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Abstract: The use of UAVs for analyzing soil degradation processes, particularly erosion,
has become a crucial tool in environmental monitoring. However, the use of LiDAR (Light
Detection and Ranging) or TLS (Terrestrial Lasser Scanner) may not be affordable for
many researchers because of the elevated costs and difficulties for cloud processing to
present a valuable option for rapid landscape assessment following extreme events like
Mediterranean storms. This study focuses on the application of drone-based remote sensing
with only an RGB camera in geomorphological mapping. A key objective is the removal
of vegetation from imagery to enhance the analysis of erosion and sediment transport
dynamics. The research was carried out over a cereal cultivation plot in Málaga Province,
an area recently affected by high-intensity rainfalls exceeding 100 mm in a single day in the
past year, which triggered significant soil displacement. By processing UAV-derived data,
a Digital Elevation Model (DEM) was generated through geostatistical techniques, refining
the Digital Surface Model (DSM) to improve topographical change detection. The ability to
accurately remove vegetation from aerial imagery allows for a more precise assessment
of erosion patterns and sediment redistribution in geomorphological features with rapid
spatiotemporal changes.

Keywords: land management; drones; geomatics; digital surface model; digital elevation
model; interpolation techniques

1. Introduction
Unmanned aerial vehicles (UAVs) have revolutionized the assessment of Earth’s

surface and land processes within the fields of geomorphology and soil geography by
providing high-resolution spatial data [1,2]. This is particularly relevant for analyzing land-
scape dynamics and detecting or quantifying morphological features [3,4]. Their ability to
capture detailed topographic information through photogrammetry and remote sensing has
made them essential tools for studying soil erosion, sediment transport, and landform evo-
lution [5,6]. UAV-based surveys offer a cost-effective and flexible alternative to traditional
field measurements, enabling frequent monitoring of geomorphological changes over large
and inaccessible areas [7–9]. In particular, their application in detecting and quantifying
human-induced modifications, such as gullies formed by unsustainable land management,
has significantly improved our understanding of soil degradation processes [10,11]. By
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integrating UAV data with advanced geostatistical techniques, researchers can enhance
digital terrain modeling and assess the impacts of both natural and anthropogenic forces
on landscape transformation [12,13].

In the field of geospatial analysis, the use of UAVs has significantly expanded research
possibilities, particularly when satellite imagery falls short of providing the desired spatial
and temporal resolution [14]. While satellite data offer broad coverage and long-term
monitoring capabilities, apart from images containing cloudy or rainy conditions, their
resolution is often insufficient for detecting fine-scale geomorphological changes, especially
when centimeter-level precision is required. UAV-based remote sensing fills this gap by
allowing researchers to acquire high-resolution, on-demand data tailored to specific study
needs [15,16]. However, the scientific literature does not advocate for prioritizing one
approach over the other; instead, it emphasizes the integration of both methodologies. By
combining the extensive temporal records of satellite imagery with the high spatial accu-
racy of UAV surveys, researchers can achieve more precise and comprehensive analyses,
enhancing the reliability of geospatial assessments in soil and landscape studies [17,18].

However, a clear limitation can exist for researchers and institutions in developing
countries, where such investments can represent a more significant financial barrier: the
economic costs and logistical challenges associated with UAV operations, particularly when
adverse weather conditions pose risks to flight missions [19,20]. Conducting drone surveys
near extreme weather events, such as heavy storms, can be difficult due to strong winds,
precipitation, and low visibility, which may compromise both data quality and equip-
ment safety. Unlike satellite imagery, which provides continuous monitoring regardless
of weather conditions, UAV flights require careful planning and favorable atmospheric
conditions to ensure successful data acquisition [21,22]. These constraints highlight the
need for a balanced approach, where satellite data and UAV surveys are integrated strate-
gically to maximize their respective advantages while mitigating operational limitations.
While the cost of UAV equipment for photogrammetry has decreased significantly com-
pared to traditional geomatics instruments, the investment in professional-grade systems
equipped with RTK or PPK technology, along with specialized processing software, can
still pose a considerable financial challenge for some researchers and institutions, partic-
ularly in the context of rapid deployment or budget-limited projects. When detecting
geomorphological processes, drones equipped with LiDAR sensors are the most effective
yet expensive option [23–25]. LiDAR technology enables the generation of high-precision
Digital Elevation Models (DEMs), allowing researchers to analyze terrain changes without
vegetation interference, making it ideal for quantifying modifications in rills, gullies, and
landslides [26–28].

In contrast, drones equipped with RGB cameras, while more affordable, generate
Digital Surface Models (DSMs) that include the height of vegetation, limiting their ability
to accurately assess topographic changes in areas with dense shrub and tree cover [29].
This technological trade-off underscores the importance of selecting the appropriate UAV
system based on research objectives and budget constraints [30,31]. We agree that significant
advancements have been made, and numerous software and algorithms exist for filtering
high vegetation in point clouds derived from both LiDAR and photogrammetry. However,
while sophisticated filtering algorithms exist, their effectiveness can vary significantly
depending on the characteristics of the vegetation, the terrain, and the specific environment
of the study area. Furthermore, the “black-box” nature of some commercial software can
make it difficult to understand and optimize the filtering process for diverse and complex
landscapes. Although some powerful algorithms can be useful in many scenarios, they
may not always be universally tested or optimized for the specific types of low-lying or
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dense vegetation encountered, especially in Mediterranean agricultural landscapes affected
by extreme rainfall events.

Therefore, in this study, we propose a methodology to remove vegetation cover from
UAV imagery using filtering, interpolation, and smoothing techniques applied to a DSM
to derive a DEM with an RGB camera. A key objective is the removal of vegetation from
imagery to enhance the analysis of erosion and sediment transport dynamics. This is
especially crucial when access to LiDAR data, remote sensing data, or public information
is restricted, or when a researcher seeks to present a valuable option for rapid landscape
assessment following extreme events like Mediterranean storms (DANAs). To achieve
this objective, a UAV equipped with an RGB camera was deployed over a large gully
in the Mediterranean region, surrounded by cereal croplands. The collected data were
processed to generate an orthomosaic and a DSM, which were then refined to extract a
DEM, allowing for a more accurate analysis of terrain changes. Finally, the proposed
methodological approach was tested, demonstrating its potential as an alternative to more
costly LiDAR-based techniques for geomorphological assessments.

The main contributions of this study are (i) the development of a practical methodology
to derive a Digital Elevation Model (DEM) from a UAV-based Digital Surface Model (DSM)
using an RGB camera without the need for LiDAR; (ii) the application of morphological
filtering, vegetation removal, and interpolation techniques to enhance terrain accuracy in
vegetated areas; and (iii) the validation of interpolation methods, highlighting the most
accurate approach in this context.

2. Materials and Methods
2.1. Study Area

The study area is in the municipality of Casabermeja, Málaga province, southern Spain.
It sits between two major geomorphological units: the Montes de Málaga, which has highly
metamorphosed materials, and the Subbetic Arc, mainly made up of calcareous rocks [32].
The specific study site is within a flysch formation composed of sandstones, marls, and
expansive clays located between these two units. This geomorphological setting, extending
from the Campo de Gibraltar, is susceptible to various erosion and mass movement pro-
cesses. These include piping, landslides, solifluction flows, and waterlogging after intense
rainfall [33,34]. The dominant soil types are vertisols and cambisols, supporting a landscape
primarily used for cereal cultivation, olive groves, and almond orchards, alongside other
agricultural activities [35]. Due to the high proportion of expansive clays, any infrastructure
development, like roads, industrial areas, and residential zones, must account for potential
geotechnical challenges related to soil instability and water-induced deformation [36].

The Guadalmedina River is the main waterway in the study area. It flows through
the calcareous arc and the flysch formation before carving deep valleys with steep slopes
as it crosses the Montes de Málaga unit, eventually reaching the city of Málaga [37]. The
region experiences a Mediterranean climate, with annual precipitation ranging between
500 and 700 mm, typically concentrated in intense rainfall events during autumn and
winter. Average temperatures exceed 17 ◦C [38]. These climatic conditions, coupled with
the geological and geomorphological setting, contribute to prevalent erosive processes
and soil degradation, especially during extreme weather events [39]. The gully selected
for this methodology is located in a cereal field within the municipality of Casabermeja.
Its formation is partly influenced by human activities, including intensive land use and
infrastructure development. The presence of a road, two pathways, slope modifications for
access, and an industrial zone within its drainage basin has contributed to soil destabiliza-
tion and erosion (Figure 1). Its vulnerability is heightened by its location on vertisols, which
are highly prone to expansion and contraction, further exacerbating the gully’s progression.
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Figure 1. Landscape overview (left) and flight planification using DJI GS Pro (right).

2.2. Drone Characteristics and Flight Planification

We used a DJI Mavic 2 Enterprise Zoom for this study. Its optical zoom capability was
useful for identifying detailed features. The DJI Mavic 2 Enterprise Zoom is a professional
UAV weighing 905 g, with a maximum flight time of 31 min. It can reach speeds of up to
72 km/h, operate at altitudes up to 6000 m, and withstand winds up to 38 km/h. Its camera
features a 2× optical zoom, 3× digital zoom, 4 K video at 30 fps, and a 1/2.3” 12 MP CMOS
sensor, ensuring high-quality imaging. Its compact, foldable design enhances portability
and efficiency to assess land degradation processes after extreme events. The flight was
conducted on 4 October 2024, using the DJI GS Pro software (v2.0.17), which lasted 36 min
and 55 s and captured a total of 840 photographs (Figure 2). This software streamlines
DJI drone operations through automated flight missions, cloud-based data management,
and collaborative project features, enabling efficient planning, data handling, and team
collaboration for diverse drone applications.

Figure 2. Orthomosaic (left) and Digital Surface Model (right).
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Previously, we incorporated 24 ground control points (GCPs) for accurate georeferenc-
ing using a Reach RS+ receiver (EMLID), an RTK GNSS single-band device. Although a
single-frequency system, differential corrections from the Spanish National Geographic In-
stitute (IGN) were applied through post-processing. This significantly improved positional
accuracy, reducing the error to the centimeter level. The availability of high-quality RINEX
data from IGN’s permanent reference stations allowed for precise georeferencing despite
the inherent hardware limitations of single-band systems. Finally, Pix4D software (Version
1.78.0.) was used to adjust the digital model and orthophoto. Our flight operation involved
the use of 3 batteries with a front overlap ratio set at 80%, a side overlap ratio of 70%, and a
course angle of 103º. A total of 83 waypoints were executed across 36 lines, with a flight
length of 9477 m, covering an area of 9.83 hectares. The shooting angle was perpendicular
to the course, with capture mode at an equal distance, a speed of 5.1 m/s, and a shutter
interval of 2 s, at an altitude of 35 m, resulting in a resolution of 1.3 cm/pixel.

2.3. Generation of Digital Surface Model (DSM) and Orthomosaic

We processed the image data captured during the flights using Pix4Dmapper soft-
ware, a high-precision digital photogrammetry suite. First, we created a new project in
Pix4Dmapper, importing all georeferenced images and ground control points (GCPs). This
initial step set up the processing framework, including defining the coordinate system
(WGS84 and EPGS 25380) and configuring project parameters. Next, the first processing
stage involved key point extraction and image matching. This process identified common
features in overlapping images, performed camera calibration, and conducted initial geo-
referencing, resulting in a sparse point cloud and camera positions. Reviewing the quality
report generated after this stage was crucial to ensure the accuracy of image matching. The
second stage focused on generating a dense point cloud and a 3D mesh. Here, advanced
algorithms densified the point cloud, creating a detailed three-dimensional representation
of the study area. Subsequently, a 3D mesh was generated by connecting these dense points,
forming a continuous surface.

The third and final processing stage involved generating the Digital Surface Model
(DSM) and the orthomosaic with a resolution of 1.3 cm. The DSM was created as a raster
representing the surface elevation, while the orthomosaic was generated as a georeferenced
and orthorectified image, free from geometric distortions. Both products underwent a
thorough quality review using Pix4Dmapper’s editing tools to correct any errors or artifacts.
Finally, the DSM and the orthomosaic were exported in GeoTIFF formats for further analysis
in QGIS software (v. 3.42.3), enabling the extraction of detailed and accurate topographic
information (Figure 2).

To enhance the georeferencing accuracy of our drone imagery, we used a rigorous
alignment process. This involved utilizing recent, high-resolution aerial orthophotographs
provided by the Spanish National Aerial Orthophotography Plan (PNOA) of the National
Geographic Institute (IGN) along with our GCPs. These up-to-date PNOA orthomosaics
served as a reliable and authoritative reference dataset, spatially adjusting our UAV-derived
data and ensuring a higher level of geometric precision than achievable with unreferenced
drone imagery alone.

2.4. Designing Specific Steps for Smoothing and Vegetation Filter

A step-by-step workflow and key parameters are provided in Figure 3 to support
reproducibility. To remove vegetation from the DSM and generate a DEM, the process
began with a smoothing step to reduce the influence of high-altitude values. This was
achieved using the “Morphological filter” tool from the SAGA plugin in QGIS [40]. The
selected method, “Opening,” applies two operations to each pixel within a defined neigh-
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borhood: first, “Erosion” assigns the minimum value found in the neighborhood, which
reduces the prominence of small structures such as vegetation or buildings; then, “Dilation”
assigns the maximum value within the same neighborhood, restoring the general terrain
structure while suppressing sharp altitude variations. A smoothing radius of 50 pixels
was defined. As verified through visual inspection, this radius allowed us to reduce the
influence of vegetation without applying excessive smoothing that would remove too
many terrain features. The result of this process is what we define as a “preliminary DEM,”
as it reduces the impact of major vegetation features. However, additional steps were
necessary to obtain a more accurate DEM for subsequent analyses (Figure 3). Using the
preliminary DEM and the original DSM, we generated a Normalized Digital Surface Model
(nDSM) by subtracting the DEM from the DSM [41]. This nDSM effectively highlights the
tallest features, specifically the vegetation that was not fully smoothed out in the previous
step [42].

Figure 3. Workflow for converting a Digital Surface Model (DSM) to a Digital Elevation Model (DEM).

To obtain a more accurate, vegetation-free DEM, we then established a 1 m threshold
to classify altitude values as vegetation. This means pixels where the difference between
the DSM and the provisional DEM altitude values exceeded 1 m were considered vegeta-
tion and subsequently removed from the original DSM. This threshold was determined
empirically through a combination of nDSM histogram analysis and visual inspection. We
tested several thresholds (0.5 m, 1.0 m, 1.5 m), and 1 m proved the most effective. It offered
an optimal balance, being high enough to identify and remove residual vegetation with-
out affecting the underlying terrain, thus preserving natural landforms while eliminating
vegetation not previously filtered. This step effectively removed all remaining traces of
vegetation from the drone imagery.

2.5. Assessment of the Highest Statistical Significant Interpolation Methods

The final step in DEM generation involved filling the gaps left after vegetation removal
through interpolation [43]. Several interpolation methods commonly used in scientific stud-
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ies were tested in ArcGIS Pro, including Inverse Distance Weighting (IDW), different types
of Kriging (Simple Kriging, Ordinary Kriging, Universal Kriging, and Empirical Bayesian
Kriging), and Radial Basis Functions (Spline with Tension, Completely Regularized Spline,
Multiquadric, and Inverse Multiquadric). Once the gaps were filled using these different
methods, we evaluated their performance to determine the most suitable approach. For
this, we calculated the R2 and Root Mean Square Error (RMSE) for each method.

3. Results
3.1. Smoothing and Vegetation Filter

The provisional DEM resulting from the first smoothing step using the “Morphological
filter” (Figure 4a) involved a reduction in the maximum altitude compared to the original
DSM by 1.57 m (501.95 m for the DSM and 500.39 m for the provisional DEM) and the
mean altitude by 0.45 m (469.99 m for the DSM and 469.54 m for the provisional DEM).
In the visual result, the vegetation morphology that was visible in the original DSM is
no longer apparent, but artificial circular patterns resulting from the smoothing can be
identified. The subsequent nDSM (Figure 4b) accurately highlights the vegetation, which
can be clearly identified in the orthophoto (Figure 2), although some small areas without
vegetation are also highlighted. This calculation identified altitude differences between the
initial DSM and the provisional DEM of up to 16.65 m in some pixels, as shown in the map.
However, the average nDSM value is 0.44 m in altitude. The vegetation removal resulting
from the threshold selected from this nDSM (Figure 4c) led to a reduction of 1.23 ha of
terrain (12.5%). As shown in Figures 1 and 2, the filtering process effectively removed small
shrubs and riparian vegetation.

Figure 4. Smoothing and filter application procedures. (a) Result of the morphological filter; (b) Nor-
malized Digital Surface Model (nDSM); (c) result after vegetation removal.

After calculating the RMSE and R2 for all the interpolation methods applied to fill the
gaps left by the removed vegetation (Table 1), the method that resulted in the lowest RMSE
and highest R2 values was Empirical Bayesian Kriging (EBK). Then, various Radial Basis
Function methods, including IDW, with the other types of Kriging methods at the bottom.
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Table 1. RMSE and R2 values of the interpolation methods used.

Interpolation Method RMSE R2

Empirical Bayesian Kriging 0.037 0.999993
Radial Basis Functions: Multiquadric 0.038 0.999992
Radial Basis Functions: Completely
Regularized Spline 0.043 0.999990

Radial Basis Functions: Spline With Tension 0.045 0.999989
Inverse Distance Weighting 0.052 0.999986
Radial Basis Functions: Inverse
Multiquadric 0.060 0.999981

Ordinary Kriging 0.067 0.999977
Universal Kriging 0.067 0.999977
Simple Kriging 0.11 0.999940

3.2. Interpolation Methods

Regarding the visual result of the final DEM compared to the initial DSM (Figure 5),
the absence of the vegetation morphology is noticeable, and compared to the DEM resulting
from the morphological filter (Figure 4), there is a much less artificial surface across the
study area, leading to a more accurate representation of the ground surface. In terms of
statistical differences between the two models (Table 2), the reduction in both the mean
and maximum altitudes stands out, specifically by 0.25 and 0.45 m (the latter value also
corresponds to the reduction in range). Compared to the difference between the original
DSM and the provisional DEM resulting from the morphological filter, the difference in
mean altitudes is the same, but the difference in maximum altitudes is much smaller in the
case of the final DEM. It is also noteworthy that the standard deviation in the final DEM
has increased compared to the initial DSM.

Figure 5. Visual comparison between the original DSM (left) and the final DEM (right).
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Table 2. Statistical comparison between the original DSM and the final DEM.

Statistics Original DSM Final DEM

Minimum (m) 410.15 410.15
Maximum (m) 501.95 501.50
Mean (m) 469.99 469.74
Range (m) 91.81 91.36
Standard deviation (m) 25.44 25.77

Analyzing the differences between the distributions of the original DSM and the final
DEM (Figure 6a), we can observe that lower altitude values are more frequent in the final
DEM, and the opposite is true for higher values, which are more frequent in the original DSM,
due to the absence of vegetation in the DEM. The frequency of intermediate values is similar
in both. Regarding the scatter plots, in the first one, where the altitude values of the DSM and
the DEM are differentiated by color (Figure 6b), the greater differences we observed in their
distributions stand out, corresponding to a higher number of lower values in the DEM. In the
second scatter plot, where the cases where DSM values are higher than the DEM values and
vice versa are differentiated by color (Figure 6c), what stands out most is the higher frequency
of cases where the DSM altitude is higher than the DEM, which is logical due to the removal
of vegetation, which corresponded to a higher altitude, especially in the higher values, where
the superiority of the DEM values over the DSM is very rare.

Figure 6. Statistical comparison of DSM (Digital Surface Model) and DEM (Digital Elevation Model).
(a) Histogram of DSM and DEM; (b) scatter plot for identifying DSM and DEM values; (c) scatter plot
showing the relationship between DSM and DEM values.
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Once we had established the methodology to apply it to other flights, we generated
preliminary terrain maps using the DEM from this flight (Figure 7). These maps highlight
various terrain features of the study area, which will be analyzed in greater depth in
subsequent studies, in which we aim to assess temporal changes in the terrain by comparing
two key moments: pre-DANA (represented in the current maps) and post-DANA. The
DANA refers to a meteorological phenomenon characterized by extreme rainfall events
that affected several regions of Spain. These maps and analyses will be used to explore
the impact of DANA on the study area, focusing on the terrain changes before and after
the event.

 

Figure 7. Geomorphological maps generated using SAGA software (v. 9).

4. Discussion
This paper aimed to address the limitations in geomorphological mapping when

access to LiDAR, public, or remote sensing data is restricted. It offers a viable methodology
to achieve a minimum quality standard under such constraints. Furthermore, it seeks to
present a valuable option for rapid landscape assessment following extreme events like
Mediterranean storms, thereby demonstrating a practical approach for timely environmen-
tal monitoring in critical situations. The methodology presented in this study successfully
converted a Digital Surface Model (DSM) to a Digital Elevation Model (DEM) using an
RGB camera. This was achieved by employing a combination of morphological filtering,
threshold-based vegetation removal, and interpolation. Visual inspection of the final DEM
confirmed the effective removal of vegetation features and demonstrated that the smooth-
ing process did not excessively generalize the terrain. Furthermore, the statistical analysis
of the interpolation methods, particularly Empirical Bayesian Kriging (EBK), revealed high
accuracy with a low Root Mean Square Error (RMSE) of 0.037 and a high R2 of 0.999993.
This indicates a robust and reliable conversion process.

The integration of drone technology and advanced computational image analysis has
revolutionized geomorphological studies, offering unprecedented benefits [44]. Drones
enable the rapid acquisition of high-resolution spatial data, capturing detailed topographic
features that were previously inaccessible or time-consuming to survey. Coupled with
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sophisticated image processing algorithms, such as those used for DEM generation, these
data facilitate precise mapping and analysis of landforms [45]. Computational advance-
ments allow for the efficient handling of large datasets, enabling the extraction of subtle
geomorphological features and the creation of accurate 3D models [46]. This synergy
enhances our ability to monitor dynamic processes like erosion, landslides, and fluvial
changes, providing valuable insights for hazard assessment, resource management, and
understanding of Earth’s surface evolution [47].

We acknowledge that our approach of filtering vegetation solely within the DEM
might present certain limitations. While we aimed to explore the feasibility and potential of
this specific approach for efficient vegetation removal in certain contexts, we recognize that
it may not be suitable for all applications and could introduce inaccuracies that would be
better addressed by incorporating point cloud information. Some weaknesses and potential
areas for improvement were identified. Firstly, the threshold of 1 m used for vegetation re-
moval inadvertently eliminated some higher-altitude terrain features devoid of vegetation.
This highlights a potential limitation of relying solely on a fixed threshold, as it may lead
to over-homogenization of the terrain and the loss of critical topographic details, despite
the high resolution of the drone imagery. This underscores the challenge of balancing
vegetation removal with the preservation of essential terrain characteristics. Secondly, the
increase in the standard deviation in the final DEM compared to the original DSM was
unexpected. Intuitively, removing higher altitude values associated with vegetation should
have resulted in a decrease in standard deviation. The observed increase suggests that the
interpolation process and the removal of certain data points may have introduced greater
variability in the remaining terrain surface. Further investigation into the spatial distribu-
tion of these variations is warranted to fully understand this phenomenon, which has been
debated for many years [48,49]. Thirdly, the methodology involved a significant amount
of manual parameter tuning, which can be time-consuming and subjective. The reliance
on visual inspection and iterative adjustments makes the process potentially lengthy and
prone to variability depending on the operator. This suggests a need for more automated
or adaptive methods to streamline the workflow and reduce subjectivity [50,51].

The visual assessment confirmed the effective removal of vegetation without excessive
smoothing, maintaining a realistic representation of the terrain. Statistically, the inter-
polation results were accurate, particularly with EBK and the Multiquadric Radial Basis
Function method, which showed minimal differences in performance. The generalizability
of this methodology to other study areas by adjusting parameters is also a significant
advantage. To further enhance the accuracy and reliability of the final DEM, several im-
provements can be considered. Most importantly, validating the DEM with field-collected
data would provide a crucial assessment of its accuracy [52,53]. This validation could
involve comparing the DEM elevations with under-vegetation ground control points or
LiDAR data. Additionally, exploring adaptive thresholding techniques or machine learning
algorithms for vegetation classification could potentially reduce the over-homogenization
of the terrain [54,55]. Developing more automated parameter optimization methods could
also significantly streamline the workflow and reduce subjectivity.

Compared to existing approaches, the proposed methodology offers several notable
advantages: it enables the generation of accurate DEMs in vegetated areas without the
need for LiDAR sensors, significantly reducing costs and simplifying logistics for first
approaches. Despite relying solely on RGB imagery, the method achieved high accuracy,
with a very low RMSE and a high R2, particularly using Empirical Bayesian Kriging inter-
polation. Furthermore, the approach is adaptable to other study areas through parameter
adjustment, making it versatile and reproducible. Although it currently involves some man-
ual parameter tuning, the workflow lays the groundwork for future improvements based
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on automation or machine learning algorithms, enhancing its potential for cost-effective,
high-resolution geomorphological studies.

5. Conclusions
This study demonstrated a methodology for converting a DSM to a DEM using a

combination of morphological filtering, threshold-based vegetation removal, and interpola-
tion from an RGB camera, and without ground control points. The final DEM effectively
removed vegetation features while maintaining a realistic representation of the terrain,
as confirmed by visual inspection. The statistical analysis of the interpolation methods
highlighted the high accuracy of the Empirical Bayesian Kriging (EBK) method, which
yielded the lowest RMSE and highest R2 values. However, the study also revealed some
limitations. The use of a fixed threshold for vegetation removal led to the unintentional
removal of some non-vegetated terrain features, highlighting the challenge of balancing
vegetation removal with terrain preservation. Additionally, the increase in standard devia-
tion in the final DEM compared to the original DSM was unexpected and warrants further
investigation. The manual parameter tuning involved in the methodology also presents a
potential source of subjectivity and time consumption.

Despite these limitations, the methodology offers a valuable approach to DEM genera-
tion, particularly in areas with dense vegetation. The high accuracy of the interpolation
results and the generalizability of the methodology to other study areas are significant
strengths. Future improvements, such as the incorporation of field validation data and the
development of more automated parameter optimization methods, could further enhance
the accuracy and efficiency of the DEM generation process. The integration of drone technol-
ogy and advanced computational image analysis holds great promise for geomorphological
studies, enabling the efficient and accurate mapping and analysis of landforms.
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