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Abstract

Material identification in historical documents and artworks is essential for their

study, conservation, and authentication. Understanding the composition of inks,

pigments, and supports enables researchers to address degradation processes, es-

tablish a plausible date, and detect alterations. In this context, hyperspectral imag-

ing (HSI) has emerged as a highly promising technique due to its ability to acquire

both spatial and spectral information within a wide range from ultraviolet to mid-

wavelength infrared, without physical contact with the objects and in less time than

conventional methods.

Although spectral reflectance provides clues about chemical composition, factors

such as conservation status, similarity of spectra for different materials, or the pres-

ence of mixtures can complicate identification. Given the advantages of HSI, there

is a need to develop more generalized and automated methodologies for material

identification that are independent of specific features of the document or artwork,

1



Abstract

such as the number of materials present, the techniques employed by the artist, the

time period or aging effects.

This PhD thesis explores and optimizes various hyperspectral image analysis

techniques, including spectral similarity metrics, machine learning models and deep

learning, as well as spectral unmixing techniques, with the aim of identifying and

mapping inks, pigments, and supports in historical documents and artworks.

One of the main contributions is the development of HYPERDOC, a public

database of hyperspectral images of historical documents and mock-up samples.

It provides spectral information in the visible and near-infrared (VNIR) and short-

wave infrared (SWIR) ranges, along with data on the materials present in each pixel.

First, a preliminary study was carried out to perform material identification us-

ing spectral similiary metrics and a reference library of materials. Three methods

were proposed to determine the most suitable spectral metrics. The integration of

the three methods proved effective for identifying inks in mock-ups and historical

manuscripts, although further refinement was required.

For this reason, six models were implemented and compared, including five tra-

ditional machine learning methods (SVM, KNN, LDA, RF, and PLS-DA) and a deep

learning (DL) model, for the classification of three types of ink: pure metallo-gallate

(MGP), carbon-containing (CC), and non-carbon-containing (NCC) inks. The results

demonstrated that while DL achieved the highest accuracy, SVM provided compara-

ble performance with lower computational demands. Additionally, post-processing

techniques and data fusion of VNIR and SWIR spectral ranges contributed to the

high classification performance.

To address the problem of mixed materials, a study was performed on a cop-

per plate oil painting with a reduced palette, pre- and post-intervention. Unmix-

ing techniques were used to perform material identification. Three methods for ex-
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tracting endmembers (NFINDR, NMF, and manual extraction) were evaluated in

the VNIR range. Manual extraction provided the most accurate pigment concentra-

tion maps and spectral reconstruction, while NFINDR and NMF correctly identified

more pigments by direct comparison between endmembers and a reference library

of pigments. Furthermore, using the VNIR and SWIR ranges, linear and nonlin-

ear unmixing models were compared using two hyperspaces: reflectance (R) and

-log(R). In the restored painting, the -log(R) hyperspace with NFINDR proved better

results, while the R space allowed complete pigment identification merging results

from both ranges.

To extend this technique to historical document analysis, unmixing was applied

to identify components in ink mixtures using fused VNIR and SWIR data. The re-

sults showed that it is difficult to detect certain components within the mixtures,

especially when CC ink is present, since the mixture spectra tend to be remarkably

similar to the pure CC ink spectra. Additionally, unmixing was used as prepro-

cessing to reduce the influence of the support on ink spectra along the borders of

the written strokes, improving classification with an SVM model. Both approaches

showed promising results, although further optimization is needed to reach their

full potential in historical document analysis.

The findings of this PhD thesis contribute to the advancement of HSI techniques

in the study of cultural heritage, particularly in material identification and mapping.

The development of a database, optimization of spectral analysis methods, and in-

tegration of machine learning models and unmixing techniques has contributed sig-

nificantly towards reaching more precise and automated material identification in

historical documents and artworks.
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La identificación de materiales en documentos históricos y obras de arte es esen-

cial para su estudio, conservación y autenticación. Conocer la composición de tintas,

pigmentos y soportes permite a los investigadores abordar procesos de degradación,

estimar la época de la obra y detectar posibles alteraciones. En este contexto, la im-

agen hiperespectral ha surgido como una técnica muy prometedora debido a su ca-

pacidad para adquirir información espacial y espectral en un amplio rango desde

el ultravioleta hasta el infrarrojo de onda corta, de forma no invasiva y en menos

tiempo que técnicas convencionales.

Aunque la reflectancia espectral ofrece indicios sobre la composición química,

factores como el estado de conservación, la similitud de los espectros de diferentes

materiales o la mezcla de ellos, pueden dificultar su identificación. Debido a las ven-

tajas que presenta la imagen hiperespectral, es necesario desarrollar metodologías

más generalizadas y automatizadas para la identificación de materiales que no de-
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pendan de características específicas del documento u obra de arte, como el número

de materiales presentes, las técnicas empleadas por el artista, la época o el envejec-

imiento sufrido.

En esta tesis doctoral se han explorado y optimizado diversas técnicas de análisis

de imágenes hiperespectrales, incluyendo métricas de similitud espectral, modelos

de aprendizaje automático (Machine Learning) y aprendizaje profundo (Deep Learn-

ing), así como técnicas de unmixing o desmezclado espectral, con el objetivo de iden-

tificar las tintas, pigmentos y soportes presentes en documentos históricos y en una

obra de arte, y determinar su distribución espacial.

Una de las principales contribuciones es el desarrollo de HYPERDOC, una base

de datos pública de imágenes hiperespectrales de documentos históricos y muestras

modelo. Esta proporciona información espectral en los rangos visible e infrarrojo

cercano (VNIR), e infrarrojo de onda corta (SWIR), junto con datos sobre los materi-

ales presentes en cada píxel.

Primero, se llevó a cabo un estudio preliminar para la identificación de mate-

riales utilizando métricas de similitud espectral y una biblioteca de referencia de

materiales. Se propusieron tres métodos para determinar las métricas espectrales

más adecuadas. La integración de los tres métodos demostró ser eficaz para identi-

ficar tintas en muestras modelo y manuscritos históricos, aunque se requería mayor

refinamiento.

Es por ello que se implementaron y compararon seis modelos, incluyendo cinco

métodos tradicionales de aprendizaje automático (SVM, KNN, LDA, RF y PLS-DA)

y un modelo basado en aprendizaje profundo (DL), para la clasificación de tres tipos

de tinta: metalogálica pura (MGP), con contenido de carbón (CC) y sin contenido de

carbón (NCC). Los resultados demostraron que, si bien DL logró la mayor precisión,

SVM obtuvo un rendimiento comparable con menores demandas computacionales.
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Además, las técnicas de postprocesamiento y la fusión de datos espectrales VNIR y

SWIR contribuyeron al alto rendimiento de la clasificación.

Para abordar el problema de las mezclas de materiales, se llevó a cabo un es-

tudio en una pintura al óleo sobre placa de cobre con una paleta reducida, antes y

después de su restauración. Se utilizaron técnicas de unmixing para realizar la iden-

tificación de materiales. Se evaluaron tres métodos de extracción de endmembers o

componentes puros (NFINDR, NMF y extracción manual) en el rango VNIR. La ex-

tracción manual proporcionó los mapas de concentración de pigmentos más precisos

y mejor reconstrucción espectral, mientras que con NFINDR y NMF se identificaron

más pigmentos correctamente mediante la comparación directa entre los endmembers

y una biblioteca de referencia de pigmentos. Por otro lado, utilizando los rangos

VNIR y SWIR, se compararon un modelo lineal y no lineal de unmixing, utilizando

dos espacios espectrales: reflectancia (R) y -log(R). En la pintura restaurada, el es-

pacio -log(R) con NFINDR dio mejores resultados, mientras que en el espacio R se

consiguió una identificación completa con la información de ambos rangos.

Para extender esta técnica al análisis de documentos históricos, se aplicaron téc-

nicas de unmixing para identificar componentes en mezclas de tintas mediante la

fusión de datos VNIR y SWIR. Los resultados mostraron que es difícil detectar cier-

tos componentes dentro de las mezclas, especialmente cuando está presente la tinta

CC, ya que los espectros de mezcla tienden a ser notablemente similares a los es-

pectros de la tinta CC pura. Además, se aplicó el unmixing como preprocesamiento

para reducir la influencia del soporte en las reflectancias espectrales de las tintas,

especialmente en los bordes de los trazos, mejorando la clasificación con un mod-

elo SVM. Ambos enfoques mostraron resultados prometedores, aunque es necesario

optimizar su aplicación para alcanzar su máximo potencial en el análisis de docu-

mentos históricos.
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Los hallazgos de esta tesis contribuyen al avance de las técnicas de imagen

hiperespectral en el estudio del patrimonio cultural, especialmente en la identifi-

cación y distribución espacial de materiales. El desarrollo de una base de datos, la

optimización de los métodos de análisis espectral y la integración de modelos de

aprendizaje automático y técnicas de unmixing han contribuido a una identificación

más precisa y automatizada de materiales en documentos históricos y obras de arte.
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Introduction





1.1. Motivation

1.1 Motivation

From the Alhambra of Granada to the historic Albaicín quarter and the art of

flamenco, Cultural Heritage (CH) represents a vast legacy passed down through

generations. These are just a few examples from the city where I was born, but dif-

ferent expressions of culture can be found all around the world in different societies,

shaped by history, geography, and interactions with the natural environment.

The United Nations Educational, Scientific and Cultural Organization (UNESCO)

defines CH as covering both tangible (TCH) and intangible (ICH) elements of cul-

tural significance [1, 2]. TCH refers to physical objects and sites that hold symbolic,

historic, artistic, aesthetic, ethnological, anthropological, scientific, or social value.

It includes artifacts, monuments, groups of buildings, archaeological findings, and

museums. ICH encompasses practices, representations, expressions, knowledge,

and skills that are transmitted through generations and continuously evolving. 2003

UNESCO Convention for the Safeguarding of ICH [3] includes here oral traditions

and expressions, performing arts, social practices, rituals, festive events, and knowl-

edge related to nature and the universe. This definition is not static, as it may include

additional elements depending on local contexts, such as traditional games or culi-

nary traditions.

CH is universally recognized as a fundamental right and a common good for in-

dividuals and communities, as articulated in the 2001 UNESCO Declaration on Cul-

tural Diversity [4]. It is not only a repository of human history, but also a cornerstone

of cultural identity and collective memory, and a vital resource for the past, present,

and future of humanity. Interpretation, management, and preservation of CH de-

pend on the active participation of individuals and communities, making them key

stakeholders and beneficiaries of conservation efforts.
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Conservation of CH is critical to ensure that its significance endures over time

and to preserve the transmission of its values and messages to future generations

[1, 5]. However, CH faces numerous threats, including natural factors such as

adverse weather conditions, human-induced damage, and socio-political conflicts,

which underscore the need for robust strategies to safeguard heritage. In response

to all these threats, the 1972 UNESCO Convention concerning the Protection of the

World Cultural and Natural Heritage established a framework for global conserva-

tion efforts [6], supported by institutions like the International Council on Monu-

ments and Sites (ICOMOS). Yet, 50 years later, these challenges persist, with added

pressures from climate change, political and armed conflicts, and globalization.

CH holds value for individuals and society for various reasons, including aes-

thetic, emotional, and economic considerations. There is an inherent desire to pre-

serve CH and make it accessible so that it can be enjoyed and further studied by oth-

ers [7], and that is where heritage science plays its role. This multidisciplinary field,

which dates back to the 1800s, integrates expertise from chemistry, physics, biology,

engineering, art history, and, as explored in this PhD thesis, optics and computer

science, among other disciplines, to study the materials, techniques, and histories

of CH. Heritage science encompasses conservation science (CS), archaeological sci-

ence, and building science. Regardless of the specific object of study, the scientific

methods and research approaches are often similar.

CS aims to characterize the physical and chemical properties of historical objects,

developing innovative methods and technologies to prevent deterioration, evaluate

past conservation treatments, and ensure practices that respect the integrity of TCH

to support its preservation, protection, and maintenance [8]. This science bridges

the scientific and cultural domains. A key focus of CS is material characterization,

which involves identifying pigments, dyes, binders, supports, alteration products,

12



1.1. Motivation

and other components of TCH. These analyses provide different and valuable in-

sights, including:

• Identifying and understanding the original materials and techniques used by

artists and craftsmen [9].

• Analyzing and modeling degradation processes over time [10].

• Diagnosing causes of deterioration [10, 11].

• Guiding the selection of appropriate restoration and preservation strategies

[11–13].

• Identifying previous restorations [9].

• Enhancing the understanding of artistic and historical contexts [13, 14].

• Supporting hypotheses for dating and determining the geographic origin of

artworks and documents [15].

• Determining authorship and detecting falsifications [16].

In general, the identification of the materials used is essential to effectively pre-

serve, conserve, and restore TCH [17]. For this purpose, different analytical tech-

niques can be employed, classified as either invasive or non-invasive methods. In the

past, invasive techniques were commonly used, involving direct intervention or al-

teration of the heritage object through processes such as micro- and macro-sampling,

making small incisions, or scraping surfaces for subsequent laboratory analysis.

However, these techniques are now generally discouraged due to the potential dam-

age to the piece under study. Consequently, non-invasive techniques have been en-

couraged and developed, allowing for the examination of objects without altering

their integrity, thereby improving both the quantity and quality of the analyses [18].

The adoption of these techniques has been supported financially by various organi-
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zations, with the European Union investing over 500 million euros through its Hori-

zon Europe program under the "Culture, Creativity, and Inclusive Society" cluster.

Examples of projects in this field include COSCH [19], CHANGE [20], and Chemi-

Nova [21].

In section 2.2, a summary is provided of the most commonly used non-invasive

techniques for CH, focusing on portable methods suitable for on-site use in muse-

ums, archaeological sites, and archives. The summary outlines their basic operat-

ing principles, the information provided, and their limitations. A key constraint

of many of these systems is that they are non-imaging or point-based techniques,

which restricts their ability to provide spatially resolved material distribution maps

across different areas of the artwork. Alternatively, obtaining such maps often re-

quires significant time, as the artwork must be scanned point by point. Additionally,

depending on the technique, other challenges may arise. For instance, some meth-

ods provide elemental information, which means they are unable to identify organic

compounds or differentiate pigments with similar elemental compositions, such as

malachite and verdigris.

In this context, Hyperspectral Imaging (HSI) has become increasingly used for

the non-destructive analysis of CH, pigments, and artworks, with an almost 83% in-

crease in the number of published papers on the topic over the past decade (source:

Web of Science). This technology integrates spectroscopy and digital imaging, allow-

ing for rapid data acquisition with high spectral and spatial resolution, all without

direct contact with the sample. HSI captures the reflectance or transmittance spec-

trum pixelwise, commonly covering a broad range of the electromagnetic spectrum

from the Ultraviolet (UV) through the Visible (VIS), Near-Infrared (NIR), and Short-

Wave Infrared (SWIR) regions, although it usually requires different sensors for each

range.
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Figure 1.1: False RGB images from HSI captures of an authentic manuscript (left)
and forgery (right) in the visible (R = 645 nm, G = 565 nm, B = 440 nm), and infrared
image of the authentic document (R = 1600 nm, G = 1200 nm, B = 1000 nm) (center).

The potential of HSI in CH applications has been demonstrated in numerous

studies (more details in section 2.5). As a particular example, a research project

was conducted at the University of Granada by an interdisciplinary team, involv-

ing experts in restoration and conservation, chemistry, and the Color Imaging Lab,

including the supervisors of this thesis. The study focused on Arabic manuscripts

from 1454 to 1492 housed in the Archive of the Royal Chancellery of Granada (see

Figure 1.1). HSI analysis revealed the intentional use of different inks within these

documents, a practice historically linked to the hierarchical roles of scribes, notaries,

witnesses, and judges, with the final signature of the Sultan. This can be seen in the

central image of Figure 1.1, where different inks exhibit distinct behaviors in the in-

frared. However, one document from the 16th century (Figure 1.1 right) presented

an anomaly: it was written entirely in a single type of ink. This document was used

by a man to claim noble status as a ‘hidalgo’ and, remarkably, his claim was granted

at the time, but centuries later, the forgery was discovered [22]. This case highlights
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the ability of HSI not only to reveal historical material practices but also to expose

hidden narratives within documents, reinforcing its relevance for the study of CH.

Building on these capabilities, this PhD thesis focuses on material identification

from HSI data, as the reflectance spectrum is characteristic of the current status of

the material under study, allowing for both identification and spatial mapping of

pigments, inks, and supports. While pigment analysis in artworks is also explored,

the primary focus of this PhD thesis is on historical documents, which have been

less studied in this field. Despite the considerable potential of HSI techniques for

analyzing artworks and their successful application to numerous individual cases,

material identification remains a significant challenge, especially when trying to rely

only on HSI information. To address this, there is a need for the development of

more generalized, automated techniques and methodologies that require minimal

supervision and are independent of factors such as the specific artwork, the num-

ber of materials involved, the artist’s techniques, the era of creation, and the aging

processes the piece has undergone.

1.2 Hypothesis and objectives

The main hypothesis of this PhD thesis is that it is possible to identify the ma-

terials used in historical documents and artworks (inks, pigments, and supports)

through a fully automated method, using a hyperspectral image of the piece as the

starting point.

The reflectance spectrum provides clues about the possible composition of mate-

rials. However, reliable identification can only be achieved if the technique has been

validated with other non-invasive analytical methods that determine the material

present in the piece through point measurements. Therefore, if a large number of
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validated analyses are available, this data can be incorporated into an algorithm that

learns to identify a specific material.

A major challenge is the lack of spectral data for historical documents covering

an extensive time period and reflecting material changes over time. This issue is

further exacerbated by the difficulty in finding data that have been validated using

other techniques to confirm the materials present. Furthermore, there is currently no

automated method for identifying and mapping inks in historical documents using

HSI, and identifying pigments in mixtures in real artworks continues to be a chal-

lenge.

Taking into account all the above, the following objectives are established for the

present PhD thesis:

The main objective is to develop automatic methods for analyzing hyperspectral

images to identify materials in historical documents and artworks. To achieve this, it

is necessary to create a spectral database covering a wide range of samples, including

mock-ups created with known components and proportions in the laboratory using

various supports and recipes, as well as real documents from different sources and

periods. Different spectral metrics and classification techniques will be explored and

proposed to enable material identification and mapping.

The specific objectives of this PhD thesis are defined as follows:

• Objective 1 (O1). Generation of mock-ups, including the most common sup-

ports used in historical documents, as well as historical inks following tradi-

tional recipes representative of different time periods. Artificial aging of se-

lected samples.

• Objective 2 (O2). Spectral image capture of the samples from O1, as well as

historical documents from various sources (Provincial Historical Archive of
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Figure 1.2: Schematic overview of the main topics and specific objectives of this PhD
thesis.

Granada, Archive of the Royal Chancellery of Granada). Creation of a pub-

lic database.

• Objective 3 (O3). Implementation of metrics for ink identification through

spectral comparison with a reference library, using both mock-ups and histori-

cal documents. Selection of the optimal spectral similarity metrics.

• Objective 4 (O4). Implementation of Machine Learning (ML) and Deep Learn-

ing (DL) algorithms for the identification and mapping of inks in hyperspectral

images of historical documents and mock-ups. Optimization of algorithms and

selection of the top-performing ones.

• Objective 5 (O5). Application and optimization of endmember (EM) extrac-

tion and unmixing techniques for identifying pigments and estimating their

concentration maps in an artwork.
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• Objective 6 (O6). Application of unmixing techniques to identify and map

components in historical ink mixtures. Implementation as a preprocessing step

to enhance ink classification through ML.

1.2 Hipótesis y objetivos

La hipótesis principal de esta tesis doctoral es que es posible identificar los

materiales presentes en documentos históricos y obras de arte (tintas, pigmentos

y soportes) mediante un método completamente automático, utilizando una imagen

hiperespectral de la obra como punto de partida.

La reflectancia espectral proporciona pistas sobre la posible composición de los

materiales. Sin embargo, una identificación fiable solo puede lograrse si la técnica ha

sido validada con otros métodos analíticos no invasivos que determinen el material

presente en la obra mediante medidas puntuales. Por lo tanto, si se dispone de un

gran número de análisis validados, estos datos pueden incorporarse a un algoritmo

que aprenda a identificar un material específico.

Un desafío importante es la falta de datos espectrales de documentos históricos

que abarquen un periodo de tiempo extenso y reflejen la evolución en los materi-

ales utilizados. Este problema se ve agravado por la dificultad de encontrar datos

que hayan sido validados mediante otras técnicas para confirmar los materiales pre-

sentes. Además, actualmente no existe un método automático para identificar y

conocer la distribución de diferentes tintas en documentos históricos utilizando im-

agen hiperespectral, y la identificación de pigmentos en obras de arte reales sigue

siendo un reto.

Teniendo en cuenta lo anterior, se establecen los siguientes objetivos para la pre-

sente tesis doctoral:
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El objetivo principal es desarrollar métodos automáticos para analizar imágenes

hiperespectrales con el fin de identificar materiales en documentos históricos y obras

de arte. Para ello, es necesario crear una base de datos espectral que cubra una am-

plia gama de materiales, incluyendo muestras modelo creadas en el laboratorio con

componentes y proporciones conocidas utilizando diferentes soportes y recetas, así

como documentos reales de diversas fuentes y periodos. Se explorarán y propon-

drán diferentes técnicas de clasificación para identificar los materiales y conocer su

distribución en las obras.

Los objetivos específicos de esta tesis doctoral se definen de la siguiente manera:

• Objetivo 1 (O1). Generación de muestras modelo, incluyendo los soportes

más comunes utilizados en documentos históricos, así como tintas históricas

siguiendo recetas tradicionales representativas de diferentes periodos. Enve-

jecimiento artificial de muestras seleccionadas.

• Objetivo 2 (O2). Captura de imágenes espectrales de las muestras del O1, así

como de documentos históricos de diversas fuentes (Archivo Histórico Provin-

cial de Granada, Archivo de la Real Chancillería de Granada). Creación de una

base de datos pública.

• Objetivo 3 (O3). Implementación de métricas para la identificación de tintas

mediante comparación espectral con una biblioteca de referencia, utilizando

tanto muestras modelo como manuscritos históricos. Selección de las métricas

espectrales óptimas.

• Objetivo 4 (O4). Implementación de algoritmos de aprendizaje automático

(en inglés, Machine Learning) y aprendizaje profundo (Deep Learning) para la

identificación y mapeo de tintas en imágenes hiperespectrales de documentos
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históricos y muestras modelo. Optimización de algoritmos y selección de los

más eficientes.

• Objetivo 5 (O5). Aplicación y optimización de técnicas de extracción de end-

members o componentes puros y unmixing o desmezclado espectral para la

identificación de pigmentos y estimación de sus mapas de concentración en

una obra de arte.

• Objetivo 6 (O6). Aplicación de técnicas de unmixing para identificar y mapear

componentes puros en mezclas de tintas históricas. Implementación como pre-

procesado para mejorar la clasificación a través de algoritmos de aprendizaje

automático.

1.3 Structure of the thesis

This PhD thesis is structured according to the specific objectives outlined in sec-

tion 1.2. After establishing the motivation, hypothesis, and objectives, the chapters

are organized as follows:

• Chapter 2 provides a comprehensive overview of the state of the art in the field,

introducing key concepts related to CH and the materials used in artworks

and historical documents. It also provides a brief discussion of non-invasive

analytical techniques for material identification in this field with a focus on

spectral imaging in CH, emphasizing material identification, which is the main

objective of this PhD thesis.

• Chapter 3 introduces the publicly available hyperspectral database, which in-

cludes both mock-ups and historical documents from two archives of Granada:
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Figure 1.3: Timeline illustrating the progression of the objectives in this PhD thesis.

the Provincial Historical Archive and the Archive of the Royal Chancellery.

This chapter addresses specific objectives O1 and O2.

• Chapter 4 presents three methods for selecting optimal spectral similarity met-

rics and compares their performance in classifying historical inks in mock-ups

and historical documents. This chapter focuses on specific objective O3.

• Chapter 5 examines and compares the application of traditional ML models

and a DL-based approach for ink classification in mock-ups and historical doc-

uments. This chapter addresses specific objective O4.

• Chapter 6 explores various EM extraction methods and unmixing in different

hyperspaces and spectral ranges to identify pigments in an oil painting on a

copper plate. The optimization of spectral bands for the automatic detection

of re-painted areas is also explored. Specific objective O5 is covered in this

chapter.

• Chapter 7 presents the application of spectral unmixing techniques for histor-

ical ink analysis with two main purposes: the detection of individual com-

ponents in ink mixtures, and the use of unmixing as a preprocessing step to
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enhance classification in ML models. This chapter focuses on specific objective

O6.

• Chapter 8 summarizes the key findings of this thesis and discusses future re-

search directions.

The research timeline for this PhD thesis is shown in Figure 1.3. The chapters are

structured based on the defined objectives, although their development occurred

over different periods. During 2024, a research stay was conducted at the Colourlab,

Department of Computer Science, Norwegian University of Science and Technology

(NTNU), Gjøvik, under the supervision of Prof. Sony George. The results obtained

during this research stay are presented in chapter 7.
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2.1. Materials in historical documents and paintings

2.1 Materials in historical documents and paintings

In this PhD thesis, the focus will be on the study of two primary sources: histori-

cal documents and paintings. Both are valuable components of CH, offering unique

insights into the past and enhancing our understanding of human creativity and

history. Historical documents serve as repositories of cultural and scientific her-

itage, capturing knowledge, art and events of human history through manuscripts,

archives, and different written or printed works [23–25]. On the other hand, paint-

ings are primarily created for aesthetic expression and appreciation, conveying emo-

tions, ideas, and cultural values. The study of these artworks is of great importance

for their preservation and restoration [26–29].

In this context, the term materials refers to both the support used (such as paper,

parchment, canvas, etc.) and the materials employed for writing, primarily inks, as

well as those used for drawing or adding color, such as pigments and dyes. These

materials are often combined with other substances, including additives and fillers,

which serve to enhance stability and improve specific properties of the inks and

pigments. A key component among these materials is the binder, a viscous substance

that facilitates cohesion between the coloring particles, and between the particles and

the support. Examples of binders include gum arabic, starches, gelatin, albumin,

rabbit skin glue and fish glue, among others.

In this PhD thesis, ink is defined as any dark material used for writing; pigment,

as an insoluble material, typically inorganic (though not always); and dye, as a solu-

ble material, usually organic and of natural origin. The latter two are primarily used

to provide color [18].

In the case of historical documents, some of the most commonly used supports

include parchment, which is made from animal skin and was predominantly used
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during the Middle Ages, and paper, which varies based on the type of fiber used

in its production, including cotton, linen, hemp, and synthetic fibers. On these sup-

ports, inks are often applied, as well as color used for illustration purposes, such as

in illuminated manuscripts and maps.

Historically, different types of inks have been used across cultures and periods.

Their study can reveal much about the sociocultural and technological shifts in his-

torical document production [30]. This makes ink analysis a key tool for codicol-

ogists and historians who explore both the content and material composition of

manuscripts to gather this information [31]. Inks can be classified into different types

based on their origin. This PhD thesis will focus on three groups, chosen for their

widespread use throughout history:

1. Metallo-gallate inks. These inks primarily consist of two key components: a

metallic salt (predominantly ferrous sulfate), and a vegetable tanning agent,

typically derived from oak apples in the form of gallotannin extracts, forming

ferrous tannate upon mixing. The term "iron gall inks" refers to this category

due to its high iron sulfate content [32]. Widely used for centuries, they were

valued for their durability, particularly in medieval Europe [30]. Their iden-

tification is crucial for selecting optimal conservation strategies, as their com-

position can cause corrosion of the support material, a phenomenon known as

"iron-gall ink burn" [10].

2. Sepia ink. This ink has a deep brown color, almost black in full strength. It

is obtained from the ink sac of the cuttlefish Sepia officinalis. Less stable than

carbon-based inks, it is particularly sensitive to light exposure [33, 34].

3. Carbon-based inks. The earliest writing ink is thought to have been a carbon-

based ink derived from lamp black or other form of charcoal. These inks are
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2.1. Materials in historical documents and paintings

obtained by burning oil or other materials (such as fruit stones, bones, or wood)

in controlled conditions with a limited supply of air and mixing them with

a binder dissolved in a water-soluble medium [34]. They are very resistant

compared with sepia and iron gall inks, being almost insensitive to acids, light

exposure, alkalis, and chemicals. They degrade only when the binder loses its

mechanical properties.

These three groups of inks could be applied individually or mixed between them

to enhance their properties. For example, freshly applied iron gall inks are light

brown in color and darken as they oxidize and form ferric tannate. To compensate

for this, a small amount of black ink, usually lamp black (carbon-based ink), was of-

ten added. The study of mixed inks has received little attention in both scholarly and

material research, as their identification and acknowledgment of their significance is

a recent development. Medieval Arabic ink recipes suggest that mixed inks held a

significant role in the Islamic world [35,36], and mixtures of carbon ink and iron gall

ink have been found since ancient times [13, 34], so these types of inks should be

given their due consideration.

In paintings, a complex layering of materials is often employed (see Figure 2.1).

These layers can generally be categorized into: support (e.g., canvas, wood, metal,

paper, etc.), preparatory layer, typically composed of gesso (a mixture of calcium car-

bonate and glue), which serves a dual function: mechanical (by enhancing the adhe-

sion of the subsequent layers to the support and smoothing out any imperfections in

the support itself), and aesthetic, as its base color influences the final appearance of

the painting. This is followed by underdrawings, usually created with carbon-based

materials such as charcoal or graphite, which serve as a preliminary sketch or guide

for the composition. The pictorial layer is where the pigment particles, often in pow-

dered form, are suspended in a binding medium (such as linseed oil for oil painting
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Figure 2.1: Schematic cross-section of a painting illustrating its different layers and
the penetration depth of electromagnetic radiation at various wavelength ranges
(top). The electromagnetic spectrum, ranging from radio waves to gamma rays, with
approximate wavelengths (bottom). Adapted from [37].

or egg yolk for tempera), which is then dissolved in a liquid vehicle (such as turpen-

tine or water), only when necessary. Finally, varnishes are applied to the finished

work to protect it from dust, dirt, and environmental factors, while also enhancing
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2.2. Non-invasive analytical techniques for material identification

the color and sheen of the surface [38].

2.2 Non-invasive analytical techniques for material

identification

When electromagnetic radiation interacts with an object, it can undergo reflec-

tion, transmission, absorption, or emission, with the specific proportions determined

by the characteristics of the radiation and the physical and chemical properties of the

material. Non-invasive analytical techniques exploit these interactions to study ma-

terials without causing damage.

In this section, the focus will be on the most commonly used analytical techniques

for determining the materials present in historical documents and paintings [39, 40].

While there is a wide range of techniques employed for this purpose, the emphasis

will be placed on those that are non-destructive (i.e., they do not require sampling or

the destruction of the artwork) and non-invasive (i.e., they do not even require phys-

ical contact with the sample), and are also portable techniques, meaning they can be

transported to the locations of the artworks, thereby minimizing potential risks to

the objects. This approach will allow for a better understanding of the information

provided by each technique, as well as the limitations that should be considered

when assessing the potential of HSI in this field.

Among these techniques are X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD),

Fourier Transform Infrared (FTIR) spectroscopy, and Raman spectroscopy. A sum-

mary of these methods, including their basic operating principles, the information

they provide, their limitations, and selected references of their application in CH

studies, is presented in Table 2.1.

Each technique provides different, and often complementary, information, mak-
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Table 2.1: Basic operating principles, information provided, limitations of the most
commonly used analytical techniques for determining materials in CH, and refer-
ences to studies where these techniques have been applied.

Technique Principle Information
obtained Limitations References

X-Ray
Fluorescence
(XRF)

Radiates X-rays onto
the sample, causing
emission of
characteristic X-rays
from elements within it.

Elemental
composition.

Cannot identify chemical
compounds or molecular
structure. The surface must
be sufficiently flat. Depth-
sensitive analysis.

[41–44]

X-Ray
Diffraction
(XRD)

Analyzes the
diffraction pattern of
X-rays interacting
with the crystalline
structure of the
material.

Crystalline
structure.

Requires crystalline
samples. Each
measurement point can
take between 30 and 45
minutes. Depth-sensitive
analysis.

[44–46]

Fourier
Transform
Infrared
(FTIR)
Spectroscopy

Measures the
absorption or
emission of infrared
radiation by
molecular vibrations.

Functional
groups and
molecular
structures
(organic and
inorganic
compounds).

Can be affected by sample
preparation (e.g., moisture).
Issues if the surface has
specular reflectance
properties. Surface-limited
analysis. You must select
the appropriate infrared
region depending on the
compound of interest.

[42, 43, 47]

Raman
Spectroscopy

Measures the
inelastic scattering
of light by molecular
vibrations.

Functional
groups and
molecular
structures
(organic and
inorganic
compounds).

Can be sensitive to
fluorescence. The laser
must be carefully adjusted
to avoid damaging the
artwork. Surface-limited
analysis. Lower sensitivity
for low-scattering materials.

[41, 46, 48]

ing a multi-analytical approach convenient in most cases when determining the ma-

terials used by the artist. In this context, some instruments have been developed that

integrate multiple techniques, such as the Duetto (XRD+XRF) [49].

In addition to the limitations outlined in Table 2.1, a drawback common to most

of these instruments is that they only provide spectra from a single point or a very

small measurement area. Techniques such as macro-XRF [50], macro-Raman [51],

and macro-rFTIR [52] aim to address this limitation by conducting numerous point

measurements, scanning the surface in a grid pattern to generate elemental or com-
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pound maps. However, these methods are time-consuming. For instance, measuring

a 10 × 10 cm2 area with a 1 mm step size takes around 9 hours for macro-Raman [51],

56 hours for macro-rFTIR on a 150 × 145 mm area, and 22 hours for macro-XRF [52].

As a comparison, HSI can measure the same area in just seconds, achieving even

higher spatial resolution.

2.3 Reflectance spectroscopy

Another technique that has proven to be highly effective for pigment identifica-

tion is Reflectance Spectroscopy (RS). It measures the intensity of radiation reflected,

either specularly or diffusely, from a small area on a surface across the ultraviolet to

near-infrared range (and beyond) as a function of wavelength. The resulting curve

is referred to as the reflectance spectrum.

According to the standard EN ISO9488:1999 [53], spectral reflectance, ρ(λ), is de-

fined as the ratio of the radiant flux reflected from a surface, ϕr(λ), to the incident

radiant flux, ϕi(λ), both measured in watts:

ρ(λ) =
ϕr(λ)

ϕi(λ)
=

ϕsample,r(λ)

ϕwhite,r(λ)
(2.3.1)

where all quantities are expressed as a function of wavelength (λ). As the ratio

of two homogeneous radiometric parameters, ρ(λ) is a dimensionless quantity that

typically ranges either from 0 to 1, or as a percentage just multiplying by 100.

To obtain the spectral reflectance of an object, a reference standard is used, typ-

ically a reference white with similar reflectance across all wavelengths. The re-

flectance of this standard, ρwhite(λ), is known, certified, and traceable. By measuring

this standard with the same capturing parameters and illumination/sensing geom-

etry, we can determine how the light is impinging in the sample, so we obtain the
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second part of Equation 2.3.1.

In addition to the reference standard with known reflectance, a measurement

is taken under the same lighting and geometric conditions as the sample, but by

closing the instrument’s entrance with a black stopper/cap or closing the shutter.

This dark measurement accounts for the dark current of the detector and the sensor

noise, therefore, it is considered as a fixed bias that must be subtracted from the final

measurement.

Taking all this into account, we have the following relation:

ρ(λ) = ρwhite(λ)
Isample(λ)− Idark(λ)

Iwhite(λ)− Idark(λ)
(2.3.2)

where ρwhite(λ) is the spectral reflectance of the reference standard (ideally equal

to 1 on each wavelength for a perfect reflective diffuser), and I represents the light

counts or sensor responses.

Spectral reflectance measurements from 200 nm to 2500 nm can be obtained using

spectroradiometers, spectrophotometers, or Fiber Optic Reflectance Spectroscopy

(FORS) in a circular or squared pointwise manner, typically covering a few millime-

ters or centimeters. These instruments have been used in the field of CH since the

1930s [54,55], enabling the analysis of a wide range of materials, including paintings,

manuscripts, textiles, glass, metals, and minerals [56]. Their applications include de-

tecting alteration products (e.g., gypsum, calcium oxalates) [57], monitoring restora-

tion work and color changes [58], identifying colored materials such as pigments

and colorants [58–61], and characterizing binders [62]. Although FORS is primarily

considered a surface analysis technique, the information it provides varies depend-

ing on the spectral range examined (as shown in Figure 2.1). The SWIR and NIR

ranges reveal information about underlying layers and the support, the UV range is
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employed to study varnishes, and the VNIR range is primarily used for the identifi-

cation of pigments and dyes along with the SWIR.

Focusing on its application to material identification, reflectance spectra can serve

as characteristic signatures of materials. Depending on the spectral range studied,

different information can be extracted. The visible and near infrared (VNIR) range

(400–1000 nm) provides information on color and electronic transitions [63]. These

electronic transitions can be classified as follows:

1. Transitions between delocalized molecular orbitals. These occur in materials

with conjugated double bonds and electron donor/acceptor pairs, leading to

electron delocalization. The energy levels in this range correspond to the vis-

ible spectrum, resulting in intense transition bands. Examples of materials in-

clude indigo, alizarin, and curcumin.

2. Charge transfer transitions. These involve electron transfer between molecular

orbitals located at different sites of the molecule or crystal.

3. Ligand field transition. Occurring in transition metal ions within inorganic

pigments or gems (e.g., azurite, malachite, ruby), these transitions are caused

by the interaction between metal ion orbitals and the ligand field.

4. Energy band transitions occurring in metals and semiconductors. In these ma-

terials, atomic orbitals combine to form energy bands, with the energy gap

between valence and conduction bands determining the absorption character-

istics.

Extending the spectral range beyond the visible into the NIR and SWIR regions

(up to 2500 nm) allows for the detection of vibrational overtones and combination

bands associated with stretching and bending vibrations. These spectral features
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are characteristic of specific functional groups, enabling the identification of various

compounds [61].

However, applying this theoretical framework to the practical identification of

materials in CH presents several challenges. Pigment identification using VIS spec-

tral reflectance is significantly influenced by multiple factors, including (i) the pig-

ment particle size, (ii) the pigment-to-binder ratio, (iii) the type of binding medium,

(iv) scattering and self-absorption phenomena, (v) the presence of varnish and dirt

on the surface, and (vi) the conservation state of the piece. These factors can con-

tribute to a change in spectral shape, a shift in the bands, and a variation of relative

band intensities [64]. Moreover, in the 400-1700 nm spectral range, absorption bands

are weaker and more complex than those in the SWIR region, so the direct identi-

fication from the reflectance spectra is challenging and the application of pre- and

post-processing techniques, as well as more complex algorithms, is highly suitable

to achieve a higher level of confidence in the classification of materials.

On the other hand, pure pigments are seldom present in real artworks. When dif-

ferent materials are mixed (that is, two different pigments, two inks, or even pigment

or ink with the support), the resulting spectral reflectance reflects the interaction

of these components. Identifying the individual materials in complex mixtures is

challenging due to overlapping absorption bands and multiple absorptions from the

same functional group [61]. To determine each individual component and its contri-

bution to the final reflectance spectrum, unmixing techniques must be applied. This

issue will be explored in detail in chapter 6 and chapter 7 of this PhD thesis.
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2.4. Hyperspectral imaging

2.4 Hyperspectral imaging

2.4.1 Definition

As explained in the previous section, RS provides the reflectance spectrum of a

small area, typically from a rounded or squared area of few squared millimeters or

centimeters. However, if we scan an entire surface point by point, it is possible to

generate an image where each pixel contains the reflectance spectrum of the sample

at this point. This approach, known as Reflectance Imaging Spectroscopy (RIS) or

Hyperspectral Imaging (HSI), extends the capabilities of RS by incorporating spatial

information.

HSI was originally developed in the late 1970s and early 1980s for Earth obser-

vation in the field of remote sensing. This technique combines spectroscopy and

spatial imaging to provide images at different wavelengths, from the UV (between

330 and 380 nm) through the VNIR (from 380 nm and up to 1000 nm) to the SWIR,

(usually between 900 and 2500 nm), and even extending into the Middle Wavelength

Infrared (MWIR) (up to 5000 nm). The result is a hyperspectral cube, or hypercube,

containing three-dimensional data: two spatial coordinates and a spectrum for each

pixel of the image [65].

HSI is a non-invasive, contactless technique that enables relatively fast data ac-

quisition. The raw data captured by an HSI camera can be processed to obtain spec-

tral radiance, which can then be converted into spectral reflectance or transmittance

for each pixel (further details are provided in subsection 2.4.3). This analysis can be

performed over an entire object, covering areas from several square centimeters to

a few square meters, which offers a key advantage over the methods discussed in

section 2.2 and section 2.3. The combination of spectral and spatial information not
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only facilitates material identification but also enables detailed mapping.

To obtain this hyperspectral cube, four different acquisition modalities can be

applied [66]:

1. Point scanning (whiskbroom). It involves obtaining a spectrum from a single

point on the object. This process is repeated for each point, with the object

moved in the x and y directions using a computer-controlled 2D scanning stage

(see Figure 2.2 (a)).

2. Line scanning (pushbroom). It acquires spectral measurements from a single

line of the object at a time. These measurements are simultaneously recorded

by an array detector, and either the object or the device is moved line-by-line

(see Figure 2.2 (b)).

3. Area scanning (band sequential). It captures an image of the entire object using

a two-dimensional detector array for each spectral band (also known as spec-

tral scanning), without needing to move the object. This process is repeated

across several spectral bands, resulting in a series of two-dimensional images

that form the hypercube (see Figure 2.2 (c)).

4. Single shot (snapshot). It is a rapid acquisition method that captures the entire

hyperspectral image in one exposure. It uses a two-dimensional array detec-

tor to simultaneously capture the entire object in multiple spectral bands (see

Figure 2.2 (d)).

Regardless of the method used for capture, i.e., the acquisition modality em-

ployed to obtain the hyperspectral cube, there are different imaging modes [69]. In

the reflectance mode, the object is illuminated by a broadband, spectrally-continuous

light source covering the VIS and infrared (IR) spectrum. The light reflected by the
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Figure 2.2: Acquisition modalities in HSI: (a) point scanning, (b) line scanning, (c)
area scanning, and (d) single shot. Adapted from [67] and [68].

object is captured by the camera, with the wavelengths of the incident light match-

ing those of the reflected light. In transmittance imaging, the object is positioned

between the light source and the camera, with only the light that has passed through

the object being recorded. In the raking or side-lighting mode, reflectance is cap-

tured, but the light strikes the object at a low oblique angle, highlighting surface

textures, topography, and indented writing. Lastly, in the luminescence mode, light

emission occurs from a substance without heating, as in fluorescence or phospho-

rescence. The capture process is similar to reflectance imaging, but here, the camera

records light that has been absorbed and re-emitted by the object. Different cases

arise depending on the illumination and emission wavelengths: ultraviolet-induced

luminescence (with UV illumination and emitted radiation in the UV, VIS, or IR

range), visible-induced IR luminescence (with VIS illumination and emitted IR ra-
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diation), and VIS-induced VIS luminescence (with both illumination and emitted

radiation in the VIS range) [70].

2.4.2 Hyperspectral vs. Multispectral vs. RGB imaging

A simpler way to understand the functioning of HSI is to compare it with con-

ventional RGB cameras that we use daily, such as those in our mobile phones, web-

cams, or digital cameras. RGB cameras capture information in three spectral chan-

nels (usually called color channels): red (R), green (G), and blue (B) (see Figure 2.3

(a)). Each of these channels has a relatively wide sensitivity in the electromagnetic

spectrum, meaning each channel integrates information from a wide range of wave-

lengths rather than a specific single wavelength. These regions of the spectrum are

known as "spectral bands". The combination of these three bands enables the cre-

ation of a color image, mimicking the way the human visual system perceives color.

Imaging spectroscopy, also referred to as spectral imaging, is a general term

that includes both multispectral imaging (MSI) and HSI, although the distinction

between the two can be ambiguous depending on the literature studied [71]. The

primary differentiating factors between these techniques are the number of spectral

bands, their bandwidths, and their spectral overlap. MSI systems are designed to

capture images in a limited number of spectral bands (i.e. 4 to 20), typically us-

ing filters with broader bandwidths ranging from tens to hundreds of nanometers

(see Figure 2.3 (b)). In contrast, HSI systems acquire images in a greater number of

narrower, contiguous spectral bands, often hundreds or even thousands, with band-

widths typically ranging from 1 to 10 nanometers (see Figure 2.3 (c)). The main

advantage of HSI systems lies in their ability to provide nearly continuous spectral

measurements, which enhances their accuracy in spectroscopic analysis compared

to MSI systems [72]. Generally, HSI systems are designed so that their response can
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Figure 2.3: Schematic representation of the information provided by (a) RGB, (b)
multispectral, (c) hyperspectral imaging.
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be considered as a direct spectral measurement, while MSI systems require the appli-

cation of spectral reconstruction techniques to derive spectra from sensor responses.

2.4.3 Calibration

Similar to the process described for non-imaging measurements in section 2.3,

calibration is required to obtain the spectral reflectance or transmittance of an object

pixelwise from the camera’s response. In this process, raw data is first captured,

influenced by three factors: the illuminant used, defined by its spectral power dis-

tribution (SPD) which represents the energy emitted at each wavelength for every

point in the scene (x, y), Le(x, y, λ); the object to be captured, defined by its spec-

tral reflectance at each point in the scene ρ(x, y, λ); and the HSI camera, defined by

its sensor sensitivity Sc(λ). Therefore, a sensor response is obtained for each wave-

length or set of wavelengths within each spectral band ∆λ and each pixel (x, y),

which can be defined as:

Iraw(x, y, λ) =

∫ λ+∆λ
2

λ−∆λ
2

Le(x, y, λ)ρ(x, y, λ)Sc(λ)dλ (2.4.1)

To eliminate the influence of the sensor’s sensitivity, Sc(λ), radiometric calibra-

tion is necessary [73]. This calibration is typically performed by the manufacturer,

which provides a radiance mode for converting raw images into radiance images

directly.

However, in most cases, the goal is to also eliminate the influence of the illu-

minant and obtain the spectral reflectance, which depends only on the object being

studied, ρ(x, y, λ). This can be achieved by following exactly the same equation 2.3.2

if reference images for calibration, dark and white, have been captured beforehand

under the same setup (lens, device output bit depth, gain, down-sampling, light
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conditions, etc.). In that case, raw captures of the object under study, Isample(x, y, λ),

can be transformed into reflectance cubes, Iref (x, y, λ), using the raw captures of the

reference white, Iwhite(x, y, λ), and the dark image, Idark(x, y, λ), according to the fol-

lowing equation:

Iref (x, y, λ) = ρwhite(λ) ·
Isample(x, y, λ) − Idark(x, y, λ)

Iwhite(x, y, λ)− Idark(x, y, λ)
, (2.4.2)

where ρwhite(λ) is the spectral reflectance of the reference tile used for calibration.

When the reference tile is also captured covering the entire scene, or the scanned

line in pushbroom systems where the sample is moved, flat-field correction can be

applied to account for variations in illumination across the field of view, as well as

for discrepancies in light sensitivity between the pixels of the camera and differences

in the transmission of light through the lens [64].

The illumination/detection geometry for most HSI cameras in reflectance mode

is 45◦/0◦ for line illumination: light impinges on the sample at 45◦ and the back-

scattered radiation is collected at 0◦ (all angles are measured with respect to the

axis orthogonal to the surface). In practice, however, a floodlight setup is often

employed. This method involves using a broad-beamed, uniform light source to

illuminate a larger area compared to line illumination, minimizing shadows by in-

corporating different lamps.

2.5 Hyperspectral imaging for cultural heritage

In the early 1980s and 1990s, wide-band near-infrared reflectography became a

well-established technique for the diagnostics of paintings and the identification of

details underlying the pictorial layer. For several years, it remained the most ef-

fective method for gaining in-depth knowledge about underdrawings, retouchings,
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and pentimenti (that is, images, forms, or strokes that have been changed and painted

over) [64]. Once MSI cameras became a well-established technique in the remote

sensing field, their application in CH became possible. An MSI camera was first de-

veloped and applied in situ to image paintings at the National Gallery in London,

collecting high quality images in a few, broad spectral bands [74]. Initially used for

qualitative comparison between bands and to improve image color accuracy, it be-

gan to be used for pigment identification in the late 1990s [75, 76]. It was not until

the early 2000s that the first application in a museum appeared [77, 78]. The unique,

fragile nature of artworks, coupled with the need for portable equipment to reach

museums, churches, and conservation centers led to the redesign of the instruments

both to safeguard the objects during measurements and to ensure portability.

Since then, MSI and HSI have been used for the examination of hundreds of

artworks, including a wide range of famous paintings and documents, such as da

Vinci’s Mona Lisa [79], Van Gogh’s Self-portrait [80], Vermeer’s Girl with a Pearl

Earring [81], the first draft of the U.S. Declaration of Independence [82], Picasso’s

Harlequin Musician [83], various works by Goya [17] and by El Greco [84], among

others.

Over the years, HSI has gained prominence in this field and has been used for

different purposes in TCH [11, 85, 86]. A visual overview of these applications is

provided in Figure 2.4. Detailed information on specific applications, including the

type of spectral imaging used (MSI or HSI), the spectral range, and the imaging

mode (reflectance, transmittance, or raking), can be found in Table 2.2.
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Figure 2.4: Overview of different applications of HSI in CH. Adapted from [16, 81,
83, 87–98].
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2.5. Hyperspectral imaging for cultural heritage

2.5.1 Material identification

One of the most widely applied uses of HSI in CH, which is directly related to

the main objective of this PhD thesis, is material identification. Early approaches to

material identification using MSI and HSI [75,76] involved mock-ups (physical repli-

cas of paintings created using materials and techniques that closely resemble those

of the original artwork, allowing for safe experimentation without risking damage

to the original) and a sixteenth-century panel painting. In these studies, the VNIR

spectral region was used for the segmentation and classification of painted areas, in-

corporating multivariate analysis techniques such as Principal Component Analysis

(PCA).

Multivariate analysis has been widely used in CH applications since the early

adoption of HSI, as it facilitates data dimensionality reduction, feature extraction,

and image enhancement. PCA, in particular, has proven effective in distinguishing

materials in artworks composed of a limited number of components [122]. Addi-

tionally, several pigments can be differentiated based on variations in their spec-

tral properties, including spectral slope and the presence or absence of absorption

bands [122], without requiring further processing. However, PCA alone is not al-

ways sufficient for accurate material identification.

As a result, other techniques such as spectral matching methods, and more re-

cently, machine learning (ML) approaches, have been employed for spectral map-

ping. In classification tasks, these methods are used to determine the presence or

absence of a specific pigment based on a given spectrum. However, when materials

are mixed, classification approaches may face significant challenges. In such cases,

spectral unmixing techniques can be applied to determine the individual compo-

nents within a mixture. Unlike classification, spectral unmixing is a regression task,
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as it quantitatively decomposes a given spectrum into its base constituents according

to a pre-defined mixture model.

2.5.1.1 Spectral matching methods

In spectral mapping, each pixel of a hypercube is classified as a specific material.

Each possible material, or class, is represented by a characteristic reflectance spec-

trum, also known as a spectral signature, which defines the material under study.

The collection of these spectra is referred to as the reference or spectral library.

For material identification in artworks, a comprehensive spectral library is typ-

ically required. This library should encompass a wide variety of materials, includ-

ing mixtures in different proportions, as well as different supports and application

techniques relevant to the historical period of the artwork. Such a library can be

constructed in two ways: by creating mock-ups with well-characterized materials or

by acquiring spectra directly from artworks, specifically from areas that have been

previously analyzed and whose composition has been confirmed through comple-

mentary techniques (as discussed in section 2.2). Additionally, several researchers

have developed spectral databases to facilitate this process [123, 124], which are fur-

ther detailed in subsubsection 2.5.1.5.

Once a spectral library is available, different algorithms can be applied to com-

pare the spectra in a hypercube with those in the reference library. In spectral library

search, each spectrum is compared to the library entries, a similarity score is as-

signed, and the pixel is classified according to the most similar reference spectrum.

The comparison algorithm, also known as spectral matching method or spectral met-

ric, quantifies the degree of similarity between the unknown and reference spectra.

These methods vary in their sensitivity to shape and magnitude differences between

spectra and are broadly categorized into deterministic approaches (based on geo-
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2.5. Hyperspectral imaging for cultural heritage

metric and physical properties) and stochastic approaches (based on statistical dis-

tributions) [125]. Several spectral matching algorithms have been widely used for

material identification in CH. A schematic representation of material identification

using spectral matching methods is presented in Figure 2.5 (a).

Spectral metrics offer a computationally simple and efficient approach to mate-

rial classification, making them particularly attractive for CH applications. How-

ever, their effectiveness depends on the sensitivity of the selected metric to spec-

tral variations, especially when dealing with aged or mixed pigments [126]. Con-

sequently, a variety of spectral metrics have been employed in previous studies, in-

cluding Spectral Angle Mapper (SAM ) [26, 83, 84, 126–129, 129–143], Spectral Corre-

lation Mapper (SCM ) [84, 126, 129, 142, 144], and Spectral Information Divergence

(SID) [84, 126, 129, 136]. Other approaches include the Spectral Similarity Scale

(SSS) [126], combined metrics such as SIDSAM [126], JMSAM (Jeffries–Matusita

distance function combined with SAM) [126], and other combinations [126,145,146],

as well as Euclidean Distance (ED) [84, 129], Spectral Gradient Mapper (SGM ) [84],

Binary Encoding (BE) [129], Root Mean Square Error (RMSE) [140, 147–149], and

the Goodness-of-Fit Coefficient (GFC) [149]. These metrics have been extensively

applied in pigment and dye identification and mapping in paintings, illuminated

manuscripts, and textiles such as tapestries. The equations for computing some of

these spectral metrics are provided in chapter 4, subsection 4.2.3.

However, spectral matching methods become computationally inefficient as the

spectral library size increases. While many spectral matching algorithms are effec-

tive at identifying spectral shape differences, they may struggle with spectra that

differ primarily in magnitude or that are similar in shape for a specific spectral range

but correspond to different materials [126]. This challenge is particularly relevant for

art historians and conservators, as distinguishing such subtle differences can be crit-
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ical for selecting appropriate conservation methods. In such cases, especially when

reference spectra include numerous variations for each class (e.g., pigments or inks

with different binders, writing supports, or recipes), ML techniques can be used to

enhance classification accuracy.

2.5.1.2 Machine Learning algorithms

ML is a field of study in artificial intelligence that focuses on developing algo-

rithms that enable computer systems to learn from data, detect patterns, and make

predictions or decisions without being explicitly programmed. ML algorithms are

designed to improve their performance over time by analyzing data, identifying pat-

terns, and adapting their models accordingly. In the context of HSI and CH, ML

algorithms can learn the spectral characteristics of each material, allowing for more

robust classification by accounting for spectral variability across different classes.

ML techniques are generally divided into two categories: supervised and unsu-

pervised learning. In supervised learning, the algorithm is trained on labeled data,

meaning it learns from input-output pairs (e.g., classifying pictorial styles from im-

ages of paintings). The user provides reference or training data for each class and

the algorithm performs the classification task based on this information. In con-

trast, unsupervised learning involves algorithms that find patterns and relationships

within unlabeled data (e.g., clustering or anomaly detection). Unlike supervised

classification, unsupervised classification groups classes based on the inherent pat-

terns within the data, without requiring prior labeled examples or training data. A

schematic representation illustrating material identification using supervised ML al-

gorithms is presented in Figure 2.5 (b).

To evaluate the performance of supervised ML models, a test set is required. This

dataset contains labeled data, similar to the training set, but is never seen by the
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model during training. The trained model is applied to this new data, and its pre-

dictions are compared against the correct labels, referred to as Ground Truth (GT).

Based on these comparisons, a confusion matrix is constructed, which quantifies the

model’s performance for each class by reporting the number of True Positives (TP;

correctly predicted positive cases), False Positives (FP; incorrectly predicted positive

cases), True Negatives (TN; correctly predicted negative cases), and False Negatives

(FN; incorrectly predicted negative cases). These values are then used to compute

key evaluation metrics: precision, recall, accuracy, and F1-score. Precision indicates

the reliability of positive predictions (see Equation 2.5.1), recall assesses the model’s

ability to identify all the positive instances in the dataset (see Equation 2.5.2), accu-

racy measures the proportion of correct predictions out of all predictions (see Equa-

tion 2.5.3), and F1-score is the harmonic mean of precision and recall (see Equa-

tion 2.5.4) [150].

precision =
TP

TP + FP
(2.5.1)

recall =
TP

TP + FN
(2.5.2)

accuracy =
TP + TN

TP + TN + FP + FN
(2.5.3)

F1− score = 2 ·
precision · recall
precision+ recall

(2.5.4)

In a multi-class problem, two approaches can be considered to compute these
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performance metrics. The micro-average approach treats all individuals (in our

case, the reflectance spectra per pixel) equally, not taking into account differences

between the number of instances per class. As a result, micro-average accuracy,

precision, recall, and F1-score are identical. The macro-average approach gives each

class equal weight in the average, which ensures that performance is balanced across

all classes. Macro-average is computed as the arithmetic mean of the metrics for sin-

gle classes [150]. The micro-average approach weights classes according to their

frequency in the dataset, which gives more importance to larger classes. Therefore,

poor performance on smaller classes is less impactful as they represent a smaller por-

tion of the overall dataset. In contrast, high macro-average values indicate that the

algorithm performs well across all classes, regardless of their frequency. This ensures

that each class is considered equally, making it a better measure of performance for

imbalanced datasets.

The significant advantage of ML techniques lies in their ability to extract com-

plex, hidden structures from raw spectral data, including both linear and nonlinear

relationships. This flexibility has driven the increased use of neural networks (NNs)

in pigment identification and classification based on HSI datasets, especially in the

last few years. NNs are particularly effective in processing a wide range of data

types and extracting patterns that traditional methods may miss, which has led to

their successful application in CH research [151]. Their application has extended

to the analysis of easel paintings, mural paintings, bronze fragments, illuminated

manuscripts, tapestries, tomb murals, and relics.

Some unsupervised models, such as Self-Organizing Maps (SOM) [152, 153],

Fuzzy C-means, Density Peak Clustering [154], and k-means clustering [155, 156],

have been used in CH to group spectra with similar characteristics, identify anoma-

lies, or as a preprocessing step to select candidate pigments. These models can also
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2.5. Hyperspectral imaging for cultural heritage

Figure 2.5: Schematic representation of material identification using (a) direct spec-
tral comparison with spectral matching methods, and (b) machine learning algo-
rithms.
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Figure 2.5: (continued) (c) Schematic representation of material identification
through endmember extraction and unmixing.

be used for image segmentation, dividing the image into regions with similar spec-

tral characteristics.

For pigment classification, supervised ML algorithms such as Support Vec-

tor Machines (SVM) [16, 26, 114, 126, 147, 157–159], Partial Least Squares Discrimi-

nant Analysis (PLS-DA) [43, 135, 159], Decision Trees (DT) [147, 159], and k-nearest

neighbors (KNN) [159] have been successfully applied. In addition, deep learning

(DL) techniques, such as feedforward artificial NN, Fully Connected NN, and 1D-

Convolutional NN (CNN) [126], have shown promising results when large datasets

are available [160]. For example, Pouyet et al. [137] used a Deep NN for pig-

ment identification and mapping using HSI in the SWIR region, and found that

the model outperformed traditional spectral matching methods like SAM . Other

DL architectures, such as the Multilayer Perceptron (MLP) [26, 152, 161], and CNNs

[126, 158, 159, 162] have also been successfully applied in this domain.
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However, the main limitation of ML techniques is the large amount of data

required to train robust models. These algorithms demand high-quality labeled

datasets for accurate classification, and insufficient, noisy, or biased data can severely

affect performance. Additionally, issues such as class imbalance, where certain

classes are underrepresented, may hinder the model’s ability to generalize correctly.

Overfitting is another challenge, as models may memorize training data rather than

learning generalizable patterns, leading to poor performance on unseen data. Con-

versely, underfitting occurs when simpler models fail to capture the complexity of

the data, resulting in low classification accuracy. Other limitations include the high

computational cost and memory requirements of some ML models, as well as their

"black-box" nature, where decisions made by DL models may lack interpretability

and transparency.

2.5.1.3 Unmixing

Artists have historically experimented with diverse materials to create colors and

textures, resulting in a wide range of pigment mixtures with distinct spectral re-

flectance curves. This makes finding pure pigments in artworks particularly chal-

lenging, especially when they undergo aging [163–165], weathering [166], or restora-

tion processes [167]. Additionally, binders and varnishes can modify a pigment’s

spectral signature [17], while aged varnishes and patinas (thin surface layers formed

over time through aging, oxidation, or environmental exposure) further obscure the

spectral characteristics of pigments, making direct comparison with spectral libraries

insufficient. In many situations, it is not practical to continue extending the number

of pigments in the reference library until one covers all the possible mixtures that a

given artist (often unknown) might have used. In such cases, advanced analytical

methods, such as spectral unmixing and endmember extraction techniques, become
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necessary [136, 168].

Spectral unmixing methods involve decomposing a mixed spectrum into its con-

stituent spectra, known as endmembers (EMs), and determining their relative con-

centrations according to a mixing model Υ(λ) = f(E(λ, q), C(q)) on a per-pixel ba-

sis [163], where E(λ, q) denotes the spectral library with spectral reflectances for each

EM, ρi, and C(q) represents the concentration vector of individual abundances, αi.

EMs represent the pure materials used to produce the mixtures, while the concentra-

tions represent the proportion of each EM present in every pixel of the image. The

process consists of two main steps: EM extraction and concentration estimation.

EM extraction methods aim to estimate the main spectral signatures from a scene.

The Pixel Purity Index (PPI) method seeks to geometrically find the EMs as the

vertices of the smallest shape that contains the observed data in an N-dimensional

space [163]. NFINDR, on the other hand, deploys the complex of N-dimensional

simplex, but the EMs are found iteratively growing the simplex from within the

data. The stopping criterion is set so that the simplex connecting the purest pixels is

larger than any simplex connecting the pixels found as combinations of others [169].

Nonnegative matrix factorization (NMF) decomposes a data matrix into two lower-

rank nonnegative matrices: one representing basis components (endmembers) and

the other their corresponding weights (abundances) [170]. Recently, a generative

Deep-Learning based model (DeepGun) was introduced for unsupervised unmix-

ing [171] using low-dimensional representations of EMs in the latent space of the

generative model. The network is re-trained for each scene and provides a set of EM

for each pixel. This model performs better than the parametric non-linear extensions

of the linear model, and it is not computationally expensive if subsampling tech-

niques reduce the number of pixels in the spectral image. In addition to automatic

EM extraction methods, another possibility is to directly extract the library of EMs
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from the painting or object under study by extracting representative areas. Although

these areas may consist of mixed pigments rather than pure ones, the resulting spec-

tra can be highly accurate, as they are closer to real spectra than those sometimes

obtained through automatic EM extraction methods.

Once the EMs are extracted, the relative contribution of each one to the observed

mixed spectra is calculated. This is done using spectral mixing models, which de-

scribe how the spectral signatures of different EMs combine to form the observed

spectrum. These models describe the physical processes that occur when different

pigments are mixed. They can be classified as linear or non-linear. In linear models

(see Equation 2.5.5), the mixed spectrum is obtained by a linear combination of EMs

weighted by the concentrations:

Υ =

q∑
i=1

αiρi (2.5.5)

where Υ is the reconstructed reflectance of the mixture, q is the number of candi-

date EMs, ρi is the spectral reflectance of the ith EM, and αi its concentration. This

model is commonly used in remote sensing [172–174] and it is considered an accept-

able approximation in many real scenarios. Its advantages are physical interpretabil-

ity, computational tractability, and ease of implementation [175,176]. It has also been

used in the field of CH with promising results [168, 177].

Nevertheless, when pigments are mixed, the individual components are not dis-

cernible with imaging technologies, and scattering effects influence the final spec-

trum [161, 178]. Therefore, these mixtures are better characterized by a non-linear

model [179, 180]. For instance, the Kubelka-Munk model describes the relation-

ship between the absorption and scattering coefficients of incident light in highly

light-scattering materials, requiring information about the optical properties of the
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materials studied [181]. It has been used in the CH domain as a proof of con-

cept [161, 182], but has not been extended due to memory requirements and com-

putation times [183]. In remote sensing, non-linear unmixing is performed by para-

metric extensions of the linear model addressing the spectral variability found in the

set of EM across different pixels [184] or considering different combinations within

the set of EM [185]. These approaches do not incorporate the physical principles that

underlie the Kubelka-Munk model. Many studies have focused on developing ro-

bust, accurate, and tractable unmixing algorithms [163]. Grillini et al. [177] explored

various mixing models, including the additive, subtractive, Yule-Nielsen, additive-

subtractive, subtractive-additive, LIP (Logarithmic Image Processing) additive and

LIP subtractive models, finding that the subtractive model outperformed the others.

After selecting the mixture model and performing unmixing to obtain concen-

tration maps for each EM, the next step is material identification. This is typically

done by matching each EM to a material from a reference library using different

spectral metrics. Ideally, the reference library should include a broad range of com-

mon pigments applied to an appropriate ground layer, as some pigments become

transparent in the near-infrared range and the support material also influences the

spectrum [134]. The pigments should be selected based on traditional recipes and

materials relevant to the period of the artwork. A schematic representation of mate-

rial identification using EM extraction and unmixing is presented in Figure 2.5 (c).

Several approaches have been proposed for spectral unmixing and pigment iden-

tification [26,156,163], including the use of first and second derivatives of the spectra

[81,138,164], clustering techniques [175], and DL methods [161,161,162,183,186–189].

The ENVI’s software spectral hourglass wizard (ENVI, Exelis VIS, Boulder, CO) has

also been used [127, 128, 138, 190, 191], but it is slow and not fully automatic [134].

Although spectral unmixing is a highly valuable technique, it remains an active
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area of research, as achieving effective and accurate unmixing continues to present

significant challenges. One of these challenges is the lack of correlation between

the spectra of the original components in the mixture and the endmembers (EMs)

extracted automatically, which can subsequently compromise the identification of

pigments based on these EMs.

2.5.1.4 Multimodal approaches

Although spectral imaging has been used independently for identifying pig-

ments and dyes, a multimodal approach is often preferred by many researchers, as

it offers a rapid and definitive way to identify ancient pigments. While HSI alone

is a robust technique, some authors claim that it is not exhaustive for the complete

characterization of composite painted systems in artworks [64]. To address this lim-

itation, HSI has been effectively combined with other spectroscopic techniques to

measure a wider range of properties. Such combinations with other analytical tech-

niques (as discussed in section 2.2) include Raman spectroscopy [17, 132, 192–197],

XRF [17, 83, 192–199], FTIR [83, 128, 195], and FORS [128, 196–200], especially for ob-

taining spatially resolved material information or conducting preliminary material

identification, enabling large-area analysis.

As outlined in the objectives of this PhD thesis, the focus is on developing HSI

processing techniques to automatically identify the materials used in historical doc-

uments and paintings, without relying on other techniques. While other measure-

ment devices have been employed to validate our approach, they are not intended

to complement it.
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2.5.1.5 Hyperspectral libraries

As previously discussed, identifying materials requires databases, whether for

comparison through spectral matching methods with our hypercube, for training

ML models, or for pigment identification in the final step of unmixing.

Several databases of spectral reflectance for pigments, dyes, binders and var-

nishes have been proposed and used in the past, typically derived from measure-

ments of mock-ups using FORS [123, 201, 202]. Regarding MSI or HSI databases,

there are a few examples. For instance, A. Cosentino proposed an MSI pigment

database using 18 bandpass filters covering the 400-925 nm range [203]. This

database, which includes the Pigments Checker STANDARD v.5 of CHSOS, contains

69 pigments applied on cardboard. A more comprehensive HSI pigment database

was later developed by Deborah et al. [124], featuring 195 pigment patches from Kre-

mer color charts applied on acid-free 180-gram paper, covering the 400 to 1000 nm

range.

Despite these advances, to our knowledge, no HSI database exists with the pur-

pose to assist in material identification for historical documents. To further advance

the field, the availability of datasets with annotated ground truth is essential. Such

datasets are critical for training and evaluating ML and DL models to perform dif-

ferent tasks in historical document analysis [204]. However, the creation of GT data

is often labor-intensive and costly. Additionally, datasets must encompass sufficient

diversity to enable models to generalize effectively, including documents of varying

origins, materials, and historical periods.
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3.1. Introduction

This chapter presents an HSI database of historical documents and mock-ups

captured in the 400–1700 nm spectral range. It was developed to address the gap

in the field, as no existing database of this nature was found. Specifically, it was

designed to facilitate the use of HSI for analyzing historical and artistic documents,

with a focus on material identification and mapping. It is the outcome of specific ob-

jectives O1 and O2 of this PhD thesis. As shown in Figure 1.3, this was one of the first

objectives addressed in the thesis and proved to be one of the most time-consuming

due to the extensive efforts required. However, the successful collaboration among

a multidisciplinary team made its completion possible.

This study has been submitted to the journal Scientific Data as:

A. B. López-Baldomero* et al. "HYPERDOC - HYPERspectral database of histor-

ical DOCuments and mock-ups from 400 to 1700 nm", 2025.

Additionally, part of this work has been published as a conference paper:

A. B. López-Baldomero*, E. Valero, A. Reichert, F. Moronta-Montero, M.

Martínez-Domingo, and A. López-Montes, “Hyperspectral database of synthetic his-

torical inks,” in Archiving Conference, vol. 21, pp. 11–16, Society for Imaging Science

and Technology, 2024.

3.1 Introduction

To preserve historical documents and enhance their accessibility and understand-

ing, more than 60 digital image databases have been developed [205]. These serve as
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resources for diverse image processing applications, including layout analysis [206],

binarization (i.e., separating ink and support into binary values) [207, 208], content

analysis [209,210], author identification [211], and improved readability of degraded

documents [212].

Most existing databases comprise digital images acquired using conventional

RGB cameras. However, HSI cameras have gained increasing prominence in the

field of CH in recent years, as they record images in a relatively fast and non-invasive

way, providing far more information [11, 85, 86].

In the context of document analysis, HSI and MSI have demonstrated significant

advantages over conventional methods. For instance, binarization using HSI [23] or

MSI [213–220] data achieves improved separation of ink and support compared to

RGB imaging. In forensic analysis, spectral data have enabled the detection of ink

mismatches, aiding in the identification of document alterations or forgeries [221,

222]. HSI has also been used for material identification, such as inks [223, 224] and

pigments [26, 72, 85, 126], as further detailed in subsection 2.5.1.

Spectral databases play a crucial role in material identification. Previously pro-

posed MSI and HSI databases are discussed in subsubsection 2.5.1.5. The MSI

database by A. Cosentino [203] includes the Pigments Checker STANDARD v.5 from

CHSOS, which contains 5 black pigments out of 69 pigments applied on cardboard.

From the data, it was shown that browns and blacks lack sufficient spectral features

for identification. Therefore, MSI in the 400-925 nm spectral range is not always ad-

equate to perform material recognition tasks. A more comprehensive HSI pigment

database by H. Deborah et al. [124], which includes 195 pigment patches from Kre-

mer applied on acid-free 180-gram paper, features 14 black pigments.

Despite these advances, existing spectral databases primarily focus on pigment

samples applied to modern supports and lack the diversity required for historical
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document analysis. They do not account for variations in writing supports, ink for-

mulations used across different regions and periods, or the effects of aging. The

inclusion of real historical documents is crucial to ensure the applicability of these

databases to real-world scenarios. Additionally, datasets must be sufficiently diverse

to enable ML and DL models to generalize effectively, and the availability of anno-

tated ground truth (GT) is essential for their training and evaluation [204]. However,

the creation of GT data is often labor-intensive and costly.

As part of this PhD thesis, an HSI database of historical documents and mock-ups

captured in the 400-1700 nm spectral range was created. This database was devel-

oped within the framework of the HYPERDOC project [225], which focuses on using

HSI to analyze historical and artistic documents for material identification and map-

ping. A distinction must be made here: the complete HYPERDOC database, which

is available online on the Color Imaging Lab group’s website [225], includes a total

of 1681 samples. However, this chapter focuses on describing and analyzing only

the samples within this database that meet three specific criteria: (i) they are spa-

tially registered in both the VNIR and SWIR spectral ranges, providing a complete

spectrum from 400 to 1700 nm for each pixel; (ii) they include GT data; and (iii) the

materials present in the GT are known [226]. In total, this subset consists of 720

samples.

The workflow for data collection, capture, and post-processing is summarized

in Figure 3.1. Ink mock-ups were created using historical recipes and materials

[227, 228], including metallo-gallate inks, sepia, carbon-based inks, and mixtures,

which were applied on five different supports. The database also includes pencil

mock-ups and historical inks subjected to artificial aging. Additionally, historical

documents from the 15th to 17th centuries were sourced from the Archive of the

Royal Chancellery and the Provincial Historical Archive of Granada (Spain). Two
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Figure 3.1: Graphical abstract of the capture methodology and data curation.

spectral ranges were captured: 400–1000 nm and 900–1700 nm, which were spatially

registered. From these captures, the full hypercubes (referred to as parent cubes)

were cropped into smaller, representative Regions of Interest (minicubes) to facilitate

faster data processing. GT annotations were created to label the materials present

at the pixel level. False-color RGB images were generated for both spectral ranges,

and Metadata was also integrated into each parent cube and minicube to provide

detailed information.

The HYPERDOC database stands as a unique and versatile resource, integrating

mock-ups and historical documents to support a wide range of applications in HSI

and historical document analysis. Its subsets have been utilized in studies address-

ing diverse tasks such as ink classification using ML and DL techniques [229, 230]

(detailed in chapter 5 and subsection 3.4.1), binarization to enhance text legibil-
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ity [231, 232], spectral unmixing to identify the materials [233] (expanded in chap-

ter 7), and colorimetric analysis of aging processes in mock-ups [234, 235]. Thanks

to the variety of recipes in mock-ups, they can be used to perform multivariate ex-

ploratory analysis in order to identify spectral features related to some kinds of inks

or their components, and spectral changes related to the amount of ink deposited.

It also facilitates comparative studies between mock-ups and historical documents,

including analyses of artificial versus real aging, the state of conservation of the real

documents in comparison to other samples, and the impact of different supports or

writing instruments on spectral properties. The spectral data also allow simulations

of document appearances under various illuminants.

Moreover, the HYPERDOC database fosters interdisciplinary collaboration be-

tween the image processing and restoration-conservation communities, encouraging

the adoption of advanced techniques such as HSI, which remains underutilized in

practical applications within archives and museums. This database holds significant

potential to drive innovation in the restoration and preservation of our CH.

3.2 Methods

3.2.1 Samples description

3.2.1.1 Mock-ups

Mock-ups of historical inks on different supports

39 mock-up samples of inks applied on five different supports were prepared fol-

lowing historical recipes from the 13th to the 17th centuries and bound with Arabic

gum [236], resulting in a total of 195 samples. The contour of a 1 x 1 cm square was

drawn with pencil and filled with ink, and two lines of text were written with brush
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(top) and fountain pen (bottom) (see Figure 3.2 (a)). This allows for the study of

spectral variations based on the amount of ink deposited and enables the assessment

of different writing instruments. The inks used include 8 recipes of metallo-gallate

inks, 4 of sepia, 6 carbon-based inks, and 17 mixtures. In addition, 4 samples of con-

stituent materials used in some of the ink recipes were made. The exact quantities

of ingredients used to prepare the inks are detailed in the column ‘general info’ of the

file ‘HYPERDOC_database_info.ods’ included in the database.

The inks used to create the mock-ups are listed below:

• Metallo-gallate inks (or iron gall inks). Ancient recipes for iron gall ink were

followed [236, 237]. In the preparation of this kind of ink, first, 23.53 g of

oak apples (from Kremer Pigmente GmbH) were crushed (but not pulverized),

wrapped in a cotton cloth, and macerated in 400 ml of water under direct sun-

light for 3 days. After that, the solution was filtered, obtaining the gallic acid.

Primarily, pulverized ferrous sulfate (FeSO4-7H2O) was used and added to gal-

lic acid. We varied the ratio of gallic acid and ferrous sulfate obtaining 3 dif-

ferent inks. In addition, pulverized copper sulfate (CuSO4) and zinc sulfate

(ZnSO4) were mixed separately with ferrous sulfate to create different inks.

Furthermore, Andalusian ink recipes [237] were followed including in both

pomegranate juice, but with the addition of myrtle leaves in the gallic acid

only in one of them. In addition, the pigment Atramentum (Kremer Pigmente

GmbH) was used. It is produced from the reaction of tannic acid extracted from

oak bark and iron salts, and has historically been referred to as ‘ink stone’.

• Sepia inks. Two types of sepia ink were used in this database: one extracted di-

rectly from the animal and another obtained in powder form from Kremer Pig-

mente GmbH. For the natural extraction, three samples were prepared: pure
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ink diluted with water, and two others varying the concentration of Arabic

gum binder.

• Carbon-based inks. The database includes several carbon-based inks from Kre-

mer Pigmente GmbH, obtained by charring different materials:

– Ivory black: it was originally obtained from charred ivory or horns, al-

though nowadays it is based on bone black, being the best quality of that

ink. This is the most intense, deep black pigment.

– Bone black: produced by the carbonization of bones, usually with temper-

atures over 400°C but not above 800°C.

– Lamp black: obtained by collecting the condensed smoke produced from

a flame fueled by mineral oil, tar, pitch, or resin within brick chambers.

– Grape seed black: for an extended period, different types of fruit stones

have been charred and used as pigments. This pigment is obtained by

carbonizing grape seeds, and it has a bluish tone.

– Cherry black: it is similar to grape seed black, but in this case cherry pits

are charred, obtaining a warmer, brownish black.

– Bistre: it is a warm, deep transparent brown pigment, traditionally ob-

tained from the soot of beech wood or other trees.

• Mixed inks. The database includes 85 samples (17 inks on 5 supports) of dif-

ferent mixed inks. Sepia ink (the one obtained from the animal) was mixed

with pure iron gall ink, lamp black, and bones black, in three different propor-

tions: 25:75, 50:50, and 75:25. In addition to sepia, iron gall ink was mixed with

lamp black and bones black separately in the same three proportions: 25:75,
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50:50, and 75:25. Andalusian red earth (from Kremer Pigmente GmbH) was

also mixed with iron gall ink and lamp black in a 50:50 ratio.

• Constituents. Finally, 4 reference samples were made with constituent materi-

als of different inks, including Arabic gum diluted at 20%, pomegranate juice,

myrtle leaves infusion, and Andalusian red earth, bound with an Arabic gum

solution.

All inks were applied to five types of support, selected for their historical rele-

vance: three types of handcrafted paper from Paperlan® made of 100% cotton fiber,

100% linen fiber, and a linen/cotton mixture 50/50%, hemp paper from Wander-

ings®, and goatskin parchment from Forum Traiani®. These supports were selected

based on those commonly found in historical documents [238].

Pencil mock-ups

This subset of mock-ups includes 14 pencil types from Faber Castell® with vary-

ing grades of hardness (8B, 7B, 6B, 5B, 4B, 3B, 2B, B, HB, F, H, 2H, 4H, and 6H)

applied to 4 different supports: cotton-linen, cotton, linen, and hemp paper. Simi-

larly to the ink mock-ups, a 1 x 1 cm square was filled with pencil and a line of text

indicating its hardness was written (see Figure 3.2 (b)). In total, 56 samples were

created.

Mock-ups of artificially aged metallo-gallate inks

Three variants of metallo-gallate inks were deposited on hemp paper, including

pure iron gall ink, iron gall ink with copper sulfate, and a mixture of iron gall ink

and lamp black in a 50:50 ratio. These inks were used to create squares, strokes, and

drops, and subsequently subjected to artificial aging using two distinct methods (see

Figure 3.2 (c)). In the first method, an aging chamber (Solarbox® 3000 eRH, Neurtek)
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was used following the norm ISO 5630-3 (1996). The chamber operated at a tempera-

ture of 80 C◦, a relative humidity of 65%, and a radiation of 550 W/m2. Samples were

extracted and captured after 0, 72, 144, and 288 hours of aging, corresponding to 0,

3, 6 and 12 days, respectively. In the second method, aging under acidic conditions

was studied by exposing samples to hydrochloric acid vapors for 72, 144, and 288

hours.

3.2.1.2 Historical documents

Manuscripts of the Provincial Historical Archive of Granada

This subset comprises five different documents preserved in the collection of Ara-

bic documents at the Provincial Historical Archive of Granada [239]. Four of these

are notarial documents dating from 1488 to 1494, while the fifth is an undated reli-

gious text. All five contain handwritten text (see example in Figure 3.2 (d)). Scan-

ning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX)

has identified various types of inks in these documents, including mixed iron gall

ink with earth pigments, mixed carbon-based ink with earth pigments, pure carbon-

based inks, and pure iron gall inks. The support used in all the documents has been

confirmed to be linen paper, as determined through a combination of optical mi-

croscopy, Scanning Electron Microscopy (SEM), and FTIR [239, 240].

Illuminated manuscripts from the Archive of the Royal Chancellery of Granada

This collection comprises seven documents on parchment, containing lawsuits

of nobility dating from 1459 to 1608 [241] (see example in Figure 3.2 (e)). Different

pigments and dyes are present in certain areas of these documents; however, these

regions were not included in the main focus of this database, which is primarily on

inks. The inks used in the handwritten text were identified as iron gall ink with
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different sulfates, specifically zinc (Zn) and copper (Cu). Ink identification was per-

formed using XRF, while the inorganic elements used in the preparation of supports

were identified using a combined XRD and XRF system [242].

Family tree book from the Archive of the Royal Chancellery of Granada

This series of eight documents from the 16th and 17th centuries comprises fam-

ily trees, predominantly handwritten with some stamped sections (see example in

Figure 3.2 (f)). All documents have cotton-linen paper as the support. Previous anal-

yses identified two types of ink: carbon-based ink and a mixture of sepia and iron

gall ink. The documents were restored in 2005 through mechanical cleaning with

non-greasy soft rubbers, washing in water, and drying under weight and blotters.

The ink types were characterized using SEM by the conservators in charge.

3.2.2 Hyperspectral imaging capture

Two line-scan HSI cameras from Resonon Ltd. (Bozeman, Montana, USA) were

used, together with the associated software Spectronon Pro 3.5.5: the Pika L and

the Pika IR+. Details about the spectral range covered by each camera, number of

spectral channels, spectral resolution, number of pixels per scanned line, spatial res-

olution at 60 cm, maximum frame rate, and F-number for each camera are provided

in Table 3.1. These cameras operate on a push-broom technique, capturing images

line by line, which requires either the movement of the object or the camera to scan

the entire scene. For image acquisition, a linear translation stage from Resonon Ltd.

was used along with 4 stabilized halogen lamps positioned to minimize specular

reflections and placed at 30 cm from the documents. To ensure controlled lighting

conditions, all other lights in the room were turned off. A video illustrating the

capture process is available at the following link: [243]. The optimal exposure time
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was determined using the 90% reflectance patch from the Sphere Optics Zenith Lite

Multistep of size 20x20 cm, or a Teflon bar with known reflectance, serving as the

reference white. Then, the software automatically adjusted the scanning speed and

camera data acquisition to ensure 1:1 vertical:horizontal aspect ratio. To maintain

the reference white and the document at the same distance from the camera, mag-

nets and additional supports were used, as shown in Figure 3.2 (g). The distance

between the camera and the samples was approximately 60 cm for the VNIR camera

and 40 cm for the SWIR camera, resulting in linear fields of view (swath) of 13.5 cm

and 14.5 cm, respectively. This setup yielded an estimated spatial resolution of 0.15

mm/pixel for the VNIR range and 0.227 mm/pixel for the SWIR range. Spectral bin-

ning was performed during capture to enhance the signal-to-noise ratio, resulting

in 150 and 168 bands for the VNIR and SWIR captures, respectively. Before captur-

ing the documents, reference images for calibration were acquired. To convert raw

data into reflectance values, dark subtraction and flat-field correction were applied.

These steps ensure that variations in illumination and sensor response across the

field of view are accounted for, eliminating system-induced artifacts from the data.

For this purpose, 30 lines of the reference white, the 90% reflectance patch from the

Sphere Optics Zenith Lite Multistep or a Teflon bar, were captured. The mean value

of these 30 lines, calculated pixelwise along the longitudinal axis, was then used as

the reference white to correct non-uniformities in illumination and determine the

light incident on the sample. A dark reference image was also captured by blocking

the light entering the camera, allowing the removal of intrinsic sensor noise caused

by dark currents. All captures were saved in BIL format including a metadata header

file (HDR format). Further details on the conversion of raw captures to reflectance

data are provided in next subsection.
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Figure 3.2: Examples of samples from different subsets: (a) mock-ups of historical
inks on cotton paper, (b) pencil mock-ups, (c) mock-ups of artificially aged metallo-
gallate inks, (d) manuscript of the Provincial Historical Archive of Granada, (e) il-
luminated manuscript from the Archive of the Royal Chancellery of Granada, (f)
family tree from the Archive of the Royal Chancellery of Granada; and (g) HSI cap-
ture using the Pika IR+ camera.

Table 3.1: Specifications for the Pika L and Pika IR+ HSI systems.

Parameter Pika L Pika IR+
Spectral range (nm) 400 - 1000 900 - 1700

Spectral channels 300 368
Spectral resolution - FWHM (nm) 2.7 5.6

Pixels per scanned line 900 640
Spatial resolution at 60 cm (mm/pixel) 0.15 0.34

Max frame rate (fps) 249 240
f/# 2.4 1.8

76



3.2. Methods

3.2.3 Data curation

3.2.3.1 Reflectance from raw

Raw captures of the spectral cubes were transformed into reflectance cubes using

Equation 2.4.2 in subsection 2.4.3. This transformation is performed pixelwise in the

camera software before cube storage, except for the multiplication by ρwhite(λ), as the

software assumes it to be 100% at every wavelength.

Once the reflectance cubes were in BIL format, they were converted to MAT for-

mat using MATLAB (Release R2023a, The MathWorks, Inc., Natick, MA, USA). The

code used for the transformation is available on GitHub [244]. It is during this step

that the reflectance of the object is multiplied by the reflectance of the reference white

(ρwhite(λ)). During this process, linear interpolation was applied to ensure a consis-

tent 5 nm sampling interval across both cameras, resulting in 121 bands between 400

and 1000 nm for the VNIR and 161 bands between 900 and 1700 nm for the SWIR

range.

3.2.3.2 Registration

Spatial registration is performed to align pixelwise the captures in the VNIR and

SWIR ranges and equalize the spatial resolution. In this case, the SWIR capture was

used as the reference image, while the VNIR capture, with its higher spatial resolu-

tion, was transformed to minimize artifacts in the final registered image. The regis-

tration was performed using one band from the VNIR (700 nm) and one band from

the SWIR hypercubes (1000 nm). These bands were selected based on preliminary

trials, and their position below 1200 nm in the SWIR range. The latter condition was

set to avoid proximity to the onset of the high reflectance region of metallo-gallate

inks in the SWIR range, which could lead to a lack of key points necessary for proper
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registration. Feature-based image registration with SURF features [245] was used

within the MATLAB Registration Estimator App (Release R2023a, The MathWorks,

Inc., Natick, MA, USA), applying either an affine or projective spatial transform. The

registration quality was assessed using overlay images and the Structural Similarity

Index Measure (SSIM) [246], after testing different features and spatial transforms,

to ensure satisfactory registration. The final registration transformation was then

applied to all spectral bands within the VNIR cube. After the process, the parent

cubes are obtained, that is, the hyperspectral images of the full pages from which

the minicubes are extracted later on. These parent cubes are included in the folder

‘ParentCubes’ in the HYPERDOC database [226].

3.2.3.3 Minicube extraction

We define a minicube as a crop extracted from a full document or page, with sizes

ranging from [34 x 33] to [181 x 508] pixels, selected from representative areas of the

full documents. Spectral images delivered by the HSI devices are stored as spectral

cubes (i.e. hypercubes), usually of extremely large size of even gigabytes of data

per capture. Thus, the extraction of minicubes facilitates faster processing of spec-

tral information, as explained before. To highlight the impact of this approach, the

parent cubes from which the minicubes are extracted range in size from [368 × 143]

to [2485 × 615] pixels. This corresponds to a reduction of up to 94% in the number

of pixels, significantly improving data processing efficiency. Each minicube contains

data from one or two inks, the support, and sometimes pencil markings. Minicube

extraction was performed on the registered VNIR and SWIR cubes using identical

spatial coordinates, with Regions of Interest selected based on areas where different

inks or materials were present in the document. These minicubes are included in the

folder ’minicubes’ in the HYPERDOC database [226].
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Figure 3.3: Steps involved in the creation of the Ground Truth (GT) images.

3.2.3.4 False RGB images and Ground Truth creation

For each parent cube and minicube, a false-color RGB image was generated by

assigning specific spectral bands to the [R, G, B] channels. For the VNIR range,

bands [50, 34, 9], corresponding to wavelengths of 645 nm, 565 nm, and 440 nm,

respectively, were used, yielding a color appearance similar to that observed in the

sample. Similarly, for the SWIR range, bands [141, 61, 21], representing wavelengths

of 1600 nm, 1200 nm, and 1000 nm, were selected [226].

A GT image was also created for each minicube using a semi-automatic method.

The process is illustrated in Figure 3.3 and consists of two main steps: binarization,
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which separates the foreground (pigments and inks) from the background (support),

and GT creation, which assigns labels to differentiate between materials. The bi-

narization process involves four steps. First, a band with high contrast between

the ink and the background was selected by searching for the minimum Signal-to-

Noise Ratio (SNR) value. Second, the skeleton of the part of the image covered with

ink was extracted using the MATLAB R2023a function bwskel, based on Lee et al.’s

medial surface axis thinning algorithm [247]. Third, the skeleton width was ad-

justed until the intensity of surrounding pixels matched the average intensity of the

borders of the ink covered region, extracted by the Canny edge detector. This is

a variation of the method proposed by Ntirogiannis et al. [248], where the skele-

ton was manually corrected and then forced to grow until it met those borders.

Fourth, manual correction using the open-source software GIMP was performed

after obtaining the binarized image, by visually comparing the result with a false

RGB image of the minicube. After completing these steps, a binary image was gen-

erated with two labels: 0 (background) and 1 (foreground). The GT was then cre-

ated by assigning different labels to distinguish materials in the binary image. The

mapping between labels, GT colors, and materials is provided in the file ‘Materi-

als_label_and_colormap_assignation.ods’. The final indexed images, including the in-

dex map and associated colormap, were saved as PNG files in the folder ‘GT’ [226].

GT images were not created for the parent cubes due to difficulties in providing ac-

curate pixel-level annotations for these larger and more complex regions.

3.2.3.5 Metadata info

Detailed information about each sample is included as metadata within the

minicubes. In total, 24 attributes were included, which can be divided into three

main categories according to the type of information provided: sample information,
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capture information, and other relevant data.

The sample information group contains 11 attributes: identifier number, name,

general information about the sample (ink components, origin or recipe), type of

support, height in pixels, width in pixels, number of bands, wavelengths captured,

date of production of the document, aging status (either naturally or artificially aged,

or not aged at all), and restoration status (whether restored or not).

The capture information group contains 6 attributes: device used, range cap-

tured, stage, exposure time, type of illumination, and reference white used.

The other relevant information group contains 7 attributes: colormap of the GT,

GT labels, parent cube name, and pixel coordinates used to extract the minicube

within the parent cube. Using the GT from the PNG files and GT labels, spectra of

pixels belonging to each class are averaged and the mean and standard deviation is

stored, along with the number of pixels used in the average.

For the parent cubes, metadata were also included. In this case, as GT images are

not available, only 16 attributes were included, excluding the identifier number and

all attributes in the ‘other relevant information’ group.

3.3 Data Records

The HYPERDOC database [226], comprising hyperspectral images of historical

documents and mock-ups, is publicly available on Google Drive (and will be hosted

in the figshare repository following the journal’s revision process) as part of the Hy-

perdoc project [225]. The data is structured as shown in Figure 3.4 and includes the

following folders and files:

• Folder minicubes - Hypercube files with metadata (in HDF5 format): This folder

contains HSI datacubes for each minicube, captured in the VNIR and SWIR

81



3. HYPERDOC - HYPERspectral database of historical DOCuments and mock-ups

Figure 3.4: Folder and file structure in the database.
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spectral ranges, along with associated metadata. The datacubes are stored as

a 64-bits double-precision floating-point matrices with dimensions M x N x λ,

where M and N correspond to the spatial dimensions of the image, and λ rep-

resents the number of spectral bands or wavelengths. Each datacube includes

metadata with 24 attributes, describing key information such as acquisition set-

tings and sample details. A detailed description of these attributes, including

their data types and possible values, is provided in Table 3.2. Three spectral

range options are defined, including ultraviolet and visible (UVIS), although

no samples within this range are present in the database. This option has been

added to accommodate UVIS samples present in the complete database pub-

lished on the Color Imaging Lab’s website [225].

• Folder RGB - False RGB images (in PNG format): This folder contains false-

color RGB images for both the VNIR and SWIR ranges, generated using the

methods described in subsubsection 3.2.3.4. These images provide a conve-

nient way to quickly visualize the minicube content.

• Folder GT - Ground Truth images (in PNG format): This folder includes GT im-

ages, where pixel values are directly mapped to colormap indices that relate to

RGB data specific for each material and assigned according to a pre-existing list

of materials present in the database. Each file contains an indexed image stored

in the variable ‘cdata’, along with the associated colormap. The correspondence

between material types and their respective indices and RGB values in the col-

ormap is documented in the file ‘Materials_label_and_colormap_assignation.ods’.

• Folder ParentCubes: This folder is organized in two subfolders, one for each

data set: ‘Historical documents’ and ‘Mock-ups’; and an OpenDocument

Spreadsheet (in ODS format) named ‘ParentCubes_info.ods’, which contains par-
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ent cubes information for quick reference, extracted from the metadata. Each

folder has its own subfolders for each data subset. Within those subfolders,

there are the ‘VNIR’ and ‘SWIR’ folders, which contain the hypercubes in .h5

format, including the datacube and metadata with 16 attributes, as well as the

‘RGB’ folder with false RGB images in PNG format.

• File ‘Materials_label_and_colormap_assignation.ods’ - OpenDocument Spread-

sheet with material labels and colormap assignments (in ODS format): This file

contains the mapping between material types (e.g., inks, pencils, or supports)

and their corresponding indexed values in the GT images. The colormap as-

signs RGB values (0–255) to each material index. For each minicube, the associ-

ated materials can also be found in the ‘GTLabels’ attribute within the metadata.

• File ‘HYPERDOC_database_info.ods’ - OpenDocument Spreadsheet with hyper-

cube information (in ODS format): The spreadsheet provides essential infor-

mation about the minicubes for quick consult extracted from the metadata,

which includes the set they belong to (mock-ups or historical documents),

subset, name of the minicubes, name of the parent cubes, coordinates within

the parent cube used for minicube extraction, general information about the

minicube, materials found, support, date, information about if it is aged, re-

stored, or not, and finally, exposure time and reference white used during cap-

ture.
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Table 3.2: Description and data types of attributes in the Metadata field within each
minicube, categorized into three groups: (1) sample information, (2) capture infor-
mation, and (3) other relevant data.

Group Metadata Description Data type

1 number Identifying number, from 00001 onwards. String

1 name Name of the minicube. String

1 cubeinfo
Information about the type of sample (mock-up or
historical) and relevant details such as materials or
recipes used.

String

1 substrate
Type of substrate or support: parchment or paper,
and fiber type.

String

1 height Height of the minicube in pixels.
32-bits unsigned
integer

1 width Width of the minicube in pixels.
32-bits unsigned
integer

1 bands Number of spectral bands in the minicube.
32-bits unsigned
integer

1 wl Wavelengths or spectral bands captured.
32-bits unsigned
integer

1 date
Date of creation of the mock-ups or historical doc-
uments (year or century, depending on the infor-
mation available).

String

1 aged

Indicates whether the document is aged. Possi-
ble values: ‘No’ (not aged), ‘Art.’ (artificial aging,
with details of the method and hours), and ‘Nat.’
(naturally aged).

String

1 restored
Indicates whether the document has been re-
stored. Logical value.

8-bits unsigned
integer

2 device HSI camera used in the capture. String

2 range
3x1 logical indicating the capture range: 1 0 0 for
UVIS; 0 1 0 for VNIR; 0 0 1 for SWIR.

8-bits unsigned
integer

2 stage
Translation stage used to perform the capture. All
captures were done using the ‘linear’ stage.

String

2 texp Exposure time during capture in milliseconds.
64-bits double
precision floating
point
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Table 3.2: (continued) Description and data types of attributes in the Metadata field
within each minicube, categorized into three groups: (1) sample information, (2)
capture information, and (3) other relevant data.

Group Metadata Description Data type

2 illumination
Illumination used during the capture. Halo-
gen lamps were used in all cases.

String

2 reference_white

Reference white used to calibrate reflectance
measurements. Possible values: ‘Teflon’ (for
the teflon bar) and ‘Multi_90’ (the 90% re-
flectance patch from the Sphere Optics Zenith
Lite Multistep).

String

3 GT_cmap
RGB values from 0 to 1 associated with each
index in the GTs. Size 16 x 3.

64-bits double
precision float-
ing point

3 GTLabels Materials associated to indexes used in GT. String

3 parent_cube
Hypercube from which the minicube was ex-
tracted.

String

3 position
Coordinates used to extract the minicube from
the parent cube: [xmin xmax ymin ymax].

32-bits un-
signed integer

3 spectra_mean
Mean spectra of all pixels associated with the
same index in the GT. Size: λ x number of in-
dexes in the GT.

32-bits single
precision float-
ing point

3 spectra_std
Standard deviation of the mean spectra. Size:
λ x number of indexes in the GT.

32-bits single
precision float-
ing point

3 pixels_averaged
Number of pixels associated with the same
indexes in the GT and used to calculate the
mean. Size: 1 x number of indexes in the GT.

32-bits un-
signed integer

Table 3.3 summarizes the number of minicubes and the total pixel counts asso-

ciated with each material type across the different subsets. For a visual representa-

tion, Figure 3.5 presents the distribution of minicubes (top) and the distribution of

pixels on a logarithmic scale (bottom) across subsets and classes in the database us-

ing horizontal bar graphs. To the right of 0, the minicubes correspond to historical
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documents, while to the left, they belong to the mock-ups set. A higher number of

minicubes is included in the mock-up category compared to historical documents,

representing 73% of the total database. In terms of pixel count, mock-ups account

for nearly 94% of the total.

The high number of minicubes containing pencil is due to the first two subsets

of mock-ups (historical inks on different supports and pencil samples), where all

samples include pencil. However, this material is completely absent in the set of

historical documents. Other materials or classes not present in the historical docu-

ment subsets include cotton, hemp, pure andalusian red earth, pure sepia, mixture

of carbon and sepia, and a combination of metallo-gallate ink with carbon-based ink.

Among historical documents, the most represented ink class is pure metallo-gallate

ink. For the supports, linen, cotton-linen, and parchment are equally distributed

in terms of minicube count; however, in pixel count, linen is less represented com-

pared to the other two. In mock-ups, red earth and its mixtures are among the least

represented materials, reflecting their limited historical use.
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Table 3.3: Classes and total number of minicubes and pixels in each set and subset
(commas used as thousands separators). #: number; mc.: minicubes: Arch.: Archive.

Set Subset Class
# of
mc.

# of pix-
els

Mock-ups

Historical inks on
different supports

Metallo-gallate ink pure 40 612,949
Metallo-gallate ink mixture
carbon

30 452,478

Metallo-gallate ink mixture
sepia

15 235,795

Metallo-gallate ink mixture
earth

5 82,876

Carbon pure 30 429,217
Carbon mixture earth 5 64,782
Carbon mixture sepia 30 423,009
Sepia pure 20 300,988
Pencil 180 183,024
Andalusian red earth pigment 5 89,075
Parchment 36 1,204,442
Cotton-linen 36 1,217,969
Linen 36 1,456,972
Hemp 36 1,229,443
Cotton 36 1,433,623

Pencil

Pencil 56 153,920
Cotton-linen 14 121,414
Linen 14 106,705
Hemp 14 99,962
Cotton 14 119,084

Artificially aged
metallo-gallate inks

Metallo-gallate ink pure 18 95,255
Metallo-gallate ink mixture
carbon

10 51,403

Hemp 28 203,886

Historical
documents

Manuscripts
Provincial Historical
Arch.

Metallo-gallate ink pure 20 13,930
Metallo-gallate ink mixture
earth

5 3,501

Carbon pure 4 1,942
Carbon mixture earth 3 2,434
Linen 36 82,664
Metallo-gallate ink mixture
unknown

4 1,896

Illuminated manuscripts
Royal Chancellery Arch.

Metallo-gallate ink pure 29 94,981
Parchment 29 251,723

Family tree book
Royal Chancellery Arch.

Metallo-gallate ink mixture
sepia

24 29,109

Carbon pure 23 16,654
Cotton-linen 31 196,182
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Figure 3.5: Horizontal bar graphs showing the distribution of data: number of
minicubes (top) and number of pixels on a logarithmic scale (bottom) by class and
subset.
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3.4 Technical Validation

Some subsets or samples of this database have been used in previous studies to

perform tasks such as classification [229,230], binarization [231,232], spectral unmix-

ing [233], and colorimetric analysis [234, 235].

Three categories of inks were classified using ML techniques: pure metallo-

gallate inks, carbon-containing inks, and non-carbon-containing inks [229]. Five tra-

ditional ML algorithms—SVM, KNN, Linear Discriminant Analysis (LDA), Random

Forest (RF), and PLS-DA—as well as a DL-based model, were trained and evaluated

on mock-ups of historical inks applied to different supports and on all the minicubes

extracted from historical documents in the present database. All detailed informa-

tion is provided in chapter 5.

In another study, spectral unmixing techniques have also been applied to identify

pure components in mixtures of historical inks, using both mock-ups and selected

parent cubes from historical documents included in this database [233]. Mixtures of

iron gall, sepia, and carbon-based inks were analyzed by merging VNIR and SWIR

ranges. Detailed information can be found in chapter 7.

Binarization tasks were also explored in two studies. In a first study [231], several

binarization algorithms including Otsu [249], Niblack [250], Wolf [251], Bradley [252]

and a DL based algorithm, were evaluated using a subset of 16th- and 17th-century

family trees from the Archive of the Royal Chancellery of Granada. When com-

paring results from the VNIR and SWIR ranges, the Bradley algorithm consistently

produced the best outcomes. A subsequent study [232] compared additional algo-

rithms, including Howe [253], Sauvola [254], and a DL-based algorithm, on mock-

ups of inks as well as historical documents not included in this database. While the

DL-based approach demonstrated comparable performance to the best traditional
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algorithms in both ranges, it provided more consistent and reliable results overall.

Comparisons between three-channel images and full HSI cubes containing 121 chan-

nels in the VNIR range and 161 channels in the SWIR range revealed that the three-

channel images yielded inferior average performance in binarization tasks.

For the subset of artificially aged metallo-gallate inks, colorimetric and spectral

analyses were conducted to investigate the aging processes of these inks [234, 235].

In addition to the aforementioned applications, a classification task is performed

in this chapter using a Bilayered NN to differentiate between four classes in the

mock-up set: iron gall ink, non-iron gall ink, support, and pencil (see subsec-

tion 3.4.1).

Furthermore, the mean reflectance spectra and standard deviation for each class

and subset were calculated to preliminary explore the spectral features in the

database (see Figure 3.7 and Figure 3.8 in subsection 3.4.2 for details). Additionally,

PCA was used as a dimensionality reduction technique for visualization purposes

(see subsection 3.4.3 and Figure 3.9).

3.4.1 Classification of inks and support using a Bilayered Neural

Network

A Bilayered NN was trained and tested using the set of mock-ups of historical

inks on different supports to classify four categories: iron gall ink, non-iron gall

ink, support, and pencil. The iron gall ink category includes both pure and mixed

inks containing some amount of iron gall ink. Only VNIR information from samples

applied to parchment and cotton-linen paper was used. The Bilayered NN com-

prised two fully connected layers, excluding the input and the final classification

layers. The selection of the model was based on a previous study [126] where a Fully
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Table 3.4: Evaluation metrics (accuracy, precision, recall and F1-score) for the four
classes: iron gall ink (IGI), non-iron gall ink (NIGI), support (S) and pencil (P).

IGI NIGI S P
Accuracy 0.67 0.67 0.67 0.67
Precision 0.85 0.65 0.97 0.04

Recall 0.46 0.71 0.70 0.74
F1-score 0.60 0.68 0.82 0.08

Connected NN outperformed a One-dimensional Convolutional NN and an SVM,

as well as different spectral metrics, in a pigment classification task. The sizes of

the layers were: 32 and 16 respectively, with the hyperbolic tangent as activation

function, and softmax activation in the final layer [126]. The model was trained with

85000 spectra of iron gall ink, 85728 spectra of non-iron gall ink, 84000 spectra of sup-

port (including parchment and cotton-linen paper), and 21844 spectra of pencil. The

ink spectra were extracted from the squared areas of the samples. To test the model,

72 minicubes were used and the performance metrics, accuracy, precision, recall and

F1-score, were computed as described in subsubsection 2.5.1.2. To ensure robust per-

formance assessment, a 5-fold cross-validation was conducted. Cross-validation is

a technique used to evaluate model generalizability by dividing the dataset into k

subsets (or folds). The model is trained on k-1 folds and tested on the remaining

fold, repeating this process for each fold. This approach helps mitigate overfitting

and provides a more reliable performance estimate. The Classification Learner app

included in MATLAB® software (R2023a version) was used to obtain the results for

the validation with the pre-trained NN.

As can be seen in Table 3.4, a 67% accuracy (proportion of correct predictions to

the total number of input samples) is obtained using the Bilayered NN. The low-

est precision is achieved for the pencil class (4%). This is because a lot of support

pixels have been misclassified as pencil, as can be seen in Figure 3.6 (A), leading
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Figure 3.6: Classification maps of two minicubes: (A) sepia ink, and (B) mixture of
iron gall ink and lamp black 50:50, both applied on cotton-linen paper.

to an increased number of false positives for the pencil class. In contrast, the high-

est precision value (97%) is obtained for the support class, indicating that very few

ink or pencil pixels are misidentified as support. Comparing both types of inks, a

higher precision but a lower recall is observed for the iron gall ink class. A low re-

call value indicates a lower proportion of true positives to the actual total number of

positive samples. So, an iron gall ink is more likely to be classified as non-iron gall

rather than vice versa. When an iron gall ink is mixed with a non-iron gall ink, es-

pecially a carbon-based ink, the reflectance of the spectrum diminishes considerably,

even with the addition of a minimal quantity of carbon-based ink. This makes the

ink spectrum, despite containing a considerable amount of iron gall ink, to become

more similar to the spectrum of carbon-based ink. This explains why most of the

pixels in Figure 3.6 (B), which shows the classification map for the minicube with an

equal mixture of iron gall ink and lamp black (50:50), are classified as non-iron gall

ink. Further efforts are needed to improve the overall accuracy, particularly with

mixed inks and pencil. This study is part of preliminary classification results, which

were later refined and improved, as described in chapter 5.
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3.4.2 Average spectra and standard deviation per class and subset

The mean spectra and standard deviation were computed for each foreground

material, including pencil, pigments and inks (left plots), and for each support ma-

terial (right plots), with the results separated by subset (different rows in Figure 3.7

for the mock-ups and Figure 3.8 for the historical documents). These calculations

were performed by averaging all the pixels in the minicubes belonging to the same

class and subset, using the GT information (example code for performing this cal-

culation in MATLAB and Python is available on GitHub [244]). VNIR and SWIR

spectral ranges are presented in the same plot. A noticeable difference in the re-

flectance spectra is observed in the overlapping region between 900 and 1000 nm,

which is a common artifact when data is captured using different sensors. This dis-

crepancy arises from various factors, including differences in spectral bandwidths,

low signal-to-noise ratios due to low sensor responsivity in the extremes of the spec-

tra, and slight misalignments in the image acquisition setup, all of which can impact

the Bidirectional Reflectance Distribution Function (BRDF) [255].

Ink spectra in the visible range are similar, showing low reflectance values and

flat shapes, consistent with the black or brownish appearance of these inks. How-

ever, in the near-infrared range, metallo-gallate inks, both pure and mixed with red

earth, begin to diverge from other inks, exhibiting a reflectance spectrum increas-

ingly similar to that of the support. This trend is especially prominent beyond 1200

nm, where metallo-gallate inks become nearly transparent. In contrast, carbon-based

inks strongly absorb infrared radiation, maintaining low reflectance values. Sepia

ink and its mixtures with metallo-gallate allow more infrared transmission but do

not reach the near-total transparency observed in metallo-gallate inks. Mixtures of

carbon-based inks with other pigments, such as sepia or red earth, significantly re-
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Figure 3.7: Average spectra and standard deviation per class (each line in the plot)
and subset (each row) in the mock-up set. Inks and pencil are represented in the left
graphs, while supports are shown in the right graphs.
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Figure 3.8: Average spectra and standard deviation per class (each line in the plot)
and subset (each row) in the historical documents set. Inks are represented in the left
graphs, while supports are shown in the right graphs.
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duce reflectance, resulting in spectra resembling those of pure carbon-based inks.

Pencil spectra generally exhibit flat shapes with lower reflectance values in the pen-

cil mock-ups subset due to the inclusion of pencils with varying hardness, including

very dark grades. In the subset of mock-ups with historical inks, only HB pencils

were used. Andalusian red earth displays a spectrum characteristic of red hues,

while it becomes transparent in the infrared.

Support materials such as cotton-linen, linen, and cotton exhibit similar re-

flectance spectra. Parchment shares a similar shape but demonstrates lower re-

flectance values, indicative of its darker tone. Additionally, parchment tends to show

greater heterogeneity, particularly in historical documents, as modern parchment is

generally more uniform in composition and appearance. Hemp has a different shape

from the others, making it easily distinguishable from other supports.

For the historical documents, notable differences emerge when comparing spec-

tra to those of mock-ups. For instance, carbon-based inks in historical manuscripts,

particularly those from the Provincial Historical Archive of Granada (first row, Fig-

ure 3.8), do not exhibit the nearly complete absorption of infrared radiation seen

in mock-ups. Instead, these inks also become partially transparent in the infrared

range. This discrepancy could be attributed to aging processes, such as surface wear

due to rubbing, which may reduce the ink layer thickness, causing the spectrum

to resemble that of the underlying support. Similarly, minor variations in support

spectra compared to mock-ups are likely due to aging effects.

Diversity in standard deviation is observed across subsets, derived from factors

such as the use of different supports or variability within ink classes. For exam-

ple, the pure metallo-gallate ink class includes inks with additives like pomegranate

juice, myrtle infusion, or varying amounts of Cu, Zn, and Fe sulfates. Likewise, the

pencil subset includes a range of hardness grades. This variability is intentional,
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as it enhances the robustness of classification models by capturing a wide range of

potential conditions, preparing them for real-world applications rather than highly

controlled scenarios.

Comparing spectral libraries of black pigments or inks is challenging, as they con-

sist of different samples prepared using diffrent techniques, binders, supports, and

different data acquisition procedures or instruments. While it can be found only one

HSI pigment database published in the range of 400 to 1000 nm [124], in general, the

already existing libraries contain a single homogeneized measurement per sample

made by using spectrorradiometers or FORS [123, 256]. As the database presented

in this paper contains hundreds or thousands of datapoints, the average spectra of

mock-up inks were used for comparison with existing ink spectral libraries.

The hyperspectral pigment database [124] includes seven pigments or inks that

are also present in our dataset: grape black, ivory black, cherry black, bistre, atra-

mentum, Andalusian red earth (or red ochre), and sepia. In our classification, the

first four inks are grouped together as carbon-based inks due to the same origin

and similar spectral characteristics. This grouping was validated by comparing the

mean spectra provided by the authors of the database [257] with our data, confirm-

ing that carbon-based inks exhibit a consistently flat, low reflectance in the VNIR

range. Similarly, the spectra for Andalusian red ochre, atramentum, and sepia show

comparable shapes across both datasets.

Another publicly available database includes reflectance spectra obtained with

spectrometers such as the GorgiasUV (200–1000 nm) and InGaAs (900–1700 nm)

spectrometers [256]. This database contains seven black pigments or inks also

present in our dataset: ivory black, vine black, bone black, lamp black, iron gall

ink, Andalusian red ochre, and sepia. Again, the first four were grouped as carbon-

based inks, exhibiting flat spectra between 400 and 1700 nm. The iron gall ink be-
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comes transparent in the infrared, and it is interesting to see how the shape of the

spectra in the 900-1700 nm range is completely influenced by the support, since in

this case it was deposited on cardboard. Sepia ink becomes transparent beyond 1500

nm, displaying a common feature with the sepia spectra in our database, as shown

in Figure 3.7 upper left plot.

Overall, our spectral data aligns well with existing databases of inks and black

pigments, supporting the reliability of this dataset for further analysis and applica-

tions.

3.4.3 Principal Component Analysis (PCA)

PCA is a widely used dimensionality reduction technique in spectral data anal-

ysis, often employed for assessing the separability of datasets. For each minicube,

the average spectrum was calculated for each class, and PCA was performed using

these averaged spectra. Two principal components (PCs) were selected based on

the Variance Accounted For (VAF) metric, identifying the inflection point where the

VAF versus PCs curve flattens. PC1 explains 85.0% of the total variance, and PC2

explains 11.0%, resulting in a combined VAF of 96% with just two components. Fig-

ure 3.9 presents the score plots for PCs 1 and 2, showing inks and pencil in the left

plot and supports in the right plot. Each class is represented by a unique color, and

subsets are distinguished by different symbols.

In the left plot, the point clouds for pure metallo-gallate inks (dark blue) and

their mixtures with earth (black) overlap, indicating that their spectra are highly

similar. Similarly, pure carbon-based inks (pink) cluster closely with their mixtures

with metallo-gallate ink (red), sepia (purple), or earth (yellow). These two groups,

metallo-gallate-based and carbon-based inks, form distinct, separable clusters. How-

ever, the clouds for pure sepia (teal) and its mixture with metallo-gallate ink (light
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Figure 3.9: Score plots of PCA for inks and pencil (left) and supports (right). Colors
indicate different classes, and symbols denote different subsets.

green) lie between these two clusters, reflecting intermediate spectral characteristics.

Pencil samples, in contrast, form a more or less distinct cluster in a separate region.

As for the standard deviation in the mean spectra plot, a high heterogeneity is found

in the PCA due to different factors, including differences in spectra between mock-

ups and historical documents, the application of the same inks on different supports,

variations in ink recipes, and the grouping diverse inks within the same class. For

example, the minicubes from the Manuscripts of the Provincial Historical Archive

of Granada (depicted as circles) exhibit minimal variability, forming a concentrated

cluster. A similar pattern is observed for the artificially aged mock-ups: they form

two distinct clusters based on the type of ink and are separated from the non-aged

mock-ups. In this case, the support does not influence these clusters, as all inks were

applied on hemp paper. However, samples from other subsets and classes are more
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dispersed, often overlapping in the PCA space.

In the right plot, hemp samples are clearly separated from other supports, form-

ing a distinct cluster. However, notable differences can be observed between mock-

ups and historical document samples of the same support types. For instance,

cotton-linen samples (blue clouds) and linen samples (red clouds) from mock-ups

and historical documents form separate clusters despite belonging to the same class.

Parchment samples (green clouds) are distributed across a wider area, also showing

a clear distinction between mock-ups and historical documents. In contrast, cotton

samples are tightly grouped, reflecting the limited variability within this class, as

there were no samples with pure cotton support in the historical documents. Overall,

the results of the PCA analysis show that separability among classes is not enough

for tackling material identification using PCA components as input. They also sug-

gest that the database is wide enough to cover for a fair amount of the variability

found in both mock-ups and historical document samples.

3.5 Usage Notes

Example code, available on GitHub [244], is provided in both MATLAB and

Python to perform the following tasks:

• Exploration of the general content of the minicube stored as an HDF5 file, in-

cluding access to metadata stored as attributes.

• Extraction of the HSI data from the dataset named DataCube, along with rele-

vant attributes as variables in the workspace or environment.

• Visualization of false-color RGB images derived from selected spectral bands.

• Extraction of the GT data.
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Figure 3.10: False-color RGB images (left) created using bands [645, 565, 440] nm
(top) and [1700, 1300, 1100] nm (bottom), GT image (center), and the mean spectral
reflectances with standard deviation for the labels present in the GT, extracted from
the minicubes ‘00007-VNIR-mock-up.h5’ and ‘00007-SWIR-mock-up.h5’ (right).

• Calculation of the mean and standard deviation for each class in the GT using

the hyperspectral data from the DataCube.

• Plotting of the mean reflectances and their standard deviations for both the

VNIR and SWIR minicubes.

To execute the MATLAB code, a MATLAB version R2011a or later is required,

along with the Image Processing Toolbox. For Python, the following packages are

needed: h5py, numpy, pillow, and matplotlib.pyplot.

The resulting images based on the provided code are shown in Figure 3.10, using

the minicubes ‘00007-VNIR-mock-up.h5’ and ‘00007-SWIR-mock-up.h5’.

For the complete HYPERDOC database of 1681 samples, which is available on-

line on the Color Imaging Lab group’s website [225], a user-friendly visualization

tool has been developed in Python. This tool is currently under development for the

inclusion of more options related to material identification and will be released in its

final form in the near future.
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3.6 Conclusions, limitations, and future perspectives

One limitation of the HYPERDOC database is the imbalance between the mock-

up samples and those derived from historical documents. Mock-ups offer a con-

trolled and reproducible framework ideal for training robust algorithms and inves-

tigating specific interactions between inks and supports. Simultaneously, the inclu-

sion of historical samples provides valuable insights into real-world conditions of

aging and degradation, broadening the applicability of the database to practical sce-

narios. Efforts have been made to include a broader range of historical materials;

however, access to such documents remains a challenge due to their fragile nature

and restricted availability. Moreover, the aging processes of inks and supports, along

with their interactions and the uncertainty about the recipes used to prepare inks and

supports in historical documents introduce further variability in the spectral proper-

ties of these materials, which are challenging to model. These processes may result

in spectral features that diverge from those of mock-ups, potentially reducing the

database’s generalizability to other historical samples of different periods and ori-

gins. The complete HYPERDOC database [225] includes additional historical sam-

ples to address this limitation. However, a drawback is that GT data and/or material

information are not available for all the samples.

Additionally, identifying the materials present in historical samples often re-

quires complementary analytical techniques. Without these methods, it is difficult

to precisely determine the composition of certain inks, pigments, or supports, which

can affect the accuracy of the GT annotations.

The GT annotations in this database were generated using a semi-automatic ap-

proach, including manual corrections, which ensures a reasonable degree of accu-

racy. However, human involvement may still introduce occasional inconsistencies,
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particularly when defining boundaries between inks and supports. Interactions be-

tween inks and supports, such as penetration or blending at the interface, create

transitional zones where both materials are mixed, complicating precise annotation.

To address this challenge, algorithms could be employed to erode or expand the

annotated ink regions in the GT.

Future efforts should focus on addressing these limitations by expanding the

database to include more historical samples with greater material variability and

developing more robust and automatic methods for GT annotation that minimize

human error, although this matter is still unsolved in the literature so far.

Despite its limitations, the HYPERDOC database is a unique and comprehensive

resource that integrates mock-ups and historical documents, supporting diverse ap-

plications as previously demonstrated. It bridges the gap between the scientific and

conservation communities, promoting the adoption of advanced techniques such as

HSI, which remain relatively novel in the field. By fostering interdisciplinary collab-

oration and enabling the development of innovative methodologies, HYPERDOC

contributes to the analysis of historical documents, ensuring its ongoing relevance

and advancing the safeguarding of our CH.

3.7 Code Availability

Hyperspectral data capture and reflectance correction were performed using

Spectronon Pro 3.5.5. MATLAB code for converting from BIL to MAT format, from

MAT to HDF5, and for extracting GT data, along with additional MATLAB and

Python code for the visualization and analysis of minicubes, is available on GitHub:

[244].
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CHAPTER 4

Selection of optimal spectral
metrics for classification of inks

in historical documents using
HSI data





4.1. Introduction

In this chapter, three methods for selecting optimal spectral metrics for classifying

historical black inks using HSI data are presented. It is the result of specific objective

O3 of this PhD thesis.

This study has been published as:

A. B. López-Baldomero*, M. Martínez-Domingo, E. M. Valero, R. Fernández-

Gualda, A. López-Montes, R. Blanc-García, and T. Espejo, “Selection of optimal

spectral metrics for classification of inks in historical documents using hyperspectral

imaging data,” in Optics for Arts, Architecture, and Archaeology (O3A) IX, vol. 12620,

pp. 99–111, SPIE, 2023.

4.1 Introduction

As stated in chapter 1, material characterization provides valuable information,

and specifically ink analysis serves as an essential tool for codicologists and histori-

ans, who explore both the content and material composition of manuscripts to gather

this information [31]. In general, the study of inks provides significant insights into

the sociocultural and technological changes in historical document production [30].

Previous studies have evaluated different spectral metrics, especially in the con-

text of pigment identification in artworks (as detailed in subsubsection 2.5.1.1). Some

research has focused on identifying modern ballpoint pen inks [129,223,258], partic-

ularly in the context of forensic analysis [221, 222, 259]. However, prior to our study,

the use of HSI for identifying inks in ancient manuscripts remained unexplored, in-

cluding the application and evaluation of spectral similarity metrics for this purpose.

Three methods were used for selecting optimal spectral metrics for the purpose
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of classifying inks of historical interest using HSI in the VNIR and SWIR spectral

ranges. The metrics tested were RMSE [260], SAM [261], SID [262], SIDSAM

[263], Normalized Spectral Similarity Score (NS3) [264], and JMSAM [265]. Ini-

tially, a performance comparison of these spectral metrics was conducted using

mock-up samples to determine the most suitable ones. The best three metrics were

used to classify historical samples of ancient manuscripts.

This work represents the first attempt to apply spectral imaging for the auto-

matic classification of inks in historical documents, serving as an initial approach to

the problem. It adopts a simplified perspective, using spectral metrics to conduct a

preliminary study of the problem’s complexity.

4.2 Methodology

4.2.1 Hyperspectral image capture

Hyperspectral images of mock-ups and historical samples were acquired in the

VNIR and SWIR ranges following the capture process and post-processing described

in subsection 3.2.2 and subsubsection 3.2.3.1.

4.2.2 Mock-up samples and reference libraries

Eight mock-up samples of written words were made using six pure inks plus

two mixtures, applied on Canson® watercolor paper. These samples are part of the

complete HYPERDOC database but are not included in chapter 3 as they were not

spatially registered. The pure inks used in the study were Iron Gall Ink (IGINK), Vine

Black (BVINE), Ivory Black (BIVOR), Bone Black (BBONE), Lamp Black (BLAMP),

and Sepia (SEPIA), while the mixtures used were Lamp black with Iron Gall Ink (IG-
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ILA), and Sepia with Iron Gall Ink (IGISE). From now on, the acronyms in brackets

will be used for brevity. All the inks used in this study were self-made according to

ancient recipes [236, 237].

Two spectral reflectance libraries were obtained, one for each spectral range, in-

cluding these eight inks. The libraries were generated by averaging the spectral re-

flectances of pixels within the central zone of the strokes, extracted using the imerode

function implemented in MATLAB®. This approach aimed to minimize the influ-

ence of the support in the spectra.

The values of the spectral metrics in the mock-up samples were then studied to

determine the classification confidence threshold for each metric. This was achieved

by comparing pixel-wise the entire strokes with the reference libraries, and using

bar graphs to determine the similarity metric threshold value for which a reliable

classification could be achieved. In addition, the score maps, i.e. the spectral met-

rics value spatial distributions obtained comparing each pixel of the image with the

reference library, were calculated. In total, eight score maps were obtained for each

metric studied, corresponding to each cube of the mock-up samples.

4.2.3 Spectral similarity metrics

Spectral similarity metrics quantify the degree of spectral similarity between two

spectra. In HSI, these metrics play a crucial role in calculating the similarity between

each pixel in an image and a reference spectrum associated with a particular mate-

rial. In the context of CH, the selection of spectral metrics is significant as they need

to be sensitive to variations in the magnitude of spectra, especially when dealing

with mixed or aged pigments [126]. Six similarity metrics have been studied, which

are described below. It is important to note that lower values of these metrics in-

dicate a higher degree of spectral similarity between the reference and test spectra.
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Additionally, all metrics are calculated pixelwise, comparing each pixel’s spectrum

in the hyperspectral image, t(x, y, λ), to the reference spectra in the library, r(λ).

4.2.3.1 RMSE

The Root Mean Square Error (RMSE) is based on a Euclidean measure of the

error between the reference, ri, and the test spectrum, ti (see Equation 4.2.1) [260].

RMSE =

√√√√ 1

N

N∑
i=1

(ti − ri)2 (4.2.1)

Where ti represents the value of the test spectrum at the ith spectral band, and

ri corresponds to the value of the reference spectrum at the ith spectral band. N

denotes the number of spectral bands.

4.2.3.2 SAM

The Spectral Angle Mapper (SAM ) has been widely used in the CH domain for

pigment and ink classification [129,130,266], due to its fastness and ease of use. This

metric measures the angle between two spectra, treated as N-dimensional vectors in

hyperspace, being N the number of spectral bands [261] (see Equation 4.2.2). This

angle does not change with the modulus of the vectors, thus being insensitive to

magnitude shifts in the spectrum.

α = cos−1

( ∑N
i=1 tiri√∑N

i=1 t
2
i

√∑N
i=1 r

2
i

)
(4.2.2)

In Equation 4.2.2, ri is the reference spectrum at the ith spectral band, ti is the test

spectrum at the ith spectral band, N is the number of bands, and α is the spectral

angle in radians.
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4.2.3.3 SID

Spectral Information Divergence (SID) measures the similarity between two

spectra based on the probabilistic discrepancy between them [262]. The probabil-

ity distribution of both spectra studied is expressed as:

pi =
ti∑N
i=1 ti

(4.2.3)

qi =
ri∑N
i=1 ri

(4.2.4)

Being ri the reference spectrum at the ith spectral band, ti the test spectrum at the

ith spectral band, and N the number of bands. SID is then calculated as:

SID =
N∑
i=1

pilog
(pi
qi

)
+

N∑
i=1

qilog
(qi
pi

)
(4.2.5)

4.2.3.4 SIDSAM

This metric merges as a combination of SID and SAM . There are two methods

to obtain this metric (Equation 4.2.6 and Equation 4.2.7):

SIDSAM = SID · tan(SAM) (4.2.6)

SIDSAM = SID · sin(SAM) (4.2.7)

SIDSAM calculates the perpendicular distance between the test and reference

vectors or spectra [263]. It improves the spectral discriminability by making dissim-

ilar spectra more distinctive and similar spectra more comparable. It has been used
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to assess spectral characteristics of dye- and pigment-based ink prints [267], and for

modern ink classification [129].

4.2.3.5 NS3

The Normalized Spectral Similarity Score (NS3) [264] combines both spectral an-

gle and amplitude information, enhancing the effectiveness and accuracy of search-

ing for matches within the reference library. This method is based on the Euclidean

and SAM distances between two spectra (Equation 4.2.9). First, the Euclidean dis-

tance is computed (Equation 4.2.8).

AEuclidean =

√√√√ 1

N

N∑
i=1

(ti − ri)2 (4.2.8)

Being ri the reference spectrum at the ith spectral band, ti the test spectrum at the

ith spectral band, and N the number of bands. The spectral angle (SAM ) in radians

α is computed as in Equation 4.2.2, and NS3 is calculated as:

NS3 =
√

A2
Euclidean + (1− cosα)2 =

√
A2

Euclidean + cGFC2 (4.2.9)

Being cGFC the complement of the Goodness-of-Fit Coefficient, a spectral metric

that will be further used in chapter 6 and chapter 7.

4.2.3.6 JMSAM

The Jeffries-Matusita (JM ) [265] method is a pairwise distance primarily em-

ployed in binary classification tasks. Several extensions of JM have been proposed

for its use in multiclass classification [268]. The most common approach involves

computing the average JM distance for all pairs of classes [269]. This metric has

been applied to analyze dye- and pigment-based prints [267], and for modern ink
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classification [129]. In this metric, the JM and SAM algorithms are orthogonally

projected by using either a sine (Equation 4.2.10) or a tangent (Equation 4.2.11) func-

tion.

JMSAM = JMD · sin(SAM) (4.2.10)

JMSAM = JMD · tan(SAM) (4.2.11)

Being JMD the Jeffries-Matusita distance, which can be calculated as:

JMD = 2(1− e−B) (4.2.12)

B =
1

8
(µt − µr)

T

[
σt + σr

2

]−1

(µt − µr) +
1

2
ln

[ ∣∣σt+σr

2

∣∣√
|σt| |σr|

]
(4.2.13)

µt and µr are the mean of the test and reference spectra, σt and σr are the covari-

ance of the test and reference spectra.

4.2.4 Selection of optimal metrics for classification

Three methods are tested to determine the optimal spectral similarity metrics.

4.2.4.1 Method 1: Study of the confidence thresholds for each metric

After obtaining the spectral metric values by comparing the spectral reference

libraries with the mock-up samples on a pixelwise basis, confidence thresholds were

established for each metric. These thresholds were determined by computing the

average metric values when comparing the samples with the inks present on them

across all mock-up samples, taking the mean across all studied samples. A metric
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value below the confidence threshold indicates a reliable classification. Based on

this threshold, the percentage of pixels falling below these values was calculated.

The optimal metric was selected as the one yielding the highest percentage of pixels

below the confidence threshold.

4.2.4.2 Method 2: Evaluation of the classification

From the spectral metric values obtained comparing our spectral libraries with

the mock-up samples, the classification maps were generated by labeling each pixel

in the images with the material from the spectral library that gives the lowest metric

value (maximum similarity criteria). This was done for all eight mock-up samples,

considering the six spectral metrics and the two ranges studied. Then, the classi-

fication performance was evaluated using the accuracy and F1-score, calculated as

detailed in subsubsection 2.5.1.2. The mean and standard deviation of both evalu-

ation metrics were obtained for all the samples studied and each of the six spectral

metrics. From these results, the spectral metrics providing the highest values of these

evaluation metrics were selected.

4.2.4.3 Method 3: Estimation of the Probability of Spectral Discrimination (PSD)

and the Power of Spectral Discrimination (PWSD)

In a third approach, the Probability of Spectral Discrimination (PSD) and the

Power of Spectral Discrimination (PWSD) were calculated to determine the optimal

spectral metric [270, 271].

The PSD calculates the probability for all spectra, {sj}Jj=1, in a reference library

to classify a test spectrum, t, as:
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PSD =
m(t, si)∑J
j=1 m(t, sj)

for i = 1, . . . , J (4.2.14)

Where
∑J

j=1 m(t, sj) is the normalization constant and m(, ) is any of the previ-

ously defined spectral similarity metrics. The PSD was calculated comparing all the

spectra in the reference library. The higher the PSD, the easier to discriminate one

spectrum from another. This allows the comparison of spectral metrics in terms of

their ability discriminating the spectra in the libraries.

The PWSD evaluates the effectiveness of spectral similarity metrics. It is for-

mulated based on the capacity to differentiate one pixel from another compared to

a reference pixel (spectra), denoted as r. The PWSD quantifies the effectiveness

of distinguishing between two spectra, represented by si and sj , in relation to the

reference spectra r. The spectral discrimination power is defined as follows:

PWSD = max

{
m(si, r)

m(sj, r)
,
m(sj, r)

m(si, r)

}
(4.2.15)

PWSD equals 1 if si = sj and, for certain spectral metrics, when both spectra

are equidistant from r. For two distinct spectra at different distances from r, PWSD

cannot be less than 1, as one spectrum will always be closer to r than the other, en-

suring that one of the compared ratios exceeds 1 (the maximum), while the other

remains below. Consequently, values closer to 1 indicate a lower discriminative abil-

ity of the spectral similarity metric for distinguishing r based on the two spectra. By

analyzing PWSD, the degree of spectral differentiation can be quantified, helping

to identify potential classification ambiguities.
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Figure 4.1: False RGB images (645, 565, 440 nm) from the VNIR capture of the
manuscripts, highlighting minicube extraction areas: (A) deed of sale for a shop,
(B) restitution of properties.

4.2.5 Historical samples

Six minicubes (three in the VNIR range and three in the SWIR) extracted from two

15th-century manuscripts were used to classify historical inks by searching through

spectral libraries with optimal spectral metrics. These minicubes are part of the com-

plete HYPERDOC database but were not included in chapter 3 as they were not spa-

tially registered. The reason is that at the time this research began (see Figure 1.3 for

reference), the database was still in its early stages.

The manuscripts, known as Nasrid ‘Alāmas, originate from the Archive of the

Royal Chancellery of Granada and date to 1461 and 1485. The ‘alāma refers to a

short phrase written in official documents of medieval and early modern Arabic

chancelleries, that served both as validation and as a symbolic representation of the

sultan issuing the document.

The first manuscript analyzed is a deed of sale for a shop in the Granada souk

(Figure 4.1 (A)), while the second is a restitution of properties to the heirs of a de-

ceased nobleman (Figure 4.1 (B)). The inks used in these documents consist of a

mixture of iron gall ink and an unidentified organic component, applied on parch-
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Figure 4.2: Spectral reflectances from the reference libraries and the support in the
(A) VNIR range, and (B) SWIR range.

ment and Arabic paper [22]. The support material was identified using optical

microscopy and high-resolution Variable Pressure Scanning Electron Microscopy

(VPSEM), while VPSEM was also employed to analyze the inks. However, as this

study is still ongoing, the specific organic component in the mixed ink has not yet

been determined.

4.3 Results

In Figure 4.2, the spectral reflectances of the reference libraries and the support

are shown for both VNIR and SWIR ranges. It can be seen that spectral reflectance

of carbon-based inks (BVINE, BIVOR, BBONE and BLAMP) have a similar shape

in both ranges. Iron gall ink, sepia and mixtures are clearly separated from carbon-

based inks in the SWIR range, which a priori could be an advantage for the classifi-

cation.

The results for the three proposed methods for selecting optimal spectral metrics

are presented in the following subsections.
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Figure 4.3: Score maps obtained with the SAM metric for the iron gall ink sample
compared with the eight inks of the library in the VNIR range.

4.3.1 Method 1: Study of the confidence thresholds for each metric

As an instance, the score maps obtained using the SAM metric for the iron gall

ink in the VNIR range are shown in Figure 4.3. The lowest value of SAM is achieved

when comparing the cube with the IGINK of the reference library, which is the only

ink present in the sample. In addition, it is interesting to highlight the effect of the

stroke edges, which tend to have higher metric values. This could be due to the

interaction of the ink and the support.

In order to study the score maps for each metric and spectral range, we calculated

the average and standard deviation when comparing the ink present in the cube with

the correct ink of the reference library (ip), as well as with the other inks not present

in the cube (inp). This analysis was performed for all eight mock-up samples and

the results are represented in bar graphs. The results for JMSAM and SIDSAM

metrics, which provided the highest and lowest variances, are shown in Figure 4.4.
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Figure 4.4: Mean (bars) and standard deviation (lines) of metrics values in the VNIR
and SWIR ranges for (A) JMSAM , and (B) SIDSAM , comparing the ink present in
the cube with the correct ink in the reference library (ip) and the incorrect inks (inp).

By examining the bar graphs, we can compare the behavior of different inks in

both spectral ranges. In the SWIR range, the IGINK and the mixture with sepia

(IGISE) exhibit the greatest dissimilarity when compared to the other inks. This in-

dicates that they would be relatively easier to distinguish from the rest. Conversely,

BIVOR would present challenges in differentiation from the other inks. In the VNIR

range, distinguishing BIVOR and BBONE from the rest of inks would be particularly

challenging, whereas the mixture IGILA would be more readily recognizable. It is

interesting to note that in the VNIR range, for some inks like BVINE and IGINK,

the metrics values obtained when comparing the cube pixels with the ink that is

present are higher than when comparing them with the inks that are not present.

This suggests that differentiating these inks from the others in the library can be

quite challenging.

From these results, the average of the metrics values when comparing with the

inks present in the cubes was calculated for all the mock-up samples (mean of the

dark green and dark orange bars in Figure 4.4) and established as the confidence
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Table 4.1: Confidence thresholds for the six metrics in both spectral ranges.

RMSE SAM SID SIDSAM NS3 JMSAM
VNIR 0.1806 0.1993 17.5593 5.6627 0.1831 0.0041
SWIR 0.0869 0.1500 7.1928 2.6943 0.0911 0.0014

Table 4.2: Percentage of pixels with metrics values lower than the confidence thresh-
old. Mean for all the mock-up samples.

RMSE SAM SID SIDSAM NS3 JMSAM
VNIR 78.93 83.61 96.13 99.47 79.00 90.12
SWIR 86.26 83.91 92.22 98.99 86.99 94.02

thresholds (shown in Table 4.1). A metric value under these confidence thresholds

indicates a reliable classification. As shown in Figure 4.4, these thresholds would be

effective for certain inks but may not be suitable for all of them.

For the mock-up samples, the percentage of pixels with metrics values lower than

the confidence threshold indicated in Table 4.1 were calculated (Table 4.2). A higher

percentage indicates better performance.

From Table 4.2, we can see that SIDSAM outperformed the other metrics in both

spectral ranges. RMSE and SAM exhibited the lowest percentage of pixels under

the confidence thresholds for the VNIR and the SWIR range respectively, closely

followed by NS3.

4.3.2 Method 2: Evaluation of the classification

From the score maps, the classification maps were obtained. In Figure 4.5 the clas-

sification maps for the iron gall ink in the SWIR range are shown for the six spectral

metrics studied. Once again, the effect of the edge of the strokes can be observed in

this Figure. For all the metrics studied the central area of the stroke is correctly clas-

sified as IGINK, while the edges are classified as a mixture with sepia (IGISE). This

phenomenon is observed consistently across the other mock-up samples as well.
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Figure 4.5: Classification maps for the iron gall ink sample in the SWIR range.

Table 4.3: Mean (standard deviation) of accuracy and F1-score for all the inks studied
and the six spectral metrics.

RMSE SAM SID SIDSAM NS3 JMSAM

VNIR
Accuracy 0.4191 0.4442 0.4147 0.4282 0.4235 0.3903

(0.2650) (0.2520) (0.2627) (0.2587) (0.2650) (0.2359)

F1-score 0.5550 0.5814 0.5497 0.5652 0.5610 0.5225
(0.2653) (0.2625) (0.2601) (0.2480) (0.2644) (0.2467)

SWIR
Accuracy 0.2871 0.3210 0.2857 0.3110 0.2928 0.3040

(0.2606) (0.2553) (0.2626) (0.2567) (0.2562) (0.2680)

F1-score 0.3991 0.4427 0.3987 0.4323 0.4064 0.4276
(0.2271) (0.2242) (0.2301) (0.2251) (0.2208) (0.2354)

The mean and standard deviation of accuracy and F1-score (computed as de-

scribed in subsubsection 2.5.1.2) for the classification of all mock-up samples using

both libraries are shown in Table 4.3 for each spectral metric. From Table 4.3, it can

be observed that the metric that provided the highest accuracy and F1-score for both

spectral ranges was SAM . This is consistent with the results found by Devassy et

al. [129]. They conducted a comparative analysis of five similarity metrics to as-

sess their ink classification capabilities: SAM , SCM , ED, SID, and BE, obtaining a
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higher accuracy with the SAM metric. In addition, the VNIR range showed higher

values of accuracy and F1-score compared to the SWIR range, which could be unex-

pected looking at the bar graphs of Figure 4.4. This difference in performance could

be attributed to the fact that in the SWIR range, certain inks such as IGINK and

SEPIA become transparent, while carbon-based ink do not. As a result, the spec-

tral difference between these two groups is more pronounced. Nevertheless, when

it comes to classification, the spectra of those inks which are transparent in SWIR

are very similar because they are influenced by the support, making them more dif-

ficult to discriminate both from each other and from the support itself. This can

be observed by comparing the spectrum of the support (SUPP) with those of the

inks (IGINK, IGISE, IGILA, and SEPIA) in Figure 4.2, particularly in the 1400-1700

nm range. The same applies to carbon-based inks, which have similar spectra. In

general, the classification results show relatively low accuracy, with performance

around 50% or even lower across all metrics. Several factors may contribute to this.

First, the borders of the strokes present a challenge, as variations in the reflectance

spectra in these areas make classification more difficult compared to the central part

of the strokes. Another factor is the simplicity of the method used, as we are re-

lying on spectral similarity metrics. Additionally, differentiating between a large

group of inks, making it a multiclass problem with a total of nine classes, is challeng-

ing, particularly when some inks are spectrally very similar, such as BVINE, BIVOR,

BBONE, and BLAMP, all carbon-based inks, as shown in Figure 4.2. These prelimi-

nary results helped guide our approach to the future classification work, presented

in chapter 5, where we grouped the different classes.
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Table 4.4: Ratio of PSD values between the inks not present in the sample and the
ink that is present.

Ink RMSE SAM SID SIDSAM NS3 JMSAM

VNIR

IGINK 6.16 3.12 4.47 1.92 6.16 3.73
BVINE 5.21 5.87 3.97 3.77 5.21 4.09
BIVOR 6.04 9.58 4.27 6.85 6.04 5.36
BBONE 5.89 7.39 5.44 6.63 5.89 5.40
BLAMP 7.10 13.38 8.10 17.66 7.10 9.55
SEPIA 15.52 16.32 51.39 128.46 15.52 32.68
IGILA 18.49 12.93 69.76 142.44 18.49 53.17
IGISE 11.10 4.58 20.68 17.43 11.10 20.12

SWIR

IGINK 35.92 31.27 404.03 3359.76 35.92 635.55
BVINE 17.35 5.74 25.71 32.61 17.35 39.11
BIVOR 18.07 9.93 31.62 52.75 18.07 52.97
BBONE 23.65 13.69 58.08 138.61 23.65 115.88
BLAMP 4.09 4.90 4.22 6.44 4.09 4.20
SEPIA 27.11 36.80 263.71 2556.92 27.11 226.05
IGILA 20.46 45.95 143.29 1639.72 20.46 198.47
IGISE 104.91 101.11 4015.00 100515.16 104.91 12077.51

4.3.3 Method 3: Estimation of the PSD and the PWSD

Table 4.4 presents the ratio between the PSD values of the inks not present in

the sample and the PSD value of the ink that is actually present. A higher value in

this division indicates a greater probability of spectral discrimination between the

ink present in the sample and the other inks. The metric providing the highest value

for each ink has been highlighted in bold.

The results shown in Table 4.4 indicate that depending on the ink being classi-

fied, some metrics will provide a higher probability of discrimination than others.

In general, higher probabilities are obtained in the SWIR spectral range, particularly

with the SIDSAM metric which provided significantly higher values for inks such

as SEPIA and the two mixtures. In this range, the JMSAM and SIDSAM metrics

provided the best values. In the VNIR range, some carbon-based inks showed the
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best results with SAM , while SIDSAM provided the best values for other three

inks. From the evaluation of the PWSD, the results showed that in the VNIR range

the metric that provided the highest PWSD was JMSAM , followed by SIDSAM

and SID. RMSE and NS3 metrics performed the worst in terms of PWSD in this

range. In the SWIR range, the SIDSAM metric outperformed all the other met-

rics, providing 5 times better results than the next best metric, which was JMSAM .

Again, RMSE and NS3 provided the worst results. The detailed results are not

presented here due to the large volume of data generated, as each spectrum in the

spectral library was compared with all other spectra in the library and with each of

the studied minicubes, across every metric and both spectral ranges.

Summarizing the results of the PSD and PWSD metric assessment methods,

SIDSAM and JMSAM were selected as optimal metrics.

4.3.4 Optimal metrics applied to historical samples

The optimal spectral metrics, selected according to the three approaches dis-

cussed above, were applied to three fragments of historical documents. The selected

metrics were SIDSAM from method 1 and 3, SAM from method 2, and JMSAM

from method 3.

In both spectral ranges (see Figure 4.6 and Figure 4.7), all the inks present in

the historical manuscripts were classified as mixture of iron gall ink with sepia or

lampblack. This is consistent with previous studies on these manuscripts [22], which

identified an organic component mixed with iron gall ink. In addition, in the second

minicube, some pure iron gall ink was found in the central area of the stroke, which

could be attributed to irregularities in the ink composition. In the SWIR range (see

Figure 4.7), the first and third minicubes were primarily classified as IGISE with

SAM , while SIDSAM and JMSAM classified them as IGILA. This discrepancy
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Figure 4.6: Classification maps of historical manuscripts using SAM, SIDSAM and
JMSAM metrics in the VNIR range.

could be attributed to the fact that SAM does not consider magnitude shifts in the

spectrum. In the VNIR range (see Figure 4.6), the results obtained with the three

metrics were more comparable.

4.4 Discussion and conclusions

Three methods for selecting optimal spectral metrics for the purpose of classify-

ing historical inks are used to evaluate six spectral similarity metrics. Hyperspec-

tral images of mock-ups and real historical samples were acquired in the VNIR and
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Figure 4.7: Classification maps of historical manuscripts using SAM, SIDSAM and
JMSAM metrics in the SWIR range.

SWIR ranges. A comparative of the metrics was conducted using mock-ups to de-

termine the most suitable ones. The selected metrics were applied to identify the ink

present in samples of ancient manuscripts.

From the study of the mock-ups, considering the confidence thresholds selected,

SIDSAM outperformed the other metrics in both spectral ranges. Considering the

classification performance, the metric that provided the highest accuracy and F1-

score for both spectral ranges was SAM . These findings align with the results ob-

served in a previous study [129], although other study reported a superior perfor-

mance with SID in the task of classifying characters overlapped of two different
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inks [131]. Finally, from the study of the PSD and PWSD, SIDSAM and JMSAM

were selected as optimal metrics. SIDSAM , SAM , and JMSAM were used to clas-

sify three historical documents of the XVth century, providing consistent results in

the VNIR range. In conclusion, pooling the results of the three methods for evalu-

ating spectral similarity metrics proved to be effective in correctly identifying inks

in both mock-ups and historical samples, providing a simple and reliable approach

without requiring a priori information about the document under study.

Similarity metrics, such as those explored in this chapter, often perform less effec-

tively when the spectral differences between two samples are minimal. In chapter 5

the application of ML and DL methods for material identification is explored. In

addition, it is worth noting that the spectral reflectance of inks from different classes

may exhibit very similar spectra, and the same ink, due to aging, interaction with

the support, or other alterations, can display different spectra across different docu-

ments. Some studies have attempted to model pigment or ink aging [10,32,164,272],

but further efforts are required in this field. To address this challenge, it might be in-

teresting to include spectra of real aged samples (historical documents) in the spec-

tral library. Despite this, the results obtained in this study show promise considering

the simple methods used for material identification.
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CHAPTER 5

Ink classification in historical
documents using HSI and
machine learning methods





5.1. Introduction

In this chapter, five traditional supervised ML algorithms and one DL-based were

evaluated on HSI captures of both mock-up samples and historical documents to

classify three categories of inks: pure metallo-gallate inks, carbon-containing inks,

and non-carbon-containing inks. This work was conducted in collaboration with

Marco Buzzelli, from the University of Milano-Bicocca, Italy, who implemented the

DL-based model. It is the outcome of specific objective O4 of this PhD thesis.

This study has been published as:

A. B. López-Baldomero*, M. Buzzelli, F. Moronta-Montero, M. Á. Martínez-

Domingo, and E. M. Valero, “Ink classification in historical documents using hyper-

spectral imaging and machine learning methods,” Spectrochimica Acta Part A: Molec-

ular and Biomolecular Spectroscopy, vol. 335, p. 125916, 2025.

5.1 Introduction

As stated in chapter 4, the identification of inks is important for several reasons.

Historically, different types of inks have been used across cultures and periods, as

explained in chapter 2, section 2.1. The increasing attention to the material compo-

sition of manuscripts and ancient artifacts, in general, reflects a broader recognition

of their importance. This PhD thesis is focused on material identification from HSI.

However, unlike the techniques summarized in section 2.2, HSI spectra do not di-

rectly reflect the chemical composition of the materials in the document. This makes

additional processing necessary to gain access to this information, generally by re-

curring to classification algorithms.

The high dimensionality of HSI data makes it particularly suitable for integra-
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tion with ML models. The increasing use of ML techniques coupled to HSI data is

shown in recent studies for different purposes [65,273–275]. In particular, supervised

classification algorithms have been proposed for pigment classification, including

SVM, PLS-DA, DT, and DL techniques, as further explained in subsubsection 2.5.1.2.

However, most automatic algorithms developed for material classification in art-

works have been trained and tested primarily on mock-ups, i.e., controlled samples

created by researchers. As a result, these algorithms may not always perform ac-

curately when applied to real works of art, which can exhibit significant variability

due to aging, different states of conservation, and different compounds incorporated

into the recipe for a given material class.

In the context of document analysis, several studies have focused on identify-

ing contemporary inks using HSI in forensic analysis [221–223, 258, 259], as men-

tioned in chapter 4, as well as the analysis of pigments in illuminated manuscripts

[134, 161, 276]. However, to our knowledge, the only study that addressed the clas-

sification of historical inks using spectral metrics and a reference library was the

one presented in chapter 4 [224]. Thus, the classification of historical inks using

non-invasive techniques has received limited attention, particularly when relying

exclusively on HSI data.

To date, no study has investigated the automatic classification of historical inks

by using ML methods and HSI data. Therefore, the objective of this study was to

train and validate six state-of-the-art supervised ML models to automatically clas-

sify three types of inks: (1) pure metallo-gallate inks (MGP), (2) carbon-containing

inks (CC), which include pure carbon-based inks like ivory black or bone black, as

well as mixtures of carbon-based and metallo-gallate or sepia inks, and (3) non-

carbon-containing inks (NCC), which can be pure sepia or a mixture of MGP and

sepia. Throughout this study, the six algorithms will be divided into two groups:
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five in the group of traditional techniques, including SVM, KNN, Linear Discrimi-

nant Analysis (LDA), Random Forest (RF), and PLS-DA, and one in the group of DL

techniques. Given that all inks appear brownish or black in the visible spectrum,

hyperspectral images in the VNIR, from 400 to 1000 nm, and SWIR, from 900 to 1700

nm, ranges were captured, and low-level fusion was performed in the spectral di-

mension to enhance classification accuracy. Both mock-ups and historical documents

were included in the training and test sets.

In addition to the primary objective, PCA was used prior to classification for vi-

sualization of the separability of the classes and dimensionality reduction, compar-

ing the classification accuracy and running time with and without PCA. Parameter

optimization for the different models was also tackled, and for the traditional algo-

rithms, a novel post-processing step to increase the local consistency of the results

was developed. The full workflow for several traditional algorithms made their per-

formance comparable (only slightly worse) to that of the DL model. The decision to

use traditional or DL-based algorithms will then be made depending on the available

resources for computation at a given site and the availability of training data. The re-

sults of our study show that it is possible to perform ink identification and mapping

using only spectral information, thus adding to the evidence validating HSI as a key

non-invasive technology in the domain of historical document characterization and

preservation.
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5.2 Materials and methods

5.2.1 Mock-up and historical samples

Both mock-up and historical samples were used to train and test different ML

models.

The mock-up samples were extracted from the set of modern synthetic samples

presented in subsubsection 3.2.1.1. These included metallo-gallate inks, sepia, and

carbon-based inks, along with their mixtures, prepared according to different tra-

ditional recipes [236], and using materials of varying provenance to ensure a wide

range of variability. Two writing supports were used: parchment and hand-crafted

cotton-linen paper.

The historical documents were sourced from three different collections, as de-

tailed in subsubsection 3.2.1.2, all preserved in the Provincial Historical Archive and

the Royal Chancellery Archive of Granada, Spain.

Further details on the materials present in the mock-up and historical samples,

along with the associated labeling for the classification task, are provided in Ta-

ble 5.1. Additional information about the recipes used in the mock-up samples can

be found in subsubsection 3.2.1.1. Note that the exact recipes for the historical docu-

ments are unknown.

5.2.2 Hyperspectral image acquisition

Hyperspectral images of mock-up and historical samples were acquired in the

VNIR and SWIR spectral ranges as detailed in subsection 3.2.2, and reflectance hy-

percubes were generated as described in subsubsection 3.2.3.1.
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Table 5.1: Details of the supports, ink types, and corresponding labels for the sam-
ples used in the study.

Set Inks Label Supports

Mock-up
samples

Metallo-gallate - ferrous sulfate in different proportions MGP

Parchment

Cotton-linen

Metallo-gallate - FeSO4 + CuSO4 MGP
Metallo-gallate - FeSO4 + ZnSO4 MGP
Metallo-gallate - FeSO4 + pomegranate juice MGP
Metallo-gallate – FeSO4 + pomegranate juice +
myrtle leaves infusion MGP

Metallo-gallate - FeSO4 + earth pigment* MGP
Atramentum* MGP
Ivory black* CC
Bone black* CC
Lamp black* CC
Grape seed black* CC
Cherry black* CC
Bistre* CC
Metallo-gallate - FeSO4 + lamp black* in different proportions CC
Metallo-gallate - FeSO4 + bone black* in different proportions CC
Lamp black* + earth pigment* CC
Lamp black* + sepia in different proportions CC
Bone black* + sepia in different proportions CC
Sepia (from the ink sac of the animal) in different proportions NCC
Sepia in powdered form* NCC
Metallo-gallate - FeSO4 + sepia in different proportions NCC

Historical
documents

1st set (notarial
documents)

Metallo-gallate MGP

LinenMetallo-gallate + earth MGP
Carbon-based ink CC
Carbon-based ink + earth CC

2nd set (family
tree book)

Metallo-gallate + sepia NCC Cotton-linenCarbon-based ink CC
3rd set (lawsuits
of nobility) Metallo-gallate MGP Parchment

*From Kremer Pigmente GmbH.

5.2.3 Data pre-processing - Registration, sample extraction,

Ground Truth images, and data fusion

Data curation was performed on the reflectance hypercubes, which included spa-

tial registration of spectral data from both the VNIR and SWIR HSI cameras, extrac-

tion of representative areas containing support and one or two different types of

ink (referred to as minicubes), and the creation of GT images with per-pixel material
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identification for each minicube, as described in subsection 3.2.3.

An example of spatial registration is shown in the first row of Figure 5.1. Fig-

ure 5.1 d) and e) display the false-color images of the minicube in the VNIR (R =

645 nm, G = 565 nm, and B = 440 nm) and SWIR (R = 1600 nm, G = 1200 nm, and

B = 1000 nm) ranges. Figure 5.1 f) shows the GT image for the minicube, with the

presence of two different inks: metallo-gallate ink mixed with sepia (orange) and

carbon-based ink (yellow). The background pixels are represented in middle gray

(with RGB values set to 128).

After extracting the minicubes and building the GT images, the spectral data in

both ranges were fused. The fusion process is performed by integrating different

data sources to produce more useful and accurate information than any individual

data source [277]. In our case, a low-level fusion is performed, where the VNIR and

SWIR spectra are concatenated using the bands 400-950 and 955-1700 nm, respec-

tively, without further pre-processing [278]. This resulted in fused spectra with 261

bands. Although PCA could have been applied before data fusion for a mid-level

approach, this would carry the risk of discarding potentially important information

during dimensionality reduction [278], which could be critical for distinguishing ink

classes with overlapping spectral properties. Figure 5.1 g) shows the data fusion

result for a single pixel of metallo-gallate ink mixed with sepia (NCC group), illus-

trating the contribution of each range.

5.2.4 Training and testing sets

The training and test sets were extracted from a full dataset comprising 44 regis-

tered pairs of VNIR and SWIR documents described in subsubsection 3.2.1.2. From

these, 145 minicube pairs were extracted.

For our experiments, the documents were partitioned into two sets, so that the
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corresponding minicubes cover 75% of the total for training and 25% for test. Parti-

tioning at document level allows different minicubes extracted from the same docu-

ment to fall into the same subset. Such precaution prevents the introduction of bias

in the training-test split, avoiding test minicubes from having training counterparts

coming from the same document. In fact, this would create an unrealistic evaluation

scenario, where test performance does not reflect real-world performance.

For the training and test sets of traditional models, only ink spectra (according to

the GT images) were selected. This includes pixels from square regions with higher

ink deposition in mock-ups, as well as traces with variable amounts of ink, allowing

the models to account for these variations during classification, ensuring robustness

in the results. This does not exclude the possibility that a particularly dark support

pixel may have been included in the training data incorrectly, but this will not hap-

pen often because the GTs were carefully revised.

Following this procedure, we obtained the data distribution shown in Table 5.2.

Due to computational workload limitations, the number of pixels in the training

set was reduced by randomly subsampling at a 1:5 ratio after data shuffling. This

reduction was necessary for the parameter optimization of traditional algorithms, as

detailed in subsection 5.2.7. After the subsampling step, the number of pixels per

class was reduced without altering the class imbalance, as shown in Table 5.2.

Hence, the three classes are not balanced, with 44% of the spectra (pixels) in the

CC class, 31% in the MGP class, and 25% in the NCC class. It is worth noting that the

sum of the samples containing each class exceeds the total number of samples in the

table, as some samples include two types of ink instead of just one. For traditional

algorithms, class imbalance compensation by reducing the majority classes did not

improve the classification results in preliminary experiments.
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Figure 5.1: Registration process and outcome. a) and b) False color images in the
VNIR (R = 645 nm, G = 565 nm, B = 440 nm) and SWIR (R = 1600 nm, G = 1200 nm,
B = 1000 nm) ranges, respectively. c) Overlay of both images, with green indicating
areas belonging only to the SWIR capture. d) and e) False color images of registered
VNIR and SWIR minicubes, respectively. f) Ground Truth. g) Spectrum of an ink
pixel after data fusion.
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Table 5.2: Training and test data distribution for the three ink classes: pure metallo-
gallate inks (MGP), carbon-containing inks (CC), and non-carbon-containing inks
(NCC).

Train Test Total
Class Samples Pixels Pixels subsam. Samples Pixels Samples N. pixels
MGP 49 232534 46510 14 71349 63 303883
CC 45 330236 66114 17 210016 62 540252

NCC 28 188497 37833 7 24890 35 213387
Total 109 751267 150457 36 306255 145 1057522

5.2.5 Principal Component Analysis (PCA)

In this chapter, PCA is employed for both dimensionality reduction and visual-

ization purposes. First, it is used to reduce the amount of data introduced to the

classifiers to improve efficiency, comparing the accuracy and running time for the

training phases of the models with and without PCA, to determine whether PCA is

useful for reducing training time without compromising accuracy. To do that, the

optimal number of PCs was selected, and their projection coefficients were used to

train the classifiers, as explained in subsection 5.2.7.

Additionally, PCA is applied to the hyperspectral data of the full training set for

visualization, projecting the first principal components of each spectrum onto a 2D

graph. This approach facilitates a quick assessment of the separability of the data,

allowing for the visualization of the three separate classes and helping to identify

whether distinct clusters can be found, as explained in section 5.3.

5.2.6 Classification models

All models used in this study are supervised classification techniques, so prior

information about the data is required. These algorithms automatically identify

spectral signatures corresponding to various types of inks, facilitating the classifi-
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cation of unknown samples through the use of a reference or training dataset. As

explained before, two groups of algorithms are considered: the traditional and the

DL-based. For the implementation of the traditional models, MATLAB software

(release R2023a, The MathWorks, Inc., Natick, MA, USA) was used. For the imple-

mentation of the DL-based model, Python 3.10.12 was used with the PyTorch deep

learning framework at version 1.11.0.

Table 5.3 provides a summary of the five traditional algorithms (SVM, KNN,

LDA, RF, and PLS-DA) and the DL-based model, highlighting their fundamentals,

advantages, limitations, and the hyperparameters used for each. For details on hy-

perparameter optimization, please refer to subsection 5.2.7.
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5.2. Materials and methods

PLS-DA was implemented using the PLS_Toolbox (Eigenvector Research, We-

natchee, US). For the DL-based algorithm, neural parameters were initialized

through pretraining on a subset of the Microsoft COCO dataset [284]. Although this

dataset depicts a different type of visual content, scientific literature suggests that

exposing the model to diverse visual data can improve training speed and reduce

the amount of required training data [283]. To adapt the model architecture to our

problem, we replaced the first convolutional layer, which was originally designed to

process 3-channel RGB images, with a new convolutional layer capable of processing

261 channels (111 VNIR + 150 SWIR channels).

5.2.7 Optimization and post-processing for traditional algorithms

A k-fold cross-validation method with k = 5 was employed to optimize some of

the traditional model parameters using a subsampled training set (see Table 5.2).

This technique divides the dataset into training and testing subsets as explained in

chapter 3, subsection 3.4.1.

For KNN optimization, six distance metrics were evaluated: cityblock, Cheby-

chev, correlation, cosine, Euclidean, and Minkowski. First, the optimal distance met-

ric was determined using a number of neighbors K = 1. After that, a different number

of neighbors were tested with the optimal distance metric: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

20, 50, and 100. A low K value can lead to overfitting, where the model memorizes

the training data too closely and performs poorly on new, unseen data. On the other

hand, a high K value can result in underfitting, where the model fails to capture the

underlying patterns in the data adequately [280]. The performance metrics data ob-

tained with the subsampled training set in cross-validation (k = 5) can be found in

Table 5.4. From these results, the cosine distance and K = 1 were selected as the final

hyperparameters. Although comparable performance was achieved with K values
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5. Ink classification in historical documents using HSI and machine learning methods

Table 5.4: Micro-averaged accuracy of KNN with different distance metrics and
numbers of neighbors.

Model Distance metric Neighbors Micro-accuracy
KNN cityblock 1 0.9817
KNN chebychev 1 0.9764
KNN correlation 1 0.9794
KNN cosine 1 0.9845
KNN euclidean 1 0.9826
KNN minkowski 1 0.9826
KNN cosine 2 0.9817
KNN cosine 3 0.9832
KNN cosine 4 0.9825
KNN cosine 5 0.9823
KNN cosine 6 0.9816
KNN cosine 7 0.9813
KNN cosine 8 0.9808
KNN cosine 9 0.9802
KNN cosine 10 0.9798
KNN cosine 20 0.9759
KNN cosine 50 0.9685
KNN cosine 100 0.9613

of 3, 4, and 5 using cosine distance, a significant increase in K led to a noticeable

decline in performance.

For the SVM model, the box constraint was optimized using the following val-

ues: 0.8, 1, 1.2, 1.4, 1.6, 2, 4, 10, 30, 100, 200, and 300. In this case, to select the best

value, both micro-accuracy and training time were considered, an original param-

eterization approach proposed in this thesis. Increasing the box constraint results

in the SVM classifier assigning fewer support vectors, which leads to stricter data

separation, but also to longer training times [285]. After evaluating the training time

in cross-validation (k = 5) and micro-averaged accuracy (see Figure 5.2), a box con-

straint of 10 was selected.

After obtaining the classification maps as explained in subsection 5.2.8, a post-

processing cleaning procedure was applied. Considering the assumption that a con-
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5.2. Materials and methods

Figure 5.2: Training time in seconds (red line) and micro-averaged accuracy (bar
charts) after cross-validation (k = 5) for different values of the box constraint in the
SVM model.

tinuous stroke is composed of the same ink type, each pixel in the classification map

was reassigned to the most prevalent class within its surrounding neighborhood.

Neighborhood size was defined as 5% of the smallest dimension of the minicube.

The cleaning process was repeated over 10 iterations. These parameters were se-

lected based on preliminary tests that indicated optimal performance with mini-

mum computational time. The post-processing step is one of the contributions of

this study, and its impact on the performance of traditional models is described in

section 5.3.

5.2.8 Performance evaluation

To evaluate the performance on the test set, the confusion matrix was first em-

ployed to compute pixel-level performance metrics. The number of TP, FP, TN, and

FN were used to calculate micro-averaged accuracy and macro-averaged precision,

recall, accuracy, and F1-score, as described in subsubsection 2.5.1.2.
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5. Ink classification in historical documents using HSI and machine learning methods

Additionally, classification maps were generated for each minicube based on the

prediction results, with each class represented by a distinct color group to facilitate

the quick identification of misclassifications. The color code used is: purple for MGP,

yellow for CC, and orange for NCC. These maps were then visually inspected to

assess the consistency of the classifications.

5.2.9 Case study: binarization and classification of inks in two full

historical documents

After evaluating the different models, a practical application is presented to

demonstrate a complete classification process of a historical document using the

best-performing models (either traditional or DL-based).

For this purpose, two documents, one from the Royal Chancellery Archive and

another from the Provincial Historical Archive of Granada, were selected. The first

document is a page from a family tree book dating from between the 16th and 17th

centuries. This page is entirely handwritten, and the hands of two different people

can be identified in it, each using a particular ink. In this case, the reason for the

existence of two authors is unknown. In previous analyses conducted by the con-

servators in charge, it has been verified the presence of a CC ink and another ink

consisting of a mixture of MGP and sepia (NCC). Two minicubes extracted from this

document were used as part of the training set samples.

The second document is an Arabic notarial manuscript dated to 1499, detailing

a certificate of ownership for irrigated land in the Hotallar village. Such documents

are particularly valuable for classification studies, as they typically contain the hand-

writing of two individuals: a notary who writes the document and a judge who val-

idates it, adding a few words to indicate his agreement, each using different inks.
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5.2. Materials and methods

In this manuscript, the text and marginal note are written with a MGP-based ink

(MGP), and the judge’s validation with a pure carbon-based ink (CC). No minicubes

from this document were included in the training set.

For these two documents, an additional pre-processing step was required: the

binarization of the document. This step consists of separating the background (sup-

port) and foreground (inks), so that we can use only the ink pixels as input to the

classifiers. The spectral band with the highest contrast was selected using the SNR

metric as explained in subsubsection 3.2.3.4, and then Bradley’s Local Image Thresh-

olding algorithm [252] was applied. This method chooses a threshold T for each

pixel based on its surroundings:

T = µ ·
(
1− t

100

)
(5.2.1)

where µ represents the local mean intensity within the chosen window, and t is

the percentage of intensity values to be considered as foreground. In our case, we

used a window size of 1
3

of the image height times 1
3

of the image width, and t is set

to 10. We have selected this algorithm and parameters since they obtained the best

results in a previous study with similar documents [231].

After classifying the pixels that Bradley’s method selected as ink, we performed

the same cleaning post-processing as described in previous sections for the tradi-

tional algorithms.

To facilitate the evaluation of the classification maps, a GT was manually cre-

ated using GIMP 2.10.38 software based on the binarized images. It is important to

note that these GTs are intended to provide a general overview of the inks in the

areas rather than a precise pixelwise identification as performed for the minicubes,

as minor manual errors may be present. Therefore, our focus was on verifying that
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5. Ink classification in historical documents using HSI and machine learning methods

Figure 5.3: Workflow outlining the steps followed during the different phases of this
study.

the number of ink types and their relative spatial positions were consistent with the

findings from previous analyses of the documents.

Figure 5.3 presents the workflow of the methodology followed in this study, pro-

viding a visual representation of the procedures outlined in the preceding subsec-

tions. Optimization and cleaning post-processing are shaded in blue as they were

only performed for traditional algorithms.

5.3 Results and discussion

5.3.1 Average spectral reflectance of inks

In Figure 5.4, the average spectral reflectance and standard deviation of the three

ink classes from 400 to 1700 nm are presented, along with the average reflectance

of two of the writing supports, parchment and cotton-linen paper. The ink spectra
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5.3. Results and discussion

Figure 5.4: Average spectral reflectance and standard deviation for the three ink
classes in the full training set and two writing supports: non-carbon-containing inks
(NCC), carbon-containing inks (CC), pure metallo-gallate inks (MGP), parchment
(Parch), and cotton-linen paper (Cot-lin).

were extracted from the pixels marked as ink in the GT images of the full training set.

An offset can be observed in the 950 to 955 nm range, where data fusion occurred.

This is common when different sensors are used for capture and is caused by several

factors, including differences in spectral bandwidths, low signal-to-noise ratios, and

misalignments in the image setup, which slightly affect the BRDF [255]. In the visible

range, the reflectance patterns of the three inks are similar, showing very low values

and a flat shape (with a trend toward reddish color for the MGP ink). However, as we

explore into the near-infrared region, the reflectance of MGP ink diverges, increasing

notably as seen in previous studies [286,287]. This divergence is particularly evident

starting at approximately 1300 nm, where pure MGP ink becomes nearly transparent

(i.e. it lets the infrared radiation pass through almost completely, and what one sees

in this spectral range of the reflectance curve is the reflectance of the support). This
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5. Ink classification in historical documents using HSI and machine learning methods

near transparency distinguishes MGP ink from other inks, including CC ink and

sepia, as well as mixtures of inks with or without carbon content. Specifically, CC

inks absorb a significant amount of infrared radiation. However, pure sepia and

the mixtures of sepia and MGP ink (included in the NCC class) allow slightly more

infrared radiation to pass through but do not reach the near-total transparency seen

in the MGP class spectra.

In the spectral range from 400 to 1700 nm, the infrared region is particularly inter-

esting as molecular overtone and combination vibrations can be studied from it. Spe-

cific absorption bands within this range are associated with distinct chemical bonds:

the 1460–1570 nm range corresponds to N-H bond absorptions, the 1100–1400 nm

and approximately 1700 nm bands are attributed to C-H bond absorptions, and the

1450 nm band is linked to O-H bond absorptions [288]. Considering the shape of the

reflectance curves in Figure 5.4, MGP and NCC inks have two peaks in the infrared

range: one around 1300-1400 nm, and the other at 1650 nm approximately. In CC

inks, the latter peak can also be seen, but much less pronounced. Both peaks could

be reasonably assumed to correspond to C-H bond absorptions. However, in this

spectral range the absorption bands are weaker and more complex than those in the

mid-infrared region, so the application of chemometric techniques is highly suitable

to achieve a higher level of confidence in the classification of ink spectra.

5.3.2 PCA for visualization

In Figure 5.5, score plots of principal components (PCs) 1, 2 and 3 are presented.

Three PCs were selected by analyzing the Variance Accounted For (VAF) curve and

identifying the inflection point at which the curve flattens out. As seen in Figure 5.5,

84.4% of the total variance is explained by PC1, 12.1% variance is explained by PC2,

and 2.2% is explained by PC3, achieving a total of 98.6% VAF with just three compo-
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5.3. Results and discussion

Figure 5.5: Score plots of principal components (PC) 1, 2 and 3 for the three different
classes used in the study: non-carbon-containing inks (NCC), carbon-containing inks
(CC), pure metallo-gallate inks (MGP).

nents. In this Figure, the point cloud for MGP inks, represented in purple, seems to

form a separable cluster from that of CC inks, represented in yellow. However, the

point cloud for the NCC class is located between the two previous groups. It should

be noted that the CC group contains pure carbon-based inks as well as mixtures with

metallo-gallate and sepia inks. Similarly, the NCC group includes pure sepia ink and

its mixture with MGP ink. This may be the reason why no clear clustering pattern is

observed among the three groups, from which it is concluded that the data are not

clearly separable in the PCA components space.

5.3.3 Classification maps and performance metrics

In Table 5.5, the performance metrics for all traditional classification models eval-

uated on the test set before applying the cleaning post-processing step are presented.

SVM provided the highest performance across all the metrics studied, including

both micro- and macro-averaged results, achieving over 95% in micro and macro-

averaged accuracy and recall. This superior performance could be attributed to its

efficiency in handling high-dimensional data, its ability to model non-linear rela-
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5. Ink classification in historical documents using HSI and machine learning methods

Table 5.5: Performance metrics in the test set for all traditional models before clean-
ing post-processing. The color shades represent a gradient from best (dark green) to
worst (dark red) for each column.

Model Micro-accuracy Macro-accuracy Macro-precision Macro-recall Macro-F1
SVM 96.06 95.38 89.17 95.38 91.79
KNN 93.22 93.39 84.09 93.39 87.43
LDA 95.27 93.02 87.90 93.02 89.73
RF 94.77 94.33 86.72 94.33 89.70

PLSDA 86.82 78.33 72.42 78.33 74.36

Table 5.6: Performance metrics in the test set for all models after cleaning post-
processing. The color shades represent a gradient from best (dark green) to worst
(dark red) for each column.

Model Micro-accuracy Macro-accuracy Macro-precision Macro-recall Macro-F1
SVM 98.35 97.29 95.08 97.29 96.15
KNN 95.23 95.79 87.36 95.79 90.63
LDA 97.42 95.44 92.40 95.44 93.71
RF 97.25 97.13 91.78 97.13 94.14

PLSDA 89.80 81.56 76.09 81.56 78.23
DL 99.20 99.13 97.40 99.13 98.22

tionships, and its robustness to overfitting (see Table 5.3). In contrast, PLS-DA is the

model providing the lowest values for all the metrics. This suggests that a nonlin-

ear model, like SVM, or a more flexible model, such as RF, may be more suitable

for this problem. However, it should be noted that the values of all the metrics

are above 72%, reaching almost 87% in micro-averaged accuracy. This means that

even the worst of the models tested here provides what could be considered good

results in this classification task (in comparison to random class assignment, which

would yield only about 33% accuracy). All other models provide micro- and macro-

averaged accuracy and recall above 93%.

Table 5.6 presents the performance metrics for the six models evaluated on the

test set, after applying the cleaning post-processing step for the five traditional mod-

els. When compared to Table 5.5, a 2 to 3% improvement in micro and macro-

averaged accuracy and recall can be observed after applying post-processing. In
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5.3. Results and discussion

addition, between 3 and 5% improvement in macro-precision and F1 is achieved.

These results indicate that cleaning post-processing is beneficial for the problem we

are addressing in the context of traditional models, since in the same stroke (and,

therefore, in contiguous pixels in the hyperspectral image) it is not normal to find

different types of inks. The post-processing helps improving the results obtained for

all the performance metrics studied.

The DL model is included in the post-processing set of results since, by design,

it exploits pixel neighborhood information to inform the final class prediction. It

outperforms all traditional models with the post-processing step included, having

both micro-accuracy and macro-recall above 99%. However, it requires specialized

hardware in order to efficiently complete the training and inference phases.

Hyperspectral analysis combined with Least Squares SVM classification has been

used for ink analysis and pen verification in handwritten documents, achieving an

87.5% accuracy in discriminating between 25 different pens with modern inks [223].

Another study analyzed 70 hyperspectral images of handwritten notes by 7 subjects,

comparing 5 varieties of blue ink and 5 varieties of black ink, with a focus on ink

mismatch detection [221]. However, these studies are not directly comparable to the

present work, as they involve modern inks and are designed for forensic purposes.

A comparative analysis of performance by class based on the confusion matrices

(see Figure 5.6) reveals that RF, SVM, and KNN provide the lowest macro-average

performance metrics for the NCC class. These models provide also the highest accu-

racy and recall for the MGP class, and the highest precision and F1 for the CC class.

The higher precision but lower recall for the CC class indicates that CC inks are more

likely to be classified as MGP and NCC, than NCC are likely to be classified as CC.

This misclassification can be attributed to the presence of mixtures of pure carbon

with MGP or pure carbon with sepia (which is included in the NCC class). In con-
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trast, both LDA and PLS-DA demonstrate the highest macro-average metrics for the

CC class. PLS-DA, in particular, performs poorly for the NCC class, with a precision

of 42.7% and an F1 score of 50%. This may be due to the inherent assumptions of the

PLS-DA algorithm, which make it less effective at handling the complexity of this

class, as PLS-DA is not well-suited for highly complex datasets (see Table 5.3 fifth

row). In contrast, the metrics for the remaining two classes exceed 85%. This per-

formance degradation may be due to class imbalance, as the reduction occurs in the

least-represented class. Another explanation is that the spectrum of the NCC class

is right between those of MGP and CC (see Figure 5.4), leading to increased misclas-

sification between NCC and these two classes, compared to direct misclassification

between CC and MGP.

The DL model performs favorably throughout all classes. The lowest recall is at

98.1% for MGP, which tends to be misclassified as NCC, in turn lowering its precision

to 92.68%. Of all models tested, the DL achieves the best results for the NCC and CC

classes, but not for the MGP class.

In general, for traditional models, NCC pixels tend to be misclassified as MGP

and vice versa, while misclassification as CC is less frequent for both classes. How-

ever, for all the models when CC pixels are misclassified, they are more likely to be

assigned to the NCC class than to MGP. This makes sense, as CC group includes

some mixtures of sepia and carbon-based ink, but MGP only includes pure metallo-

gallate inks with no mixtures with sepia. In addition, we have seen in Figure 5.4 that

spectrally, NCC is more similar to CC inks than MGP.

Comparing different performance metrics, the lowest values were always ob-

tained for macro-precision, due to the increased number of false positives for the

NCC class. The highest values were obtained for the micro-averaged accuracy met-

ric, which makes sense as MGP and CC are the most represented classes (as seen in
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Figure 5.6: Confusion matrices of all classification models after cleaning post-
processing for the test set. Darker blue in the diagonal cells indicates a higher num-
ber of TP spectra.

Table 5.2), and provide a high accuracy value.

In chapter 4, the classification of historical inks was performed using a library

of reference spectra and different spectral metrics for pixel-by-pixel classification.

Two spectral ranges, VNIR and SWIR, were studied separately, achieving a max-

imum F1-score of 58.1% for the VNIR range and 44.3% for the SWIR range using

the SAM metric. However, the ink classes analyzed in the previous chapter differ

from those in the present study, as carbon-based inks from different sources (e.g.,

vine black, ivory black, bone black, lamp black) were considered separately [224].

One key aspect contributing to the success of the classifiers used in this chapter has

been the simplification of the number of classes, as the models still face difficulties
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Table 5.7: Training run-time and micro-averaged accuracy comparison of different
classifiers on the full dataset, with and without PCA.

Full set (no PCA) Full set (PCA)

Micro-accuracy Training
time* Micro-accuracy Training

time*

SVM 99.51 7 h 37 min 56 s 92.33 4 h 19 min 24 s
KNN 99.17 25 h 7 min 19 s 85.61 48 min 55 s
LDA 96.73 6 h 52 min 21 s 86.49 12 s
RF 99.03 4 h 42 s 92.68 25 min 38 s

PLSDA 91.34 2 min 17 s 86.26 15 s
DL 99.85 1 h 4 min 50 s 99.32 1 h 1 min 58 s

*Computational environment used for experiments available in Table 5.8.

in intra-class separations (e.g., mixtures of sepia and MGP with CC are particularly

challenging to distinguish).

In Table 5.7, training run-time and micro-averaged accuracy for the full training

set with and without applying PCA are presented. By applying PCA, the number

of features was reduced from 261 to 3, decreasing the training set to 1.15% of the

original size. This resulted in a reduction of training run-time by 97-98% for most

models, with the exception of PLS-DA, which showed a reduction of 89%, SVM that

presented a reduction of 50%, and DL which introduced a negligible reduction of

training run-time. However, applying PCA results in a 5-13% decrease in micro-

averaged accuracy for traditional models, while the DL model is much more robust

to the dimensionality reduction, likely due to the learned ability to extract complex

relationships among the input features, and to the possibility of accessing neigh-

borhood data directly during the inference phase. This trade-off between reduced

training time and decreased accuracy should be considered when using traditional

models for ink classification: if minimizing training time is prioritized over accu-

racy, then PCA can be applied. On the other hand, the reduction in time is much

less significant for the DL model, which might not make the use of dimensionality
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Table 5.8: Computational environments used for traditional and DL-based algo-
rithms.

Traditional DL-based

Processor (CPU) Intel(R) Core(TM) i7-8700 CPU
@ 3.20GHz (12 CPUs)

Intel(R) Core(TM) i7-7700 CPU
@ 3.60GHz (8 CPUs)

Memory (RAM) 16 GB 32 GB
Storage 512 GB NTFS SSD 3 TB ext4 SSD

Operating System Windows 11 Pro, v. 23H2, 64-bit Ubuntu 22.04.3 LTS, 64-bit
Graphics Card (GPU) NVIDIA Titan X, 12 GB

reduction worthwhile.

The run-time values of traditional models and DL cannot be directly compared

because the DL model was run on a GPU, while the traditional models used CPU

resources. Besides, the computers used for the two kinds of models were different

(see Table 5.8 for details). However, comparing the training run-time between tra-

ditional models is possible: the fastest model to train was PLS-DA, followed by RF.

The slowest model was KNN. However, it should also be clarified that run-time in

KNN is related to the time required by the program to store the training dataset in

the model, since this model does not have a training step as such (see Table 5.3).

The full training dataset with all 261 bands was selected as the preferred set-up, as it

provided the highest accuracy.

Additional insights into the model performances can be gathered from the classi-

fication maps. In Figure 5.7, some of these maps for selected mock-ups and historical

samples are presented for SVM, PLS-DA, and DL models.

For the mock-up samples (first and second rows in Figure 5.7), some problems

persist for the SVM model when differentiating between pure sepia ink and MGP

(1st row). For the PLS-DA model, this problem was mostly solved after applying

cleaning post-processing (first row, columns three and four). In the case of CC ink

(2nd row), SVM misclassifies some pixels in the strokes as NCC, while PLS-DA
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Figure 5.7: Examples of classification maps using the SVM model (columns 1 and 2),
the PLS-DA model (columns 3 and 4), and DL (column 5). The Ground Truth (GT)
images are shown in column 6. Purple: metallo-gallate ink (MGP); yellow: carbon-
containing ink (CC); orange: non-carbon-containing ink (NCC).

struggles significantly, incorrectly classifying most pixels as NCC. The DL results

(column five) are totally correct for the mock-up samples.

For the historical samples, the example in the 3rd row of the figure was difficult

for most models. This sample, composed of CC ink (yellow color coding) on linen

paper, is classified by SVM as containing all three ink classes, while PLS-DA incor-

rectly identifies it as MGP. DL mistakenly identifies the sample as a partial mixture of

MGP and NCC: given the better performance observed qualitatively and quantita-

tively in other samples a possible explanation is that of the model having learned an

incorrect bias by relying on stroke structure. Even after the cleaning post-processing

is applied for the SVM and PLS-DA models, there are still some or all pixels that

are misclassified. However, if the number of pixels classified into the three classes

is considered, SVM provides a more accurate classification by correctly identifying
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the majority of pixels belonging to the CC class. This classification challenge may

be attributed to the sample’s age, as the 15th-century manuscript exhibits ink fading

due to aging, which increases the influence of the support on the final ink spec-

tra and raises the reflectance (a wider explanation is given in subsection 5.3.4). In

Figure 5.8, additional classification maps after post-processing are presented for all

models studied. These maps illustrate the challenges in distinguishing two classes

in the third column (16th–17th century sample), possibly due to the thin strokes, and

the classification difficulties in the first-column CC sample, which may be related to

its composition of 25% bone black and 75% sepia.

In the second historical sample (4th row), two types of ink can be found: a mix-

ture of MGP and sepia (NCC) in the text, and CC ink in the braces. SVM and DL

models have problems with the identification of carbon in the braces, correctly clas-

sifying only a few pixels, although correctly performing on the text. For the case

of DL in particular, neural architectures for semantic segmentation are known to

struggle on isolated thin structures, as typically demonstrated on pole lights in au-

tomotive applications [289]: this is due to a combination of learned neighborhood

bias (which otherwise helps in correctly identifying large chunks of text) and neural

structure limitations (already significantly improved by the DeepLabV3 architecture

adopted in this work). PLS-DA misclassifies the entire sample as MGP ink, with only

a few carbon pixels correctly identified in the braces.

Finally, the third historical sample (5th row), which is made entirely of iron gall

ink, was correctly classified by the SVM and DL models, and nearly correctly classi-

fied by PLS-DA.
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Figure 5.8: Classification maps obtained using all the models studied (SVM, KNN,
LDA, RF, PLS-DA, and DL) after cleaning post-processing. The Ground Truth (GT)
images are shown in the last row. Purple: metallo-gallate ink (MGP); yellow: carbon-
containing ink (CC); orange: non-carbon-containing ink (NCC).
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5.3.4 Case study: binarization and classification of inks in two full

historical documents

In this section, two historical documents with higher complexity and size than

the minicubes were tested using the best-performing traditional algorithm (SVM,

according to subsection 5.3.3) and the DL model.

The hyperspectral data cube dimensions were [344×197×261] for the family tree

document and [426×311×261] for the Arabic manuscript. The prediction times for

both documents were 3.1 and 3.7 seconds, respectively, for the SVM model, demon-

strating that it can provide near real-time classification once the spectral capture is

performed, which is highly valuable for restorers, conservators, and researchers in-

terested in the material composition of historical documents.

The DL model took 12.3 and 6.3 seconds for inference with a sliding window

of 35×35 pixels, which increased to 30 and 15 seconds when accounting for data

loading and transfer into GPU memory. This computational overhead is significant

and should be considered for the implementation of any final application on systems

with lower computational capabilities (see Table 5.8 for details on the computational

environment).

In the family tree document (see Figure 5.9), the binarization step achieved good

visual separation between the ink and support, with only some artifacts present in

the lower right portion of the document along the right brace. A false RGB image

was generated using the VNIR spectral bands at [605, 535, 430] nm. The SVM model

successfully classified most parts of the text as NCC (orange color), while the DL

model classified most of the pixels as MGP (purple color), and the remaining pixels

as NCC. In addition, all carbon-based text was accurately located, although the DL

model has some misclassified pixels as either NCC or MGP in the lower left and
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Figure 5.9: Family tree document. From left to right: false RGB image, binarization,
GT, and classification maps using SVM model after cleaning post-processing and
DL model. Predicted MPG pixels are shown in purple, NCC pixels in orange and
CC pixels in yellow.

central parts. Some additional challenges arise due to the thin traces of the braces

for both models, with SVM correctly identifying more pixels as CC ink (yellow color)

in this part of the document. Overall, this document is classified more effectively by

the traditional SVM-based model.

The analysis of the Arabic notarial manuscript (see Figure 5.10) presented more

challenges. The binarization results were visually acceptable on the whole, with

some bleed-through and stains in the upper and lower part of the document. The

manuscript contains two types of ink: the main text and marginal note, both written

with metallo-gallate ink with added earth (the correct class would be MGP), and the

judge’s validations and signature, which are composed of pure carbon ink (CC).

Compared to the family tree document, the classification results were less con-

sistent, as both types of ink (MGP and CC for SVM or MGP and NCC for DL) were

found in the same lines of text or words, which does not make sense in a document.

However, after applying post-processing techniques for the SVM model, the visual

results improved significantly. The judge’s signature, located below the main text, is
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Figure 5.10: Arabic notarial manuscript. From left to right: false RGB image,
binarization, GT, and classification maps using SVM model after cleaning post-
processing and DL model. Predicted MPG pixels are shown in purple, NCC pixels
in orange and CC pixels in yellow.

correctly classified as carbon-containing ink (CC, yellow color). This signature was

included as well in the test set (see Figure 5.7), and it is misclassified as MGP (pur-

ple color) by the DL model. The main text is in most pixels correctly identified as

MGP by both models. However, classification errors arise in other areas: the judge’s

validations are incorrectly labeled as MGP for both models, and the marginal note is

mistakenly identified as CC for SVM, while correctly classified in most pixels by the

DL model.

Further analysis of the document’s reflectance in different regions (see Fig-

ure 5.11), reveals potential explanations for the misclassifications. When compar-

ing the spectra, two distinct groups emerge: one containing the main text (MGP)

and the judge’s validations (CC), and another containing the signature (CC) and the

marginal note (MGP). This explains the misclassification of the judge’s validations

as MGP and the marginal note as CC for the SVM model. Additionally, all inks be-

come transparent in the SWIR range, complicating the classification further. Most of

the mock-up CC training samples exhibit low reflectance in the SWIR range, which

is crucial for accurately classifying samples in this class. The behavior of the inks
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Figure 5.11: False RGB images of the Arabic notarial manuscript in the VNIR ([605,
535, 430] nm) and SWIR ([1300, 1100, 900] nm) spectral ranges. Regions of interest
(1-5) were averaged to generate the spectral reflectance plot on the right.

in this document may be attributed to ink degradation, aging, and discoloration,

which significantly alter the spectral properties of the ink and complicate classifica-

tion. Similar spectral changes have been reported in previous studies, particularly

in offset inks on paper subjected to artificial aging [290]. In contrast, the family tree

document does not present these issues, likely due to better preservation and the

fact that it is two centuries younger.

5.4 Conclusions

In this chapter, six classification models, including five traditional models (SVM,

KNN, LDA, RF, and PLS-DA), and one DL-based model, were implemented for ink

classification, and their performance was compared using both mock-ups and histor-

ical samples (test set), as well as two full pages extracted from historical documents

(case study).

All studied models provided micro-averaged accuracy over 89.8% for the test set.

The best results were obtained from the DL model, with micro- and macro-averaged
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accuracy and recall above the 99% threshold. Nevertheless, among the traditional

models, SVM emerged as the best option with all metrics above the 95% threshold

and micro- and macro-averaged accuracy and recall above 97%. In both case stud-

ies, neither model achieved perfect results. The SVM misclassified fewer pixels and

identified key features like the judge’s signature in the Arabic notarial manuscript.

This document was not included in the training of the model and presented notable

challenges for accurate classification due to degradation, aging, and fading of CC

inks in the SWIR range.

The choice between a traditional or a DL model can then be based mostly on

the available computational resources and how pushing is the need for slightly bet-

ter accuracy, since the training and hyperparameter tuning of the DL model require

a considerable amount of processing resources and the prediction times for higher

sized documents are longer. While traditional models could be trained and tested

on a personal computer, the same machine could not tackle the training of the DL

model. On the other hand, DL does not require a post-processing step that consid-

ers the spatial continuity of the classification maps, while traditional models benefit

considerably from such post-processing.

The use of supervised classification models with HSI data has proven relevant

for the material characterization of documents of historical interest. This can be re-

lated to the fact that reflectance imaging can provide indirect information about the

molecular structure of the materials employed in the ink recipes, as highlighted in

subsection 5.3.1 and mentioned in previous studies [291]. Unlike XRF mapping, re-

flectance imaging offers the capability to map both inorganic and organic materials

or their mixtures. In this respect, it is important to consider data fusion of different

spectral ranges as a pre-processing step to highlight distinctive features of the mate-

rials like fading in the SWIR range for MGP inks. A key limitation of the proposed
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approach, compared to other analytical techniques, is the need for a large, annotated

training dataset, which requires prior knowledge of the inks used in the documents.

However, once the training phase is completed and the performance is evaluated

with documents not included in the training set, this methodology eliminates the

need for additional techniques to characterize new documents.

Although the identification of written areas in this study is achieved through bi-

narization, this method may prove less effective in cases of poorly preserved texts or

high variability, such as interference from complex backgrounds, fading and degra-

dation of ink, stains on the paper, bleeding, paper transparency, or the presence of

multi-colored inks. Future research could explore the use of automatic text zone

identification schemes (e.g., bounding box-type approaches) or the integration of

advanced DL architectures designed to handle these complexities and effectively

separate text from the support.

Classification of inks in the Arabic notarial manuscript has been challenging due

to spectral changes, which are likely associated with aging and discoloration. To ad-

dress this issue, several strategies can be implemented: expanding training datasets

with additional historical samples, though this is not always possible due to their

fragility and restricted access imposed by conservation policies, and the use of un-

known recipes in the materials present; using virtual aging simulations to model

spectral shifts resulting from ink degradation; applying accelerated artificial aging to

mock-ups in controlled environments (heat, humidity, and radiation) to study spec-

tral changes, although this method may not fully replicate natural aging processes;

and using microfading, which, while faster, is less comprehensive than artificial ag-

ing, as it only studies the effects of light exposure. These approaches could improve

ink classification accuracy in historical materials.

The three classes used for this study provide very useful information for restor-
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ers and historians interested in ink characterization of historical documents, since,

for instance, MGP tends to show corrosion at the border of the trace, while CC will

be more prone to fading. However, chapter 7 will focus on a more refined classifi-

cation, aiming to distinguish the subclasses within the CC and NCC groups. Given

that some inks are composed of multiple components, this will be addressed us-

ing spectral unmixing techniques. These methods can provide a more interpretable

analysis of individual components and their concentrations in mixtures compared to

DL or ML approaches. However, their effectiveness depends on the choice of mix-

ing model, the accuracy of the extracted EMs (spectra of pure components), and the

availability of a comprehensive reference library.
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Endmember extraction,
unmixing and pigment

identification in a copper plate
painting





6.1. Introduction

In this chapter, different EM extraction methods are compared in two stages of

the same painting: a Maternity painted on a copper plate, before and after restora-

tion. For the restored painting, two spectral hyperspaces are considered: spectral

reflectance (R hyperspace) and the -log(R) hyperspace, in both the VNIR and SWIR

regions. This analysis includes pigment identification and the detection of restored

areas. The work presented in this chapter corresponds to specific objective O5 of this

PhD thesis.

It extends the study published as:

E. M. Valero, M. A. Martínez-Domingo, A. B. López-Baldomero*, A. López-

Montes, D. Abad-Muñoz, and J. L. Vílchez-Quero, “Unmixing and pigment iden-

tification using visible and short-wavelength infrared: Reflectance vs logarithm re-

flectance hyperspaces,” Journal of Cultural Heritage, vol. 64, pp. 290–300, 2023.

And the conference paper published as:

A. B. López-Baldomero*, M. A. Martínez-Domingo, J. Hernández-Andrés, R.

Blanc, J. Vilchez-Quero, A. López-Montes, and E. M. Valero, “Endmember extrac-

tion for pigment identification pre- and post-intervention: A case study from a XVIth

century copper plate painting,” in Archiving Conference, vol. 20, pp. 198–203, Society

for Imaging Science and Technology, 2023.

6.1 Introduction

Pigment identification in artworks remains a challenge despite numerous

methodological advancements, particularly when relying exclusively on informa-
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tion from non-invasive techniques. A universally accepted systematic approach has

yet to be established for real pieces of artwork, as various factors complicate the pro-

cess. Two of these factors are the condition of the piece and the presence of pigment

mixtures.

1. The condition of the piece. Pigment identification is particularly relevant be-

fore a planned restoration or conservation intervention, to identify the mate-

rials employed by the artist or else previous conservation activities. But the

piece often is covered by a patina of unclean varnish which strongly darkens

and alters the reflectance of the pigments, especially for medieval or renais-

sance paintings, making accurate identification more difficult.

2. The presence of pigment mixtures. Pure pigments are seldom present in real

artworks. In many situations, it is not practical to continue extending the num-

ber of reference pigments in the auxiliary patch collection until one covers all

the possible mixtures that a given artist (often unknown) might have used.

Then, spectral unmixing and EM extraction techniques can be potentially help-

ful. As discussed in subsubsection 2.5.1.3, these methods have been explored

in previous studies with varying degrees of success [26, 156, 177].

This study presents a case in which both challenges are present and examines the

effectiveness of spectral unmixing techniques for pigment identification. Grillini et

al. [177] explored various mixing models, finding that the subtractive model outper-

formed others. However, the simplest way to transform a subtractive into an addi-

tive model (taking the -log of the spectral reflectance data) had not been explored

previously. This transformation can be especially interesting if the EM extraction

models used are linear, like NFINDR [169] or PPI [163].
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Previous studies on pigment mapping and identification have predominantly re-

lied on the VNIR range [134, 138, 161, 164, 168, 177, 292]. While some research has

extended pigment mapping to the SWIR range [81,83,190], unmixing in this spectral

region remains unexplored.

This study is divided into two main parts:

The first part serves as a preliminary study, where three EM extraction methods

(NFINDR, NMF, and manual extraction) are compared in two stages of the same

painting: before and after restoration. A subtractive mixing model is used in this

phase, and pigment identification as well as the detection of restored areas are per-

formed, focusing exclusively on the VNIR spectral range.

The second part evaluates the impact of transforming a subtractive mixing model

into a linear one within the -log(R) hyperspace. The hypothesis is that linear EM ex-

traction methods will perform better in this transformed space. To test this, three EM

extraction methods, NFINDR, a DL-based algorithm and manual extraction, were

applied in the reflectance (R) hyperspace, and two of them, NFINDR and manual

extraction, were further tested in the -log(R) hyperspace, excluding the DL-based

method in this space due to its non-linear nature. The study compares unmixing

results across two spectral ranges (VNIR and SWIR) and two hyperspaces (R and

-log(R)), using only the painting after restoration and a reference copper plate that

contains some samples of pigments with the same support and preparation as the

painting. The findings provide insights into the advantages and limitations of each

method, spectral range, and hyperspace for pigment identification in historical art-

works.
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6.2 Preliminary study: Endmember extraction for pig-

ment identification pre- and post-intervention

6.2.1 Material and methods

6.2.1.1 Painting on copper

The painting is on a somewhat unusual support (a copper plate) and shows a

typical Maternity scene with the Virgin, an infant Jesus on her lap, and St. Joseph

in the upper right side. The dimensions of the painting are 13.5 x 17.5 cm. An in-

scription on the back reads "Boceto di Pablo Veronese", suggesting a possible attribu-

tion. The artwork originates from a private collection in Spain and is currently being

studied by a multidisciplinary team of experts in heritage conservation, art history,

mineralogy, optics, computer science and analytical chemistry. The main goal of the

investigation is to formulate a hypothesis regarding its authorship and establish its

dating. This piece has a further interest because it has recently been submitted to

a restoration intervention that has removed the previous darkened patina of badly

applied varnish, covered some missing areas (lacunas), and applied a new varnish

layer (Lefranc-Bougeois satined with UV protection) (see Figure 6.1 right). In the

restoration process, the chromatic reintegration was made with Maimeri pigments

ochre, natural earth, toasted ochre, Naples yellow (NY), Zinc white, Lapislazuli (LL),

and Cadmium Red from Winsor & Newton. The visual appearance of the piece has

noticeably changed after the intervention (see Figure 6.1).

The piece presents a simple palette with five main pigments: Bones Black (BB),

Lead White (LW), Cinnabar (CN), NY and LL. Based on FRX and DRX analysis per-

formed by the Department of Analytical Chemistry of the University of Granada
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Figure 6.1: False RGB images (R = 605 nm, G = 535 nm and B = 430 nm) of the Mater-
nity painting object of this study. Left: before intervention. Right: after intervention.

[293], CN can be detected in the Virgin’s dress as well as the carnations, LL is present

in both the background and the Virgin’s mantle, LW is present in the carnations and

the sleeves of the Virgin’s chemise, NY can be detected in certain parts of the carna-

tions and the Child’s cloth, and BB is found in the background and shadowed areas.

The relatively short number of pigments used makes this piece a good case study

for demonstrating the possibilities of unmixing techniques to tackle pigment iden-

tification pre-intervention. Also, the opportunity to study it after restoration will

highlight the possibilities of these techniques and determine if spectral imaging in

general is a good tool to identify areas that have been intervened.

6.2.1.2 Reference copper plate

We aim to produce some evidence about the best approaches for automatic EM

extraction and pigment identification from the list of EMs using an auxiliary copper

plate with pigments applied on the same support.
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Figure 6.2: (Left) Spectral reflectance of manually extracted 30x30 pixel areas con-
taining the different pigments and mixture deposited on the auxiliary copper plate
(right).

The preparation used for the reference copper plate is in accordance with docu-

mented period techniques from the XVIth century [294–297]. The unpolished copper

plate (1 mm thickness) was cleaned with calcium carbonate and vinegar and rubbed

with ground garlic. Then, a layer of CaSO4 powder bound with linseed oil was ap-

plied, followed by a preparation layer (P1) of BB mixed with Read Earth (REP) and

LW, also bound with linseed oil. Then, the pigments and mixtures are deposited on

the prepared surface. There are seven pure pigments: LW, NY, BB, CN, LL, Azurite

(AZ) and REP. Three more patches with mixtures are added: LL + LW, CN + LW,

and the P1 mixture. The materials applied include preparation layers and pigments

found in the painting [293], as well as some that are not present (such as AZ). The

pigments (Kremer Pigmente GmBH) were bound with linseed oil and applied with

a brush.

After capturing the reference plate (described in subsubsection 6.2.1.3), a refer-

ence library of eight spectra for pigment identification was built using the average

reflectance of 30x30 pixels areas within the patches labeled as 1-7 and 10 in Fig-

ure 6.2 right. The spectral reflectances included in the reference library are shown in
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Figure 6.2 left.

6.2.1.3 Hyperspectral image capture

The VNIR spectral images of the reference copper plate and the two versions of

the painting were captured and processed as described in subsection 3.2.2 and sub-

subsection 3.2.3.1. The SWIR range was excluded in these preliminary tests, as VNIR

had been used in previous unmixing studies for pigment detection and allowed the

use of color information for evaluation.

6.2.1.4 Endmember extraction and pigment identification

Once the spectral images were captured, three methods for EM extraction were

used: NFINDR [169], NMF [170] and manual extraction of spectra in selected areas

from the painting that appeared to contain each of the five pigments in its most pure

form, although this was not possible for the NY pigment, which appeared exclu-

sively in mixed form.

Three sets of EMs are extracted from the spectral images of the painting, and un-

mixing is carried out using an optimization process with a cost function based on

a combined metric formed by two components: the complement of the Goodness-

of-Fit coefficient (cGFC, [298]) and the RMSE [177]. cGFC is sensitive to shape

changes, while RMSE is sensitive to both changes in scale and shape when compar-

ing two spectra. A perfect match would have zero RMSE and cGFC values. The

final form of the metric is:

M = cGFC + β ·RMSE (6.2.1)

β is a scaling parameter to balance the contribution of both sub-metrics to the fi-
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nal combined metric. In a preliminary experiment, the optimal value for β parameter

to ensure equal contribution of both metrics was found to be β = 1.0936.

The fmincon function with the interior point algorithm [299] implemented in

MATLAB® was used for optimization, with the sum-to-one constraint (
∑q

i=1 αi = 1)

and a lower bound for the weights αi of zero. The mixing model is a subtractive

model [300], where the spectral reflectance of i EMs are multiplied consecutively,

elevated to the power of the concentrations (Equation 6.2.2) for each wavelength.

Υ =

q∏
i=1

ραi
i (6.2.2)

Where Υ is the spectral reflectance of the mixture, q is the number of candidate

EMs, ρi is the spectral reflectance of the ith EM, and αi its concentration.

Both NMF and NFINDR have the limitations of a linear mixing model assump-

tion, while subtractive mixing has been proven to be performing best for pigments

on canvas [177]. On the other hand, the manual EM extraction from the painting has

the limitation of not corresponding to pure pigments and being affected by aging.

The unmixing process will estimate the weights in the mixture, and from them, we

obtain the concentration maps and the error maps of the five EMs (see Figure 6.4).

This will allow us to determine which EM set is the best for the spectral reconstruc-

tion of the painting using EMs and estimated weights. This will be evaluated using

both spectral and colorimetric differences on a pixel-by-pixel basis (cGFC, RMSE

and CIEDE00) [298, 301].

Finally, we will use the auxiliary set of reference spectra for trying to find the

pigment that presents the closest spectral distance to each EM for the three EM ex-

traction procedures. This spectral distance is calculated using a combined distance

metric between the pigments in the plate and the EMs obtained:
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MId = cGFC + 0.5MSE + 0.02∆E00 (6.2.3)

The coefficients are obtained using the following tolerances for the three compo-

nents of the metric: 0.01 for cGFC, 0.02 for MSE and 0.5 for ∆E00. Those coefficients

ensure all the factors would contribute equally to the metric value in an acceptable

reflectance match. The tolerance values are based on experience and correspond

with tolerances found in the literature for spectral estimation [298]. The metric con-

tains a color difference term because color can be relevant for pigment identification,

while both scale and shape differences in spectra are also accounted for. After com-

puting this metric, the label corresponding to the reference pigment with the min-

imum MId metric value is assigned to each EM. Finally, the hit rate is calculated

as the percentage of correctly identified pigments compared to the total number of

pigments present in the painting.

The process will be repeated for the restored painting, allowing us to see if there

are any differences in the performance of the unmixing algorithm, and if the reno-

vated areas can be identified from the concentration maps. All the calculations have

been performed using MATLAB® (Release 2022a, The MathWorks, Inc., Natick, MA,

USA). The NFINDR and NMF algorithms used are those provided by MATLAB®,

and the fmincon function is used for the unmixing optimization.

6.2.2 Results

6.2.2.1 Concentration maps and endmember sets

The EMs sets differ for the three EM extraction methods, and are not directly sim-

ilar to the reference pigments (obtained with the auxiliary copper plate) in any of the

cases, similarly to the findings in [302]. In Figure 6.3, the EMs extracted from the
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Figure 6.3: EM libraries extracted using NFINDR (left), NMF (center) and manual
extraction (right) methods pre- (lower row) and post-intervention (upper row).

painting pre- and post-intervention are shown. The NMF algorithm implemented

in MATLAB® provided EM reflectances with maximum values over 1, so they were

normalized by the maximum value. The spectral reflectances are flatter for the man-

ually extracted library than for those extracted with NFINDR or NMF algorithms. In

general, post-intervention EM reflectances show lower values than pre-intervention

reflectances. This could be due to the removal of the whitish patina present in the

original painting during the restoration process. NMF seems to provide reflectance

curves that differ more from real pigments, so the preliminary hypothesis is that

NFINDR and manual library will work best for the concentration vector and spec-

tral estimation part of the unmixing process.

Pre-intervention

In Figure 6.4, concentration maps for the EM most similar to CN in the three sets
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Figure 6.4: Concentration maps for the EM most similar to CN in the pre-
intervention painting. Left: NFINDR. Center: NMF. Right: manual extraction.

are shown for the unrestored painting (EM1 in NFINDR, EM2 in NMF, and EM3 in

the manual extraction set). It can be seen that manual extraction method identifies

the copper support as CN. NMF detects CN in the background, not only the dress

and the carnations.

According to the concentration maps (not shown here for brevity), EM3 obtained

with NMF seems to represent the LL pigment, as well as EM4 in NFINDR (although

this is less clear) and EM2 in the manual extraction. EM4 and EM5 in the manual

extraction could represent the LW pigment, as well as EM2 in NFINDR, and EM1 in

NMF (although it appears all over the painting).

Post-intervention

In Figure 6.5, concentration maps for the EM most similar to CN in the three

sets are shown for the restored painting (EM4 in NFINDR, EM2 in NMF, and EM3

in the manual extraction set). Similar to the results obtained in the pre-intervention

painting, the NMF method detects CN in the background. The manual and NFINDR

concentration maps seem plausible to the CN pigment, finding a higher concentra-
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Figure 6.5: Concentration maps for the EM most similar to CN in the post-
intervention painting. Left: NFINDR. Center: NMF. Right: manual extraction.

tion in the dress with the manual extraction method. In this state of the painting and

according to the concentration maps, EM4 obtained with NMF seems to represent

the LL pigment, as well as EM1 in NFINDR and EM2 in the manual method.

6.2.2.2 Spectral estimation quality

The RMSE error maps calculated from the differences between the reconstructed

spectra using Equation 6.2.2 and the spectra from the spectral image of the unre-

stored painting are shown in Figure 6.6. Note that the range of values for RMSE is

restricted to [0,1] for reflectance data. The mean RMSE value shows that NFINDR

fails to provide an accurate spectral reconstruction, while the manual extraction pro-

duces the best results.

The cGFC error maps for the restored painting are shown in Figure 6.7. We

can see that NMF method fails to reconstruct the shape of the spectra compared to

manual extraction and NFINDR.

In Table 6.2, the cGFC, RMSE and ∆E00 values obtained from the comparison
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Figure 6.6: RMSE error maps for the pre-intervention painting. Mean (and standard
deviation) values are shown on top of each map. Left: NFINDR. Center: NMF. Right:
manual extraction.

Figure 6.7: cGFC error maps for the post-intervention painting. Mean (and standard
deviation) values are shown on top of each map. Left: NFINDR. Center: NMF. Right:
manual extraction.

between the estimated and the original spectra are shown for each EM set and state

of the painting. The best cGFC, RMSE and ∆E00 values are obtained in both states

for the manual extracted library. Comparing the painting pre- and post-intervention,

lower values for cGFC are found for the pre-intervention painting with the NMF
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Table 6.1: Spectral estimation quality metrics for the three EM sets pre- and post-
intervention.

EM set cGFC (STD) RMSE (STD) DE00 (STD)
NFINDR 0.007 (0.005) 0.142 (0.043) 19.72 (6.28)

NMF 0.296 (0.030) 0.084 (0.037) 23.87 (5.34)Pre-intervention
Manual 0.005 (0.008) 0.015 (0.011) 3.94 (2.52)

NFINDR 0.010 (0.010) 0.074 (0.031) 12.64 (5.12)
NMF 0.344 (0.025) 0.073 (0.023) 29.38 (3.28)Post-intervention

Manual 0.002 (0.004) 0.014 (0.0015) 4.17 (2.29)

and NFINDR libraries. Comparing the RMSE values, post-intervention painting

provides the lowest values for all three quality metrics. For the ∆E00, the values

depend on the EM extraction method used, not so much influenced by the painting

state. For the post-intervention painting, the mean cGFC value and the error map

(Figure 6.5 lower row) show that NMF is the worst algorithm in providing accurate

spectral reconstruction. Comparing the results with manual and NFINDR extraction

methods, the manual method is 5 times better than NFINDR in terms of cGFC. Our

preliminary hypothesis, i.e., that NFINDR and manual libraries will work better than

the NMF library, is true for the cGFC and the ∆E00, but not for the RMSE. This

means that the NMF algorithm introduce some additional changes in shape in the

estimated spectra with respect to the original, but overall, it is better than NFINDR

at capturing the scale of the spectral reflectances. This could be because NFINDR

is more sensitive to the problem of using a linear mixture model for EM extraction

than NMF.

6.2.2.3 Pigment identification

Pigment identification results are shown using the reflectance of the pigments in

the auxiliary copper plate as reference (Table 6.2).

Depending on the state of the painting, different results have been obtained with
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Table 6.2: Pigment identification results for the three EM sets pre- and post-
intervention.

EM set Assigned labels Hit rate MId range
NFINDR P1, REP, NY 20 0.29-0.53

NMF P1, REP, LL, AZ 20 0.61-0.79Pre-intervention
Manual BB, REP, NY 40 0.14-0.40

NFINDR LL, REP, NY, REP, BB 60 0.13-0.27
NMF LL, P1, LW, BB, AZ 60 0.506-0.875Post-intervention

Manual BB 20 0.11-0.42

the three libraries. For the pre-intervention painting, the best result is obtained

with the manual library with a hit rate of 40%, compared to the 20% obtained with

NFINDR and NMF libraries. Even being the best, it fails to identify CN, LW and

LL. Referring to the post-intervention painting, the best results are obtained with

NFINDR and NMF libraries, with a hit rate of 60%. Both identify LL and BB, NY is

identified in NFINDR, and LW is identified in NMF. AZ is identified in NMF, but it

is not present in the painting. In both states of the painting, NMF library shows the

higher MId values. Compared to the other libraries, the manual extracted library is

inherently disadvantaged because the reflectances of the paintings are consistently

much lower than those of the reference library. As a result, more than one EM is

classified as BB, which does not happen with the other libraries. These results are

conditioned by the restricted and specific set of pigments used in the copper plate,

which contains seven pigments and three mixtures.

6.2.2.4 Identification of re-painted areas

First, re-painted areas were searched from the concentration maps of the restored

painting. They seemed to appear in the EM1 of the NMF library (Figure 6.8 left) in

the form of small white spots, and in the EM2 of the same library and the EM3 of the

manual extracted library as black spots. The restored areas were not easily visible in
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Figure 6.8: Concentration map for the EM 1 obtained with NMF (left). False RGB
image of the restored painting with channels [695,980,905] nm (right).

the other concentration maps and libraries.

Due to the slightly different color showed by the re-painted areas, we decided

to search the best three bands of the spectral cube that provided the higher F1-score

value (see Equation 2.5.4) comparing the false RGB image to a GT of re-painted areas

obtained manually from the original painting. The segmentation of re-painted areas

was performed in the false RGB color space, looking for the optimum minimum

and maximum values for the three channels. In a preliminary study, we performed a

band-by-band intensity thresholding, but the results were worse than those obtained

with a color-based segmentation. The optimization was done with the functions

surrogateopt and genetic algorithm, implemented in MATLAB®.

For the surrogateopt function, the best combination of three bands was

[410,965,705] nm. The minimum and maximum RGB values were: [(75,94), (17,162),

(23,129)] for red, green, and blue respectively, and the best F1-score value was 0.112.

For the GA, the best combination of three bands was [695,980,905] nm (Figure 6.8
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right). Re-painted areas can be seen with a light green color against the background.

The minimum and maximum thresholds in RGB were: [(36,91), (133,175), (106,194)],

and the best F1-score value was 0.170. The best results were obtained with GA, al-

though they were not good for any of the optimizations. This makes sense because

GA is a global optimizer while surrogateopt attempts to find the global minimum us-

ing few objective function evaluations, which can lead to a local instead of a global

solution. The main advantage of surrogateopt is the reduced computational cost and

execution time.

To improve the results obtained in the detection of re-painted areas in a restored

painting with VNIR information, it could be beneficial to use the SWIR range, since

this type of radiation can penetrate more deeply into the different layers of the paint-

ing.

6.2.3 Discussion and conclusions

In this section, three EM extraction methods (NFINDR, NMF and manual extrac-

tion) are compared in two stages (pre- and post- intervention) of the same painting.

The spectral images of the painting were captured from 400 to 1000 nm. Pigment

identification was also conducted using an auxiliary set of reference spectra on the

same support and with the same preparation, but corresponding to new materials.

The EMs obtained from the manual extraction method were flatter than those

obtained with NFINDR and NMF methods. The reflectance curves of the NMF EMs

differed from real pigments. The best concentration maps (i.e. those most similar to

the real pigment distributions) were obtained with the manual extraction method.

Attending to the spectral reconstruction of the three EM extraction methods,

manual extraction performed the best, with the lowest values of cGFC, RMSE

and ∆E00 for both states of the painting. Comparing the painting pre- and post-
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intervention, lower values for cGFC were found for the pre-intervention painting

with the NMF and NFINDR libraries, but RMSE was lower in the post-intervention

case. This can maybe be linked to the fact that the renovated painting is more in-

homogeneous than the original painting, and the spectral reconstruction is harder

for this sample. The RMSE values can be explained because the highest reflectance

values correspond to NMF, and this is an initial advantage to get the scale right in

the spectral reconstruction. NFINDR and manual libraries worked better than the

NMF library considering the cGFC and the ∆E00, but not for the RMSE.

The results of pigment identification were influenced by the state of the piece.

Manual extraction performed the best for the unrestored painting, identifying only

two pigments, while NFINDR and NMF performed the best for the restored paint-

ing, identifying three over five pigments. The manually extracted EMs differ more

from the reference library for the pre-intervention painting than for the restored one.

This explains the overall worse identification results for the first case. However,

restoring the piece enhances the efficiency of automatic algorithms in extracting EMs

for pigment identification (not for reconstruction of the spectra, which is inherently

more difficult). This highlights the disadvantage of the manual extracted library

compared to the automatically extracted ones. Even with a very reduced palette of

pigments, the results were not as expected. This could be due to differences between

the spectra of the reference pigments and the actual pigments present in the paint-

ing. These findings underscore the importance of having an appropriate auxiliary

palette of reference pigments for pigment identification.

The comparison of the information present in the concentration maps obtained

from the unmixing process does not appear to be sufficient for detection of re-

painted areas. Even after finding the triplet of spectral bands that produced a more

salient visualization of the restored areas with an optimization approach, the results
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obtained by thresholding were not similar enough to the ground truth image con-

taining all the restored areas. More sophisticated segmentation algorithms to detect

re-painted areas can be considered in future work, as well as information in different

spectral ranges.

The limitations imposed by EM extraction algorithms based on linear unmixing

may be addressed by using a non-linear model to approximate the reflectance of

mixed pigments. This approach is explored in section 6.3.

Spectral image capture is totally non-invasive, offers high spatial resolution, and

significantly less time for capture and analysis than alternative techniques. These

advantages highlight the importance of devoting more effort to refining unmixing

methods so that they can perform well in EMs extraction and pigment identification.

6.3 Unmixing and pigment identification using visible

and short-wavelength infrared: Reflectance vs loga-

rithm reflectance hyperspaces

6.3.1 Material and methods

6.3.1.1 Samples

Two main objects were used in this study: an auxiliary (reference) copper plate

(whose preparation is described in subsubsection 6.2.1.2), from which a checker-

board image was extracted, and the painting on copper with the inscription "Boceto

di Pablo Veronese" on the back.

Ten 32x32 pixel areas were extracted from the spectral image of the reference

copper plate (see Figure 6.2 right) to build the reference checkerboard image shown
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Figure 6.9: (Left) Restored painting with the 3×3 pixels areas used for manual EM
extraction marked in bright yellow. (Right) Reference checkerboard image.

in Figure 6.9 (right).

The painting used in this section was the same one described in subsubsec-

tion 6.2.1.1, after the restoration process. An RGB image obtained with three spectral

bands (R = 605 nm, G = 535 nm and B = 430 nm) is shown in Figure 6.9 (left), with

several 3x3 pixels areas marked in bright yellow, which were used to build the man-

ual extraction (MEx) EM library as explained in subsubsection 6.3.1.3.

6.3.1.2 Spectral image capture and reference library

The VNIR and SWIR spectral images of the reference copper plate and the paint-

ing were captured and processed as described in subsection 3.2.2 and subsubsec-

tion 3.2.3.1.

After capturing the reference plate, a reference library (REFL) was built as de-

scribed in subsubsection 6.2.1.2. All image processing and unmixing modelling has

been performed using MATLAB® software (Release 2022a, The MathWorks, Inc.,
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Figure 6.10: (Left) REFL spectra in the VNIR range. (Right) REFL spectra in the
SWIR range.

Natick, MA, USA). In Figure 6.10, the spectral reflectances from the REFL in both

VNIR and SWIR ranges are shown. The spectra differ both in shape and scale.

6.3.1.3 Unmixing methods

The process of unmixing often takes two steps: EM extraction and concentration

estimation.

Concentration vector estimation and reflectance hyperspaces

Two mixing models have been used depending on the hyperspace. In the R hy-

perspace, the subtractive model [300] was used (see Equation 6.2.2).

Some blind EM estimation algorithms, like NFINDR [169] and FIPPI (Fast Itera-

tive Pixel Purity Index) [303], are based on a linear model. This fact prompted the

idea of introducing the -log(R) hyperspace for performing unmixing. In -log(R) hy-

perspace, the spectral reflectance of a subtractive mixture (see Equation 6.2.2) trans-

forms into a linear combination of EMs for each wavelength, as shown in Equa-

tion 6.3.1 [304].
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Υ =

q∑
i=1

αiρi (6.3.1)

The goal of spectral unmixing is retrieving the vector of concentrations (C =

(α1, α2, . . . , αq)) from the spectral reflectance of the mixture (Υ) and the library of

candidate EMs (E = (ρ1, ρ2, . . . , ρq)). For this, a constrained optimization method is

used, as described in subsubsection 6.2.1.4.

Summarizing, both R and -log(R) hyperspaces, each with its unmixing model

(subtractive and additive, respectively), are used for the checkerboard image with

different EM libraries in VNIR and SWIR ranges. The best performing method ac-

cording to the criteria explained in subsubsection 6.3.1.5 is selected for analyzing the

painting on copper.

Endmember extraction

EMs can be obtained by blind separation using different algorithms, like PPI

[305,306], or FIPPI [303] and NFINDR [169]. The NFINDR and DeepGun [171] meth-

ods have been selected for this study as representative instances of automatic EM ex-

traction methods with different design strategies. The NMF method was discarded

after the preliminary study, as it produced EMs that differed from the reflectance

spectra of real pigments. The MATLAB® libraries of ENVI integrated package for

NFINDR, and the code provided by the authors of DeepGun [307] was used with

the default parameters adapted to the number of extracted EM. For DeepGun, the

extraction was performed only in R hyperspace, because the DeepGun algorithm is

non-linear in this hyperspace.

Other possibility is to extract the library directly from the painting, out of repre-

sentative areas including mixed pigments (Manual Extraction or MEx method) [138].

Five 3x3 pixel representative areas (shown in Figure 6.9) of black, blue, red, white,

192



6.3. Unmixing and pigment identification using visible and short-wavelength infrared:
Reflectance vs logarithm reflectance hyperspaces

and yellowish colors were extracted from the image of the painting. The spectra

were averaged to build the MEx_p library. The MEx_p library is very likely con-

stituted by mixtures and not pure EMs, but our hypothesis is that this library will

provide more accurate concentration estimations since it is obtained directly from

the painting. In any case, the MEx_p EMs will be used for pigment identification

using the REFL spectra shown in Figure 6.10 as reference.

Summarizing, we have seven libraries in R hyperspace for each spectral range.

Four of them are extracted from the copper reference board: REFL, which will only

be used for pigment identification and other three (with 7 EM), which will be used

for unmixing: the NFINDR library (NFDL), the DeepGun library (DeGu), and the

Manual extraction library (MEx), which includes the same pure pigments as REFL

but extracted from different areas. The remaining three libraries (with 5 EM) are ex-

tracted from the painting spectral image: NFDL_p, DeGu_p and MEx_p. The goal

is not to find the best extraction method in absolute terms, but to choose three rep-

resentative instances of extraction methods to showcase the proposed methodology.

In -log(R) hyperspace, for each spectral range we have the two NFINDR libraries

with 7 and 5 EMs, and the two M_Ex libraries for concentration estimation.

6.3.1.4 Pigment identification

The method consists of two parts: the first, computation of a combined distance

metric between each pair of spectra from the candidate library and REFL. The metric

for the VNIR spectra is presented in Equation 6.2.3. The combined metric in the

SWIR range contains only the two first factors. as explained before, the lower the

MId value, the higher the similarity between the compared spectra.

The second part is the label assignment: the REFL label corresponding to the

pigment with the minimum metric value is assigned to each EM. Finally, the hit
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rate of the pigment identification process is calculated as the percentage of correctly

identified pigments.

6.3.1.5 Evaluation of results

The evaluation of the results obtained is based on three factors:

a) Spectral reconstruction: the similarity between estimated spectra, obtained by

using the forward mixing model with the EMs and the estimated concentra-

tions, and the original spectra, assessed separately by the three metrics that

form MId (Equation 6.2.3).

b) Visual assessment: using concentration or presence maps. The data shown in

Ref. [293] will be used to determine if the maps are plausible for the painting.

c) Hit rate: from pigment identification.

Figure 6.11 shows the workflow of the methods to clarify the procedures de-

scribed in the previous subsections.

Figure 6.11: Workflow of the steps used in the different phases of this study.
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6.3.2 Results and discussion

6.3.2.1 Copper reference plate

In this section, EM extraction and unmixing results for the spectral data of the

checker reference image (Figure 6.9 right) are shown.

Unmixing results

Extracted endmember libraries

In Figure 6.12, the three EM libraries with seven EM each extracted from the

checkerboard reference image in R and -log(R) hyperspaces are shown for the VNIR

range. The libraries in -log(R) hyperspace were transformed back into R hyperspace

after extraction, to facilitate comparison between hyperspaces. For manual extrac-

tion, there is only one EM library shown in Figure 6.12, since the reflectance values

obtained would be the same after extraction in -log R hyperspace and applying the

inverse transform to R hyperspace. There is a noticeable difference between some

of the EM of the NFINDR libraries extracted in the two hyperspace (Figure 6.12 left

column). The similarity between the MEx Library and NFINDR is higher than for

DeepGun, which has lower maximum reflectance values for the EM with highest

reflectance.

In Figure 6.13, the corresponding libraries in the SWIR range are shown. The

observation regarding the similarity between the MEx and NFINDR libraries is also

valid for the SWIR range. The DeepGun EMs tend to present less variety of shape

and also lower maximum reflectance values in this range.

Spectral reconstruction quality

As explained in subsubsection 6.3.1.5, the similarity between the captured spec-
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Figure 6.12: EM libraries extracted from the checkerboard reference image in VNIR
range. (Upper row) R hyperspace NFINDR (left) and DeepGun (right). (Lower row)
-log(R) hyperspace NFINDR (left) and R space MEx (right).

tra for each pixel and the reconstructed spectra (obtained from the estimated con-

centration vectors and the EM library using the mixing model) is used as part of the

evaluation procedure.

In Table 6.3, the cGFC, RMSE and ∆E00 values obtained from the comparison

between the estimated spectra and the original spectra are shown for each EM li-

brary, range, and hyperspace. In -log(R) hyperspace, the estimated concentration

vectors were obtained using the additive mixture model, but the estimated spectra

were obtained directly using the subtractive model with the concentration vectors
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Figure 6.13: EM libraries extracted from the checkerboard reference image in SWIR
range. (Upper row) R hyperspace NFINDR (left) and DeepGun (right). (Lower row)
-log R hyperspace NFINDR (left) and R hyperspace MEx (right).

and the EM libraries.

Regarding the results in R hyperspace, the best estimated spectra are obtained

with the MEx library, as expected. The second-best results correspond globally to

NFDL, which is close to DeepGun results in most metrics.

However, in -log(R) hyperspace, the best results correspond to NFDL in all met-

rics (VNIR range), and in cGFC in the SWIR range. The best results overall corre-

spond to NFDL in -log(R) hyperspace in both ranges, since the slight difference in

RMSE in favor of the MEx library does not compensate for the huge difference in
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Table 6.3: Spectral reconstruction quality metrics for the three EM libraries in VNIR
and SWIR, and in both hyperspaces. The best results for each metric and spectral
range are in bold.

Library Hyperspace Mean cGFC (STD) Mean RMSE (STD) Mean ∆E00 Range
NFDL 0.0070 (0.0122) 0.0425 (0.0388) 7.03 (5.00)

DeepGun 0.0057 (0.0075) 0.0655 (0.090) 7.70 (5.92)
MEx

R
0.0016 (0.0017) 0.0163 (0.0128) 5.11 (4.78)

MEx 0.0018 (0.0020) 0.017 (0.015) 4.91 (5.08)
NFDL -log(R) 0.0016 (0.0032) 0.0098 (0.0060) 1.53 (1.61)

VNIR

NFDL 0.0021 (0.0040) 0.0172 (0.0105) -
DeepGun 0.00065 (0.00067) 0.0387 (0.0562) -

MEx
R

0.00068 (0.0015) 0.0064 (0.0033) -
MEx 0.00078 (0.0018) 0.0057 (0.0027) -

NFDL -log(R) 0.00027 (0.00034) 0.0061 (0.0047) -

SWIR

cGFC values in the SWIR range.

In general, the -log(R) transformation is very beneficial for the NFDL in both

ranges, but for MEx the quality improves only for ∆E00 in VNIR and RMSE in

SWIR (both are scale-sensitive metrics). Since MEx is exactly the same in both hyper-

spaces, this means that performing the optimization in the -log(R) hyperspace with

an additive model is not necessarily providing better performance in all cases (i.e.,

there is not an intrinsic advantage of changing hyperspace). However, the notice-

able improvement in NFDL quality points out that it is indeed beneficial to ensure a

correspondence between the mixing models in the concentration vector estimation

and the EM extraction parts of the unmixing.

VNIR and SWIR results can be compared for cGFC and RMSE. The best re-

sults correspond to the SWIR range in both cases, with an average across conditions

almost three times less than the VNIR range for cGFC, and around 20% less for

RMSE. This means that in general, the estimation of the image reflectances can be

more accurate in the SWIR range. This is expected because the SWIR reflectances

tend to be flatter and with less variation in range than the VNIR reflectances (see

Figure 6.12).
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Considering acceptable accuracy values below 1 ∆E00, 0.02 RMSE and 0.005

cGFC (tentative values based on previous experience with spectral estimation), then

even the best results would be acceptable in most cases for cGFC, while only for

MEx in R hyperspace in the VNIR range for RMSE, and in all cases in -log(R) hy-

perspace. None of the results would be acceptable for ∆E00, although NFINDR in

-log(R) hyperspace comes close to the threshold. This is expected because the opti-

mization was carried out using RMSE and cGFC values, but not ∆E00.

Concentration and presence maps

The concentration maps show, in grayscale, the concentration of the EMs for each

pixel of the checkerboard reference image, ranging between 0 (black) and 1 (white).

In Figure 6.14, the concentration maps corresponding to the three libraries tested in

the VNIR range and R hyperspace are shown, along with the labeled checkerboard

reference image. For NFDL and DeepGun, the EMs are not directly mapped into

pigments, as it happens for the MEx library. But sometimes correspondences can be

induced from the concentration maps’ results. For instance, if an EM concentration

map shows significant presence of the EM in patches 5 (LL) and 8 (LL+LW), with

higher concentration values in patch 5, and just negligible traces in the other patches,

it is safe to assume that this EM corresponds to the LL pigment.

Even for the MEx library, the results of the unmixing as judged by the concentra-

tion maps shown in Figure 6.14 (right column) are not completely satisfactory. For

instance, EM3 (NY) is not detected with a high concentration in patch four, and the

two red pigments (REP and CN, EM1 and EM4) tend to be confused to a certain

extent. On the other hand, LW is correctly identified as present in the three mixed

patches (8,9 and 10) in EM2 concentration map. The NFDL concentration maps (Fig-

ure 6.14, left column) present certain similarities with the MEx results. For instance,
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Figure 6.14: VNIR range concentration maps in R hyperspace for the checker refer-
ence image and the three EM libraries tested.

EM4 concentration map in NFDL is rather similar to EM2 (LW) for manual extrac-

tion, and EM1 from NFDL is similar to EM4 (CN) of the MEx library. The Deep-

Gun concentration maps (Figure 6.14, middle column) show relatively good results
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for EM4 (presumably corresponding to LL), EM6 (which has similar appearance to

the LW, MEx EM2, concentration map) and EM2 (presumably REP). However, EM1

(presumably AZ) is confused with the LL present in patch 8, and the other three

concentration maps (EM3, EM5 and EM7) are very much alike.

In Figure 6.15, the SWIR range R hyperspace concentration maps are shown.

These reflect less similarity between NFINDR and MEx libraries results, although

with some exceptions (see EM6 in the left and right columns of Figure 6.15). In

general, none of the libraries is able to correctly reproduce the real contents of the

reference image. There is a trend to confuse again LW with NY and CN for NFDL

(see EM3 in Figure 6.15 left), but not for MEx (see EM2 and EM3 in Figure 6.15 right

column; however, NY is incorrectly found in patches 8 and 10 in the EM3 concen-

tration map). The CN pigment (patch 3 in the checkerboard image) is not clearly

correlated with any of the NFDL EMs, but for MEx (see EM4, Figure 6.15 right) it

tends to be confused with LL. The DeepGun concentration maps are more varied in

this range, although with similar problems of confusing CN and REP, LW and NY,

and AZ with LL, or finding LL in the P1 mixture (see EM7 map in Figure 6.15 mid-

dle column). In this range and hyperspace, overall, the DeepGun results seem to be

more satisfactory than the NFDL results.

In Figure 6.16, we show the concentration maps for NFDL in -log(R) hyperspace,

along with the MEx concentration maps for comparison. In the this hyperspace,

NFDL clearly benefits from the change to an additive model (see Figure 6.16 left),

being able to correctly identify the presence of REP (EM1) in patches 7 and 10; AZ

(EM2) in patch 6 (although this pigment has a trend to be confused with BB); CN

(EM3) in patches 3 and 9 (with a trend to confuse REP with CN as well), LW (EM4)

in patches 1, 8, 9 and 10; NY (EM5) in patch 4 with a slight residue in patch 10; BB

(EM6) in patch 2 (with a trend to appear as well in patch 6 which is AZ, but a slight
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Figure 6.15: SWIR range concentration maps in R hyperspace for the checker refer-
ence image and the three EM libraries tested.

concentration value in patch 10 which contains BB), and finally LL in patches 5 and 8,

without any confusion with AZ as it happened for the R hyperspace. This is the best

and most coherent result, and, in this hyperspace, it is better globally than the results

of the MEx library, which retains the confusion between LW and NY (EM2) and

REP and NY (EM1). The presence maps corroborate the results obtained with the

concentration maps, although some patches with residual traces in the concentration
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Figure 6.16: VNIR range concentration maps in -log(R) hyperspace for the NFINDR
library (left column) and MEx library (right column).

maps are shown in black in the presence map (like EM2 and EM6 in Figure 6.16 left).

Then, in the VNIR range the best model in estimation quality and concentration

and presence maps is NFDL in -log(R) hyperspace, with the drawback of a trend to

confuse BB and AZ and REP with CN.
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Table 6.4: Pigment identification results for NFINDR and DeepGun libraries, using
REFL library as reference.

Library Hyperspace Range Assigned labels Hit rate MId range
R CN, REP, P1, LW, P1, AZ, LL 71.4 0.026-0.365NFDL -log(R) REP, AZ, CN, LW, P1, BB, LL 85.7 0.021-0.357

DeepGun R
VNIR

AZ, REP, BB, LL, BB, P1, BB 57.14 0.0386-0.3181
R AZ, LL, LW, REP, NY, BB, CN 100 0.0021-0.0251NFDL -log(R) BB, AZ, REP, LW, NY, BB, AZ 71.4 0.0069-0.0251

DeepGun R
SWIR

BB, BB, REP, NY, AZ, BB, AZ 57.14 0.0049-0.0488

For the SWIR range, the most consistent results are still produced by NFDL in the

-log(R) hyperspace (not shown for brevity). The results are slightly less consistent

than for VNIR range, with a trend to identify blue content (LL) in red patches (CN

and REP and its mixtures), and to identify LW in the CN patch. The MEx library

presents several problems as well (finding CN in LL and P1 patches, REP in LL and

AZ patches, and NY in mixtures of LL or REP in patches 8 and 10).

Summarizing, even if the concentration maps were not totally satisfactory, con-

sistent results were offered by NFDL in -log(R) hyperspace, especially for the VNIR

range. In general, SWIR range tends to offer less consistent results, which might be

caused by less varied spectra across pigments.

Pigment identification results

In Table 6.4, the results of the pigment identification method are summarized,

including the assigned labels, the hit rate over the seven correct pigments (LW, REP,

CN, BB, LL, AZ, NY) and the range of values of MId for the seven pigments. The

tolerance value for MId is around 0.03 in VNIR and 0.02 in the SWIR range, given

that MId does not include the ∆E00 term in the SWIR. The REFL library includes the

P1 mixture as well, so it contains eight labels. A perfect pigment identification result

would identify only pure pigments from REFL.

The best results are obtained by the NFDL in the SWIR range and R hyperspace,
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with a 100% hit rate and maximum MId values very near the tolerance of 0.02 for all

EMs. The second-best results correspond to NFDL -log(R) hyperspace in the VNIR

range, with a hit rate of 85.7% (six out of seven pigments correctly identified). Deep-

Gun obtains at most four out of seven pigments in both ranges. The P1 mixture is

identified as well as part of the pigment palette in all cases for the VNIR range. This

does not happen in the SWIR range. Despite the very good results of the unmixing

process for -log(R) hyperspace in the VNIR range and NFINDR, the pigment iden-

tification is slightly better in the SWIR range and R hyperspace for this library. This

suggests that it is convenient to include both ranges in the pigment identification

procedure. A control identification procedure performed with MEx library yielded

the expected results (hit rate of 100% and MId range very close to 0).

6.3.2.2 Proposed method for analysis of the painting

Given the results for the copper reference plate with known and regular pigment

distribution, the following method will be employed for obtaining concentration or

presence maps and pigment identification for the painting on copper:

1. Use the -log(R) hyperspace and NFDL_p with 5 EMs extracted from a subsam-

pled spectral image (1:2 ratio) to obtain the concentration and presence maps.

The subsampling allows to reduce the computation time required for the un-

mixing.

2. Use the REFL library extracted from the copper plate to perform pigment iden-

tification in both R and -log(R) hyperspaces with NFDL_p.

In this case, we expect lower rates of success in the pigment identification phase,

because the painting has been aged for a long period of time and the raw materials
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used for the pigments and binders might not be exactly the same in the painting and

reference copper plate.

6.3.2.3 Painting on copper

Although we will show the results corresponding to the method proposed in

subsubsection 6.3.2.2, a complete analysis using DeGu_p and MEx_p libraries was

carried out. The results of these libraries will be commented on only when they

outperform NFDL_p.

Unmixing results

Extracted endmember libraries

In Figure 6.17, the NFDL_p libraries in VNIR and SWIR range in -log(R) hyper-

space are shown along with the MEx_p library. The NFDL_p EMs are clearly higher

in scale than MEx_p EMs, and they tend to be less flat in the SWIR range. The

NFDL_p EMs are clearly higher in scale than MEx_p EMs, and they tend to be less

flat in the SWIR range.

Spectral reconstruction quality

In Table 6.5, the quality metrics are shown for the NFDL_p (based on the NFINDR

algorithm and a linear mixing model), DeGu_p (based on Deep Learning for EM

extraction and a non linear model) and MEx_p (based on manual EM extraction)

libraries in both spectral hyperspaces and both spectral ranges.

In the VNIR range, the best results (this is, the lowest values of spectral metrics)

correspond to MEx_p in -log(R) hyperspace, although the best cGFC value is found

in R hyperspace for this library. The metric values found for NFDL_p in -log(R)

hyperspace are close to the MEx_p library, with the lowest RMSE values. However,

in R hyperspace the NFDL_p estimation is clearly worse than MEx_p estimation,
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Figure 6.17: VNIR range libraries (left) and SWIR range libraries (right) extracted
with NFINDR (upper row) and by Manual Extraction MEx_p (Lower row) from the
painting on copper. EMX stands for EM X.

and DeGu_p outperformed NFDL but not MEx_p.

In the SWIR range, the best results for RMSE are found again for NFDL_p in

-log(R) hyperspace, and for cGFC in DeGu_p in R space. In general, the quality of

the estimation is acceptable or remarkably good, depending on the hyperspace and

range, save for NFDL_p in VNIR range and R hyperspace.

The beneficial effect for the scale sensitive metrics (RMSE and ∆E00) of the -

log(R) hyperspace transformation is remarkable, and overall, the SWIR estimated

spectra are closer to the original according to the spectral metrics, which is expected
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Table 6.5: Spectral reconstruction quality metrics for the two EM libraries in VNIR
and SWIR, and in both hyperspaces. The best results for each metric and spectral
range are in bold.

Library Hyperspace Mean cGFC (STD) Mean RMSE (STD) Mean ∆E00 (STD) Range
NFDL_p

R
0.0104 (0.010) 0.0743 (0.0309) 12.64 (5.11)

VNIR
MEx_p 0.0025 (0.0036) 0.0136 (0.0146) 4.16 (2.29)

DeGu_p 0.0037 (0.0036) 0.0324 (0.0270) 6.22 (4.39)
NFDL_p -log(R) 0.0065 (0.0095) 0.0055 (0.0047) 3.81 (2.48)
MEx_p 0.0051 (0.0074) 0.0076 (0.0125) 3.69 (2.50)

NFDL_p
R

0.0032 (0.0103) 0.0108 (0.0121) -

SWIR
MEx_p 0.0051 (0.0074) 0.0076 (0.0125) -

DeGu_p 0.0016 (0.0030) 0.0244 (0.0213) -
NFDL_p -log(R) 0.0035 (0.0055) 0.0047 (0.0100) -
MEx_p 0.0090 (0.0267) 0.0064 (0.0010) -

because they have lower maximum values.

Presence and concentration maps

In Figure 6.18, the concentration maps for the NFDL_p and MEx_p libraries in

-log(R) hyperspace and VNIR range are shown. The order of the MEx_p EMs corre-

sponds to Figure 6.17.

According to the XRF and XRD results [293], LL can be found both in the Virgin’s

mantle and in the background. This is corroborated by the VNIR range concentra-

tion maps EM1 and EM2 for MEx_p (second row), and EM3 for NFDL_p (first row

of Figure 6.18). The CN pigment is found in the Virgin’s dress and in the carna-

tions, which is corroborated by MEx_p EM3 (second row) and NFDL_p EM4 (first

row). The LW is found in the carnations and in the Virgin’s chemise sleeves, which

is corroborated by MEx_p EM4 (second row) and NFDL_p EM1 (first row). The BB

pigment is found in the shadowed areas and in the background, which would be

supported by MEx_p EM1 (second row) and NFDL_p EM3 (first row). And finally,

the NY pigment is found in some parts of the carnations and in the Child’s cloth.

This would correspond to EM5 in both libraries. The VNIR results are consistent,

with some trend to confuse background with LL pigment in some areas for MEx_p.
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Figure 6.18: Concentration maps in -log(R) hyperspace corresponding to the libraries
shown in Figure 6.17 . First row: NFDL_p VNIR range; second row: MEx_p VNIR
range; third row: NFDL_p SWIR range; fourth row: MEx_p SWIR range.

In the SWIR range, there are some remarkable findings: the first is that the confu-

sion between BB and LL is less marked for MEx_p (see EM1 and EM2 in the fourth

row of Figure 6.18). The second is that for NFDL_p, the LW and CN results are in-

termingled in EM5 concentration map (third row), while this does not happen for
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Table 6.6: Pigment identification results for NFDL_p, using the copper reference
REFL library as reference.

Library Hyperspace Range Assigned labels Hit rate MId range

NFDL_p

R VNIR LL, REP, NY, REP, BB 60 0.13-0.27
-log(R) LW, BB, BB, REP, BB 40 0.11-0.41

R SWIR LW, CN, AZ, NY, BB 80 0.023-0.15
-log(R) BB, AZ, AZ, BB, NY 40 0.06-0.28

MEx_p (see EM3 and EM4 in the fourth row). And the third is that the NY does

not appear clearly in the NFDL_p EMs, while it seems to appear in EM5 for MEx_p

(fourth row). The NY pigment is the least present in the painting and appears mostly

in mixtures. Overall, the results for the MEx_p library in the SWIR are more consis-

tent, even if the estimation quality is lower than for NFDL_p.

In Figure 6.19, the presence maps with a threshold of 0.25 are shown for both

libraries and both ranges, in -log(R) hyperspace. Considering the inherent limita-

tions of the unmixing techniques, the presence map results are rather satisfactory

and consistent with the pointwise XRF and XRD results [293]. It is found out that

the carnations are a mixture of three EMs, one of them present as well in the Virgin’s

dress. Or that the Virgin’s veil is also a mixture of at least three EMs.

Pigment identification results

In Table 6.6, the results from the pigment identification for NFDL_p using REFL

library as reference are shown. The best result is obtained for R hyperspace and

SWIR range with a hit rate of 80%, failing to identify the LL pigment. However,

if one considers the union of the two ranges, there would be seven pigments, of

which only one is not present in the painting (AZ). This union strategy seems to

work better also for the -log(R) hyperspace, which would result in six pigments, of

which one is not present in the painting (AZ). These results are of course conditioned

by the very restricted and specific set of pigments used as reference. Regarding the
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Figure 6.19: Presence maps with a threshold of 0.25, corresponding to the libraries
shown in Figure 6.17. Upper row: NFDL_p -log(R) VNIR range; second row: MEx_p
-log(R) VNIR range; third row: NFDL_p -log(R) SWIR range; fourth row: MEx_p
-log(R) SWIR range.

MId range values, the NFDL_p obtains the lowest value (0.023-0.15) for SWIR and R

hyperspace. The results suggest that the SWIR range is more reliable than the VNIR

range, in agreement with the hit rate values. None of the other libraries obtain better

identification results than NFDL_p.
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6.3.3 Conclusions

In this section, different unmixing techniques are applied for pigment detection

and identification in two spectral ranges: VNIR and SWIR. The unmixing methods

have been selected with the aim to compare two different methodologies: using a

non-linear DL-based method in R space, and a linear classical method in -log(R)

space.

A reference palette has been prepared, containing the pigments present in an oil

painting on copper with the inscription “Boceto di Pablo Veronese” on the back, plus

AZ (not present in the painting) and additional patches with mixtures.

The proposed methodology to analyze the painting has been selected using the

results obtained with a reference checkerboard image obtained from this palette. For

this image, the -log(R) hyperspace unmixing results are satisfactory for the NFDL

library in VNIR range in terms of concentration maps and scale dependent quality

metrics, although slightly worse for the shape-sensitive cGFC metric. The pigment

identification results are also successful.

The method was applied to the restored painting on copper using NFDL_p in

both R and -log(R) hyperspaces and in both spectral ranges. NFDL_p was able to

provide reasonable results for the concentration and presence maps in the VNIR

range. NFDL_p in R hyperspace (SWIR range) was the most successful method

for pigment identification. By merging the results of both ranges, the identification

would be complete, although AZ was also identified as present in the painting. This

supports the usefulness of the SWIR range both for unmixing and pigment identifi-

cation in artworks.

The results show that, even with unsophisticated techniques (a classical linear

algorithm like NFINDR), for some instances it is possible to obtain satisfactory re-
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sults using only spectral information for analysis of naturally aged artworks on a

somewhat unusual support like copper.

It is crucial to have adequate auxiliary reference pigment palettes for pigment

identification using spectral reflectance information, as stated in other studies [134].

The main limitations of the proposed methodology are in pigment identification in

the painting, due to the intrinsic differences between the reference pigments (new)

and the painting pigments (aged/dirty). Although aging can be modeled to some ex-

tent [308] or light-induced pigment degradation can be used [164], multiple variables

are involved. The natural aging process changes the pigment’s spectral shape differ-

ently based on composition, light exposure, and environmental factors. In many

cases, these specific factors are unknown, adding complexity to the identification

task.

It is worth spending additional effort in refining spectral imaging and unmixing

methods so that they can perform on par with alternative techniques without re-

quiring a priori information from the artwork. One limitation is the influence of the

preparation techniques, binding agents, varnish, and aging on the reflectance spec-

tra. A multivariate model accounting for the changes introduced by all these factors

could lead to more accurate results for stand-alone spectral information-based pig-

ment identification in the future.
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CHAPTER 7

Spectral unmixing for historical
ink analysis





7.1. Spectral unmixing to identify historical ink mixtures

This chapter presents preliminary results on the application of spectral unmix-

ing techniques for historical ink classification, explored through two different ap-

proaches. The first focuses on identifying individual ink components within mix-

tures of different inks. The second applies spectral unmixing as a pre-processing

step to minimize the influence of the support material on the ink spectra, aiming to

improve classification performance in an SVM model.

Some of these findings were presented at the 12th Colour and Visual Comput-

ing Symposium (CVCS 2024) and the XIV Reunión Nacional de Óptica (RNO 2024),

and were further developed during a research stay at the Colourlab, Department of

Computer Science at the Norwegian University of Science and Technology (NTNU),

Gjøvik, under the supervision of Prof. Sony George.

7.1 Spectral unmixing to identify historical ink mix-

tures

7.1.1 Introduction

The previous chapter on ML methods for material classification (chapter 5)

demonstrated the effectiveness of these algorithms in distinguishing between pure

metallo-gallate (MGP), carbon-containing (CC), and non-carbon-containing (NCC)

inks in both mock-ups and historical documents, using only HSI data. However,

these classifications grouped together a heterogeneous variety of ink formulations.

For instance, pure carbon-based inks and their mixtures with metallo-gallate ink or

sepia were categorized under the CC label, while mixtures of metallo-gallate ink
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with sepia were classified under the NCC label, along with the pure sepia ink (see

Table 5.1 for reference).

Medieval Arabic ink recipes suggest that mixed inks played a significant role

in the Islamic world [35, 36]. Iron gall ink often exhibited a brownish hue when

freshly applied, leading to the practice of mixing it with carbon-based or sepia inks

to enhance their color and durability. These mixtures have been documented since

ancient times [13, 34]. Despite their historical significance, the detection and classi-

fication of mixed inks remain challenging, especially when using non-invasive tech-

niques, and they have received relatively little attention from researchers.

Given the success of spectral unmixing techniques in identifying mixed pigments

in a painting (see chapter 6), we extended these methods to the analysis of ink mix-

tures. The objective was to develop a more accurate and refined classification system

than that achieved by ML and DL algorithms, allowing for the mapping and identifi-

cation of individual ink components from HSI data. Unlike pigments, which exhibit

distinct colors and spectral signatures in the VIS range, most historical inks appear

black or brown, complicating their differentiation. To address this, spectral analy-

sis was conducted using the concatenated dataset from the VNIR and SWIR ranges

through low-level data fusion (as explained in subsection 5.2.3).

Some of the samples analyzed also included pencil marks and various writing

supports, which were incorporated into the model. In this way, the method was used

to generate concentration maps (for ink identification) and error maps (to evaluate

spectral reconstruction) for eight components: three inks (metallo-gallate, sepia, and

carbon-based), pencil, and four types of writing supports (parchment, cotton-linen

paper, linen paper, and cotton paper). The final result is an unmixing-based classifier

not only for inks, but also for pencil and different supports.
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7.1.2 Materials and methods

7.1.2.1 Library of endmembers

Spectral unmixing requires a reference library of EM reflectance spectra to de-

termine the concentration of each component pixelwise. Reference spectra were ob-

tained from samples in the ’Mock-ups of historical inks on different supports’ subset (see

chapter 3). Specifically, pure samples of metallo-gallate, sepia, and carbon-based

inks (including various formulations) applied on parchment and cotton-linen paper

were selected, as these were among the most commonly used historical supports

present in our database.

Additional reference samples were obtained from historical documents held at

the Archive of the Royal Chancellery of Granada and the Provincial Historical

Archive, included in the ’Historical documents’ set described in chapter 3. Reflectance

spectra were extracted from the hyperspectral images by averaging the pixels cor-

responding to each class: pure inks, pencil, and support materials, resulting in a

reference library with eight classes (EMs): three inks, pencil (Figure 7.1 left), and

four writing supports (Figure 7.1 right).

7.1.2.2 Test samples

Spectral unmixing was applied to six mock-up samples from the ’Mock-ups of his-

torical inks on different supports’ subset described in chapter 3. These samples were

created by mixing metallo-gallate, sepia, and bone black inks in 1:1 ratios and ap-

plying them to parchment and cotton-linen paper. To ensure that results extended

beyond controlled mock-ups, spectral unmixing was also applied to a historical

manuscript page (referred to as ’parent cube’ in chapter 3) from the ’Family tree book

from the Archive of the Royal Chancellery of Granada’ subset. This document, also used
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Figure 7.1: Reflectance spectra of the EM library, including foreground materials
(left): metallo-gallate pure (MGP), carbon-based ink pure (CP), sepia pure (SP), and
pencil (Penc); and background materials (right): parchment (Parch), cotton-linen pa-
per (Cot-lin), linen paper (Linen), and cotton paper (Cotton).

for evaluation in chapter 5, contains handwritten text by two different individuals

and includes both carbon-based ink and a mixture of metallo-gallate and sepia inks.

7.1.2.3 Hyperspectral image capture

Hyperspectral images were acquired in the VNIR and SWIR ranges following

the capture process and post-processing described in subsection 3.2.2 and subsub-

section 3.2.3.1. Data fusion was performed at the low level by concatenating VNIR

(400–950 nm) and SWIR (955–1700 nm) spectral information, with interpolation at 5

nm intervals to create a continuous spectral dataset covering the 400–1700 nm range,

as described in subsection 5.2.3.

7.1.2.4 Spectral unmixing and ink identification

To determine the concentration of each ink component in the samples, spectral

unmixing was carried out using a subtractive mixing model, as proposed by [177].

The optimization algorithm was the interior point [309] with the sum-to-one con-
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Figure 7.2: Workflow of the proposed methodology for ink unmixing and identifica-
tion.

straint and a lower bound of zero for the concentrations. An upper bound was not

considered, as preliminary tests indicated that it resulted in worse performance. The

cost function used incorporated a combined metric of cGFC and RMSE (see sub-

subsection 6.2.1.4 for details).

The accuracy of the spectral reconstruction was evaluated using error maps

(RMSE, cGFC), and the estimated concentration maps were compared with the

known composition of the mock-up samples. For a sample with unknown compo-

sition, the EM corresponding to the highest concentration map in the ink/support

regions would be selected as the primary component, and the second most concen-

trated EM would be considered as the second component in the ink mixture. The

complete workflow is illustrated in Figure 7.2.

7.1.3 Results

Figure 7.3 (a) presents the concentration maps obtained for the metallo-gallate

and bone black ink mixture on parchment. The results show that a higher concentra-

tion of carbon-based ink was detected in both the square region and the handwrit-

221



7. Spectral unmixing for historical ink analysis

Figure 7.3: Concentration maps of the eight classes in the EM library for mock-ups
of (a) metallo-gallate ink and bone black on parchment, and (b) metallo-gallate ink
and sepia on cotton-linen paper.

ing traces, while a smaller amount of metallo-gallate ink was identified in the traces.

Regarding the supports, differentiation between parchment and cotton-linen paper

proved difficult, finding both in similar proportions. The pencil EM was also present

on the support, although at a lower concentration. Similar results were obtained for

the metallo-gallate and bone black ink mixture on cotton-linen, although the support

was correctly identified.

The spectral reconstruction error maps (see Figure 7.4 (a)) indicate higher errors

in the square region, where the reconstructed spectrum did not match the original

spectrum in amplitude (RMSE) but did in overall shape (cGFC).

For the sepia and metallo-gallate mixture on cotton-linen paper (see Figure 7.3

(b)), the classification results were satisfactory, as both inks and the support were

correctly identified. However, only a small amount of metallo-gallate ink was de-

tected in the square area, and the spectral reconstruction was slightly less accurate
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Figure 7.4: Error maps: cGFC (left) and RMSE (right) for mock-ups of (a) metallo-
gallate ink and bone black on parchment, and (b) metallo-gallate ink and sepia on
cotton-linen paper.

when comparing the mean cGFC and RMSE values in both mock-ups (see Fig-

ure 7.4 (b)).

Finally, in the historical document (see Figure 7.5), the paper was correctly iden-

tified as cotton-linen, and distinct areas of text were classified as either iron gall ink

or carbon-based ink. However, sepia was not detected, and the areas identified as

iron gall ink were in fact mixtures of iron gall and sepia.

7.1.4 Discussion and conclusions

As previously discussed (see chapter 3, chapter 4, and chapter 5), metallo-gallate

inks become nearly transparent beyond 1000 nm, whereas carbon-based inks con-

tinue to absorb infrared radiation. When these two inks are mixed, overall re-

flectance decreases across all wavelengths, resulting in a spectral profile more closely

resembling that of carbon-based ink, making it challenging to detect the presence of

metallo-gallate ink even using unmixing techniques.

When comparing the results obtained in this section with those from chapter 5
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Figure 7.5: Concentration maps of the eight classes in the EM library for a historical
document.

for the historical document in Figure 5.9, the NCC and CC classes were detected in

different areas. Therefore, the classes created in chapter 5 could serve as a guide

for interpreting the unmixing results. In this case, the MGP ink would be excluded

due to the absence of the this ink in the classification map of chapter 5, and the pure

sepia ink would be discarded because no significant concentration was found in the

concentration maps. As a result, the MGP + sepia ink mixture would be the only

possible identification.

Further tests are needed to refine the spectral unmixing methodology for ink

identification. The presence of carbon-based inks significantly complicates the de-

tection of metallo-gallate and sepia inks. Potential improvements include testing
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alternative unmixing models, exploring different cost functions in the optimization,

and applying pre-processing steps such as spectral normalization to emphasize spec-

tral shape rather than amplitude. These adjustments could enhance classification

accuracy and improve the differentiation of components in mixed inks in historical

documents.

7.2 Enhancing ink classification in historical docu-

ments using unmixing pre-processing and SVM

7.2.1 Introduction

As discussed in the previous section, the separation of individual components

within ink mixtures for identification purposes remains a complex challenge, and the

application of unmixing techniques for this purpose requires further optimization to

become a viable approach in the future.

As mentioned throughout this PhD thesis, the reflectance spectrum of an ink is

not determined exclusively by its chemical composition but is also influenced by

other factors, such as the support on which it is applied. This effect is particularly

noticeable in the SWIR region, where radiation can penetrate certain inks. Addi-

tionally, the boundary between the inked area and the clean support, as well as the

presence of very thin strokes, complicates classification due to the spectral mixing

of these two components. Consequently, these areas are often misclassified, for ex-

ample, as pencil marks, as observed in subsection 3.4.1, Figure 3.6, or as different

types of ink, as seen in subsection 4.3.1, Figure 4.5, and subsection 5.3.3, Figure 5.7.

Furthermore, modern supports differ from aged ones, as in the case of historical

documents. As a result, inks with similar compositions, such as pure metallo-gallate
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ink, can exhibit significantly different reflectance spectra when applied to mock-ups

compared to those found in historical documents, as well as when used on mock-

ups with different supports. Some examples of these spectral variations have been

discussed in chapter 3.

To address this issue and improve the classification results presented in chapter 5,

unmixing has been implemented as a pre-processing step to minimize the influence

of the support on the ink’s reflectance spectrum, regardless of its aging state. This

approach aims to provide the classifier with what we will refer to as ’clean’ spectra

(i.e., spectra with minimal support influence), potentially facilitating classification

independently of the support used. To achieve this, we have to separate the spectral

contributions of each component (ink and support) in order to isolate the ink spec-

trum. An SVM model has been trained and tested (selected as the one providing

the best results as traditional ML model in chapter 5), and two new classes, parch-

ment and paper, were introduced into the classifier, resulting in a total of five classes:

MGP, CC, NCC, parchment, and paper.

7.2.2 Materials and methods

7.2.2.1 Train/test samples and Machine Learning model

The same training and test samples presented in chapter 5, subsection 5.2.4, were

used in this section, with an identical train/test split. However, instead of applying

the data fusion approach described in subsection 5.2.3, the logistic splicing correc-

tion method [310] was implemented, developed at the Colourlab, where the research

stay was conducted. This method effectively mitigates the spectral discontinuity ob-

served between 950 and 955 nm, which arises due to discrepancies in reflectance

measurements between the VNIR and SWIR sensors, as previously explained in sub-
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section 3.4.2. By applying this correction, the two spectral regions were smoothly

concatenated.

A Support Vector Machine (SVM) model was trained and tested (hyperparam-

eters detailed in Table 5.3), as it yielded the best results in the previous study (see

chapter 5). In this case, the classes MGP, CC, and NCC were used, along with parch-

ment and paper, to develop a classifier capable of distinguishing between ink and

support.

7.2.2.2 Unmixing pre-processing

An automatic unmixing pre-processing approach was developed. For each train-

ing sample or minicube (as defined in chapter 3), two EMs were extracted:

1. Ink EM (EM1): This reflectance spectrum was obtained using the GT with the

imerode function implemented in MATLAB® which selects pixels from the cen-

tral area of the ink strokes (white region in Figure 7.6 a.). A square struc-

turing element of 5 pixels in width was used for border removal, or 3 pixels

for minicubes with very thin strokes. The spectra of the selected pixels were

then averaged to form EM1, the ink EM. The resulting spectrum, along with its

standard deviation, is shown in Figure 7.6 b. This approach ensured that edge

pixels were excluded from the averaging process.

2. Support EM (EM2): A 10×10 pixel square was automatically identified in the

GT, located as far as possible from any inked area (red square in Figure 7.6

c.). If a 10×10 square could not be found, a 4×25 pixel rectangle was used

instead. The spectra of the pixels within this area were averaged to form EM2,

the support EM. The resulting spectrum, along with its standard deviation, is

shown in Figure 7.6 d.
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These two EMs were then used to generate concentration maps following the

procedure described in the previous section and in subsubsection 6.2.1.4, using a

subtractive model. Additionally, spectral reconstruction was evaluated using cGFC

and RMSE.

After this step, two thresholds were selected through various tests to generate

presence maps: only pixels with an ink concentration greater than 50% and a support

concentration greater than 90% were kept. This was done to exclude pixels at the

edges of strokes, where it is difficult to assign a clear label as either ink or support

due to spectral mixing.

Following this, an SVM model was trained. Pixels outside the selected thresh-

olds were excluded from training to avoid using data with a high degree of spectral

mixing between ink and support. Three different models were then trained based

on different spectral processing approaches to the spectral data used for training:

• Model 1: No cleaning – This model used the raw reflectance spectra without

any pre-processing, as in chapter 5, but only considering those within the pres-

ence maps.

• Model 2: Reconstructed or mixed spectra – In this approach, the spectra used

were those reconstructed as the product of the EMs raised to their respective

concentrations (subtractive model) after the pre-processing unmixing step.

• Model 3: Clean or unmixed spectra – Ink and support spectra were separated,

meaning each was obtained as its corresponding EM raised to its concentration

after the pre-processing unmixing step. Unlike in Model 2, no product of the

two EM contributions was performed; instead, they were kept separate. The

final spectrum retained either the ink or support component, depending on

which one had the highest concentration.
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Figure 7.6: Workflow illustrating the steps involved in the process.

Once the spectra were prepared, they were shuffled before training to prevent

learning order bias and enhance generalization of the model.

After training, the models were tested. The reflectance values of the pixels in

the test samples underwent the same automatic unmixing pre-processing. These

reflectance values were then input into each model: raw spectra without pre-

processing (Model 1), reconstructed spectra after unmixing (Model 2), and individu-

ally reconstructed ink and support spectra (Model 3). The classification results were

then used to generate classification maps.

Additionally, the unmixing pre-processing was used to determine the presence

maps, as before (with thresholds of 0.5 for ink and 0.9 for support). The evaluation

metrics (described in subsection 5.2.8) were applied only to the pixels within the

presence maps. This ensured a fair evaluation, as pixels outside these maps con-

tained mixed materials, making it difficult to classify them as a single component
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when, actually, they contain a mix of two. Assigning a single label in such cases

would not be appropriate. This evaluation procedure was applied consistently to all

three models to ensure comparability. The entire process is illustrated in Figure 7.6.

7.2.3 Results

Table 7.1: Mean performance metrics for the SVM model with five classes (MGP, CC,
NCC, parchment, paper) on the test set, comparing the impact of different spectral
processing approaches (Models 1, 2, and 3).

Micro-accuracy Macro-accuracy Macro-precision Macro-recall Macro-F1
Model 1 97.81 96.12 92.08 96.12 93.74
Model 2 95.53 96.36 95.38 96.36 95.74
Model 3 97.03 98.12 97.61 98.12 97.80

Table 7.2: Mean performance metrics for the SVM model with only ink classes (MGP,
CC, NCC) on the test set, comparing the impact of different spectral processing ap-
proaches (Models 1, 2, and 3).

Micro-accuracy Macro-accuracy Macro-precision Macro-recall Macro-F1
Model 1 95.53 94.40 88.05 94.40 90.64
Model 2 97.88 98.13 95.65 98.13 96.80
Model 3 99.17 99.08 98.84 99.08 98.94

Table 7.1 presents the mean performance metrics for the SVM model in the five-

class classification task, distinguishing between metallo-gallate pure (MGP), carbon-

containing ink (CC), non-carbon-containing ink (NCC), parchment, and paper. Pen-

cil pixels were excluded from the evaluation, as this class was not part of the clas-

sification task but was present in some of the minicubes used for testing. The re-

sults show the influence of the different spectral processing approaches (Models 1,

2, and 3) on classification performance, considering only the pixels within the pres-

ence maps, as described previously.

For comparison with previous work (chapter 5), paper and parchment pixels

were excluded from the test results, and the performance metrics were recalculated
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(see Table 7.2). However, support classes may still have appeared in the predictions,

as ink pixels could have been misclassified as support. This accounts for the slightly

worse results obtained for Model 1 compared to those in chapter 5.

In Figure 7.7, examples of classification maps obtained using the three models

with different spectral processing approaches are presented, along with the GT im-

ages.

7.2.4 Discussion and conclusions

Regarding the performance metrics obtained for the five-class problem, as pre-

sented in Table 7.1, it can be observed that all macro-metrics for Model 2 are higher

than those for Model 1, while those for Model 3 exceed those for Model 2. Specifi-

cally, there is a 4% difference in Macro-F1 when comparing Model 1 to Model 3. This

suggests that the use of unmixing pre-processing can improve classification results in

ML models. Micro-accuracy is the only metric where Model 1 shows a slightly higher

value than the other models. This can be explained by the fact that micro-accuracy

does not account for class imbalance, meaning that classes with more representation

in the test set, such as support classes, have a greater influence on the final metric. In

this case, Model 2 performed worse when classifying the most represented classes.

An analysis of the classification maps suggests that this discrepancy may be due to

the misclassification of the support material in one of the mock-up samples (see Fig-

ure 7.7 first row). Specifically, in the sample containing a 50:50 mixture of iron gall

ink and earth pigment, the support was classified as cotton-linen instead of parch-

ment. This may be due to the optical properties of this ink mixture, which becomes

transparent in the IR region. As a result, even though the EM was extracted from the

central part of the ink stroke to minimize the influence of the support, the spectral

information in the IR range was still primarily influenced by the support material.
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Figure 7.7: Classification maps obtained using the SVM model, comparing different
spectral processing approaches (Models 1, 2, and 3). The Ground Truth (GT) im-
ages are shown in the last column, where black pixels indicate non-evaluated areas.
Purple: metallo-gallate ink (MGP); yellow: carbon-containing ink (CC); orange: non-
carbon-containing ink (NCC); dark gray: parchment; light gray: cotton-linen paper.

In Table 7.2, when the support classes are excluded from the calculation, it is

evident that Model 2 outperforms Model 1, and Model 3 performs better than Model

2 across all the evaluation metrics studied. Specifically, Model 3 achieves more than

an 8% higher F1-score compared to Model 1, reaching 98.94%. This performance

surpasses the macro-F1 obtained with the DL-based model in chapter 5, although

it is important to note that these results are not directly comparable, as here the

evaluation is performed on presence maps rather than the entire sample.

Model 1 was designed to closely resemble the one in chapter 5, but with ad-

justed training and test data to make it more comparable to Models 2 and 3 after

pre-processing. The differences between Model 1 in this study and the one used in
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chapter 5 are as follows: (i) training was conducted using only pixels from areas

with high ink or support concentration; (ii) the labels parchment and paper were in-

cluded, not just the ink labels (MGP, CC, NCC); (iii) performance metrics for the test

evaluation were calculated using only areas with high ink or support concentration.

Additionally, the results presented here do not include the post-processing cleaning

step proposed in chapter 5. We hypothesize that incorporating this post-processing

step would likely improve the results for all three models across most of the samples

studied. Some samples, such as those in rows 2, 3, 4, and 5 in Figure 7.7, would

benefit from post-processing cleaning. However, as shown in chapter 5, Figure 5.7

(first row) and Figure 5.8 (first row), the SVM model still incorrectly identifies two

inks even after applying post-processing. Therefore, Models 2 and 3 would likely

perform better than Model 1.

Regarding the classification maps (see Figure 7.7), we observe that in general the

areas containing ink are cleaner in Model 2. Model 3 tends to classify the edges

of the strokes as pure iron gall ink, which could be addressed with cleaning post-

processing. Models 2 and 3 were able to classify the support more uniformly than

Model 1 in controlled samples. However, Model 3 presented issues with histori-

cal samples, where part of the support was misclassified as pure iron gall ink (see

Figure 7.7 4th and 5th rows), particularly in areas with low support concentration

according to unmixing (black pixels in GTs). This is understandable, as Model 3 is

trained with pure spectra, and the spectrum of pure iron gall ink is the most similar

to that of the support, given that this ink becomes transparent in the infrared. This

issue could potentially be addressed by adjusting the thresholds or implementing

adaptive thresholds, rather than fixed ones (e.g., 0.5 for ink and 0.9 for support),

depending on the sample type. Regarding the test samples in the ’Manuscripts of

the Provincial Historical Archive of Granada’ subset, the misclassifications found in
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chapter 5, subsection 5.3.4, persist across all three models. Specifically, some MGP

samples are classified as CC, probably due to the effects of ink degradation, aging,

and discoloration in the reflectance spectra. This represents a particularly challeng-

ing case, where further improvements in the classification process are needed, partic-

ularly in addressing the impact of such material changes on the spectral signatures.

After reviewing the results, Models 2 and 3 demonstrate improved classification

performance compared to Model 1. Based on an analysis of the classification maps,

Model 2 would be preferred due to its uniformity in classification. However, when

considering only the classification in the central part of the strokes, Model 3 shows

superior performance in that region.

Unmixing emerges as a promising technique to be used as a pre-processing step

to improve classification before feeding the data into a ML model. This presents

an innovative application of the technique. However, further research is needed to

establish it as a fully automated method with adaptive thresholds. One potential

approach for classification could involve a voting mechanism, where the materials

present in each minicube are determined based on the majority vote from each EM

(ink or support). Another approach could involve exploring the use of unmixing for

binarization, as it effectively separates ink and support in most cases.

Testing inks on non-porous surfaces, such as glass slides or containers, instead of

traditional support materials could help isolate their spectral properties and mini-

mize the influence of the support on the extracted EMs. This would be particularly

relevant in the IR range, where certain inks become transparent. However, since

inks are inherently applied to support materials in real-world scenarios, a more rel-

evant approach would be to analyze and account for these interactions rather than

attempting to eliminate them.
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In this PhD thesis, hyperspectral image processing has been applied to the iden-

tification of materials in historical documents and artworks. A publicly available

database was created to provide a solid basis for spectral analysis. Various ap-

proaches were then explored, including spectral similarity metrics, Machine Learn-

ing (ML) and Deep Learning (DL) models, as well as spectral unmixing techniques,

with the aim of optimizing the classification and mapping of inks, pigments, and

supports. The main findings of this thesis are summarized as follows:

1. The HYPERDOC database represents a significant contribution to the field

of historical document analysis by providing a comprehensive and publicly accessi-

ble hyperspectral dataset of historical documents and mock-ups, being the first of its

kind. The dataset includes spatially registered spectral information in both the VNIR

and SWIR ranges, along with metadata and Ground Truth (GT) images, offering

pixelwise material information. This supports diverse applications, including the

development of new methods for material identification and mapping, as explored

further in this PhD thesis. This database promotes interdisciplinary collaboration be-

tween the image processing and restoration-conservation communities, encouraging

the adoption of advanced techniques, such as hyperspectral imaging (HSI), in prac-

tical applications within archives and museums. The interest from the community is

reflected in the response to the database: within just three weeks of its release, it has

received notable media attention, including coverage in newspapers [311–313], tele-

vision news [314], and social media, as well as over 40 downloads. This increasing

engagement suggests that the database’s impact will continue to grow in the future.

2. Three methods were proposed to select optimal spectral similarity metrics to

classify historical inks, and the performance of six spectral metrics (RMSE, SAM ,

SID, SIDSAM , NS3, JMSAM ) was evaluated. In method 1, confidence thresh-

olds were established for each metric, with SIDSAM demonstrating the best per-
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formance in ink classification. In method 2, SAM was selected as the metric that

provided the highest accuracy and F1-score. In method 3, the estimation of the Prob-

ability of Spectral Discrimination (PSD) and the Power of Spectral Discrimination

(PWSD) resulted in the selection of JMSAM and SIDSAM . Combining the results

from all three methods proved effective in accurately identifying inks in both mock-

ups and ancient manuscripts, although some problems related to the borders of the

strokes and the selection of classes justified following up this preliminary study with

more advanced ML techniques.

3. Six classification models, including five traditional ML methods (SVM,

KNN, LDA, RF, and PLS-DA), and one DL-based model, were implemented for

ink classification. Three types of ink were classified: metallo-gallate pure (MGP),

carbon-containing (CC), and non-carbon-containing (NCC). Results showed that

DL achieved the highest classification accuracy, while SVM performed on par with

lower computational requirements. Cleaning post-processing improved the results

of traditional models, and data fusion of the VNIR and SWIR ranges proved essen-

tial for highlighting distinctive material features, such as fading of MGP inks in the

SWIR range. In both case studies, using pages from real historical documents, no

model achieved perfect results, likely due to degradation, aging, and fading of CC

inks, especially in the SWIR range.

4. Three endmember (EM) extraction methods (NFINDR, NMF and manual ex-

traction) were compared in two stages (pre- and post-intervention) of an oil painting

on a copper plate in the VNIR range. The reflectance curves of the NMF EMs differed

from real pigments. Manual extraction produced the most accurate concentration

maps, closely matching the real pigment distributions, and yielded the best spectral

reconstruction. The best pigment identification results were obtained with manual

extraction (2 of 5) for the unrestored painting, and NFINDR and NMF (3 of 5) for
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the restored painting. The information in the concentration maps was insufficient

to detect all re-painted areas, and while spectral band optimization improved their

visualization to some extent, it did not enable accurate detection of all areas.

5. Using VNIR and SWIR spectral data, two approaches for automatic EM ex-

traction were compared: NFINDR, based on a linear mixture model, and a DL-based

nonlinear model. Two spectral hyperspaces were compared too: the spectral re-

flectance (R hyperspace) and the -log(R) hyperspace. After evaluating the results on

a checkerboard image obtained from a reference palette, NFINDR was selected and

applied to the restored oil painting on a copper plate. Unmixing in the -log(R) hyper-

space using NFINDR yielded better results in both spectral ranges, while NFINDR

in the R hyperspace (SWIR range) was the most successful method for pigment iden-

tification (4 of 5). Merging the results from both ranges enabled complete pigment

identification, supporting the usefulness of the SWIR range for this purpose.

6. Unmixing techniques were applied to identify individual components in ink

mixtures using data fusion of VNIR and SWIR spectral ranges. MGP ink was hardly

found when mixed with bone black (a CC ink). This ink becomes transparent in

the IR, whereas CC inks continue to absorb this radiation. When mixed, these inks

exhibit decreased reflectance across all wavelengths, producing a spectral profile re-

sembling that of CC ink, which complicates the detection of MGP. In the sepia and

MGP mixture on cotton-linen, classification results were satisfactory, as both inks

and the support were correctly identified. However, sepia was not detected in the

historical document. Further refinement of these techniques is needed to achieve

reliable results.

7. Applying unmixing techniques as a preprocessing step to minimize the influ-

ence of the support on the spectral signature of inks improved classification using

SVM. Models 2 and 3, which incorporated unmixing, achieved higher performance
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metrics than the model without it. Parchment and cotton-linen classification was

also performed. Model 3 frequently misclassified stroke edges as MGP ink, an issue

that could be addressed with post-processing cleaning. Model 2 provided the clean-

est classification maps. Unmixing emerges as a promising pre-processing technique

to enhance ML classification, offering cleaner spectral features for ink identification,

though further research is required.

This PhD thesis also opens up several interesting research directions to be ex-

plored in the future.

• The HYPERDOC database is a dynamic resource that will continue to grow

over time, incorporating additional historical samples from different periods

and regions, as well as expanding the variety of materials, including more dyes

and pigments for the analysis of illuminated manuscripts.

• Spectral reflectance of inks with similar compositions can change due to aging

and discoloration, as seen in the manuscripts from the Provincial Historical

Archive of Granada. Future studies should aim to develop classification mod-

els that account for these spectral shifts, potentially through virtual de-aging,

microfading techniques, and expanding the training dataset as the HYPER-

DOC database grows.

• As for inks, aging affects the spectral properties of pigments differently de-

pending on composition, light exposure, and environmental conditions. The

influence of preparation techniques, binding agents, and varnishes on spectral

reflectance should also be explored, with the goal of developing multivariate

models to improve pigment identification based on spectral data.

• Future work could include the development of more sophisticated segmenta-

tion algorithms for detecting repainted areas, as well as using information from
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different spectral ranges.

• Spectral unmixing methods require further refinement for ink analysis. This in-

cludes exploring alternative unmixing models and cost functions in optimiza-

tion algorithms, spectral normalization, and adaptive thresholds for detecting

areas with high ink or support content. The potential of spectral unmixing for

document binarization could also be explored.

• The interaction between ink and support materials is crucial for spectral anal-

ysis, as it alters the final spectrum and complicates classification. The physical

properties of the support materials, such as texture, porosity, and color, along

with the chemical interactions with the ink, can all influence the spectral sig-

natures, potentially causing spectral shifts or masking certain features. Further

investigation is needed to better understand these interactions, as this will im-

prove ink identification using HSI.

• The integration of multiple spectral ranges (VNIR and SWIR) has demon-

strated its potential for pigment and ink identification. Future research should

focus on optimizing multimodal methods to maximize classification accuracy,

such as combining HSI with XRF or Raman spectroscopy. Also, using HSI as a

preliminary exploratory technique to provide informed guidance in the selec-

ton of key points for measuring with point-based methods shows the potential

value of a combined technique approach for material identification.

HSI is non-invasive, provides high spatial and spectral resolution, and requires

significantly less time for capture compared to alternative techniques. These advan-

tages emphasize the need for continued refinement of these methods to improve

material identification. By addressing these challenges, future research can build
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on the findings of this PhD thesis, contributing to the advancement of HSI in the

analysis of historical documents and paintings.
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En esta tesis doctoral se ha aplicado el procesamiento de imágenes hiperespec-

trales para la identificación de materiales en documentos históricos y obras de arte.

Se ha desarrollado la primera base de datos de acceso público, HYPERDOC, de refer-

encia para el análisis espectral de documentos. A continuación, se exploraron diver-

sos métodos, incluyendo la evaluación de métricas de similitud espectral, modelos

de aprendizaje automático y aprendizaje profundo, así como técnicas de unmixing o

desmezclado espectral, con el objetivo de optimizar la clasificación y determinar la

distribución espacial de tintas, pigmentos y soportes. Los principales hallazgos de

esta tesis se resumen a continuación:

1. La base de datos HYPERDOC constituye el primer conjunto de datos hipere-

spectrales de acceso público que integra documentos históricos y muestras modelo.

Incluye información espectral registrada espacialmente en los rangos visible e infrar-

rojo cercano (VNIR) e infrarrojo de onda corta (SWIR), junto con metadatos y Ground

Truth (GT), que ofrecen información sobre los materiales presentes en cada píxel de

la imagen. Este recurso facilita el desarrollo de nuevos métodos para identificar y

conocer la distribución espacial de los materiales, promoviendo la colaboración in-

terdisciplinar y la adopción de técnicas avanzadas, como la imagen hiperespectral

(HSI), en aplicaciones prácticas dentro de archivos y museos. El interés de la comu-

nidad se refleja en la respuesta a la base de datos: en tan solo tres semanas desde su

lanzamiento, ha recibido una notable atención mediática, incluyendo cobertura en

periódicos [311–313], noticias televisivas [314] y redes sociales, así como más de 40

descargas. Esto sugiere que el impacto de esta base de datos continuará en aumento

en el futuro.

2. Se propusieron tres métodos para seleccionar las métricas de similitud es-

pectral óptimas para clasificar tintas históricas, evaluando el rendimiento de seis

métricas espectrales (RMSE, SAM , SID, SIDSAM , NS3, JMSAM ). En el método
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1, se establecieron umbrales de confianza para cada métrica, siendo SIDSAM la

que mostró mejor rendimiento en la clasificación de tintas. En el método 2, SAM

fue seleccionada como la métrica que proporcionó mayor precisión y F1-score. En el

método 3, la estimación de la probabilidad de discriminación espectral (PSD) y el

poder de discriminación espectral (PWSD) resultaron en la selección de JMSAM y

SIDSAM . Combinar los resultados de los tres métodos demostró ser efectivo para

identificar tintas tanto en muestras modelo como en manuscritos antiguos. Sin em-

bargo, debido a problemas relacionados con los bordes de los trazos y la selección

de clases, decidimos aplicar técnicas más avanzadas, como las de aprendizaje au-

tomático.

3. Se implementaron seis modelos de clasificación para tintas, incluyendo cinco

métodos tradicionales de aprendizaje automático (SVM, KNN, LDA, RF y PLS-DA),

y un modelo basado en aprendizaje profundo (DL). Se clasificaron tres tipos de tinta:

metalogálica pura (MGP), con contenido de carbón (CC) y sin contenido de carbón

(NCC). Los mejores resultados se obtuvieron con DL, mientras que SVM propor-

cionó un rendimiento similar con una menor demanda computacional. Gracias al

post-procesamiento, se mejoraron los resultados de los modelos tradicionales, y la

fusión de la información en los rangos VNIR y SWIR demostró ser esencial para

resaltar características distintivas de los materiales, como el desvanecimiento de las

tintas MGP en el rango SWIR. En el análisis de documentos completos, ningún mod-

elo alcanzó resultados óptimos, probablemente debido a la degradación, envejec-

imiento y desvanecimiento de las tintas CC, especialmente en el rango SWIR.

4. Se compararon tres métodos de extracción de endmembers (EM): NFINDR, fac-

torización no negativa de matrices (NMF) y extracción manual, en dos etapas (pre

y post-intervención) de una pintura al óleo sobre placa de cobre en el rango VNIR.

Las reflectancias espectrales de los EM obtenidos con NMF diferían de los pigmen-
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tos reales. La extracción manual produjo los mapas de concentración más precisos,

coincidiendo estrechamente con las distribuciones de pigmentos reales, proporcio-

nando la mejor reconstrucción espectral. Los mejores resultados de identificación de

pigmentos se obtuvieron con la extracción manual (2 de 5) para la pintura no restau-

rada, y con NFINDR y NMF (3 de 5) para la pintura restaurada. La información en

los mapas de concentración fue insuficiente para detectar todas las áreas repintadas,

y aunque la optimización de bandas espectrales mejoró su visualización hasta cierto

punto, no permitió una detección precisa de todas las áreas.

5. Utilizando datos espectrales VNIR y SWIR, se compararon dos enfoques para

la extracción automática de EM: NFINDR, basado en un modelo de mezcla lineal, y

un modelo no lineal basado en DL. También se compararon dos espacios espectrales:

el de reflectancia (R) y el espacio -log(R). Después de evaluar los resultados sobre

una imagen obtenida a partir de una paleta de referencia, se seleccionó NFINDR y

se aplicó a la pintura restaurada sobre placa de cobre. El desmezclado o unmixing

en el espacio espectral -log(R) usando NFINDR dio mejores resultados en ambos

rangos espectrales, mientras que NFINDR en el espacio R (rango SWIR) fue el mejor

método para la identificación de pigmentos (4 de 5). La integración de los resultados

de ambos rangos permitió identificar completamente los pigmentos, evidenciando

la importancia de utilizar ambos rangos espectrales.

6. Se aplicaron técnicas de desmezclado o unmixing espectral para identificar

componentes individuales en mezclas de tintas mediante la fusión de datos de los

rangos espectrales VNIR y SWIR. Se encontraron dificultades para detectar la tinta

MGP cuando era mezclada con negro de huesos (tinta CC), ya que la tinta MGP se

vuelve transparente en el infrarrojo, mientras que la tinta CC continúa absorbiendo

esta radiación. Como resultado, el espectro de la mezcla muestra una disminución

en todas las longitudes de onda, generando un perfil similar al de la tinta CC y
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dificultando la detección de la MGP. En la mezcla de sepia y MGP sobre papel de

algodón y lino, los resultados de clasificación fueron satisfactorios, ya que tanto las

tintas como el soporte fueron correctamente identificados. Sin embargo, la sepia no

fue detectada en el documento histórico. Es necesario un mayor perfeccionamiento

de estas técnicas para obtener resultados más consistentes.

7. La incorporación de técnicas de unmixing como preprocesamiento con el fin de

minimizar la influencia del soporte en el espectro de las tintas, mejoró la clasificación

mediante un modelo SVM. Los modelos 2 y 3, que incorporaron unmixing, lograron

un rendimiento más alto que el modelo 1, sin unmixing. También se clasificaron los

soportes pergamino y papel de algodón y lino. El modelo 3 clasificó erróneamente

los bordes de los trazos como tinta MGP, un problema que podría abordarse con

post-procesamiento. El modelo 2 proporcionó los mapas de clasificación más pre-

cisos. El unmixing espectral se presenta como una técnica prometedora de preproce-

samiento para mejorar la clasificación con algoritmos de aprendizaje automático, al

proporcionar espectros menos afectados por el soporte para la identificación de tin-

tas, aunque se necesita más investigación para perfeccionar su aplicación.

Esta tesis doctoral también abre varias líneas de investigación interesantes que

pueden explorarse en el futuro.

• La base de datos HYPERDOC es un recurso dinámico que seguirá creciendo

con el tiempo, incorporando muestras históricas adicionales de diferentes pe-

riodos y regiones, así como ampliando la variedad de materiales, incluyendo

colorantes y pigmentos para el análisis de manuscritos iluminados.

• La reflectancia espectral de tintas con composición similar puede cambiar de-

bido al envejecimiento y la decoloración, como se observa en los manuscritos

del Archivo Histórico Provincial de Granada. Estudios futuros deben centrarse
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en desarrollar modelos de clasificación que tengan en cuenta estos cambios es-

pectrales utilizando técnicas de des-envejecimiento virtual, microfading y am-

pliando el conjunto de datos de entrenamiento a medida que crece la base de

datos HYPERDOC.

• El envejecimiento también afecta de manera diferente las propiedades espec-

trales de los pigmentos según su composición, exposición a la luz y condiciones

ambientales. Asimismo, factores como las técnicas de preparación, los agluti-

nantes y los barnices utilizados deben considerarse en el desarrollo de modelos

multivariantes para mejorar la identificación de pigmentos.

• El desarrollo de algoritmos de segmentación más sofisticados para la detección

de áreas repintadas o restauradas, así como el uso de información de diferentes

rangos espectrales, es una línea de investigación interesante a explorar.

• Las técnicas de unmixing deben ser optimizadas para el análisis de tintas. Esto

incluye la exploración de modelos alternativos, nuevas funciones de coste en

los algoritmos de optimización, la normalización espectral y el uso de umbrales

adaptativos para detectar áreas con alto contenido de tinta o soporte. También

se podría explorar el potencial del unmixing espectral para la binarización de

documentos.

• La interacción entre la tinta y los materiales de soporte es crucial para el análi-

sis espectral, ya que altera el espectro final y dificulta la clasificación. Las

propiedades físicas de los materiales de soporte, como la textura, la porosi-

dad y el color, junto con las interacciones químicas con la tinta, pueden influir

en la reflectancia espectral. Se requiere mayor investigación para comprender

mejor estas interacciones y así mejorar la identificación de tintas mediante HSI.
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• La integración de múltiples rangos espectrales (VNIR y SWIR) ha demostrado

su potencial en la identificación de pigmentos y tintas. Investigaciones fu-

turas deberían optimizar métodos multimodales, combinando HSI con técni-

cas como fluorescencia de rayos X o Raman, para maximizar la precisión de

clasificación. Además, el uso de HSI como técnica exploratoria preliminar para

orientar la selección de puntos clave en mediciones puntuales resalta el poten-

cial de un enfoque combinado para la identificación de materiales.

La imagen hiperespectral (HSI) es una técnica no invasiva que ofrece una alta

resolución espacial y espectral, y requiere considerablemente menos tiempo de cap-

tura en comparación con técnicas alternativas. Estas ventajas subrayan la necesidad

de perfeccionar los métodos existentes para mejorar la identificación de materiales.

Al abordar estos desafíos, futuras investigaciones podrán apoyarse en los hallazgos

presentados en esta tesis, contribuyendo al avance del uso de HSI en el análisis de

documentos históricos y pinturas.
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