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Abstract

The optimisation of industrial processes involving bubbly flows requires a deeper under-
standing of the forces acting on the bubbles, being particularly challenging when they rise
in the presence of solid surfaces. The evolution of the drag and lift forces on a bubble rising
in a stagnant liquid near a vertical wall is experimentally characterised here by high-speed
imaging. The hydrodynamic forces are determined non-intrusively by applying the Kirchhoff
equations to the bubble motion, using the experimental evolution of the bubble velocity and
geometry. Three different rising regimes are investigated, namely, rectilinear, zigzag, and
spiral, where the initial dimensionless initial horizontal wall-bubble distance, L, is varied
from 1 ≤ L ≤ 4. The three cases, which fall near the transition between regimes, are defined
by the Bond and Galilei numbers, (Bo,Ga) ≈ (5,60), (4,99), and (10,108), respectively,
being the resulting Reynolds numbers, 60 . Re . 110. In all regimes, both the drag and
lift forces increase as L decreases, even after the bubble has moved far enough away from
the wall. In the rectilinear case, they remain nearly constant as the bubble rises, whereas
in the unstable cases, they oscillate at twice the frequency of the bubble trajectory. The
drag coefficient reaches its maximum value when the velocity is vertically aligned, while the
lift coefficient peaks when the bubble is at its largest lateral distance. These results are of
particular interest because, to our knowledge, there are currently no correlations in the liter-
ature that can accurately estimate the hydrodynamic forces within this range of parameters
and under the influence of a nearby wall. Furthermore, the experimental measurements
presented here could be used as a benchmark for more detailed numerical investigations.
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1. Introduction

The behaviour of single gas bubbles rising in still liquids is crucial for understanding the
fundamental physics of two-phase bubbly flows. These flows are ubiquitous in nature and
are commonly encountered in various fields, including biotechnological and environmental
processes, water treatment, mineral flotation, carbon capture, drag reduction, microplastic
scavenging, magma dynamics, and medical applications, among many other uses (Rodŕıguez-
Rodŕıguez et al., 2015; Cioncolini and Magnini, 2025). Rising isolated bubbles have been
extensively studied (see Maxworthy et al., 1996; Magnaudet and Eames, 2000; De Vries
et al., 2002; Zenit and Magnaudet, 2008; Legendre et al., 2012; Tripathi et al., 2015; Cano-
Lozano et al., 2016; Sharaf et al., 2017; Bonnefis et al., 2023, among others). A key finding
of these works is that the bubble path depends on Bo = ρgD2/σ, and Ga = ρ

√
gD3/µ, and

consequently on the shape of the bubble, characterised by its aspect ratio, χ (with D the
volumetric diameter, ρ and µ the density and viscosity of the liquid, σ the surface tension
coefficient, and g the gravity acceleration). While spherical bubbles at low-Bo follow straight
paths, larger Bo lead to increased χ, unstable wakes, and path instability, promoting zigzag
or spiral trajectories (Zenit and Magnaudet, 2008; Cano-Lozano et al., 2016).

However, in real life, bubbles often interact among them or with solid surfaces (Agrawal
et al., 2021; Huang et al., 2025), what changes the dynamics of their rise compared to the
free-rising case. In the presence of a solid boundary, non-axisymmetric effects govern the
interaction between the bubble and the wall. Furthermore, the wake generated behind the
bubble plays a crucial role in shaping this interplay in all hydrodynamic regimes, result-
ing in distinct trajectory patterns depending on the values of the governing parameters Bo
and Ga (Takemura and Magnaudet, 2003; Jeong and Park, 2015; Zhang et al., 2020; Yan
et al., 2022; Cai et al., 2024; Estepa-Cantero et al., 2024; Shi et al., 2024). In this regard,
Estepa-Cantero et al. (2024) experimentally characterised the kinematics of high-Bond bub-
bles rising at moderate Reynolds numbers near a wall. These bubbles are commonly found in
natural and industrial processes, including bioreactor aeration and chemical reactors. They
reported that walls do not play a role in promoting path instability but induce wall-normal
deviations in the bubble trajectory and vortex shedding. In their range of values of the
Bond and Galilei numbers, the presence of a wall causes a net migration of both stable and
unstable bubbles away from the wall with the repulsion effect being stronger the closer the
wall was initially to the bubble, in agreement with previous theoretical and numerical re-
sults (Magnaudet, 2003; Sugiyama and Takemura, 2010; Sugioka and Tsukada, 2015; Zhang
et al., 2020; Yan et al., 2022, 2023), and other experimental works (see, for example, Take-
mura and Magnaudet, 2003; Cai et al., 2024; Jian et al., 2024; Su et al., 2024, and references
therein). In fact, Shi et al. (2024) recently obtained numerically that the wall, if sufficiently
close to a bubble in the zigzagging regime, induces the main zigzagging plane to be normal
to the wall, as experimentally observed by Estepa-Cantero et al. (2024).

The hydrodynamic forces acting on bubbles rising in an unbounded liquid have been ex-
tensively analysed in previous work (Magnaudet and Eames, 2000; Magnaudet, 2003; Mougin
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and Magnaudet, 2006; Shew and Pinton, 2006; Rastello et al., 2011; Bonnefis et al., 2024;
Zhu et al., 2025; Cioncolini and Magnini, 2025). These studies have provided fundamental
information on the role of vorticity generation, wake instabilities and unsteady forces in bub-
ble dynamics. Early theoretical and numerical models focused on spherical bubbles at low
Reynolds numbers, but more recent research in this regard has explored the effects of bub-
ble deformation, path instability, and wake-induced forces at moderate and high Reynolds
numbers. However, the literature shows a lack of results concerning the forces acting on
deformable bubbles at high Bond numbers and moderate Reynolds numbers, particularly
when the effects of a nearby wall are considered. In particular, there is a clear scarcity of
experimental data.

Recently, there has been a growing interest in examining the impact of a solid wall on
the hydrodynamic forces acting on the rising bubble. Although most of previous studies
have focused on theoretical investigations and numerical simulations (Sugioka and Tsukada,
2015; Zhang et al., 2020; Shi et al., 2020, 2024; Shi, 2024), some experimental results can
be found (Takemura et al., 2002; Takemura and Magnaudet, 2003; Xiang et al., 2022; Su
et al., 2024; Jian et al., 2024). Nevertheless, the latter works are largely focused on nearly
spherical bubbles or two-dimensional configurations. In fact, it has been found that the wall
modifies the interfacial forces acting on a bubble, changing from attractive to repulsive as
the bubble approaches the wall depending on the values of the governing parameters (De
Vries et al., 2002; Sugiyama and Takemura, 2010; Shi, 2024; Shi et al., 2024, 2025). At
moderate Reynolds numbers, two competing mechanisms govern the interaction between a
rising bubble and a vertical wall (Shi et al., 2024; Shi, 2024). On the one hand, an attractive
effect caused by the inviscid Bernoulli mechanism, which results from the liquid acceleration
in the narrow gap between the bubble and the wall and, on the other hand, a repulsive effect
caused by the interaction between the bubble wake and the wall. The prevailing mechanism
depends on the value of the control parameters and has been characterised as a function of
the Reynolds number and the aspect ratio of the bubble by Shi et al. (2024). The present
study aims to improve our understanding of the interaction between a deformable bubble
and a nearby wall by experimentally quantifying the local drag and lift forces acting on the
bubble surface. This represents a significant step beyond our previous work (Estepa-Cantero
et al., 2024), which focused on the kinematics of the problem, namely the characterisation
of the bubble path and velocities. Here, by contrast, we focus on the underlying dynamics,
providing spatially resolved force measurements that are largely absent in the existing lit-
erature, especially for bubbles at high Bond numbers and moderate Reynolds numbers in
wall-bounded configurations.

The drag force experienced by a bubble has been reported to increase due to the wall
effect, which was recently determined numerically for spherical bubbles by Shi (2024). Their
simulations showed that when a bubble is fixed at a certain distance from the wall, the flow
in the narrow gap between the bubble and the wall becomes highly sheared, increasing the
drag. This increase can be attributed to the stronger velocity gradients imposed by the
no-slip condition at the wall, resulting in additional viscous resistance. Furthermore, their
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study showed that the wall-induced drag enhancement depends on the Reynolds number
and the separation distance, with a more pronounced effect observed for smaller bubble-wall
gaps. As for the lift force, it has been extensively evaluated for shear flows (Legendre and
Magnaudet, 1998; Kurose et al., 2001; Tomiyama et al., 2002; Adoua et al., 2009; Aoyama
et al., 2017; Shi et al., 2020; Xu et al., 2021; Hessenkemper et al., 2021; Hidman et al., 2022;
Zhang et al., 2025; Zand et al., 2025; Hidman et al., 2025), even combined with the wall
effect (Su et al., 2024), showing a dependence on the Reynolds and Bond numbers, or the as-
pect ratio, and the shear rate. However, the dependence on bubble size was found to exceed
that of shear rate at low Morton numbers (Ziegenhein et al., 2018). The picture changes
in the presence of a wall because the vorticity generated by the surface of a rising bubble
spreads out in the wake and engages the wall surface, creating a net lateral force that can be
repulsive or attractive. In this way, the strength and direction of the lift force exerted by the
bubble are strongly influenced by the initial distance from the wall and the Reynolds number.

However, the effect of the wall distance on the hydrodynamic forces has not been directly
or systematically analysed. This is especially true for deformable bubbles, which are the
focus of the present work. Numerous empirical or semi-empirical correlations for drag and
lift coefficients as a function of the governing flow parameters can be found in the literature
(see Kure et al. 2021; Liu et al. 2024). Nevertheless, most of these correlations are based on
experimental or numerical results and apply only to certain conditions, or overlook the wall
induction effect and the bubble deformation. Precisely, the absence of appropriate correla-
tions for calculating the hydrodynamic forces constitutes a primary motivation for this work.
Although experimental studies of bubble rise near a wall have been conducted, they have
mainly focused on the migration and deformation of bubbles under finite Reynolds number
conditions (see Estepa-Cantero et al., 2024, and references in), while the forces have hardly
been investigated. In this context, our work aims to provide new experimental evidence on
this three-dimensional problem. In particular, we propose an experimental approach that
enables the measurement of hydrodynamic forces without contaminating the liquid. In the
absence of flow field data, these forces are inferred indirectly from the bubble trajectory, and
thus measured simultaneously. Our results could enhance our understanding of the mecha-
nisms governing bubble motion, refine existing models, and facilitate systematic numerical
simulations of the problem.

This work is structured as follows. Section 2 outlines the problem and describes the the-
oretical approach. Section 3 provides details on the experimental facility and methodology.
An overview of the bubble’s kinematics in the three regimes is given in Section 4. Section
5 presents the results, starting with Subsection 5.1, which discusses the bubble velocity and
orientation. Then, the bubble inclination and shape are discussed in subsections 5.2 and
5.3, respectively. Subsection 5.4 presents the lift and drag forces calculated using Kirch-
hoff equations based on the experimental results. Finally, Section 6 summarises the main
conclusions of this study.
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2. Problem definition and theoretical approach

The problem at hand is sketched in Figs. 1(a)-(b) and consists of an air bubble ascending
with velocity U∗ = v∗x ex + v∗y ey + v∗z ez into a stagnant liquid of density ρ, viscosity µ, and
surface tension coefficient σ. The terminal velocity of the bubble is v∗, and its equivalent
diameter is defined as D = (6V ∗/π)1/3, where V ∗ is the volume of the bubble. The bubble
rises near a vertical wall, being L∗ the initial distance from the centroid of the bubble to
the wall. A fixed Cartesian reference frame, x∗ = (x∗, y∗, z∗), is used, where x∗ is normal
to the wall (x∗ > 0 when the bubble moves away from the wall), y∗ parallel to the wall,
and z∗ points opposite to gravity (see Fig. 1a). At its release, the centroid of the bubble
marks the origin x∗ = 0. Note that stars indicate dimensional magnitudes, except for the
variables used for making dimensionless the rest of the parameters: distance, velocity, and
time are made dimensionless with D, gravitational velocity,

√
gD, and gravitational time,√

D/g, respectively.

After release, the shape and orientation of the rising bubbles are modelled as sketched
in Fig 1 (b). For significant surface tension and negligible inertia effects (We . 1), it can
be assumed that the bubble surface is restricted to an oblate ellipsoidal shape (Mougin
and Magnaudet, 2001, 2002; Shew et al., 2006; Shew and Pinton, 2006; Zawala et al., 2007;
Kusuno et al., 2019; Xiang et al., 2022), with major and minor diameters a and c, respec-
tively. Thus, the shape can be characterised by a prescribed aspect ratio, χ = a/c > 1.
Moreover, the azimuthal and pitch angles (φ and θ, respectively) define the bubble ori-
entation. The azimuthal angle, φ = arctan(vy/vx), is the angle from the direction ex to
the horizontal projection of U, vxy. Note that φ defines the horizontal motion of the bub-
ble: when 0 < φ < |±90◦|, the bubble is repelled from the wall (vx > 0), whereas when
|±90◦| < φ < |±180◦|, the motion is attractive to the wall (vx < 0). Moreover, φ > 0 (resp.
φ < 0) indicates that the wall-parallel velocity component is positive (resp. negative). The
motion is completely normal to the wall (vy = 0) when φ = 0 or ±180◦. The pitch angle,
θ = arctan(vxy/vz), where vxy is the horizontal component of the velocity, is the angle be-
tween the vertical direction (ez) and the bubble velocity vector (U). This angle is always
positive and defines the inclination of the velocity vector. Because vz is always positive,
θ < 90◦. Note that θ = 0 when the velocity vector is completely vertical (vx = vy = 0),
while θ 6= 0 when there is a horizontal component |vxy| > 0. In addition, to assess the align-
ment of the minor axis with the velocity vector, two additional angles are defined, namely
α and β, such that θ = α + β, with α the angle from ez to the direction of the minor axis
(α > 0) and β the angle from the minor axis to U (see Fig.1b). As shown later, θ < α, and
therefore β < 0, what implies that the inclination of the minor axis is larger than that of
the velocity vector. When α = 0, the minor axis is vertical, and when β = 0, the minor axis
is aligned with the velocity vector, that is, θ = α.

The drag and lift forces can be calculated by using the Kirchhoff equations (Lamb, 1924;
Mougin and Magnaudet, 2001, 2002; Shew and Pinton, 2006; Kusuno et al., 2019), which
can be applied to describe the motion of a bubble of negligible mass rising in a stagnant
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Figure 1: (a) Image of a bubble indicating the main physical and geometric parameters of the problem,
together with the major and minor axes of the bubble, a and c, respectively. (b) Sketch of the coordinate
system (1, 2, 3) and the forces acting on the bubble (c) Sketch of the experimental facility.

viscous liquid (see Appendix A for more details),

A∗
dU∗

dt∗
+ Ω∗ × (A∗U∗) = F∗ = F∗D + F∗L + F∗B, (1)

D∗
dΩ∗

dt∗
+ Ω∗ × (D∗Ω∗) + U∗ × (A∗U∗) = Γ∗, (2)

where Ω∗ is the rotation rate of the bubble’s centre of mass, A∗ and D∗ are added mass
translational and rotational tensors, and F∗ and Γ∗ are the resulting hydrodynamic force
and torque on the bubble, respectively, being the hydrodynamic force F∗ the sum of the
drag, lift, and buoyancy forces (F∗D,F

∗
L,F

∗
B respectively). We evaluate Eqs. (1)-(2) in an

inertial frame of reference that rotates with the bubble (see Fig. 1b). With the origin O
located at the bubble centroid and axes directed along the principal axes of the ellipsoid,
we may obtain a diagonal added mass tensor (see Appendix A).
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Moreover, we consider that the minor axis c is aligned with the bubble velocity vector
(β = 0), as in previous studies (Shew et al., 2006; Mougin and Magnaudet, 2006; Kusuno
et al., 2019), and thus being the inertial frame of reference aligned with directions (1, 2, 3)
(see Fig.1b). Direction e1 points along the velocity vector, U∗ = U∗e1, and therefore the
direction of the drag force. The directions e2 and e3 define the plane containing the lift
force. In particular, axis 2 is orthogonal to axis 1. The buoyancy force is contained within
plane (1, 2), and the positive direction e2 coincides with the component of the buoyancy
force on this axis, F ∗B2.

Assuming that β = 0 allows us to neglect the torque balance (Γ∗ = 0), and thus Eq. (2) is
no longer needed. Under these conditions, the bubble velocity vector has only one component
along the direction e1, U∗ = U∗1 = U∗, and the force components obtained from Eq. (1)
simplify to

F ∗1 = A∗11
dU∗

dt∗
= F ∗D + F ∗B1,

F ∗2 = A∗11 Ω∗3 U
∗ = F ∗L2 + F ∗B2,

F ∗3 = −A∗11 Ω∗2 U
∗ = F ∗L3,

(3)

with F ∗B1 = ρgV ∗ cos θ, F ∗B2 = ρgV ∗ sin θ and Ω∗i the rotation rates in each direction, given
by

Ω∗1 =
dφ

dt∗
cos θ, Ω∗2 =

dφ

dt∗
sin θ, Ω∗3 = − dθ

dt∗
. (4)

Note that the force component in direction e1 depends only on the translation rate, and
coincides with the direction of the drag force (F∗D = F ∗D1 = F ∗D), whereas the other com-
ponents depend on the rotation rate. The coefficient A∗11 = CMρV

∗ is the first element of
the added mass tensor, with CM the added mass coefficient, which depends on the shape of
the bubble (Lamb, 1924; Tsao and Koch, 1997; Klaseboer et al., 2001). For a spheroidal
bubble moving in an unbounded flow (Klaseboer et al., 2001; Zawala et al., 2007; Kusuno
et al., 2019) it is defined as

CM =
γ

2− γ
, (5)

with

γ =
2χ2

χ2 − 1

[
1− 1√

χ2 − 1
arcsin

(√
1− 1

χ2

)]
, (6)

being CM = 1/2 for a sphere (χ = 1). Here, we obtain CM ' 1.49, 1.48, and 1.74 for the
rectilinear, zigzag and spiral regimes, respectively, in agreement with the values obtained for
similar bubbles in other studies (Shew et al., 2006). It should be noted that when bubbles
move close to a surface, the added mass effect is enhanced (Magnaudet, 2003; Shi et al.,
2023). This occurs because the flow in the narrow gap between the bubble and the surface
accelerates more significantly than in an unbounded flow. In fact, Milne-Thomson (1996)
obtained theoretically that, for a solid sphere moving perpendicularly toward a wall in an
ideal fluid, the added mass increases with respect to the unbounded case as the distance to
the wall decreases, being the increase of CM negligible for L & 1. More precisely, Khar-
lamov et al. (2008) obtained numerically that CM = 0.5 + 0.2182 (2L)−3.21 + 0.081 (2L)−19,
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showing an insignificant increase of CM for L & 1. The enhancement of CM has also been
shown to be negligible for deformed bubbles and L & 1 (Milne-Thomson, 1996; Magnaudet,
2003; Kharlamov et al., 2008; Korotkin, 2008; Xiang et al., 2022; Shi, 2024). Particularly,
Zawala and Dabros (2013) obtained that the added mass coefficient corresponding to a bub-
ble approaching a solid wall can be approximated by CM = 0.62χ− 0.12, that matches for
L ≥ 1.25 and 1 ≤ χ . 3 the expression for free flow (Eq. 5). Therefore, since the closest
initial distance to the wall in our experiments is L = 1, and bubbles immediately migrate
away from it, the added mass coefficient for unbounded flow can be assumed in the present
study. In fact, the unbounded form of the mass coefficient (Eq. 5) has been applied in
previous works on bubbles and drops moving close to surfaces (Tsao and Koch, 1997; Jeong
and Park, 2015; Heydari et al., 2022; Cai et al., 2023).

From Eqs. (3), we solve for F ∗D, F ∗L2 and F ∗L3, and considering the definition of drag and
lift coefficients, CD = 8F ∗D/(ρπD

2U∗2) and CL = 8F ∗L/(ρπD
2U∗2), respectively, the following

expressions are obtained,

CD(t) =
4D

3U∗2

(
CM

dU∗

dt∗
− g cos θ

)
(7)

CL2(t) = − 4D

3U∗2

(
CMU

∗ dθ

dt∗
+ g sin θ

)
(8)

CL3(t) = − 4D

3U∗
CM

dφ

dt∗
sin θ. (9)

As discussed later, g cos θ � CMdU∗/dt∗, indicating that the drag force must balance the
buoyancy force in the direction e1 (F ∗D ' −F ∗B1). Therefore, F ∗D points to negative e1 and,
according to Eq. (7), CD must be negative. In addition, g sin θ � CMU

∗dθ/dt∗, implying
that F ∗L2 must balance F ∗B2. Thus, F ∗L2 is directed in the negative direction of axis 2, and CL2
must be negative (see Eq. 8). Finally, CL3(t) can be negative or positive depending on the
temporal variation of the azimuthal angle: negative if dφ/dt∗ > 0 and positive if dφ/dt∗ < 0.
Note that the characterisation of the bubble shape and orientation, and the evolution of its
velocity are required to calculate the force coefficients from eqs. (7)-(9). These values were
measured experimentally and are reported below.

3. Experimental setup and methods

The experiments were carried out in an open 1.2 m high tank with a square cross-section
of 0.13 m × 0.13 m, as sketched in Fig.1(c). Bubbles were generated by injecting air through
an injector at the centre of the tank base. Different injector diameters were used to gen-
erate bubbles of varying sizes. In addition, a glass wall was vertically placed inside the
tank, whose horizontal position was precisely controlled. The vertical alignment of the en-
tire setup was ensured before every measurement. The reader is referred to Estepa-Cantero
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Table 1: Dimensionless parameters governing the three cases considered in this study. All tabulated data
are presented as average values ± standard deviation of all experiments for the three regimes.

Case Regime L Bo Ga Mo (×106) Re We St

1 Rectilinear
1
2
4

5.0±0.2 59.7±1.8 9.87
59.0±0.7
62.0±0.6
61.6±0.6

4.99±0.11
5.49±0.10
5.41±0.08

-

2 Planar zigzag
1
2
4

3.87±0.03 98.7±0.6 0.61
105.3±2.1
109.1±0.8
109.1±0.4

4.72±0.06
4.89±0.08
4.90±0.04

0.109±0.004

3 Spiral
1
2
4

10.29±0.15 108±8 8.4±2.3
90.4±0.6
90.0±0.6
87.5±0.6

7.96±0.04
7.90±0.09
7.50±0.10

0.132±0.006

et al. (2024) for details of the facility although a brief description is provided in Appendix B.

To study the ascent of the bubble, two high-speed cameras (Photron Fastcam SA1.1,
Fastcam Mini Ax200) mounted on a vertical rail were placed perpendicular to each other
to record the bubble as it moved. Both cameras were synchronised with a servomotor that
controlled the movement if the rail. The servomotor software enabled us to determine the
z-coordinate with an accuracy of 1 µm. A laser and photodiode sensor were used to detect
bubble pinch-off and trigger cameras recording and motion. Two LED panels provided uni-
form backlighting for both cameras.

In this study, we considered three cases, which are reported in Table 1, each exhibiting
different rising paths based on the numerical analysis of a free-rising bubble by Cano-Lozano
et al. (2016). These cases correspond to bubbles 22, 19, and 26 in Cano-Lozano’s work, show-
casing rectilinear (Case 1), planar zigzag (Case 2), and spiral (Case 3) paths when the bubble
rises in an unbounded flow, and falling near the transition between regimes. Cases 1 and 2
were performed with silicon oils T11 and T05, respectively (Dow Corningr XIAMETER™,
PMX-200), whereas a mixture of glycerol and water (74.16-74.89% in weight of glycerol)
was used in Case 3. The properties of the liquids are described in Estepa-Cantero et al.
(2024) and are given in Table B.4. Special care was taken to avoid contamination of the
fluids, which were frequently replaced. In fact, the terminal velocities of the bubbles agree
with the correlations reported in the literature for clean bubbles.

The captured images were processed using a custom image-based processing routine in
Matlab to identify the contour and centroid of the bubbles (see red contour in Fig.1a). The
contours were used to determine the size, shape (minor and major diameters), and equivalent
diameter of the bubbles, while the centroid position was used to track their paths. Since the
directly measured variables were the bubble edge and centroid, the experimental uncertainty
depended on the temporal and spatial resolution of the recordings, which ranged from 500 to
2000 frames per second and between 17.79 and 36.31 µm/pixel, respectively. The absolute
errors mentioned throughout the manuscript represent the standard deviations among the
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Figure 2: Comparison of the typical trajectories performed by the bubbles in the regimes studied in this
work (a) rectilinear, (b) planar zigzag, and (c) spiral with a wall placed at L = 1 (red lines) with those
without the wall, L→∞, (black lines). For L = 1, the wall is at x = −1 along the plane (y, z).

repetitions of each experimental case, which proved larger than the propagated errors from
the direct measurements, and a thorough description of the maximum propagated errors is
given in Appendix B.

The problem at hand is defined by Bond, Bo = ρgD2/σ, and Galilei, Ga = ρ
√
gD3/µ,

numbers, together with the dimensionless initial horizontal distance between the centroid of
the bubble and the solid wall, L = L∗/D. The Morton number, Mo = gµ4/ρσ3 = Bo3/Ga4,
is also used here because it depends only on the liquid properties. Our experiments involved
three values of the dimensionless initial wall distance, namely L = 1, 2, and 4. Moreover, the
results of the problem are defined in terms of Reynolds, Re = ρv∗D/µ = Gav and Weber
We = ρv∗2D/σ = Bo v2 = Bo (Re/Ga)2 numbers, with v = v∗/

√
gD = Fr = Re/Ga the

dimensionless terminal velocity of the bubble. In addition, the oscillation frequency in the
unstable cases is characterised by the Strouhal number, St = fD/v∗, with f the oscillation
frequency. Finally, the magnitude of the forces acting on the bubble F ∗ will be described
using the corresponding force coefficients CF = 8F ∗/(ρπD2U∗2). A steady or terminal drag
coefficient can be inferred from the balance between the drag and buoyancy forces, namely
Cs
D = 4/3Bo/We = 4/3Fr−2. The values of the parameters corresponding to the experi-

ments conducted in this work are summarised in Table 1. The ranges covered in the present
work are 5 . Bo . 10, 60 . Ga . 100, 60 . Re . 100, 6 × 10−7 . Mo . 10−5 and
4 . We . 8. Under these conditions (intermediate Re and We ∼ 1) moderate deformations
of the bubble surface are expected.

4. Overview of the kinematics of the studied regimes

The bubbles paths were reconstructed using the centroid position over time. The kine-
matics of the problem was previously studied in Estepa-Cantero et al. (2024) and constitutes
the starting point of the work at hand. Thus, this section simply aims to summarise the
main features of the three cases studied here:
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• Case 1, (Bo,Ga) = (5,59.7), corresponds to stable bubbles rising in the rectilinear
regime (Fig. 2a). In this case, when the flow is unbounded, the bubble follows a
vertical, straight path. The effect of the wall induces migration of the bubble in the
direction perpendicular to the surface, which is enhanced by the wall proximity. As
a result, the trajectory deviates from a vertical path and moves perpendicularly away
from the wall.

• Case 2, (Bo,Ga) = (3.87,98.7), corresponds to unstable bubbles that rise following a
zigzag path (Fig. 2b). In the free case, the average path is vertical; however, when the
wall is present, it has a migration effect over the average zigzag path. The direction
of the zigzag plane is forced normal to the wall if it is sufficiently close to the bubble
(L . 1).

• Case 3, (Bo,Ga) = (10.29,108), belongs to unstable bubbles in the spiral regime
(Fig. 2c). In the unbounded case, the axis of the spiral path is vertical with an
almost circular horizontal projection of the helix. Similar to Cases 1 and 2, the wall
promotes a migration effect on the average spiral path. If the wall is sufficiently close,
the bubble cannot develop a complete spiral, promoting a more zigzag-like trajectory
parallel to the wall that eventually leads to a flattened spiral motion with small am-
plitude. Moreover, the minor and major axes of the spiralling motion rotate as the
bubble rises.

Although in a different manner, in all three regimes, the wall always induces a migra-
tion effect on the bubble (see Estepa-Cantero et al., 2024, for more details). In contrast,
attraction or bounce effects were never observed in our range of parameters. This is con-
sistent with Shi et al. (2024), who numerically studied the effect of a wall on deformable
bubbles. In their work, a critical Bond number of Boc ' 1.4 is obtained for the transition
from attractive to repulsive motion for Ga & 50. In fact, if (Ga,Bo) of cases 1-3 were
plotted in their phase diagram (Fig. 2a in Shi et al., 2024), our experiments would lie in the
region where repulsion occurs. Concerning global results, the mean values of Re and We
are shown in Table 1. Because the bubble terminal velocity decreases as L diminishes in all
regimes (Estepa-Cantero et al., 2024), both Re and We are reduced as L decreases. The
values of Re obtained in Cases 1 and 2 of the unbounded experiments are consistent with
those reported in the experimental study of Bonnefis et al. (2024) for the same values of Bo
and Ga in an unbounded flow. In particular, they report values of Re ≈ 60 for Bo = 5 and
Ga = 60 using silicon oil T11 (our Case 1), and Re ≈ 100 for Bo = 4 and Ga = 100 using
T05 (our Case 2).

5. Results and discussion

In this section, the bubble velocity and orientation are characterised in subsection 5.1, its
inclination and drift angles are reported in subsection 5.2, and the bubble shape is described
in subsection 5.3. Finally, the drag and lift forces obtained by combining the Kirchhoff
equations (3) with the experimental data are reported in subsection 5.4.

11



Figure 3: Evolution of the trajectory, velocity, and orientation of the bubble for Case 1 (Bo = 4.77,
Ga = 57.6), and L = 1, corresponding to the rectilinear regime. (a) Position of the centroid (wall-normal),
(b) components of the velocity of the bubble centroid (wall normal in blue, vertical in red), (c) pitch angle
of the velocity vector, (d) azimuthal angle of the velocity vector.

5.1. Bubble velocity and orientation

The trajectories and velocities of the rising bubbles, as well as their pitch and azimuthal
angles, θ and φ, respectively, were derived from the experimental measurements. The char-
acteristic results for the three cases are shown in Figs. 3-5. In particular, the wall-normal
coordinate of the bubble centroid, vertical and transversal velocities, and both θ and φ are
plotted as a function of the vertical position of the bubble. Only the case corresponding
to the closest initial wall distance (L = 1) is represented because the global behaviour is
similar for larger wall distances.

Case 1

In Case 1 (Fig. 3), the wall-normal distance increased almost linearly with the vertical
distance (Fig 3a). During the rise, the vertical velocity (red in Fig. 3b) rapidly increases
until it reaches the terminal velocity, v ' 1, while the wall-normal horizontal velocity,
vx, (blue) reaches a low but positive value after some initial oscillations. Since the bubble
movement along the plane parallel to the wall (yz) is negligible, and the wall-normal velocity
is much lower than the vertical one, U ' vz. This fact is confirmed by the evolution of the
pitch and azimuthal angles: θ (Fig. 3c) oscillates around a small value, indicating that the
velocity vector exhibits a small inclination with respect to the axis z. The average value of
θ increases as L decreases due to the lateral migration generated by the wall. Additionally,
the azimuthal angle (Fig. 3d) reflects that the horizontal motion is almost normal to the
wall: after a first stage where φ & 50◦ (the bubble migrates with a wall-parallel velocity
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Figure 4: Evolution of the trajectory, velocity, and orientation of the bubble for Case 2 (Bo = 3.94,
Ga = 92.7), and L = 1, corresponding to the zigzag regime. Figures on the left show the bubble path and
velocity while figures on the right show its orientation angles: (a) position of the centroid (wall-normal in
red and parallel in blue); (b) components of the velocity of the bubble centroid (wall normal in blue, vertical
in red); (c) detail of x(z) and vx(z) for 138 < z < 155 (d) pitch angle of the velocity vector; (e) azimuthal
angle of the velocity vector; (f) detail of θ(z) and φ(z) for 138 < z < 155.

component, vy > 0), φ drops and, from z ' 50, oscillates around zero with a small amplitude.
This indicates that, although there is a slight motion in the parallel direction of the wall,
the horizontal motion occurs mainly perpendicularly to the wall and is always directed away
from it (|φ| ' 0).

Case 2

For Case 2, shown in Fig. 4, which corresponds to a zigzagging bubble, both centroid
coordinates x (blue) and y (red) oscillate as the bubble rises, although the amplitude in
x is much larger than that in y (blue) because the main zigzag plane is almost normal to
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the wall (Fig. 4a). The average value of x increases with z, indicating that the zigzagging
motion moves away from the wall. In this regime, the evolution of the vertical velocity
(red in Fig. 4b) is similar to that in the rectilinear case, reaching a terminal value v ' 1.1.
Nevertheless, in this case vz exhibits small-amplitude oscillations with a frequency twice
that of the trajectories (Estepa-Cantero et al., 2024), changing the streamwise vorticity sign
twice during a zigzag period (Zenit and Magnaudet, 2009; Cano-Lozano et al., 2016). The
same terminal velocity was obtained numerically by Shi et al. (2024) under similar conditions
(Bo ' 4, Ga ' 100) and L = 1. In turn, the horizontal velocity in the wall-normal direction
(vx, blue) shows higher oscillations as a consequence of the zigzag motion in which the
bubble alternately moves away (increasing x and vx > 0) and towards (decreasing x and
vx < 0) the wall during the zigzagging motion, as can be observed in the cycle shown in
Fig. 4(c). Although it is an evident outcome, it confirms the validity of our experiments.
The vertical velocity is much larger than the horizontal one, so U ' vz. The zigzag motion
is also reflected in the evolution of the pitch and azimuthal angles. In particular, θ increases
cyclically from zero to a maximum value of ≈ 11◦ (Fig. 4d). This indicates that the velocity
vector transitions from being entirely vertical (θ = 0) to having a small horizontal component
(θ > 0). In fact, the direction of horizontal motion is given by the angle φ (Fig. 4e), which
oscillates between ±180◦. A closer inspection (see Fig. 4f) shows that φ ' 175◦ during
the approaching stage (decreasing x, see Fig. 4c), while φ ' −5◦ in the migration phase
(increasing x, see Fig. 4b). That is, the horizontal motion is almost normal to the wall with
a small component in the wall-parallel direction, in agreement with Fig. 4(a). At the end
of the approaching stage φ suddenly decreases from φ ' 175◦ to φ ' 0, that is, the bubble
turns nearly 180◦ around the axis z, and the migration stage starts. At the end of this phase,
φ quickly drops to ' −175◦, that is, the bubble turns nearly 180◦. The abrupt growth to
φ ' 175◦ is due to the change of sign of the wall-parallel velocity, vy. In turn, θ oscillates
twice during a zigzagging cycle: θ = 0 at the extreme positions of the trajectory, that is,
at the closest and furthest distance from the wall, while the maximum inclination of the
velocity vector (maximum θ) occurs at the middle of each stage, when |vx| is maximum and
vz minimum. The change from the approaching to the migrating phase of the zigzagging
motion occurs when θ = φ = 0, that is, when U is completely vertical. No significant effects
have been found on the frequencies and only a slight change in amplitudes for different
values of L, since the bubble moves away from the wall as soon as it is released (Fig. 4a).

Case 3

Regarding Case 3 (Fig. 5a), after a first transient state in which x (red) increases almost
linearly and y (blue) remains constant, a spiral is established from z ' 35. In this case, the
path oscillates in both ex and ey directions. Although a similar amplitude was observed in
both coordinates, the bubble motion is not parallel to ex or ey, but is tilted (see Fig. 2c),
with x and y being the projections of the real motion. In any case, the oscillations along
x are first larger than those along y, evolving to the opposite situation as the bubble rises
due to the rotation of the major and minor axes of the flattened spiral as the bubble rises.
Furthermore, the average value of x is always positive and grows as z increases, indicating
that the bubble is migrating away from the wall. However, the average value of y is almost
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Figure 5: Evolution of the trajectory, velocity, and orientation of the bubble for Case 3 (Bo = 10.4,
Ga = 103.5), and L = 1, corresponding to the spiral regime. Figures on the left show the bubble path and
velocity while figures on the right show its orientation angles: (a) Position of the centroid (wall-normal in
red and parallel in blue); (b) components of the velocity of the bubble centroid (wall normal in blue, vertical
in red); (c) detail of x(z) and vx(z) for 82 < z < 95; (d) pitch angle of the velocity vector; (e) azimuthal
angle of the velocity vector; (f) detail of θ(z) and φ(z) for 82 < z < 95.

zero, which means that no net movement occurs in the wall-parallel direction. As shown
in Fig. 5(b), the horizontal wall-normal velocity takes positive and negative values as the
bubble moves away from and towards the wall during each cycle of the spiral motion. The
amplitude of vx first increases and then decreases at z ' 70 because the regime evolves into a
more unstable one with higher energy dissipation (Estepa-Cantero et al., 2024; Cano-Lozano
et al., 2016). This regime change is reflected in the vertical velocity reduction, which reaches
a mean terminal value of v ' 0.85. The spiralling motion is also observed in the evolution
of θ and φ: as soon as the spiral regime is established, θ increases twice per cycle from θ ≈ 0
to θ ' 10◦, i.e. the velocity vector changes from vertical to its maximum inclination (see
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Figure 6: Inclination and drift angles of the bubbles, α and β, respectively, for L = 1 in different regimes.
(a) Rectilinear regime, Bo = 4.77, Ga = 57.6; (b) planar zigzagging regime, Bo = 3.94, Ga = 92.7; (c)
spiralling regime, Bo = 10.4, Ga = 103.5. For clarity, the horizontal axis range is consistent across all cases,
although it is truncated in experiments (a) and (b).

Fig. 5d). Conversely, φ varies once per cycle over a ±180◦ range (Fig. 5e). If we examine a
cycle in Fig. 5(f), it can be observed that during the period the bubble moves away from the
wall (vx > 0 in Fig. 5c) φ is not zero (unlike in the zigzag regime) because the velocity has a
component in the wall-parallel direction. In particular, φ gradually increases from φ ' 40◦

to φ ' 70◦ during half of a cycle, which corresponds to migration motion with positive vy.
At the end of this stage, the bubble spins and φ rises to φ ' 180◦, which corresponds to
wall-normal motion towards the wall (vx < 0 in Fig. 5c). At that moment, φ turns negative,
increasing from φ ' −130◦ to φ ' −100◦, which means that the bubble is approaching the
wall (vx < 0, see Fig. 5b) with a negative wall-parallel velocity, vy < 0. Finally, the bubble
quickly spins again, φ increases until reaching positive values and θ = 0, thereby initiating
a new cycle. Since vy > 0 when the bubble migrates from the wall, while vy < 0 when it
approaches, in agreement with the path in Fig. 2(c), the velocity vector is directed towards
the centre of the spiral, which is consistent with previous studies (Cano-Lozano et al., 2016).
As in Case 2, θ = φ = 0, that is, vxy = 0 at the moment of the cycle in which the migration
stage shifts to the approaching one. Similar to Case 2, the amplitudes and frequencies were
not significantly altered by the wall separation, L.

5.2. Inclination and drift angles

Let us now examine the inclination and drift angles, α and β, respectively. Figure 6
shows their typical evolutions over z for the three regimes with L = 1. As anticipated,
α > 0 and β / 0, confirming that the velocity vector is less inclined with respect to the
vertical direction than the minor axis (as sketched in Fig. 1b). In the rectilinear regime
(Fig. 6a), the absolute value of both angles is very low and nearly constant along the path.
Thus, although the bubble migrates from the wall, it remains in the rectilinear regime and
rises with a low inclination angle, α. Since β takes very low values, |β| . 0.3◦, the minor
axis is nearly aligned with the bubble velocity vector. This picture changes in Cases 2 and
3 (Fig. 6b,c), corresponding to unstable regimes in which bubbles deviate from a straight
path. Thus, the inclination angle, α, varies with time and takes larger values than in Case 1.
In particular, in the zigzag case (Fig. 6b) α oscillates around a mean value of α ≈ 7.5◦ with
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Figure 7: Downstream evolution of the bubble major and minor diameters and the aspect ratio, χ, for L = 1
in the three different regimes. (a) Rectilinear regime, Bo = 4.77, Ga = 57.6; (b) planar zigzagging regime,
Bo = 3.94, Ga = 92.7; (c) spiralling regime, Bo = 10.4, Ga = 103.5. The light red and grey lines represent
the projection of the minor axis on the vertical plane, c′, and the corresponding aspect ratio, respectively.
The red and black symbols denote the actual minor diameter and aspect ratio, c and χ, respectively. The
left axes represent the minor and major diameters, while the right axes indicate the aspect ratio values.

an amplitude of ±7◦. The drift angle, β, also oscillates but with a lower average (≈ −2.5◦)
and amplitude (≈ ±2◦). Both angles are in anti-phase, indicating that when α increases, β
decreases. Although defined differently, an analogous evolution for α and β is observed in
the numerical results by Shi et al. (2024) for an equivalent bubble that rises near a vertical
wall. Case 3 (Fig. 6c) exhibits a similar picture, in which β oscillates around −5◦ with
an amplitude of approximately ±5◦. The maximum deviation between the minor axis and
the velocity vector is always |β| < 10◦ in the three regimes, especially in the zigzagging
and in the rectilinear one. Thus, although the minor axis is not strictly aligned with the
bubble velocity, β 6= 0, it can be assumed that θ ' α. This fact is somewhat remarkable,
as the bubble shapes in this work are notably different from a spherical one, and previous
studies (Ern et al., 2012; Cano-Lozano et al., 2016) determined that the bubble inclination
is aligned with the path direction only as long as the bubble shape is not too far from the
sphere.

5.3. Characterisation of bubble shape

As indicated by Eqs. (7)-(9), to calculate the values of CD and CL, in addition to the
time evolution of φ and θ described above, the added mass coefficient CM , which depends
on χ = a/c (see Eqs. 5 and 6) is required. Thus, both the major and minor diameters, a
and c, must be determined (see Fig. 1a). However, the measurement of the minor diameter
c is affected by the inclination of the bubble, which is governed by the angle between the
vertical direction and the minor diameter, α. The bubble silhouettes captured by both cam-
eras are indeed projections of the real shape on vertical planes (x, z) and (y, z). Hence, the
minor axis extracted from each image, c′, corresponds to its vertical projection (Ellingsen
and Risso, 2001; Mikaelian et al., 2015), and the actual value of c can only be measured
when the minor axis is vertical, that is, when α = 0. In this situation, the projection of the
minor diameter coincides with its real value, c′ = c. Consequently, to evaluate the aspect
ratio, the minor diameter was extracted from the images where α ' 0. On the contrary, the
major diameter, a, is not influenced by the bubble inclination and can be extracted directly
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from all the images. Essentially, the same value of a is obtained from the images of both
cameras, confirming that the bubble shape is closely approximated by an oblate ellipsoid
with a unique major ratio a. Experimental measurements of minor and major diameters are
shown in Fig. 7. Note that the real values of the minor diameter (red symbols), extracted
when α = 0, differ from those measured when the bubble is tilted (light red lines) in unstable
regimes.

Similarly, the bubble volume V , which is required to calculate the equivalent diameter
D, is also affected by the inclination angle, α. The top view of the bubble is missing; thus,
we approximate the volume by integrating slices of the projected area of 1-pixel height in
ez. In this way, using the projection of the bubble shape in both (x, z) and (y, z) planes,
at each vertical position z, a horizontal ellipsoidal shape with diameters dx(z) and dy(z) is
assumed

V (z) =
π

4

∫ zmax

zmin

dx(z) dy(z) dz. (10)

Due to the projected area being larger than the real one whenever α 6= 0, the instants where
α = 0 were isolated to determine the actual volume. For validation, the bubble volume
was compared to the initial volume, computed when the bubble was still almost spherical,
obtaining an excellent agreement. In addition, an increase in the volume of the bubble with
z was observed, which can be explained by the expansion of the air due to the pressure
reduction as the bubble rises vertically in the liquid tank: the increase of the bubble volume
was 3 to 7%, in excellent accordance with the expected expansion due to the decrease of
hydrostatic pressure (8-10% increase of volume per meter of liquid column, depending on
the liquid density).

Let us now explore the particular shape of the bubble in each case. As can be observed
in Fig. 7, the local aspect ratio, χ(z), calculated with the real value of c (black symbols),
is nearly constant during the bubble ascent, even in the unstable cases. Thus, an aver-
age value, χ, will be used for each experiment. Note that the determination of χ(z) from
projections of the bubble when α 6= 0 (grey lines) may lead to erroneous values. Further-
more, we see that χ does not depend on L, since the bubble moves away from the wall
after it is released (Estepa-Cantero et al., 2024). The mean values of all experiments in
each regime are listed in Table 2. Large departures from the spherical shape were achieved
for the three cases, with the most deformed bubbles in Case 3 since it corresponds to the
largest Bo and We. Bubble deformation can be mainly determined by the Weber num-
ber, and many correlations are reported relating χ to We. One of the most extended one
is that proposed by Moore considering the potential theory (Moore, 1959, 1965), which is
valid for clean bubbles rising in a uniform flow with We ∼ O(1), high Re, and small Mo:

We = 4χ
−4/3
M (χ3

M + χM − 2)[χ2
M sec−1(χM)− (χ2

M − 1)1/2)]2(χ2
M − 1)−3. The expression by

Moore predicts χM →∞ when We→ 4, and therefore, overestimates χ for our experimental
results. Taylor and Acrivos (1964) proposed another correlation for low viscosity and clean
bubbles, χT = 1 + 5/32We +O(We2). Supported by the theoretical results of Blanco and
Magnaudet (1995), Rastello et al. (2011) expanded the result by Moore for We . 6 and
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Table 2: Mean absolute values of the magnitudes of the aspect ratios and the drag and lift coefficients
obtained for the three cases and different wall distances, together with the stationary drag coefficient, Cs

D.
All tabulated data refer to the mean value ± standard deviation of all experiments performed for the cases
defined by each row and column. Note that the values of χ represent averages over all wall distances.

Case L = 1 L = 2 L = 4

1

χ 2.53±0.06
Cs
D 1.28±0.03 1.17±0.02 1.20±0.01

CD 1.29±0.02 1.18±0.02 1.19±0.01
CL 0.0088±0.0006 0.0044±0.0002 0.0039±0.0008

2

χ 2.57±0.09
Cs
D 1.34±0.10 1.22±0.02 1.21±0.01

CD 1.13±0.01 1.07±0.02 1.06±0.01
CL 0.143±0.003 0.132±0.006 0.128±0.004

3

χ 2.97±0.17
Cs
D 1.74±0.01 1.76±0.02 1.84±0.03

CD 1.83±0.04 1.84±0.05 1.79±0.06
CL 0.19±0.02 0.19±0.01 0.16±0.03

small Re, suggesting χR = 1+9/64We+3/250We2+O(We3) for different liquids. However,
the exact shape of the bubble depends not only on We, but also on Re or Mo. In this regard,
Legendre et al. (2012) obtained χ = 1/(1− 9/64We) for bubbles that rise in different types
of water, which is finally corrected with Mo, as χL = 1/[1 − 9/64We(1 + K(Mo)We)−1],
with K(Mo) = 0.2Mo1/10. The results of the previous expressions are plotted in Fig. 8 with
our experimental values. The predicted aspect ratio for the different correlations strongly
increases with We due to surface tension effects becoming less important. In general, χL
showed the closest agreement with our experiments.

In particular, for Case 1, as reported in Table 2, an average experimental value of χ = 2.53
is obtained for the rectilinear regime, regardless of the initial wall distance. This value is
reasonably well predicted by the correlation given in Legendre et al. (2012) (see Fig.8a),
which yields χL = 2.31, 2.35, and 2.15 for L = 4, 2, and 1 respectively, using the cor-
responding We for each L and the Morton number of the liquid used in the experiments
(see Table 1). However, the remaining correlations significantly underestimate the experi-
mental aspect ratio. Moreover, Cano-Lozano et al. (2013) numerically found that bubbles
corresponding to case 1 were indeed stable, but with lower aspect ratios. Specifically, for
(Bo,Ga,Re)=(5,50,50), similar to the bubbles in Case 1, they obtained χ = 1.88. These
differences may be attributed to the axisymmetric approximation assumption in the simula-
tions. Furthermore, Zenit and Magnaudet (2008) used the same oil (T11) as in Case 1 and
reported an aspect ratio χ ' 2.1 for bubbles with Bo = 5. As far as we are concerned, this
is the first reference of bubbles with such high aspect ratios that have been experimentally
reported to be stable. In Case 2, an average value of χ = 2.57 was experimentally obtained.
As shown in Fig. 8(b), the correlation by Legendre et al. (2012) agreed fairly well with the
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Figure 8: Comparison of the bubble aspect ratio obtained on all the experiments with different correlations
in the literature for (a) rectilinear, (b) planar zigzagging, and (c) spiralling regimes. Correlations from
Moore (1959); Taylor and Acrivos (1964); Rastello et al. (2011); Legendre et al. (2012).

experimental values, while the rest significantly underestimated the aspect ratio. In particu-
lar, χL = 2.25, 2.24, and 2.17 for L = 4, 2, and 1, respectively. The experimental value also
agrees with the numerical work by Cano-Lozano et al. (2013), who for (Bo,Ga)=(5,100),
obtained an ellipsoidal shape with χ = 2.4. A good qualitative comparison with Shi et al.
(2024) is also accomplished, since they calculated an aspect ratio of χ ' 2.1 for a bubble in
the zigzagging regime with (BoS, GaS)=(1,30), what corresponds to (Bo,Ga)=(4,85), since
Bo = 4BoS and Ga = 23/2GaS. Furthermore, our findings are consistent with the experi-
mental results reported by Zenit and Magnaudet (2008), who also reported χ ' 2.3 under
similar experimental conditions using the same silicon oil. Finally, the highest deformations
were observed in Case 3, with an average experimental value of χ = 2.97. In this case,
(see Fig. 8c), the experimental results lie between correlations χL and χR. Legendre et al.
(2012) overestimated the experimental result (χL = 3.51, 3.86 and 3.92 for L = 4, 2 and
1, respectively), while Rastello et al. (2011) slightly underestimates the experimental aspect
ratio (χR = 2.73, 2.86 and 2.88). The average aspect ratio in Case 3 is also similar to the
numerical result of Cano-Lozano et al. (2013), who obtained χ = 3.19 for (Bo,Ga)=(10,100)
in an unbounded fluid.

5.4. Evolution of local hydrodynamic forces

Assuming that β ' 0, χ ' constant, and CM is unaffected by the presence of the wall,
once the pitch and azimuthal angles, θ and φ, the bubble velocity, U, and the aspect ratio, χ,
have been determined, the simplified equations (7)-(9) can be used to calculate the drag and
lift coefficients. The resulting evolutions of the local values, CD(z) and CL(z), are plotted
in Figs. 9 and 11, respectively, and the mean values, CD and CL, are given in Table 2.

5.4.1. Drag force

The drag coefficient was calculated using Eq. (7). Given that CM ∼ 1 and dU∗/dt∗ ∼
10−3 m/s2, the term CMdU∗/dt∗ � g cos θ, implying that CD ' −4D/(3U∗2) g cos θ. Since
θ > 0, CD is always negative, indicating that the drag force points to negative e1 di-
rection, balancing the 1-projection of the buoyancy force in the positive direction (FD =
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Figure 9: Evolution along the vertical direction of the magnitude of the local drag coefficient, |CD(z)|,
corresponding to experiments in the (a, b) rectilinear, (c, d) zigzagging, and (e, f) spiralling regimes,
respectively. The left panels show |CD(z)| for L = 1, 2, and 4; including an inset displaying the comparison
between the power density espectrum of the oscillating trajectories and that of |CD(z)|. Figures on the right
show a zoom of |CD(z)| (axis on the left) for L = 1, together U(z) and θ(z) (axes on the right in blue and
black, respectively). The horizontal axes in Figures (a) and (c) are truncated to z = 100 for clarity.

−FB1 = −ρgV cos θ), in agreement with the sketch in Fig. 1(b). Figure 9 shows the evolu-
tion of |CD(z)| obtained experimentally along the vertical direction, z, for the three regimes.
Figs. 9(a), (c), and (e) show that, for the three cases, the average value of |CD| increases
as L decreases, which is particularly evident for L = 1 (red lines). The increase in |CD| is
an effect of the interaction of the bubble wake with the wall, which usually occurs in the
migrating scenario established in the present work (Shi et al., 2024). This creates additional
vorticity on the bubble surface due to its proximity to the wall, which induces a shear force
on the bubble surface owing to the no-slip condition at the wall. The global values of |CD|
are reported in Table 2. These values are similar to the stationary values Cs

D = 4/3Fr−2
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(also provided in Table 2). Indeed, note that Cs
D can be obtained from Eq. (7) for U∗ = v∗,

g cos θ � CMdU∗/dt∗ and small drift angles (cos θ ' 1). An increase in CD is observed for
L = 1 of 8.3%, 5.7%, and 2.2% over CD(L = 4) for Cases 1, 2 and 3, respectively.

Drag force in the rectilinear regime: Case 1

Regarding the evolution of the local drag force, the rectilinear case (Figs 9a-b) shows
a nearly constant value as the bubble rises for each value of L (see Fig. 9a). The increase
in drag as L decreases persists as the bubble rises, even as it moves away from the wall.
Although not shown in Fig. 9(a), the increase in drag remained even when the bubble
moved vertically z > 200. Nevertheless, the increase in |CD| with decreasing L is not very
significant, in agreement with Takemura et al. (2002), who predicted a low wall effect for
ReL > 10, in the case of spherical bubbles. A detail of the evolution of U(z), θ(z) and
|CD(z)| over 75 . z . 95 for L = 1 is shown in Fig. 9(b). In this range of z values, |CD(z)|
(red) slightly decreases as the bubble rises, moving away from the wall. In addition, note
that the velocity of the bubble (blue) and its inclination angle θ (black) barely change.

Drag force in the zigzagging regime: Case 2

A different scenario is observed for Cases 2 and 3, where the drag force oscillates as the
bubble rises (Figs. 9c,e). If we first focus on the zigzag regime (Fig. 9c), it can be observed
that after an initial transient stage (z . 25), |CD(z)| starts to oscillate around a mean value
with nearly constant amplitude and frequency for the three values of L reported. Although
the frequency does not depend on L, the mean value of |CD| and the amplitude of the os-
cillations increases slightly as L decreases (see Table 2). As occurs with the bubble velocity
U(z), |CD(z)| oscillate at a frequency twice that of the oscillations of the bubble trajec-
tory (Shew et al., 2006; Cano-Lozano et al., 2016). In fact, |CD(z)| reaches the maximum
values of oscillations when the velocity is at its minima, which occurs when θ = 0 (black),
that is when the velocity is vertical at the extreme positions of the zigzag. However, two
different types of maxima are observed in |CD(z)|, one of large amplitude occurring when
the bubbles are farthest from the wall in their oscillatory motion (z ≈ 83 and 92 in Fig. 9d)
and another of smaller amplitude occurring when the bubbles are closest to the wall (z ≈ 78
and 87 in Fig. 9c). This is because the minima of the bubble velocity are lower in the former
case than in the latter. Conversely, |CD(z)| is minimum at maximum velocity, which occurs
around the maximum values of θ, when the velocity vector reaches its maximum inclination.
That is, |CD(z)| and U(z) are in anti-phase, consistent with Eq. (7). Then, starting from
the extreme positions of the zigzag trajectory, where θ = 0, |CD(z)| first decreases as the
bubble approaches or moves away from the wall. Both the bubble velocity and its tilt angle,
θ, increase until reaching a maximum value in the middle of the bubble’s excursion, when
|CD(z)| hits its minimum value. From this point on, the velocity of the bubble decreases
and |CD(z)| increases to a new peak when the bubble reaches its closest or furthest distance
to the wall, where θ = 0 and the velocity is minimum.
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Figure 10: Components of the drag coefficient in the coordinate system (x, y, z) as a function of z (left
axes), and the horizontal coordinates of the bubble centroid (right axes) for (a) rectilinear, (b) zigzag and
(c) spiral regimes. Here, they correspond to the cases presented in Fig. 9 for L = 1 but with larger z values
in (a) and (b).

Drag force in the spiralling regime: Case 3

In the spiral case (Figs. 9e,f), |CD(z)| initially increases to |CD| ≈ 1.75 as the instability
in the bubble trajectory begins to develop. The value decreases to |CD| ≈ 1.5 and suddenly
increases when the spiral regime is reached. The sudden increase in |CD| at z ≈ 62 for L =
1 and 2 and z ≈ 75 for L = 4 corresponds to the decrease in the terminal velocity associated
with a regime change, as observed in Fig. 5(b). The average value of |CD(z)| for each L,
corresponding to the final stage, is given in Table 2. As observed, the increase of |CD(z)| for
smaller L is not as clear as that for the other regimes. The drag force has been reported to
be nearly constant in time in a spiral regime (Shew et al., 2006; Cano-Lozano et al., 2016),
but |CD(z)| oscillates here because this regime is not a pure spiral but a combination with
planar zigzagging. If we focus on the final stages of the bubble rise for L = 1 (Fig. 9f), we
observe that, like in Case 2, the oscillation frequency of |CD(z)| is twice that of the bubble’s
path, and that |CD(z)| reaches a maximum when the velocity vector is minimum (θ = 0),
whereas |CD(z)| is minimum at maximum velocity and inclination. Nevertheless, in this case,
both maxima of |CD(z)| have approximately the same value. As far as we are concerned,
the local drag force on a bubble in this regime has not been experimentally reported before.

Components of CD in the (x, y, z) coordinate system

Let us now analyse the components of the drag coefficient in the (x, y, z) coordinate
system, as shown in Fig. 10. The horizontal components of CD are defined as CD,x =
|CD| sin θ cos (φ+ 180) and CD,y = |CD| sin θ sin (φ+ 180), while the vertical component is
CD,z = |CD| cos θ. Note that CD,z is much larger than the horizontal components in the
three regimes because the inclination of the velocity with respect to the vertical direction
is small (maximum θ . 11◦). Indeed, in Case 1 CD,x ' CD,y ' 0 (Fig. 10a). Neverthe-
less, CD,x presents large oscillations around CD,x = 0 in Case 2 (Fig. 10b) because the
main zigzagging plane is almost perpendicular to the wall, that is, along direction ex, where
CD,y ' 0. In Case 3 (Fig. 10c), the bubble moves along both the ex and ey directions as
it rises; hence, CD,x and CD,y exhibit oscillations of similar amplitude. Furthermore, note
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that CD,x > 0 when the bubble moves closer to the wall (x decreases) and CD,x < 0 when
the bubble migrates (x decreases). In particular, |CD,x| is maximum at the middle of each
migration and approaching stage and becomes zero when the bubble reaches its closest and
furthest positions. In addition, while CD,x and CD,y vary with the frequency of the path,
CD,z changes at twice that frequency, as CD.

Comparison with previous results

The above description of the evolution of CD(z) is in agreement with the numerical
and experimental results of recent work on bubbles rising near a vertical wall (Sugioka and
Tsukada, 2015; Xiang et al., 2022; Heydari et al., 2022; Cai et al., 2023). However, each
work is subject to different conditions. Therefore, a direct comparison with the present
results is not appropriate. However, the global experimental |CD| reported in Table 2 can
be compared with those predicted by correlations that include the effect of the initial wall
distance L. Most of these correlations are valid for spherical bubbles or small deforma-
tions (Barbosa et al., 2019; Heydari et al., 2022), and may not be applicable to the cases
reported in this work. Thus, we have selected just the most suitable ones to perform a
qualitative comparison. For instance, the expression proposed by Fayon and Happel (1960)
for solid spheres has been used in similar studies (Cai et al., 2023) to predict the increase in
the drag force. It writes CD = CD,∞ + 24/Re(K − 1), where K = 1/(1− 1.6λ1.6), and λ is
the ratio of the bubble diameter to the tank width, and CD,∞ is the drag coefficient for the
unbounded case. This correlation predicts an increase in CD of 1% for cases 1 and 2 (lower
than obtained experimentally) and 3% for case 3 over CD for L = 4 (assumed to be similar to
the unbounded case), which is similar to our experimental result. In addition, a qualitative
comparison can be made with the most recent prediction for spherical bubbles: Shi (2024)
proposed an expression to calculate the increase of the drag coefficient with respect to the
unbounded value for spherical bubbles given by ∆CD = 0.47(2L)−4 +5.5×10−3(2L)−6Re3/4.
The expression predicts a maximum increase of 3% for L = 1 and the current values of Re,
which is fairly consistent with our experimental results, which give a maximum increase of
' 8% over the L = 4 case. In any case, the influence of the initial wall separation can
be incorporated into the correlations for unbounded flow via the experimental values of Re
or We because both decrease with decreasing terminal velocity. A significant amount of
experimental, theoretical, and numerical research is available in the literature that enables
the prediction of the drag coefficient in unbounded flow. These expressions vary based
on specific control parameters, applying to a specific set of conditions. In this context,
expressions for spherical bubbles, such as CD,L = 48/Re (Levich, 1949) for large Re, or
CD,M = 48/Re(1− 2.211/Re1/2)(Moore, 1959) for Re . 50, provide values of the drag force
being much smaller than the experimental results, due to the shape of the bubbles in our work
differing considerably from a sphere. The most accepted result taking into account the effect
of the shape is that by Moore (1965), namely CD,M∗ = 48/ReG(χ)(1 − 2.21H(χ)/Re1/2),
where G(χ) and H(χ) are functions depending on the aspect ratio (Loth, 2008). However,
CD,M∗ overestimates the experimental results, as shown in Table 3, since the expression does
not hold for large deformations (χ & 2) or Re > 50. Schiller (1933) proposed a correlation
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Table 3: Comparison of the drag coefficient obtained here, CD,exp = |CD|, with correlations in literature for
unbounded flows.

Case L CD,exp CD,M∗ CD,SN CD,Tu CD,To

1
1
2
4

1.29
1.18
1.19

4
1.41
1.38
1.38

1.36
1.32
1.33

1.48

2
1
2
4

1.13
1.07
1.06

2
1.05
1.05
1.03

1.00
0.99
0.99

1.31

3
1
2
4

1.83
1.84
1.79

4
1.14
1.15
1.16

1.08
1.09
1.10

1.92

for CD as a function of Re valid for fully contaminated spherical bubbles and 10 < Re ≤ 200,
given by CD,SN = 24/Re(1 + 0.15Re0.687). As can be observed in Table 3, this prediction
compared fairly well with the experimental |CD| in the rectilinear and the zigzag regimes,
but yields lower values for the spiral case. A similar outcome is obtained with the expres-
sion by Turton and Levenspiel (1986), CD,Tu = 27.2/Re0.827 + 0.427. This correlation fits
the experimental data corresponding to spherical contaminated bubbles for Re < 1000 (Liu
et al., 2024). The results obtained with this correlation agree with the experimental |CD|
in the rectilinear and zigzag regimes, but significantly underestimate the experimental re-
sults for the spiral case (see Table 3). Finally, Tomiyama et al. (1998) proposed a simple
but reliable correlation for CD of single bubbles under a wide range of fluid properties
and bubble diameters. The correlation consists of three equations, each corresponding to
clean, slightly contaminated, and contaminated systems. The expression for clean bubbles,
CD,To = max{min[16/Re(1 + 0.15Re0.687), 48/Re], 8/3Bo/(Bo + 4)} gives values similar to
the experimental results, as can be observed in Table 3. Exactly the same result is obtained
using the equations for slightly and completely contaminated, indicating that, according to
this study, contamination is not a critical parameter in our experiments. Note that CD,To
does not capture the effect of L because its value comes from the term 8/3Bo/(Bo + 4),
implying that Bo is the dominant parameter for highly deformed bubbles.

5.4.2. Lift force

The components of the lift coefficient were calculated using Eqs. (8) and (9). Our re-
sults indicate that the component of the lift force along direction e2, CL2, balances the
2-component of the buoyancy force, F ∗L2 ' −F ∗B2. Since F ∗B2 > 0, F ∗L2, and hence, CL2
is always negative. Moreover, because CMU

∗dφ/dt∗ sin θ ∼ 10−4 m/s2, it may be derived
that CL3 � |CL2|, and the magnitude of the lift coefficient essentially coincides with its
component along axis 2, CL =

√
C2
L2 + C2

L3 ' |CL2|.
The evolution along the vertical direction of the local lift coefficient, CL2(z), obtained

from Eq. (8) is shown in Fig. 11, where a negative value is always obtained according to our
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Figure 11: Evolution of the lift coefficient, CL2, corresponding to experiments in the (a, b) rectilinear, (c, d)
zigzagging, and (e, f) spiralling regimes, respectively. The left panels show CL2 for L = 1, 2, and 4; including
an inset displaying the comparison between the power density espectrum of the oscillating trajectories and
that of CL2. Figures on the right show a zoom of CL2 (axis on the left) for L = 1, together with U(z)
and θ(z) (axes on the right in blue and black, respectively). The horizontal axes in Figures (a) and (c) are
truncated to z = 100 for clarity.

reference frame.

Lift force in the rectilinear regime: Case 1

In the rectilinear regime (Fig. 11a,b), the lift force is nearly constant for any value of
L. The average values of CL are listed in Table 2. Note that CL ≈ |CL2| is very small,
almost negligible for L = 4; however, it increases slightly as L decreases, being particularly
noticeable at L = 1. In Fig. 11(b), corresponding to L = 1, we see that CL2(z) is always
negative, keeping a low and almost constant value as z increases and the bubble moves away
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from the wall.

Lift force in the zigzagging and the spiralling regimes: Cases 2 and 3

In contrast, in the zigzag and spiral regimes, CL2(z) oscillates as the bubble rises (Fig. 11c,e).
In particular, in the zigzag regime (Fig. 11c), CL2(z) oscillates with an amplitude that slightly
increases with decreasing L. This effect is particularly evident during the first instants
(z . 10). In addition, the permanent oscillations of CL2(z) are established earlier (or at
lower z) as L decreases because the proximity of the wall favours the zigzag motion (Estepa-
Cantero et al., 2024). Similar to the drag coefficient described above, the oscillations of
CL2(z) are related to the zigzag motion, as can be observed in Fig.11(d) for L = 1, where
CL2(z) (red) oscillates at twice the frequency of the zigzag path, as also displayed in the inset
of Fig.11(c). The maximum negative value of CL2(z) occurs when the bubble velocity and
θ are maximum, that is, when the bubble velocity reaches its maximum lateral excursion in
the middle of both the migrating and approaching phases at each cycle of the zigzag motion.
This result does not agree with previous studies that have predicted that the lift force varies
at the frequency of the trajectory (Shew et al., 2006; Heydari et al., 2022) because, in our
case, θ is defined positive. The overall evolution of CL2(z) in Case 3 (Figs. 11e,f) is similar
to that in Case 2, but with higher amplitudes and average values (see Table 2).

Components of CL in the coordinate system (x, y, z)

To directly relate the lift force to the wall position, the components of CL in the coor-
dinate system (x, y, z) are plotted in Fig. 12. The horizontal components are calculated as
CL,x = CL cos θ cosφ and CL,y = CL cos θ sinφ. Note that CL,x > 0 when 0 ≤ |φ| < 90◦

(migration from the wall), while CL,x < 0 when 90 < |φ| ≤ 180◦ (approximation to the wall).
The vertical lift coefficient is calculated as CL,z = CL sin θ. Since CL2 < 0 and θ > 0, CL,z
is always negative, that is, the lift points towards the negative vertical direction (Fig. 12).
Moreover, because the inclination of the velocity vector is always small (maximum θ ' 10◦),
CL,z is much smaller than the horizontal components. In particular, in Case 1 (Fig. 12a),
since a continuous migration motion mainly normal to the wall (φ ' 0) occurs, CL,x > 0
(red) and |CL,y| ' 0 (blue). Thus, the lift coefficient in the wall-normal direction is positive
when the bubble is repelled from the wall, in agreement with other works (Takemura and
Magnaudet, 2003; Shi et al., 2020; Shi, 2024). In Case 2 (Fig. 12b), CL,x > 0 when x (solid
green line) increases, whereas CL,x < 0 when x decreases. Therefore, CL,x meets previous
results since it oscillates with half the frequency of the velocity oscillation, being positive
(negative) when x increases (decreases). That is, the lift force is negative when the bub-
ble approaches the wall (attractive force) and positive when the bubble migrates from the
wall (repulsive force), in agreement with previous studies (Takemura and Magnaudet, 2003).
Since the zigzag motion is almost normal to the wall (y barely varies), |CL,y| � |CL,x|. In
Case 3 (Fig. 12c), the general picture is similar to that of Case 2, but now |CL,y| ∼ |CL,x|
because oscillations in y are comparable to those in x. Both components are nearly in phase
because x and y are also. Additionally, CL,z is larger than in Cases 1 and 2 and oscillates
at twice the frequency of the trajectory, that is, at the frequency of the velocity or θ.
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Figure 12: Components of the lift force coefficient in the coordinate system (x, y, z) as a function of z (left
axes), and the horizontal coordinates of the bubble centroid (right axes) for (a) Case 1, (b) Case 2, and (3)
Case 3. These correspond to the same experiments in Fig. 11 for L = 1 but with larger z values in (a) and
(b).

Comparison with previous studies

The oscillatory behaviour of the lift force for zigzagging and spiralling paths has been
reported in previous studies (Lee and Park, 2017; Zhang et al., 2020; Heydari et al., 2022;
Xiang et al., 2022; Cai et al., 2023). Nevertheless, most of the latter works focus on spheri-
cal or small-Bond bubbles and usually higher Re; thus, a direct comparison of the lift force
evolution is not suitable. Regarding the global values of CL (Table 2), Cases 2 and 3 exhibit
a similar value (CL ∼ 10−1), whereas CL is lower for Case 1 (CL ∼ 10−3). This is in fair
agreement with the experimental results of Takemura and Magnaudet (2003) for contam-
inated spherical bubbles, who obtained repulsive lift forces with CL ∼ 10−2 for Re ∼ 102

and L = 1. As for the studies on deformable bubbles, Cai et al. (2023) experimentally
obtained similar values (CL ∼ 10−1) for elliptical bubbles. Furthermore, the lift force nu-
merically obtained by Zhang et al. (2020) for a bubble with (Bo,Ga, L)=(16, 90, 0.75) that
rises in spiral regime (F ∗L ' 1.2 × 10−4 N) compares fairly well with our result for Case 3
and L = 1, F ∗L = CLρπD

2U∗2/8 = 2.6 × 10−4 N. Recently, Zhang et al. (2025) numerically
obtained CL ' 10−1 for spherical bubbles in a linear shear flow at 50 . Re . 100. Moreover,
they observed that the lift force is reduced when the bubble is sufficiently deformed due to
the enhancement of the S-mechanism (responsible for lift reversal) over the L-mechanism
(responsible for the migration) that occurs for intermediate-to-high Re, in agreement with
Adoua et al. (2009). The S and L mechanisms describe lift forces on bubbles in shear
flows (Legendre and Magnaudet, 1998) while the S mechanism (Shear-induced lift) is caused
by the velocity gradient, creating an asymmetric pressure distribution that pushes the bub-
ble away from high-velocity regions; the L mechanism (Lift due to rotation) arises when the
bubble rotates, generating an additional lift force similar to the Magnus effect. In particular,
for bubbles of aspect ratio χ = 2.5, Zhang et al. (2025) predicted CL ' 0.04 for Re = 50
and CL ' 0.02 for Re = 100, which are of the order of our values for Case 1, but much lower
than our results for Cases 2 and 3. In any case, note that Zhang et al. (2025) considered a
linear shear flow, and the flow field established between the wall and the bubbles has not
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Figure 13: Evolution of the hydrodynamic force coefficients in the coordinate system (x, y, z) for (a) Case
1, (b) Case 2, and (3) Case 3 and L=1. Here, the left axes correspond to the horizontal components while
the right ones show the vertical components.

been characterised in our case.
Finally, regarding the correlations for CL, as far as we are concerned, no results in the

literature predict the effect of wall separation on the lift force of deformable bubbles. Some
expressions taking into account the effect of L have been developed, but only for spheri-
cal bubbles. The most recent expression that accounts for the wall effect is provided in
the numerical study by Shi (2024), which is applicable to clean spherical bubbles. How-
ever, the predicted lift force is negative (attractive) within our range of L, which changes
to positive (repulsive) when L . 0.65 for Re = 50 and when L . 0.5 for Re = 100,
meaning that the previous numerical results cannot be applied to ellipsoidal bubbles. In
relation to the correlations for the unbounded flow, some studies have considered the ef-
fect of the bubble shape on the lift force. Rastello et al. (2011) proposed an expression
for CL that corrects the value corresponding to a spherical bubble through the aspect ratio
χ. However, they obtain CL & 1 in our range of parameters, which is larger than our ex-
perimental results. There are also correlations that take into account the effect of bubble
deformation by Bo. For instance, in simple shear flows, Tomiyama et al. (2002) suggested
CL,T = 0.00105Bo3T−0.0159Bo2T−0.0204BoT +0.474 for 4 < BoT < 10, independent of the
shear rate, with a modified Bond number based on the major axis instead of the bubble diam-
eter, which they found a more representative length scale for the lift force (BoT = χ2/3Bo).
This correlation was corrected for contaminated liquids by Hessenkemper et al. (2021). This
function of BoT confirms a repulsive force (negative values) for our experimental cases,
specifically providing an excellent agreement for Case 2 (CL,T = −0.12). Finally, Feng and
Bolotnov (2018) applied the latter correlation to a linear shear flow bounded by a wall,
providing a new expression to predict the lift coefficient sign. They reported a reduced
critical Bond number for the lift sign change when the wall is present; however, the estima-
tion by Tomiyama et al. (2002) for the lift coefficient is still valid for the wall-bounded cases.

5.4.3. Total hydrodynamic forces

The components of the lift and drag forces in the coordinate system (x, y, z) were plotted
together to complete the analysis of the hydrodynamic forces acting on the bubble. In par-
ticular, the components of the hydrodynamic force coefficients Cx, Cy, and Cz are presented
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in Fig. 13, where Cx = CD,x + CL,x, Cy = CD,y + CL,y, and Cz = CD,z + CL,z. Note that in
Case 1 (Fig. 13a), the total hydrodynamic force is mainly directed in the vertical direction
because the bubble velocity is predominantly vertical, with the horizontal forces being much
smaller than the vertical ones (Cx ∼ Cy ∼ 10−5 � |Cz| ∼ 1). Although small, the force
in the normal direction of the wall is larger than that in the parallel direction to the wall
(Cx > Cy), reflecting continuous bubble migration from the wall in the normal direction
(direction ex). In Cases 2 and 3, Cx and Cy exhibit oscillations with amplitude ∼ 10−4.
Note that Cx � Cy in Case 2 (Fig. 13b) because the zigzag motion is mainly perpendicular
to the wall, whereas in Case 3 (Fig. 13b), the oscillation amplitudes of both Cx and Cy were
similar because the horizontal motion varies in both directions.

6. Conclusions

An experimental study was conducted to analyse the effect of a vertical wall on the
hydrodynamic forces acting on a bubble rising near it. Three different rising regimes corre-
sponding to high Bond numbers were investigated experimentally using various liquids and
bubble sizes: one stable (rectilinear) and two unstable (zigzag and spiral), characterised
by the dimensionless parameters Ga and Bo, with the resulting Re number falling in an
intermediate range. For each regime, different initial distances from the wall (L = 1, 2,
and 4) were analysed, with the L = 4 case behaving as an unbounded flow (L→∞). Our
results indicate that the wall does not modify the bubble path instability but induces a
net migration of the bubble away from it in all cases. The analysis of the evolution of the
path, velocity, and orientation of the bubbles allowed for a detailed description of the bubble
motion in each regime.

In the stable regime (Case 1 in table 2), the horizontal velocity normal to the wall
remained low but positive because of the migration effect. The pitch angle θ is small and
increases with decreasing L, caused by the enhanced lateral migration. In contrast, the
azimuthal angle φ oscillates around zero, indicating that the horizontal displacement is
mainly perpendicular to the wall and always directed away from it. Differently, fluctuations
in velocity and orientation were observed in the unstable cases. In the zigzag regime (Case 2
in table 2), the bubble oscillates with a larger amplitude in the direction normal to the wall
because the primary zigzag plane is nearly normal to it. The pitch angle, θ, fluctuates twice
a cycle and indicates that the bubble minor axis lies vertically at the extreme positions of
the zigzag motion, while its maximum inclination occurs in the middle of each migrating
and approaching stage of the cycle. The azimuthal angle, φ, oscillates between ±180◦ once
per cycle, indicating abrupt bubble rotations at the transitions of both phases of the zigzag
motion. Lastly, in the spiral regime (Case 3 in table 2), the oscillations in ex and ey

directions have similar amplitudes because of the helical motion while the bubble moves
away from the wall. The helical motion is also reflected in θ and φ. The bubble changes
direction abruptly in each phase, with φ increasing or decreasing depending on the rotation
direction.

Drag and lift forces were obtained non-invasively by applying Kirchhoff’s equations to
the experimental results. Specifically, bubble velocity, aspect ratio, and orientation angles
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are required. A coordinate system (1, 2, 3) attached to the bubble was used, with e1 aligned
with the velocity of the bubble. The alignment of the minor axis with the velocity vector was
checked as a necessary condition to apply the simplified version of the Kirchhoff equations.

The drag force balances the buoyancy projection in the direction of bubble motion, since
the inertia term is negligible compared to gravity. In the rectilinear case, CD(z) remained
almost constant as the bubble rose. However, in unstable cases, CD(z) oscillated at twice
the frequency of the bubble trajectory and peaked when the velocity was vertical (θ = 0).
In particular, in the spiral case, CD(z) increased sharply during regime transitions and
followed an oscillatory pattern. In all regimes, the vertical drag component was greater
than the horizontal due to the small angle of inclination. Nevertheless, in the unstable
regimes, the horizontal components oscillate according to the bubble trajectory. The overall
average drag coefficient increased when L was small due to the interaction of the bubble
wake with the wall, generating additional vorticity and shear forces.

The lift force acted in the direction of the bubble velocity, with the resulting lift coefficient
primarily defined by CL2 given that CL3 ≈ 0. This indicated that the lift force compensated
the buoyancy force in the direction of e2. In the rectilinear case, CL2 was almost constant
and negligible for L=4 but increased slightly as L decreased. In unstable regimes, CL2
oscillated with larger amplitudes in the spiral regime. In particular, in the zigzag regime,
CL2 fluctuated at twice the trajectory frequency, reaching a maximum absolute value when
the bubble was at its maximum lateral deviation from the mean path. Most available
correlations have been provided for spherical bubbles and do not fully capture the behaviour
of deformable bubbles near a wall. However, a fair agreement was found with previous
experimental and numerical results.
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Appendix A. Kirchhoff equations

The generalised Kirchhoff equations describe the linear and momentum balance of a
fluid-body system and can be applied to describe the motion of a bubble that rises in a
stagnant viscous liquid as follows (Mougin and Magnaudet, 2001),

(m∗I+A∗)
dU∗

dt∗
+ Ω∗ × [(m∗I+A∗)U∗] = F∗

(J∗ +D∗)
dΩ∗

dt∗
+ Ω∗ × [(J∗ +D∗)Ω∗] + U∗ × (A∗U∗) = Γ∗

(A.1)
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where m∗ is the mass of the bubble, Ω∗ is the rotation rate of its centre of mass, I is the unit
tensor, J∗ is the inertia tensor of the bubble, A∗ and D∗ are second-order diagonal tensors
characterising the mass of fluid set in motion by translation and rotation of the bubble,
and F∗ and Γ∗ are the resulting hydrodynamic force and torque on the bubble, respectively.
However, assuming that the bubble has zero inertia, the force and torque balances are given
by Eqs. (1)-(2).

The added mass tensors A∗ and D∗ depend on the shape of the bubble, which we assume
to be an axisymmetric ellipsoid, as also done in other studies on rising bubbles (Mougin
and Magnaudet, 2001, 2002; Shew et al., 2006; Shew and Pinton, 2006; Zawala et al., 2007;
Kusuno et al., 2019; Xiang et al., 2022). If Eqs. (A.1) are evaluated in an inertial frame of
reference rotating with the bubble (see Fig. 1b), we may obtain a diagonal expression for
these tensors,

A∗ =

A∗11 0 0
0 A∗22 0
0 0 A∗33

 , D∗ =

D∗11 0 0
0 D∗22 0
0 0 D∗33

, (A.2)

whose components may be derived from the expression for the kinetic energy associated with
the motion of an oblate spheroidal body along its axis of symmetry in an unbounded flow,
proposed by Lamb (1924); Korotkin (2008), and widely used in similar studies on rising
bubbles (Tsao and Koch, 1997; Mougin and Magnaudet, 2001, 2002; Shew et al., 2006;
Shew and Pinton, 2006; Zawala et al., 2007; Kusuno et al., 2019; Xiang et al., 2022):

Aii = ρV CMi = ρV
γi

2− γi
,

γ1 = γ2 =
1

χ2 − 1

[
χ2 − 1 +

√
1− 1

χ2
χ3 arcsin

(√
1− 1

χ2

)]
γ3 =

2χ2

χ2 − 1

[
1− 1√

χ2 − 1
arcsin

(√
1− 1

χ2

)]
,

(A.3)

Dii = ρV U2CT i

CT1 = CT2 =
((χ2 − 1)2

χ2 + 1

(2χ2 + 1)
√

1− 1
χ2 − 3χ arcsin

(√
1− 1

χ2

)
(7χ2 − 1)

√
1− 1

χ2 + 3(χ3 + χ) arcsin
(√

1− 1
χ2

)
CT3 = 0

(A.4)

The assumption of β ' 0 allows us to neglect the torque balance in Eq. (A.1) and assume
that the bubble velocity vector has only one component along the direction e1, U∗ = U∗e1.
Using the latter simplifications, the force components given by the Kirchhoff equations can
be written as

F ∗i = A∗ij
dU∗j
dt∗

+ εijk Ω∗j A
∗
kl U

∗
l , (A.5)
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Figure A.14: Evolution of the drag and lift coefficients magnitudes for one experiment in Case 3 (β(t)max ≈
12o) calculated with the original version of the Kirchhoff equations (black, solid lines) and their simplified
version (red, dashed lines).

which provides Eqs. (3), and where εijk is the alternating unit tensor.

This assumption may be verified by applying the equations directly in an inertial frame
of reference with origin on the bubble centroid and axes coinciding with the minor and major
axes of the axisymmetric ellipsoid. As a previous step, the measured kinematic variables
must be rotated from the laboratory frame of reference (x, y, z), by means of a rotation
matrix R1 based on angle α, to the inertial one (Eq. A.6),

R1 =

cos(αxy) · cos(αxz) 0 0
0 cos(αxy) · cos(αyz) 0
0 0 cos(αxz) · cos(αyz)

 . (A.6)

After computing the forces and torques, the values of the drag and lift forces may be
derived by rotating their components to the frame of reference (1, 2, 3), which has the same
centroid but it is aligned with the velocity, and thus with the drag force. This rotation (R2)
will be based on angles φ and θ

R2 =

cos(φ) · cos(θxz) 0 0
0 cos(φ) · cos(θyz) 0
0 0 cos(θxz) · cos(θyz)

 . (A.7)

These expressions provide a more accurate result for both the forces and the torques.
Figure A.14 shows the comparison between the force coefficient calculated from the simplified
Kirchhoff equations and the full ones. To ensure the validity of the assumption β = 0,
we evaluated the complete equations for the case with a maximum value of β in our set
of experiments (β(t)max ≈ 12o), and compared with those obtained from the simplified
equations (Eqs. 7-8). It can be observed that the results are nearly identical in the drag
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force (< 0.5%) and only small discrepancies are shown in the lift force, which displays a
slight phase difference and an increment of the peak values due to the β = 0 assumption.
The differences between the mean values of the lift forces obtained with the full and the
simplified equations were always lower than 3.2%. Additionally, the torque evaluated with
the second equation in (A.1) provides a negligible value. This proves the validity of the
assumption of β = 0 and the use of the simplified version of the Kirchhoff equations, which
are easier to implement.

Appendix B. Experimental details

The tank was equipped with four glass sides to ensure optical access and cleanliness,
enclosed by a full methacrylate cover. Air was injected at a controlled flow rate through
an injector located at the tank’s base to generate bubbles. A capillary tube was placed
between the injector and the air supply line to maintain a steady flow, and very low flow
rates were applied to ensure quasi-static bubble formation, confirmed through high-speed
video analysis. A superhydrophobic substrate (Rustoleumr NeverWet™) was used as an air
injector to obtain the high-Bond number bubbles required in Case 3.

Table B.4: Main properties of the liquids

Case Liquid ρ (kg/m3) µ (mPa·s) σ (mN/m)

1 T11 - Silicon oil 935 9.35 20.1
2 T05 - Silicon oil 913 4.57 19.7
3 Glycerol-water (GW) 1188.7±1.1 22.1±1.9 65.7±0.1

Regarding the liquids, Table B.4 lists their properties. The liquid temperature was
continuously registered during the experimental runs. The liquid physical properties were
measured with a Brookfield DV3TLVCJ0 rheometer, Krüss K20 tensiometer, and Mettler
Toledo Density2Go densimeter, which matched theoretical data and those provided by the
manufacturers. To reduce surfactant effects, the liquids were replaced periodically. More-
over, before experiments, the tank and wall were deeply cleaned with water and ethanol to
remove dust and surfactants.

A THORLABS-R1L3S1P 10 mm Stage Micrometer with 50 µm divisions was employed
as calibrating device. Images were taken at different positions in both vertical planes. More-
over, they were checked for focus depth, and the pixel-to-millimetre ratio was computed
several times for statistical convergence.

Both cameras’ motion, synchronised with the servomotor, was registered for every ex-
periment. Their position together with the bubble position in the shadowgraphy images
provided us with the bubble centroid position. A plumb bob ensured the wall and camera
system’s verticality, and its image corrected minor displacements. Bubble terminal velocity
was measured before and after each experimental round. On the one side, it is required to
program the servo motor (SMC Lecsa2-S4 driver, Melsoft MR Configurator) that moves both
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cameras. On the other side, we were able to confirm that the terminal velocity remained
unchanged, and thus the effect of contamination was not important. A laser and photodiode
triggered the cameras and the traverse upon bubble pinch-off. Each case was repeated at
least 10 times, with sufficient time between bubbles to avoid wake interference. Except for
Case 3, all experiments were highly repetitive. Although the general picture was unaltered,
the particular details of Case 3 varied from one experiment to another due to the changes
in ambient temperature, which resulted in variations of the liquid (GW) physical properties.

Case x U Volume D χ CD CL2

Absolute
error

1 0.93 µm 1.37 µm/s 0.12 mm3 7.4 µm 0.033 3.3× 10−3 3.6× 10−4

2 0.93 µm 1.55 µm/s 0.10 mm3 7.4 µm 0.033 3.4× 10−3 9.6× 10−4

3 0.90 µm 1.49 µm/s 1.18 mm3 12.7 µm 0.018 4.3× 10−3 1.7× 10−3

Relative
error (%)

1 0.001% 0.001% 0.71% 0.23% 1.2% 0.2% 0.2%
2 0.001% 0.001% 0.79% 0.26% 1.2% 0.1% 0.1%
3 0.001% 0.001% 0.50% 0.17% 0.5% 0.6% 0.2%

Table B.5: Maximum uncertainty of experimental measurements.

Finally, the uncertainty in the measurements was taken into account to assess the lim-
itations of the indirect variables. First, the uncertainty of the centroid position and the
length of the bubbles axes were estimated following Ho (1983). The position of the motor
was registered every 0.9 ms with a precision of 0.7 µm. Subsequently, the uncertainty of the
direct measurements was taken into account in order to estimate the maximum propagated
error in the final results, as stated in Table B.5.
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