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A B S T R A C T   

In diagenetic solutions, ammonium may be incorporated into smectites as an exchangeable cation and become 
fixed within the interlayer space of illites and other white micas. To study the potential impact of NH4

+ on the 
smectite-to-illite transformation reaction, a series of hydrothermal experiments were carried out at 100, 150 and 
200 ◦C, spanning reaction duration from 15 to 90 days, and two NH4

+ concentrations (0.1 and 0.2 M). The solids 
resulting from these alteration experiments were characterized using X-ray diffraction (XRD), Fourier-transform 
infrared spectroscopy (FT-IR), and transmission and analytical electron microscopy (TEM and AEM). The XRD 
analysis revealed that, under the specified experimental conditions, smectite incorporates NH4

+ in the structure, 
leading to the formation of non-swelling layers, resulting in partial transformation to illite layers and producing 
packets of disordered illite/smectite (I/S). In addition, a minor XRD peak at ~10 Å suggests the formation of 
discrete illite crystals. The FTIR spectra demonstrated the uptake of NH4

+, with deformation bands observed at 
1400 and 1430 cm− 1, corresponding to exchangeable NH4

+ in smectite and fixed NH4
+ in high-charge layers, 

respectively. TEM analysis revealed that smectite particles exhibited wavy stacks comprising a few layers with 
abundant defects and lateral discontinuities. The interlayer spacing in these particles ranged from 12 to 15 Å and 
became thinner and more plate-like with increasing temperature and time. Moreover, they contained inclusions 
of 10–10.3 Å layers, either as discrete layers or in packets of several layers, indicating the formation of disordered 
mixed-layer illite-smectite. Lateral transitions from 12 to 15 Å to 10 Å layers were frequently observed and 
interpreted as reaction fronts due to local rearrangement. At 150 and 200 ◦C, isolated packets of 10 Å layers were 
identified as discrete illite crystals that precipitated directly from solution. Analysis of the chemical composition 
of individual particles revealed an increase in octahedral charge (MgVI for AlVI substitution) in smectite particles, 
followed by increase in tetrahedral charge in I/S particles. Interlayer NH4

+ played a stabilizing role in the high- 
charge layers and favored the smectite-to-illite conversion process.   

1. Introduction 

The interaction between mineral and solutions includes processes 
such as adsorption, dissolution and precipitation. These processes play a 
critical role in regulating the exchange of elements between rocks, 
sediments, and the fluids found within the Earth’s crust, hydrosphere, 
and biosphere. These reactions can govern the biogeochemical cycles of 
elements, including mineral formation and alteration, retention of pol-
lutants, release of nutrients, interactions with living organisms, and 

more. During diagenesis, several reactions induce changes in both 
phyllosilicates and organic matter, which, in basins associated with 
hydrocarbon production, lead to ammonium fixation in illite and micas 
(Williams and Ferrell, 1991; Środoń, 2010) and dissolution induced by 
organic acids (Surdam et al., 1989; Barman et al., 1992; Drever and 
Stillings, 1997; Lawrence et al., 2014). 

Clay minerals accumulate in sedimentary basins, and changes in 
environmental conditions during burial, such as increasing temperature 
and pressure, porosity reduction, and the incorporation of new chemical 
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species, alter their stability as they become more deeply-buried in the 
sediment column. Among these changes, minerals in the smectite group 
undergo structural reorganization, resulting in an increase in tetrahedral 
charge, the adsorption and fixation of K+ ions in the interlayer space, 
and the release of silica. This leads to textural and mineralogical 
transformations in smectites, including the development of illitic layers 
and the formation of mixed-layer illite/smectite (I/S) and discrete illite. 
The mechanism of smectite illitization can involve multiple processes 
(Altaner and Ylagan, 1997), and two reaction models have been pro-
posed: (1) A solid-state transformation characterized by layer-by-layer 
replacement of smectite by illite (Bethke and Altaner, 1986; Inoue 
et al., 1990; Amouric and Olives, 1991; Lindgreen and Hansen, 1991; 
Drits et al., 1997a; Cuadros and Altaner, 1998a, 1998b); or (2) Smectite 
dissolution followed by the crystallization of illite (Nadeau et al., 1985; 
Ahn and Peacor, 1986; Inoue et al., 2005; Eberl et al., 1990; Whitney and 
Velde, 1993; Dong et al., 1997; Murakami et al., 2005; Lanson et al., 
2009; McCarty et al., 2009, Ferrage et al., 2011, Vazquez et al., 2016). 

The primary source of ammonium in sedimentary basins arises from 
the maturation of organic matter during diagenesis, which results in 
transformation of complex organic compounds into simpler molecules. 
Specifically, protein denitrification occurs between 50 and 150 ◦C, 
releasing ammonium that can eventually be incorporated into phyllo-
silicates (Williams et al., 1992). Ammonium concentrations in 

sedimentary fluids can vary widely, from 0.54 mM in interstitial fluids in 
sediment within hydrocarbon basins (Bates et al., 2011) up to 150 mM in 
solutions from oil fields (Collins, 1975). Data collected from drilling 
pelagic sediments in areas of moderate to high productivity indicate 
very low ammonium concentration (0.001–0.03 mM) (Froelich et al., 
1979), whereas interstitial water in ocean sediments in the Baltic Sea 
contains 1.2 mM ammonium (Carman and Rahm, 1997), or 17 mM in 
fluids at the Wakamiko hydrothermal field (Jo et al., 2018). 

The conditions that promote transformation of smectite to illite and 
the simultaneous maturation of organic matter (and release of ammo-
nium ions) can coexist in clayey sediments rich in organic matter. 
Authigenic phyllosilicates can absorb and fix ammonium cations (NH4

+) 
into their interlayer space due to the similar ionic radius and charge as 
potassium (K+) (1.43 Å NH4

+, 1.33 Å K+; Pironon et al., 2003). Yama-
moto (1967) reported the first occurrence of ammonium in micas and 
Higashi (1982) referred to white micas with a predominance of 
ammonium as ‘tobelite’. There is substantial evidence of significant NH4

+

content in I/S and illite in sediments, both associated and not associated 
with hydrocarbon production basins (Williams et al., 1989; Williams 
and Ferrell, 1991; Drits et al., 1997b; Drits et al., 2005; Bauluz and 
Subias, 2010; Bobos, 2012). NH4

+ content has also been observed in 
metamorphic micas (Nieto, 2002; Ruiz Cruz and Sanz de Galdeano, 
2008; Bauluz and Nieto, 2018). The tetrahedral symmetry of the NH4

+

Fig. 1. XRD patterns obtained from randomly oriented mounts of starting 
material and solid products of reactions SAM (0.1 M) at 100, 150 and 200 ◦C 
and 15, 30, 60 and 90 days of reaction. Star: clinoptilolite, Crs: cristobalite, Ilt: 
illite, Qtz: quartz. 

Fig. 2. XRD patterns obtained from randomly oriented mounts of starting 
material and solid products of reactions SAM (0.2 M) at 100, 150 and 200 ◦C 
and 15, 30, 60 and 90 days of reaction. Star: clinoptilolite, Ilt: illite, cross: 
buddingtonite, and Qtz: quartz. 
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ion produces basal spacings in illite and micas that are slightly larger 
than those observed in the K+ equivalents (Radoslovich, 1960). 

In this study, a series of phyllosilicates were synthesized under hy-
drothermal conditions using a system containing bentonite with variable 
NH4

+ content to investigate the influence of NH4
+ on the smectite-to-illite 

transformation reaction. Samples were characterized by X-ray diffrac-
tion analysis, Fourier transformed-infrared spectroscopy and trans-
mission electron microscopy. The results will contribute to improving 
our understanding of the transformation reactions that occur in phyl-
losilicates during diagenesis, particularly when exposed to fluids rich in 

ammonium and organic matter. This project seeks to test the hypothesis 
that fixation of NH4

+ into smectite interlayers, contributes to stabiliza-
tion of high charge layers, thus facilitating the smectite-to-illite reaction. 

2. Materials and methods 

Bentonite from La Serrata-Cortijo de Archidona (Cabo de Gata, 
Almería, SE Spain) was used as starting material. This bentonite, formed 
by hydrothermal alteration of volcanic tuff (Leone et al., 1983; Caballero 
et al., 1983, 2005), has been extensively characterized during the FEBEX 
project (Huertas et al., 2000). The major component of this bentonite is a 
Na,Ca-montmorillonite (>92%), with minor amounts of accessory 
minerals (quartz, feldspars, micas, calcite and amphibole) and volcanic 
glass. The starting material batch was prepared by grinding and ho-
mogenizing by mixing 1 kg of FEDEX bentonite, supplied by CIEMAT. 

The hydrothermal treatment was studied in a chemical system that 
contains NH4

+ and has a basic pH: (NH4)2O-Al2O3-SiO2-H2O (Table S1). 
The hydrothermal reactions were conducted in 50 cm3 steel Teflon-lined 
reactors (Parr 4744), which were maintained at a constant temperature 
of 100, 150 or 200 ◦C (±3 ◦C) and pressure equivalent to that of cor-
responding water vapor pressure at different temperatures (0.101, 0.476 
and 1.554 MPa), with reaction times ranging from 15 to 90 days. The 
bentonite powder (2 g) was mixed with 30 mL of a 0.1 or 0.2 M NH4OH 
solution (Series SAM1 and SAM2, respectively); these concentrations 
were higher than those observed in nature to enhance the trans-
formation of smectite to illite in a 1:15 solid:solution mass ratio. The 
initial pH of the solution was 11.95 (SAM1) and 11.72 (SAM2). At the 
end of the runs, the reactors were quenched quickly in cold water. The 
products were immediately centrifuged and a small fraction of the so-
lutions was used for final pH measurement (Table S2). 

The solid products of the reactions were characterized by X-ray 
diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FT- 
IR) and transmission and analytical electron microscopy (TEM and 
AEM). 

XRD analyses were performed on a PANalytical X’Pert Pro system 
operating at 45 kV and 40 mA with an X’Celerator detector, CuKα ra-
diation, and a Ni filter. The goniometer (240 mm radius) was configured 
vertically, with a theta-theta geometry, and the sample was kept hori-
zontal in a spinner platform. No monochromator was used. Samples 
were prepared in random powder and in oriented mounts. Random 
powders were scanned in the 2θ range from 3◦ to 70◦, using a 0.25◦

divergence slit, with a 0.5◦ anti-scatter slit. Oriented mounts were pre-
pared by pipetting powder dispersions in deionized water (0.1 g in 5 mL) 
onto glass slides, and oriented mounts were continuously scanned in the 
2θ range from 3 to 40◦, using a 0.125◦ divergence slit, with a 0.25◦ anti- 
scatter slit, in air-dried (AD), ethylene glycol-solvated (EG) and heated 
(sequentially, 350 ◦C for 1 h, then 550 ◦C for 2 h) states. Ethylene glycol 
solvation was performed within a desiccator in an oven at 60 ◦C for 4 h. 
Heating treatments were performed in a furnace at a fixed temperature. 

FT-IR spectra were obtained with a PerkinElmer Spectrum One FTIR 
spectrometer equipped with a lithium tantalate (LiTaO3) detector. 
Samples were prepared in KBr tablets (1% wt. sample) previously dried 
at 120 ◦C for one day. Petit et al. (1999) pointed out that NH4

+ may be 
eventually replaced by K+ form KBr in low charge layers in swelling 
clays, appearing as a sharp band at 1400 cm− 1, but NH4

+ was not 
replaced by K+ in high charge layers, which retain NH4

+ and produced a 
broad band at 1430 cm− 1. The integrated intensity of both bands can be 
used for quantitative estimation of total ammonium, as well analysis of 
heterogeneity in layer charge and occupancy. Spectra showed differ-
ences in the intensity of the water bands, whereas the N–H bands 
remained unchanged. Nieto (2002) reported that NH4

+ was stable in 
smectites for temperatures below 900 ◦C. The spectra were recorded in 
absorption mode and scanned with a wavenumber resolution of 4.0 
cm− 1 between 4000 and 400 cm− 1. A total of 100 scans were collected 
for each spectrum at a scan speed of 0.2 cm⋅s− 1. For spectral analysis, 
spectra were first normalized to the O–H stretching band at ~3630 

Table 1 
Estimation by FTIR of total NH4 as interlayered cation (as % Interlayered Cat-
ions) in the altered smectite samples.  

Sample NH4 total NH4 in smectite 
(1400 cm− 1) 

NH4 in illite 
(1430 cm− 1) 

0.1 M NH4    

100 ◦C    
15 days 60 53 7 
30 days 79 58 21 
60 days 91 72 19 
90 days 99 76 23 
150 ◦C    
15 days 22 18 4 
30 days 24 21 3 
60 days 39 30 9 
90 days 36 28 8 
200 ◦C    
15 days 46 33 13 
30 days 70 49 21 
60 days 40 28 12 
90 days 43 30 13  

0.2 M NH4    

100 ◦C    
15 days 41 34 7 
30 days NA – – 
60 days NA – – 
90 days 13 3 10 
150 ◦C    
15 days 54 35 19 
30 days 49 22 27 
60 days 92 75 17 
90 days 51 39 14 
200 ◦C    
15 days 55 39 16 
30 days 55 43 12 
60 days NA – – 
90 days 64 18 48 

NA: not available. 

Table 2 
Estimation of the percent of illite-like layers in illite/EG-smectite, derived from 
the difference in angular position (◦Δ2θ) between 001/002 and 002/003 re-
flections (Moore and Reynolds, 1997). nd: not determined.  

T (◦C) t (d) Illite% (±3)   

SAM1 SAM2 

Untreated  0 0 
100 15 nd nd 
100 30 nd nd 
100 60 nd nd 
100 90 29 nd 
150 15 39 22 
150 30 32 33 
150 60 22 24 
150 90 23 25 
200 15 30 36 
200 30 42 36 
200 60 26 32 
200 90 30 28  
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cm− 1 (Higashi, 2000; Petit et al., 2006). Subsequently, the NH4
+ defor-

mation band was decomposed using least-squares fitting with Gaussian 
shape functions to estimate the integral intensity of the total band and of 
each component. 

In addition to the treated samples, a set of NH4
+-montmorillonite 

samples from 0% to 100% in NH4
+ was prepared. Ammonium and po-

tassium homoionic smectites were prepared by suspension of raw 
bentonite in 0.1 M NH4Cl and 0.1 M KCl solutions, respectively. The 
resulting NH4

+ and K+ saturated smectites were mixed by grinding in 
appropriate proportions. Their FT-IR spectra revealed a single maximum 

Table 3 
Representative analyses of untreated bentonite (average of several analyses; sd, standard deviation) and synthetic samples SAM1 formed at 100, 150 and 200 ◦C after 
90 days, normalized to O10(OH)2.   

Si AlIV AlVI Fe3+ MgVI Na K Ca Mg  

Untreated 
(n = 5) 

3.85 0.15 1.44 0.20 0.37 0.18 0.06 0.09 0.16  

sd 0.08 0.08 0.04 0.07 0.08 0.06 0.05 0.01 0.05   

Ref. Si AlIV AlVI Fe3+ MgVI Na K Ca NH4  

100 ◦C 90 d           
10C 3.94 0.06 1.49 0.10 0.41 0.00 0.00 0.12 0.23 S 
15C 3.90 0.10 1.53 0.03 0.44 0.00 0.03 0.08 0.33 S 
16C 4.00 0.00 1.45 0.22 0.33 0.00 0.05 0.16 0.00 S 
17C 3.83 0.17 1.60 0.09 0.31 0.00 0.29 0.00 0.19 S 
20C 3.92 0.08 1.45 0.15 0.40 0.00 0.02 0.19 0.08 S 
21C 3.86 0.14 1.38 0.19 0.43 0.00 0.02 0.24 0.07 S 
1C 3.54 0.46 1.13 0.31 0.56 0.00 0.10 0.19 0.55 I/S 
2C 3.62 0.38 1.25 0.14 0.61 0.00 0.03 0.22 0.52 I/S 
3C 3.67 0.33 1.14 0.15 0.71 0.00 0.03 0.20 0.60 I/S 
4C 3.62 0.38 1.15 0.20 0.64 0.00 0.03 0.20 0.59 I/S 
5C 3.70 0.30 1.23 0.24 0.53 0.00 0.00 0.22 0.39 I/S 
6C 3.75 0.25 1.30 0.20 0.49 0.00 0.02 0.19 0.35 I/S 
7C 3.76 0.24 1.41 0.08 0.51 0.00 0.02 0.17 0.40 I/S 
8C 3.67 0.33 1.27 0.17 0.56 0.00 0.02 0.17 0.54 I/S 
9C 3.77 0.23 1.27 0.10 0.63 0.00 0.03 0.20 0.42 I/S 
11C 3.66 0.34 1.31 0.14 0.55 0.00 0.02 0.34 0.19 I/S 
12C 3.73 0.27 1.10 0.27 0.63 0.00 0.05 0.20 0.44 I/S 
13C 3.66 0.34 1.31 0.14 0.55 0.00 0.02 0.34 0.19 I/S 
14C 3.76 0.24 1.35 0.17 0.48 0.00 0.03 0.17 0.35 I/S 
18C 3.71 0.29 1.05 0.32 0.63 0.00 0.10 0.12 0.58 I/S 
19C 3.53 0.47 1.15 0.35 0.50 0.00 0.00 0.10 0.77 I/S 
average in S 3.91 0.09 1.48 0.13 0.39 0.00 0.07 0.13 0.14  
average in I/S 3.68 0.32 1.23 0.20 0.57 0.00 0.03 0.20 0.46   

150 ◦C 90 d           
3B 3.84 0.16 1.32 0.14 0.55 0.00 0.00 0.20 0.30 S 
5B 3.83 0.17 1.31 0.12 0.57 0.00 0.02 0.28 0.17 S 
8B 3.90 0.10 1.47 0.07 0.46 0.00 0.03 0.19 0.15 S 
11B 3.94 0.06 1.42 0.14 0.45 0.00 0.02 0.19 0.11 S 
12B 3.80 0.20 1.60 0.10 0.30 0.00 0.02 0.08 0.33 S 
13B 3.82 0.18 1.58 0.10 0.32 0.00 0.00 0.12 0.26 S 
14B 4.00 0.00 1.36 0.19 0.46 0.00 0.00 0.08 0.29 S 
15B 3.83 0.17 1.28 0.08 0.64 0.00 0.02 0.07 0.66 S 
16B 3.80 0.20 1.44 0.15 0.41 0.00 0.00 0.12 0.37 S 
1kB 3.56 0.44 1.22 0.14 0.64 0.00 0.05 0.22 0.59 I/S 
2B 3.73 0.27 1.25 0.15 0.60 0.00 0.03 0.20 0.42 I/S 
4kB 3.61 0.39 1.14 0.12 0.74 0.00 0.03 0.20 0.70 I/S 
6B 3.50 0.50 1.36 0.19 0.46 0.00 0.03 0.17 0.59 I/S 
7B 3.70 0.30 1.12 0.25 0.63 0.00 0.08 0.14 0.57 I/S 
9B 3.76 0.24 1.21 0.40 0.40 0.00 0.12 0.19 0.14 I/S 
10kB 3.72 0.28 1.46 0.15 0.39 0.00 0.00 0.17 0.33 I/S 
17B 3.73 0.27 1.22 0.19 0.59 0.00 0.02 0.15 0.54 I/S 
average in S 3.86 0.14 1.42 0.12 0.46 0.00 0.01 0.15 0.29  
average in I/S 3.66 0.34 1.25 0.20 0.56 0.00 0.05 0.18 0.48   

200 ◦C 90 d           
4A 3.92 0.08 1.20 0.17 0.64 0.00 0.12 0.21 0.17 S 
5A 3.96 0.04 1.31 0.12 0.57 0.00 0.07 0.21 0.55 S 
6kA 3.99 0.01 1.41 0.12 0.47 0.00 0.08 0.20 0.39 S 
8A 3.78 0.22 1.15 0.34 0.51 0.00 0.27 0.21 0.45 S 
9 A 4.00 0.00 1.26 0.22 0.52 0.00 0.03 0.20 0.49 S 
12 A 3.85 0.15 0.96 0.42 0.62 0.00 0.45 0.22 0.32 S 
1 A 3.62 0.38 1.18 0.23 0.59 0.00 0.15 0.23 0.82 I/S 
2 A 3.50 0.50 1.03 0.25 0.72 0.00 0.18 0.25 1.03 I/S 
10kA 3.75 0.25 1.26 0.18 0.55 0.00 0.15 0.22 0.66 I/S 
average in S 3.92 0.08 1.21 0.23 0.56 0.00 0.17 0.21 0.40  
average in I/S 3.62 0.38 1.16 0.22 0.62 0.00 0.16 0.23 0.83  

S: smectite-type particles; I/S: illite/smectite-type particles. 
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at 1400 cm− 1, whose integral intensity linearly correlated with the NH4
+

content in the interlayer space. This relationship was used to estimate 
the ammonium content in the treated samples (estimated error < 20%). 

The mineralogical compositions, crystal chemistry, and texture (i.e., 
arrangement, size, shape, and spatial configuration of particles) of solid 
reaction products were analyzed using two microscopes. A Philips CM- 
20 microscope (CIC, University of Granada) fitted with an ultrathin 
window, with a LaB6 filament, operated at 200 kV, and point-to-point 
resolution of 2.7 Å was used for TEM and AEM, with the aim of 
obtaining quantitative analyses of individual particles. Chemical anal-
ysis was collected in STEM (scanning transmission electron microscopy) 
mode, using a bright field detector, with an EDAX © solid-state Si(Li) 
detector for energy dispersive X-ray (EDX) analysis. Scan window 
ranged from 50 × 100 to 200 × 200 Å. Atomic % was calculated by the 
thin film ratio criteria, following the procedure of Cliff and Lorimer 
(1975) and Champness et al. (1981). A variety of natural mineral stan-
dards (e.g., albite, biotite, spessartine, muscovite, forsterite, annite and 
titanite) were used to obtain K-factors to transform intensity ratios to 
concentration ratios. The second microscope used for high-resolution 
TEM (HRTEM) was a JEOL-2000 FXII instrument (SAI, University of 
Zaragoza) operated at 200 kV, equipped with an Oxford 200X-Sight 
Instruments detector. The <2 μm fraction of each specimen were pre-
pared in two modes: encased within an epoxy resin and sliced parallel to 
the c-axis, and dried from ethanol suspension on Cu grids. TEM images 
and AEM analyses were obtained with CM-20 in Cu-grids, while HRTEM 

analysis was done with a JEOL-2000 FXII in ultrathin sections. Chemical 
analyses obtained at nano-scale by AEM were converted to structural 
formulae. In the untreated bentonite, the formulae were calculated on 
the basis of O10(OH)2 assuming 22 negative charges, since all cations 
were analyzed. An octahedral occupancy apparently higher than 2 is due 
to a fraction of Mg2+ ions located in the interlayer space, according to 
the exchangeable cation analysis in bulk sample (Huertas et al., 1995). 
The structural formulae of treated samples were computed on the basis 
of O10(OH)2, and assuming that the tetrahedral plus octahedral occu-
pancy is 6 atoms per formula unit (apfu) (Nieto, 2002). The NH4 content 
could not be measured by AEM and thus was estimated as the difference 
required to satisfy interlayer charge. 

3. Results 

The combined results from XRD, FTIR and TEM, reveal significant 
mineralogical, crystal-chemical and textural changes resulting from the 
hydrothermal treatment of bentonite. These changes are attributed to 
smectite alteration and transformation reactions leading to the forma-
tion of new phases. The chemistry and mineralogy of the synthesized 
samples depend on the composition of the treating solution (i.e., NH4

+

concentration), temperature, and reaction time. Notably, the pH of the 
hydrothermal solution decreased rapidly from its initial value of 
approximately 12 to 11 after 15 days of hydrothermal treatment, fol-
lowed by a slower decline to ~10 (SAM1) and ~ 9 (SAM2) after 90 days. 

Fig. 3. XRD patterns from oriented samples: (A) SAM (0.1 M and 200 ◦C; (B) SAM (0.2 M and 200 ◦C). AD: oriented airdried, EG: ethylene-glycol treatment, and 
550 ◦C: heated at 550 ◦C. 
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3.1. X-ray diffraction analysis 

The XRD patterns obtained from the randomly oriented solid prod-
ucts of reactions conducted with two different ammonium concentra-
tions (0.1 and 0.2 M), at different temperatures (100, 150 and 200 ◦C), 
and for different reaction times (15, 30, 60, and 90 days), together with 
the pattern of the starting smectite, revealed that the smectite 001 basal 
spacing decreased from 15.2 Å in the untreated sample to 12.6–13.5 Å 
(0.1 M, Fig. 1) and to 11.6–13.7 Å (0.2 M, Fig. 2). This reduction in basal 
spacing was more pronounced when increasing the NH4

+ concentration 
from 0.1 to 0.2 M. This behavior was interpreted as resulting from the 
incorporation of NH4

+ ions from solution into the interlayer space, 
leading to the partial release of the natural cations Ca2+ and Na+. NH4

+

ion behavior within the interlayer space differs from cations such as 
Na+, K+, or Ca2+, due to its ionic radius and hydration energy. The basal 
spacing of NH4 montmorillonite remained at around 12.0 Å for a wide 
range of relative humidity (20–70%), which corresponds to a monolayer 
of water molecules (Gautier et al., 2010; Wakakita et al., 2023). 
Furthermore, NH4

+ ions can form multiple hydrogen bonds with oxygen 
atoms in the basal tetrahedral sheet, further limiting the swelling of the 
interlayer spacing during hydration (Díaz Pinthier, 1999). The differ-
ence in ionic radii between NH4

+ and K+ also enlarged the basal spacing 
of ammonium illite to 10.3 Å, compared with 10.0 Å for the K+ end- 
member (Drits et al., 1997a, 1997b). A small reflection at ~10 Å sug-
gests the partial transformation of the untreated smectite into packets or 
crystals of discrete illite. This reflection was observed in powder patterns 
in the experiments conducted at 150 and 200 ◦C after 15 days of reaction 
with 0.1 M NH4

+, and after 30 days at 200 ◦C with 0.2 M NH4
+. In other 

conditions, this reflection could be hidden within the broad basal 
reflection of smectite. The formation of non-swelling layers within the 
smectite crystals produced disordered I/S regions, contributing to a 
reduction in the basal spacing of the reacted samples. 

Octahedral sheet composition in phyllosilicates influences the b 

parameter which is typically derived from the (060) reflection included 
within the (06l, 33l) band at 1.54–1.49 Å (see the recent review of Petit 
et al., 2023). The spacing of the (06l, 33l) reflections was measured in 
powder diffractograms using quartz as an internal standard (Fig. S1). 
The value of b was quantified as 6 times d(06l,33l) (Fig. S2), obtaining 
8.992 Å for the untreated montmorillonite. In the case of SAM1, almost 
no variation was observed in b, with values occurring within 0.010 Å. 
SAM2 samples exhibited a slight increase of the d(06l,33l) with time, 
which indicated that the higher ammonium concentration induced some 
changes in the octahedral layer composition. The data available did not 
allow us to derive either a statistically significant trend with time or a 
correlation with temperature. 

Quartz was identified in the untreated bentonite, as well as in all the 
samples, although the intensity of the main reflection (the 101 peak at 
3.34 Å) varies with treatment (Figs. 1 and 2). The intensity of reflections 
decreases with time at 100 ◦C, while at 200 ◦C, the intensity is initially 
very low but increases with treatment time. This behavior is attributed 
to quartz dissolution (100 ◦C) and precipitation or recrystallization 
(200 ◦C). Furthermore, clinoptilolite (a zeolite) and buddingtonite 
(NH4

− feldspar) were identified in samples treated at 150–200 ◦C for a 
longer time. Comparing both series, the precipitation of byproducts was 
more relevant in SAM2 than in SAM1. According to these results, 
dissolution and byproduct precipitation become more pronounced with 
increasing temperature and ammonium concentrations. Precipitation of 
NH4-bearing phases may scavenge NH4

+ from solution. 
Diffraction patterns of the oriented mounts are consistent with the 

observations in random powder patterns. Samples obtained at 100 ◦C 
(Fig. S3) exhibited an asymmetric 001 basal reflection at 12.3–13.6 Å 
(0.1 M) and 12.2–12.3 Å (0.2 M) in AD mounts, which partially 
expanded to 12.7–16.4 Å (0.1 M) and 12.9–15.2 Å (0.2 M) in EG, to 
finally collapse to ~10 Å after heating at 550 ◦C. At 150 and 200 ◦C 
(Figs. S4 and 3), both series of samples exhibited similar behavior. The 
basal reflections at 13.0–14.5 Å (0.1 M) and 12.4–13.9 Å (0.2 M) in the 

Fig. 4. FTIR absorption spectra of samples SAM1 and SAM2 (200 ◦C, 90 days of reaction) and untreated smectite: (A) high wavenumber (3800–3000 cm− 1) and (B) 
low wavenumber (1800–450 cm− 1) spectral regions. (C) δNH4

+ deformation vibration modes (ν4) band of SAM1 samples and the untreated smectite saturated with 
ammonium (NH4-natural). 
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AD series swelled to 16.6–16.9 Å (0.1 M) and 16.4–16.9 Å (0.2 M) in the 
EG series, approaching the characteristic 17 Å spacing of pure smectite 
layers. Upon heating at 550 ◦C, the samples collapsed to ~10 Å. 

The existence of a disordered I/S phase rich in smectite was sup-
ported by a basal spacing (001) <17 Å, no rational series of (00l) re-
flections in EG, and the disappearance of the (003) reflection after 
heating at 350 ◦C for 1 h. An estimation of the percent of illite-like layers 
in mixed-layer illite/EG-smectite can be derived from the difference in 
angular position (◦Δ2θ) between 001/002 and 002/003 reflections 
(Moore and Reynolds, 1997). The results are gathered in Table 2. The 
results varied between 20 and 40% of illite layers. A very rough trend 
indicates that a higher proportion of illite corresponds to 15 d samples 
and that % illite layers decrease with reaction time up to 90 d. Tem-
perature and ammonium concentration contributed to forming I/S with 
higher illite content. In samples synthesized at 100 ◦C these higher order 
reflections were very weak, likely due to high smectite content, and no 
estimate of precise % smectite layers could be obtained. 

A diffraction peak at ~10 Å was more easily observed in oriented 
mounts than in powder patterns. No individual 10 Å reflections was 
observed at 100 ◦C, but a small shoulder on the 001 smectite reflection 
occurred in both AD and EG mounts. At 150 and 200 ◦C it was a small, 
sharp reflection that did not shift position after EG treatment. This 
behavior suggests the existence of a small fraction of discrete illite 

crystals. 

3.2. FT-IR spectroscopy 

The IR spectra of the samples displayed the characteristic bands of 
montmorillonite with no relevant differences observed in the structure 
bands compared with the raw bentonite or between different samples, 
irrespective of reaction time, temperature or ammonium concentration 
(Fig. 4). Specifically, the broad band near 3420 cm− 1 and the band at 
1637 cm− 1 correspond to OH stretching vibration and bending vibration 
of absorbed water, respectively. The band at 3626 cm− 1 was assigned to 
the stretching vibration of OH groups within the octahedral sheet 
(Fig. 4A). In the low wavenumber region, the strong band at 1031 cm− 1, 
indicative of Si–O stretching vibrations, is associated with fourfold- 
coordinated silica. The bands at 915, 843 and 796 cm− 1 correspond to 
M-OH bending linked to various octahedral cations (Al3+, Fe3+, Mg2+; 
Farmer, 1974). Additionally, the bands at 519 and 467 cm− 1 are 
attributed to Si-O-Al and Si-O-Si bending vibrations (Farmer, 1974) 
(Fig. 4B). 

Fig. 5. TEM images of untreated bentonite. (A) Low magnification image 
showing the curved smectite flakes of irregular outline. (B) Single smectite 
particles are stacks of a few layers, usually <10 layers; with periodicities in the 
range of 11 to 15 Å, and abundant defects and lateral layer terminations or 
splitting (see arrows). (C) Detailed texture of curved smectite particles with 
spacings between 13.3 and 14.5 Å, with wedge terminations (arrow). 

Fig. 6. High magnification images of particles in sample SAM1C treated at 
100 ◦C for 90 days that showed different basal spacing, and layer ordering. (A) 
A crystal of smectite with abundant defects (arrows) and layer spacing of 13.3 
Å, that expand to 15 Å on the right end by layer splitting. A planar crystal with 
spacing of 10.3 Å may correspond to illite layers with interlayered ammonium. 
Smectite and illite layers coexist in same particles. (B) A particle composed of 
thin stacks of several layers with periodicities of 10 and 12.5 Å that may 
correspond to disordered I/S particles. (C) A particle of about 50 nm in thick-
ness that contains smectitic (14 Å) and illitic (10 Å) domains, as well as an 
ordered sequence of I/S layers. Arrows denote along-layer terminations that 
represent the smectite to illite reaction fronts. 
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The FT-IR spectra confirmed the presence of NH4
+ absorbed on 

smectites. Notably, a small band with the range of 1400–1430 cm− 1 

corresponds to δNH4
+ deformation vibration modes (ν4). Four poorly- 

defined bands were assigned to: the νN-H stretching vibrations at 3300 
cm− 1 (ν3), the overtone 3119 cm− 1 (2ν2), and the combination vibration 
2927 cm− 1 (ν2 + ν4). Additionally, a band at 2851 cm− 1 (2ν4) represents 
the first harmonic of the deformation vibration (Shigorova et al., 1981; 

Petit et al., 1998, 2006; Harlov et al., 2001). 
In some samples, the deformation vibration band exhibited a main 

peak at ~1400 cm− 1, along with a shoulder or a smaller band at ~1430 
cm− 1 (Fig. 4C). The relative intensity of these features varied among 
samples, as previously observed by ̌Sucha et al. (1998). The total integral 
intensity of the 1400–1430 cm− 1 band can be used to estimate the total 
NH4

+ content within smectites. Specifically, the 1400 cm− 1 band corre-
sponds to exchangeable NH4

+ in low charge layers, whereas the 1430 
cm− 1 shoulder represents NH4

+ in high charge layers (Petit et al., 1998). 
The integral intensity of the 1400–1430 cm− 1 band provided an es-

timate of the total ammonium content, while the integral intensity of 
1400 cm− 1 band corresponded to NH4

+ in the smectite layers. The dif-
ference between these values represents an estimation of NH4

+ in illite- 
type layers (Table 1). The results obtained show that, on average, the 
ammonium content accounted for 50% of the interlayer cations, with a 
wide range of variation depending on temperature and aging time. On 
the other hand, the amount of ammonium adsorbed on smectite layers is 
higher than the ammonium fixed in illite-like layers. This observation is 
consistent with XRD results that indicate a prevalence of smectite layers 
after the hydrothermal treatment. 

3.3. Transmission and analytical electron microscopy 

A subset of samples was selected for HRTEM and AEM observations 
in order to detect changes in particle morphology and lattice fringes 
resulting from the illitization reaction. Additionally, chemical micro-
analysis was performed on individual particles using Cu-grid mounted 
samples. The increase in interlayer K+ or NH4

+ and tetrahedral Al content 
served as an indicator of the progress of illitization. 

The untreated smectite exhibits irregular and undulating flakes and 
stacks of curved particles with laminations typically around 50 nm in 
thickness, which is characteristic of smectite (Fig. 5A). Close examina-
tion of lattice-fringe images of smectite (Fig. 5B) revealed stacks of 
particles (~100 × 15 nm) with spacings between 11 Å and 15 Å (most 
commonly 12–12.2 Å). Individual smectite particles appeared as curved 
flakes with a wavy appearance and showed numerous edge dislocations 
and terminations of smectite layers (arrows, Fig. 5B,C). 

The solid products of the SAM1 reaction at 100, 150, and 200 ◦C, 
after 90 days, were selected for HRTEM and AEM analysis. The study of 
these samples revealed some differences compared to the raw material. 
The particles were slightly less curved, had well-defined outlines, and 
locally thicker stacks of platy particles (typically 50 nm thick, reaching 
up to 120 nm at 200 ◦C). Occasionally, polygonal particles corre-
sponding to K- or NH4-feldspars and zeolites, which were byproducts of 
smectite dissolution, were observed. The basal lattice-fringe images 
revealed defects in layer stacking, including lateral and wedge termi-
nations, layer splitting, and deformation (bending of several layers). 
This texture of along-layer terminations and defects corresponds to the 
smectite-to-illite reaction front. 

The 100 ◦C sample consists of subparallel crystals with low-angle 
contacts exhibiting partial curvature and bending, and with a thick-
ness on the order of several nanometers, occasionally reaching up to 35 
nm. This mixture included smectite, I/S and illite (Fig. 6). Stacks of platy 
particles displayed lattice fringes with spacings of 12.5, 13.5 and 15 Å. 
In some regions, layers with spacings between 12 and 15 Å coexisted, 
likely corresponding to smectite crystals of varied expandability 
(Fig. 6A). Within the smectite domains, single layers with a 10 Å spacing 
were frequently identified. Occasionally, crystals with basal spacing of 
10.3 Å were observed and interpreted as illite layers with interlayer 
ammonium (Fig. 6A). Assuming that a 10 Å spacing corresponds to illite 
and 12–15 Å spacings to smectite layers, crystals of I/S were also 
observed with irregularly ordered spacings at 10 Å and 12–15 Å 
(Fig. 6B). These randomly interstratified I/S particles varied in thickness 
and length. Additionally, small domains of ordered I/S sequences were 
present, including IISS, ISSI, and even ordered I/S layers with a spacing 
of 24 Å, consisting of 2, 4 or 6 layers (Fig. 6C). Occasionally, packs of 

Fig. 7. High magnification images of particles in sample SAM1B treated at 
150 ◦C for 90 days. (B) Packet of smectite crystals (bottom) with spacing that 
varied from 12.5 to 14.5 Å; thinner crystals showed a more wavy shape than 
thicker ones (top). Arrows denoted layer termination defects. Also shown 
(middle) is a 30–40 nm thick illite crystal (I) composed of layers with basal 
spacing of 10 and 10.3 Å. Note the contrasting texture of illite (planar) and 
smectite (wavy). The outer side showed smectite layers (12.5 Å) and illite layers 
(10.3) connected by a less crystalline transition region with lateral layer ter-
minations (long arrows). (D) Packet of smectite crystals with intercalation of 
illite layers (1–3) (parallel marks), associated to along layer termination defects 
(arrows), that are interpreted to correspond to smectite-to-illite reaction fronts. 
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regular spaced 10 Å layers were observed, reaching up to 5 nm in 
thickness (Fig. 6C). 

After reaction at 150 ◦C, particles were thicker compared to those at 
100 ◦C, with thickness reaching 80–100 nm. These particles typically 
measured 10–25 nm in thickness and were composed of parallel or 
subparallel crystals exhibiting less waviness than those obtained at 
100 ◦C. Most crystals displayed regular spacing, predominantly at 
12.2–12.5 Å, although spacings of 13–15 Å were also common (Fig. 7A). 
Smectite domains typically consisted of stacks containing 5 to 10 layers. 
Frequent defects and lateral layer discontinuities led to lateral and 
wedge terminations due to layer disappearance or splitting. Smectite 
crystals consisting of 2–3 layers were also observed, with spacing that 
varied between 12 and 15 Å, and having a curved shape (Fig. 7B). Illite 
layers with spacings of either 10 or 10.3 Å usually appeared inter-
stratified within the smectite crystals, either as single layers or as stacks 
of 2–4 layers thick, occasionally associated to along-layer terminations 
(Fig. 7B). Domains of I/S were also observed, such as those with a 10 +
12.5 Å spacing (i.e. adjacent 10 and 12.5 Å layers). While crystals 
composed almost exclusively of illite layers were rarely observed, they 
do occasionally reach thicknesses of tens of nanometers and include 
layers of both 10 and 10.3 Å thickness, as well as smectite layers at the 
outer sides (Fig. 7A). 

The samples obtained after reaction at 200 ◦C contained thicker 
particles compared to those produced at lower temperature, often 
exceeding 100 nm in thickness. These particles were frequently 
composed of planar crystals consisting of 20–40 smectite layers with 
regular spacing, usually around 12–12.5 Å. These smectite crystals 
showed low-angle contacts, layer continuity spanning over 100 nm, and 
common layer splitting defects (Fig. 8A). Thin crystals with <5 smectite 
layers were also observed, often exhibiting defects. Occasionally, 10 Å 
layers were interspersed within the smectite crystals, similar to what 
was observed at lower temperatures. Thinner smectite crystals showed 
bending defects and could contain domains of I/S layers, ranging from 
disordered (Fig. 8B) to occasionally ordered (e.g., SISI). Discrete illite 
crystals, more common at 200 ◦C than at lower temperatures, exhibited 
planar morphology and lattice fringes measuring 10–10.3 Å. They were 
usually aggregated in particles showing low-angle contact or stacked 
through a less crystalline band in between (Fig. 8C). Bending in these 
crystals may be associated with previously transformed smectite crystals 
(Fig. 8C). Some crystals displayed reaction fronts of the smectite-to-illite 
transformation, evident as along-layer transformations where spacings 
decrease from ~12.5 to 10 Å (Fig. 8D). Layers with spacings <10 Å were 
occasionally observed within these reaction fronts and may indicate 
areas undergoing transformation through rearrangement. 

The chemical composition of the particles corresponds to both 
smectitic and illitic phases (Table 3). The analyses of smectite crystals in 
the untreated bentonite, based on O10(OH)2 calculation, indicates that a 
fraction of the Mg2+ ions are located in the interlayer space, consistent 
with exchangeable cation analysis of the bulk sample (Huertas et al., 
1995). The occurrence of octahedral Mg2+ and low tetrahedral Al3+

classify the smectite as a montmorillonite (average Si3.85). The analyses 
of altered samples showed that the chemical composition of the stacks of 
curved particles was similar to that the composition of particles of the 
untreated smectite, with Si contents in the range 3.78 to 3.96 apfu. The 
cation exchange reactions induced by the treatment with NH4

+ solutions 

(caption on next column) 

Fig. 8. High magnification images of particles in sample SAM1 A tread at 
200 ◦C for 90 days. (A) A thick smectite particle (>100 nm) consisting of 
several planar smectite crystals with regular spacing of 12.5 Å, connected by 
low angle contacts. (B) Crystals consisting of disordered I + S layers, preserving 
bending, wedges and layer splitting. (C) Stack of illite crystals (5 to 15 layers) 
with basal spacing between 10 and 10.5 Å, including single layer of smectite 
(12.5 Å). Crystals exhibited low angle contact as well as frequent layer splitting 
(arrows) and wedges. (D) A thin crystal composed of illite and smectite layers. 
From top to bottom, basal spacing changed from 12.5 Å to 11.3 Å, and finally to 
10.3 Å, following an along-layer transformation of a smectite-to-illite reaction. 
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caused the presence of NH4
+ as interlayer cation. Since NH4

+ could not be 
analyzed by AEM in the CM20 microscope, a sample was prepared by 
sedimentation on a Cu-grid and observed using a FEI Titan G2 60–300 
microscope (CIC, University of Granada) to confirm the presence of NH4

+

ions. EDX spectra of several particles revealed a peak corresponding to 
N, which disappeared after a few seconds due to N volatilization under 
the beam energy. The analysis of thin particles showed lower Si content 
(3.50–3.70 apfu), and higher AlIV (>0.30) and MgVI (>0.5) contents 
(Table 3). Additionally, these particles showed a higher layer charge, 
consistent with the presence of some illitic layers. 

Direct comparisons between the textural (HRTEM, ultrathin sec-
tions) and chemical (AEM, Cu grids) analyses are not straightforward. 
HRTEM observations reveal that most illite layers are included within 
particles that also contain stacks of smectite layers. However, the AEM 
analyses were performed on single particles sedimented on Cu grids and, 
consequently, the analyses frequently corresponded to particles con-
taining smectite, illite and/or I/S domains. To differentiate between 
smectite-rich particles and those containing illite or I/S crystals, a value 
of Si = 3.74 apfu was adopted as a reasonable threshold. This value is 
close to the 4 apfu for a pure montmorillonite. 

4. Discussion 

Many studies of smectite illitization have conducted experimental 
reactions to better understand the controlling parameters of this trans-
formation (e.g., Eberl, 1978; Roberson and Lahann, 1981; Inoue, 1983; 
Huang et al., 1986; Huang, 1993; Cuadros and Linares, 1996; Mosser- 
Ruck et al., 1999, 2001; Dong, 2005; Ferrage et al., 2011; Fang et al., 
2017). They have concluded that illitization is favored by temperatures 
in the range of 100 to 250 ◦C, high liquid/solid ratio, high pressure, a 
dioctahedral nature of smectite, a stoichiometric amount of K, and the 
presence of water or chloride solution. 

In the synthesis experiments described in this work, XRD patterns 
revealed that smectite incorporates NH4

+ into its structure, resulting in 
an asymmetric reflection at 11.5–14.5 Å, which may correspond to two 
overlapping reflections: one at ~15 Å associated with smectite with two 
water layers, and another at ~12 Å for smectite with one water layer, 
characteristic of NH4-smectite (Gautier et al., 2010; Wakakita et al., 
2023). SAM2 samples (0.2 M NH4) exhibited a lower spacing than SAM1 
(0.1 M NH4) likely due to a higher proportion of layers intercalated with 
ammonium in SAM2 samples. Some smectite particles, containing layers 
transformed into illite, expanded to <17 Å in ethylene-glycol vapor 
(Figs. S3, S4, 3). The 001 basal spacing in EG expanded to 16.6–16.9 Å at 

150 and 200 ◦C and to a wider range (12.7–16.4 Å) at 100 ◦C. The 
analysis of the EG patterns showed that illite layers were interstratified 
with the smectite layers, forming a disordered I/S with 20–40% illite 
layers. Increasing temperature and ammonium concentration enhanced 
the illite content, but increasing time decreased illite % in mixed-layer I/ 
S. This last effect of time could be associated with the formation of 
discrete illite at the expense of I/S. 

The formation of discrete illite was evident from the appearance of a 
small XRD peak at approximately 10 Å, one that is more clearly observed 
in oriented mounts than in powder patterns, as a small shoulder at 
100 ◦C (Fig. S3) and discrete peak at 150◦ (Fig. S4) and 200 ◦C (Fig. 3). 
Qualitatively, it can be said that time, temperature and ammonium favor 
the formation of illite. 

According to XRD results, the smectite transformed into a mixture of 
smectite, disordered I/S, and discrete illite. Increasing temperature fa-
vors the formation of illite layers, whether as discrete illite crystals or 
interstratified within smectite. At fixed temperature, I/S was enriched in 
illite at a short time, but the proportion of illite layers in I/S decreased 
with longer reaction times, while discrete illite crystals became more 
abundant with time (aging). Ammonium concentration also favored the 
transformation of smectite into illite. 

The interaction of the bentonite with ammonium-rich hydrothermal 
solutions resulted in the uptake of ammonium and the release of initial 
cations (Na, Ca, Mg) through ion-exchange reactions. The FT-IR spectra 
of reacted samples showed characteristic bands related to ammonium 
ions. As reported previously (Shigorova et al., 1981; Higashi, 2000; 
Busigny et al., 2003), FTIR is a successful approach to estimate NH4 
content. Specifically, the absorption band near 1400 cm− 1 corresponds 
to exchangeable NH4

+ ions within the smectite interlayer, while the band 
near 1430 cm− 1 is attributed to non-exchangeable NH4

+ ions, which are 
hydrogen-bonded to the high-charge (illite) interlayer (Chourabi and 
Fripiat, 1981; Petit et al., 1999; Nieto, 2002; Pironon et al., 2003; Šucha 
et al., 2007). These results suggest that ammonium uptake precedes the 
smectite-to-illite transformation. In EG solvated samples, the XRD traces 
expanded to spacings <17 Å, consistent with the presence of disordered 
I/S. The 001 basal spacing at 16.6–16.9 Å at 150 and 200 ◦C in EG 
decreased to 12.7–16.4 Å at 100 ◦C, reflecting an increasing number of 
illite layers in I/S and a decrease of discrete smectite layers at 100 ◦C, 
and this fact is corroborated by the decrease of the (001) basal spacing 
observed in patterns of random oriented powder (Figs. 1 and 2). At 
100 ◦C illite layers initially formed as interstratified within smectite 
layers, but increasing temperature and time favored the formation of 
discrete illite. The amount of NH4 ions within the smectite and illite 
structures supported that, under our experimental conditions, the 
greatest transformation of smectite into illite was observed at 200 ◦C and 
90 days of reaction, including formation of I/S with a NH4 content of 
0.83 apfu (Table 3), in addition to discrete illite. 

The textural observations from TEM align with the XRD analysis, 
indicating that as temperature and reaction time increase, there is a 
trend toward greater % illite layers and greater order. Specifically, ob-
servations show that the smectite particles increased in thickness from 
25 nm up to 120 nm, as well as in the number of layers from <10 to >30 
and in crystal length; they also became less wavy in appearance, and the 
presence of lattice defects decreased. Additionally, the formation of illite 
layers within smectite crystals produces I/S and eventually discrete 
illite. These I/S are generally disordered, and they may consist of single 
layers or multi-layered packets of illite. 

The illitization of smectite takes place through a reaction front 
12–15 Å smectite layers transition laterally to 10 Å illite layers. For this 
transformation to take place, the composition of smectite 2:1 layers 
likely has to change; Si and AlVI concentrations are reduced, while AlIV 

and MgVI concentrations increase, as would NH4
+ (or K+) contents. This 

process is similar to the one proposed by Ahn and Peacor (1986). TEM 
images reveal on numerous occasions this process, which also leads to a 
decrease in lattice defects as well as an increase in domain size and 
crystals thickness, both for smectite as well as I/S and illite. This 

Fig. 9. Representation of the chemical composition of particles analyzed by 
AEM in STEM-mode in a ternary Muscovite-Pyrophyllite-Celadonite diagram. 
The data have been derived from Table 3. Open symbols correspond to smectite 
and solid symbols stand for I/S particles. 
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transformation is a heterogeneous process that takes place by local-scale 
rearrangement or dissolution/precipitation reactions. Consequently, the 
observed textures show the progressive transformation of smectite, 
leading to the formation of interstratified layers of illite and smectite, 
both as individual packets of these layer types as well as disordered I/S. 
The presence of an alkaline ammonium solution facilitates the alteration 
of smectite – as well as accessory phases in the bentonite – and the 
incorporation of ammonium into the interlayer space, after which 
structural reorganization is favored by ammonium in the interlayer, 
helping to stabilize the newly formed high-charge (illite) layers. At 150 
and 200 ◦C, the transformation process is much faster and more wide-
spread, often proceeding through the formation of I/S. As the process 
advances, thick discrete illite crystals can also form at high tempera-
tures. Overall, this process involves multiple reactions and changes in 
mineral composition, and the presence of ammonium ions plays a sig-
nificant role in promoting and stabilizing the transformation from 
smectite to illite. 

Chemical compositions obtained through AEM analysis of individual 
particles are consistent with this transformation scheme. The synthetic 
samples show variable morphologies and structural characteristics of 
particles different from untreated smectites flakes: a) thin particles 
typically contain lower Si (about 3.4 apfu) and higher AlIV and K or NH4 
content, and their chemical analysis is characteristic of illitic phases; b) 
scarcer thicker stacks show similar compositions to the starting smectite, 
but with the incorporation of NH4 as an interlayer cation. AEM data 
were plotted in a pyrophyllite-celadonite-muscovite ternary plot, where 
open symbols correspond to smectite crystals and solid symbols stand for 
I/S particles (Fig. 9). Two distinct trends can be observed: 1) The 
alteration of smectite produces an increase in the celadonite component 
by substitution of MgVI replacing AlVI, and an increase in the octahedral 
charge; 2) the I/S particles show a trend toward increase in the 
muscovite component, characterized by higher AlIV content and tetra-
hedral charge. Although the scattering of the data slightly blurred the 
effect of temperature, temperature enhanced the increase in octahedral 
charge (trend 1), but the dependence of the increase in tetrahedral 
charge on temperature is a more diffuse trend and would require a larger 
data set than is available here (trend 2). These overall trends in the 
smectite-to-illite reaction can also be observed by analyzing the corre-
lations between the different cations (Fig. S5). The transformation of 
smectite to illite leads to a decrease of Si content, highly correlated with 
the increase of ammonium and total charge, as well as the increase of 
octahedral Mg, which correlates positively with the increase of total 
charge. 

The conversion of smectite to illite-smectite (I/S), and then to illite, 
commonly occurs as a response to burial and is mainly controlled by 
temperature, pressure, time and system chemistry. In this study tem-
perature and alkaline NH4 solution appear to be the primary parameters 
controlling the overall reaction of smectite layers to illite layers, which 
led to both direct precipitation of illite layers as well as lateral layer 
replacement by local rearrangement. Given that the formation of 
ammonium illite is often closely linked to evolution of organic matter in 
burial sedimentary environments – a process often associated with hy-
drocarbon maturation in diagenetic settings (e.g. Williams and Ferrell, 
1991) or with coal formation in anchizone settings (e.g. Šucha et al., 
1998) – improved knowledge of the factors controlling the reaction of 
smectite to NH4-bearing I/S and illite are important for understanding 
cycling of nitrogen in these settings. Results from this study document 
the influence of temperature, time, NH4 content and changing crystal 
chemistry as part of a multi-stage process from initial adsorption of 
interlayer NH4 to fixation of NH4 in interlayers as smectite layers 
transform to I/S then illite. 

5. Concluding remarks 

The transformation from smectite to NH4-illite under experimental 
conditions of slightly alkaline hydrothermal solutions enriched in 

ammonium indicate that the reaction is triggered by ammonium 
adsorption at the interlayer spaces in smectite crystals. Simultaneously, 
smectite dissolves and releases Si and Al to solution. At the nanometric 
scale, the dissolution of smectite and the fixation of ammonium ions lead 
to a layer-by-layer conversion of smectite into illite. This transformation 
results in an increase of AlIV and MgVI content within the illitic layers 
and the formation of disordered I/S structures. 

Furthermore, individual illite crystals are formed by precipitation 
from solution, which is more pronounced at 150 and 200 ◦C compared to 
100 ◦C. These illite crystals also incorporate interlayered ammonium 
ions. Our experimental findings indicate that, under moderate temper-
ature conditions, ammonium ions play crucial role in stabilizing the 
newly forming illite layers and promoting the smectite-to-illite reaction. 
This transformation process is further enhanced by temperature in-
crease, prolonged reaction times, and increased ammonium 
concentrations. 
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Petit, S., Righi, D., Madejová, J., 2006. Infrared spectroscopy of NH4

+-bearing and 
saturated clay minerals: a review of the study of layer charge. Appl. Clay Sci. 34, 
22–30. 
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