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SUMMARY
Sensory systems use context to infer meaning. Accordingly, context profoundly influences neural responses
to sensory stimuli. However, a cohesive understanding of the circuit mechanisms governing contextual ef-
fects across different stimulus conditions is still lacking. Here we present a unified circuit model of mouse
visual cortex that accounts for the main standard forms of contextual modulation. This data-driven and
biologically realistic circuit, including three primary inhibitory cell types, sheds light on how bottom-up,
top-down, and recurrent inputs are integrated across retinotopic space to generate contextual effects in layer
2/3. We establish causal relationships between neural responses, geometrical features of the inputs, and the
connectivity patterns. Themodel not only reveals how a single canonical cortical circuit differently modulates
sensory response depending on context but also generates multiple testable predictions, offering insights
that apply to broader neural circuitry.
INTRODUCTION

When an edge or other feature appears in a visual scene, its

meaning—is it an object boundary? An element of texture? A

shadow?—must be inferred from the larger scene in which it is

embedded. More generally, sensory systems must combine

local featureswith context to infermeaning. Accordingly, context

profoundly influences our perception, as is made strikingly clear

by visual illusions. For example, the perceived contrast or lumi-

nance of a patch of the visual scene can be radically altered by

whether the context makes the patch appear a small part of a

larger object or an independent object, or in light or in shadow

(Figures 1A–1C).

Context strongly impacts not only our perception but also

neuronal responses. Some of the best-studied examples involve

the effects of context on neurons in the primary visual cortex

(V1).1–6 V1 neurons are primarily driven by stimuli only within a

small region of visual space, known as the neuron’s classical

receptive field (CRF). However, the visual stimulus in the

surrounding region (the neuron’s ‘‘surround’’) can substantially
Cell Reports 44, 115088, Jan
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influence the cell’s response. This contextual influence is likely

to be critical to the parsing of objects and formation of a coherent

perceptual representation of the visual scene.7–11

Here, we develop a simple theoretical framework to address

the question of how the properties of feedforward, feedback,

and lateral input currents contribute to contextual modulation

in V1.We focus onmouse as amodel organism due to the wealth

of available information on cell-type-specific physiological and

anatomical properties. This allows us to arrive at a unified

mechanistic picture of how these different inputs are integrated

to produce diverse forms of contextual modulation.

Three exemplary paradigms have been widely used to study

contextual modulation in V1 (Figures 1D–1F).

(1) The response of a cell whose CRF is centered on a stim-

ulus decreases when a similar stimulus is presented in the

surround. This ‘‘surround suppression’’5,12–16 may repre-

sent a discounting of visual input that can be well pre-

dicted from other parts of the visual scene, thus allowing

an efficient neural representation.17–19
uary 28, 2025 ª 2024 The Authors. Published by Elsevier Inc. 1
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Figure 1. Different forms of contextual

modulation

(A) The grating patches in the centers are identical

but are perceived asmore or less salient due to the

distinct surround.

(B) Kanizsa triangle illusion: a nonexistent white

triangle in the center appears to occlude the

shapes around it.

(C) Checker shadow illusion: the areas labeled A

and B have identical brightness but A appears

darker than B due to brain’s inference that B is in

shadow.

(D) Responses decrease when the stimulus size is

increased beyond the CRF size; data (circles) from

pyramidal cells studied by Keller et al.1; line is a fit

to the data. Here and in what follows, data points

represent averages across neurons and firing

rates are in arbitrary units.

(E) Responses to a patch of drifting grating are

enhanced by addition of an orthogonally oriented

surrounding grating. Data replotted with permis-

sion from Keller et al.,2 represented as mean ±

SEM.

(F) Response to a hole or inverse stimulus in the

CRF; i.e., a patch with zero contrast on a full field

drifting grating. Note similarity of inverse size

tuning to classical size tuning. Data (from Keller

et al.1) and fit as in (A).
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(2) In contrast, addition of a stimulus surround that is very

distinct from the CRF stimulus can enhance a neuron’s

response.2,20–24 This ‘‘surround facilitation’’ can enhance

the perceptual salience of discontinuities in the visual

world, which likely separate different objects.25–27 Given

an oriented grating as CRF stimulus, this facilitation can

be evoked by an orthogonally oriented stimulus in the sur-

round (cross-orientation surround facilitation).

(3) Surrounding context that indicates occluded structure in

the center (Figure 1B) can evoke illusory perception of

that structure.7,28 While illusory contour responses in V1

are rare29–31 (but see Grosof et al.32), a robust example of

such context-induced neural responses in V1 is the ‘‘in-

verse response.’’ When a large drifting grating is pre-

sented, and a uniform patch of mean luminance (a ‘‘hole’’

in the grating) of varying sizes is centered on the CRF, neu-

rons show responses and size tuning to the hole verymuch

like those to drifting gratings of various sizes.1,10,33,34 We

will refer to the hole stimulus as an ‘‘inverse stimulus,’’

and response suppression for large inverse stimuli as ‘‘in-

verse surround suppression’’ (although this is something

of a misnomer, in that the suppression is induced by ex-

panding the hole, leaving less visual contrast in the sur-

round). In contrast, wewill refer to a drifting grating stimulus

as a ‘‘classical stimulus.’’ Inverse responses have substan-

tially longer latencies than classical responses1,10,33 and

are substantially reduced if higher visual areas (HVAs) are

optogenetically suppressed,1 suggesting that feedback

connections play a key role in inverse responses.

Here, we develop a unified model of these three contextual ef-

fects in layers 2/3 (L2/3) of mouse V1. We consider the four
2 Cell Reports 44, 115088, January 28, 2025
cortical cell types that have been prominently studied in

recent years: excitatory or pyramidal (Pyr) cells and parvalbu-

min-expressing (PV), somatostatin-expressing (SOM), and

vaso-active-intestinal-peptide-expressing (VIP) inhibitory inter-

neurons. We model the cellular response patterns across 2D

continuous space, which allows us to determine how the geom-

etry of spatial connections contributes to contextual modulation.

We incorporate experimental constraints on the spatial extents

of connections35–38 and data from Keller et al.1 on the response

profiles across space of each cell type and of inputs from L4 and

from an HVA, lateromedial (LM) area, to each stimulus type. We

focus on L2/3 both because of the availability of these data and

because inverse responses, which depend on feedback from

HVAs, are found in L2/3 but not in L4,1 suggesting that L2/3 is

a key site of integration of top-down with bottom-up input.

A number of theoretical works, at different levels of abstrac-

tion, have been developed to account for various aspects of

contextual modulation. Phenomenological models place it within

a broad range of nonlinear response properties described as

‘‘divisive normalization.’’17,39,40 Circuit models2,6,38,41–46 have

not previously addressed inverse tuning or the roles of top-

down feedback or, in many cases, multiple types of inhibitory

cells. In addition, our approach differs in being based on analysis

of experimental data on the 2D spatial structure of activity

and connectivity and developing an analytical framework that

gives insight into precisely how interactions across space

yield contextual modulation. Our analysis of experimental

data produces the surprising finding that, with increasing

stimulus size, activity patterns show weak or no increase in

spatial width.

To isolate basic principles, we focus on an abstract, ‘‘minimal’’

nonlinear model of a single recurrently connected cell type
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Figure 2. The widths of spatial response patterns grow much more slowly than stimulus size

Pyr + Pv, SOM, L4, and HVA spatial responses, calculated from experimental data.

(A–D) Experimental rate field (top) and best Gaussian fit (bottom) for stimulus sizes s = f15�; 65�g; x axis represents distance of CRF from stimulus center.

Colored horizontal bars represent size of the corresponding stimuli.

(E–H) Full triangles are the widths of the best Gaussian fits for each stimulus size; the full line is a linear fit and the dashed line (slope 1/2) represents the case in

which the rate field width grows at the same rate as the stimulus radius (i.e., 1/2 of the stimulus size).

(I–L) Response of cells at stimulus center vs. stimulus size (size-tuning curve). Full circles, data points; full line, fits; dots in different colors highlight responses for

the two stimuli in (A)–(D).
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representing the joint activity of Pyr and PV cells in L2/3,

along with external input from SOM cells, that can be solved

analytically. We then show that a full model of the four cell

types reproduces all contextual modulation phenomena via

the same mechanisms uncovered in this minimal model

(Figures S30–S38). Our unifying approach, which focuses on

qualitatively explaining response properties and understanding

their underlying mechanisms, gives rise to multiple testable pre-

dictions (summarized in Table S1).

RESULTS

A spatial schematic description preserving anatomical
length scales
To take into account input from neurons with CRFs distributed

across visual space, we require knowledge of two factors: (1)

how the mean effective strength of synaptic connections de-

pends on the distance in visual space between the CRF centers

of the pre- and post-synaptic cells, and (2) how the responses of

cells to a stimulus depend on the distance between the cell’s

CRF center and the stimulus center. For dependence (1), we as-

sume that synaptic strengths decrease with distance between

two neurons as a Gaussian function, with length scales taken

from experimental measurements.35–38 We take this approach,

rather than trying to infer connections that lead to responses
that fit the data, to more tightly constrain our models. We show

that our results are robust when considering very large relative

errors in the experimental estimates in a biologically realistic

model (Figure S33). For dependence (2), we use the dataset of

Keller et al.1 and a smoothing method introduced in6 to recon-

struct the ‘‘firing-rate field’’ (firing rate vs. CRF spatial position)

of Pyr, PV, SOM, and VIP cells in L2/3 of V1, as well as Pyr cells

in L4 of V1 and in the higher visual area LM (Figure 2). Wewill also

describe these firing-rate fields as Gaussian (or linear combina-

tions of Gaussian) functions centered on the stimulus center. The

transformation from fluorescence signals to firing rates is linear

and defined for each cell type using average electrophysiology

recordings at baseline and preferred size (maximal response).2

In the absence of electrophysiological recordings for LM, we

applied the same calibration values used for L2/3 Pyr cells. All

the firing rates are expressed in hertz (Hz) and have been base-

line subtracted. In the STARMethods, we provide more detail on

the length scales and the smoothing technique employed.

The widths of spatial response patterns grow much

more slowly than the stimulus size

We estimated rate fields elicited by classical stimuli of varying

sizes from the recordings (Figure 2). We combine Pyr and PV cells

into a single joint population, because of the similarity of their re-

sponses and for better comparison with the model to be devel-

oped in the next section. The rate fields for Pyr + Pv andSOMcells
Cell Reports 44, 115088, January 28, 2025 3
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and for the inputs, L4 and area LM (HVAs), have similar widths as

functions of retinotopic space for small and large stimulus size

(Figures 2A–2D top). This is quantified by fitting a Gaussian func-

tion to each spatial profile (Figures 2A–2D bottom) and comparing

(Figures 2E–2H) the width (standard deviation; points and solid

lines) to the width expected if the rate field expanded in size

equally to the stimulus (dashed lines). The rate fields expand far

less than the expected rate and not at all in the case of L4. Finally,

the amplitude of the Gaussian fits vs. stimulus size gives the size-

tuning curve of the neurons that are centered on the stimulus

(Figures 2I–2L). The assumption that rate field width grows to

match the stimulus radius is at the core of existing theoretical

models of classical surround suppression,5,6,38,41,42 in which

larger stimuli recruit more wide-ranging lateral activation, and

these activated lateral cells have a suppressive influence on the

center. The failure of this assumption is also reported (but not dis-

cussed) in Dipoppa et al.6 and Michaiel et al.47 In Figures S1–S4

we show the rate fields for all cell types and all stimuli, as

computed by two different methods; in Figure S5 we show that

we find no intrinsic qualitative difference between LMcells projec-

ting to a given point in L2/3 from the same retinotopic location

and those projecting from peripheral locations (aligned vs. offset

cells), contrary to what was suggested by Keller et al.1 As a

result, we treat HVA cells as homogeneous across space. In

Figures S6–S9 we show the fit of the spatial profiles as well as

the size-tuning curves for all cell types.

In what follows, we first develop a minimal model for ordinary

surround suppression. We then apply this model to understand

inverse response. Finally, we extend the model to understand

cross-orientation surround facilitation.

A minimal model for contextual modulation
Wedevelop aminimalmodel to address the question of how feed-

forward, feedback, and lateral input currents contribute to contex-

tualmodulation in L2/3. In thismodel, L2/3 consists of only a single

recurrently connected cell type, representing the combination of

Pyr and PV cells. This is based on observations that PV responses

track those of Pyr cells in multiple contexts and over a wide

dynamic range of inputs,43,48,49 thereby dynamically balancing

(preventing an excess of) excitation and functioning as a stabilizer

for the network.49–57 In contrast, VIP and particularly SOM cell re-

sponses generally differ substantially from those of Pyr and PV

cells.1,2,6,43,49 We treat SOM cells as a static external input, re-

sponding across space as measured experimentally, and ignore

VIP cells, which act primarily on SOM cells.35,58,59 We also take

as external inputs the measured responses across space of L4

and LM area excitatory neurons. We treat LM as a static input,

rather than as part of the recurrent circuit, due to the limited infor-

mation available about non-L2/3 inputs to LM (see discussion).

We assume neurons have a supralinear input/output function;

for further information, see the STAR Methods.

Classical surround suppression in the minimal model
In our minimal model of classical size tuning (Figure 3), inputs to

L2/3 are given by the convolution of the rate fields of L4 and

HVAs (and SOM when specified), which were derived from the

data (Figure 2), with the corresponding Gaussian connectivity

(Figure 3B). The recurrent rate fields resulting from the approxi-
4 Cell Reports 44, 115088, January 28, 2025
mate analytical solution and the simulation of the minimal model

agree well (Figures 3C, 3D, S11, and S12) so in what follows we

rely on the analytical formulas to efficiently compute model

results. The model’s free parameters are the amplitudes and

widths of the feedforward, feedback, and recurrent connection

strengths. Since we consider the recurrent population to be a

joint population of Pyr and PV cells, the recurrent connection

strength W0 can be either positive or negative, depending on

whether Pyr or PV dominates. We find that L2/3 responses are

unstable if W0 is too strongly positive, while making W0 too

strongly negative decreases surround modulation, consistent

with effects of optogenetic activation of PV cells.60 We set W0

to a moderate negative value. The feedforward and feedback

connection strengths were then set to reproduce the amplitude

of the response in L2/3. In Figures S11 and S12 we show the

Pyr + Pv experimental rate fields in two different datasets and

for all stimulus sizes; in Figures S13–S15, we provide a validation

of the minimal model (see also STAR Methods), along with an

analysis of how surround modulation varies with recurrent,

feedforward, and feedback strengths.

Feedforward, feedback, and lateral inhibitory input

shape classical surround suppression

Many experiments show that feedforward, horizontal, and

feedback connections all contribute to V1 classical surround

suppression (e.g., Angelucci et al.5 and references therein): our

model allows us to analyze their interplay. We first analyze the

contributions of feedforward (L4) and feedback (HVAs) inputs.

In the next section, we consider addition of SOM input.

In STAR Methods we show that surround suppression in the

recurrent layer can be produced by either or both of (1) surround

suppression in the input population and (2) broadening of the

input rate field as stimulus size is increased (Figure S16). In

case (1), L2/3 surround suppression is driven by the input

(although it may bemodulated in L2/3). In case (2), L2/3 surround

suppression arises from increased lateral activity driving greater

center response suppression. Since the scaling of the widths is

weak for LM and absent for L4 (Figure 2), we expect the second

mechanism to contribute only marginally to L2/3 surround

suppression.

To test this hypothesis, we consider the effects of (counterfac-

tually) eliminating surround suppression in L4 and HVAs

(Figures 3F–3G and 3I–3J) and of eliminating the growth of the

width of the HVA rate field with increasing stimulus size

(Figures 3H and 3K; note the width of the L4 rate field does not

increase with stimulus size). In each condition, we calculate a

surround modulation index, SMI = 1 � rLarge=rPref, where rLarge
and rPref are the firing rate of the centered cells at the largest

stimulus size ðs = 85�Þ and the preferred size, respectively (if

rLarge = rpref , then SMI = 0). Consistent with our hypothesis,

eliminating surround suppression in the inputs strongly reduces

surround suppression in L2/3, while eliminating growth of the

HVA rate field width does not alter surround suppression in

L2/3 (Figure 3E).

In Figure S17 we compare the recurrent rate field obtained

from a supralinear vs. a linear transfer function and show that

the former supports stronger surround suppression, presumably

because the nonlinearity increases the gap between responses

to stronger vs. weaker stimuli.
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Figure 3. Feedforward, feedback, and lateral SOM inputs shape classical surround suppression

(A) Sketches of experimental setup with classical size tuning stimuli; minimal model with one recurrent cell type in V1 L2/3 receiving feedforward (FF) input from

L4, feedback (FB) input from HVAs, and lateral input from its own type (LAT) and from SOM cells.

(B) Strength of the four types of connections vs. CRF distance between pre- and post-synaptic neurons.

(C) L2/3 size-tuning curve and (D) rate field. Here and in (L) and (M), color code of the full circles indicates stimulus size, full circles represent simulations, and full

lines represent analytical results.

(E–K) Counterfactual modifications of the inputs. (E) Bar plot representing the SMI (see main text) in the control condition and when we eliminate surround

suppression (SS) in L4, or HVAs, or growth of the width of the HVA rate field with stimulus size. (F–H) Illustration of the counterfactual modifications (dashed,

same color code as E) compared to the empirical values (full lines and symbols as in Figure 2). (I–K) Effects of the counterfactual modifications on L2/3 size-

tuning curve.

(L–N) Effects of adding SOM input. (L andM) Same as (C and D) but with SOM input. For large stimuli, the rate field convexity in the center changes. Compare with

Figure S5A. (N) Size-tuning curve of recurrent layer with (light red; same as L) and without (dashed green; same as C) SOM input.
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Surround suppression is weak for low-contrast stimuli and

increases in strength, while optimal size shrinks, with increasing

stimulus contrast.43 In Figures S18–S20, we analyze the

contrast dependence of size tuning in the model. We find

that a supralinear one-population model with Gaussian input

whose width increases with stimulus size can generate the

observed contrast-dependent size tuning, in line with the re-

sults in the two-population E/I model in Rubin et al.41 However,

the contrast dependence in the minimal model is parameter

dependent, and in particular does not occur with the connectiv-

ity length scales we are using, which are matched with

those observed experimentally in mouse L2/3. In Figures S21

and S22, we examine this contrast dependence further and

find that additional contributing factors to contrast-dependent

size tuning may be (1) scaling of rate field width in the feedback

input and (2) large VIP/small SOM response for low contrasts

(in agreement with Mossing et al.43). In Figure S23, we show

that our results still hold when considering non-Gaussian as-

pects of the rate fields.
SOM cells enhance classical surround suppression and

generate more complex spatial profiles

The rate field of SOM neurons in L2/3 lacks surround suppres-

sion (Figure 2J).61 We compare the size-tuning curve of the

model recurrent population in the presence or absence of

SOM input, as in Adesnik et al.61 Since SOM cells prefer larger

stimulus sizes, they inhibit L2/3 the most for larger stimuli, thus

enhancing L2/3 classical surround suppression (Figures 3L and

3N). This effect is robust against changes in the free parameters

(i.e., the connection strengths). However, when the effective

strength of SOMprojections onto the Pyr + Pv population is large

enough, the model Pyr + Pv rate field develops a ring shape for

large stimulus sizes (Figure 3M), which is well captured by our

analytic solution. This ring shape for large stimulus sizes has

been reported in Dipoppa et al.6 (replotted in Figure S12). The

absence of this feature in our dataset (Figure 2I) could conceiv-

ably be explained if those animals had a smaller effective

strength of SOM projections than in Dipoppa et al.6 From a geo-

metric point of view, the SOM input field is a (relatively narrow)
Cell Reports 44, 115088, January 28, 2025 5
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Figure 4. Inverse response and size-tuning properties of V1 and HVAs

Same as Figure 2 but for inverse stimuli.

(A–D) Experimental rate field (top) and best difference-of-Gaussians fit (bottom) for two stimulus sizes (represented at scale by the bottom bars).

(E–H) Up and down triangles (almost overlapping) are the widths of the positive and negative Gaussian functions in the best fits to the rate fields. Differences in

widths of the two Gaussians are small. Full line, linear fit; dashed line, fit if width of the positive Gaussian grew as the radius of the stimulus.

(I–L) Inverse size-tuning curves. Full (empty) circles are experimental responses of cells centered on (with an offset of 30� with respect to) the stimulus center, vs.

inverse stimulus size. Full lines are fits.
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Gaussian-shaped bump (e.g., see SOM rate field in Figure 2), so

it most strongly inhibits central Pyr + Pv cells. For large stimuli, its

amplitude becomes larger than that of other inputs, generating a

concave Pyr + Pv rate field. The excitatory input from HVAs can

also contribute to this effect, since for large stimuli it also exhibits

a ring profile (Figures 2L and S9).

In conclusion, our model predicts that classical surround sup-

pression in L2/3 and its contrast dependence are largely ex-

plained by surround suppression of its inputs (consistent with An-

gelucci et al. and Vangeneugden et al.62), marginally enhanced by

lateral (PV) inhibition progressively recruited as the stimulus

size increases,41,42 enhanced by SOM lateral input,61 and partially

supported by the supralinear input/output function63,64 (see

Table S1).

Inverse response and size-tuning properties of L2/3 are
shaped by the feedback input
In the previous sections, we developed the minimal model, with

most parameters set from experimental data. Here we use the

same model, with no adjustment of parameters except the

increased amplitude of HVAs input for inverse vs. classical

stimuli (further detailed in Figure S10), to understand responses

to inverse stimuli of varying sizes (i.e., hole diameters).

In experiments, letting position 0� be the stimulus center, L2/3

cells with CRF center near zero (‘‘aligned cells’’) respond well to

inverse stimuli, but the aligned inputs from L4 and HVAs have
6 Cell Reports 44, 115088, January 28, 2025
very low firing rates (Figures 4 and S1–S4). This led Keller

et al.1 to conclude that the inverse tuning properties of L2/3

are not directly inherited from its retinotopically aligned inputs.

Aligned cells in L2/3 show size tuning to inverse stimuli very

similar to classical size tuning (Figure 4I, full circles, compare

with Figure 2I). However, the spatial representation of inverse

stimuli is qualitatively different from the spatial representation

of classical ones: for moderate-sized (35�) to large stimuli, the

L2/3 rate field for inverse stimuli has a local minimum at 0�, so
that the peak response is at a characteristic distance from

the center (Figure 4A). This is not true for classical stimuli

(Figures S1–S4), although, as we noted previously, it can occur

for large enough stimuli both in the model (Figure 3M) and in ex-

periments.6 Similarly to the classical stimulus condition, the

widths of the inverse rate fields scale weakly with the stimulus

size (Figures 4E–4H and S9).

We parameterize the input rate fields with difference-of-

Gaussian functions (Figures 4A–4D, bottom) whose parameters

vary continuously with stimulus size (see STAR Methods and

Figures S6–S9). In doing so, we trade off some details of the

spatial profiles of the responses to gain interpretability. In partic-

ular, to leverage the minimal model, we adopt a compact analyt-

ical expression for the L4 rate field that limits the accuracy of the

fit for small stimuli (Figure 4C). In Figure S23 we show that the

results presented are qualitatively equivalent with far more

accurate fits.
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Figure 5. Inverse response and size-tuning properties of L2/3 are shaped by its feedback input

(A) Inverse size-tuning stimuli, (B) size-tuning curve, and C rate fields for L2/3 of the model. In (C) results for the simulations (dots) and the analytics (curves) are

represented separately for better readability. The model recovers inverse size tuning as well as the change in convexity of the rate field (compare Figures 4A

and 4I).

(D) SOM neurons reduce inverse surround suppression (compare Figure 3N for classical stimuli).

(E) Size-tuning curve in the control case (light red) and for silencing of HVAs (rate field of HVAs reduced by a factor 0.65) (compare Figure S12A for classical

stimuli).

(F) Size-tuning curves for varying contrast (both L4 and HVA rate fields are reduced by a factor c = log2 2C0,C0 values shown in legend; compare Figure S21 for

classical stimuli).
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The minimal model reproduces inverse size tuning and

the spatial profile of inverse response as a function of size

(Figures 5B and 5C): centered cells show high response to small

inverse stimuli, while, for large inverse stimuli, offset cells show a

large response and centered cells respond less. Adding SOM

cell input to the model, using experimentally measured SOM re-

sponses, slightly reduces the degree of inverse surround sup-

pression, the opposite of the effect seen in the classical case

(Figure 5D, and see Figure 3N for comparison). This is because

SOM cells respond more strongly to small than to large inverse

stimuli (Figures 4B and S9), whereas they respondmore strongly

to large than to small classical stimuli (Figure 2).

Inverse response is substantially reduced by reduction of HVA

input (Figure 5E). For classical stimuli, the same modification

affects L2/3 response only marginally. This is consistent with

experimental results on optogenetic silencing of HVAs (see

Figure 5C in Keller et al.1). This differential effect of HVA suppres-

sion on inverse vs. classical response is consistent across vary-

ing levels of HVA suppression (Figure S24).

Finally, themodel shows an increase of inverse responseswith

contrast (Figure 5F, see also Figure S25) similar to that found

experimentally.1

Inverse response requires wide-enough feedback

projections and feedback activity profiles scaling with

stimulus size

We use our analytical framework to determine the conditions

needed for inverse responses to arise. We first investigate the

role of the width of the feedback projections sL23�HVA. We vary

its value around the experimental estimate (Figures 6A and 6B)

while the inverse stimulus size is fixed at 15� (Figure 6A). For
this stimulus size, the L2/3 rate field is peaked at its center. For

this to occur in the model, sL23�HVA must be sufficiently large,

but not too large (Figure 6C), as we now explain.

HVAs activity peaks in a ring of cells with CRFs corresponding

approximately to the hole edge, although the ring size grows

somewhat more slowly than the hole size (Figures 4 and S26).

We posit that each HVA cell on the ring projects a Gaussian-

shaped bump of projections back to V1 L2/3, centered on its

position on the ring. If these feedback projections are wide

enough, the bumps will all overlap in the middle, giving the

strongest input, and thus the strongest response, at the stimulus

center (shown schematically in Figure 6A, discussed in

Figures S27–S29).

To quantify the range of values of sL23�HVA compatible with the

inverse response, we compute the second derivative of the

recurrent rate field at its center as a function of sL23�HVA for

the 15� stimulus (Figures 6C and 6D). A negative second deriva-

tive denotes a maximum in the center, as observed experimen-

tally. For this to occur, sL23�HVA needs to fall within the range

ð12�;35�Þ (Figure 6D). The experimental estimate in Marques

et al.37 is indicated by the shaded area in Figure 6D, which falls

within this range. The same results hold in a model of L2/3 with

four recurrent cell types (see Figures S30–S32 and S34–S38).

We can similarly understand why inverse response is size

tuned. As the stimulus size increases and the ring-shaped

HVA rate field becomes wider, the input to L2/3 cells centered

on the stimulus center decreases (the overlap of the bumps

in the middle decreases; see Figure 6E). At some point,

the input peak moves away from the center, and an ever-deep-

ening trough forms at the stimulus center (Figure 6I),
Cell Reports 44, 115088, January 28, 2025 7
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Figure 6. Inverse response requires wide-enough feedback projections and feedback activity profiles that scale with stimulus size

(A) Rate fields in HVAs for a small stimulus (top 3D plots, ring profile). The feedback projections are represented by the empty cones (narrower projectionwidth on the

right). Bottom 3D plots: L2/3 field of input current arising from the feedback projections from five example points; the L2/3 input current would be the sum of similar

projections from all points in the HVA rate field. Narrower feedback projections yield a trough in the center (right), while broader projections yield a peak (left).

(B) Counterfactual modifications of the width of projections from HVAs to L2/3. Amplitudes are normalized to 1.

(C) L2/3 rate fields for the different values of sL23�HVA and fixed stimulus width 15�.
(D) Second derivative of L2/3 rate field evaluated at the origin, vs. sL23�HVA. Color code as in (C); shaded bar represents the experimental estimate in

Marques et al.37

(E) Top: parametrization of HVA rate field used for (F)–(M). Bottom: for fixed sL23�HVA = 20o ; a wide-enough sHVA;r results in a trough in the center.

(F–K) HVA rate field (F–H) and input current (I–K) for the control condition (F and I; parameters as in previous figures) and for two counterfactual modifications:

eitherAr andw (G and J, dark yellow symbol) or sHVA;r (H and K, light blue symbol) are kept constant (fixed at their value for size s = 15�) with varying stimulus size.

(L and M) Size-tuning curve (L) and SMI for the control condition (M) (red) and the modified conditions (colors as in G and H).
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representing the decrease in response with increasing stimulus

size (Figure 6F).

While this explanation attributes the decrease in response with

increasing hole size to the increasing width of the ring of HVAs ac-

tivity (which we also show analytically in Figures S27–S29),

another contributing factor could be the decrease in amplitude

and thickness of the ring. To test this, we fit the HVA rate field

with an alternative parameterization, a circle of radius sHVA;r (ring

radius) convolved with a Gaussian of amplitude Ar and width w

(ring thickness; see Figure 6E). We then apply two counterfactual

modifications to the HVA rate field: (1) eliminate the size depen-

dence of Ar andwwhile preserving the scaling of sHVA;r with stim-

ulus size (dark yellow symbol, Figure 6G), (2) eliminate the scaling

of sHVA;r while preservingAr andw (light blue symbol, Figure 6H). If

our explanation is right, (1) should only have a minor effect, while

(2) should significantly reduce inverse surround suppression

(which we also show analytically in the STAR Methods).

Indeed, in case (1), the field of HVA input to L2/3 develops a

trough for large stimuli (Figure 6J), and the inverse size-tuning

curve is very similar to that in the control case, with a minor

decrease in SMI (Figures 6L–6M). The only notable change is

that the response to the smallest size hole, 5�, becomes almost
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as large as the preferred size response. In contrast, in case (2),

the HVA input field does not develop a trough as the stimulus

size increases (Figure 6K) and, correspondingly, inverse sur-

round suppression is drastically reduced (Figures 6L–6M). Note

that, for a classical stimulus, surround suppression is only

slightly decreased by an analogous modification (compare

Figures 3E and 6M, light blue bar).

This difference between the classical and inverse cases in the

effect of a lack of widening of the input rate field suggests that,

despite the similarity of their size-tuning curves, their origin is

substantially different: classical surround suppression in L2/3 is

mostly driven by the aligned cells of its inputs, while inverse size

tuning is mediated by offset cells in HVAs. As the stimulus be-

comes larger, peak responses in HVAsmove to cells at larger off-

sets from the center, providing less and less excitatory input to

the center as the stimulus radius grows beyond the span of the

feedback projections.

In Figures S34–S38, we show that the explanations derived

using the minimal model also apply to a more biologically real-

istic model with four cell types.

The arguments presented here provide a purely geometrical

explanation of inverse response and inverse size tuning,
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Figure 7. Surround facilitation is generated by inverse response to the orthogonal surround

(A) Sketch of the extended minimal model, accounting for orientation preference as an additional dimension for the rate fields. Bottom: legend of the stimuli

analyzed: cross (center at orientation 0, surround at p=2; light red), classical/only center (dark blue), iso-oriented surround (light blue), and inverse (dark red).

(B) Density plot of HVA rate fields in one spatial dimension (vertical axis) and orientation preference (horizontal axis) for classical, inverse, and cross stimuli (color

code as in the legend).

(C) HVA rate fields of cells whoseCRF is centered on the stimulus center and with all possible orientation preferences (horizontal axis). Note, light red line for cross

stimulus is shown dashed and thick, so overlapping lines (dark blue, central region; dark red, larger preferred orientations) can be seen; light blue and dark blue

(not visible) overlap for larger preferred orientations.

(D) Input current from HVAs to the centered cells in L2/3 as a function of their preferred orientation.

(E and F) The response of centered L2/3 cells preferring orientation q = 0 is larger for the cross stimulus than for the classical stimulus alone (surround facilitation).

(E) Rate field of L2/3 neurons centered on the stimulus center as a function of their preferred orientation. (F) Rate field of L2/3 cells that prefer orientation q = 0 as a

function of their retinotopic location.

(G) We study the cross condition (control) and twomanipulations of it (no HVA, no SOM). For each condition, rate fields of L2/3 are normalized to the amplitude of

the response to a center-only stimulus. Surround facilitation (responses larger than 1) decreases when HVAs are silenced or SOM cells are hyperpolarized.

(H) Larger recurrent excitation (less negative or more positive W0) contributes to larger SFI.
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illustrating the importance of considering a spatial framework

with realistic anatomical and physiological length scales to un-

derstand contextual effects.

Surround facilitation can be explained by the inverse
response to the orthogonal surround
When a stimulus is presented together with an orthogonal

surround (‘‘cross’’ stimulus), the response of L2/3—but not L4—

Pyr cells centered on the stimulus is facilitated.2,46,65 We propose

that this effect may be, at least in part, the counterpart of the in-

verse response. More specifically, the response of aligned Pyr

cells may increase due to the orthogonal surround evoking the

same inputs that drive the inverse response. To test this hypothe-

sis,we extend theminimalmodel to include orientation preference

(see Figures 7A and S39) and connectivity that decreases in

strength with increasing difference in preferred orientation ac-

cording to experimental estimates36,66,67 (see STAR Methods).

We assume that the rate fields of the input populations for the

cross stimulus can be approximated as the sum of the rate fields

for a direct stimulus of one orientation in the center plus an in-

verse stimulus of the orthogonal orientation (Figures 7B and

7C). In general, the response fields are not additive. Neverthe-

less, for cross stimuli, the classical and inverse stimuli are largely

encoded by complementary sets of cells, i.e., cells with orthog-
onal orientation preferences, which interact minimally36; hence,

we make the assumption of additivity.

We consider a classical stimulus with orientation 0, an inverse

stimulus with orientation p=2, and a cross stimulus that com-

bines the two. The extended minimal model shows that L2/3

cells are surround facilitated (Figures 7E and 7F). This effect

can be understood as follows: HVA cells at the stimulus center

with preferred orientation 0 have zero response to the inverse

stimulus (dark red line in Figure 7C). However, L2/3 cells with

the same position and preferred orientation receive small but

positive HVA input (Figure 7D), which comes from more offset

HVA cells via their broad feedback projections to L2/3. Thus

the inverse stimulus at orientation p=2 provides a small HVA

input to the L2/3-centered cells that prefer orientation 0. This

input generates cross-oriented facilitation (light red curves in

Figures 7E and 7F).

Thus, our model suggests that HVAs support L2/3 cross-orien-

tation surround facilitation (Figure 7G, light red curve). If HVAs are

blocked (cyan curve), responses to both center-only and cross

stimuli decrease; cross is still facilitated relative to center only,

but less so than with HVAs intact (the cyan curve in Figure 7G

lies below the light red curve). The same is true also when SOM

input is silenced (green curve), implying that both HVAs and

SOM cells support cross-orientation surround facilitation.
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To better quantify surround facilitation, we define the surround

facilitation index SFI = ðrx � rcÞ=ðrx + rcÞ, where rx (rc) is the

firing rate of the L2/3-centered cells in the cross (classical) stim-

ulus condition. We analyze the dependence of SFI on the relative

weight of excitation and inhibition in the joint Pyr + Pv population,

controlled by the amplitude of the recurrent connections W0

(Figure 7H). Larger W0 (i.e., more recurrent excitation) yields

larger SFI.

For excitation dominated systems (W0 > 0), SOM input sup-

presses surround facilitation (green curve above the light red

one). On the other hand, for inhibition-dominated systems

(W0 < 0), as in Figure 7G, SOM input increases SFI (green curve

below the light red). More generally, in Figures S40 and S41, we

show that SOM input increases (decreases) SFI if the ratio of

SOM input in the inverse vs. center conditions is less (greater)

than the ratio of total input in the two conditions.

To summarize, assuming that inputs evoked by center-only

and orthogonal surround-only or inverse stimuli add linearly,

both HVAs and lateral SOM inputs contribute to cross-orienta-

tion surround facilitation, while lateral PV input tends to reduce

it. Note that the suppression of SOMwas the primarymechanism

of enhancement of response to the cross-oriented stimulus pro-

posed in Keller et al.2 (in that case due to activation of VIP by the

cross stimulus, which inhibited SOM); here, we are proposing

that both HVAs and the suppression of SOM contribute to the

facilitation.

The assumption of additivity can be experimentally tested by

recording the spatial pattern of responses to cross stimuli. In

particular, we expect that L2/3 Pyr and PV cells centered on the

cross stimulus and with preferred orientation orthogonal to the

center stimulus show significant response (Figure 7C). Similar re-

cordings, with a smaller difference in orientation between center

and surround, should instead deviate from additivity, perhaps re-

flecting the neural correlates of the ‘‘tilt illusion.’’68

DISCUSSION

We propose a unifying (toy) model of mouse V1 accounting for

three types of contextual modulation and connecting two seem-

ingly unrelated phenomena: inverse response and cross-orienta-

tion surround facilitation. To gain robust mechanistic insight, we

include in the model as few elements as possible to easily disen-

tangle the effects of each. Instead of quantitatively fine-tuning

the model to a particular dataset, we aim to describe results at

a qualitative level, at which they are more robust and consistent

across different datasets. While the minimal model neglects the

full recurrent microcircuitry of L2/3, it yields mechanistic insights

into cortical computation, which we show also apply to a fully

recurrent four-cell-type circuit (Figures S34–S38).

Despite the very limited number of parameters (as few as

three), our minimal approach is highly informative. In addition

to the three main types of contextual modulation, it reproduces

stabilization of the circuit by PV cells, the modulations of the

classical and inverse response when silencing HVAs, and the ef-

fects of changing stimulus contrast and hyperpolarizing SOM

cells. At the same time, it generates insights that translate into

several experimentally testable predictions, as summarized in

Table S1.
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Previous models of classical surround suppression have

assumed it is mediated by lateral inhibition progressively re-

cruited as the stimulus size increases.5,6,38,41,42,69 Our analysis

suggests that, in mouse L2/3 of V1, this mechanism only margin-

ally contributes to surround suppression, because (1) the feed-

forward input to L2/3 is also strongly surround suppressed,

and (2) the rate field size increases much more slowly than the

stimulus size.

Firstly, given the well-documented existence of surround sup-

pression in earlier stages of the visual pathway, such as the

retina70,71 and the lateral geniculate nucleus,72 we believe that

size tuning may be transmitted along the visual pathway and

modulated at the different stages, including the primary visual

cortex. This observation also applies to other model organisms,

such as cats andmonkeys,73,74 and underscores the importance

of considering perception from a more integrated perspective,

rather than focusing solely on individual layers or isolated

circuits.75,76

Secondly, some of the simplifying assumptions of our frame-

work are based on the large amount of available anatomical

and functional information on mouse visual cortex; therefore, it

is not straightforward to extend these results to other model or-

ganisms. The finding that the growth of the width of input profiles

alone does not support surround suppression is parameter

dependent and does not hold for length scales that are more

representative of cat anatomy (Figures S18–S20).

However, it’s important to note that the observation of a slow

rate field size increase in our dataset is purely empirical and, as

such, it does not depend on the model. Moreover, this obser-

vation is independent on the preprocessing procedure used

to define the rate fields (Figures S2–S4) and it is consistent

with the recordings in Dipoppa et al.6 (their Supplementary Fig-

ure 11D) and in Michaiel et al.47 (their Figure 2A), although

those authors did not highlight the effect. Pinpointing this coun-

terintuitive feature of neural responses in mouse V1 is one of

our major findings. We should, however, caution that all of

the recordings in this and those two papers were done with

Ca++ imaging, and it is conceivable that there is widening of

the spiking signal but with intensity below threshold for Ca++

recording.

Our finding suggests the interesting psychophysical correlate

that the perceived area of stimuli should grow more slowly than

the actual area. This is in agreement with the results of Yousif

and Keil,77,78 who had participants compare total area of mul-

tiple patches of color, distributed in random locations within a

region, and with different diameter distributions. For samples

with equal total area, participants consistently perceived less

cumulative area in samples with fewer larger patches than in

samples with more smaller patches. This correlate could be

further tested with another experiment: alternately present a

small circular stimulus centered at position x, and a larger cir-

cular stimulus whose edge intersects x. We predict that the

larger stimulus should be perceived as not extending to the

center of the smaller one. We conducted a pilot experiment

that appears to support this prediction. These results seem to

suggest that recordings of the rate fields as a function of stim-

ulus size for other model organisms may reveal a trend similar

to what we observe in mouse.



Article
ll

OPEN ACCESS
Limitations of the study
We modeled HVA input based on recordings from area LM.1

However, in these recordings, LM responses are much weaker

in the inverse condition than in the classical condition. Since in-

verse responses have similar strength to classical responses, we

assumed that input from other HVAs must equalize overall HVA

responses in the two conditions, and we scaled observed LM in-

verse responses accordingly. This assumption needs to be

tested experimentally.

We treat HVAs as a static input, even though they are part of a

coupled system, receiving input from V1 and projecting back to

V1. To develop a dynamical model for the coupled population of

L4, L2/3, and HVA, we would need to specify the external inputs

to this entire system. However, in the dataset considered, L2/3

responses to small-size classical and inverse stimuli are very

similar, while LM responds very differently to the two stimuli.

This suggests that LM likely receives a significant part of its input

from other sources79–81 for which we have no recordings. More

broadly, being able to determine whether a specific dynamical

regime in a circuit arises from the circuit’s intrinsic properties

(such as its internal connectivity) or is driven by the characteris-

tics of external inputs is at the center of ongoing debate (see e.g.,

Morales et al.82 and Morrell et al.83).

Context shapes the readout not only at a neural level but also

at a perceptual level. Animals are active interpreters of the visual

scene, as opposed to passive decoders.7,68,84–91 The study of

themechanisms underlying contextual modulation of responses,

including information that higher processing stages project back

onto the canvas of visual cortex, opens a window to understand

how our brains create our perceptual experiences.

We believe that the simplicity, analytical tractability, and

spatial nature of the model presented here, together with the

fact that it can be easily extended to account for other feature

spaces, will enable further mechanistic insight into visual cortical

circuitry and responses in future studies.
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91. Santacà, M., Miletto Petrazzini, M.E., Agrillo, C., andWilkinson, A. (2019).

Can reptiles perceive visual illusions? Delboeuf illusion in red-footed tor-

toise (chelonoidis carbonaria) and bearded dragon (pogona vitticeps).

J. Comp. Psychol. 133, 419–427. https://doi.org/10.1037/com0000176.

92. Priebe, N.J., and Ferster, D. (2008). Inhibition, spike threshold and stim-

ulus selectivity in primary visual cortex. Neuron 57, 482–497. https://doi.

org/10.1016/j.neuron.2008.02.005.

93. Persi, E., Hansel, D., Nowak, L., Barone, P., and van Vreeswijk, C. (2011).

Power-law input-output transfer functions explain the contrast-response

and tuning properties of neurons in visual cortex. PLoS Comput. Biol. 7,

e1001078. https://doi.org/10.1371/journal.pcbi.1001078.

94. Kaschube, M. (2014). Neural maps versus salt-and-pepper organization

in visual cortex. Curr. Opin. Neurobiol. 24, 95–102. https://doi.org/10.

1016/j.conb.2013.08.017.

95. Tremblay, R., Lee, S., and Rudy, B. (2016). Gabaergic interneurons in the

neocortex: from cellular properties to circuits. Neuron 91, 260–292.

96. Karnani, M.M., Jackson, J., Ayzenshtat, I., Tucciarone, J., Manoocheri,

K., Snider, W.G., and Yuste, R. (2016). Cooperative subnetworks of

molecularly similar interneurons in mouse neocortex. Neuron 90,

86–100. https://doi.org/10.1016/j.neuron.2016.02.037.

97. Karnani, M.M., Jackson, J., Ayzenshtat, I., Hamzehei Sichani, A., Manoo-

cheri, K., Kim, S., and Yuste, R. (2016). Opening holes in the blanket of

inhibition: localized lateral disinhibition by vip interneurons. J. Neurosci.

36, 3471–3480. https://doi.org/10.1523/JNEUROSCI.3646-15.2016.

98. Fu, Y., Tucciarone, J.M., Espinosa, J.S., Sheng, N., Darcy, D.P., Nicoll,

R.A., Huang, Z.J., and Stryker, M.P. (2014). A cortical circuit for gain con-

trol by behavioral state. Cell 156, 1139–1152. https://doi.org/10.1016/j.

cell.2014.01.050.

99. Garcia-Junco-Clemente, P., Ikrar, T., Tring, E., Xu, X., Ringach, D.L., and

Trachtenberg, J.T. (2017). An inhibitory pull–push circuit in frontal cortex.

Nat. Neurosci. 20, 389–392. https://doi.org/10.1038/nn.4483.

100. Pi, H.-J., Hangya, B., Kvitsiani, D., Sanders, J.I., Huang, Z.J., and Ke-

pecs, A. (2013). Cortical interneurons that specialize in disinhibitory con-

trol. Nature 503, 521–524. https://doi.org/10.1038/nature12676.

101. Jiang, X., Shen, S., Cadwell, C.R., Berens, P., Sinz, F., Ecker, A.S., Patel,

S., and Tolias, A.S. (2015). Principles of connectivity among morpholog-

ically defined cell types in adult neocortex. Science 350, aac9462.

https://doi.org/10.1126/science.aac9462.

102. Samonds, J.M., Feese, B.D., Lee, T.S., and Kuhlman, S.J. (2017). Nonuni-

form surround suppression of visual responses in mouse v1.

J. Neurophysiol. 118, 3282–3292. https://doi.org/10.1152/jn.00172.2017.

103. Iacaruso, M.F., Gasler, I.T., and Hofer, S.B. (2017). Synaptic organization

of visual space in primary visual cortex. Nature 547, 449–452. https://doi.

org/10.1038/nature23019.

104. Bos, H., Oswald, A.-M., and Doiron, B. (2020). Untangling stability and

gain modulation in cortical circuits with multiple interneuron classes. bio-

Rxiv. https://doi.org/10.1101/2020.06.15.148114.

105. Chettih, S.N., and Harvey, C.D. (2019). Single-neuron perturbations

reveal feature-specific competition in V1. Nature 567, 334–340. https://

doi.org/10.1038/s41586-019-0997-6.

https://doi.org/10.1523/JNEUROSCI.2804-16.2016
https://doi.org/10.1523/JNEUROSCI.2804-16.2016
https://doi.org/10.1523/JNEUROSCI.3562-05.2005
https://doi.org/10.1016/j.neuron.2007.11.019
https://doi.org/10.1152/jn.00480.2014
https://doi.org/10.1152/jn.00480.2014
https://doi.org/10.1371/journal.pcbi.1000211
https://doi.org/10.1038/s41586-020-03171-x
https://doi.org/10.1177/0956797619831617
https://doi.org/10.1016/j.tics.2021.03.017
https://doi.org/10.1016/j.tics.2021.03.017
https://doi.org/10.1016/j.cub.2014.01.061
https://doi.org/10.1016/j.cub.2014.01.061
https://doi.org/10.1038/s41586-019-1716-z
https://doi.org/10.1016/j.neuron.2021.04.017
https://doi.org/10.1016/j.neuron.2021.04.017
https://doi.org/10.1073/pnas.2208998120
https://doi.org/10.1103/PhysRevLett.126.118302
https://doi.org/10.1103/PhysRevLett.126.118302
https://doi.org/10.1038/35104092
https://doi.org/10.1037/rev0000109
https://doi.org/10.1073/pnas.2002937117
https://doi.org/10.1073/pnas.2002937117
https://doi.org/10.1007/s10071-015-0860-6
https://doi.org/10.1007/s10071-015-0860-6
https://doi.org/10.4236/psych.2014.59125
https://doi.org/10.1038/srep06443
https://doi.org/10.1016/j.cub.2010.08.033
https://doi.org/10.1037/com0000176
https://doi.org/10.1016/j.neuron.2008.02.005
https://doi.org/10.1016/j.neuron.2008.02.005
https://doi.org/10.1371/journal.pcbi.1001078
https://doi.org/10.1016/j.conb.2013.08.017
https://doi.org/10.1016/j.conb.2013.08.017
http://refhub.elsevier.com/S2211-1247(24)01439-6/sref95
http://refhub.elsevier.com/S2211-1247(24)01439-6/sref95
https://doi.org/10.1016/j.neuron.2016.02.037
https://doi.org/10.1523/JNEUROSCI.3646-15.2016
https://doi.org/10.1016/j.cell.2014.01.050
https://doi.org/10.1016/j.cell.2014.01.050
https://doi.org/10.1038/nn.4483
https://doi.org/10.1038/nature12676
https://doi.org/10.1126/science.aac9462
https://doi.org/10.1152/jn.00172.2017
https://doi.org/10.1038/nature23019
https://doi.org/10.1038/nature23019
https://doi.org/10.1101/2020.06.15.148114
https://doi.org/10.1038/s41586-019-0997-6
https://doi.org/10.1038/s41586-019-0997-6


Article
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Keller et al.1 Keller et al.1 https://doi.org/10.1038/s41586-020-2319-4

Software and algorithms

GitHub code serenadisanto14/ContextualEffectsVC-v1.0.0 Zenodo https://doi.org/10.5281/zenodo.13957280
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The responses of thousands of neurons in the primary visual cortex of adult mice of either sex are recorded through 2-photon calcium

imaging during visual stimulation. Stimulation timewas 2s interleaved by 4s of gray screen. The response amplitude to a stimulus was

computed as the average response over the duration of the stimulus presentation. Stimuli were presented at 100% contrast. To es-

timate the center of the receptive field, the responses to patches of gratings ð10�Þpresented along a grid (15� spacing) were fittedwith

a two-dimensional Gaussian. The size of the CRFwas approximated by the size of the patch of gratings evoking the largest response.

The number of recorded cells is 1489 Pyr, 25 PV, 105 SOM, 90 VIP, 38 L4, and 167 LM). The maximum distance between the CRF

recorded and the stimulus center is 40�. Further experimental details are available in.1

METHOD DETAILS

Nonlinear transfer function
We assume neurons have a supralinear input/output function (taken to be rectified quadratic), describing the steady-state firing rate

induced by a given net input to the neuron.92 Such an expansive input/output function is expected when firing activity is driven by

input fluctuations rather than by the mean input,63,64 and has been shown to yield network behavior that reproduces a variety of

nonlinear visual cortical behaviors.41,52 The use of these power-law input/output functions, combined with our assumptions that con-

nectivity and firing-rate fields are described by Gaussian functions, allows us, building on previous theoretical work,93 to develop an

approximate analytic solution to the one-population model, which yields deeper insight into themechanisms driving model behavior.

Feedback input
A crucial aspect of the model is to include inputs from HVAs. A difficulty in doing so is that cells in L2/3 are targeted by all of the

HVAs,35,76 but we have recordings of the V1 boutons from only one HVA, area LM.1 Extended Data Fig. 9 in1 shows that optogenetic

silencing of different HVAs generates quantitatively different reductions of classical versus inverse responses. We assume that the

HVAs considered altogether have a rate field profile proportional to that recorded in LM, but with proportionality constants that can

differ between the classical and inverse stimulus conditions. In Figure S10 we show how we infer these constants based on the am-

plitudes of inverse vs. classical response in L2/3.

The minimal model
We consider a system with one recurrent population defined on a two-dimensional retinotopic space of coordinates fxg, whose rate

field is rðxÞ and which receives a visually-driven input described by a 2D isotropic Gaussian function IðxÞ = I0Gðx; vÞ (whereGðx;vÞh
1

2pve
� x2

2v ). Let the recurrent connections be Wðx � yÞ = W0Gðx � y;vrÞ. We consider the SSN dynamical equations for the system,

tdrðxÞ=dt = � rðxÞ+ ½uðxÞ�2+ where uðxÞ, the total input current, i.e., the sum of the visually driven and recurrent input. We will here-

after focus on the steady state of the system, where rðxÞ = ½uðxÞ�2+, or:

rðxÞ =

�
IðxÞ+

Z N

�N

dyWðx � yÞrðyÞ
�2

(Equation 1)

In Equation 1 we omit the rectification sign, based on the assumption that uðxÞ is always greater than or equal to 0. We will show that

the results we then derive obey this assumption.

Analogously we can write the SSN equations for the total input current at steady state as:

uðxÞ = IðxÞ+
Z

dy Wðx � yÞu2ðyÞ (Equation 2)
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To find uðxÞ we make the ansatz that uðxÞ has the following form:

uðxÞ = aðx; vuÞGðx; vuÞ (Equation 3)

where aðx; vuÞ is required to vary slowly as a function of x. We will henceforth write it simply as aðxÞ, leaving the dependence on vu
implicit. Note that vu is a free parameter that is constrained only by the fact that whenwe solve our equation the resulting aðxÞmust be

slowly varying. Then the recurrent term is:

RecðxÞ =
Z

dyWðx� yÞu2ðyÞ = W0

Z
dya2ðyÞGðx� y; vrÞG2ðy; vuÞ = W0

4pvu

Z
dya2ðyÞGðx� y; vrÞG

�
y;
vu
2

�
(Equation 4)

The largest contribution to the integral is given by the maximum of its argument (Laplace approximation), but since a2ðyÞ varies
slowly ðjVaðyÞj � jaðyÞjÞ, the maximum of the full argument can be approximated with the maximum of Gðx � y;vrÞG

�
y;vu2
�
, which

occurs at y = yh vux
2vr+vu

:

RecðxÞxW0a
2ðyÞ

4pvu

Z
dyGðx � y; vrÞG

�
y;
vu
2

�
=

W0

4pvu
a2ðyÞGðx; vruÞ (Equation 5)

where we defined vru = vr +
vu
2 . Since aðyÞ varies slowly with its argument, we take the further approximation that aðyÞ is well approx-

imated by aðxÞ. From Equation 2 we get:

aðxÞGðx; vuÞx I0Gðx; vÞ+ W0

4pvu
a2ðxÞGðx; vruÞ; (Equation 6)

We now solve the equation above for aðxÞ and get:

aðxÞx 2pvu
W0GðvruÞ

 
GðvuÞ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2ðvuÞ � I0W0GðvÞGðvruÞ

pvu

s !
(Equation 7)

where for better readability we are omitting the spatial dependence of the functionGð ,Þ. In Figure S13we show that jVaðxÞj � jaðxÞj.
We now choose vu to satisfy:

2v� 1
u = v� 1 + v� 1

ru (Equation 8)

This simplifies the expression under the square root, making it independent on x:

GðvÞGðvruÞ
G2ðvuÞ =

v2u
vvru

(Equation 9)

and thus we can write:

aðxÞx 2pvu
W0GðvruÞGðvuÞ

 
1 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � I0W0vu

pvvru

s !
(Equation 10)

Finally, using Equation 9 again:

uðxÞx2pvvru
W0vu

 
1±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� I0W0vu

pvvru

s !
GðvÞ = pðv+vruÞ

W0

 
1±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2I0W0

pðv+vruÞ

s !
GðvÞ (Equation 11)

Note that only one of the two solutions is actually acceptable, depending on whether the recurrent population described is excit-

atory or inhibitory. The only acceptable solution is the one with� for negativeW0 (because the one with + gives uðxÞ< 0). For positive

W0, instead, the solution requires that 2I0W0 <pðv + vruÞ. Violation of this condition means that recurrent excitatory input is very large

ðW0 >pðv + vruÞ =2I0Þ, and in this case we find numerically that the system diverges (see Figure S14).

Analogously, if the external input can be described by a sum of Gaussians:

IðxÞ =
Xm
k = 1

IkGðx; vkÞ (Equation 12)

making the same ansatz as above, we obtain

uðxÞ =
pðv1+vruÞ

W0

 
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2I1W0

pðv1+vruÞ � 4v21W0

Xm
k = 1

IkGðv1kÞ
ðv1 � vkÞvru

s !
Gðv1Þ; (Equation 13)
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where we defined
vu =

2v1vru
v1+vru

v1k =
v1vk

v1 � vk
:

(Equation 14)

Note that, despite the approximations, the analytic solution provides a really good description of the rate field (see e.g. Figures 3C,

3E, 5A, and 5C).

Validation of the minimal model
To solve the self-consistency equations for the spatial SSN (Equation 2) we took the ansatz (Equation 3), with the constraint that aðxÞ
is a slowly varying function of its argument. Here we show that the solution that we find for aðxÞ is actually consistent with the assump-

tion that it varies slowly with x. Analytically, if we consider only one external input IðxÞ = I0Gðx; vÞ and we restrict to one spatial dimen-

sion for illustration purposes, we find:

1

aðx; 0Þ
vaðx;0Þ

vx
=

x

	
� 3+

ffiffiffiffiffiffiffiffiffiffiffi
4v

vr
+1

r 

v

= O
�x
v

�
(Equation 15)

which is very small for the values that are relevant in this context, i.e., jxj< 50, v � 202, as shown in Figure S13.

The minimal model with orientation tuning
The minimal model can be extended to account for orientation tuning. Given the salt-and-pepper structure of preferred orientation in

mouse V1,94 we assume that orientation-preference is independent of the CRF location35: in every retinotopic location all possible

preferred orientations are represented. Thus we consider spatial locations and orientation as orthogonal degrees of freedom. Here

we reduce the retinotopic space to 1D, for simplicity and without entailing any conceptual change (whereas the results presented in

the main text for surround facilitation are obtained for 2 spatial dimensions plus one orientation dimension, for consistency with

the other results discussed). The rate field of the recurrent layer is then rðx; qÞ. Let us assume that it receives a Gaussian input

Iðx; q �jÞ = I0Gðx; vÞGpðq �j; lÞ at orientation j ˛ ð0; pÞ, with Gpðq; lÞ = 1ffiffiffiffiffiffi
2pl

p
PN

k = �N e�
ðq� kpÞ2

2l being a periodic Gaussian93 and

Gðx; vÞ = 1ffiffiffiffiffiffi
2pv

p e�
x2

2v . Let the recurrent connections be Wðx; y; q;fÞ = W0Gðx � y; vrÞGpðq � f; lrÞ, and let the response function

be rectified quadratic. We set
ffiffiffiffi
lr

p
= p=6 based on estimates in.36 The SSN equations for the system can be written analogously

to Eq1:

rðx; qÞ =

�
Iðx; qÞ+

Z
dydfWðx; y; q;fÞrðy;fÞ

�2
(Equation 16)

and the exact same steps as above can be carried out. Obviously we will take an orientation-tuned ansatz:

uðxÞ = aðx; qÞGðx; vuÞGpðq � j; luÞ (Equation 17)

where aðx; qÞ is a slowly varying function of both its arguments. All the calculations then are completely analogous to the purely spatial

case. (The convolution of two periodic Gaussians is a periodic Gaussian whose variance is the sum of their variances. Also, note that

in the case of periodic Gaussians, the equivalent of Equation 8 holds only approximately, but it is a very good approximation, when l

is sufficiently small compared to p.) We define lru = lr +
lu
2 and consider 2l� 1

u xl� 1 + l� 1
ru then we find:

uðxÞx p

W0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vvrullru
luvu

s 0B@1 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2I0W0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vulu

pvvrullru

svuut 1CAGðx; vÞGpðq � j; lÞ (Equation 18)
The full model
The operating regime of cortical computations emerges from the interplay of Pyramidal cells with multiple interneuron types. In

mouse V1, approximately 80% of these interneurons are PV, SOM, or VIP cells.58,95 In this Section we show that our results hold

in a network model that includes all four of these cell types. We call this the ‘full model’.

Since the synaptic coupling weights are not easily measured in the lab e.g., see varying results in,35,58,96 we infer them as in,2,6,43,49

together with threshold offsets specific to each cell type, by constraining the model to reproduce the recurrent rate fields recorded in

the classical stimulus condition. In order to avoid a proliferation of parameters: i) we set to zero the connections that have been shown

experimentally to be very small35,58,59,96–101 as in2,6 and ii) we fix the connection widths based on anatomical measurements35,36,96

(see Figure S30).
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We develop a semianalytical non-negative-least-squares approach to fit the free parameters of the model. Since all the inputs that

SOM cells receive in the classical stimulus condition are surround suppressed, yet SOM cells are not, it is particularly hard to recover

SOM size tuning properties. Possible solutions to this problem are to consider divisive inhibition fromSOM to VIP6 or additional inputs

that grow with stimulus size.43 Here for simplicity we adopt the latter solution. A possible explanation is that SOM cells receive input

from the surround that is stronger and/or has different orientation preference than the input from the center.37,61,102,103 In Figure S31

we show the size of the extra input relative to the net other input.

We fit the model to reproduce the classical response profiles. We find a collection of parameter sets that fit the data well (see

STAR Methods on model comparison). In Figure S30 we plot one of the inferred parameter sets, and the resulting match of

experimental and model classical size tuning curves. With the inferred parameters, and given the external inputs from HVAs

and L4 and the increase in strength of HVAs input for inverse vs. classical stimuli, the model quantitatively reproduces the in-

verse response and size tuning of all cell types in L2/3 (Figure S30D). This confirms that the inputs (in particular the input from

HVAs) play a fundamental role in shaping the inverse patterns of activity, as suggested in1 and clarified by the minimal model. In

Figure S33, we show that the results presented here are robust against reasonable changes in the connection width, accounting

for errors in the experimental estimates considered. In Figure S34–S38 we also show that the full model is stabilized by PV cells

and that it recovers the modulations induced by changing the stimulus contrast, by silencing HVAs, and by suppressing SOM

cells.

The full model can be leveraged to test the robustness of the mechanisms uncovered through the minimal model. In particular

Figure S38 confirms that inverse response and size tuning in the full model require: i) broad enough feedback connections, ii) growth

of the width of the HVAs rate field. Therefore the principles discussed and analyzed in the main text for the minimal model extend to

this more biologically realistic framework.

Inferring parameters of the full model
In the full model the recurrent layer is composed of Pyramidal neurons (Pyr or E) as well as the 3 main interneuron classes, Parval-

bumin (PV or P), Somatostatin (SOM or S) and Vaso-intestinal peptide (VIP or V), which together account for about 80 � 90% of the

neurons in mouse V1.58,95 In addition, as in the minimal model, we consider external feedforward input from L4 (L) and external feed-

back input from HVAs (H). In order to keep the number of parameters as small as possible, we consider rectified quadratic transfer

functions for all celltypes and we fix the projection span of each connection based on anatomical observations (see STAR Methods

on Anatomical length scales). Since the firing rates are not 0, we assume that the total input current to each population is positive.

Then we canwrite the following equation for the rate field of population A (A˛ fE;P;S;Vg; note that L4 and HVAs are taken as external

inputs with rate fields taken from experimental measurement):ffiffiffiffiffiffiffiffiffiffiffi
rAðxÞ

p
=
X
B

Z
WABðx � yÞrBðyÞdy+TA (Equation 19)

whereB = fE;P;S;V ; L;Hg and x denotes 2 dimensional cortical or –equivalently for themodel– retinotopic position. The term TA is a

bias that we consider constant (across space and stimulus size), which can be understood as a cell-type-specific firing threshold.

As in the minimal model, we consider Gaussian assumptions and ansatz:

WABðx � yÞ = WAB

2pvAB
e
� ðx� yÞ2

2vAB

rAðxÞ = rAe
� x2

2vA +bA;

(Equation 20)

where b is the baseline, i.e., the firing rate in absence of inputs, uniform across space. Here we aim to solve for theWAB given the rAðxÞ
(see Figures S2–S4) and given the values of vAB. In order to regress the connection weights, we set up a non negative least squares

(NNLS) approach similarly to.2,6 Let us consider first the NNLS procedure when we constrain only on one stimulus size. Then the loss

function reads4:

SA =

Z N

�N

dx

" ffiffiffiffiffiffiffiffiffiffiffi
rAðxÞ

p
�
X
B

Z
WABðx � yÞrBðyÞdy � TA

#2

=

Z N

�N

dx

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAe

� x2
2vA+bA

q
�
X
B

WAB

	
rB

vB
vAB+

e
� x2

2vAB++bB



� TA

#2 (Equation 21)

where we defined vAB+ = vAB + vB. It is easy to verify numerically that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAe

� x2

2vA+bA

q
xqAe

� x2

4vA +
ffiffiffiffiffiffi
bA

p
; (Equation 22)
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is a very good approximation, where we defined qA =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rA+bA

p � ffiffiffiffiffiffi
bA

p
. The NNLS equations consist in minimizing the loss function

(which codifies the error between the data and the model) with respect to the parameters. Thus when we minimize with respect to

WAB we obtain:

� 2

Z N

�N

dx

"
qAe

� x2

4vA �
X
C

WAC

	
rC

vC
vAC+

e
� x2

2vAC+ +bC



+

ffiffiffiffiffiffi
bA

p
� TA

i	
rB

vB
vAB+

e
� x2

2vAB+ +bB



= 0

rBvB2vAqA

vAB++2vA
� rBvB

X
C

WAC

rCvC
vAB++vAC+

� rBvB
X
C

WACbC + rBvB

� ffiffiffiffiffiffi
bA

p
� TA

�
+bBqA2vA � bB

X
C

WACrCvC

�
Z N

�N

dx
bB

2p

 X
C

WACbC �
� ffiffiffiffiffiffi

bA

p
� TA

�!
= 0

(Equation 23)

where we defined vAB+ = vAB + vB=2 Note that the second derivatives are always negative, thus the problem is always convex. Also

note that these are 6 equations for each of theWAB withB = fE;P;S;V ;L;Hg, i.e., one equation for each of the connectionweights that

enter into the self-consistent equation for the firing rate of population A. Since the space is continuous and infinite, to ensure conver-

gence of the loss function, we have to impose: ffiffiffiffiffiffi
bA

p
� TA =

X
C

WACbC (Equation 24)

Conceptually this means that if we knew the WAB, then the knowledge of the baseline firings (and the transfer functions) would

determine the firing thresholds. Moreover when we take the first derivative of the loss function with respect to TA and we take

into account Equation 24 we obtain:

qA2vA �
X
C

WACrCvC = 0 (Equation 25)

Note that we make repeated use of the useful integrals:Z
e
�ðx�yÞ2

2v1 e
� y2

2v2dy =
2pv1v2
v1+v2

e
� x2

2ðv1+v2ÞZ
e
� x2

2v1e
� x2

2v2dx =
2pv1v2
v1+v2

(Equation 26)

Finally, using both Equations 24 and 25 in Equation 23, we obtainX
C

ðWACrCvCÞ
	

1

vAB++2vA
� 1

vAC++vAB+



= 0: (Equation 27)

We can solve this linear equation to findWAC and then find TA from Equation 24. If we solve the linear system in Equation 27 without

any further caution, we find an error function that is strictly 0, but values of the parameters that are not compatible with the excitatory

or inhibitory nature of the different populations. Therefore we devise an algorithm to solve this system of linear equations which con-

strains the positivity of each elementWAB. We start from a random initial set ofWAB that satisfies our positivity constraints and solve

one equation at a time. We update the initial parameter set if two conditions are verified: i) the solution still satisfies the positivity con-

straints and ii) the loss function is actually smaller than its value before this update. This simple algorithm allows us to find a family of

solutions, compatible with the results from the simulation of Equation 19 where theWAB and the TA are fixed and the rA and bA are the

steady states reached by the system.

A limitation of this approach is that the additional inputs that we are explicitly ignoring (e.g., other layers of V1, synaptic plasticity,

other input pathways, etc.) will be compensated for by our estimates of the recurrent couplings, thus conditioning the meaning of

the effective synaptic coupling strengths.

Next, we generalize the procedure when constraining on all stimulus sizes in the classical stimulus condition. The loss function in

this case reads:

SA =

Z
ds

Z
dx

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAðx; sÞ

p
�

X
B = fE;P;S;V ;L;Hg

Z
WABðx � yÞrBðy; sÞdy � TA

#2
(Equation 28)
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where s is stimulus size and rAðx;sÞ = rAðsÞe�
x2

2vA ðsÞ +bA. We can follow all the same steps as above, until the very last one, where we

cannot simplify due to the
R
ds. We obtain: ffiffiffiffiffiffi

bA

p
� TA �

X
C

WACbC = 0

2

Z
ds

vAðsÞvBðsÞ
2vAðsÞ+vAB+ðsÞqAðsÞrBðsÞ �

X
C

WAC

Z
ds

vBðsÞvCðsÞ
vAB+ðsÞ+vAC+ðsÞrCðsÞrBðsÞ = 0

(Equation 29)

As before, we solve this numerically for WAC with sign constraints.

Note that constraining on inverse size tuning curves would not introduce any conceptual complication (just more terms of

the same type to calculate) but here we decide to not infer the model parameters to fit direct and inverse response, but

instead we fit only the direct response and then benchmark against the ability to generate inverse size-dependent

responses.

SOM cells aligned with the stimulus center respond strongly to large classical stimuli, suggesting that they receive a large

excitatory current for such stimuli. Nevertheless, both L2/3 Pyramidal neurons and HVAs neurons are very surround sup-

pressed, thus providing a much smaller excitatory current for large stimuli than for small stimuli. This suggests that SOM

cells receive extra excitatory input, that increases with stimulus size. Since, to the best of our knowledge, empirical obser-

vations on the origin of such external current are still missing, in order to recover the size tuning curve and spatial profiles

of SOM neurons we make a minimal assumption that they receive an extra excitatory current whose amplitude grows lin-

early with stimulus size. We then infer the effective strength of this interaction by adding one external field X in the NNLS

equations:

SA =

Z
ds

Z
dx

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAðx; sÞ

p
�

X
B = fE;P;S;V ;L;H;Xg

Z
WABðx � yÞrBðy; sÞdy � TA

#2
(Equation 30)

with

rXðy; sÞ =
ffiffiffi
s

p
e
� x2

2vX

WAXðx � yÞ = dAS
WAX

2pvAX
e
� ðx� yÞ2

2vAX

(Equation 31)

The choice of vSX and vX is arbitrary and is made here following arguments of simplicity and analogy with other excitatory input

currents (vSX = 82, vX = 202). We note that a different choice of these values would only weakly affect the geometry of the SOM

rate field.

Model selection for the full model
We find 100 parameters sets through the NNLS procedure described above and we quantify the distance between the data and the

simulated full system with:

absolute error =
X

B = fE;P;S;Vg

X85
s = 5

ðrBð0; sÞ � rBð0; sÞÞ2

normalized error =
X

B = fE;P;S;V ;L;Hg

X85
s = 5

	
rBð0; sÞ

maxsrBð0; sÞ � rBð0; sÞ
maxsrBð0; sÞ


2
(Equation 32)

Here, rBð0; sÞ is the firing rate of cell type B at position 0 to a stimulus of size s. As expected the two measures are correlated

(Figure S32). Moreover, a fraction of the models found through the NNLS procedure diverge, which is not surprising given that the

recurrent equations are not solved exactly. In what follows, as well as in the main text we present simulations with the parameter

set that minimizes both the metrics above.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data preprocessing
The distance between the center of the stimulus and the center of the CRF of cells is estimated in1 through CRF mapping experi-

ments, where a stimulus is presented at many positions spanning the area of the visual field accessible for recording and the

response of thousands of neurons are recorded through 2-photon calcium imaging.1 Since the distance between contiguous pre-

sentations of the stimulus is 5�, we take this value to be the error on the measure of the CRF location. For each cell we then take

a Gaussian in its spatial location with serr = 5� and with amplitude equal to the recorded (trial averaged) response of that cell, i.e.,
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rie
� ðx� xi Þ2

2verr with verr = s2err . We then sum the Gaussian functions for all recorded cells and divide by the sum of unitary Gaussians, to

account for the non-uniform distribution of data-points. The rate field of population A is thus given by:

~rAðx; sÞ =

PNA

i = 1 riðsÞe
�
ðx � xiÞ2

2verr

PNA

i = 1 e
�
ðx � xiÞ2

2verr

(Equation 33)

whereNA is the number of recorded cells of type A and s indicates the stimulus size. In Figure S1 we show an example of the smooth-

ening that this procedure (first presented in6) generates. We call this method the Gaussian kernel method. Rate fields are plotted in

1 spatial dimension, but they are in fact 2-dimensional and isotropic in retinotopic space. The retinotopic space is considered contin-

uous, representing the limit of very large number of neurons. We test the robustness of this method by comparing it with a different,

more rough procedure: we divide the retinotopic space in bins, then we take the median of the response of all the cells that fall within

each bin (according to their CRF measure). This alternative procedure allows to consider the error on the estimate of the response

(standard error of themean calculated on the set of cells falling in each bin), but not the error on the estimate of the CRF position. Also

we remark that there exists a non negligible dependence of the spatial profiles calculated in this latter way (and consequently their fits)

with the number of bins chosen, that can be imputed to the error on the estimate of the CRF position. Note that the baselines of the

inverse rate fields are chosen in accordance with those of the classical rate fields, based on continuity between the responses to the

largest direct stimulus and the smallest inverse stimulus, for the cells that are furthest away from the stimulus center. Note that

the responses to the largest classical stimuli are far from being uniform in space (as they would be if the stimulus was effectively

covering the whole visual field of the animal). Overall the corresponding profiles obtained through the two preprocessing procedures

are satisfactorily similar for both direct and inverse stimulus condition (see Figures S2–S4).

Aligned and offset LM neurons are not intrinsically different
We ask whether offset LM neurons and aligned (or centered) ones are intrinsically different classes of neurons (as suggested in1) or

they are the same class of neurons. If they were intrinsically different classes of neurons, their properties (e.g., connectivity profiles)

could be different and/or the response to a retinotopically matched stimulus could be different. On the contrary, if they were the same

population, their response properties to (precisely) retinotopically matched stimuli would be the same, and a difference in response

would be imputable to a difference in retinotopic position relative to the stimulus.

In support of the existence of 2 different populations in LM one could argue that the response to the largest stimulus is different

(Figures 5G and 5I in1). Considering that the largest stimulus is virtually a full field grating, then a difference in the response indicates

that they have a different response to the same stimulus.

In other words, if the stimulus was homogeneous in space (e.g., grating covering the full visual field of the animal), the mismatch of

responses of aligned and offset neuronswould imply that they have intrinsically different response properties, thus they are 2 different

populations, potentially with 2 different connectivity profiles.

Nevertheless, the largest stimulus size is a disk of diameter 85� and the offset boutonswith the furthest away receptive field consid-

ered are at a distance of 42� from the center of the stimulus. This means that at least some of the offset boutons’ CRF is close to the

border of the largest stimulus. Therefore the premise that the largest stimulus size is a full field grating is not a satisfactory

approximation.

In order to address the question more quantitatively, we apply a clustering algorithm (Uniform Manifold Approximation and Pro-

jection, UMAP) to the responses. An embedding in 2D is found by searching for a low dimensional projection of the data that has

the closest possible equivalent fuzzy topological structure (all the details on the procedure can be found in https://umap-learn.

readthedocs.io/en/latest/faq.html). Once the clustering is done we plot the scatterplot of all data points in its 2D embedding

(see Figure S5). If there were n different population (with n different response patterns), the plot should show n well-separated

sets of points. After the clustering algorithm is applied to the data, only for interpretation purposes, we color each point according

to its label.

Whenwe apply the clustering algorithm to the response data of all boutons, the number of clusters found is n = 1, i.e., there is only

one cloud of points. When we color the points according to their label (aligned, offset or unknown), we notice that the x axis is corre-

lated with the identity of the boutons (aligned boutons –in blue– tend to be on the right). This is consistent with a situation in which the

responses change with continuity, the aligned boutons being in one end of the spectrum. This is consistent with the hypothesis that

the neurons differ only in their retinotopic location relative to the stimulus, but not in their intrinsic properties. We then add another

color to show the boutons that are excluded in Figure 5I in,1 i.e., the boutons that do not have significant response to the inverse

stimulus. We observe that the neurons excluded from Figure 5I in1 are the offsets and unknowns that are closest or overlapping

with the aligned ones (colored pink in Figures S11 and S12). This suggests that the selection rule in Figure 5I is effectively creating

two ’’artificial’’ clusters, by removing the offset boutons whose response is inbetween the two ends of the spectrum. In fact, if we

repeat the clustering analysis with the same selection criteria as Figure 5I, two (non completely separated) clusters arguably appear,

corresponding to aligned (blue) and offset+unknown (green+yellow) boutons (Figures S11 and 12).
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Functional form of the rate fields
In order to be able to understand the system analytically we take the approximation:

~r
ðcÞ
A ðx; sÞx r

ðcÞ
A ðx; sÞ = pc

AðsÞe
� x2

2vc
A
ðsÞ (Equation 34)

where A = E;P;S;V ;L;M indicate respectively populations of Pyramidal, PV, SOM, VIP, Layer 4, LM cells and the superscript (c)

stands for classical. The prefactor pc
AðsÞ represents the size tuning curve, whereas the dependence on retinotopic space is purely

Gaussian. Operatively, we fit the experimental rate fields for each stimulus condition with a Gaussian function. We report the good-

ness of fits in Figures S6–S9.

For inverse rate fields the response profiles are more complex, therefore we schematize them through a difference of Gaussian

functions:

~r
ðiÞ
A ðx; sÞx r

ðiÞ
A ðx; sÞ = pi

AðsÞe
� x2

2vi
pA

ðsÞ � qi
AðsÞe

� x2

2vi
qA

ðsÞ
; (Equation 35)

with pi
AðsÞ>qi

AðsÞ> 0.

Note that in the inverse stimulus condition we define scaling as the growth of thewidth of the outer Gaussian of the fit when stimulus

size is increased. We do not distinguish between outer and inner scaling because they appear to be very similar. The difference be-

tween outer and inner scaling is mostly very small (less than 1�) and:

vipA � viqA
vipA

< 0:05%: (Equation 36)
Moreover its distribution is very narrow
In order to have a full functional description of the rate fields as a function of the classical stimulus size we need to define the size

tuning curve pc
AðsÞ for the populations that we are going to use as inputs for the minimal model, i.e., A = S;L;M. This will allow to

give an analytical account of surround suppression of the inputs by analyzing the interval where
vpc

A
ðsÞ

vs < 0 and preferred size (or

CRF size) as s� : vp
c
A
ðsÞ

vs js = s� = 0 (see Figure S16). We use the parametrization:

pc
AðsÞ = bA

1 erf
s

SA
b1

� bA
2 erf

s

SA
b2

vcAðsÞ = kAc1 + kAc2s

(Equation 37)

where the first equation encodes the size tuning curve and bA2=b
A
1 modulates the amount of surround suppression, SA

b1 modulates the

steepness of the increase of size tuning for small sizes and SA
b2 modulates the steepness of the decrease of size tuning for large sizes.

Moreover kAc2 > 0 indicates the growth of the rate field width with stimulus size.

The size tuning curves described by the functional form in 37, together with the data and the fitted samples of the rate fields are

shown in Figure S9.

For the inverse stimuli we need to specify the functions pi
AðsÞ and qi

AðsÞ. We devise such functional forms and show a comparison

with the experimental rate fields.

For SOM population we use the parametrization:

pi
SðsÞ = aS

1erf
s

SS
a1

� aS
2erf

s

SS
a2

qi
SðsÞ = rS1erf

s

SS
r1

� rS2erf
s

SS
r2

(Equation 38)

The evidence presented in1 suggest that HVAs highly influence the inverse size-dependent response profiles, and on the contrary,

the input from L4 is very weak in the inverse stimulus condition, due to classical surround suppression, thus while we focus on re-

producing accurately the spatial nuances of LM, we allow less accuracy for L4, in order to keep the model simple and the number of

fitted parameters as small as possible (for a more nuanced parametrization of the inputs see Figure S23). Thus for L4 cells we use:

pi
LðsÞ = qi

LðsÞ = aL
1 erf

s

SL
a1

� aL
2 erf

s

SL
a2

(Equation 39)

that constrains the center to have zero response, consistently with the very low response of aligned cells in L4 shown in.1 Finally for

LM we use:

pi
MðsÞ = aM

1 +aM
2 s

qi
MðsÞ = pi

MðsÞ � rM1

 
erf

s

SM
r1

� erf
s

SM
r2

!
(Equation 40)
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Note that the size tuning curve of the aligned cells can then be described as pi
AðsÞ � qi

AðsÞ. The size tuning curve of the offset cells

is here defined as: pi
AðsÞe

� ~x2

2vi
pA

ðsÞ � qi
AðsÞe

� ~x2

2vi
qA

ðsÞ
with ~x = ð30�;30�Þ. Aligned and offset size tuning curves pre and post parametriza-

tion are shown in Figure S9. All the parameters a; b;S; k; r are obtained by fitting the recorded rate fields.

Finally the growth of the inner and outer scaling is given by:

vipAðsÞ = kAi1 + kAi2s

viqAðsÞ = kAi3 + kAi2s
(Equation 41)

The recorded rate fieldof LMshowsamuch lower amplitude in the inverse stimuluscondition versus the classical one (as evaluated for

example computing the integral over space of the rate field). If the input fromHVAs consisted solely of LMcontribution, wewould not be

able to recover an inverse response in L2/3 with firing rates as high as or even higher than the classical case, reported in.1 But we know

that V1 receives input from all HVAs. Moreover Extended Data Figure 9 in1 shows that optogenetic silencing of an individual HVA gen-

erates a quantitatively different reduction of classical versus inverse responses for eachHVA considered. Thus, to quantitatively recover

the relative amplitude of the rate field in L2/3, we take theminimal assumption that HVAs considered all together have the same rate field

profiles of LM, but with an amplitude that is inferred according to the amplitude of the inverse response of L2/3 cells. In formulas:

r
ðiÞ
H ðx; sÞ = hr

ðiÞ
M ðx; sÞ (Equation 42)

and fromhereonwewill considerA = fE;P;S;V ;L;Hg, whereH is a population representing the conjunction of all HVAs (see FigureS10).

From LM to HVAs
The firing rates recorded fromLMboutons by Keller et al.,1 were on average (across space) several times higher in the classical stimulus

condition compared to the inverse one. At the same time the firing rates recorded in L4Pyr cells were also very low for the inverse stimuli,

while thefiring rates forL2/3Pyr+PVpopulationwereas largeas theones recordedduringclassical stimuli presentations.FinallyVIPfiring

ratesarecomparable for theclassical vs. inversestimuli andSOMissomewhatsmaller for inversestimuli, yet its responsedecreaseswith

inverse size (the opposite ofwhatwould be needed to generate inverse surround suppression). If the net incoming current to an L2/3 unit

of thePyr+PVpopulation is taken tobe the sumof the lateral, feedforward (fromL4) and feedback (fromLM) currents, thiswould bemuch

moreexcitatory in theclassical casecompared to the inverse, resulting inamuch largerL2/3firing rate for classical stimuli, incontrastwith

the experimental observation. Nevertheless L2/3 cells receive feedback input not only from LM, but from all HVAs.1,76 Moreover Keller

et al.1 show that optogenetically silencing an individual HVA, suppresses classical and inverse L2/3 response by different amounts

(ExtendedDataFigure 9 ibidem). In particular areasM,AL, LM, LI andP all seem tocontributemore to inverse than to classical response.

This suggests that the total feedback input to L2/3 (proceeding from all HVAs) might be of the same averagemagnitude for the classical

and inverse stimuli. This allows us to recover the observed relative amplitude of L2/3 responses. More precisely, we describe the total

(HVAs) feedback current with a rate field that has the same spatial profile as the one recorded from LM, but we introduce a parameter h

that rescales the input from LM in the inverse condition. We fit h to recover the amplitude of the inverse responses (see S4).

The joint population of Pyr and PV
In Figures S11 and S12 we show the rate field of the joint population of Pyramidal and PV recorded cells for comparison with the

results of the minimal model in Figures 2 and 4. The joint population is built by taking the average rate field of both populations

and then weighting each of the two by the appropriate density of cells as reported in.95

This joint population is effectively either excitatory or inhibitory, depending on whether Pyramidal or PV cells dominate. Since the

cortex has been found to be inhibition stabilized,49–51,53,54,104 we choose it to be effectively inhibitory, thereby preventing the system

to diverge when external excitatory inputs are injected. The recurrent synaptic weight that we use is then negative, although the re-

sults presented in this work still hold with a small positive weight (see Figure S14).

The comparison between the recordings shown here and the results of the minimal model (Figures 2 and 4) should be taken as an

estimate of the implications of the simplifying assumptions that the minimal model is adopting. Additional inputs, cell-specific input-

output functions, non-Gaussian profiles, systematic errors in the estimate of the firing rates from calcium imaging, synaptic plasticity,

etc. are some of the factors plausibly responsible for the mismatch: the goal of the model is to obtain a versatile description of sur-

round suppression, rather than reproducing in detail the experimental size tuning curve (see discussion). In particular we notice that in

the data, around the region of positive (larger than baseline) activity there exists a region where cells respond below baseline. This

reminds us of the spatial profile of response to optogenetic perturbations (see e.g.,105). Moreover similar profiles with resonant spatial

frequencies have been found for an input roughly equal across the activated region (‘pillbox-shaped’ input) in an SSN model.41

Anatomical length scales
We define a two-dimensional Gaussian function GABðx1; x2; vABÞ = 1

2pvAB
exp

h
� ðx1 � x2Þ2

2vAB

i
to describe the connection strength to a

cell of type A at location x1 = ðx1; y1Þ from a cell of type B at location x2 = ðx2; y2Þ6,36,37,93. We then estimate the length

scales of the connectivity vAB = s2AB based on recent experimental work. We assume isotropy in the azimuth and elevation directions

(x and y).
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In a recent paper, Rossi et al.36 could trace the excitatory (L4 and L2/3) and inhibitory (L2/3) presynaptic inputs to an L2/3 pyramidal

neuron as a function of the horizontal distance. The average resulting curve shows an excellent agreement with a Gaussian function

and the measured widths are sEEx8� and sEIx5�, where I indicates a generic inhibitory cell. Here and in what follows the magnifi-

cation factor is taken to be 0:05�=mm36.

Distance dependent connections from Pyr to SOM cells in a slice of mouse L2/3 visual cortex were investigated in.61

Adesnik et al. recorded the spiking activity of an L2/3 SOM in response to blue light spots of increasing diameters to acti-

vate progressively wider areas of L2/3. By cutting the slice to transect L2/3 horizontal axons, they show that SOM cells

firing is significantly reduced when inputs from distances greater than 8� were cut off. Although this does not exclude

the possibility that in the control condition (uncut), nearby ðd < 8�Þ Pyr cells are more activated by offset Pyr cells, thus

providing more excitation to SOM, the effect is still compelling and we draw from their measure a conservative estimate

of sESx8�.
Marques et al.37 measure retinotopic specificity in inputs from the lateromedial (LM) visual area in mouse V1 and quantify the ret-

inotopic span of feedback projections from LM to V1. They report that LM inputs target, on average, retinotopically matched locations

in V1, but many of them relay distal visual information. They estimate that about half of the visual coverage relayed by LM varicosities

was more than 24� away from their retinotopic position in V1. Assuming Gaussian connectivity, this yields a sEMx15�. We assume

that this value holds for HVAs in general, i.e., sEH = sEM.

In another recent paper, Billeh et al.35 also report the distance-dependent connection probability profiles for different classes

of connections. The cortico-cortical connection probabilities for different cell-class pairs were estimated based on a survey of

the existing literature, considering valid sources of information (in order): mouse visual cortex, mouse non-visual cortex, rat visual

cortex, rat auditory cortex and rat somatosensory cortex. The measures were assumed to be integrated values of (distance-

dependent) connections up to a certain average distance ð75mmÞ between pre- and post-synaptic cells somas and assuming

Gaussian probability distribution. This allowed the authors of35 to estimate the widths of the Gaussian connectivity profiles,

yielding:

sEEx6�;sPE = 5�;sSExsVEx5�, sEPx5�;sESx4�. Moreover all inhibitory to inhibitory widths were estimated to be the same as PV

to PV, which was measured sPPx6�.
These values are also largely consistent with more recent measures of simultaneous whole-cell patch-clamp in mouse V1.59 The

authors fit a Gaussian to the connection probability as a function of lateral intersomatic distance and report: sEE = 6�;sIE = 5�;
sEI = 5�;sII = 6�, where I is unspecified inhibition.

Figure S30 reports the values of the cortico-cortical widths of the connection probabilities/effective strengths for different

cell-class pairs that we draw from this review of the literature: sEE = sEL = 7�, sSE = 8�, sPE = sVE = sP4 = 5�, sEP = 5�,
sES = 4�, sII = 6� where I indicates all inhibitory cell types I = fP;S;Vg. Finally, the projection width in orientation space is taken

from a fit of the measures in36 and its value is l = p
6 (same for all cell types).

Input currents
For the classical stimulus condition, the input to retinotopic position x of the recurrent layer is given by a convolution with the inter-

layer connectivity profile WABðx � yÞ = WABGðx � y;vABÞ, where vAB = s2AB:

Iðx; sÞ =
Z N

�N

WABGðx � y; vABÞrBðy; sÞdy = WABC0p
c
BðsÞ2pvcBðsÞG

�
x; vAB + vcBðsÞ

�
(Equation 43)

Thus we can read:

Ic0ðsÞ = WABC0rBðsÞ2pvcBðsÞ
v = vAB + vcBðsÞ:

(Equation 44)

Finally, putting together the functional forms that we derived in the paragraph above, with Equation 44, we can readout the full

dependence of the total input current field of the recurrent population on the stimulus size.

For the inverse stimulus condition, the input to the recurrent layer can be computed through a convolution with the inter-layer con-

nectivity

Iiðx; sÞ =
Z N

�N

WABGðx � y; vABÞrBðy; sÞdy

= WABC0

h
pi
BðsÞ2pvipBðsÞG

�
vAB + vipBðsÞ

�
� qi

BðsÞ2pviqBðsÞG
�
vAB + vipBðsÞ

� i (Equation 45)
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thus more compactly
Iiðx; sÞ = Ii01ðsÞGðvB1Þ+ Ii02ðsÞGðvB2Þ
Ii01ðsÞ = WABC0p

i
BðsÞ2pvipBðsÞ

Ii02ðsÞ = � WABC0q
i
BðsÞ2pviqBðsÞ

vB1 = vAB + vipBðsÞ
vB2 = vAB + viqBðsÞ

(Equation 46)
Analytical insights on classical size tuning curves with non-normalized input currents
Equation 44 shows that when the inputs are given by the convolution of the firing rates of the input layers with the inter-layer con-

nectivity, the amplitude of the input is proportional to the width of the generating rate field Icðx; sÞ = Ic0ðsÞGðx; vðsÞÞf2pvr
ðsÞrðsÞGðx; vðsÞÞ and vrðsÞ and vðsÞ are related. This is a differencewith respect to referencemodels of classical surround suppression

in the literature (e.g.,41,42), where the input currents are not derived from rate fields.

To establish a comparison with existing models, and to simplify the analytical calculations, here we first study classical surround

suppression in the case in which Iðx; sÞ = I0ðsÞGðx; vðsÞÞ and dI0ðsÞ
dvðsÞ = 0 and then show that the simpler case studied analytically pro-

vides insights that hold in the more involved case of our main study, where the input currents are derived from rate fields.

Note that when performing calculations for the minimal model, the dependence on stimulus size is not explicitly written. Instead, it

is encapsulated within the parameter I0. Consequently, this distinction does not alter the functional form of the solution; formally it

only involves a redefinition of the parameter I0. Nonetheless, from a quantitative perspective, when we consider Ic0ðsÞf2pvrðsÞ
and given that vrðsÞ grows –however weakly– with stimulus size, the input current to the center cells becomes larger for large stimuli

because of the contributions of the offset cells of the input layers.

Dissecting classical surround suppression
Here we will show that classical surround suppression in partially inherited from surround suppression of the input layer(s) and

partially due to the width of the input rate field growing with stimulus size. Surround suppression corresponds to a size tuning curve

that decreases with increasing stimulus size, i.e., rðsÞ
dshr0ðsÞ< 0. The dependence on the stimulus size enters in the rate field of the

recurrent layer through the amplitude of the input I0ðsÞ and its width, described here by the input variance vðsÞ. In the simplified

case considered here
�
dI0ðsÞ
dvðsÞ = 0

�
we can consider one of these contributions at a time and we will show that:

if v0ðsÞ = 0; then r0ðsÞ< 05I00ðsÞ< 0

if I0ðsÞ = 0 and fW0 < 0; I0 > 0g; then r 0ðsÞ< 05v0ðsÞ> 0
(Equation 47)

Since the transfer function is non-negative and monotonic, the size tuning properties of the firing rate are the same as the size tun-

ing properties of the associated total current field:

uðx = 0; sÞ =
pðvðsÞ+vruðsÞÞ

W0

 
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2I0ðsÞW0

pðvðsÞ+vruðsÞÞ

s !
1

2pvðsÞ (Equation 48)

If v0ðsÞ = 0, we find

u0ðx = 0; sÞ =
I0ðsÞ0

2pv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2W0I0ðsÞ

vvru

r (Equation 49)

where one easily reads that u0ðsÞ< 05I0ðsÞ< 0 which means that the recurrent layer is surround suppressed when the input layer is

surround suppressed.

Conversely, if I00ðsÞ = 0 (i.e., I0ðsÞ = I0) we have:

u0ðx = 0; sÞ = t1ðsÞ+ t2ðsÞ+ t3ðsÞ;

t1ðsÞ = vruðsÞ p

W0

 
� 1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2I0W0

vðsÞ+vruðsÞ

s !
v0ðsÞ

t2ðsÞ = � I0

�
v0ðsÞ+v0ruðsÞ

�
vðsÞ

ðvðsÞ+vruðsÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2I0W0

v+vru

r

t3ðsÞ = vðsÞ p

W0

 
� 1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2I0W0

vðsÞ+vruðsÞ

s !
v0ruðsÞ

(Equation 50)
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Moreover taking into account that 2v� 1
u = v� 1 + v� 1

ru (Equation 8) we find:

v0ruðsÞ =
vrv

0ðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r +4vrvðsÞ

p > 0 (Equation 51)

therefore it is easy to see that for v0ðsÞ> 0 and W0 < 0; I0 > 0:

t1ðsÞ< 0; t2ðsÞ< 0; t3ðsÞ> 0
(Equation 52)

Finally we can show that jt3j< jt1j. In fact we just have to show that v0ru < vruv
0. Using Equation 51 we easily get to the inequality:

2vvr < 4vvr + vr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r +4vvr

q
+ v2r (Equation 53)

which is always true, given that the r.h.s has 3 positive terms, the first of which is already larger than the l.h.s. (as shown graphically in

Figure S33). Moreover it is easy to see that lim
sðsÞ/N

uðsÞ = 0.

Thuswe have shown that in this system, even if the input is not surround suppressed at all, the recurrent layer can develop surround

suppression. Previous models for classical surround suppression described stimuli of increasing size with an input current of

increasing width. Here we showed in our setup that our solution is consistent with this result. Nonetheless, our data analyses for feed-

forward and feedback inputs shows that the input currents width vary only marginally, while their amplitude vary much more signi-

ficatively, thus we argue that surround suppression in L2/3 is mostly inherited from its input layers.

Classical surround suppression with non-surround suppressed input rate fields
Here we study numerically the case of one non-surround suppressed excitatory population in the feedforward layer

�
dI0ðsÞ
dvðsÞ s0

�
. We

want to briefly study the parameter regime for which surround suppression can be imputed to the mechanism of recruiting more

lateral inhibition alone. We find that a faster increase in the input width with stimulus size supports classical surround suppression.

However, this only holds when the width of the connections from the input layer is small (as in,41 modeling cat V1), whereas when it is

of the same order of the recurrent projections (as in mouse V136) this mechanism is not sufficient to generate significant surround

suppression (see Figure S39).

Preferred size depends on the preferred size of the inputs
From Equation 49 we deduce that when v0ðsÞ = 0, the preferred size of the recurrent layer is the same as the preferred size of the

input layer. Therefore, deviations from this behavior might be imputed to variations in the width of the input field or to convergence of

inputs with different preferred size. Moreover from the solution of the minimal model with two inputs, Equation 13, we can calculate

that when the recurrent layer is receiving two inputs with v01ðsÞ = v02ðsÞ = 0, its preferred size s� will be in-between the preferred sizes

of the two inputs. Indeed one has:

v2I
0
1ðs�Þ = � v1I

0
2ðs�Þ (Equation 54)

where we can read that sign½I01ðs�Þ� = � sign½I02ðs�Þ�, which means that one of the two inputs is increasing while the other one is

decreasing (shown in Figures S40 and S41).

Preferred size decreases with contrast
If instead we keep the dependence on stimulus size of one of the two input widths, for instance v02ðsÞs0, we find the condition:

v2ðs�ÞI01ðs�Þ � v1I2ðs�Þv02ðs�Þ = � v1v2ðs�ÞI02ðs�Þ; (Equation 55)

where one can read that the correction introduced by the dependence v2ðsÞ reduces the preferred size of the recurrent layer. We

hypothesize that this could contribute to contrast dependent classical surround suppression.

In Figure S20 we show that when the width of the input projections is small with respect to the width of the recurrent connections

and thewidth of the input field grows as fast as the stimulus radius (as in41), then the preferred size decreaseswith contrasts. This is in

agreement with.41 However the model that we are considering here has less ingredients than the one in41 since i) we have only one

recurrent population and ii) in41 the input for stimulus size s was a Gaussian function of space with standard deviation sinputðsÞ,
whereas in our case because of the convolution with the input layer connectivity it has standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2FF+sinputðsÞ2

q
.

Contrast dependent classical size tuning curves
Here we ask how the minimal model with anatomically-realistic length scales and experimental input rate fields from L4 and HVAs,

can recover contrast-dependent surround suppression. The dataset at hand does not contain data on stimuli with different contrast.

One simple way of simulating contrast-varying stimuli is to scale the inputs by a factor that is small for small contrasts. This situation is

exposed in Figure S21. This model easily reproduces the contrast dependence of the amplitude of response and SMI increases with
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increasing contrast for a nonlinear model, but not for a linear one (as expected,41,52). However, with this minimal assumption for

contrast-dependence of the inputs, restricting the parameter space to biologically plausible values of the length scales, we cannot

reproduce the observation that the preferred size of Pyr cells in L2/3 growswhen the contrast decreases.5,43 Based on the arguments

exposed above we could argue that contrast-dependence of the preferred size of L2/3 cells could be due to: i) an increase of the

preferred size of L4 rate field for low contrasts (observed in data43), ii) an increase of the preferred size of HVAs rate field for low con-

trasts (yet not explored experimentally), iii) a decrease in the scaling of (L4 or) HVAs rate field width with stimulus size (yet not explored

experimentally), iv) the fact that for low contrasts VIP are more active, thus SOM are less active (shown in experiments and

models in43).We apply one at a time thesemodifiers to the inputs as a function of contrast andwe show that in all caseswe reproduce

contrast dependent size tuning (see Figure S22). This suggests that all these factors may contribute to contrast dependent size

tuning.

The origin of inverse response and inverse size tuning
First of all, let us note that the agreement between analytic results and simulations for the inverse stimulus condition is less accurate

than in the classical case because of the imprecision introduced by the parametrization of the inputs (see Figures 4B, 4C, and 4E)and

also because the ansatz itself, i.e., a Gaussian modulated by a slowly varying function. Nevertheless, in all the analyzed simulations,

the agreement is fairly good, therefore for efficiency reason, we study the analytical solution. To tackle the origin of inverse response

we change the value of the projection span from HVAs to L2/3 sL23�HVA and we keep the rate field of HVAs fixed, for a fixed stimulus

size. In the main text we explained that when this projection span is too small then inverse response is not allowed, meaning that the

response of offset cells is larger than the response of aligned cells. This can be easily understood by looking at the input current from

HVAs, which is a convolution between the connectivity and the rate field of HVAs. If the width of the connectivity is large enough, then

the convolution transforms the ring profile of the rate field of HVAs into a function with a peak in the center thus generating inverse

response.

To tackle the origin of inverse size tuning in an analytical waywe counterfactually change the profile width of HVAs, so that thewidth

of the input ring (rate field of HVAs) does not grow with stimulus size. In particular here we use the parameterization of HVAs rate

field with a difference of Gaussian and fix the growth of the width of both Gaussians to 0. In this case inverse surround suppression

disappears. This is consistent with the results shown in Figures 6F–6M, but in this case the modification leads to a complete fail of

inverse surround suppression. This confirms that the origin of inverse surround suppression is the fact that for large stimuli the ring

becomes too large to generate a convex function in the center after the convolution with the connectivity. Instead if we fix the width of

the ring profile, the convexity of the input current does not change.

Analytical results on inverse surround suppression
Here we show that it is not possible to obtain inverse surround suppression if HVAs ring size does not increase with stimulus size.

More precisely we show that the feedback current incoming to the cells aligned with the center of the stimulus grows indefinitely

with stimulus size if HVAs ring size is fixed ðv0pHðsÞ = 0;v0qHðsÞ = 0Þ. With the parametrization chosen (see Equations 40 and 42),

and given Equation 43 we have:

IHðx = 0; sÞ = �aH
1 +aH

2 s
� vipH
vipH+vEH

�
"�

aH
1 +aH

2 s
� � rH1

 
erf

s

SH
r1

� erf
s

SH
r2

!#
viqH

viqH+vEH
:

dIHðx = 0; sÞ
ds

= I0Hðx = 0; sÞ = aH
2

vipH
vipH+vEH

�
"
aH
2 � 2rH1ffiffiffi

p
p

 
e

s2

ðSHr1Þ2 � e

s2

ðSHr2Þ2
!#

viqH
viqH+vEH

:

lim
s/N

I0Hðx = 0; sÞ = aH
2

 
vipH

vipH+vEH
� vipH � 1

vipH � 1+vEH

!
= aH

2 vEH R0

(Equation 56)

Thus, under the parameterization chosen, the feedback current coming into the center in L2/3 (i.e., the location that codes for the

stimulus center) keeps growing for very large sizes, i.e., there is no inverse surround suppression.

HVAs cells close to the edge of the inverse stimulus respond maximally
Comparing the scaling of the width of the outer Gaussian with stimulus size is useful at an analytical level. However, for the inverse

stimulus, another spatial scale can be more relevant physiologically: the retinotopic location (relative to the center) where the rate

field is maximal. If this quantity scaled with the stimulus radius, we could conclude that HVAs are mostly active close to the edge of

the inverse stimulus. Figure S26 shows that the scaling of this quantity is larger than the scaling of sHVA. Moreover if we consider all

the sizes the data indicates that this quantity scales more weakly than the stimulus radius, but if we consider only intermediate

sizes the data are consistent with the hypothesis that the HVAs cells that respond maximally are the ones whose CRF is close

to the edge of the ‘hole’. It is tempting to speculate that this supports the involvement of HVAs in contour detection.5 When the

HVAs rate field is parameterized as a circle around the origin (see in Figure 6E), the y axis of Figure S26 represents the radius

of that circle, sHVA;r .
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Lateral input from SOM cells increases surround facilitation and the connection with SOM inverse response
In Figure S40we show the rate fields of SOMcells for a classical stimulus, an inverse stimulus at an orthogonal orientation and a cross

stimulus, under the assumption that two rate fields of simultaneously presented stimuli at orthogonal orientations are additive (given

that the populations of cells code for the two stimuli are different, see main text). We keep the stimulus size fixed to s = 15�. The
Figure shows that SOM input current is larger in absolute value in the cross than in the classical condition. This could suggest that

SOM cells suppress Pyr and PV more in the cross condition than in the classical one, therefore reducing surround facilitation. How-

ever this is not true, as shown in Figure 7. On the contrary our model predicts that SOM cells enhance surround facilitation (see

Figure S20).

This is due to the definition of surround facilitation index SFI = rx � rc
rx+rc

(based on previous choices in the literature -see e.g., CMI in2),

as opposed to rx
rc
. Here rx (resp. rc) is the firing rate of L2/3 cells centered in the stimulus and tuned to its orientation in the cross (resp

classical) stimulus condition.

To better understand the role of SOM in surround facilitation we dissect the contributions togSFI = ux � uc
ux+uc

, where uc and ux are the

corresponding currents ½ux�2+ = rx. gSFI has the same qualitative behavior as SFI as shown in Figure S41 (compare with Figure 7H).

We now define some quantities for the cross ða = xÞ or classical ða = cÞ stimulus condition:

(1) ua > 0 is the total current incoming to Pyr+PV;

(2) uSa < 0 is the input from SOM (to Pyr+PV);

(3) ui = ux � uc > 0 is the total current incoming to Pyr+PV by the effect of the surround in the cross stimulus condition;

(4) uSi = uSx � uSc < 0 is the input current from SOM in the effect of the surround in the cross stimulus condition;

(5) gSFI+ the value of the currents surround facilitation index when SOM cells are active;

(6) gSFI� the value of the currents surround facilitation index when SOM cells are silenced.

Then we have:
gSFI+ >gSFI�
5

ux � uc

ux+uc

>
ux � uSx � uc+uSc

ux � uSx+uc � uSc

5
ui

ux+uc

>
ui � uSi

ux � uSx+uc � uSc

5uiðuSx + uScÞ<uSiðux + ucÞ
5uiðuSi + 2uScÞ<uSiðui + 2ucÞ
uiuSc < uSiuc

(Equation 57)

Finally, since uSc < 0 and uSi < 0, we have

ui

uc

>
juSij
juScj ; (Equation 58)

whichmeans that the inverse response of Pyr+PV population, normalized to its classical response, is larger than the inverse response

of SOM population normalized to its classical response. In summary the surround facilitation index decreases when SOM cells are

silenced because SOM cells respond less than Pyr+PV cells to the inverse stimulus (when responses are normalized to classical re-

sponses). In fact Pyr+PV cells respond more to inverse than to classical stimuli of their respective preferred size, whereas SOM cells

respond more to classical than to inverse stimuli (see Figures 3N and 5D in the main text).
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