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A B S T R A C T

The streaming industry has experienced exponential growth over the past decade. Streaming platforms provide
subscribers with unlimited access to a diverse range of services, including movies, TV shows, and music,
in exchange for a subscription fee. We take an axiomatic approach to the problem of how to share the
overall revenue obtained from subscription sales among services or content producers. In doing so, we provide
normative justifications for several distribution rules. We formulate several axioms that convey ethical and
operational principles. In the first group, we consider properties that guarantee equal and impartial treatment
of services and subscribers. In the second group, we introduce requirements designed to safeguard allocation
schemes from inconvenient alterations, namely, changes in the units of measurement of inputs, subscription
sharing, or group decomposition. Our analysis reveals that different combinations of these axioms define two
classes of rules that strike a balance between three focal schemes, each representing distinct perspectives on
the egalitarian and proportional principles. To illustrate the practical implications of our theoretical model,
we explore its potential application by assessing how various types of content impact the revenues of some of
the most well-known Twitch streamers.
1. Introduction

In 2022, the Big Four firms in the over-the-top broadcasting market–
Netflix, Amazon Prime Video, Disney+, and HBO Max–collectively
reported an annual revenue of $103.5 billion. These companies provide
viewers with a comprehensive media library comprising movies, series,
and documentaries, accessible through a monthly subscription fee for
unlimited content access. Some companies emphasize quality, featuring
a select few shows that enjoy widespread viewer consumption, while
others boast extensive media libraries to appeal to a broader consumer
base. Regardless of the approach, it is evident that not all titles are
equally in demand, with certain movies or series playing a more pivotal
role in attracting subscribers and, consequently, increasing revenues.
Given the varying relevance of content, the question arises: How should
the revenue derived from selling subscription fees be allocated among
content producers? It is noteworthy that this scenario extends beyond
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the over-the-top broadcasting market and can be applied to other
industries and markets, such as Spotify, Twitch, YouTube, and other
web-based services, where bundling products into packages proves
more lucrative than individual sales (see [1]).

In our model, a platform is described by four elements: the set of
services the platform provides (series, movies, artists, streamers, books,
etc.), the set of subscribers with unlimited access to those services
(viewers, users, readers, etc.), the profile of subscription prices indicating
the fee paid by each subscriber, and the consumption matrix specifying
the quantity of each service consumed by each subscriber. We define a
rule as a mechanism for distributing the earned revenue (the sum of sub-
scription prices) among the services operating on the platform. Three
focal rules form the basis of our main findings: the equal division rule,
which evenly divides the revenue among services; the proportional rule,
which allocates revenue proportionally to the aggregate consumption
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of services; and the subscriber-proportional rule, which first assigns each
subscriber’s fee individually and proportionally based on their specific
consumption before summing across subscribers. The latter two rules
implement the pro-rata and user-centric principles, which are commonly
pplied in calculating remunerations in the music streaming industry.1

For our analysis, we follow the axiomatic approach, which is associ-
ated with a longstanding tradition in the economics literature that can
be traced back to [4,5]. Rather than selecting from the previous or other
ules directly, we propose to do so based on the axioms (or properties)
hat they satisfy. We consider two groups of properties. The first group
ncompasses three axioms reflecting fairness principles: Equal treatment
of equals requires that services that have been equally consumed must
obtain equal allocations; order preservation states that services that
are consumed more must get higher awards; and the last property
in this group, neutrality, is a standard notion of impartiality stating
that subscribers’ names must not play a role in revenue distribution.
The second group of axioms implements several principles of stability:
cale invariance requires that the allocation is independent of the units

of measurement of the inputs (namely, price and consumption); non-
advantageous transfer within subscriber requires that the award of a
service is not affected by an exchange in the consumption of two other
services; composition states that the allocation is additive with respect to
separable sets of subscribers; and sharing proofness states that revenue
distribution among the services is immune to a well-known type of
strategic behavior where subscribers share a subscription fee so as to
pay less individually and yet have equal access to all the platform’s
services.

In our main findings, we characterize two families of rules. We
identify the unique class of rules that satisfies equal treatment of
equals, neutrality, scale invariance, non-advantageous transfer within
subscriber, and composition. This class consists of linear compro-

ises between the equal division and the subscriber-proportional rule
(Theorem 1). Moreover, if we replace equal treatment of equals by
order preservation, the family shrinks and we keep the convex combina-
tions between these two focal rules (Corollary 1). We also find out that
f, in addition to equal treatment of equals, neutrality, scale invariance,
nd non-advantageous transfer within subscriber, we require sharing
roofness instead of composition, we characterize a class of rules that

are specific linear compromises between the equal division and the
proportional rules (Theorem 2). Once again, replacing equal treatment
of equals by order preservation yields to the convex combinations
between these two rules (Corollary 3). In addition, we have also provide
normative foundations for the pro-rata and user-centric mechanisms
(Corollaries 2 and 4). These results are obtained by adding the addi-
tional requirement of null service (non-consumed services are excluded
from the distribution of revenue) to the families of rules characterized
in Theorems 1 and 2.

Prior literature has also addressed the question of how to measure
he contribution of single elements to global or social success. Singal

et al. [6] provide an axiomatic justification of the counterfactual adjusted
Shapley value, which measures the contribution of individual advertiser
actions (e.g., emails, display ads, search ads, etc.) to eventual customer
acquisition. Lopez-Navarrete et al. [7,8] explore the allocation of rev-
nues in a video-sharing platform, such as YouTube, by considering
ser navigation patterns within the platform. They employ dynamic
ames associated with the problem and propose various allocation
chemes grounded in the structure of the Shapley value. Schlicher et al.
9] explore conditions under which content creators have no incentives

to leave the platform and thus stability can be preserved from the point
of view of game theory. In contrast, our approach takes a different
oute; instead of delving into cooperative games, we adopt an axiomatic
erspective to identify suitable rules.

1 See [2,3] for a detailed discussion on these principles.
 a

2 
The discourse surrounding the distribution of revenue from sub-
criptions to music streaming platforms among artists has gained no-
able significance in recent years. Within this context, the pro-rata and
ser-centric schemes have emerged as the predominant and widely
pplied methods, as evidenced by works such as [2,3,10–13]. Alaei

et al. [14] explore the strategic implications of the pro-rata and user-
centric schemes in a model featuring a two-sided streaming service
latform that generates revenue by charging users a subscription fee
or unlimited content access. Lei [15] develops an endogenous model

that considers both schemes, enabling artists to strategically choose
streaming times to maximize their earnings. Instead of the strategic
considerations, our contribution to this discourse lies in establishing
normative foundations for broader classes of rules that encompass the
pro-rata and user-centric schemes. Bergantiños and Moreno-Ternero
[16,17] also delve into revenue sharing in the streaming industry,
focusing specifically on music streaming services such as Spotify. They
formulate and describe allocation mechanisms based on principles such
s pro-rata and user-centric approaches, among others. The axioms we

propose in this paper differ from those presented in these other works.
They consider axioms that reflect the impact of additional users on
the platform, as well as properties that propose reasonable minimum
payments. In addition, they characterize individual rules, which differ
from the family of rules that we obtain in our main results.

In the context of attribution problems, various authors have ex-
plored analogous inquiries. Ginsburgh and Zang [18], Bergantiños and
Moreno-Ternero [19], and [20] scrutinize the museum pass problem.
This problem models how to share revenues obtained by a consortium
of museums when visitors can buy a limited-time subscription or access
pass allowing unlimited usage of their museums.2 These problems differ
rom our model in two relevant aspects. One, in the museum pass

problem the consumption is dichotomous, that is, the pass holder visits
or not the museum. In contrast, in our setting we do not impose this
limitation as we allow for different intensities in the consumption of
services. Besides, in the museum pass problem the subscription price is
the same for all subscribes, while our model permits different prices.
Consequently, our problem represents a broader framework than the
museum pass problem. As expected, certain characterization results
from the latter problem (e.g. [19,20]) do not hold in our model.

Our proposal also shares some similarities with the bipartite ra-
ioning problem [26,27], in which a group of agents collectively shares

a single resource that comes in different ‘‘types’’. Each agent has a
claim over only a subset of these resource types, and their claims can
verlap in arbitrary ways. The objective is to fairly allocate the various

resource types among the claimants. A bipartite rationing problem is
described by a set of agents (and their claim), a set of types (and their
capacity) and a bipartite (unweighted) graph that indicates whether
ach agent can consume each type. In our scenario, services and

subscribers correspond to the agents and types in the bipartite rationing
problem. The capacity can be associated with the subscription price,
and the challenge lies in distributing this capacity among the services
(or agents). However, there are notable differences between the two
models. First, determining the services’ claims is not straightforward.
Various possibilities exist, such as overall revenue, average claims,
or subscription prices of subscribers who consume the services. It
remains unclear which approach should be adopted. Second, in the
bipartite rationing problem, the consumption matrix does not play a
role. This model could be extended to consider weighted graphs, where
the edge weights represent service consumption by each subscriber.
Finally, in the setting we propose any agent (service) may potentially
receive supply from any type (subscriber), even when the service has
not been consumed by the agent, which contrast with the nature of
the bipartite graph to restrict some transfers from agents to types.

2 The museum pass problem can be interpreted to fit with many other
pplications, see, for instance, [21–24], and [25].
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Regarding allocation mechanisms, while both approaches implement
proportional schemes, they differ in formulation and information re-
uirements. Notably, the consumption matrix, which is absent in the
ipartite rationing problem, plays a crucial role in defining the two
roportional rules we propose.

We conclude our analysis by providing an empirical illustration.
e acknowledge that the direct application of the rules we propose

nd characterize in this paper requires access to private information
eld by streaming platforms such as Amazon, Netflix, and Spotify, yet
nfortunately this data is not accessible to third parties. Nevertheless,
he theoretical model we formulate is adaptable to Twitch, an online
latform where users engage with content provided by streamers. This
ontent typically involves gaming, chatting, or broadcasting sporting
vents, among other activities. Certain Twitch streamers are rising to
elebrity status due to their engaging streams. However, not all types
f content carry equal weight in determining their revenues. Through
he application of the rules we characterize in this paper, we can
ssess the impact of each content type on the revenues of individual
treamers. This offers a valuable tool for identifying the most lucrative
opics, contributing to a deeper understanding of the factors influencing
rofitability in the Twitch ecosystem.

The rest of the paper is organized as follows. In Section 2, we
present the model and three rules to distribute the revenue among
the services of a streaming platform. We introduce, in Section 3,
several axioms adapted to the streaming context. In Section 4, we
characterize two families of rules. In Section 5, we apply the theoretical
model to measure the economic impact of different types of content on
the Twitch streaming platform. Finally, Section 6 provides concluding
emarks.

2. Model and allocation rules

Let N represent the set of natural numbers, and let  be the set
of all finite and non-empty subsets of N. A platform is described by
 4-tuple (𝑁 , 𝑆 , 𝑝, 𝐶), where 𝑁 = {1,… , |𝑁|} ∈  (|𝑁| ≥ 3) is the

set of services provided by the platform, 𝑆 = {1,… , |𝑆|} ∈  is the
et of subscribers who have unlimited access to the services in 𝑁 ,
= (𝑝1,… , 𝑝

|𝑆|) ∈ R|𝑆|
++ represents the subscription prices paid by

ach subscriber, and 𝐶 ∈ R|𝑁|×|𝑆|
+ is the consumption matrix, each

f whose entries 𝐶𝑖𝑠 ∈ R+ indicates the quantity of service 𝑖 consumed
y subscriber 𝑠. The quantity of service can be measured in terms of
ime, the number of streams viewed, or other metrics. Furthermore,
hese quantities reflect actual consumption by the subscribers, not
heir willingness to consume. Finally, we denote by 𝑁 the set of all
latforms with service set 𝑁 , and by  the set of all platforms.

We denote by 𝐶𝑖⋅ the 𝑖th row of 𝐶, which represents the con-
sumption of service 𝑖. We also denote by 𝐶⋅𝑠 the 𝑠th column of 𝐶,
which represents the consumption made by subscriber 𝑠. Therefore,
‖𝐶𝑖⋅‖ =

∑

𝑠∈𝑆 𝐶𝑖𝑠 and ‖𝐶⋅𝑠‖ =
∑

𝑖∈𝑁 𝐶𝑖𝑠 are the total consumption of
service 𝑖 ∈ 𝑁 and subscriber 𝑠 ∈ 𝑆, respectively. We restrict ourselves
to consumption matrices such that ‖𝐶⋅𝑠‖ > 0 for all 𝑠 ∈ 𝑆, that is,
we assume that any subscriber has paid the subscription fee actually
consumes part of the content offered by the platform. Given a set of
services 𝑁 ′ ⊆ 𝑁 , or a set of subscribers 𝑆′ ⊆ 𝑆, 𝐶𝑁∖𝑁 ′ and 𝐶𝑆∖𝑆′

denote the matrices resulting from removing the rows in 𝑁 ′ and the
columns in 𝑆′, respectively. For any two vectors 𝑥, 𝑦 ∈ R|𝑁|, we denote
he vector 𝑥+ 𝑦 =

(

𝑥1 + 𝑦1, 𝑥2 + 𝑦2,… , 𝑥
|𝑁|

+ 𝑦
|𝑁|

)

. Given two matrices
∈ R|𝑁|×|𝑆|

+ and 𝐶 ′ ∈ R|𝑁|×|𝑆′
|

+ for any two disjoint set of subscribers 𝑆
and 𝑆′, (𝐶 , 𝐶 ′) is the matrix resulting from concatenating (by columns)
𝐶 and 𝐶 ′, that is, (𝐶 , 𝐶 ′)⋅𝑠 = 𝐶⋅𝑠 if 𝑠 ∈ 𝑆 or (𝐶 , 𝐶 ′)⋅𝑠 = 𝐶 ′

⋅𝑠 if 𝑠 ∈ 𝑆′.
A rule is a way to distribute among the services the aggregate

evenue obtained by the platform (‖𝑝‖ =
∑

𝑠∈𝑆 𝑝𝑠), that is, it is a
apping 𝑅 ∶ 𝑁 ⟶ R|𝑁|

+ such that
∑

𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝐶) = ‖𝑝‖,

𝑖∈𝑁

3 
where 𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝐶) indicates the award of service 𝑖 ∈ 𝑁 .
Although it is possible to generate many rules for revenue alloca-

ion, we now propose three rules that emerge as natural mechanisms.
he first one is straightforward, it equally splits the revenue among all
ervices, as follows:
Equal division rule. For each (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 and each 𝑖 ∈ 𝑁 ,

𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) = ‖𝑝‖

|𝑁|

.

The next two rules are inherently intuitive and both adhere to the
principle of proportionality, albeit from different perspectives. The pro-
portional rule operates from a macro perspective, distributing revenue
and allocating the aggregate income among services based on their
overall consumption. On the other hand, the subscriber-proportional rule
adopts a micro perspective; in particular, it proportionally divides the
price paid by each individual subscriber among the services she has
consumed. This process is applied to all subscribers, and the resulting
allocation is simply the aggregate sum across them. The latter two
rules mirror the underlying principles of two prominent remunera-
tion methods used in the domain of music streaming: the pro-rata
mechanism (for the proportional rule) and the user-centric rule (for the
subscriber-proportional rule).3

Proportional rule. For each (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 and each 𝑖 ∈ 𝑁 ,

𝑅𝑃
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) = ‖𝐶𝑖⋅‖

∑

𝑗∈𝑁 ‖𝐶𝑗⋅‖
‖𝑝‖.

Subscriber-proportional rule. For each (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 and each
𝑖 ∈ 𝑁 ,

𝑅𝑆 𝑃
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) =

∑

𝑠∈𝑆

𝐶𝑖𝑠
‖𝐶⋅𝑠‖

𝑝𝑠.

The next example illustrates the functioning of the equal division,
roportional, and subscriber-proportional rules.

Example 1. Consider the platform where 𝑁 = {1, 2, 3}, 𝑆 =
1, 2, 3, 4, 5, 6}, 𝑝 = (2, 3, 1, 2, 1, 3), and 𝐶 is given by
⎛

⎜

⎜

⎝

0 1 0 1 2 1
1 1 2 6 6 0
0 0 0 0 0 0

⎞

⎟

⎟

⎠

.

The next table shows the distribution of the revenue (‖𝑝‖ = 12)
mong the services according to the equal division, proportional, and
ubscriber-proportional rules.

Services
Rule 1 2 3

𝑅𝐸 𝐷 4 4 4
𝑅𝑃 20

7
64
7

0
𝑅𝑆 𝑃 141

28
195
28

0

3. Properties of fairness and stability

No single criterion exists for determining the preference of one rule
over another. In this regard, we propose an axiomatic approach by in-
troducing a set of axioms tailored to the streaming context. By selecting
the axioms that are most suitable for the specific circumstances of the
problem, it is possible to make a decision regarding which rule to use.
The first axiom is a minimum requirement of impartiality, that is, if
two services are equally consumed by all viewers, then they should be
equally awarded.

3 For a detailed formulation of these principles and a discussion of their
implications in the case of the music streaming industry, see [2,3].



J.C. Gonçalves-Dosantos et al.

p

s

d

t

r

𝐶

p
p

𝐶

a
f
t

u
p
v

𝑆

s

W

T

t

f

Omega 132 (2025) 103233 
Equal treatment of equals. For each (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 , and each
air {𝑖, 𝑗} ⊆ 𝑁 , if 𝐶𝑖⋅ = 𝐶𝑗⋅,

𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝐶) = 𝑅𝑗 (𝑁 , 𝑆 , 𝑝, 𝐶).

A slightly stronger version of the previous principle requires that
ervices that are consumed more frequently must get higher allocations.
Order preservation. For each (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 , and each {𝑖, 𝑗} ⊆

𝑁 , if 𝐶𝑖𝑠 ≥ 𝐶𝑗 𝑠 for all 𝑠 ∈ 𝑆,

𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝐶) ≥ 𝑅𝑗 (𝑁 , 𝑆 , 𝑝, 𝐶).

The next axiom also represents a standard notion of fairness. The
distribution of revenue should depend only on the consumption and
the subscription prices, but not on the subscribers’ names. Therefore, if
we permute the subscribers, the allotment should remain unaltered. A
permutation of a finite set 𝑆 is a bijection 𝜎 ∶ 𝑆 ⟶ 𝑆. We denote by
𝛱𝑆 the set of all permutations of 𝑆.4

Neutrality. For each (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 , each 𝜎 ∈ 𝛱𝑆 , and each
𝑖 ∈ 𝑁 ,

𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝐶) = 𝑅𝑖(𝑁 , 𝑆𝜎 , 𝑝𝜎 , 𝐶𝜎 ),

where 𝑆𝜎
𝑠 = 𝑆𝜎(𝑠), 𝑝𝜎𝑠 = 𝑝𝜎(𝑠), and 𝐶𝜎

𝑖𝑠 = 𝐶𝑖𝜎(𝑠) for all 𝑖 ∈ 𝑁 and 𝑠 ∈ 𝑆.
Scale invariance states that the units of measurement of the inputs

o not affect the allocation. That is to say, for example, that the
distribution of revenue does not change if consumption is measured in
housands or millions of viewers. Similarly, if subscription prices are

converted from dollars to euros (and, therefore, the currency of the
evenue is also converted), then the distribution changes accordingly.
Scale invariance. For each (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 , and each (𝜆1, 𝜆2) ∈

R2
++,

(i) 𝑅(𝑁 , 𝑆 , 𝜆1𝑝, 𝐶) = 𝜆1𝑅(𝑁 , 𝑆 , 𝑝, 𝐶). [Scale invariance in prices].
(ii) 𝑅(𝑁 , 𝑆 , 𝑝, 𝜆2𝐶) = 𝑅(𝑁 , 𝑆 , 𝑝, 𝐶). [Scale invariance in consump-

tion].

Consider the case of a subscriber who exchanges 𝛼 units of con-
sumption of service 𝑖 for the same 𝛼 units of consumption of service
𝑗. The next property requires that such a conversion does not alter the
allocation of other services different from 𝑖 and 𝑗.

Non-advantageous transfer within subscriber. For each
(𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 , if {𝑖, 𝑗} ⊆ 𝑁 , 𝑠 ∈ 𝑆, and 𝛼 ∈ R+ are such that
𝐶𝑖𝑠 − 𝛼 ≥ 0, then for each 𝑘 ∈ 𝑁∖{𝑖, 𝑗},
𝑅𝑘(𝑁 , 𝑆 , 𝑝, 𝐶) = 𝑅𝑘(𝑁 , 𝑆 , 𝑝, 𝐶𝛼),

where 𝐶𝛼
𝑖𝑠 = 𝐶𝑖𝑠 − 𝛼, 𝐶𝛼

𝑗 𝑠 = 𝐶𝑗 𝑠 + 𝛼, 𝐶𝛼
𝑘𝑠 = 𝐶𝑘𝑠 for all 𝑘 ∈ 𝑁∖{𝑖, 𝑗}, and

𝛼
𝑘𝑠′ = 𝐶𝑘𝑠′ for all 𝑘 ∈ 𝑁 and 𝑠′ ∈ 𝑆∖{𝑠}.

Suppose that subscribers are split into two classes (for example,
remium and regular) and we solve each problem separately. By com-
osition, the sum of those two allocations must equal the allotment

obtained by applying the rule to the whole set of subscribers.5
Composition. For each (𝑁 , 𝑆 , 𝑝, 𝐶), (𝑁 , 𝑆′, 𝑝′, 𝐶 ′) ∈ 𝑁 such that

𝑆 ∩ 𝑆′ = ∅, it holds that

𝑅(𝑁 , 𝑆 ∪ 𝑆′, (𝑝, 𝑝′), (𝐶 , 𝐶 ′)) = 𝑅(𝑁 , 𝑆 , 𝑝, 𝐶) + 𝑅(𝑁 , 𝑆′, 𝑝′, 𝐶 ′),

where (𝐶 , 𝐶 ′) is the matrix resulting from concatenating (by columns)
and 𝐶 ′, and (𝑝, 𝑝′) is the vector resulting from concatenating 𝑝 and

𝑝′.

4 This property should not be confused with the standard notion of
nonymity. While neutrality refers to subscribers (their labeling is not relevant
or the distribution of the revenue), anonymity states what is not relevant is
he label of the agents, in our case the services.

5 Relating the outcome of a group of services with the outcome of subgroups
is a typical approach in the literature. Composition is akin to those namesakes
sed in the classical literature on income inequality measurement (e.g., [28]),
overty measurement (e.g., [29]), income mobility measurement (e.g., [30]),
oting (e.g., [31]), and allocation problems (e.g., [24,32,33], and [25]).
4 
It is common for streaming platform subscribers to share their
subscriptions with friends and relatives. When two subscribers merge,
if the platform receives the same revenue as when they were separate,
and also their joint consumption equals the sum of their individual
consumption; then, it seems reasonable that the allocation of services
consumed by both subscribers should be the same in both individual
and joint cases. Sharing proofness requires that the allocation is not
altered by this type of situation.

Sharing proofness. For each (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 , each non-empty
′ ⊆ 𝑆, and each 𝑠 ∈ 𝑆′, if 𝑝′𝑠 =

∑

𝑡∈𝑆′ 𝑝𝑡 and 𝐶 ′
𝑖𝑠 =

∑

𝑡∈𝑆′ 𝐶𝑖𝑡 for any
𝑖 ∈ 𝑁 , then

𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝐶) = 𝑅𝑖
(

𝑁 , {𝑠} ∪ 𝑆∖𝑆′, (𝑝′𝑠, 𝑝𝑆∖𝑆′ ), (𝐶 ′
⋅𝑠, 𝐶𝑆∖𝑆′ )

)

.

The following axiom states that if a service is not consumed by any
ubscriber, then its allocation should be zero.
Null service. For each (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 , and each 𝑖 ∈ 𝑁 , if 𝐶𝑖𝑠 = 0

for any 𝑠 ∈ 𝑆, then

𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝐶) = 0.

4. Two families of parametrized rules

In this section, we present our main characterization results. First,
let us observe that the non-advantageous transfer within subscriber
property implies that, if we reallocate the consumption from a set
of services, then the aggregate allocation of all of them remains un-
changed.

Lemma 1. If a rule satisfies non-advantageous transfer within subscriber,
then it has the following property: Let (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 , and let 𝑀 ⊆ 𝑁
and 𝐶 ∈ R|𝑁|×|𝑆|

+ such that

(i) ∑

𝑗∈𝑀 𝐶𝑗⋅ =
∑

𝑗∈𝑀 𝐶𝑗⋅, and
(ii) 𝐶𝑗⋅ = 𝐶𝑗⋅ for any 𝑗 ∈ 𝑁∖𝑀 .

It holds that
∑

𝑗∈𝑀
𝑅𝑗 (𝑁 , 𝑆 , 𝑝, 𝐶) =

∑

𝑗∈𝑀
𝑅𝑗 (𝑁 , 𝑆 , 𝑝, 𝐶).

Proof. Let (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 and consider 𝑀 ⊆ 𝑁 , if 𝐶 ∈ R|𝑁|×|𝑆|
+

is such that ∑

𝑗∈𝑀 𝐶𝑗⋅ =
∑

𝑗∈𝑀 𝐶𝑗⋅, and 𝐶𝑗⋅ = 𝐶𝑗⋅ for any 𝑗 ∈ 𝑁∖𝑀 .
e can pass from 𝐶 to 𝐶 in a finite sequence of applications of

non-advantageous transfer within subscriber. Notice that non-advantageous
transfer within subscriber requires that in all those steps, the distri-
bution among the services out of 𝑀 is not altered. For this reason,
𝑅𝑘(𝑁 , 𝑆 , 𝑝, 𝐶) = 𝑅𝑘(𝑁 , 𝑆 , 𝑝, 𝐶) for any 𝑘 ∈ 𝑁∖𝑀 ; and by defini-
tion of rule, we know that ∑

𝑗∈𝑁 𝑅𝑗 (𝑁 , 𝑆 , 𝑝, 𝐶) = ∑

𝑗∈𝑁 𝑅𝑗 (𝑁 , 𝑆 , 𝑝, 𝐶).
herefore,
∑

𝑗∈𝑀
𝑅𝑗 (𝑁 , 𝑆 , 𝑝, 𝐶) =

∑

𝑗∈𝑁
𝑅𝑗 (𝑁 , 𝑆 , 𝑝, 𝐶) −

∑

𝑗∈𝑁∖𝑀
𝑅𝑗 (𝑁 , 𝑆 , 𝑝, 𝐶)

=
∑

𝑗∈𝑁
𝑅𝑗 (𝑁 , 𝑆 , 𝑝, 𝐶) −

∑

𝑗∈𝑁∖𝑀
𝑅𝑗 (𝑁 , 𝑆 , 𝑝, 𝐶)

=
∑

𝑗∈𝑀
𝑅𝑗 (𝑁 , 𝑆 , 𝑝, 𝐶). □

In order to mitigate repetitive arguments in the proofs the charac-
erization results, we introduce the following two technical lemmas.

Lemma 2. For each rule 𝑅 and each parameter 𝛽 ∈
[

0, |𝑁|

|𝑁|−1

]

, the
ollowing rule is well-defined
𝑇 = 𝛽 𝑅𝐸 𝐷 + (1 − 𝛽)𝑅.

Proof. First, we have that
∑

𝑇𝑖(𝑁 , 𝑆 , 𝑝, 𝐶) = 𝛽
∑

𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) + (1 − 𝛽)

∑

𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝐶)

𝑖∈𝑁 𝑖∈𝑁 𝑖∈𝑁
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= 𝛽‖𝑝‖ + (1 − 𝛽)‖𝑝‖ = ‖𝑝‖ ⋅

Now, for any 𝛽 ∈
[

0, |𝑁|

|𝑁|−1

]

, we have that 𝑇𝑖(𝑁 , 𝑆 , 𝑝, 𝐶) ≥ 0 for
ll 𝑖 ∈ 𝑁 . Indeed, when 𝛽 ∈ [0, 1], the result is trivially true since
𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) ≥ 0 and 𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝐶) ≥ 0, for all 𝑖 ∈ 𝑁 . Next, we
heck the cases for 𝛽 > 1. In these cases, we have that

𝑇𝑖(𝑁 , 𝑆 , 𝑝, 𝐶) = 𝛽 𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) + (1 − 𝛽)𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝐶)

= 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝐶)

≥ 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)‖𝑝‖ = ‖𝑝‖ − ‖𝑝‖𝛽
(

|𝑁| − 1
|𝑁|

)

.

Therefore, if 𝛽 ≤ |𝑁|

|𝑁|−1 , then ‖𝑝‖ − ‖𝑝‖𝛽
(

|𝑁|−1
|𝑁|

)

≥ 0. □

Lemma 3. If a rule 𝑅 satisfies equal treatment of equals, scale in-
ariance and non-advantageous transfer within subscriber, then, for each
𝑁 , {𝑠}, 𝑝(𝑠), (𝐶 (𝑠)

1𝑠 , 0,… , 0)𝑇 ) ∈ 𝑁 , there exists �̂�𝑠 ∈ R+, such that
𝑅𝑗 (𝑁 , {𝑠}, 𝑝(𝑠), (𝐶 (𝑠)

1𝑠 , 0,… , 0)𝑇 ) = 𝑝(𝑠)�̂�𝑠,

for all 𝑗 ∈ 𝑁∖{1}.

Proof. Let us define 𝜇𝑠(𝑝(𝑠)) = 𝑅2(𝑁 , {𝑠}, 𝑝(𝑠), (1, 0,… , 0)𝑇 ). In particu-
lar, 𝜇𝑠(1) = 𝑅2(𝑁 , {𝑠}, 1, (1, 0,… , 0)𝑇 ). To simplify the notation, we de-
fine �̂�𝑠 = 𝜇𝑠(1). Equal treatment of equals implies that
𝑅𝑗 (𝑁 , {𝑠}, 1, (1, 0,… , 0)𝑇 ) = �̂�𝑠 for any 𝑗 ∈ 𝑁∖{1}. In application of
scale invariance, it follows that �̂�𝑠 is independent of the consumption.
That is, �̂�𝑠 = 𝑅2(𝑁 , {𝑠}, 1, (𝐶 (𝑠)

1𝑠 , 0,… , 0)𝑇 ) for any 𝐶 (𝑠)
1𝑠 ∈ R+. Besides, �̂�𝑠

is also independent of what the non-null service is. Indeed, let 𝑖 ∈ 𝑁∖{1}
and let �̂� (𝑠) ∈ R|𝑁|

+ be such that �̂� (𝑠)
𝑖𝑠 = 1 and �̂� (𝑠)

𝑗 𝑠 = 0 for any
𝑗 ∈ 𝑁∖{𝑖}. Non-advantageous transfer within subscriber implies that
𝑅𝑗 (𝑁 , {𝑠}, 1, (1, 0,… , 0)𝑇 ) = 𝑅𝑗 (𝑁 , {𝑠}, 1, �̂� (𝑠)) = �̂�𝑠 for any 𝑗 ∈ 𝑁∖{1, 𝑖}.
By equal treatment of equals, we conclude that 𝑅𝑗 (𝑁 , {𝑠}, 𝑝(𝑠), �̂� (𝑠)) =
�̂�𝑠 for any 𝑗 ∈ 𝑁∖{𝑖}. Scale invariance, in this case with respect to
the prices, also implies that 𝜇𝑠(𝑝(𝑠)) = 𝑅2(𝑁 , {𝑠}, 𝑝(𝑠), (1, 0,… , 0)𝑇 ) =
𝑝(𝑠)𝑅2(𝑁 , {𝑠}, 1, (1, 0,… , 0)𝑇 ) = 𝑝(𝑠)�̂�𝑠. □

The first theorem states that any rule that fulfills equal treatment of
quals, neutrality, scale invariance, non-advantageous transfer within
ubscriber, and composition must be a combination between the equal
ivision and the susbcriber-proportional rules.

Theorem 1. A rule 𝑅 satisfies equal treatment of equals, neutrality, scale
nvariance, non-advantageous transfer within subscriber, and composition if
nd only if there exists 𝛽 ∈

[

0, |𝑁|

|𝑁|−1

]

such that, for each (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 ,

𝑅(𝑁 , 𝑆 , 𝑝, 𝐶) = 𝛽 𝑅𝐸 𝐷(𝑁 , 𝑆 , 𝑝, 𝐶) + (1 − 𝛽)𝑅𝑆 𝑃 (𝑁 , 𝑆 , 𝑝, 𝐶).

Proof. First, by Lemma 2 the previous family is well-defined. Now, we
prove that any of the members of the family satisfies the axioms in the
statement. Let 𝛽 ∈

[

0, |𝑁|

|𝑁|−1

]

.

• Equal treatment of equals. Let (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 and {𝑖, 𝑗} ⊆ 𝑁
such that 𝐶𝑖⋅ = 𝐶𝑗⋅. It follows that

𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝐶) = 𝛽 𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) + (1 − 𝛽)𝑅𝑆 𝑃

𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶)

= 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
∑

𝑠∈𝑆

𝐶𝑖𝑠
‖𝐶⋅𝑠‖

𝑝𝑠 = 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
∑

𝑠∈𝑆

𝐶𝑗 𝑠
‖𝐶⋅𝑠‖

𝑝𝑠

= 𝛽 𝑅𝐸 𝐷
𝑗 (𝑁 , 𝑆 , 𝑝, 𝐶) + (1 − 𝛽)𝑅𝑆 𝑃

𝑗 (𝑁 , 𝑆 , 𝑝, 𝐶)

= 𝑅𝑗 (𝑁 , 𝑆 , 𝑝, 𝐶).

• Neutrality. Let (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 , 𝜎 ∈ 𝛱𝑆 , and 𝑖 ∈ 𝑁 . It follows
that

𝑅 (𝑁 , 𝑆 , 𝑝, 𝐶) = 𝛽 𝑅𝐸 𝐷(𝑁 , 𝑆 , 𝑝, 𝐶) + (1 − 𝛽)𝑅𝑆 𝑃 (𝑁 , 𝑆 , 𝑝, 𝐶)
𝑖 𝑖 𝑖 t

5 
= 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
∑

𝑠∈𝑆

𝐶𝑖𝑠
‖𝐶⋅𝑠‖

𝑝𝑠

= 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
∑

𝑠∈𝑆

𝐶𝑖𝜎(𝑠)

‖𝐶⋅𝜎(𝑠)‖
𝑝𝜎 (𝑠)

= 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
∑

𝑠∈𝑆

𝐶𝜎
𝑖𝑠

‖𝐶𝜎
⋅𝑠‖

𝑝𝜎𝑠

= 𝛽 𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆𝜎 , 𝑝𝜎 , 𝐶𝜎 ) + (1 − 𝛽)𝑅𝑆 𝑃

𝑖 (𝑁 , 𝑆𝜎 , 𝑝𝜎 , 𝐶𝜎 )

= 𝑅𝑖(𝑁 , 𝑆𝜎 , 𝑝𝜎 , 𝐶𝜎 ).

• Scale invariance. Let (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 , 𝑖 ∈ 𝑁 , and (𝜆1, 𝜆2) ∈ R2
++.

It follows that

𝑅𝑖(𝑁 , 𝑆 , 𝜆1𝑝, 𝐶) = 𝛽 𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝜆1𝑝, 𝐶) + (1 − 𝛽)𝑅𝑆 𝑃

𝑖 (𝑁 , 𝑆 , 𝜆1𝑝, 𝐶)

= 𝛽
𝜆1‖𝑝‖
|𝑁|

+ (1 − 𝛽)
∑

𝑠∈𝑆

𝐶𝑖𝑠
‖𝐶⋅𝑠‖

𝜆1𝑝𝑠

= 𝜆1

(

𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
∑

𝑠∈𝑆

𝐶𝑖𝑠
‖𝐶⋅𝑠‖

𝑝𝑠

)

= 𝜆1
(

𝛽 𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) + (1 − 𝛽)𝑅𝑆 𝑃

𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶)
)

= 𝜆1𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝐶);

𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝜆2𝐶) = 𝛽 𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝑝, 𝜆2𝐶) + (1 − 𝛽)𝑅𝑆 𝑃

𝑖 (𝑁 , 𝑆 , 𝑝, 𝜆2𝐶)

= 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
∑

𝑠∈𝑆

𝜆2𝐶𝑖𝑠
‖𝜆2𝐶⋅𝑠‖

𝑝𝑠

= 𝛽 𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) + (1 − 𝛽)𝑅𝑆 𝑃

𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶)

= 𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝐶).

• Non-advantageous transfer within subscriber. Let (𝑁 , 𝑆 , 𝑝, 𝐶) ∈
𝑁 , 𝑖, 𝑗 ∈ 𝑁 , 𝑠 ∈ 𝑆, 𝛼 ∈ R+ such that 𝐶𝑖𝑠 − 𝛼 ≥ 0, and 𝐶𝛼 such
that 𝐶𝛼

𝑖𝑠 = 𝐶𝑖𝑠−𝛼, 𝐶𝛼
𝑗 𝑠 = 𝐶𝑗 𝑠+𝛼, and 𝐶𝛼

𝑧𝑠 = 𝐶𝑧𝑠 for all 𝑧 ∈ 𝑁∖{𝑖, 𝑗}.
It follows that

𝑅𝑧(𝑁 , 𝑆 , 𝑝, 𝐶) = 𝛽 𝑅𝐸 𝐷
𝑧 (𝑁 , 𝑆 , 𝑝, 𝐶) + (1 − 𝛽)𝑅𝑆 𝑃

𝑧 (𝑁 , 𝑆 , 𝑝, 𝐶)

= 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
∑

𝑠∈𝑆

𝐶𝑧𝑠
‖𝐶⋅𝑠‖

𝑝𝑠 = 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
∑

𝑠∈𝑆

𝐶𝛼
𝑧𝑠

‖𝐶𝛼
⋅𝑠‖

𝑝𝑠

= 𝛽 𝑅𝐸 𝐷
𝑧 (𝑁 , 𝑆 , 𝑝, 𝐶𝛼) + (1 − 𝛽)𝑅𝑆 𝑃

𝑧 (𝑁 , 𝑆 , 𝑝, 𝐶𝛼)

= 𝑅𝑧(𝑁 , 𝑆 , 𝑝, 𝐶𝛼).

• Composition. Let (𝑁 , 𝑆 , 𝑝, 𝐶), (𝑁 , 𝑆′, 𝑝′, 𝐶 ′) ∈ 𝑁 such that 𝑆 ∩
𝑆′ = ∅. Let 𝑖 ∈ 𝑁 . It follows that

𝑅𝑖(𝑁 , 𝑆 ∪ 𝑆′, (𝑝, 𝑝′), (𝐶 , 𝐶 ′)) = 𝛽 𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 ∪ 𝑆′, (𝑝, 𝑝′), (𝐶 , 𝐶 ′))

+ (1 − 𝛽)𝑅𝑆 𝑃
𝑖 (𝑁 , 𝑆 ∪ 𝑆′, (𝑝, 𝑝′), (𝐶 , 𝐶 ′))

= 𝛽
∑

𝑠∈𝑆∪𝑆′ (𝑝, 𝑝′)𝑠
|𝑁|

+ (1 − 𝛽)
∑

𝑠∈𝑆∪𝑆′

(𝐶 , 𝐶 ′)𝑖𝑠
‖(𝐶 , 𝐶 ′)⋅𝑠‖

(𝑝, 𝑝′)𝑠

= 𝛽
(
∑

𝑠∈𝑆 𝑝𝑠
|𝑁|

+
∑

𝑠∈𝑆′ 𝑝𝑠
|𝑁|

)

+ (1 − 𝛽)

(

∑

𝑠∈𝑆

𝐶𝑖𝑠

‖𝐶⋅𝑠‖
𝑝𝑠 +

∑

𝑠∈𝑆′

𝐶 ′
𝑖𝑠

‖𝐶 ′
⋅𝑠‖

𝑝′𝑠

)

= 𝛽
(

𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) + 𝑅𝐸 𝐷

𝑖 (𝑁 , 𝑆′, 𝑝′, 𝐶 ′)
)

+ (1 − 𝛽)
(

𝑅𝑆 𝑃
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶)

+ 𝑅𝑆 𝑃
𝑖 (𝑁 , 𝑆′, 𝑝′, 𝐶 ′)

)

= 𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝐶) + 𝑅𝑖(𝑁 , 𝑆′, 𝑝′, 𝐶 ′).

Note that by arguments analogous to those used previously, it can
be concluded that the equal division and subscriber-proportional rules
also satisfy composition.

Let us focus now on the converse implication. Let 𝑅 be a rule
hat satisfies all the properties in the statement of the theorem. Let
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(𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 . Suppose that 𝑆 is a singleton (i.e., there is only
one subscriber 𝑆 = {𝑠}), and let 𝑝(𝑠) and 𝐶 (𝑠) =

(

𝐶 (𝑠)
1𝑠 ,… , 𝐶 (𝑠)

|𝑁|𝑠

)𝑇
be

the corresponding subscription price and consumption matrix of this
platform, respectively.

Since 𝑅 satisfies non-advantageous transfer within subscriber and equal
treatment of equals, and taking into account Lemma 1, there exists a
unction 𝐴𝑠 ∶ R2

++ ⟶ R+ such that, for each 𝑖 ∈ 𝑁 ,6

𝑅𝑖(𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠)) = 𝐴𝑠(‖𝐶 (𝑠)
‖, 𝑝(𝑠)) + 𝐶 (𝑠)

𝑖𝑠

‖𝐶 (𝑠)
‖

[

𝑝(𝑠) −
∑

𝑖∈𝑁
𝐴𝑠(‖𝐶 (𝑠)

‖, 𝑝(𝑠))
]

.

Observe that as the term 𝐴𝑠(‖𝐶 (𝑠)
‖, 𝑝(𝑠)) only depends on the aggre-

ate consumption ‖𝐶 (𝑠)
‖ (but not its distribution across services) and

he subscription price 𝑝(𝑠), it can be written as
𝐴𝑠(‖𝐶 (𝑠)

‖, 𝑝(𝑠)) = 𝑅2(𝑁 , {𝑠}, 𝑝(𝑠), (‖𝐶 (𝑠)
‖, 0,… , 0)𝑇 ).

Since 𝑅 satisfies equal treatment of equals, scale invariance and non-
dvantageous transfer within subscriber, by Lemma 3,

𝑅2(𝑁 , {𝑠}, 𝑝(𝑠), (‖𝐶 (𝑠)
‖, 0,… , 0)𝑇 ) = 𝑝(𝑠)�̂�𝑠, for some �̂�𝑠 ∈ R+. Therefore,

𝑠(‖𝐶 (𝑠)
‖, 𝑝(𝑠)) = 𝑝(𝑠)�̂�𝑠, and then, for each 𝑖 ∈ 𝑁 ,

𝑅𝑖(𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠)) = 𝑝(𝑠)�̂�𝑠 +
𝐶 (𝑠)
𝑖𝑠

‖𝐶 (𝑠)
‖

𝑝(𝑠)
[

1 − |𝑁|�̂�𝑠] .

Now, letting 𝛽𝑠 = |𝑁|�̂�𝑠, we obtain that, for each 𝑖 ∈ 𝑁 ,
𝑅𝑖(𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠)) = 𝛽𝑠𝑅𝐸 𝐷

𝑖 (𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠)) + (1 −𝛽𝑠)𝑅𝑆 𝑃
𝑖 (𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠)).

Since �̂�𝑠 = 𝑅2(𝑁 , {𝑠}, 1, (1, 0,… , 0)𝑇 ), it follows that �̂�𝑠 ∈
[

0, 1
|𝑁|−1

]

.

herefore, 𝛽𝑠 ∈
[

0, |𝑁|

|𝑁|−1

]

.
Now, suppose that 𝑆 is such that |𝑆| ≥ 2. Notice that

𝑝 = (𝑝(1),… , 𝑝(|𝑆|)) and 𝐶 = (𝐶 (1),… , 𝐶 (|𝑆|)),

where each pair 𝑝(𝑠) and 𝐶 (𝑠) corresponds to the subscription price and
he consumption matrix with only one subscriber, respectively. Since 𝑅
atisfies composition, it follows that, for each 𝑖 ∈ 𝑁 ,
𝑅𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) =

∑

𝑠∈𝑆
𝑅𝑖(𝑁 , 𝑆 , 𝑝(𝑠), 𝐶 (𝑠))

=
∑

𝑠∈𝑆

(

𝛽𝑠𝑅𝐸 𝐷
𝑖 (𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠))

+ (1 − 𝛽𝑠)𝑅𝑆 𝑃
𝑖 (𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠))

)

.

Neutrality implies that 𝛽𝑠 = 𝛽 for any 𝑠 ∈ 𝑆. Therefore, since 𝑅𝐸 𝐷
and 𝑅𝑆 𝑃 satisfy composition, we have that
𝑅𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) = 𝛽

∑

𝑠∈𝑆
𝑅𝐸 𝐷
𝑖 (𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠))

+ (1 − 𝛽)
∑

𝑠∈𝑆
𝑅𝑆 𝑃
𝑖 (𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠))

= 𝛽 𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) + (1 − 𝛽)𝑅𝑆 𝑃

𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶),

where 𝛽 ∈
[

0, |𝑁|

|𝑁|−1

]

. □

As the next remark shows, Theorem 1 is tight and all the axioms are
necessary for the characterization.

Remark 1. The axioms of Theorem 1 are independent.

(a) The proportional rule satisfies equal treatment of equals, neu-
trality, scale invariance, and non-advantageous transfer within
subscriber, but not composition.

(b) Let 𝑅1 be defined as follows. For each 𝑖 ∈ 𝑁 ,

𝑅1
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) =

⎧

⎪

⎨

⎪

⎩

‖𝑝‖ if 𝑖 = 1
0 otherwise.

6 Theorem 3 in [34].
6 
The rule 𝑅1 satisfies neutrality, scale invariance,
non-advantageous transfer within subscriber, and composition,
but not equal treatment of equals.

(c) Let 𝑅2 be defined as follows. For each 𝑖 ∈ 𝑁 ,

𝑅2
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) =

∑

𝑠∈𝑆 ,𝑖∈𝑁𝑠

1
|

|

𝑁𝑠
|

|

𝑝𝑠,

where 𝑁𝑠 =
{

𝑗 ∈ 𝑁 ∶ 𝐶𝑗 𝑠 ≠ 0
}

. The rule 𝑅2 satisfies equal treat-
ment of equals, neutrality, scale invariance, and composition, but
not non-advantageous transfer within subscriber.

(d) Let 𝑅3 be defined as follows. For each 𝑖 ∈ 𝑁 ,

𝑅3
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) =

⎧

⎪

⎨

⎪

⎩

𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) if ‖𝑝‖ < 5

𝑅𝑆 𝑃
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) otherwise.

The rule 𝑅3 satisfies equal treatment of equals, neutrality, non-
advantageous transfer within subscriber, and composition, but
not scale invariance.

(e) Let 𝑅4 be defined as follows. For each 𝑖 ∈ 𝑁 ,

𝑅4
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) =

⎧

⎪

⎨

⎪

⎩

𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) if ‖𝐶⋅1‖ ≥ ‖𝐶⋅𝑠‖∀𝑠 ∈ 𝑆

𝑅𝑆 𝑃
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) otherwise.

The rule 𝑅4 satisfies equal treatment of equals, scale invariance,
non-advantageous transfer within subscriber, and composition,
but not neutrality.

In the previous theorem, the parameter 𝛽 varies between 0 and
|𝑁|

|𝑁|−1 . When 𝛽 = 0, we get the subscriber-proportional rule, while 𝛽 = 1
eads to the equal division rule. However, when 𝛽 ∈

(

1, |𝑁|

|𝑁|−1

]

, the
resulting rule assigns higher awards to less consumed services. This
situation is illustrated using the following example, which shows the
effect of 𝛽 on the revenue distribution.

Example 2. As in Example 1, consider the platform where 𝑁 =
1, 2, 3}, 𝑆 = {1, 2, 3, 4, 5, 6}, 𝑝 = (2, 3, 1, 2, 1, 3), and 𝐶 is given by
⎛

⎜

⎜

⎝

0 1 0 1 2 1
1 1 2 6 6 0
0 0 0 0 0 0

⎞

⎟

⎟

⎠

.

The revenue to distribute is ‖𝑝‖ = 12. According to Theorem 1, any
rule that satisfies the properties in its statement can be expressed as
𝛽 𝑅𝐸 𝐷 + (1 − 𝛽)𝑅𝑆 𝑃 , where 𝛽 ∈ [0, 32 ]. The next table shows how five of
these rules apply to this particular example.

Services
𝛽 𝑅𝐸 𝐷 + (1 − 𝛽)𝑅𝑆 𝑃 1 2 3

𝛽 = 0 [𝑅𝑆 𝑃 ] 141
28

195
28

0
𝛽 = 1

2
253
56

307
56

2
𝛽 = 1 [𝑅𝐸 𝐷] 4 4 4
𝛽 = 5

4
419
112

365
112

5
𝛽 = 3

2
195
56

141
56

6

Fig. 1 plots the evolution of the allocations of services 1, 2, and 3
as 𝛽 varies from 0 to 3

2 . The solid (red) line indicates the allocations
f service 1, the dashed (blue) line refers to service 2, and the dot-
ashed (green) line refers to service 3. As we can observe, when 𝛽 = 0
he allocations correspond to the subscriber-proportional rule. As 𝛽 in-
reases from 0 to 1, the role of 𝑅𝑆 𝑃 gradually decreases and the impact
f 𝑅𝐸 𝐷 progressively emerges. For 𝛽 = 1, the allocations coincide with
he equal division rule. When 𝛽 is larger than 1, the weight of the
ubscriber-proportional rule (1 − 𝛽) becomes negative, which inverses
he distributive behavior of the proportionality, allocating more awards
o less consumed services.
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Fig. 1. Representation of 𝛽 𝑅𝐸 𝐷 + (1 − 𝛽)𝑅𝑆 𝑃 allocations for any 𝛽 ∈
[

0, |𝑁|

|𝑁|−1

]

in
Example 2.

Therefore, the combination of equal treatment of equals, neutral-
ty, scale invariance, non-advantageous transfer within subscriber, and
omposition results in a parametrized family of rules with sufficient
egrees of freedom to accommodate several circumstances. If 𝛽 ∈
0, 1] we obtain the complete range of pure compromises of the equal
ivision and subscriber-proportional rules, which may be suitable in
ultiple scenarios. The choice of 𝛽 ∈

(

1, |𝑁|

|𝑁|−1

]

may be coherent in
ontexts in which emerging services or agents must be specifically

supported. However, the next result shows that if equal treatment of
quals is strengthened to order preservation (which guarantees higher
ewards to more consumed services) in Theorem 1, then values of 𝛽 ∈
(

1, |𝑁|

|𝑁|−1

]

must be dismissed and the unique admissible rules are the
convex combinations of the equal division and subscriber-proportional
schemes.

Corollary 1. A rule 𝑅 satisfies order preservation, neutrality, scale
invariance, non-advantageous transfer within subscriber, and composition
if and only if there exists 𝛽 ∈ [0, 1] such that, for each (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 ,

𝑅(𝑁 , 𝑆 , 𝑝, 𝐶) = 𝛽 𝑅𝐸 𝐷(𝑁 , 𝑆 , 𝑝, 𝐶) + (1 − 𝛽)𝑅𝑆 𝑃 (𝑁 , 𝑆 , 𝑝, 𝐶).

Proof. In Theorem 1, we already proved that any of such rules
satisfies neutrality, scale invariance, non-advantageous transfer within
ubscriber, and composition. The fulfillment of order preservation is

obvious. We focus on the converse implication. Let (𝑁 , 𝑆 , 𝑝, 𝐶1) ∈ 𝑁

in which the consumption matrix 𝐶1 is such that all entries in the first
row are equal to 1, and all the others entries are equal to zero (𝐶1

1𝑠 = 1
for all 𝑠 ∈ 𝑆, and 𝐶1

𝑖𝑠 = 0 for all 𝑖 ∈ 𝑁∖{1} and all 𝑠 ∈ 𝑆). Since order
preservation implies equal treatment of equals, Theorem 1 guarantees
that there exists a 𝛽 ∈

[

0, |𝑁|

|𝑁|−1

]

such that

𝑅(𝑁 , 𝑆 , 𝑝, 𝐶1) = 𝛽 𝑅𝐸 𝐷(𝑁 , 𝑆 , 𝑝, 𝐶1) + (1 − 𝛽)𝑅𝑆 𝑃 (𝑁 , 𝑆 , 𝑝, 𝐶1).

Since 𝐶1
1𝑠 > 𝐶1

2𝑠 for all 𝑠 ∈ 𝑆, order preservation implies that
1(𝑁 , 𝑆 , 𝑝, 𝐶1) ≥ 𝑅2(𝑁 , 𝑆 , 𝑝, 𝐶1), which is equivalent to requiring that

(1 − 𝛽)‖𝑝‖ ≥ (1 − 𝛽) ⋅ 0. That is, 𝛽 ≤ 1. □

The rules used in Remark 1 can be used to prove the independence
of the properties in Corollary 1 by replacing equal treatment of equals
with order preservation.

If the properties equal treatment of equals, neutrality and scale
nvariance in Theorem 1 are replaced by the property of null service,
 characterization of the subscriber-proportional rule is obtained, as
hown in the following corollary. In addition, this result serves as a
ormative foundation for the user-centric mechanism used in the music
treaming industry.
7 
Corollary 2. The subscriber-proportional rule is the unique rule that
satisfies non-advantageous transfer within subscriber, composition and null
ervice.

Proof. In Theorem 1, we have already proved that the subscriber-
proportional rule satisfies non-advantageous transfer within subscriber,
and composition. Let us now prove that the subscriber-proportional rule
atisfies the null service axiom.

• Null service. Let (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 and 𝑖 ∈ 𝑁such that 𝐶𝑖𝑠 = 0 for
all 𝑠 ∈ 𝑆. It follows that

𝑅𝑆 𝑃
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) =

∑

𝑠∈𝑆

𝐶𝑖𝑠
‖𝐶⋅𝑠‖

𝑝𝑠 = 0.

Now, let us see the converse implication. Let 𝑅 be a rule that
atisfies the axioms of the statement. Let (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 . Suppose
hat 𝑆 = {𝑠}, and let 𝑝(𝑠) and 𝐶 (𝑠) =

(

𝐶 (𝑠)
1𝑠 ,… , 𝐶 (𝑠)

𝑛𝑠

)𝑇
be the corre-

ponding subscription price and consumption matrix of this platform,
respectively.

Since 𝑅 satisfies non-advantageous transfer within subscriber, and
taking into account Lemma 1, there exists functions 𝐴𝑠

𝑖 ∶ R2
++ ⟶ R+

for each 𝑖 ∈ 𝑁 ,7

𝑅𝑖(𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠)) = 𝐴𝑠
𝑖 (‖𝐶

(𝑠)
‖, 𝑝(𝑠)) + 𝐶 (𝑠)

𝑖𝑠

‖𝐶 (𝑠)
‖

[

𝑝(𝑠) −
∑

𝑖∈𝑁
𝐴𝑠

𝑖 (‖𝐶
(𝑠)
‖, 𝑝(𝑠))

]

.

Now, let �̄� (𝑠) such that �̄� (𝑠)
𝑖 = ‖𝐶 (𝑠)

‖ and �̄� (𝑠)
𝑗 = 0 for any 𝑖 ∈ 𝑁 and

ll 𝑗 ∈ 𝑁∖{𝑖}, then

𝑅𝑗 (𝑁 , {𝑠}, 𝑝(𝑠), �̄� (𝑠)) = 𝐴𝑠
𝑗 (‖�̄�

(𝑠)
‖, 𝑝(𝑠)),

and by null service we have that

𝑅𝑗 (𝑁 , {𝑠}, 𝑝(𝑠), �̄� (𝑠)) = 𝐴𝑠
𝑗 (‖�̄�

(𝑠)
‖, 𝑝(𝑠)) = 0.

Since ‖�̄� (𝑠)
‖ = ‖𝐶 (𝑠)

‖ we have that 𝐴𝑠
𝑗 (‖�̄�

(𝑠)
‖, 𝑝(𝑠)) = 𝐴𝑠

𝑗 (‖𝐶
(𝑠)
‖, 𝑝(𝑠)) =

0. Therefore,

𝑅𝑖(𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠)) = 𝐶 (𝑠)
𝑖𝑠

‖𝐶 (𝑠)
‖

𝑝(𝑠),

for all 𝑖 ∈ 𝑁 . Since 𝑅 satisfies composition, it follows that, for each
∈ 𝑁 ,

𝑅𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) =
∑

𝑠∈𝑆
𝑅𝑖

(

𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠))

=
∑

𝑠∈𝑆
𝑅𝑆 𝑃
𝑖 (𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠)) = 𝑅𝑆 𝑃

𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) . □

The following remark proves the independence of the properties of
Corollary 2.

Remark 2. The axioms of Corollary 2 are independent.

(a) The equal division rule satisfies non-advantageous transfer within
subscriber and composition, but not null service.

(b) The proportional rule satisfies non-advantageous transfer within
subscriber and null service, but not composition.

(c) Let 𝑅2 be defined as follows. For each 𝑖 ∈ 𝑁 ,

𝑅2
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) =

∑

𝑠∈𝑆 ,𝑖∈𝑁𝑠

1
|

|

𝑁𝑠
|

|

𝑝𝑠,

where 𝑁𝑠 =
{

𝑗 ∈ 𝑁 ∶ 𝐶𝑗 𝑠 ≠ 0
}

. The rule 𝑅2 satisfies composi-
tion and null service, but not non-advantageous transfer within
subscriber.

The next result states that any rules that fulfill equal treatment of
equals, neutrality, scale invariance, non-advantageous transfer within
ubscriber, and sharing proofness must be a compromise between
he equal division and the proportional rules. In comparison with

Theorem 1, Theorem 2 shows that if we replace composition by sharing

7 Theorem 3 in [34].



J.C. Gonçalves-Dosantos et al.

t

s
p

d

t

‖

(

Omega 132 (2025) 103233 
proofness, we must also replace the subscriber-proportional rule with
he proportional rule in the family that we characterize.

Theorem 2. A rule 𝑅 satisfies equal treatment of equals, neutrality,
cale invariance, non-advantageous transfer within subscriber, and sharing
roofness if and only if there exists 𝛽 ∈

[

0, |𝑁|

|𝑁|−1

]

such that, for each
(𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 ,

𝑅(𝑁 , 𝑆 , 𝑝, 𝐶) = 𝛽 𝑅𝐸 𝐷(𝑁 , 𝑆 , 𝑝, 𝐶) + (1 − 𝛽)𝑅𝑃 (𝑁 , 𝑆 , 𝑝, 𝐶).

Proof. First, by Lemma 2 the previous family is well-defined. Let us
now prove that any of the members of the family satisfies the axioms
in the statement. Let 𝛽 ∈

[

0, |𝑁|

|𝑁|−1

]

.

• Equal treatment of equals. Let (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 and 𝑖, 𝑗 ∈ 𝑁 such
that 𝐶𝑖⋅ = 𝐶𝑗⋅. It follows that

𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝐶) = 𝛽 𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) + (1 − 𝛽)𝑅𝑃

𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶)

= 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
‖𝐶𝑖⋅‖

∑

𝑧∈𝑁 ‖𝐶𝑧⋅‖
‖𝑝‖

= 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
‖𝐶𝑗⋅‖

∑

𝑧∈𝑁 ‖𝐶𝑧⋅‖
‖𝑝‖

= 𝛽 𝑅𝐸 𝐷
𝑗 (𝑁 , 𝑆 , 𝑝, 𝐶) + (1 − 𝛽)𝑅𝑃

𝑗 (𝑁 , 𝑆 , 𝑝, 𝐶)

= 𝑅𝑗 (𝑁 , 𝑆 , 𝑝, 𝐶).

• Neutrality. Let (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 , 𝜎 ∈ 𝛱𝑆 , and 𝑖 ∈ 𝑁 . It follows
that

𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝐶) = 𝛽 𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) + (1 − 𝛽)𝑅𝑃

𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶)

= 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
‖𝐶𝑖⋅‖

∑

𝑗∈𝑁 ‖𝐶𝑗⋅‖
‖𝑝‖

= 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
‖𝐶𝜎

𝑖⋅‖
∑

𝑗∈𝑁 ‖𝐶𝜎
𝑗⋅‖

‖𝑝𝜎‖

= 𝛽 𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆𝜎 , 𝑝𝜎 , 𝐶𝜎 ) + (1 − 𝛽)𝑅𝑃

𝑖 (𝑁 , 𝑆𝜎 , 𝑝𝜎 , 𝐶𝜎 )

= 𝑅𝑖(𝑁 , 𝑆𝜎 , 𝑝𝜎 , 𝐶𝜎 ).

• Scale invariance. Let (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 , 𝑖 ∈ 𝑁 , and (𝜆1, 𝜆2) ∈ R2
++.

It follows that

𝑅𝑖(𝑁 , 𝑆 , 𝜆1𝑝, 𝐶) = 𝛽 𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝜆1𝑝, 𝐶) + (1 − 𝛽)𝑅𝑃

𝑖 (𝑁 , 𝑆 , 𝜆1𝑝, 𝐶)

= 𝛽
𝜆1‖𝑝‖
|𝑁|

+ (1 − 𝛽)
‖𝐶𝑖⋅‖

∑

𝑗∈𝑁 ‖𝐶𝑗⋅‖
‖𝜆1𝑝‖

= 𝜆1

(

𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
‖𝐶𝑖⋅‖

∑

𝑗∈𝑁 ‖𝐶𝑗⋅‖
‖𝑝‖

)

= 𝜆1
(

𝛽 𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) + (1 − 𝛽)𝑅𝑃

𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶)
)

= 𝜆1𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝐶);

𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝜆2𝐶) = 𝛽 𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝑝, 𝜆2𝐶) + (1 − 𝛽)𝑅𝑆 𝑃

𝑖 (𝑁 , 𝑆 , 𝑝, 𝜆2𝐶)

= 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
‖𝜆2𝐶𝑖⋅‖

∑

𝑗∈𝑁 ‖𝜆2𝐶𝑗⋅‖
‖𝑝‖

= 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
𝜆2‖𝐶𝑖⋅‖

∑

𝑗∈𝑁 𝜆2‖𝐶𝑗⋅‖
‖𝑝‖

= 𝛽 𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) + (1 − 𝛽)𝑅𝑃

𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶)

= 𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝐶).

• Non-advantageous transfer within subscriber. Let (𝑁 , 𝑆 , 𝑝, 𝐶) ∈
𝑁 , 𝑖, 𝑗 ∈ 𝑁 , 𝑠 ∈ 𝑆, 𝛼 ∈ R+ such that 𝐶𝑖𝑠 − 𝛼 ≥ 0, and 𝐶𝛼 such
that 𝐶𝛼

𝑖𝑠 = 𝐶𝑖𝑠 − 𝛼, 𝐶𝛼
𝑗 𝑠 = 𝐶𝑗 𝑠 + 𝛼 and 𝐶𝛼

𝑧𝑠 = 𝐶𝑧𝑠 for all 𝑧 ∈ 𝑁∖{𝑖, 𝑗}.
It follows that

𝑅𝑧(𝑁 , 𝑆 , 𝑝, 𝐶) = 𝛽 𝑅𝐸 𝐷
𝑧 (𝑁 , 𝑆 , 𝑝, 𝐶) + (1 − 𝛽)𝑅𝑃

𝑧 (𝑁 , 𝑆 , 𝑝, 𝐶)

= 𝛽
‖𝑝‖

+ (1 − 𝛽)
‖𝐶𝑧⋅‖

∑ ‖𝑝‖

|𝑁| 𝑙∈𝑁 ‖𝐶𝑙⋅‖

8 
= 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
‖𝐶𝛼

𝑧⋅‖
∑

𝑙∈𝑁 ‖𝐶𝛼
𝑙⋅‖

‖𝑝‖

= 𝛽 𝑅𝐸 𝐷
𝑧 (𝑁 , 𝑆 , 𝑝, 𝐶𝛼) + (1 − 𝛽)𝑅𝑃

𝑧 (𝑁 , 𝑆 , 𝑝, 𝐶𝛼)

= 𝑅𝑧(𝑁 , 𝑆 , 𝑝, 𝐶𝛼).

• Sharing proofness. Let (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 , and let 𝑆′ ⊆ 𝑆 and
𝑠 ∈ 𝑆′ such that 𝑝′𝑠 =

∑

𝑡∈𝑆′ 𝑝𝑡 and 𝐶 ′
𝑖𝑠 =

∑

𝑡∈𝑆′ 𝐶𝑖𝑡 for any 𝑖 ∈ 𝑁 .
It follows that

𝑅𝑖
(

𝑁 , {𝑠} ∪ 𝑆∖𝑆′, (𝑝′𝑠, 𝑝𝑆∖𝑆′ ), (𝐶 ′
⋅𝑠, 𝐶𝑆∖𝑆′ )

)

= 𝛽 𝑅𝐸 𝐷
𝑖

(

𝑁 , {𝑠} ∪ 𝑆∖𝑆′, (𝑝′𝑠, 𝑝𝑆∖𝑆′ ), (𝐶 ′
⋅𝑠, 𝐶𝑆∖𝑆′ )

)

+ (1 − 𝛽)𝑅𝑃
𝑖
(

𝑁 , {𝑠} ∪ 𝑆∖𝑆′, (𝑝′𝑠, 𝑝𝑆∖𝑆′ ), (𝐶 ′
⋅𝑠, 𝐶𝑆∖𝑆′ )

)

= 𝛽
‖(𝑝′𝑠, 𝑝𝑆∖𝑆′ )‖

|𝑁|

+ (1 − 𝛽)
‖(𝐶 ′

⋅𝑠, 𝐶𝑆∖𝑆′ )𝑖⋅‖
∑

𝑗∈𝑁 ‖(𝐶 ′
⋅𝑠, 𝐶𝑆∖𝑆′ )𝑗⋅‖

‖(𝑝′𝑠, 𝑝𝑆∖𝑆′ )‖

= 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
‖(𝐶 ′

⋅𝑠, 𝐶𝑆∖𝑆′ )𝑖⋅‖
∑

𝑗∈𝑁 ‖(𝐶 ′
⋅𝑠, 𝐶𝑆∖𝑆′ )𝑗⋅‖

‖𝑝‖

= 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
∑

𝑡∈{𝑠}∪𝑆∖𝑆′ (𝐶 ′
⋅𝑠, 𝐶𝑆∖𝑆′ )𝑖𝑡

∑

𝑗∈𝑁
∑

𝑡∈{𝑠}∪𝑆∖𝑆′ (𝐶 ′
⋅𝑠, 𝐶𝑆∖𝑆′ )𝑗 𝑡

‖𝑝‖

= 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
𝐶 ′
𝑖𝑠 +

∑

𝑡∈𝑆∖𝑆′ 𝐶𝑖𝑡
∑

𝑗∈𝑁

(

𝐶 ′
𝑗 𝑠 +

∑

𝑡∈𝑆∖𝑆′ 𝐶𝑗 𝑡
)‖𝑝‖

= 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
∑

𝑡∈𝑆′ 𝐶𝑖𝑡 +
∑

𝑡∈𝑆∖𝑆′ 𝐶𝑖𝑡
∑

𝑗∈𝑁

(

∑

𝑡∈𝑆′ 𝐶𝑗 𝑡 +
∑

𝑡∈𝑆∖𝑆′ 𝐶𝑗 𝑡
)‖𝑝‖

= 𝛽
‖𝑝‖
|𝑁|

+ (1 − 𝛽)
∑

𝑡∈𝑆 𝐶𝑖𝑡
∑

𝑗∈𝑁
∑

𝑡∈𝑆 𝐶𝑗 𝑡
‖𝑝‖

= 𝛽 𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) + (1 − 𝛽)𝑅𝑃

𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶)

= 𝑅𝑖(𝑁 , 𝑆 , 𝑝, 𝐶).

Note that by similar arguments, it can be concluded that the equal
ivision and proportional rules also satisfy sharing proofness.

Let us now focus on the converse implication. Let 𝑅 be a rule
hat satisfies all the properties in the statement of the theorem. Let
(𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 . Sharing proofness requires that

𝑅(𝑁 , 𝑆 , 𝑝, 𝐶) = 𝑅
(

𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠)) ,

where 𝑝(𝑠) and 𝐶 (𝑠) =
(

𝐶 (𝑠)
1𝑠 ,… , 𝐶 (𝑠)

|𝑁|𝑠

)𝑇
are the corresponding subscrip-

tion price and consumption matrix, respectively, with 𝑝(𝑠) = ‖𝑝‖ and
𝐶𝑖𝑠‖ =

∑

𝑠′∈𝑆 𝐶𝑖𝑠′ .
Since 𝑅 satisfies non-advantageous transfer within subscriber and

equal treatment of equals, applying a reasoning similar to the proof of
Theorem 1, there is a function 𝐴𝑠 ∶ R2

++ ⟶ R+ such that, for each
𝑖 ∈ 𝑁 ,

𝑅𝑖(𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠)) = 𝐴𝑠(‖𝐶 (𝑠)
‖, 𝑝(𝑠)) + 𝐶 (𝑠)

𝑖𝑠

‖𝐶 (𝑠)
‖

[

𝑝(𝑠) −
∑

𝑖∈𝑁
𝐴𝑠(‖𝐶 (𝑠)

‖, 𝑝(𝑠))
]

.

Observe that as the term 𝐴𝑠(‖𝐶 (𝑠)
‖, 𝑝(𝑠)) only depends on the aggre-

gate consumption ‖𝐶 (𝑠)
‖ (but not its distribution across services) and

the subscription price 𝑝(𝑠), it can be written as

𝐴𝑠(‖𝐶 (𝑠)
‖, 𝑝(𝑠)) = 𝑅2(𝑁 , {𝑠}, 𝑝(𝑠), (‖𝐶 (𝑠)

‖, 0,… , 0)𝑇 ).

Since 𝑅 satisfies equal treatment of equals, scale invariance and non-
advantageous transfer within subscriber, by Lemma 3, 𝑅2(𝑁 , {𝑠}, 𝑝(𝑠),
‖𝐶 (𝑠)

‖, 0,… , 0)𝑇 ) = 𝑝(𝑠)�̂�𝑠, for some �̂�𝑠 ∈ R+. Therefore, 𝐴𝑠(‖𝐶 (𝑠)
‖, 𝑝(𝑠))

= 𝑝(𝑠)�̂�𝑠, and then, for each 𝑖 ∈ 𝑁 ,

𝑅𝑖(𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠)) = 𝑝(𝑠)�̂�𝑠 +
𝐶 (𝑠)
𝑖𝑠

‖𝐶 (𝑠)
‖

𝑝(𝑠)
[

1 − |𝑁|�̂�𝑠] .

Now, letting 𝛽𝑠 = |𝑁|�̂�𝑠, we obtain that, for each 𝑖 ∈ 𝑁 ,

𝑅𝑖(𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠)) = 𝛽𝑠𝑅𝐸 𝐷
𝑖 (𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠)) + (1 −𝛽𝑠)𝑅𝑃

𝑖 (𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠)).
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Since �̂�𝑠 = 𝑅2(𝑁 , {𝑠}, 1, (1, 0,… , 0)𝑇 ), it follows that �̂�𝑠 ∈
[

0, 1
|𝑁|−1

]

.

herefore, 𝛽𝑠 ∈
[

0, |𝑁|

|𝑁|−1

]

.
Now, since 𝑅 satisfies sharing proofness, it follows that, for each

𝑖 ∈ 𝑁 ,

𝑅𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) = 𝑅𝑖(𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠))

= 𝛽𝑠𝑅𝐸 𝐷
𝑖 (𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠)) + (1 − 𝛽𝑠)𝑅𝑃

𝑖 (𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠)).

Neutrality implies that 𝛽𝑠 = 𝛽 for any 𝑠 ∈ 𝑆. Therefore, since 𝑅𝐸 𝐷
and 𝑅𝑃 satisfy sharing proofness, we have that

𝑅𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) = 𝛽 𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) + (1 − 𝛽)𝑅𝑃

𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶),

where 𝛽 ∈
[

0, |𝑁|

|𝑁|−1

]

. □

The following remark shows that the axioms of Theorem 2 are
necessary for the characterization.

Remark 3. The axioms of Theorem 2 are independent.

(a) The subscriber-proportional rule satisfies equal treatment of
equals, neutrality, scale invariance, and non-advantageous trans-
fer within subscriber, but not sharing proofness.

(b) Let 𝑅1 be defined as follows. For each 𝑖 ∈ 𝑁 ,

𝑅1
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) =

{

‖𝑝‖ if 𝑖 = 1
0 otherwise.

The rule 𝑅1 satisfies neutrality, scale invariance,
non-advantageous transfer within subscriber, and sharing proof-
ness, but not equal treatment of equals.

(c) Let 𝑅2 be defined as follows. For each 𝑖 ∈ 𝑁 ,

𝑅2
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) =

⎧

⎪

⎨

⎪

⎩

1
|

|

|

�̂�|

|

|

‖𝑝‖ if 𝑖 ∈ �̂�

0 otherwise,

where �̂� =
{

𝑗 ∈ 𝑁 ∶ ‖𝐶𝑗⋅‖ ≠ 0
}

.
The rule 𝑅2 satisfies equal treatment of equals, neutrality, scale
invariance, and sharing proofness, but not non-advantageous
transfer within subscriber.

(d) Let 𝑅3 be defined as follows. For each 𝑖 ∈ 𝑁 ,

𝑅3
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) =

⎧

⎪

⎨

⎪

⎩

𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) if ‖𝑝‖ < 5

𝑅𝑃
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) otherwise.

The rule 𝑅3 satisfies equal treatment of equals, neutrality, non-
advantageous transfer within subscriber, and sharing proofness,
but not scale invariance.

(e) Let 𝑅4 be defined as follows. For each 𝑖 ∈ 𝑁 ,

𝑅4
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) =

⎧

⎪

⎨

⎪

⎩

𝑅𝐸 𝐷
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) if ‖𝐶⋅1‖ ≥ ‖𝐶⋅𝑠‖∀𝑠 ∈ 𝑆

𝑅𝑃
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) otherwise.

The rule 𝑅4 satisfies equal treatment of equals, scale invari-
ance, non-advantageous transfer within subscriber, and sharing
proofness, but not neutrality.

Once again, the parameter 𝛽 in Theorem 2 may vary between 0 and
|𝑁|

|𝑁|−1 . As Example 3 illustrates, when 𝛽 ∈
(

1, |𝑁|

|𝑁|−1

]

, the rule assigns
higher allocations to less consumed services.

Example 3. As in Examples 1 and 2, consider the platform where
𝑁 = {1, 2, 3}, 𝑆 = {1, 2, 3, 4, 5, 6}, 𝑝 = (2, 3, 1, 2, 1, 3), and 𝐶 is given by
⎛

⎜

⎜

⎝

0 1 0 1 2 1
1 1 2 6 6 0
0 0 0 0 0 0

⎞

⎟

⎟

⎠

.
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Fig. 2. Representation of 𝛽 𝑅𝐸 𝐷 + (1 − 𝛽)𝑅𝑃 allocations for any 𝛽 ∈
[

0, |𝑁|

|𝑁|−1

]

in
Example 3.

The revenue to distribute is ‖𝑝‖ = 12, and the overall consumption
levels of the three services are
⎛

⎜

⎜

⎝

‖𝐶1⋅‖

‖𝐶2⋅‖

‖𝐶3⋅‖

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

5
16
0

⎞

⎟

⎟

⎠

.

According to Theorem 2, any rule that satisfies the properties in
its statement if and only if there exists 𝛽 ∈ [0, 32 ] such that the rule
s expressed as 𝛽 𝑅𝐸 𝐷 + (1 − 𝛽)𝑅𝑃 . In this example, it implies that
𝑅(𝑁 , 𝑆 , 𝑝, 𝐶) = 𝛽(4, 4, 4) + (1 − 𝛽)

(

5
21 ⋅ 12, 1621 ⋅ 12, 0

)

, where 𝛽 ∈ [0, 32 ].
The next table shows the application of five of these rules.

Services
𝛽 𝑅𝐸 𝐷 + (1 − 𝛽)𝑅𝑃 1 2 3

𝛽 = 0 [𝑅𝑃 ] 20
7

64
7

0
𝛽 = 1

2
24
7

46
7

2
𝛽 = 1 [𝑅𝐸 𝐷] 4 4 4
𝛽 = 5

4
30
7

19
7

5
𝛽 = 3

2
32
7

10
7

6

Fig. 2 plots the evolution of the allocations of services 1, 2, and 3
as 𝛽 varies from 0 to 3

2 . The solid (red) line indicates the allocations of
service 1, the dashed (blue) line refers to service 2, and the dot-dashed
(green) line refers to service 3. The behavior is similar to Example 2; as
𝛽 moves from 0, the equal allocation gains relevance to the detriment
f the proportional allocation. When 𝛽 ∈

(

1, 32
]

the weight of the
proportional rule (1 − 𝛽) becomes negative, and thus the effect of the
roportionality is inverse, providing higher awards to less consumed

services.
If we replace equal treatment of equals by order preservation in

Theorem 2, we characterize the family of convex combinations of the
equal division and proportional rules. We omit the proof because it is
analogous to Corollary 1.

Corollary 3. A rule 𝑅 satisfies order preservation, neutrality, scale invari-
ance, non-advantageous transfer within subscriber, and sharing proofness if
and only if there exists 𝛽 ∈ [0, 1] such that, for each (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 ,

𝑅(𝑁 , 𝑆 , 𝑝, 𝐶) = 𝛽 𝑅𝐸 𝐷(𝑁 , 𝑆 , 𝑝, 𝐶) + (1 − 𝛽)𝑅𝑃 (𝑁 , 𝑆 , 𝑝, 𝐶).

The independence of the properties in Corollary 3 can be proved, as
shown in Remark 3, by replacing equal treatment of equals with order
preservation.

In this case, if the properties equal treatment of equals, neutrality
and scale invariance in Theorem 2 are replaced by the property of null
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service, a characterization of the proportional rule is obtained. This
esult can also be interpreted as a normative justification of the pro-rata
echanism.

Corollary 4. The proportional rule is the unique rule that satisfies
non-advantageous transfer within subscriber, sharing proofness and null
service.

Proof. We have already proved that the proportional rule satis-
fies non-advantageous transfer within subscriber, and composition in
Theorem 2. Let us now prove that the proportional rule satisfies the
null service axiom.

• Null service. Let (𝑁 , 𝑆 , 𝑝, 𝐶) ∈ 𝑁 and 𝑖 ∈ 𝑁such that 𝐶𝑖𝑠 = 0 for
all 𝑠 ∈ 𝑆. It follows that

𝑅𝑃
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) = ‖𝐶𝑖⋅‖

∑

𝑗∈𝑁 ‖𝐶𝑗⋅‖
‖𝑝‖ = 0.

Now, let us see the converse implication. Let 𝑅 be a rule that
satisfies the axioms of the statement. Sharing proofness requires that

𝑅(𝑁 , 𝑆 , 𝑝, 𝐶) = 𝑅
(

𝑁 , 𝑠, 𝑝(𝑠), 𝐶 (𝑠)) ,

where 𝑝(𝑠) and 𝐶 (𝑠) =
(

𝐶 (𝑠)
1𝑠 ,… , 𝐶 (𝑠)

|𝑁|𝑠

)𝑇
are the corresponding subscrip-

ion price and consumption matrix, respectively, with 𝑝(𝑠) = ‖𝑝‖ and
𝐶𝑖𝑠‖ =

∑

𝑠′∈𝑆 𝐶𝑖𝑠′ .
Since 𝑅 satisfies non-advantageous transfer within subscriber, and

aking into account Lemma 1, there exists functions 𝐴𝑠
𝑖 ∶ R2

++ ⟶ R+
or each 𝑖 ∈ 𝑁 ,8

𝑅𝑖(𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠)) = 𝐴𝑠
𝑖 (‖𝐶

(𝑠)
‖, 𝑝(𝑠)) + 𝐶 (𝑠)

𝑖𝑠

‖𝐶 (𝑠)
‖

[

𝑝(𝑠) −
∑

𝑖∈𝑁
𝐴𝑠

𝑖 (‖𝐶
(𝑠)
‖, 𝑝(𝑠))

]

.

Now, let �̄� (𝑠) such that �̄� (𝑠)
𝑖 = ‖𝐶 (𝑠)

‖ and �̄� (𝑠)
𝑗 = 0 for any 𝑖 ∈ 𝑁 and

ll 𝑗 ∈ 𝑁∖{𝑖}, then

𝑅𝑗 (𝑁 , {𝑠}, 𝑝(𝑠), �̄� (𝑠)) = 𝐴𝑠
𝑗 (‖�̄�

(𝑠)
‖, 𝑝(𝑠)),

and by null service we have that

𝑅𝑗 (𝑁 , {𝑠}, 𝑝(𝑠), �̄� (𝑠)) = 𝐴𝑠
𝑗 (‖�̄�

(𝑠)
‖, 𝑝(𝑠)) = 0.

Since ‖�̄� (𝑠)
‖ = ‖𝐶 (𝑠)

‖ we have that 𝐴𝑠
𝑗 (‖�̄�

(𝑠)
‖, 𝑝(𝑠)) = 𝐴𝑠

𝑗 (‖𝐶
(𝑠)
‖, 𝑝(𝑠)) =

0. Therefore,

𝑅𝑖(𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠)) = 𝐶 (𝑠)
𝑖𝑠

‖𝐶 (𝑠)
‖

𝑝(𝑠),

for all 𝑖 ∈ 𝑁 . Since 𝑅 satisfies sharing proofness, it follows that, for each
∈ 𝑁 ,

𝑅𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) = 𝑅𝑖(𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠))

= 𝑅𝑃
𝑖 (𝑁 , {𝑠}, 𝑝(𝑠), 𝐶 (𝑠)) = 𝑅𝑃

𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) . □

The independence of the properties in Corollary 4 is proved in the
following remark.

Remark 4. The axioms of Corollary 4 are independent.

(a) The equal division rule satisfies non-advantageous transfer within
subscriber and sharing proofness, but not null service.

(b) The subscriber-proportional rule satisfies non-advantageous trans-
fer within subscriber and null service, but not sharing proofness.

(c) Let 𝑅2 be defined as follows. For each 𝑖 ∈ 𝑁 ,

𝑅2
𝑖 (𝑁 , 𝑆 , 𝑝, 𝐶) =

⎧

⎪

⎨

⎪

⎩

1
|

|

|

�̂�|

|

|

‖𝑝‖ if 𝑖 ∈ �̂�

0 otherwise,

where �̂� =
{

𝑗 ∈ 𝑁 ∶ ‖𝐶𝑗⋅‖ ≠ 0
}

.

8 Theorem 3 in [34].
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Table 1
Users and exclusive users.

Streamer Category Users Exclusive users

Number % Number %

Auronplay
Just Chatting 455 214 29.91 161 123 42.00
Fall Guys 195 836 12.87 31 508 8.21
Valorant 222 128 14.59 47 188 12.30
GTA V 218 511 14.36 46 351 12.08
The Forest 244 093 16.04 56 510 14.73
Minecraft 186 272 12.24 40 944 10.67

elXokas
Just Chatting 146 880 46.28 64 777 42.30
Escape from Tarkov (EFT) 170 461 53.72 88 358 57.70

Fextralife
Overwatch 2 180 595 41.82 89 797 59.84
Death Stranding 98 162 22.73 27 004 18.00
Pokemon 61 571 14.26 16 479 10.98
Eversoul 29 038 6.72 4635 3.09
League of Legends (LoL) 26 022 6.02 2988 1.99
Elden Ring 36 479 8.45 9144 6.09

The rule 𝑅2 satisfies sharing proofness and null service, but not
non-advantageous transfer within subscriber.

5. An illustrative application: Content and revenues on Twitch

In practice, it is clear that computing the allocations of any of the
rules presented in the previous sections requires the use of private
information, such as data regarding the consumption of each individual
subscriber for each service. This implies that only the streaming plat-
forms themselves, which have direct access to the data, can perform
such computations. In this section, we use the families of rules charac-
erized in Section 4 to determine the revenue provenance of different

types of content, grouped by categories, for a number of streamers on
witch.9 This information is important for both streamers and Twitch,

as it allows both parties to determine the profitability of the different
content offered.

We analyzed three popular streamers during a three-week period
from 23 December 2022 to 15 January 2023. We collected data on the
users (identified through their nicknames) who watched each streamer
for each hour of the broadcast, in addition to the category streamed. Ac-
cording to the theoretical model presented in Section 2, each streamer
is considered to be an individual platform, in the sense each streamer
rovides different types of content. Therefore, the set of services, 𝑁 ,
epresent the categories of the content (i.e., the name of the played
ame, such as Minecraft, or Just Chatting) that each streamer broad-
ast. The subscribers 𝑆 are the users, and the consumption 𝐶𝑖𝑠 is the
ime each user spent watching the content provided by the streamer
n each category. The subscription price is assumed to be fixed (and
ormalized to 1 monetary unit).

For the timeframe examined, Table 1 shows, for each streamer, the
categories of the content that they streamed, the number of users during
the three-week period, the number of exclusive users (i.e., users who
consumed only one category), and the percentage they represent out of
the total amount of users and exclusive users. Hence, for instance, the
treamer Auronplay (or, in our theoretical terminology, the platform
uronplay) has six categories (or services): Just Chatting, Fall Guys,
alorant, GTA V, The Forest, and Minecraft. During the three-week
eriod, 455,214 users watched content provided in the category Just
hatting, representing 29.91% of the overall users that consumed
uronplay’s content. In this application, a rule is a mechanism to

distribute among the different categories the revenue obtained by a
streamer from her viewers. This can also be interpreted as a measure
of the profitability of the different contents the streamer produces.
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Table 2
Profitability of categories for Auronplay according to different allocation rules.

Auronplay 𝛽 = 0 𝛽 = 1
3

𝛽 = 2
3

𝛽 = 1
Categories Value % Value % Value % Value %

𝛽 𝑅𝐸 𝐷 + (1 − 𝛽)𝑅𝑃 [Corollary 3]

Just Chatting 95 340.37 12.98 104 351.4 14.21 113 362.5 15.44 122 373.5 16.67
Fall Guys 144 665.56 19.70 137 234.9 18.69 129 804.2 17.68 122 373.5 16.67
Valorant 109 543.28 14.92 113 820.0 15.50 118 096.8 16.08 122 373.5 16.67
GTA V 133 901.58 18.28 130 058.9 17.71 126 216.2 17.19 122 373.5 16.67
The Forest 120 928.61 16.47 121 410.2 16.54 121 891.9 16.60 122 373.5 16.67
Minecraft 129 861.59 17.69 127 365.6 17.35 124 869.5 17.01 122 373.5 16.67

𝛽 𝑅𝐸 𝐷 + (1 − 𝛽)𝑅𝑆 𝑃 [Corollary 1]

Just Chatting 211 344.88 28.78 181 687.8 24.74 152 030.6 20.71 122 373.5 16.67
Fall Guys 97 576.39 13.29 105 842.1 14.42 114 107.8 15.54 122 373.5 16.67
Valorant 99 719.75 13.58 107 271.0 14.61 114 822.2 15.64 122 373.5 16.67
GTA V 110 896.25 15.10 114 722.0 15.62 118 547.7 16.15 122 373.5 16.67
The Forest 117 945.33 16.06 119 421.4 16.26 120 897.4 16.47 122 373.5 16.67
Minecraft 96 758.41 13.18 105 296.8 14.34 113 835.1 15.50 122 373.5 16.67
Fig. 3. Distribution of Auronplay’s revenues across the categories using the family 𝛽 𝑅𝐸 𝐷 + (1 − 𝛽)𝑅𝑃 (left) and the family 𝛽 𝑅𝐸 𝐷 + (1 − 𝛽)𝑅𝑆 𝑃 (right).
Table 2 shows the application of the families of rules in Corollaries 1
and 3, used to distribute the revenue obtained Auronplay by among the
categories he offers. For each family of rules and for some selected 𝛽 ∈
[0, 1], we indicate both the value and the percentage of revenues that
is attributable to each category. The equal division rule assigns equal
revenues to all categories, as expected. The proportional rule takes into
account the time that each category has been viewed when assigning
revenues. Among the categories, Fall Guys is the most watched and,
therefore, the most profitable for streamer Auronplay, according to this
rule. Despite being one of the categories with the fewest users and the
lowest number of exclusive users, it is noteworthy that this category
was the most consumed by users during Auronplay’s streaming ses-
sions. The subscriber-proportional rule distributes the revenues of each
viewer individually among the categories from which they consumed
content; therefore, the revenue of exclusive users is directly assigned
to the category they consume. Under this rule, the most profitable
category is Just Chatting. This category has a significant proportion of
exclusive users and, therefore, receives the full subscription fee from
these subscribers. This, in addition to its high number of users, makes
Just Chatting the streamer’s most profitable category. Fig. 3 shows the
allocation of revenues to each category according to each family of
rules, according to 𝛽. Comparing the families of rules characterized
in Corollaries 1 and 3, the Just Chatting category has a significantly
greater economic impact according to the latter than to the former.
It even switches from being the least profitable category to the most

9 https://www.twitch.tv/
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profitable category. In fact, as we can observe, the order in the prof-
itability of the type of content is nearly entirely reversed, depending on
the family of rules we consider.

In Table 3, we apply the same allocation rules for streamer elX-
okas. His most viewed category is Just Chatting, and thus the one
with the highest profitability according to the proportional rule. On
the other hand, Escape from Tarkov is the category with the highest
number of both users and exclusive users. This implies that, using
the subscriber-proportional rule, it is now the most profitable category
for the streamer. However, even with 7% more users and 15% more
exclusive users, this category does not obtain more than 2% of revenues
compared to Just Chatting. This is due to, among other factors, the fact
that elXokas is a streamer known for his controversial Just Chatting.
Therefore, although Escape from Tarkov achieves 15% more revenues
from the exclusive users, this is compensated by a greater number of
views for Just Chatting from common users in both categories. Fig. 4
illustrates these results. As in the case of Auronplay, we can observe
a reversal in the profitability of the categories when comparing the
families in Corollaries 1 and 3, although it is not highly significant.

Finally, Table 4 presents the results for streamer Fextralife. Based
on these results, we emphasize that the six categories have effectively
the same number of total views. In other words, the allocations of each
category according to the proportional rule do not exhibit significant
differences. The most viewed category is Elden Ring with 18.85% of
revenues, while the least viewed is Death Stranding with 15.34%,
representing a difference of 3.51%. Nevertheless, significant differences
emerge when taking into account the subscriber-proportional rule.
Overwatch 2 leads the categories with the highest profitability, at

https://www.twitch.tv/
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Table 3
Profitability of categories for elXokas according to different allocation rules.

elXokas 𝛽 = 0 𝛽 = 1
3

𝛽 = 2
3

𝛽 = 1
Categories Value % Value % Value % Value %

𝛽 𝑅𝐸 𝐷 + (1 − 𝛽)𝑅𝑃 [Corollary 3]

Just Chatting 132 732.2 56.42 127 694.5 54.28 122 656.7 52.14 117 619 50
EFT 102 505.8 43.58 107 543.5 45.72 112 581.3 47.86 117 619 50

𝛽 𝑅𝐸 𝐷 + (1 − 𝛽)𝑅𝑆 𝑃 [Corollary 1]

Just Chatting 115 255.9 49 116 043.6 49.33 116 831.3 49.67 117 619 50
EFT 119 982.1 51 119 194.4 50.67 118 406.7 50.33 117 619 50
Table 4
Profitability of categories for Fextralife according to different allocation rules.

Fextralife 𝛽 = 0 𝛽 = 1
3

𝛽 = 2
3

𝛽 = 1
Categories Value % Value % Value % Value %

𝛽 𝑅𝐸 𝐷 + (1 − 𝛽)𝑅𝑃 [Corollary 3]

Overwatch 2 40 547.82 16.31 40 839.71 16.43 41 131.61 16.55 41 423.5 16.67
Death Stranding 38 118.57 15.34 39 220.21 15.78 40 321.86 16.22 41 423.5 16.67
Pokemon 41 700.27 16.78 41 608.01 16.74 41 515.76 16.70 41 423.5 16.67
Eversoul 41 321.06 16.63 41 355.21 16.64 41 389.35 16.65 41 423.5 16.67
LoL 40 002.49 16.09 40 476.16 16.29 40 949.83 16.48 41 423.5 16.67
Elden Ring 46 850.80 18.85 45 041.70 18.12 43 232.60 17.39 41 423.5 16.67

𝛽 𝑅𝐸 𝐷 + (1 − 𝛽)𝑅𝑆 𝑃 [Corollary 1]

Overwatch 2 109 931.08 44.23 87 095.22 35.04 64 259.36 25.85 41 423.5 16.67
Death Stranding 49 983.14 20.11 47 129.93 18.96 44 276.71 17.81 41 423.5 16.67
Pokemon 36 081.79 14.52 37 862.36 15.23 39 642.93 15.95 41 423.5 16.67
Eversoul 15 755.45 6.34 24 311.47 9.78 32 867.48 13.22 41 423.5 16.67
LoL 14 397.92 5.79 23 406.44 9.42 32 414.97 13.04 41 423.5 16.67
Elden Ring 22 391.61 9.01 28 735.58 11.56 35 079.54 14.11 41 423.5 16.67
Fig. 4. Distribution of elXokas’s revenues across the categories using the family 𝛽 𝑅𝐸 𝐷 + (1 − 𝛽)𝑅𝑃 (left), and family 𝛽 𝑅𝐸 𝐷 + (1 − 𝛽)𝑅𝑆 𝑃 (right).
Fig. 5. Distribution of Fextralife’s revenues across the categories using the family 𝛽 𝑅𝐸 𝐷 + (1 − 𝛽)𝑅𝑃 (left), and family 𝛽 𝑅𝐸 𝐷 + (1 − 𝛽)𝑅𝑆 𝑃 (right).
12 
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44.23%, followed by Death Stranding, at 20.11%. These results align
more closely with the total number of users and exclusive users. Fig. 5
shows the distribution assigned with each of the two families to each
ategory for the streamer Fextralife.

6. Concluding remarks

The sharing of revenues on streaming platforms is currently a
opic of interest. Since not all services provided by a streaming plat-
orm hold the same level of interest for subscribers, allocations could

be adjusted accordingly. In this paper, we introduce a model for
revenue distribution on streaming platforms. The model incorporates
three allocation schemes: the equal division, the proportional, and the
subscriber-proportional rules. The two latter rules implement the so-
called pro-rata and user-centric principles applied in the music streaming
industry. Beyond a mere mathematical description, we apply axiomatic
analysis to provide normative foundations for two families of award
methods, which represent a compromise between the equal division
and subscriber-proportional rules (Theorem 1 and Corollary 1) and the
equal division and proportional rules (Theorem 2 and Corollary 3). In
addition, we have also presented a normative justification of the pro-
rata and user-centric mechanisms (Corollaries 3 and 4). These results
are obtained by adding the additional requirement of null service to the
families of rules characterized in Theorems 1 and 2.

With regard to the characterizations, it is worth noting that although
Remarks 1 and 3 show that all the properties in Theorems 1 and 2 are
necessary, both results can be generalized by removing certain axioms.

hat would lead to a class of rules that are technically more general
but, in practice, less appealing. For instance, if we do not require
scale invariance in consumption, then 𝛽 is dependent on the aggregate
consumption of each subscriber or the total consumption. Similarly, if
we do not consider scale invariance in prices, then 𝛽 depends on the
subscription price of each individual subscriber or the total revenue
generated by the platform. Analogous generalizations can be made by
removing neutrality.

Finally, we have applied the families of rules that we characterized
to identify the impact of specific content on the revenues of some of
the most popular Twitch streamers. Over three weeks, we collected
hourly data on users who were watching these Twitch streamers, as
well as the streaming category. With this information, we obtained
those categories that lead to greater profitability on the platform. We
ound that the share of the revenue assigned to each category may sig-

nificantly vary depending on the applied family of rules (Corollaries 1
or 3). From a normative perspective, these two classes of rules simply
differ in one axiom. The combinations of the equal division and the
subscriber-proportional rules (Theorem 1) satisfy composition but vi-
olate sharing proofness, while combinations of the equal division and
the proportional rules (Theorem 2) satisfy sharing proofness but violate
composition. The choice of the axiom to require crucially determines
the relevance of the different categories in the revenues of streamers. In
eneral, we obtained that the subscriber-proportional rule has a more
irect relationship with the number of users and exclusive users. The
roportional rule, however, is related to a more significant degree with
iewing time. As such, categories that are viewed for a longer period of
ime, even if they receive a smaller flow of users, are more profitable
or streamers.
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