheuristics used to com-
bine multiple local search procedures is VND (Hansen et al., 2019;
Mladenović and Hansen, 1997). This methodology systematically
changes the neighborhood structure within a local search algorithm.

he basic idea is to explore the increasingly distant neighborhoods of
he current solution, in the hope of finding an improving solution. The
ND algorithm alternates between different neighborhood structures,

allowing the method to escape from local optima. The procedure
starts from a feasible solution and a set of predefined neighborhood
structures. Iteratively, VND selects a solution in the current neighbor-
hood. If an improving solution is found, the algorithm updates the
current solution and starts the search again with the first neighborhood.
Otherwise, it moves to the next neighborhood in the sequence. The
process continues until no further improvement can be found in any of
the predefined neighborhoods.

In Algorithm 3, we detail the proposed VND, which takes an initial
solution 𝜑 and multiple neighborhoods as inputs. The neighborhoods
are denoted as 𝑁𝑘, where in this case, 𝑘 = {1,2}. At the start of
the execution, the best current solution, 𝜑∗, is set to the initial input
solution 𝜑 (step 1) and the current neighborhood 𝑘 is initialized by
setting 𝑘 = 1 (step 2). Then, an iterative process is started, in which
ll the provided neighborhoods are explored with the objective of
nhancing the quality of the solution (steps 3 to 11). Within this

process, in the first iteration, the algorithm examines the neighborhood
𝑁1 for the solution 𝜑∗ by running a local search method (step 4). The
ocal search method returns a local optimum denoted as 𝜑′. Then, if
he new local optimum is better than the best solution found, the latter
s updated, starting the subsequent explorations from this solution, and
he neighborhood 𝑘 is restarted to the first one (steps 5 to 7). However,

when no improvement is found, the procedure moves to the next
neighborhood to be explored by increasing the value of 𝑘 (step 9). The
lgorithm continues exploring neighborhoods across those provided in
𝑘, iterating through them, and updating 𝜑∗ whenever a better solution

s discovered in any neighborhood. This iterative process persists until
o further enhancements can be made in any neighborhood, indicating
he termination of the algorithm (step 11). The best solution found

throughout this process, 𝜑∗, is a local optimum with respect to all the
neighborhood structures explored. Then, this solution is returned by the
method (step 12).
 s

9
Algorithm 3 Improvement Phase: VND
Input: Starting solution 𝜑, multiple neighborhoods 𝑁𝑘
1: 𝜑∗ = 𝜑 {Assign the best solution}
2: 𝑘 = 1
3: while 𝑘 ≤ |𝑁𝑘| do
4: 𝜑′ = LocalSearch(𝑁𝑘, 𝜑∗)
5: if (𝜑′) < (𝜑∗) then
6: 𝜑∗ = 𝜑′ {Update the best solution}
7: 𝑘 = 1
8: else
9: 𝑘 = 𝑘 + 1

10: end if
11: end while
12: return 𝜑∗

Algorithmic proposal
In this paper, we propose a VND procedure which explores two

eighborhoods: the swap neighborhood, denoted as 𝑁𝑆 , and the insert
eighborhood, denoted as 𝑁𝐼 .

Notice that, the decisions of which neighborhood explore first (𝑁𝑆
r 𝑁𝐼) and the selection of the improvement strategy (first or best
mprovement) has been empirically determined (see Section 5.2). Par-
icularly, the method is configured to explore 𝑁𝑆 first and 𝑁𝐼 later,

both using a first improvement strategy.
The swap neighborhood, denoted by 𝑁𝑆 (𝜑), comprises the set of

solutions achievable from 𝜑 through the use of the swap move. The size
of the swap neighborhood is 𝑛⋅(𝑛−1)

2 , being 𝑛 the number of vertices of
the input graph.

The swap move involves exchanging the assignments of two input
vertices in the solution. Formally, given 𝑢, 𝑣 ∈ 𝑉𝐺 and 𝑥, 𝑦 ∈ 𝑉𝐻 such
hat 𝜑(𝑢) = 𝑥, and 𝜑(𝑣) = 𝑦, the embedding after the swap operation

results in 𝜑(𝑢) = 𝑦, and 𝜑(𝑣) = 𝑥.
Let us illustrate the swap move with an example. Taking into

account the embedding 𝜑′
1 from Fig. 5, where 𝜑′

1(A) = 1, 𝜑′
1(B) = 2,

𝜑′
1(C) = 3, 𝜑′

1(D) = 4 and 𝜑′
1(E) = 5, a swap between vertices A and C

will update the assignations 𝜑′
2(A) = 3 and 𝜑′

2(C) = 1. Notice that only
the values of 𝜑′

1(A) and 𝜑′
1(C) have been modified in 𝜑′

2, remaining the
rest of assignments unchanged.

The insert neighborhood, denoted as 𝑁𝐼 (𝜑), encompasses all the
olutions achievable from the solution 𝜑 by applying an insert move.
he size of the insert neighborhood is 𝑛 ⋅ (𝑛− 1), being 𝑛 the number of
ertices of the input graph.

The insert move involves reassigning an input vertex embedded in
the solution 𝜑 into a different host vertex. This might imply a chain
of reassignment moves of some of the input vertices to make room for
he new assignation. Particularly, this can be performed following a

clockwise or counterclockwise criterion, depending on the number of
reassignments needed with each criterion (i.e., the fewer, the better,

ith ties broken at random).
Let us illustrate the insert move with an example. Considering the

embedding 𝜑′
1 from Fig. 6, with 𝜑′

1(A) = 1, 𝜑′
1(B) = 2, 𝜑′

1(C) = 3,
𝜑′

1(D) = 4, and 𝜑′
1(E) = 5, inserting vertex A at host vertex 3 involves

a chain of swap moves starting with a swap between A and B, and
followed by a swap between A and C. Therefore, the obtained solution
𝜑′

3 after the move, would update only the assignations 𝜑′
3(A) = 3,

𝜑′
3(B) = 1, and 𝜑′

3(C) = 2, remaining the rest of the assignations
unchanged.

Notice, that the swap and the insert moves have been defined
using vertices, but they can also be used over groups of vertices
(i.e., cliques or communities). In fact, this adaptation has been used af-
ter the constructive methods 1 and 2, as a post-processing improvement
phase.

To complement the previous procedure we propose two additional
trategies: a reduction of the neighborhood traversed by the local

M. Robles et al.

t

a

s
t
f
i
i

Computers and Operations Research 179 (2025) 107034
Fig. 5. Example of an embedding 𝜑′ and the resultant embedding 𝜑′ obtained after swap of vertices A and C.
1 2
Fig. 6. Example of an embedding 𝜑′
1 and the resultant embedding 𝜑′

3 obtained after insert of vertex A in 3.
p
o
t
t
w

e

t

search method, exploring only the most promising moves, and a fac-
torization for the evaluation of the objective function, which avoids
making unnecessary calculations.

The improving phase is usually the most time-consuming optimiza-
ion procedure. In order to perform an efficient exploration of the

search space, heuristic algorithms can be designed so that the size of
 particular neighborhood is affordable in terms of the time needed

to explore it. Inspired by the strategy followed by the Constructive 1,
those input vertices connected by positive edges are usually close to
each other in the embedding, in high-quality solutions. Therefore, for
any input vertex 𝑢, we can reduce the neighborhood of either swap or
insert operations, by considering only its positively connected adjacent
vertices. Particularly, for each input vertex 𝑣, such that (𝑢, 𝑣) ∈ 𝐸+

𝐺 ,
two host vertices (i.e., those adjacent to the host vertex where 𝑣 is
embedded) are candidates for the improvement operation. Therefore,
the use of the reduced neighborhood is based on evaluating only a
few promising movements which results in a faster convergence to a
local minimum. The main inconvenience is that by evaluating only the
promising movements we skip movements that may not look promising
at the current step of the heuristic procedure but might result in
better solutions in latter iterations. This inconvenience is outweighed
by the great reduction of the neighborhood and the improvement in the
convergence speed.

The second proposed strategy is an efficient way to evaluate the
objective function of a solution after a move. This is, instead of eval-
uating a solution from scratch, an update of the value of the objective
function is performed. To do so, we exclusively evaluate the vertices
affected by the move, encompassing the moved vertex and its adjacent
ones, while the error of the remaining vertices remains unaltered.
Additionally, we avoid redundant evaluations by excluding vertices
olely possessing positive or negative edges, as they cannot contribute
o the total number of errors of the solution. Notice that, this is valid
or either the swap or the insert moves. For instance, in the embedding
llustrated in Fig. 3, the number of errors of C does not change (i.e., it
s zero) after any move since it is only connected by a positive edge.
10
Similarly, this situation also happens in the case of vertices B and D,
which are only connected by negative edges. In the case of vertex E,
if it is embedded into another vertex, then its number of errors should
be updated, together with its adjacent ones (D and A). Since D does
not change, then only errors from E and A need to be recomputed. In
order to efficiently update the value of the objective function after a
move, we store the contribution to the objective function of each vertex
separately. Therefore, only the contribution of the vertices affected by
the move is updated. It is worth mentioning that from a theoretical
perspective, the complexity of exploring a neighborhood based on
either the swap or the insert movements remains unchanged whether
the evaluation of the objective function is fully performed or just
updated with the advanced strategy. However, in practice, due the
sparsity of many instances, performing the advanced evaluation results
in a significant reduction in computational time for both swap and
insert moves with respect to perform a fully evaluation, as we illustrate
in the experimental Section 5.2.

5. Experimental results

In this section, we present our experimental results, evaluating the
erformance of our algorithmic proposals and comparing it to the state-
f-the-art methods. It is important to note that all algorithms, including
hose in the state of the art, have been implemented in Java 17 and all
he experiments have been run in an Intel Xeon Gold 6226R 2.90 GHz
ith 119 GB RAM.

Particularly, in Section 5.1, we outline the instances used in the
xperiments. In Section 5.2, we detail the preliminary experiments

devoted to tune the parameters of our algorithms and determining
our best algorithmic configuration. Finally, in Section 5.3 we present
he comparisons between our best proposal and the best previous

state-of-the-art method.

M. Robles et al.

a
t
t
r
M
c
s
3
i
a

o
s

r
(
a
p

t
|

a
t
h
s

c
M
w
w
e
e
f
r
a
I

b
s
c

Computers and Operations Research 179 (2025) 107034
Table 1
Characteristics of the sets of instances.
Set name #instances #vertices #edges

Complete 108 [10, 230] [45, 26 335]
Interval 117 [10, 250] [6, 26 281]
Random 117 [10, 250] [9, 24 900]
Real cases 14 [16, 5000] [58, 29 630]

5.1. Instances

In this study, we used three instance sets derived from the liter-
ture and a new instance set derived from real scenarios, making a
otal of 356 instances. The instance sets from the literature consist of
hree different types of graphs (complete graphs, interval graphs, and
andom graphs) and they have been drawn from previous research on
inSA and CMinSA (Pardo et al., 2020). These groups of instances

omplement each other by exhibiting diverse graph structures along-
ide varying edge density and proportions of negative edges, totaling
42 instances. In addition, we propose the inclusion of a new set of
nstances derived from real-world instances in social network graphs
nd related fields, totaling 14 new instances. In Table 1, we summarize

the main characteristics of each group of instances as well as the
number of instances per group.

From the previous instances available, we have selected a subset
f 81 representative instances for preliminary experiments, using the
election method proposed in Martín-Santamaría et al. (2024).

All the instances, including those from the preliminary set have been
made available at GitHub.1

5.2. Preliminary experiments

This section presents the preliminary tests conducted to fine-tune
the parameters of our algorithms, but also to determine the best variant
among our proposals, and to illustrate the performance of some of the
advanced strategies.

Parameter setting
We start our preliminary experimentation by adjusting the param-

eters of the constructive procedures proposed in Section 4.2. Particu-
larly:

– The alpha parameter (𝛼), which is common to the three construc-
tive procedures, determines the balance between greediness and
randomness of each constructive method.

– The time limit parameter of the Bron–Kerbosch algorithm, which
generates the cliques used in Constructive 1.

– The resolution parameter, relevant to Constructive 2, which reg-
ulates the size of the clusters such that the larger the value, the
larger the size of the resulting clusters.

– Finally, the parameters 𝑤1, 𝑤2, 𝑤3, and 𝑤4, which are relevant
weights for Constructive 3, determine the percentages of positive
or negative adjacent vertices that are already in the solution or
waiting to be embedded.

All these parameters have been tailored using the optimization
capabilities of irace, except for the time limit of the Bron–Kerbosch
algorithm. This parameter has been empirically set to 2 seconds to find
a balance between solution quality, CPU time, and RAM consumption.

Specifically, in the case of the Constructive 1 (Cliques), the pa-
ameter 𝛼 was empirically set by irace to 0.30. In the Constructive 2
Community-Based), irace determined a value of 0.05 for 𝛼, indicating
 predominantly greedy approach with minimal randomness, accom-
anied by a resolution of 0.8. Finally, in the case of Constructive 3

1 https://github.com/GRAFO-URJC/MAB-CMinSA/tree/main/instances.
11
Table 2
Final value adjusted for the parameters of each constructive.
Constructive Value for each parameter
Constructive 1 𝛼: 0.3

Time limit for cliques search: 2 s
Constructive 2 𝛼: 0.05

Resolution: 0.8

Constructive 3
𝛼: 0.4
𝑤1: 0.0
𝑤2: 0.0
𝑤3: 0.5
𝑤4: 0.5

(Edge-Based Vertex Selection), irace determined the best value for 𝛼
to 0.4 and 𝑤1 = 0, 𝑤2 = 0, 𝑤3 = 0.5, and 𝑤4 = 0.5. Therefore,
he resulting greedy function for this variant is defined as: 𝑔3(𝜑′, 𝑢) =
𝐴−(𝑢)|−|𝑈−(𝑢)|. This new expression avoids the vertices with negatives
djacent vertices already assigned in the solution, and instead priori-
izes those which have a big amount of negative adjacent vertices that
ave not been assigned yet. The final adjusted parameter values are
ummarized in Table 2.

Subsequently, we employed irace to determine the configuration
of the improvement phase. This phase is performed using VND and
therefore the order for the exploration of the neighborhoods must be
determined together with the exploration strategy (first or best improve-
ment). Specifically, a random solution was provided to irace to start the
search. It concluded that the best order entailed to explore the swap
neighborhood first, and then the insert neighborhood. Moreover, both
neighborhoods should be traversed utilizing a first-improving strategy.

Comparison of the performance of MAB arms
With both the constructive and the improvement phases already

onfigured, we can now combine them into a complete arm under the
AB methodology, which first generates a greedy-randomized solution
ith a constructive procedure based on GRASP and then improves it
ith a VND method. First, we evaluate the individual performance of
ach configuration for different sets of instances. To that aim we run
ach configuration independently for 100 iterations with a time limit
ixed to 300 seconds. Furthermore, we have also included an additional
ow, to observe the performance of the MAB. The results obtained
re reported in Table 3, segmented by group of instances (Complete,
nterval, Random, and all the instances in the preliminary set). In this

table we report three metrics: the average objective function value
(Avg.); the average total execution runtime in seconds required by each
method (CPUt (s)); and the number of best solutions of the experiment
(#Best). Notice that the maximum CPUt(s) per instance is bounded.
However, if the search process finds a solution with zero errors it halts
the execution since the solution found is already optimal.

In view of the results reported in Table 3, we can identify that no
constructive method clearly stands out as the best for all groups of
instances, which motivates the use of a combination of them. When
analyzing and comparing each arm with respect to the MAB for all
preliminary instances, we observe that MAB-based approach achieves
the best average objective function value (71 825.52) while requiring
slightly more computational time. This is mainly due to the fact that in
the first iteration it needs to run all arms once. Notice that the MAB
reaches the best solution in 55 out of 81 instances (68% of cases),
demonstrating superior performance in solution quality.

It is worth noting that although the MAB demonstrates superior
performance compared to the individual methods, this behavior can
e partially attributed to the non-deterministic nature of the con-
tructive procedures. From a theoretical perspective, given sufficient
omputational time and considering average behavior, the MAB should

consistently achieve solutions at least as good as those obtained by

each of its arms when executed independently. This is because the

https://github.com/GRAFO-URJC/MAB-CMinSA/tree/main/instances

M. Robles et al. Computers and Operations Research 179 (2025) 107034
Table 3
Results obtained by different configurations of GRASP on the preliminary instances.
Instance set Configuration Avg. CPUt (s) #Best

Complete (27)

Constructive 1 + VND 166 940.96 208.73 17
Constructive 2 + VND 167 550.74 261.03 4
Constructive 3 + VND 167 202.33 216.20 11

MAB 166 858.56 309.44 16

Interval (27)

Constructive 1 + VND 590.07 112.52 23
Constructive 2 + VND 118.04 99.44 24
Constructive 3 + VND 468.15 135.78 19

MAB 237.26 101.15 22

Random (27)

Constructive 1 + VND 48 348.48 208.75 10
Constructive 2 + VND 48 676.81 273.40 4
Constructive 3 + VND 48 459.85 210.54 8

MAB 48 380.74 282.96 17

All instances (81)

Constructive 1 + VND 71 959.84 176.67 50
Constructive 2 + VND 72 115.20 211.29 32
Constructive 3 + VND 72 043.44 187.51 38

MAB 71 825.52 231.18 55

learning mechanism of MAB should ideally identify and exploit the
most effective method for each instance type while maintaining the
ability to explore alternative strategies.

To further validate our proposal, we conducted an analysis of the
contribution of each arm and the associated coordination mechanism
within MAB algorithm during the search process. The experiment con-
sisted of executing the MAB for a maximum of 25 iterations while
recording three key elements: the selected arm, the quality of the
solution obtained at each iteration, and the quality of the best solution
found during the process.

Fig. 7 illustrates the results obtained during the search process for
three different and representative instances, one per set of instances. In
particular, the solid green line depicts the MAB convergence trajectory,
representing the best solution found up to that iteration. The blue
dashed line shows the actual solution quality obtained at each specific
iteration. To distinguish between arms, we employed different markers:
circles for arm 1, squares for arm 2, and triangles for arm 3.

In Fig. 7(a), the experimental results reveal an interesting behav-
ioral pattern of the MAB algorithm. During the initial phase (iterations
1 to 3), the algorithm exhibits a clear exploration strategy by testing
different arms. Arm 2 (square) demonstrates superior performance
early on, leading to its selection in the subsequent three iterations.
The algorithm then diversifies the search by activating arm 1, which
discovers an improved solution and consequently remains active for the
following two iterations. This alternating pattern between exploration
(switching arms) and exploitation (maintaining the same arm) persists
until the algorithm ultimately converges on arm 3, which proves to be
the most effective choice for obtaining a high-quality solution.

A similar coordination pattern is observed in Fig. 7(b), which
presents results for another representative instance from our prelimi-
nary test set.

Finally, Fig. 7(c) illustrates a different behavioral pattern, highlight-
ing the adaptability of MAB to vary depending on the characteristics
of the instance. In this case, the algorithm quickly identifies arm 3 as
ineffective for solving the given instance and excludes it from further
consideration in the following iterations. The resulting search process
alternates between arms 1 and 2, as both demonstrate comparable
effectiveness without showing either a clear dominance.

Contribution of the advanced strategies
Regarding the techniques proposed to improve the efficiency of the

search, it has been observed that avoiding re-evaluating the objective
function from scratch reduces the execution time by 59%. Additionally,
the use of a reduced neighborhood, achieves an extra reduction of 56%
of the execution time. Globally, the combination of both techniques,
12
Fig. 7. Behavior of MAB algorithm for three representative instances over 25 iterations.

totals a 76% of time reduction, compared to the original approach.
However, the use of the reduced neighborhood has the inconvenience
that it leads to solutions that are, on average, 0.2% worse than those
obtained when searching in the complete neighborhood. In this case,
considering the significant time saved, the trade-off between time
and quality is highly favorable, making the reduced neighborhood an
essential part of this proposal.

5.3. Comparison with the state of the art

In this section, we compare our MAB proposal with the previ-
ous state-of-the-art method for the CMinSA problem. Particularly, we
adapted the BVNS method proposed in Pardo et al. (2020) for the

M. Robles et al.

l
m
t
d
t

(

b
I

s

R
s
f
t

u
l
r
a
a
i
a
T
t

a
w

r
i
m
a
u
T
t
c
s
e
t
t
e

o

n

t

s
S
t

i

s
i
a
M
s
s
o
a

t
B

o

T
t

Computers and Operations Research 179 (2025) 107034
Table 4
Comparison of the state-of-the-art method with the MAB proposal using the complete
set of instances.
Instance set Method Avg. CPUt (s) #Best

Complete (108) BVNS 126 469.44 296.90 54
MAB 125262.46 314.09 73

Interval (117) BVNS 975.97 174.44 68
MAB 334.15 121.77 110

Random (117) BVNS 47 439.16 271.47 52
MAB 46615.20 302.55 83

All (342) BVNS 56 500.79 246.31 174
MAB 55618.19 244.35 266

linear variant of the CMinSA to the problem under study. To test both
methods, we used the whole set of 342 instances proposed in the related
iterature. For this comparison, both methods have been bounded to a
aximum running time of 300 seconds, starting new iterations until

hat time is reached or a solution with O.F. of zero is found. In order to
etermine whether our proposal was competitive or not, we compared
he average objective function value (Avg.), the average CPU time

(CPUt (s)), and the number of best solutions found by each method
#Best). Results are presented in Table 4. Since the provided results in

these tables are reported on average, we refer the reader to Appendix,
where it is possible to find the individual results per instance.

It can be observed that for all instance sets, our MAB method obtains
etter results than the BVNS method for every metric considered.
n particular, our method achieves a significant improvement in the

Interval group, where it finds the best solution for 110 instances, while
the BVNS method only finds 68 out of 117. The significance of the
differences between both methods has been confirmed by the Wilcoxon
tatistical test, which yields positive results for each instance set, 𝑝 =

0.00044 for Complete, 𝑝 = 0.00006 for Interval, and 𝑝 < 0.00001 for
andom, as well as 𝑝 < 0.00001 for the whole dataset. These results
how that our MAB method is a competitive and efficient algorithm
or the CMinSA problem, outperforming the state-of-the-art method in
erms of solution quality when run in a similar computational time.

In our final experiment, we test the BVNS and the MAB algorithms
sing the new set of instances, not previously reported in the MinSA
iterature, which have been derived from real-world scenarios. The
ationale behind using these instances is two-fold. Firstly, they provide
 more accurate representation of real-world problems, thereby serving
s a more relevant benchmark for our algorithms. Secondly, since these
nstances are new and distinct from the subset used for tuning the
lgorithms, they offer a completely trustworthy and unbiased test bed.
he unique properties and structure of these instances ensure that
he performance of the algorithms is evaluated in a diverse range of

scenarios, further solidifying the validity of our results.
The results obtained are presented in Table 5. In this table, the devi-

tion (Dev. (%)) has also been included because there are no instances
ith zero errors, which would not make it possible to calculate the

deviation. Again, the proposed MAB method obtained overall better
esults on all metrics. The most important difference can be found
n the CPUt (s). The constructive method of the BVNS requires to
ake a number of evaluations in each step which grows exponentially

s the construction progresses. This makes the use of this method
nreliable for large instances, such as those used in this comparison.
he state-of-the-art instances have a maximum of 250 vertices, while
he real-world scenarios instances range from 16 vertices to 5000. As a
onsequence, our MAB proposal reduces the run time required by the
tate-of-the-art BVNS method by an order of 225 times. This significant
xecution time difference can be attributed to two key factors. First,
he constructive method of the BVNS algorithm has inherently high
ime complexity. Second, the original BVNS implementation lacks the
fficiency optimizations introduced in our work.
13
Table 5
Comparison of the state-of-the-art method (BVNS) with the MAB proposal, using a set
f 14 real-world instances.
Method Avg. CPUt (s) Dev. (%) #Best

BVNS 3319.00 69 363.89 75.33 6
MAB 2835.64 307.50 8.72 11

6. Conclusions

In this paper, we address the CMinSA problem which aims to find an
optimal cyclic arrangement of a given signed graph that minimizes the
umber of errors. To approach this problem, we propose several novel

heuristic algorithms combined into a MAB procedure. Specifically,
we combine three constructive methods that are based on different
strategies to select vertices from the input graph and assign them to
vertices in the cycle host graph, such as generating cliques, detecting
communities, and exploiting edge information. Then, we apply a VND
method to locally optimize the generated solution within a GRASP
framework.

By comparing our constructive methods, each of them provides
better or worse results depending on the properties of the specific
instance. Even after applying the improvement phase, the results are
still different for each constructive. This means that each construc-
ive method generates a different solution depending on the internal

structure of the input graph, making it impossible to select only one
constructive method as the best one. Instead, we take advantage of this
ituation by applying a higher-level method, known as hyperheuristic.
pecifically, we employ a reinforced learning algorithm, which chooses
he best method in a dynamic way for each instance at each iteration.

With respect to the MAB algorithm, it is a great approach in situa-
tions in which there are multiple methods with diverse performance
for different instances. Specifically, the strength of the MAB lies in
those cases in which we are unable to make a clear distinction on
which method to select for the final configuration of an algorithm. This
case is common in the context of the GLPs, since the structure of the
nput graph greatly affects the results of the algorithms. This could also

be extended to situations where there are some instances that require
special methods to solve, but loosing solution quality is not an option.

When configuring the MAB algorithm, we conducted an exten-
ive experimental evaluation on three classes of previously studied
nstances: complete, interval, and random graphs. We compared our
lgorithm with the state-of-the-art method, showing that the proposed
AB procedure outperforms the previous best method in terms of

olution quality. We also performed a statistical analysis to confirm the
ignificance of our results and to identify the strengths and weaknesses
f our variant. In view of the results obtained, we can conclude that our
lgorithm is a relevant contribution to the state of the art in CMinSA.

It has also been observed that the main negative point of the state-
of-the-art BVNS algorithm is the inability to scale to larger instances. In
real scenarios, the time needed by BVNS might be 225 times larger than
hat required by the MAB algorithm. This lack of efficiency renders the
VNS inviable for instances with a large number of vertices. Instead,

our proposal employs a lighter constructive method and a neighbor-
hood reduction strategy, making the algorithm significantly faster and
allowing the computation of larger instances.

The last contribution of this work is a new set of signed graphs
adapted from graphs derived from real cases, which can be used not
nly for future comparisons with other algorithms for this problem,

but also to study other related problems that require a signed graph.
his new group of instances solves the lack of variety found in the
hree groups of instances used in the MinSA literature. Particularly, we

included much larger instances, which represent real-world cases, such
as social media, relations between people, ranging from small groups
to big communities, etc.

M. Robles et al. Computers and Operations Research 179 (2025) 107034
Table A.1

Real instance group

Instance name Alternative name O. F.

Real_1_1007x4658_1_8 1000soc-sign-epinions.txt 101
Real_2_1049x6773_2_12 1000wikipedia_adminship_election_data.txt 2 956
Real_3_102x176_4_7 100out.soc-sign-bitcoinalpha.txt 0
Real_4_103x785_15_8 100soc-sign-epinions.txt 48
Real_5_119x549_8_15 100wikipedia_adminship_election_data.txt 41
Real_6_2501x4179_1_4 2500out.soc-sign-bitcoinalpha.txt 549
Real_7_2516x20986_1_8 2500soc-sign-epinions.txt 2 550
Real_8_5000x19525_1_10 5000wikipedia_adminship_election_data.txt 32 045
Real_9_500x1544_2_7 500out.soc-sign-bitcoinalpha.txt 130
Real_10_570x3749_3_6 500soc-sign-epinions.txt 93
Real_11_510x2960_3_15 500wikipedia_adminship_election_data.txt 917
Real_12_219x521_3_10 out.convote.txt 1
Real_13_18x126_83_49 out.moreno_sampson_sampson 34
Real_14_16x58_49_45 out.ucidata-gama 0
Table A.2

Complete instance group

Instance name O. F. Instance name O. F. Instance name O. F.

C-001_10x45_100_20 0 C-037_90x4005_100_20 17 610 C-073_170x14365_100_20 142 358
C-002_10x45_100_50 10 C-038_90x4005_100_50 31 184 C-074_170x14365_100_50 240 582
C-003_10x45_100_80 10 C-039_90x4005_100_80 18 746 C-075_170x14365_100_80 139 396
C-004_10x45_100_20 8 C-040_90x4005_100_20 18 292 C-076_170x14365_100_20 142 611
C-005_10x45_100_50 12 C-041_90x4005_100_50 31 012 C-077_170x14365_100_50 238 015
C-006_10x45_100_80 4 C-042_90x4005_100_80 17 390 C-078_170x14365_100_80 141 983
C-007_10x45_100_20 0 C-043_90x4005_100_20 17 611 C-079_170x14365_100_20 144 386
C-008_10x45_100_50 10 C-044_90x4005_100_50 31 628 C-080_170x14365_100_50 239 973
C-009_10x45_100_80 2 C-045_90x4005_100_80 17 878 C-081_170x14365_100_80 147 488
C-010_30x435_100_20 400 C-046_110x5995_100_20 34 069 C-082_190x17955_100_20 206 462
C-011_30x435_100_50 820 C-047_110x5995_100_50 59 509 C-083_190x17955_100_50 340 303
C-012_30x435_100_80 464 C-048_110x5995_100_80 36 120 C-084_190x17955_100_80 206 304
C-013_30x435_100_20 399 C-049_110x5995_100_20 33 514 C-085_190x17955_100_20 210 335
C-014_30x435_100_50 768 C-050_110x5995_100_50 59 784 C-086_190x17955_100_50 339 742
C-015_30x435_100_80 386 C-051_110x5995_100_80 34 320 C-087_190x17955_100_80 210 514
C-016_30x435_100_20 388 C-052_110x5995_100_20 34 984 C-088_190x17955_100_20 204 426
C-017_30x435_100_50 755 C-053_110x5995_100_50 59 467 C-089_190x17955_100_50 340 435
C-018_30x435_100_80 406 C-054_110x5995_100_80 34 871 C-090_190x17955_100_80 201 066
C-019_50x1225_100_20 2 486 C-055_130x8385_100_20 59 516 C-091_210x21945_100_20 275 590
C-020_50x1225_100_50 4 541 C-056_130x8385_100_50 102 716 C-092_210x21945_100_50 467 692
C-021_50x1225_100_80 2 715 C-057_130x8385_100_80 61 218 C-093_210x21945_100_80 280 909
C-022_50x1225_100_20 2 311 C-058_130x8385_100_20 59 048 C-094_210x21945_100_20 280 313
C-023_50x1225_100_50 4 406 C-059_130x8385_100_50 101 865 C-095_210x21945_100_50 465 176
C-024_50x1225_100_80 2 408 C-060_130x8385_100_80 60 018 C-096_210x21945_100_80 285 211
C-025_50x1225_100_20 2 446 C-061_130x8385_100_20 60 759 C-097_210x21945_100_20 281 712
C-026_50x1225_100_50 4 580 C-062_130x8385_100_50 102 295 C-098_210x21945_100_50 463 135
C-027_50x1225_100_80 2 526 C-063_130x8385_100_80 59 942 C-099_210x21945_100_80 280 172
C-028_70x2415_100_20 8 202 C-064_150x11175_100_20 98 290 C-100_230x26335_100_20 382 186
C-029_70x2415_100_50 13 753 C-065_150x11175_100_50 160 874 C-101_230x26335_100_50 620 394
C-030_70x2415_100_80 7 628 C-066_150x11175_100_80 95 884 C-102_230x26335_100_80 371 890
C-031_70x2415_100_20 7 195 C-067_150x11175_100_20 93 297 C-103_230x26335_100_20 374 877
C-032_70x2415_100_50 13 574 C-068_150x11175_100_50 158 477 C-104_230x26335_100_50 619 067
C-033_70x2415_100_80 8 011 C-069_150x11175_100_80 96 860 C-105_230x26335_100_80 371 868
C-034_70x2415_100_20 7 914 C-070_150x11175_100_20 95 585 C-106_230x26335_100_20 372 148
C-035_70x2415_100_50 13 541 C-071_150x11175_100_50 162 437 C-107_230x26335_100_50 616 490
C-036_70x2415_100_80 7 627 C-072_150x11175_100_80 97 655 C-108_230x26335_100_80 369 065
o
i
f
i

CRediT authorship contribution statement

Marcos Robles: Writing – original draft, Software, Methodology,
Investigation, Data curation, Conceptualization. Sergio Cavero: Writ-
ing – original draft, Supervision, Project administration, Methodol-
ogy, Investigation, Formal analysis, Conceptualization. Eduardo G.
Pardo: Writing – review & editing, Writing – original draft, Validation,
Supervision, Methodology, Investigation, Funding acquisition, Formal
analysis, Conceptualization. Oscar Cordón: Writing – review & editing,
Writing – original draft, Validation, Investigation, Formal analysis,
Conceptualization.
14
Appendix. Best known results per instance

In the tables included in this Appendix (see Tables A.1–A.4), we
present the value of the objective function (O. F.) of the best solution
btained for each instance found, by any of the evaluated methods, dur-
ng our experimentation. These values might be useful as a baseline for
uture comparisons. The individual results per instance and algorithm,
ncluding the CPU time, are available in GitHub.2

2 https://github.com/GRAFO-URJC/MAB-CMinSA/tree/main/results.

https://github.com/GRAFO-URJC/MAB-CMinSA/tree/main/results

M. Robles et al. Computers and Operations Research 179 (2025) 107034
Table A.3

Interval instance group

Instance name O. F. Instance name O. F. Instance name O. F.

I-001_10x6_20_20 0 I-040_90x2014_50_20 0 I-079_170x11713_80_20 0
I-002_10x8_20_50 0 I-041_90x2073_50_50 0 I-080_170x12058_80_50 0
I-003_10x9_20_80 0 I-042_90x2106_50_80 0 I-081_170x11714_80_80 0
I-004_10x21_50_20 0 I-043_90x3088_80_20 24 I-082_190x3846_20_20 0
I-005_10x25_50_50 0 I-044_90x3303_80_50 0 I-083_190x3601_20_50 0
I-006_10x26_50_80 0 I-045_90x3226_80_80 0 I-084_190x3617_20_80 202
I-007_10x34_80_20 0 I-046_110x1257_20_20 0 I-085_190x9057_50_20 0
I-008_10x35_80_50 0 I-047_110x1244_20_50 0 I-086_190x9204_50_50 0
I-009_10x33_80_80 0 I-048_110x1212_20_80 2 I-087_190x9112_50_80 0
I-010_30x106_20_20 0 I-049_110x3180_50_20 0 I-088_190x14865_80_20 0
I-011_30x85_20_50 0 I-050_110x3020_50_50 0 I-089_190x14608_80_50 0
I-012_30x83_20_80 0 I-051_110x3016_50_80 0 I-090_190x14527_80_80 0
I-013_30x227_50_20 0 I-052_110x5110_80_20 0 I-091_210x4534_20_20 0
I-014_30x216_50_50 0 I-053_110x4928_80_50 0 I-092_210x4492_20_50 0
I-015_30x216_50_80 0 I-054_110x4844_80_80 0 I-093_210x4415_20_80 321
I-016_30x348_80_20 0 I-055_130x1785_20_20 0 I-094_210x11279_50_20 0
I-017_30x345_80_50 0 I-056_130x1731_20_50 0 I-095_210x11070_50_50 0
I-018_30x348_80_80 0 I-057_130x1727_20_80 0 I-096_210x10995_50_80 1
I-019_50x260_20_20 0 I-058_130x4261_50_20 0 I-097_210x18619_80_20 0
I-020_50x235_20_50 0 I-059_130x4354_50_50 0 I-098_210x17830_80_50 0
I-021_50x248_20_80 0 I-060_130x4240_50_80 0 I-099_210x17734_80_80 0
I-022_50x634_50_20 0 I-061_130x6933_80_20 0 I-100_230x5346_20_20 0
I-023_50x609_50_50 0 I-062_130x6740_80_50 0 I-101_230x5488_20_50 0
I-024_50x609_50_80 0 I-063_130x6733_80_80 0 I-102_230x5304_20_80 158
I-025_50x1014_80_20 148 I-064_150x2274_20_20 0 I-103_230x13610_50_20 0
I-026_50x1025_80_50 0 I-065_150x2359_20_50 0 I-104_230x13435_50_50 0
I-027_50x967_80_80 0 I-066_150x2237_20_80 46 I-105_230x13250_50_80 0
I-028_70x482_20_20 0 I-067_150x5626_50_20 0 I-106_230x22043_80_20 0
I-029_70x472_20_50 0 I-068_150x5719_50_50 0 I-107_230x21418_80_50 0
I-030_70x496_20_80 0 I-069_150x5626_50_80 0 I-108_230x21241_80_80 0
I-031_70x1230_50_20 0 I-070_150x9141_80_20 0 I-109_250x6488_20_20 0
I-032_70x1217_50_50 0 I-071_150x8873_80_50 0 I-110_250x6389_20_50 1053
I-033_70x1220_50_80 0 I-072_150x9103_80_80 0 I-111_250x6228_20_80 354
I-034_70x2008_80_20 19 I-073_170x2995_20_20 0 I-112_250x15967_50_20 0
I-035_70x1979_80_50 0 I-074_170x2889_20_50 0 I-113_250x15815_50_50 0
I-036_70x1938_80_80 0 I-075_170x2923_20_80 8 I-114_250x15729_50_80 5177
I-037_90x827_20_20 0 I-076_170x7396_50_20 0 I-115_250x26281_80_20 0
I-038_90x799_20_50 0 I-077_170x7304_50_50 0 I-116_250x25484_80_50 0
I-039_90x816_20_80 0 I-078_170x7275_50_80 0 I-117_250x25193_80_80 0
15

M. Robles et al. Computers and Operations Research 179 (2025) 107034
Table A.4

Random instance group

Instance name O. F. Instance name O. F. Instance name O. F.

R-001_10x9_20_20 0 R-040_90x2002_50_20 3 397 R-079_170x11492_80_20 87 468
R-002_10x9_20_50 0 R-041_90x2002_50_50 6 551 R-080_170x11492_80_50 148 390
R-003_10x9_20_80 0 R-042_90x2002_50_80 3 339 R-081_170x11492_80_80 89 085
R-004_10x22_50_20 0 R-043_90x3204_80_20 10 878 R-082_190x3591_20_20 4 944
R-005_10x22_50_50 0 R-044_90x3204_80_50 18 951 R-083_190x3591_20_50 9 327
R-006_10x22_50_80 0 R-045_90x3204_80_80 10 620 R-084_190x3591_20_80 4 942
R-007_10x36_80_20 0 R-046_110x1199_20_20 633 R-085_190x8977_50_20 45 024
R-008_10x36_80_50 0 R-047_110x1199_20_50 1 362 R-086_190x8977_50_50 76 881
R-009_10x36_80_80 0 R-048_110x1199_20_80 582 R-087_190x8977_50_80 44 348
R-010_30x87_20_20 0 R-049_110x2997_50_20 6 540 R-088_190x14364_80_20 124 665
R-011_30x87_20_50 0 R-050_110x2997_50_50 12 382 R-089_190x14364_80_50 210 956
R-012_30x87_20_80 0 R-051_110x2997_50_80 7 369 R-090_190x14364_80_80 124 920
R-013_30x217_50_20 56 R-052_110x4796_80_20 21 717 R-091_210x4389_20_20 7 543
R-014_30x217_50_50 119 R-053_110x4796_80_50 36 777 R-092_210x4389_20_50 13 550
R-015_30x217_50_80 77 R-054_110x4796_80_80 20 564 R-093_210x4389_20_80 6 603
R-016_30x348_80_20 253 R-055_130x1677_20_20 1 140 R-094_210x10972_50_20 61 603
R-017_30x348_80_50 419 R-056_130x1677_20_50 2 505 R-095_210x10972_50_50 104 390
R-018_30x348_80_80 223 R-057_130x1677_20_80 1 175 R-096_210x10972_50_80 63 759
R-019_50x245_20_20 4 R-058_130x4192_50_20 12 299 R-097_210x17556_80_20 174 259
R-020_50x245_20_50 41 R-059_130x4192_50_50 22 130 R-098_210x17556_80_50 288 943
R-021_50x245_20_80 9 R-060_130x4192_50_80 12 171 R-099_210x17556_80_80 175 587
R-022_50x612_50_20 358 R-061_130x6708_80_20 37 257 R-100_230x5267_20_20 10 098
R-023_50x612_50_50 728 R-062_130x6708_80_50 63 130 R-101_230x5267_20_50 17 821
R-024_50x612_50_80 357 R-063_130x6708_80_80 35 839 R-102_230x5267_20_80 9 793
R-025_50x980_80_20 1531 R-064_150x2235_20_20 2 094 R-103_230x13167_50_20 84 617
R-026_50x980_80_50 2582 R-065_150x2235_20_50 4 059 R-104_230x13167_50_50 139 474
R-027_50x980_80_80 1476 R-066_150x2235_20_80 2 025 R-105_230x13167_50_80 80 744
R-028_70x483_20_20 39 R-067_150x5587_50_20 19 916 R-106_230x21068_80_20 235 106
R-029_70x483_20_50 206 R-068_150x5587_50_50 35 582 R-107_230x21068_80_50 384 264
R-030_70x483_20_80 66 R-069_150x5587_50_80 19 876 R-108_230x21068_80_80 228 913
R-031_70x1207_50_20 1445 R-070_150x8940_80_20 56 960 R-109_250x6225_20_20 13 153
R-032_70x1207_50_50 2669 R-071_150x8940_80_50 99 538 R-110_250x6225_20_50 23 727
R-033_70x1207_50_80 1479 R-072_150x8940_80_80 58 244 R-111_250x6225_20_80 13 021
R-034_70x1932_80_20 4353 R-073_170x2873_20_20 3 171 R-112_250x15562_50_20 109 127
R-035_70x1932_80_50 8338 R-074_170x2873_20_50 6 370 R-113_250x15562_50_50 184 263
R-036_70x1932_80_80 4533 R-075_170x2873_20_80 2 983 R-114_250x15562_50_80 111 020
R-037_90x801_20_20 202 R-076_170x7182_50_20 29 342 R-115_250x24900_80_20 298 015
R-038_90x801_20_50 565 R-077_170x7182_50_50 53 585 R-116_250x24900_80_50 500 856
R-039_90x801_20_80 147 R-078_170x7182_50_80 29 084 R-117_250x24900_80_80 300 592
The instance names included in here indicate their specific proper-
ties and are formatted as T-ID_VxE_C_N where:

• 𝑇 is the type of instance, abbreviated as C for Complete, I for
Interval, R for Random, and Real for real-world instances.

• ID is a numeric identifier of the instance.
• V represents the number of vertices in the instance.
• E denotes the number of edges.
• C indicates the connectivity density, representing the average

percentage of other vertices to which each vertex is directly
connected.

• 𝑁 signifies the percentage of edges that are negative.

Data availability

I have shared the data used in a link included in the paper.

References

Almeida, C., Gonçalves, R., Venske, S., Lüders, R., Delgado, M., 2020. Hyper-heuristics
using multi-armed bandit models for multi-objective optimization. Appl. Soft
Comput. 95, 106520.

Aracena, J., Thraves Caro, C., 2023. The weighted sitting closer to friends than enemies
problem in the line. J. Comb. Optim. 45, 9.

Benítez, F., Aracena, J., Caro, C., 2018. The sitting closer to friends than enemies
problem in the circumference. ArXiv Preprint arXiv:1811.02699.

Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E., 2008. Fast unfolding of
communities in large networks. J. Stat. Mech. Theory Exp. 2008 (10), 10008.
16
Bouneffouf, D., Rish, I., Aggarwal, C., 2020. Survey on applications of multi-armed and
contextual bandits. In: 2020 IEEE Congress on Evolutionary Computation. CEC, pp.
1–8.

Burke, E., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R., 2013.
Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64, 1695–1724.

Cavero, S., Pardo, E., Duarte, A., 2022a. A general variable neighborhood search for
the cyclic antibandwidth problem. Comput. Optim. Appl. 81, 657–687.

Cavero, S., Pardo, E., Duarte, A., Rodriguez-Tello, E., 2022b. A variable neighborhood
search approach for cyclic bandwidth sum problem. Knowledge- Based Syst. 246,
108680.

Cavero, S., Pardo, E., Laguna, M., Duarte, A., 2021. Multistart search for the cyclic
cutwidth minimization problem. Comput. Oper. Res. 126, 105116.

Chu, W., Li, L., Reyzin, L., Schapire, R., 2011. Contextual bandits with linear payoff
functions. In: Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics. pp. 208–214.

Chung, F., 1988. Labelings of Graphs, Selected Topics in Graph Theory 3 III.
Clotfelter, C., Cook, P., 1993. The gambler’s fallacy in lottery play. Manag. Sci. 39,

1521–1525.
Conte, A., 2013. Review of the Bron-Kerbosch Algorithm and Variations. School Of

Computing Science, University Of Glasgow., pp. 1–9.
Cygan, M., Fomin, F., Golovnev, A., Kulikov, A., Mihajlin, I., Pachocki, J., Socała, A.,

2017. Tight lower bounds on graph embedding problems. J. ACM (JACM) 64,
1–22.

Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J., 2012. Sitting closer to friends
than enemies, revisited. In: International Symposium on Mathematical Foundations
of Computer Science. pp. 296–307.

Díaz, J., Petit, J., Serna, M., 2002. A survey of graph layout problems. ACM Comput.
Surv. (CSUR). 34, 313–356.

Dokeroglu, T., Kucukyilmaz, T., Talbi, E., 2024. Hyper-heuristics: A survey and
taxonomy. Comput. Ind. Eng. 187, 109815.

Drake, J., Kheiri, A., Özcan, E., Burke, E., 2020. Recent advances in selection
hyper-heuristics. European J. Oper. Res. 285, 405–428.

Dujmović, V., Wood, D., 2004. On linear layouts of graphs. Discrete Math. Theor.
Comput. Sci. 6.

http://refhub.elsevier.com/S0305-0548(25)00062-0/sb1
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb1
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb1
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb1
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb1
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb2
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb2
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb2
http://arxiv.org/abs/1811.02699
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb4
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb4
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb4
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb5
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb5
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb5
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb5
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb5
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb6
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb6
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb6
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb7
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb7
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb7
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb8
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb8
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb8
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb8
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb8
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb9
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb9
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb9
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb10
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb10
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb10
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb10
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb10
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb11
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb12
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb12
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb12
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb13
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb13
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb13
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb14
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb14
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb14
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb14
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb14
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb15
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb15
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb15
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb15
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb15
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb16
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb16
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb16
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb17
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb17
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb17
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb18
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb18
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb18
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb19
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb19
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb19

M. Robles et al. Computers and Operations Research 179 (2025) 107034
Esmailian, P., Jalili, M., 2015. Community detection in signed networks: the role of
negative ties in different scales. Sci. Rep. 5, 14339.

Feo, T., Resende, M., 1995. Greedy randomized adaptive search procedures. J. Glob.
Optim. 6, 109–133.

Hansen, P., Mladenović, N., Brimberg, J., Pérez, J., 2019. Variable Neighborhood
Search. Springer.

Jacobson, I., Booch, G., Rumbaugh, J., 1999. The Unified Software Development
Process. Addison-Wesley.

Kermarrec, A., Thraves, C., 2011. Can everybody sit closer to their friends than their
enemies? In: International Symposium On Mathematical Foundations Of Computer
Science. pp. 388–399.

Kuleshov, V., Precup, D., 2014. Algorithms for multi-armed bandit problems. ArXiv
Preprint arXiv:1402.6028.

Lattimore, T., Szepesvári, C., 2020. Bandit algorithms. Cambridge University Press.
Li, L., Chu, W., Langford, J., Schapire, R., 2010. A contextual-bandit approach to per-

sonalized news article recommendation. In: Proceedings Of The 19th International
Conference On World Wide Web. pp. 661–670.

Lin, Y., 1995. The cyclic bandwidth problem. Chin. Sci. Abstr. Ser. A. 2 (14), 14.
Lozano, M., Duarte, A., Gortázar, F., Martí, R., 2013. A hybrid metaheuristic for the

cyclic antibandwidth problem. Knowledge- Based Syst. 54, 103–113.
Martín-Santamaría, R., Cavero, S., Herrán, A., Duarte, A., Colmenar, J., 2024. A

practical methodology for reproducible experimentation: an application to the
double-row facility layout problem. Evol. Comput. 32 (1), 69–104.

Mcallister, A., 1999. A New Heuristic Algorithm for the Linear Arrangement Problem.
University of New Brunswick, New Brunswick, CA.

Meidani, K., Mirjalili, S., Farimani, A., 2022. MAB-OS: multi-armed bandits
metaheuristic optimizer selection. Appl. Soft Comput. 128, 109452.

Mitchison, G., Durbin, R., 1986. Optimal numberings of an n*n array. SIAM J. Algebraic
Discret. Methods 7, 571–582.

Mladenović, N., Hansen, P., 1997. Variable neighborhood search. Comput. Oper. Res.
24, 1097–1100.

Moon, J.W., Moser, L., 1965. On cliques in graphs. Israel J. Math. 3, 23–28.
Newton, A., 1981. Computer-aided design of VLSI circuits. Proc. IEEE 69, 1189–1199.
17
Pardo, E., Martí, R., Duarte, A., 2018. Duarte, a linear layout problems. In: Handbook
of Heuristics. pp. 1025–1049.

Pardo, E., a Sánchez, A.Garcí., Sevaux, M., Duarte, A., 2020. Basic variable neigh-
borhood search for the minimum sitting arrangement problem. J. Heuristics 26,
249–268.

Pardo, E., Soto, M., Thraves, C., 2015. Embedding signed graphs in the line. J. Comb.
Optim. 29, 451–471.

Petit, J., 2003. Experiments on the minimum linear arrangement problem. J. Exp.
Algorithm. (JEA) 8.

Que, X., Checconi, F., Petrini, F., Gunnels, J., 2015. Scalable community detection
with the louvain algorithm. In: 2015 IEEE International Parallel and Distributed
Processing Symposium. pp. 28–37.

Ravi, R., Agrawal, A., Klein, P., 1991. Ordering problems approximated: single-
processor scheduling and interval graph completion. In: Automata, Languages and
Programming: 18th International Colloquium Madrid, Spain, July (1991) 8–12
Proceedings 18. pp. 751–762.

Resende, M., Ribeiro, C., 2010. Greedy randomized adaptive search procedures:
Advances, hybridizations, and applications. In: Handbook of Metaheuristics. pp.
283–319.

Resende, M., Ribeiro, C., 2016. Optimization By GRASP. Springer.
Robles, M., Cavero, S., Pardo, E., 2022. BVNS for the minimum sitting arrangement

problem in a cycle. In: International Conference on Variable Neighborhood Search.
pp. 82–96.

Sahhaf, S., Tavernier, W., Colle, D., Pickavet, M., 2015. Network service chaining
with efficient network function mapping based on service decompositions. In:
Proceedings of the 2015 1st IEEE Conference on Network Softwarization. NetSoft,
pp. 1–5.

Shafaei, A., Saeedi, M., Pedram, M., 2013. Optimization of quantum circuits for
interaction distance in linear nearest neighbor architectures. In: Proceedings of the
50th Annual Design Automation Conference. pp. 1–6.

Shiloach, Y., 1979. A minimum linear arrangement algorithm for undirected trees. SIAM
J. Comput. 8, 15–32.

Slivkins, A., 2019. Introduction to multi-armed bandits. Found. Trends Mach. Learn.
12, 1–286.

Stützle, T., Ruiz, R., 2018. Iterated greedy. In: Handbook of Heuristics. pp. 547–577.
Sutton, R., Barto, A., 2018. Reinforcement Learning: An Introduction. MIT Press.
Tomita, E., Tanaka, A., Takahashi, H., 2006. The worst-case time complexity for

generating all maximal cliques and computational experiments. Theoret. Comput.
Sci. 363 (1), 28–42.

http://refhub.elsevier.com/S0305-0548(25)00062-0/sb20
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb20
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb20
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb21
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb21
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb21
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb22
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb22
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb22
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb23
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb23
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb23
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb24
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb24
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb24
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb24
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb24
http://arxiv.org/abs/1402.6028
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb26
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb27
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb27
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb27
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb27
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb27
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb28
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb29
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb29
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb29
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb30
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb30
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb30
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb30
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb30
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb31
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb31
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb31
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb32
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb32
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb32
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb33
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb33
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb33
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb34
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb34
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb34
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb35
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb36
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb37
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb37
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb37
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb38
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb38
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb38
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb38
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb38
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb39
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb39
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb39
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb40
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb40
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb40
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb41
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb41
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb41
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb41
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb41
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb42
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb42
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb42
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb42
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb42
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb42
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb42
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb43
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb43
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb43
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb43
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb43
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb44
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb45
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb45
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb45
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb45
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb45
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb46
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb46
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb46
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb46
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb46
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb46
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb46
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb47
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb47
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb47
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb47
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb47
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb48
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb48
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb48
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb49
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb49
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb49
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb50
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb51
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb52
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb52
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb52
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb52
http://refhub.elsevier.com/S0305-0548(25)00062-0/sb52

	Multi-armed bandit for the cyclic minimum sitting arrangement problem
	Introduction
	Problem definition
	Literature review
	Algorithmic approach
	Multi-Armed Bandit hyperheuristic
	Methodological background
	Algorithmic proposal

	Construction phase
	Methodological background
	Algorithmic proposal

	Improvement phase
	Methodological background
	Algorithmic proposal

	Experimental results
	Instances
	Preliminary experiments
	Parameter setting
	Comparison of the performance of MAB arms
	Contribution of the advanced strategies

	Comparison with the state of the art

	Conclusions
	CRediT authorship contribution statement
	Appendix. Best known results per instance
	Data availability
	References

