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Abstract
If α ∈ R, an α-stationary surface in Euclidean space is a surface � whose mean curvature
H satisfies H(p) = α|p|−2〈ν, p〉, p ∈ �. These surfaces generalize in dimension two a
classical family of curves studied by Euler which are critical points of the moment of inertia
of planar curves. In this paper we establish, via inversions, a one-to-one correspondence
between α-stationary surfaces and −(α + 4)-stationary surfaces. In particular, there is a
correspondence between−4-stationary surfaces and minimal surfaces. Using this duality we
give some results of uniqueness of−4-stationary surfaces and we solve the Börling problem.
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1 Introduction and statement of the results

In its magna opus, Euler studied the minimization of the moment of inertia of planar curves
[8]. Taking the origin as reference for the computation of the moment of inertia, consider all
planar curves joining two given points. In the language of theory of variations, the purpose
it to minimize the energy functional

[y] �→
∫ b

a
(x2 + y2)

√
1 + y′2 (1)

for all functions y = y(x), x ∈ [a, b], where y(a) = y0 and y(b) = y1 and y0, y1 are given.
Recently, Dierkes andHuisken have generalized this problem in arbitrary dimensions [4]. For
our purposes, we only treat the two dimensional case. Let� be a connected, oriented surface
and consider a smooth immersion of � in the Euclidean 3-space (R3, 〈, 〉). Introducing a
parameter α ∈ R, we define the analog of the energy (1) for surfaces and define

Eα[�] =
∫

�

|p|α d�,

where d� denotes the area element induced on � and we identify p ∈ � with its image
by the immersion. We find the critical points of this functional by using standard arguments
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of calculus of variations for compactly supported variations of �. In particular, and for the
differentiability of Eα , we need that � does not contain the origin 0 of R3. Then critical
points of Eα are characterized by the equation

H(p) = α
〈ν(p), p〉

|p|2 , p ∈ �. (2)

Here H and ν are the mean curvature and the unit normal vector of �, respectively. The
convention for the mean curvature is that H is the sum of the principal curvatures, where a
sphere of radius r > 0 has H = 2/r with respect to the inward orientation.

Definition 1.1 A surface � ofR3 −{0} is said to be an α-stationary surface if � satisfies Eq.
(2).

In particular, 0-stationary surfaces are minimal surfaces. In [4], and for arbitrary dimen-
sions, Dierkes and Huisken studied stability of spheres and minimal cones as well as
minimizers of Eα . The Plateau problem has been solved by Dierkes and the author [5].
Stationary surfaces also are minimal surfaces in a manifold endowed with a density. Indeed,
given a positive density φ ∈ C∞(R3), let dVφ = φ dV0 and d Aφ = φ d A0 be the weighted
volume and area, where dV0 and d A0 are the Euclidean volume and area of R3. A surface �

is a critical point of Aφ if and only if the weighted mean curvature Hφ vanishes on �, where
Hφ is

Hφ = H − 〈ν,∇φ〉,
and ∇ is the gradient in R3 [2]. If we choose the function φ(p) = |p|α defined in R3 − {0},
then Hφ = 0 coincides with Eq. (2). As a consequence, the class of α-stationary surfaces
satisfies a tangency principle such as it occurs with minimal surfaces: see Prop. 2.2 in Sect.
2.

Among all values of α, only at two ones there exist round spheres that are α-stationary
surfaces. To be precise, spheres centered at 0 are −2-stationary surfaces and spheres con-
taining 0 are −4-stationary surfaces. This particular property of these spheres makes that the
values −2 and −4 have a special role in the theory of α-stationary surfaces.

Consider the inversion map of R3,

� : R3 − {0} → R
3 − {0}, �(p) = p

|p|2 . (3)

Weprove the following result that establishes a correspondence, or duality, between stationary
surfaces for different values of α.

Theorem 1.2 The map � carries α-stationary surfaces in −(α + 4)-stationary surfaces.

For the value α = 0, we deduce:

Corollary 1.3 In Euclidean spaceR3, there is a one-to-one correspondence between minimal
surfaces and −4-stationary surfaces.

Theorem 1.2 will be proved in Sect. 3. As a consequence of this duality, it is possible
to address problems of −4-stationary surfaces via its formulation in the theory of minimal
surfaces. In this paper we exploit this correspondence to obtain the following results.

Theorem 1.4 Planar discs of vector planes and spherical caps of spheres passing through 0
are the only compact −4-stationary surfaces with circular boundary
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Theorem 1.5 Spheres passing through 0 are the only −4-stationary surfaces properly
immersed in R

3 and contained in a vector halfspace.

Theorem 1.4 will proved in Sect. 4 while Thm. 1.5 in Sect. 5. Finally in Sect. 6 we
formulate the Björling problem giving a solution. As a consequence, we will show examples
−4-stationary surfaces with the topology of a Möbius strip.

2 Preliminaries

In this section we show some examples of stationary surfaces, give the tangency principle
and some applications.

In the definition of the energy functional Eα , the value |p| is the distance of p ∈ � to
the origin 0 ∈ R

3. This implies that the corresponding Euler-Lagrange equation (2) is not
preserved, in general, by rigid motions of R3, as for example translations. So, if � is an
α-stationary surface and T : R3 → R

3 is a translation, then T (�) is not an α-stationary
surface. However, vector isometries as well as dilations from 0 ∈ R

3, preserve solutions of
(2) for the same value of α.

We give examples of α-stationary surfaces. For this, we focus in surfaces of R3 with
constant mean curvature, to be precise, planes and spheres, and we ask which ones are
stationary surfaces. We point out that cylinders are not stationary surfaces. The following
result is straightforward.

Proposition 2.1 (1) A plane is an α-stationary surface if and only if it is a vector plane. This
occurs for all α ∈ R.

(2) The only stationary spheres are spheres centered at 0 (α = −2) and spheres containing
0 (α = −4).

As we said in the Introduction, the values −2 and −4 will play a special role in the range
α of α-stationary surfaces. An example is in the study of closed (compact without boundary)
α-stationary surfaces. In [4, Thm. 1.6] the authors proved the following result:

(i) If α > −2, there are no closed α-stationary surfaces.
(ii) If α = −2, the only stable closed stationary surfaces are spheres centered at the origin.
(iii) Let α < −2. If � is a (non-extendible) α-stationary surface, then its closure � must

contain the origin 0 of R3. In consequence, there are not closed α-stationary surfaces

The proof of (i) involves the use of the Hopf maximum principle for the function |p|2. If
α = −2, the statement was proved using the expression of the second variation of the energy
Eα . With a different approach, item (i) can be also proved using the tangency principle of
weighted minimal surfaces. Since α-stationary surfaces are minimal in the weighted space
(R3, |p|α), we have the following consequence of the maximum principle:

Proposition 2.2 (Tangency principle) Let �1 and �2 be two (connected) α-stationary sur-
faces and assume that they are tangent at some p ∈ �1 ∩ �2, where p is a common interior
point or a common boundary point where ∂�1 and ∂�2 are tangent at p. If �1 lies at one
side of �2, then �1 = �2 in the largest neighborhood of p in �1 ∩ �2.

We introduce the next notation. Let S2(r) denote the sphere with center 0 and radius
r > 0 and S2r (r) denotes the sphere of radius r > 0 and centered at (0, 0, r). Then S2(r) is a
−2-stationary surface while S2r (r) is a −4-stationary surface.
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Let � be an α-stationary closed surface. If we take r sufficiently big, then � is included
in the ball determined by S

2(r). Decreasing r , r ↘ 0, we arrive until the first sphere S2(r1)
that touches �, which it is a common interior point. Then the Tangency principle proves that
α ≤ −2 and in case that α = −2, then � = S

2(r1) (without any assumption on stability of
�). This proves (i) and (ii) of the Dierkes-Huisken’s theorem. However, Theorem 1.2 allows
to prove the non-existence of closed α-stationary surfaces for α < −2 if one knows the result
when α > −2.

Corollary 2.3 There are no closed α-stationary surfaces if α < −2.

Proof Inversions preserve closedness of surfaces. On the other hand, if � is an α-stationary
surface for α < −2, then�(�) is a−(4+α)-stationary surface where now−(α +4) > −2.
Since �(�) cannot be closed, neither �. �

3 Proof of Theorem 1.2

The proof of Thm. 1.2 is based on the computation of the mean curvature of an inverse
surface. Consider the inversion map � defined in (3). If � is a surface of R3, 0 /∈ �, then
�̃ := �(�) is a surface and there is a relation between the principal curvatures of � and
�̃. Let κ1 and κ2 be the principal curvatures of � with respect to the unit normal ν. Let
h : � → R be the support function given by h(p) = 〈ν(p), p〉. We denote by tildes ∼ the
corresponding objects in �̃, that is, κ̃i , ν̃, and so on. Then it is known that

κ̃i ◦ �(p) = |p|2κi (p) + 2h(p),

ν̃(p) = ν(p) − 2h(p)
p

|p|2 .
(4)

See for example [13, Ch. 3. ex. 15] or [16]. In consequence,

H̃ ◦ �(p) = |p|2H(p) + 4h(p).

We express this identity in terms of the surface �̃. We have

h = − h̃

| p̃|2 , |p|2 = 1

| p̃|2 .

Therefore

H̃ ◦ � = H − 4h̃

| p̃|2 . (5)

If � is an α-stationary surface, then its mean curvature H satisfies (2). Hence, and thanks
to (5), the mean curvature H̃ of its inverse surface �̃ fullfils

H̃ ◦ � = αh/|p|2 − 4h̃

| p̃|2 = −αh̃ − 4h̃

| p̃|2 = −(α + 4)
h̃

| p̃|2 .

This proves that �̃ is a −(α + 4)-stationary surface. The converse is analogous and this
finishes the proof of Thm. 1.2

As one can see in [4], the value α = −2 is the frontier between the class of stationary
surfaces for α > −2 and that of α < −2. Theorem 1.2 now establishes a connection between
both ones, because the function α �→ −(α + 4) maps the interval (−∞,−2) into (−2,∞)

leaving invariant the value α = −2.
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Remark 3.1 Rigid motions of R3 carry minimal surfaces into minimal surfaces. However,
these rigid motions do not carry, in general, stationary surfaces into stationary surface, as
for example, a translation T (p) = p + �v, where �v ∈ R

3. If � is a minimal surface, then
T (�) is a minimal surface. Both minimal surfaces give two stationary surfaces via � and
Cor. 1.3, which have no a relation between them. In other words, the following diagram is
not commutative.

{−4 − stationary surfaces} �−−−−→ {minimal surfaces}
?

⏐⏐�
⏐⏐�translation

{−4 − stationary surfaces} �−1
←−−−− {minimal surfaces}

Notice that

�−1 ◦ T ◦ �(p) = p + |p|2�v
1 + |p|2|�v|2 + 2〈p, v〉 .

4 Stationary surfaces with circular boundary

In this section we give an application of Cor. 1.3 in the study of compact stationary surfaces
with circular boundary. We focus in the case that the circle spans a spherical cap, so we are
considering the cases α = −2 and α = −4. Let 	 be a circle contained in S2(r) or in S2r (r).
Then 	 separates these spheres in two components as follows:

(1) If α = −2, then S
2(r) − 	 are two spherical caps.

(2) If α = −4, then S
2
r (r) − 	 is formed by a spherical cap and a punctured spherical cap

and only the first one is compact.

On the other hand, any round disc in a vector plane which and not containing 0 is an α-
stationary surface spanning a circle. This surface is compact while if D is a round dis
containing 0 in its interior, then D{0} is a α-stationary with circular boundary but it is not
compact.

Then the following question arises in a natural way.

Question: Let α ∈ {−2,−4}. Are planar discs and spherical caps the only compact
α-stationary surfaces with circular boundary?

This question is similar to that in the theory of constant mean curvature (cmc) surfaces of
R
3. Recall that there are examples of non-spherical cmc compact surfaces whose boundary

is a circle [10]. However, the boundary versions of the Alexandrov and Hopf theorems are
yet unanswered [11].

By the above two examples of spheres, not any circle 	 of R3 spans a spherical cap of
S
2(r) or S2r (r). This is the case, for instance, of the circle {z = 0, (x −2)2+ y2 = 1}which it

is contained in the horizontal plane z = 0. A slightly change of the problem is assuming that
	 is contained in some of the above two spheres and asking if spherical caps of such spheres
are the only compact −2 or −4-stationary surfaces. Under such hypothesis, the tangency
principle provides an affirmative answer in the case α = −2.

Theorem 4.1 Let 	 be a circle contained in S2(r0). Then the spherical caps of S2(r0) deter-
mined by 	 are the only compact −2-stationary surfaces spanning 	.
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Proof Let � a compact −2-stationary surface spanning a circle 	. If r ↗ ∞, then S
2(r)

does not intersect � for big values of r because � is compact. Let r ↘ r0 until the first
sphere S2(r1) that touches �, r1 ≥ r0. If the touching point is an interior point or a boundary
point where the boundaries of both surfaces are tangent, then the Tangency principle implies
that � ⊂ S

2(r1), r1 = r0, obtaining the result. Otherwise, r1 = r0 and int(�) is contained in
open ball determined by S2(r0). We see that this situation is not possible. We now repeat the
argument with spheres S2(r) and r close to 0 and S

2(r) ∩ � = ∅. This is possible because
� is compact and 0 /∈ �. Increasing r ↗ r0, then there is a first radius r2 > 0 such that
S
2(r2) touches int(�), and r2 < r0. The Tangency principle proves that � ⊂ S

2(r2), hence
r0 = r2, which it is a contradiction. �

Notice that the key in the proof is the fact that the family of spheres {S2(r) : r > 0}
centered at 0 provides a foliation of R3 − {0}. In consequence, it is not possible to give a
similar proof in the case α = −4. For example, and following the same argument of the
proof, we do not know if it is possible to find a sphere S2r (r) of sufficiently radius so � is
included in the ball defined by this sphere: the surface � may have points in both sides of
the plane z = 0. However, in case that the circle 	 is contained in a vector plane, we prove
the analogous result for α = −4.

Theorem 4.2 Let	 be a circle contained in a vector plane and let D be the closed planar disc
bounded by 	. Assume 0 /∈ D. Then D is the only compact −4-stationary surface spanning
	.

Proof Let � be a compact −4-stationary surface spanning 	. Suppose that � is not D and
we arrive to a contradiction. After a vector isometry, we can assume that 	 is contained in
the plane z = 0 and that � contains points in the halfspace z > 0. Since � is compact
and 0 /∈ D, let r > 0 be sufficiently small so S

2
r (r) ∩ � = ∅. Using that the family of

spheres {S2r (r) : r > 0} gives a foliation of the halfspace z > 0, and by letting r ↗ ∞, let
r1 > r be the first sphere S2r1(r1) that touches �. This occurs at some interior point of both
surfaces and the Tangency principle implies that � is contained in is possible S2r1(r1). This
is a contradiction because S2r1(r1) ∩ {z = 0} = {0}. �

We point that the arguments in the above proof fail if α = −2 because the spheres S2(r)
of the foliation of R3 − {0} are not tangent at 0, such as it occurs for the spheres S2r (r).

Wenowcomeback to the initial question.Weprove that the answer is affirmative regardless
any assumption of the position of the given circle.

Theorem 4.3 Planar discs of vector planes and spherical caps of spheres passing through
the origin 0 ∈ R

3 are the only compact −4-stationary surfaces with circular boundary.

Proof Let � be a compact −4-stationary whose boundary is a circle 	. We know that 0 /∈ 	.
Corollary 1.3 establishes that �̃ := �(�) is a minimal surface whose boundary 	̃ is a circle
because the inversion� carries circles that do not across 0 in circles, such it happens with the
circle 	. Thus �̃ is a compact minimal surface whose boundary is a circle. However the only
compact minimal surfaces spanning planar curves are domains of planes. Then �̃ is a planar
disc with 0 /∈ �̃. We have two possibilities. Suppose that �̃ is contained in a vector plane.
This situation occurs when 	 is contained in a vector plane. Then � is a planar disc. In case
that �̃ is not contained in a vector plane, then its inversion via � is part of a sphere. Since
the only −4-stationary surfaces that are spheres are that of type S2r (r) (Prop. 2.1), this proves
that � is a spherical cap of a sphere passing through the origin 0 ∈ R

3. This completes the
proof. �
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It deserves the following observations. For α-stationary surfaces, onemay think that a type
of Alexandrov reflection technique can be employed to prove that� is a surface of revolution
[1], even in the case that α = −4 or α = −2. However, the proof, if exists, is not immediate.
In arguments involving the reflection technique by planes, it is necessary to assume that �

is embedded which it is not the case of Thm. 1.4. Even assuming embeddedness, reflections
in R

3 about planes cannot be employed because these symmetries are not vector isometries
in general and, consequently, they do not preserve solutions of Eq. (2).

5 Further two applications of the duality

Using Cor. 1.3, we classify all ruled −4-stationary surfaces. Recall that inversions preserve,
as set, the family of curves formed by circles and straight-lines. For the proof we use that
the only minimal surfaces of R3 constructed by a one-parameter family of circles are planes,
catenoids and the Riemann minimal examples [6, 7, 14].

Theorem 5.1 Vector planes are the only ruled −4-stationary surfaces.

Proof It is clear that vector planes are ruled surfaces and also are −4-stationary surfaces.
Suppose now that � is a non-planar ruled −4-stationary surface and we will arrive to a
contradiction. A particular case to consider is that� is a (non-planar) conical surface from 0.
In such a case, the inverse surface �̃ := �(�) coincides with �. However, conical surfaces
are ruled surfaces and the only ruled minimal surfaces are the plane (which was discarded)
and the helicoid, which it is not a conical surface.

Let now � be a ruled surface containing straight-lines that do not across 0. In particular,
in an open set of� the surface is not a cone from 0. Since the map� carries the straight-lines
of� in circles of �̃, we deduce that �̃ is a minimal surface and foliated by circles. Moreover,
all these circles must contain the origin 0 because their preimages vi � are straight-lines that
do not contain 0. In such a case it is known that �̃ is a plane, a catenoid or one example of
the Riemann minimal examples. The plane is not possible because � is not a plane neither a
sphere (a sphere is not a ruled surface). The case that �̃ is a catenoid or a Riemann minimal
example is neither possible because the circles of these surfaces do not across a common
point. �

Suppose � is a minimal surface foliated by circles, that is, � is a plane, a catenoid or a
Riemann minimal example. We know that � carries circles into circles or straight-lines. In
case that � is a plane, then its dual surface �̃ a sphere containing 0 or a vector plane. Both
surfaces are, of course, −4-stationary surfaces.

In case that � is a catenoid or a Riemann minimal example, its inverse surface is foliated
by circles because the circles of the two minimal surfaces do not across the origin of R3

(except perhaps one circle). Suppose that � is a catenoid. Taking into account Rem. 3.1,
each position in the space of � provides different −4-stationary surfaces. In case that the
rotation axis of� acrosses 0, say the z-axis, then� transforms� into a surface of revolution
with the same axis; otherwise, the surface �̃ is not rotational, although it is formed by a
one-parameter family of circles, with possible straight-lines.

Since the catenoid goes to infinity, its dual−4-stationary surface contains the origin, which
it is according to the theory of −4-stationary surfaces. In Fig. 1 we show two −4-stationary
surfaces which are dual surfaces of catenoids whose axes are parallel to the z-axis. In the
left surface, the dual surface is a catenoid whose axis is the z-axis and, in consequence, the
inversion of this surface is a surface of revolution begin the z-axis the rotation axis. In the
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Fig. 1 Cross-sections of inverse catenoids, where the axis of the catenoid crosses the origin (left) and does
not (right)

Fig. 2 Inverse of a Riemann minimal example and a cross-section of that

right surface, the axis of the catenoid is the vertical line through the point (− 1
2 , 0, 0) and thus

the dual surface is not rotational.
In Fig. 2 we show the inverse surface of a Riemann minimal example.
Another application of Cor. 1.3 is a characterization of the spheres S2r (r) in the family of

−4-stationary surfaces. We observe that all these spheres are contained in a vector halfspace
of R3. We prove that this property characterizes these spheres.

Theorem 5.2 Spheres passing through the origin 0 ∈ R
3 are the only−4-stationary surfaces

properly immersed in R
3 and contained in a vector halfspace.

Proof Let � be a −4-stationary surface properly immersed in R
3. After a vector isometry

of R3, we can suppose that � is contained in the vector halfspace z > 0. By Cor. 1.3, the
surface�(�) is a minimal surface which it is also proper because inversions preserve proper
immersions. Since �(�) lies contained in the halfspace z > 0, then �(�) is a plane by the
strong halfspace theorem for minimal surfacest of Hoffman and Meeks [9]. Since this plane
is contained in z > 0, the equation of this plane is z = δ for some δ > 0. Thus its inversion
via �, that is, the initial surface �, is a sphere of type S2r (r), proving the result. �
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6 The Björling problem and examples of non-orientable−4-stationary
surfaces

A method of construction of minimal surfaces is the Björling problem which can be formu-
lated as follows. Let α : I ⊂ R → R

3 be a regular curve and let V : I → R
3 be a unit

vector field along α such that 〈α′(s), V (s)〉 = 0 for all s ∈ I . The Björling problem consists
into find a domain � ⊂ R

2 containing I and a minimal surface X : � → R
3, X = X(s, t),

such that X(s, 0) = α(s) and ν ◦ X(s, 0) = V (s) for all s ∈ I . The answer to this problem
is affirmative if the data are analytic, even there is explicit parametrization of the minimal
surface [3, 15]. Since � preserves analytic functions, we prove that the analogue Björling
problem in the family of −4-stationary surfaces has a solution.

Theorem 6.1 Let α : I ⊂ R → R
3 be a regular analytic curve and let V : I → R

3 be a unit
analytic vector field along α such that 〈α′(s), V (s)〉 = 0 for all s ∈ I . If 0 /∈ α(I ), then
there is a −4-stationary surface � containing α and such that the unit normal of � along α

coincides with V .

Proof Define α̃(s) = �(α(s)) and

Ṽ (s) = V (s) − 2
〈α(s), V (s)〉

|α(s)|2 α(s).

It is immediate that |Ṽ (s)| = 1 and that Ṽ (s) is orthogonal to α̃′(s) for all s ∈ I . Let
X̃ : � → R

3, X̃ = X̃(s, t), be the minimal surface which it is the Björling problem for data
{̃α, Ṽ }. By Cor. 1.3, X := � ◦ X̃ : � → R

3 is a −4-stationary surface. Finally, we check the
desired conditions. So, X(s, 0) = �(̃α(s)) = �2(α(s)) = α(s). If we denote by N the unit
normal of X̃ , and using (4), we have

ν(X(s, 0)) = N (X̃(s, 0)) − 2
〈X̃(s, 0), N (s, 0)〉

|X̃(s, 0|2 X̃(s, 0)

= Ṽ (s) − 2
〈β(s), Ṽ (s)〉

|β(s)|2 β(s) = V (s).

�

Corollary 1.3 allows to give examples of non-orientable −4-stationary surfaces because
inversions preserve orientability. For this, it is enough to consider the inversion of any non-
orientable minimal surface. However, we give an explicit example motivated by a result of
Meeks who used the solutions of the Björling problem to construct minimal surfaces whose
topology is that of a Möbius strip [12].

Corollary 6.2 There exist −4-stationary surfaces whose topology is that of a a Möbius strip.

Proof Let S1 be the circle of radius 1 and center 0 situated in the plane z = 0. If α(s) =
(cos s, sin s, 0) is a parametrization of S1, let V (s) = cos(s/2)α(s) + sin(s/2)(0, 0, 1). As
we go from s = 0 to s = 2π , the vector field V comes back to the initial position but in reverse
position. The corresponding Björling solution is a Möbius minimal surface. Therefore, its
inverse surface is a −4-stationary surface which is not orientable. See Fig. 3 �
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Fig. 3 Möbius strips. Left: a minimal surface. Right: a−4-stationary surface as inversion of a minimal surface
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