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Abstract: Studies show that Nature-Based Solutions can mitigate Urban Heat Island (UHI)
effects by implementing green spaces. Green roofs (GRs) may minimize land surface
temperature (LST) by modifying albedo. This research predicts, assesses, and measures
the impact of reducing the LST by applying green roofs in buildings by using a Random
Forest algorithm and different remote sensing methods. To this aim, the city of Granada,
Spain, was used as a case study. The city is classified into different Local Climate Zones
(LCZs) to determine the area available for retrofitting GRs in built-up areas. A total of
14 Surface Temperature Collection 2 Level-2 images were acquired through Landsat 8–9,
while 14 images for spectral indices such as the Normalized Difference Vegetation Index
(NDVI), the Normalized Difference Building Index (NDBI), and Proportion Vegetation (PV)
were calculated from Sentinel-2 in dates coinciding or close to LST images. Additional
factors were considered including the sky view factor (SVF) and water distance (WD). The
results suggest that Granada has limited suitable areas for retrofitting GRs, and available
areas can reduce LST with a moderate impact, at an average of 1.45 ◦C; however, vegetation
plays an important role in decreasing LST. This study provides a methodological example
to identify the benefits of implementing GRs in reducing LST in semi-arid cities and
recommends a combination of strategies for LST mitigation.

Keywords: urban heat island; land surface temperature; green roof; random forest; local
climate zone; machine learning

1. Introduction
The continuous increase in greenhouse emissions contributes to global warming

and leads to more frequent extreme weather events such as droughts, heatwaves, and
floods [1–3]. It is estimated that 30% of the world’s population experiences extreme heat
conditions, and forecasts indicate that this will reach 74% in the next 20 years [4]. In cities,
the ongoing development and rapid growth of new buildings prioritize construction zones
over the expansion of green vegetated areas. This prioritization increases the absorption of
solar heat and reduces solar reflectivity (albedo) [5], leading to larger areas of cities that are
vulnerable to thermal discomfort and rising temperatures. As a result, residents may face
health risks associated with high urban temperatures. Nowadays, it is extremely important
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that city planning is carried out for a healthy urban environment. For understanding
thermal comfort in urban areas, the Urban Heat Island (UHI) phenomenon is widely used
in the literature [6–10]. The UHI is defined as the difference in the temperature between
urban and surrounding rural areas induced by replacing the natural land surface with
the urban fabric [11]. The effect of the UHI occurs when an increased heat flux from
the land surface is moved into the atmosphere near cities [12]. Furthermore, UHI effects
are notably amplified in extreme events like heat waves, which synergize and aggravate
thermal comfort [13–18]. This scenario poses a significant dilemma, as the expansion of
urban areas is the main driver of the economy but alters local urban climate by increasing
land surface temperature [19,20].

In the Mediterranean, future heat waves are projected to increase significantly. In
Spain, a more frequent occurrence of heatwaves has been observed since the early 1980s,
characterized by an increase in the number of events, their duration, and intensity [1,21,22].
In this sense, cities experience the greatest temperature increases exacerbated by the UHI
phenomenon and environmental pollution from the transportation and industrial sec-
tors [23]. Despite weather stations and on-site methods providing data to comprehend the
rise in urban air temperatures, these methods often yield insufficient data for larger area
expansions. In this sense, advances in remote sensing techniques have become valuable.
Satellite images obtained through thermal infrared sensors allow for studies of Land Surface
Temperature (LST) and have been found to be consistent as a proxy for air temperature [24],
enabling the identification of Surface Urban Heat Islands (SUHI) by directly evaluating
land surface temperatures (LST) [13].

In recent years, several mitigation measures have been researched and developed to
reduce urban temperatures. However, the possibility of implementing large-scale UHI
mitigation activities differs from one location to another. Zhao et al. [6] and Berardi et al. [25]
summarized measures at building and neighborhood scales. Among these are solutions for
changing construction materials to modify albedo, making it more reflective; for instance,
cool pavements [26], reflective roofs, cool surfaces [27], evaporative pavements, thermally
efficient buildings, constructed shade, and Nature-Based Solutions (NBS) [28,29]. The latter
is dedicated to restoring and collaborating with nature in urban areas. Amid Nature-Based
Solutions are urban greenery, green roofs (GRs), and green walls [30–32]. The advantage of
vegetation, apart from shade provision and increased albedo, is evapotranspiration. It is a
key physical process that transfers some of the surface heat flux into latent heat, which is
then released into the external environment, reducing air temperature [33,34]. These green
areas were conceived to mitigate temperatures and the urban heat island effect [35,36],
reduce levels of environmental pollution [37–44], achieve energy savings by improving
thermal insulation [45–48] and promoting ecological biodiversity in urban areas [49,50].
Thus, strategic locations might contribute to diminishing UHI [51]. These are some benefits
that could lead to an enhancement in the well-being of inhabitants.

In urban areas, green spaces play an important role in diminishing temperature to
improve the thermal environment [52], and green solutions are the fastest and easiest way
to reduce and adjust a city’s heat and temperature [15]. A study by Nastran et al. [53]
examined the relationship between the UHI and urban green spaces on European cities.
They found that in Mediterranean cities, a high proportion of forested areas is linked to
lower temperatures. Additionally, Marando et al. [54] emphasized that almost one-third
of functional European urban areas have tree cover below 16%, recommending rapid
implementation of green infrastructure to mitigate UHI effects.

Machine learning methods have shown remarkable potential to deal with nonlinear
correlation patterns that help us understand the relationship between urban features and
LST [55–57]. Consequently, they constitute a useful tool to describe the effect of vegetation
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on LST variation. According to the literature, the NDVI has been shown to have a negative
correlation with LST, while the NDBI exhibits a positive correlation with LST [58].

Considering the exposed advantages of green urban recovery, the goal is to de-
crease the high values of the NDBI linked to built-up areas, which are positively cor-
related with LST, by increasing greenness. This study aims to evaluate the benefits of
installing GRs in a semi-arid climate city like Granada, Spain, by predicting LST using
a machine learning method. Therefore, a non-parametric model such as Random Forest
(RF) is selected. The objective is to assess how these greening installations can enhance
resilience to rising temperatures affecting the quality of life for residents in Mediterranean
urban areas suffering from increasing UHI effects. The research will tackle the following
key questions:

• Which built-up LCZs are more impacted by higher LST in Granada?
• Is the city suitable for implementing GRs to minimize heat temperatures?
• What is the impact on LST of implementing extensive GRs?

2. Materials and Methods
2.1. Study Area

The city of Granada, located in the south of Spain (Figure 1), is classified as climate
type Csa according to the Köppen–Geiger climate classification, indicating a Mediterranean
zone with hot and dry summers and wet and cold winters [59]. The average temperature
fluctuates between 6.50 ◦C in January and 32 ◦C in July, with minimums in winter of
−3.0 ◦C and extremes in summer of 45 ◦C. Spain has experienced more frequent heatwave
occurrences, and Granada suffers more than two mean annual events [22]. Therefore, it is a
suitable choice for conducting this study. The study research area covered about 27.90 km2

(projection: ETRS89/UTM zone 30N—CRS 25830).

2.2. Methodology

To comprehend LST variation in urban areas during summer in Granada, the follow-
ing procedure was implemented. First, a Local Climate Zone (LCZ) map was obtained to
distinguish between different built and land cover types across the study area. This classifi-
cation has significantly contributed to the scientific community’s better understanding of
the urban climate [60].

Second, 14 LST images were derived from Landsat 8–9 for the summer months of July
and August in the years 2022, 2023, and 2024, while 14 urban parameters—the NDVI, PV,
NDBI, and Normalized Difference Water Index (NDWI)—were calculated from Sentinel-2.

Third, a Normalized Digital Surface Model (nDSM) was generated from LiDAR points
to locate potential areas for GR retrofitting. Other key parameters, including the SVF and
WD, were obtained to improve LST estimation.

Finally, a Random Forest algorithm was employed to assess the relationship between
LST and all the parameters. Subsequently, NDVI, NDBI, and PV values were altered in
potential areas for GRs. The main objective is to assess the temperature reduction by
predicting LST using GRs after identifying available areas to retrofit GRs as a solution. The
methodology is summarized in Figure 2.
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Figure 1. Map of Granada, Spain.

2.3. Map and LCZ Classification

The Local Climate Zone (LCZ) classification was originally proposed by authors
Steward and Oke in 2012 [61]. Since then, the mapping methods developed have been
based on remote sensing, GISs, and combined techniques. The LCZ classification has
gained extraordinary growth due to the use of the LCZ Generator Tool. This platform uses
a Random Forest algorithm for LCZ classification and has continuously implemented a
variety of deep learning models since 2017 [60].

Our purpose is to study the possible thermal characteristics among different LCZ
types. Previous studies have successfully employed LCZ classification to assess urban
thermal environments, yielding notable results [62,63].

We generated the LCZ map for Granada using the LCZ Generator [64]. It features
14 standard LCZ classes, explained in Figure 3. According to the LCZ Generator, the overall
accuracy value is 0.47, with a weighted accuracy of 0.86.
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Figure 2. Methodology scheme. The Random Forest model is used to predict changes in land surface
temperature resulting from the implementation of green roofs, by modifying NDVI, NDBI, and PV.

The LCZ map for Granada is depicted in Figure 4. Notably, the urban areas primarily
consist of zone types, including LCZ-2 (compact midrise), LCZ-3 (compact low-rise), LCZ-
5 (open midrise), LCZ-6 (open low-rise), LCZ-8 (large low-rise), and LCZ-9 (sparsely
built), covering 71.70% of the total surface. Conversely, rural zones or land cover types
contain natural coverage types such as LCZ-A, B, C, D, and F, comprising 28.30%. Figure 5
illustrates the urban spatial percentage containing each LCZ within the study area. LCZs 2,
5, and D exhibit the largest extents, while LCZs E, 9, and F are the least extensive. In the
southeast region, mixed patterns between LCZ-A, B, C, and D are found. Meanwhile, LCZ-1
(compact high-rise) was not considered due to being under-represented or nonexistent in
the study area.

2.4. Landsat 8–9 LST Retrieval

A total of 14 Landsat 8–9 Collection-2 Level 2 science products (L2SP) [65] were
acquired to derive Surface Temperature data (Path 200 Row 034) for the summer months of
July and August in the years 2022, 2023, and 2024. The acquired images are categorized
as Tier 1 with cloud coverage lower than 15%. The LST images provide a 30 m spatial
resolution, correspond to daytime hours, at 10:49 AM, and were converted to degrees in
Celsius (◦C) for the analysis.

The LST values in Granada range from a minimum of 32.5 ◦C to a maximum of 62.2 ◦C,
with a mean value of 46 ◦C.
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Figure 3. Local Climate Zone types and definitions. Image adapted from Stewart and Oke [61].

Figure 4. Local Climate Zones for Granada, Spain. Source: LCZ Generator.
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Figure 5. The percentage of coverage of different Local Climate Zones (LCZ) in Granada.

2.5. Sentinel-2 Images and Spectral Indices Used

Sentinel-2 satellites provide images of the Earth’s surface, with resolutions ranging
from 10 to 60 m. For this research, 14 Level-2A products were selected based on dates that
were close to or the same as those of the Landsat image, all corresponding to daytime hours
at 10:56 AM. The spectral indices NDVI, NDBI, NDWI, and PV were calculated. Data was
obtained from a cloud cover index of less than 15% and a resolution of 10 m. The equations
for the different spectral indices determined using Sentinel-2 data are presented in Table 1.

Table 1. Derivation of spectral indices using Sentinel-2 imagery.

Index Equation Number Reference

NDVI NDVI = NIR−Red
NIR+Red (1) [19]

PV PV =
[

NDVI−NDVImin
NDVImax−NDVImin

]2 (2) [66]

NDBI NDBI = SWIR1−NIR
SWIR1+NIR (3) [67]

NDWI NDWI = Green−NIR
Green+NIR (4) [68]

The NDVI estimates the health and condition of vegetation, with values ranging from
−1 to 1, while the PV index represents the vegetation fraction. It estimates the proportion
of an area covered by vegetation, ranging from 0 (bare soil) to 1 (vegetation). In Equation
(1), the NDVI is calculated using the optical bands of the near-infrared (NIR) and red bands
(Red). In Equation (2), the NDVI max and NDVI min are the maximum and minimum
values of the NDVI interval calculated using Equation (1).

The NDBI identifies and quantifies urbanized or built-up areas, with values ranging
from −1 to 1, consequently providing insight into urban expansion and city monitoring.
To calculate the NDBI, short-wave infrared (SWIR) and NIR bands are used, according
to Equation (3). Furthermore, the NDWI is calculated using Equation (4) to extract water
information, allowing the detection of water bodies. The results for each spectral index are
depicted in Figure 6. A summary of the dates from Sentinel-2 and Landsat 8–9 images for
this study is provided in the Table 2.
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(a) (b) 

(c) (d) 

(e) (f) 

 
(g) 

Figure 6. Raster visualizations of key surface parameters: (a) LST, (b) NDVI, (c) NDBI, (d) PV,
(e) NDWI, (f) WD, and (g) SVF.
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Table 2. Landsat surface temperature and Sentinel-2 image retrieval dates.

LST Landsat ID LST Date Sentinel ID Sentinel Date

1 LC09 11 July 2022 S2A 12 July 2022
2 LC08 19 July 2022 S2A 22 July 2022
3 LC09 27 July 2022 S2B 27 July 2022
4 LC08 4 August 2022 S2B 6 August 2022
5 LC09 28 August 2022 S2B 26 August 2022
6 LC09 30 July 2023 S2A 27 July 2023
7 LC08 7 August 2023 S2A 6 August 2023
8 LC08 23 August 2023 S2B 21 August 2023
9 LC08 8 July 2024 S2A 11 July 2024

10 LC09 16 July 2024 S2B 16 July 2024
11 LC09 1 August 2024 S2A 5 August 2024
12 LC08 9 August 2024 S2A 10 August 2024
13 LC09 17 August 2024 S2A 20 August 2024
14 LC08 25 August 2024 S2B 25 August 2024

LC09 = Landsat 9, LC08 = Landsat 8, S2A = Sentinel-2A, S2B = Sentinel-2B.

2.6. Estimation of Parameters Sky View Factor and Water Distance

The sky view factor (SVF) measures the ratio of radiation received or emitted by a
flat surface to that of the surrounding hemispherical environment, reflecting how much of
the sky is visible from that surface. It is a dimensionless parameter with values ranging
from 0 to 1, where values close to 0 represent limited sky visibility, while 1 represents
a completely visible sky. This parameter was obtained from the DSM and the UMEP
tool (version 4.1.1) [69] in QGIS; then, it was resampled to 30 m to coincide with LST
raster. Water distance (WD) was calculated using river shapefiles and comparing with
google earth photos to locate water bodies and set the target pixels to create a raster
proximity map.

2.7. Surface Temperature Mitigation

The hypothesis of this study is that green roofs (GRs) are effective in reducing land
surface temperature (LST). For descriptive analysis, surface temperatures of two different
roofs on the same building in Granada were obtained using a thermal imagery camera
(FLIR E8). One roof is a traditional roof located on the third floor, while the other roof,
located on the second floor, is covered with a GR over an area of approximately 380 m2.
Both roofs have the same orientation.

Thermal imagery provided evidence of surface temperature reductions on two differ-
ent roofs of the same building on 6 July 2023 and 1 July 2024. For example, the conventional
roof can easily reach values of 36 ◦C (Figure 7a). In contrast, the implementation of a
green roof results in significant temperature reductions in areas with scarce vegetation
and dense vegetation coverage, recording temperatures of 29 ◦C and 25 ◦C, respectively
(Figure 7b). This is consistent with previous studies that emphasize the importance of
maintaining dense vegetation coverage because plants have a higher albedo than the sub-
strate [12,48,70,71]. Our objective is to further investigate the effects of green roofs on the
city scale.
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(a) (b) 

  
(c) (d) 

Figure 7. Examples of thermal imagery. (a) Surface temperature of a conventional roof; (b) surface
temperature of a green roof; (c) mixed roofing surfaces; (d) comparison between areas with scarce
and dense vegetation.

2.8. Green Roof Areas Selection Criteria

For city planning, remote sensing is essential for defining urban structure types
and characterizing the morphology of cities [72]. LiDAR helps understand a city in 3D,
identifying buildings and vegetation height. In this sense, GR selection criteria for Granada
were obtained beginning with LiDAR point clouds from the Spanish National Orthophoto
Program (PNOA) with a density of 1.5 points/m2. Point data was processed using the
R package lidR (version 4.1.2) [73] and consequently generating a Digital Terrain Model
(DTM) and DSM, as depicted in Figure 8a,b. To obtain building heights, the DSM was
subtracted from the DTM, obtaining the nDSM as shown in Figure 8c [74]. For visualization
purposes, Figure 8 illustrates just a part of the study area, not the entire delimited zone.
Areas capable of implementing GRs are evaluated according to the following conditions:

• Firstly, the slope is obtained in QGIS from the nDSM raster.
• Secondly, only pixels with a slope below 15% are considered from the slope raster. This

threshold was chosen for practical reasons, such as stormwater management. Slope
is an important factor because lower slopes enhance the GR stormwater retention
and detention capacity [75,76], avoid drying out faster, and reduce erosion problems.
Additionally, lower slopes allow for the installation of photovoltaic panels, which
have gained popularity recently for their ability to provide combined benefits [77].

• Thirdly, these pixels were joined and converted to shapefiles. Areas smaller than
50 m2 were excluded, as they were deemed too small to have a significant impact. The
selected areas are depicted in Figure 8d and represent actual roof areas suitable for
roof greening.
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(a) (b) 

  
(c) (d) 

Figure 8. Digital elevation models. (a) Digital Terrain Model, (b) Digital Surface Model, (c) Normal-
ized Digital Surface Model, and (d) selected areas for green roofs shown in green. For visualization
purposes, only a portion of the study area is displayed.

2.9. Random Forest

Random Forest (RF) is a machine learning algorithm proposed by Breiman [78]. It is
capable of processing very large datasets [79]. It utilizes an ensemble of decision trees to
forecast a response variable by learning decision-making rules, making it a smart choice for
accurate predictions.

In this study, a RF regression model is implemented in R through the ranger package
(version 0.16.0) [80] to predict LST by using GRs. Since the LST Landsat image is a 30 m
resolution, aggregation was performed in QGIS of all parameters to coincide with the image.
LST is the dependent variable, while the NDVI, NDBI, PV, NDWI, WD, SVF, and LCZ are
considered the predictors or independent variables. For the RF model, the data is divided
into training, validation, and testing sets. Specifically, 60% of the 14 LST images are used for
training, 20% for validation, and 20% for testing. This results in 8 LST images allocated for
training, 3 images for validation, and 3 images for testing. Additionally, hyperparameter
tuning is evaluated based on the lowest root mean square error (RMSE) to perform the best
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combination of the number of trees (ntree) and the number of features randomly selected
at each split (mtry).

Furthermore, feature importance is computed to assess the influence of each feature
based on its predictive power, applying the permutation method [81] that evaluates how
much a model’s prediction error increases when a specific feature’s values are randomly
shuffled [82].

In addition to identifying feature importance, we also want to understand the way
these features influence model prediction on average—the feature effect. Accumulated
local effects, commonly referred to as ALEs, illustrate the marginal impact that one or
two features exert on the predicted LST on average. ALE plots are computationally efficient
and more robust against correlated features [83].

2.10. Error Metrics

Various error metrics are usually evaluated to determine goodness of fit in regression
models of supervised machine learning. In this study, widely used metrics, including the
RMSE, the mean absolute percentage error (MAPE), and the coefficient of determination
(R2), are employed. R2 is strongly suggested for model performance evaluation [84]. The
metrics are given by

R2 = 1 − ∑n
i=1(Xi − Yi)

2

∑n
i=1

(
Y − Yi

)2 (5)

RMSE =

√
1
n∑n.

i=1(Xi − Yi)
2 (6)

MAPE =
100
n ∑n

i=1

∣∣∣∣∣Y.
l
− Xi

Y.
l

∣∣∣∣∣ (7)

where Xi is the predicted value, Y.
l

is the observed value, and n is the total amount of data.
The RMSE and MAPE are performance metrics where the best value = 0 and the worst
value = +∞. R2 values vary from 0 = worst value and 1 = high precision.

2.11. Green Roofs Simulation Approach

We simulate the impact of green roofs after identifying suitable areas for retrofitting,
as outlined in Section 2.8. For this purpose, we modified the pixels of the NDVI, NDBI and
PV spectral indices at a resolution of 10 m and then resampled to 30 m. Our assumption is
that land cover is replaced with vegetation using extensive green roofs, characterized by a
substrate depth of <15 cm, resulting in conditions between medium and dense vegetation.
Values of the NDVI can range between 0.3 and 0.6 [68]. In addition, through analyses of
vegetation values in a park of the city (Figure A1), we determined that an NDVI value of
0.40 and an NDBI value of −0.15 should be assigned. Replacing values from Sentinel-2 was
preferred since Landsat 8–9 provides indices at a 30 m resolution cell size, which is bigger
than most of the available areas for GRs. Similar approaches were employed by A. Kafy
et al. and M. Y. Joshi et al. [85,86].

3. Results and Discussion
3.1. Green Roofs Potential Suitable Areas in Different LCZs

Identifying priority areas is required for effective planning, as discussed in Section 2.11.
This decision relates to the availability of each LCZ. By prioritizing these areas, we can
more effectively address UHI mitigation and enhance our urban environments.

Mean values of LST on different LCZs are summarized in Table 3. Built-up areas
(LCZ-2, 3, 4, 5, 6, and 8) present higher temperatures than natural landscapes (LCZ A
and B), demonstrating the impact of trees and green spaces in Granada. Furthermore,
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LCZ-6 exhibited lower temperatures than its similar zones, likely due to better ventilation
and a greater presence of plant cover [87]. In contrast, LCZ-8 exhibits high LST impact,
characterized by large industrial or commercial buildings, along with LCZ-3.

Table 3. Mean LST (◦ C) across different LCZs in Granada.

LCZ2 LCZ3 LCZ4 LCZ5 LCZ6 LCZ8 LCZ9 LCZA LCZB LCZC LCZD LCZE LCZF

45.9 47.1 45.8 46.1 44.9 49.8 43.4 41.5 42.8 46.3 45.7 48.7 49.4

Figure 9a illustrates the total area available for each LCZ in Granada. Notably, LCZ-
2 and LCZ-5 have the largest available areas, accounting for 40% and 45% of the total
38 hectares suitable, respectively. Each of these zones exceed 150,000 m2 (Figure 9b). In
contrast, LCZ-3, LCZ-4, LCZ-6, and LCZ-8 represent only 2% to 4% of the total area.
Unfortunately, LCZ-3 and LCZ-8 have little GRs area available.

 
  

(a) (b) 

Figure 9. (a) The total available area (in m2) within each Local Climate Zone in Granada, and
(b) overall distribution of green roof-suitable areas across the city.

3.2. Random Forest Regression Model Results

RF was performed with the obtained pixels from the 30 m grid, which were split
into training data = 8 images, validation data = 3 images, and testing data = 3 images.
Hyperparameter optimization was based on the lowest RMSE, resulting in mtry = 4 and
ntrees = 800 (Table A1).

The model exhibited very good results: R2 = 0.95 for training with an RMSE = 0.79 ◦C;
meanwhile, R2 = 0.69 for validation and RMSE = 1.83 ◦C.

Following model training, performance was evaluated using the testing data, which
included three unseen images reserved for this stage. Model performance for test data
exhibited an R2 = 0.68 and an RMSE value of 1.59 ◦C. Additionally, MAPE values remained
below 4%. Figure 10 shows the scatter plot for the model, with an ideal tendency in red.
The RMSE value is acceptable, given that its standard deviation, SD = 2.31, falls within the
range of SD = 1.12 RMSE–2.2 RMSE [88]. Metric errors are presented in Table 4.
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Figure 10. Scatterplot of observations vs. predictions for the testing set, which consists of three LST
images. The red dashed line is the ideal prediction.

Table 4. General error metrics for the training, validation, and testing stages of the Random
Forest model.

RMSE (◦C) MAPE (%) R2

Training 0.791 1.371 0.95
Validation 1.836 3.319 0.69

Testing 1.599 2.639 0.68

These results show that the model consistently performed well using all the features,
confirming its reliability in predicting new surface temperatures. The feature importance of
parameters is depicted in Figure 11. The NDVI feature has the highest importance, indicat-
ing vegetation strongly influences LST. WD and the SVF are also significant contributors,
while PV has a lower impact. Notably, the NDBI appears to perform weakly compared to
the NDVI in this scenario; one possible explanation might be that the NDVI is negatively
correlated with the NDBI [89]. However, we can evaluate this further with an interaction
ALE plot of two features.

Figure 11. The permutation feature importance for each parameter in predicting LST.

ALE plots enhance model interpretation and reveal nonlinear relationships among
features. In Granada, the differences in the NDVI (Figure 12a) reveal valuable nonlinear
variations in LST. At low values of NDVI (below 0), the LST starts to decrease a little,
perhaps because bare soil or mixed land cover types between urban and vegetation af-
fect temperature differently. Beyond 0–0.5, the NDVI shows an important decrease in
temperature, reaching a stable point at 0.5, with an average decrease of 4 ◦C.
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(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure 12. ALE plots for five influencing factors: (a) NDVI, (b) NDBI, (c) distance to water bodies,
(d) SVF, and (e) PV. LST is influenced nonlinearly by most factors, except the SVF, which has an
almost linear effect.

On the other hand, stronger variations are observed with changes in the NDBI, show-
ing nonlinear positive correlation with LST (Figure 12b). This is in agreement with studies
analyzing the behavior of key variables in relation to LST [58,89,90]. From values of −0.40
to 0, the NDBI increased by 2 ◦C and remained steady after 0. Distance to water bodies
presents a positive correlation with LST (Figure 12c), confirming its important benefit in
cities [91]. The SVF shows a positive almost linear association with LST and decreases
around 1 ◦C in close areas (Figure 12d). Other features like PV and the NDWI show little
interaction with LST and were omitted.

LST was influenced nonlinearly by most factors, including the NDVI, NDBI, WD, and
PV; however, the influence of the SVF on LST is almost linear.

We need to analyze the relationship between both indexes and determine whether
vegetation is a key factor. To achieve this, we explore their effect on LST using an ALE plot
of two features at once. Figure 13 illustrates those lower values of the NDBI, which are
associated with vegetation and water bodies, along with different values of the NDVI, cor-
related with lower LST. This suggests that vegetation plays a significant role in temperature
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regulation in Granada during summer months. Consequently, the model has learned that
vegetation presence contributes to decreasing LST.

Figure 13. ALE plot for LST and the interaction between the NDVI and NDBI.

3.3. Results on Temperature Mitigation Using Green Roofs

The results of the LST mitigation strategy using extensive GRs for suitable buildings
are depicted in Figure 14. For this purpose, testing data was employed to model LST
values with GRs by modifying the NDVI, NDBI, and PV, as explained in Section 2.11.
The pixels containing and surrounding the potential rooftop areas, a total of 2800 pixels,
were compared against predicted LST values. The model demonstrates a reduction in
temperature across most pixels. An average decrease of 1.45 ◦C is obtained.

After obtaining the results of the model with the modified pixels (incorporating GRs),
a small number of pixels (207) showed a slight increase in temperature. Since having an
increment of temperature when vegetation is incorporated is unrealistic [92–94], these
pixels were converted to zero.

3.4. Comparative Analysis and Discussion

Some studies have used machine learning algorithms to predict GR implementation.
A. Asadi et al. [74] used an artificial neural network (ANN) for a case study in Austin,
Texas. They reported an average decrease of 1.96 ◦C. In the same city, A. Kafy et al. [85]
followed a similar approach, obtaining an average LST decrease of 2.80 ◦F (1.55 ◦C) by
using higher resolution data. In two Belgian cities, M. Y. Joshi et al. [86] employed a RF
model, obtaining an average LST reduction of 0.67 ◦C by implementing intensive GRs. The
results of the previous studies show a moderate reduction in LST, which is similar to the
result obtained in the present research.

Numerous studies have used machine learning algorithms to explore the effects of
LST in cities [58,95,96]. For instance, D. Han et al. [95] used RF and boosted regression trees
to understand the nonlinear effects of 2D/3D urban landscapes on diurnal LST, concluding
that vegetation and building metrics are domain factors affecting LST during daytime. This
is in accordance with our results that emphasizes the importance of NDBI in LST.

In addition, some studies have employed different approaches to assess the impact
of green roofs; for example, ENVI-met, commonly used for urban climatology and build-
ing design purposes, helps explore the effects of green infrastructure at the microscale
level [52,97,98]. In this model, Susca et al. [99] modeled different scenarios and found that
in Rome, which is also categorized as having a Csa climate, the use of GRs alone as a UHI
mitigation strategy is negligible. This finding aligns with our results using RF, which also
indicates a moderate impact in Granada with a Csa climate.
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Figure 14. Temperature reduction achieved by green roofs. (a) Northern area of Granada. (b) City
center. (c) Downtown City center. (d) Southern area.
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3.5. Limitations and Recommendations

In the present study, it has been assumed that GRs could be installed on all selected
buildings; however, they must be separated and detailed for public and private buildings.
General interest has been raised due to the advantages of installing GRs, especially in public
buildings rather than private ones, due to high installation and maintenance costs [100,101].
Hence, increasing the area available for GRs might be even harder to accomplish.

In a Mediterranean context, the problem relies on future climate projections. Tuel and
Eltahir [2] discussed Climate Change’s impact on Mediterranean precipitation patterns
using various climatology datasets, suggesting a potential decline in rainfall. With the
increased frequency of drought seasons, there may be a greater risk of water scarcity [102];
it can be challenging to maintain dense vegetation coverage on GRs, which is an important
factor in reducing air and land surface temperatures. This was attested to with thermal
photography in a real GR, as described in Section 2.7. Granada requires urgent interventions
to combat elevated temperatures affecting building energy use and incrementing energy
demand [103]—for instance, changing materials to increase albedo, thereby reducing
temperature absorption, and urban planning at street level, such as planting trees to
increase shade [104–106].

4. Conclusions
In this research, we assess the impact of retrofitting green roofs (GRs) in a semi-arid

climate, aiming to reduce land surface temperature (LST) during daytime. A Random
Forest (RF) model was used to predict the LST impact, and remote sensing metrics were
included to obtain the inputs of the model. The analysis of feature importance indicated
that the NDVI, WD, SVF, and NDBI control predictions.

The results of this study provide more precise directions for future investigations
employing the Random Forest machine learning technique to capture the dynamics of LST
at city scale and to examine the importance of different urban features and their nonlinear
effects on LST. The originality of our research lies in building a robust and reliable model
for predicting LST, which was trained, validated, and tested using a large dataset.

This research evaluates the effect of GRs in a city with semi-arid climate in southern
Spain in the Mediterranean area. Furthermore, this model was not limited to specific urban
zones; instead, it was developed at an entire city scale where no studies have yet been
conducted, paving the way for a new understanding of LST dynamics and identifying
critical areas in any city using open-source data. Additional findings were as follows:

• The proposed model predicts an average LST reduction of 1.45 ◦C during the hot
months in summer, indicating that the potential of extensive green roofs in the city to
mitigate high LST is moderate.

• The selection process to identify areas suitable for retrofitting GRs with the help of
LiDAR points identified fewer suitable areas for green roofs than the total number of
existing roofs available. Three criteria were considered for selecting these areas: slopes
lower than 15% to enhance stormwater retention, lower slopes to prevent erosion
issues, and the exclusion of small areas that might not have significant influence,
leading to a more realistic assessment of potential retrofitting opportunities. Thus, the
effects of GRs alone might be neglectable to mitigate high LST.

• The results indicate different LSTs between built-up areas and landscape zones. How-
ever, the difference in temperature between urban built-up areas is small, suggesting
that all urban LCZs are equally a priority for greening.

• In Granada, LCZ-2 and 5 present more available areas suitable for retrofitting GRs,
while LCZ 8, with a high land surface temperature, does not have enough space
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for green roofs, requiring urgent intervention with different planning to lower
the temperature.

• Permutation feature importance highlights the crucial role of the NDVI in interacting
with LST. And the ALE plot shows the marginal correlation of the NDVI and LST to
be important.

• The model is able to predict not only extensive green roofs, but it could also be modified
for using intensive green roofs, characterized by higher and denser vegetation and
therefore higher NDVI values. Additionally, the model can simulate the placing of
larger green spaces such as parks and predict LST reduction.

Addressing the UHI effect in semi-arid cities is crucial, as it is worsening annually and
poses significant health risks to residents. This study suggests that multiple measures apart
from greening are necessary to combat UHI effects. The findings of this study can assist
urban planners developing more effective strategies to mitigate the UHI effect and enhance
thermal comfort in urban areas. Hopefully, this paper fills the gap of understanding
the role of introducing GRs as greening solutions that can mitigate the temperature in
semi-arid cities.
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Appendix A
Evaluating possible NDVI and NDBI values to replace and simulate green roofs.

 

NDVI NDBI
mean 0.59 -0.14
SD 0.06 0.04
min 0.38 -0.24
max 0.70 -0.03
range 0.32 0.20

Figure A1. Zonal statistics of the NDVI and NDBI in a park in Granada are analyzed, and potential
values from this park are also considered for modifying the NDVI and NDBI in order to estimate
green roofs.
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Hyperparameter mtry and ntree selection is shown in Table A1.

Table A1. Random Forest hyperparameter tuning for mtry and ntree. The combination with the
lowest RMSE is highlighted in yellow.

mtry ntree RMSE

3 400 1.841685

3 500 1.841322

3 400 1.841685

3 500 1.841322

3 600 1.841658

3 700 1.841122

3 800 1.840762

4 400 1.837626

4 500 1.837586

4 600 1.837157

4 700 1.837165
4 800 1.836764
5 400 1.841444

5 500 1.840638

5 600 1.840351

5 700 1.839835

5 800 1.839432

6 400 1.847772

6 500 1.846869

6 600 1.846509

6 700 1.845937

6 800 1.846129

7 400 1.856779

7 500 1.857391

7 600 1.857304

7 700 1.856979

7 800 1.856862
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