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Abstract: This research aimed to co-produce CQDs and hydrochar from natural sources to
improve the photocatalytic properties of TiO2. Juice extract from Citrus lemon fruits from
south-eastern Spain was used as the carbon precursor. The synthesis strategy of the CQDs
and hydrochar (Hc) was divided into different stages aimed at figuring out the role of the
temperature (180, 220, 250 ◦C), the addition of TiO2 nanoparticles, and the presence of
N-/P-donor compounds (ethylenediamine and orto-phosphoric acid) in the photocatalytic
properties of final composites. The results revealed that at 250 ◦C, using agro-carbon
materials as Hc, and the addition of N-donor compounds, improved the photocatalytic
activity and photodegradation rate of TiO2 over methyl orange (MO) under blue light by
1000% and 2700%, respectively, with the parallel reduction of TiO2 bandgap from 3.5 eV (Uv
light) to 3.00 eV (visible light). These results are related to the ability of the carbon materials
(electronegative) to enhance the formation of a Ti3+-active state. This study provides a
landscape for a one-step method for the production of agro-carbon/TiO2 photocatalysts
with high activity under visible light as an efficient and sustainable strategy for applications
such as energy generation and water purification under sunlight.

Keywords: hydrochar; CQDs; agro-waste; TiO2; photocatalysis; visible light

1. Introduction
Water contamination is one of the most hazardous environmental problems in the

world and poses many risks to human life and the environment. Organic dyes are consid-
ered unsafe contaminants owing to their low degree of biodegradability and high toxicity.
Therefore, they are considered to be among the most pernicious wastewaters [1]. Photocatal-
ysis is widely used in decontamination processes because it uses ultraviolet (UV) or visible
(VIS) light and a catalyst to accelerate chemical reactions that break down pollutants [2].
The mechanism is based on the ability of certain materials, called photocatalysts, to acti-
vate a chemical reaction. When the photocatalyst is exposed to light, photons of the light
(usually ultraviolet) excite electrons in the material, raising them to a higher energy state.
This leaves vacancies in the lower energy levels of the material, known as “holes”. The
excited electrons and holes generated in the photocatalyst can interact with water or oxygen
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molecules present in the environment, resulting in the formation of reactive oxygen species
(ROS) such as hydroxyl radicals (OH•) and hydrogen peroxide (H2O2) and free electrons
that attack contaminants (organic or inorganic), breaking them down into simpler and less
toxic compounds, such as carbon dioxide (CO2) and water (H2O) [3]. Titanium dioxide
(TiO2) is one of the most studied photocatalysts because of its good photoelectronic prop-
erties, high stability, low cost, and non-toxicity. However, it has technical disadvantages
such as limited efficiency in visible light, high rate of internal electron–hole recombination
reduced ROS generation capacity, poor performance under real environmental conditions,
problems with dispersion in liquid systems, photo-corrosion and deactivation over time,
costs, and difficulties in the preparation of modified TiO2 materials [4]. Carbon quantum
dots (CQDs), on the other hand, are a type of carbon nanomaterial with exceptional op-
toelectronic properties, due to the sp2 hybridization of their carbons, their amorphous
or crystalline core, and their graphite lattice spacing [5]. CQDs have been reported as
exceptional optoelectronic nanomaterials owing to their visible-light harvesting capabil-
ities, tunable photoluminescence (PL), up-conversion photoluminescence and efficient
transfer of photo-excited electrons [6]. They also have oxygenic functional groups (5–50%
by weight) on their surface, which gives them water dispersibility and the possibility of
functionalization. Depending on the synthesis methods used, the surface groups can be
modified to further tune the PL by introducing an electron donor and/or acceptor. These
conditions have allowed some researchers to focus on the photocatalytic capacity of CQDs,
especially in the VIS and near-UV regions, overcoming the limitations of TiO2 [7]. Addition-
ally, they can be produced from byproducts of the agroindustry, contributing to the concept
of green chemistry [8]. Najjar et al. [9] synthesized CQDs from Cordia Myxa L. powder
using a hydrothermal method at 180 ◦C for 4 h. The photocatalytic activity of the CQDs
was evaluated during the degradation of Eriochrome Black T (EBT) dye under near-UV
irradiation. The results revealed up to 100% EBT degradation in 40 min. A study conducted
by Abd Rani et al. [10] employed biomass fruit bunches (FBs) and urea for the elaboration
of nitrogen-doped carbon quantum dots (N-CQDs) by hydrothermal treatment at 180 ◦C
for 8 h. Dye solutions in the presence of N-CQDs were exposed to UV near-irradiation at
302 nm, achieving 60–70% degradation between 10 and 30 min. Pemli et al. [11] synthesized
CQDs by a hydrothermal method at a mild temperature (120 ◦C) using watermelon rinds.
The authors evaluated the photocatalytic activity of the CQDs on the photodegradation
of methyl orange (MO) dye using a reactor equipped with a halogen lamp (500 W) and
VIS light (∼=420 nm). The results revealed degradation of up to 65% after 120 min. Many
researchers have demonstrated the photocatalytic benefits of the CQDs from agro-industrial
waste [8,12,13], and this research will also demonstrate such benefits. However, to the
best of our knowledge, though there is extensive literature on CQDs in photocatalysis,
few studies use byproducts obtained during the synthesis of CQDs which, by their nature,
can also present important physicochemical properties at a lower cost given their yield
(>90%) [14]. During the hydrothermal synthesis of CQDs, the byproducts generated can
vary depending on specific process conditions, such as temperature, reactant concentration,
and reaction time [15]. Some authors have reported the generation of hydrochar, an insol-
uble phase consisting of amorphous carbon or graphite [16,17], and formic, acetic, lactic,
and oxalic acids, dispersed in the water [18–20]. Owing to the carbonaceous nature of the
hydrochar, it can exhibit photocatalytic properties that need to be evaluated [21]. This
article explores the design of photocatalysts based on carbon structures obtained from the
hydrothermal synthesis and both hydrochar and CQDs, which, in combination with TiO2,
result in a viable strategy for photocatalysis under visible conditions. The combination
of carbon-based optoelectronic structures can significantly improve the efficiency of TiO2

photocatalysis because they can alter the electron movement during catalysis by improving
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light absorption, reducing electron–hole recombination between Ti-atoms, and facilitating
charge transfer, thus extending the photocatalytic activity to visible light.

2. Results and Discussion
To determine the amount of TiO2 chemisorbed on the hydrochar, thermogravimetric

analyses were performed, as shown in Figure 1a. Gravimetric profiles allowed us to
conclude that the TiO2 concentrations were 28.7%, 35.7%, and 41.2% for Hc-TiO2-180 ◦C,
Hc-TiO2-220 ◦C and Hc-TiO2-250 ◦C, respectively. The correlation between the synthesis
temperature and TiO2 content on Hc is explained by the greater reactivity of the functional
groups of the carbon (Hc)–metal (Ti) pair and better diffusion of TiO2 throughout the
hydrochar for the functionalization [22]. The results revealed an improvement in the
thermal stability of the hydrochar in the presence of TiO2, which can be explained by the
physical barrier properties offered by nanoparticles, as well as the ability to improve heat
distribution in the hydrochar (thermal conductivity), and the capacity to prevent oxidation
of organic structures at high temperatures [23,24]. Similarly, the dTGA curves (Figure 1b)
of the Hc materials showed two main peaks associated with the decomposition of volatile
matter at 200–400 ◦C and the oxidation of the carbonaceous structure at (400–550 ◦C) [23].
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Figure 1. (a) Thermogravimetric analyses (TGA) and (b) derivative thermogravimetric curves (dTGA)
for hydrochar and hydrochar–TiO2 composites synthetized at different temperatures. The curves
were performed in triplicate (n = 3), and in no case did the statistical errors exceed 5%. The average
measurement curve is reported.

The results revealed that the increase in the hydrothermal synthesis temperature
reduced the VM content in the Hc structure and increased the thermal stability of the
carbonaceous material, as reported by other authors [24]. In the presence of TiO2 nanopar-
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ticles, the reduction in the VM content in Hc was more pronounced by the formation of the
carbon (Hc)–metal (Ti) pair.

The Hc-TiO2 microstructure was evaluated using FE-SEM. Figure 2a shows spherical
assemblies of micrometric order (>1 µm) corresponding to the primary particles of the
hydrochar control (Hc). However, the Hc-TiO2 composites in Figure 2b–d show both
primary particles of Hc, as well as agglomerates of smaller structures associated with TiO2.
Other authors have reported this type of arrangement for carbon–TiO2 systems [25,26].

 

 

(a) (b) 

  
(c) (d) 

Figure 2. Field emission scanning electron microscopy (FE-SEM) images for (a) HC, (b) Hc-TiO2-180 ◦C,
(c) Hc-TiO2-220 ◦C, and (d) Hc-TiO2-250 ◦C. Magnification: 5.00 K.

Figure 3 shows the X-ray diffractograms of the TiO2 and Hc-TiO2 composites. The
hc-based samples did not exhibit characteristic peaks related to the graphite phase content,
supporting the idea of amorphous carbon in this type of waste. However, all Hc-TiO2 com-
posites showed the characteristic peaks of the anatase; in particular, characteristic profiles
of the rutile phase were observed, which suggests that the synthesis conditions caused
a transformation towards this phase associated with the improvement of the catalytic
performance of the materials [27].

The average crystal size (D) of the system was determined using the Debye–Scherrer
equation [28], and the results are shown in Table 1. The D value decreased by up to 10%
when TiO2 was chemisorbed onto the carbonaceous structures. The decrease in the size of
TiO2 could be due to the surface reduction of titania during the hydrothermal treatment.
The generation of oxygen vacancies as the temperature increases generates an amorphous
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surface that causes a reduction in the size of TiO2 crystals. Other authors have also reported
this phenomenon [29].
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Figure 3. XRD pattern of (a) TiO2, (b) Hc-TiO2-180 ◦C, (c) Hc-TiO2-220 ◦C, and (d) Hc-TiO2-250 ◦C.
The curves were calculated in triplicate (n = 3), and in no case did the statistical errors exceed 5%.
The average measurement curve is reported.

Table 1. Average crystal size (from XRD) of TiO2, Hc-TiO2-180 ◦C, Hc-TiO2-220 ◦C, and Hc-TiO2-250 ◦C
photocatalysts.

Photocatalysts D (nm)

TiO2 20.7
Hc-TiO2-180 ◦C 20.1
Hc-TiO2-220 ◦C 18.7
Hc-TiO2-250 ◦C 18.7

The absorption spectra of the TiO2 and Hc-TiO2 samples are shown in Figure 4a.
The Hc-TiO2 samples exhibited absorption edges around 550 nm rather than the TiO2

nanoparticles (<400 nm). Hence, the as-prepared composites were photoactive in the
visible-light region, suggesting a clear improvement in the optical properties compared
to the raw TiO2 nanoparticles. Figure 4b shows the (F(R)hυ)2 vs. hυ graph used to
estimate the bandgap (BG) of the samples. The BG is the intersection of the extension
of the linear portion of the curves with the x-axis. The results for TiO2, Hc-TiO2-180 ◦C,
Hc-TiO2-220 ◦C, Hc-TiO2-250 ◦C, and Hc-TiO2-250 ◦C-1%N were 3.50, 3.43, 3.48, 3.35,
and 3.00 eV, respectively. The Hc-TiO2 bandgap was lower than the of pure TiO2 owing
to the interaction between the carbon and Ti-phases during carbonization. TiO2 is an
intrinsic n-type semiconductor with a bandgap of approximately 3.2 eV. However, the
higher density of the reduced Ti3+ state (more catalytic), as observed in the XPS analysis,
may be responsible for the narrowing of the bandgap. This reduced form of Ti is associated
with thermal synthesis in the presence of Hc as an electron acceptor [29].

Visible light on the solar spectrum has a wavelength between 400 nm and 700 nm;
this corresponds to photon energies of approximately 1.77 eV to 3.26 eV, indicating that
a system like Hc-TiO2-250 ◦C-1%N (3.00 eV) could usefully exploit visible light during
photocatalytic processes. The results are optimistic, considering that a smaller bandgap
makes it easier for electrons to be excited; that is, to move from the valence band to the
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conduction band with less energy, making TiO2 more efficient as a photocatalyst in the
visible region [30,31].
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Hc-TiO2-250 ◦C-1%N based on (a) light absorption wavelengths and (b) energy expressed in electron
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Figure 5 presents the energy efficiency (EEO) quantification for the photodegradation
of MO under visible light using TiO2 and as-prepared Hc-TiO2.
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Figure 5. Energy efficiency (EEO) quantification for the photodegradation of MO under visible light
using TiO2 and the as-prepared Hc-TiO2.

The marginal photodegradation activity of TiO2 under visible light leads to high energy
consumption (10,910 kWhm−3). However, the surface modification of TiO2 due to the
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formation of Hc on the nanoparticle surface reduces the energy consumption by more than
78% for the Hc-TiO2-250 ◦C composite (2358 kWhm−3). Furthermore, the incorporation
of the N-donor during the CQD hydrothermal synthesis decreased energy consumption
by 93% (696 kWhm−3). The main goal of this study was the co-production of Hc-TiO2

as a subproduct of CQD hydrothermal synthesis, making the use of TiO2 composites
viable under visible light. In further studies, it is expected that researchers will include a
comprehensive analysis to help estimate the quantum efficiency of MO photodegradation
using the Hc-TiO2-250 ◦C-1%N sample.

2.1. Photodegradation of MO Using Hc-TiO2 Composites
2.1.1. Effect of the Hydrochar and Temperature Synthesis

Figure 6 shows the photodegradation kinetics of MO at 465 nm in the presence of
TiO2 and Hc-TiO2 composites synthesized at temperatures between 180 ◦C and 250 ◦C.
TiO2 exhibited marginal photocatalytic activity with a value close to 3.6%. However, the
photocatalytic activities of the Hc-TiO2 photocatalysts obtained at 180 ◦C, 220 ◦C, and
250 ◦C increased to 5.9, 8.7, and 15.6%, respectively.
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Figure 6. Photodegradation of MO using TiO2 and Hc-TiO2 composites synthetized at different
temperatures. The second-order model (continuous lines) is shown to compare the theoretical and
experimental trends. The curves were calculated in triplicate (n = 3), and in no case did the statistical
errors exceed 5%. The average measurement curve is reported along with the error bars.

Table 2 lists the parameters obtained by fitting the degradation kinetics of Figure 5 to the
second-order models. According to the k parameter, the photodegradation of TiO2 improved with
the presence of Hc and with an increase in the synthesis temperature, and the photodegradation
rate improved by up to 400% when Hc-TiO2-250 ◦C was used instead of TiO2.

Table 2. Second-order kinetic parameters for the photodegradation of MO using Hc-TiO2 composites
synthetized at different temperatures.

Photocatalysts k × 105 (L·mg−1·min−1) %D R2

TiO2 0.54 0.24 0.99
Hc-TiO2-180 ◦C 0.56 0.13 0.99
Hc-TiO2-220 ◦C 1.29 1.20 0.99
Hc-TiO2-250 ◦C 2.74 0.51 0.98

In conclusion, synesthetic behavior between TiO2 and the carbon phase is inferred, es-
pecially at high synthesis temperatures where the amount of TiO2 is higher. The hydrochar
influenced the bandgap of TiO2, which implies an improvement in photocatalytic efficiency,
even at energy levels that are not characteristic of TiO2 (465 nm). Some authors have demon-
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strated that normally conjugated carbon structures (sp2–carbon) can significantly improve the
efficiency of TiO2 photocatalysis because they can modify the electron movement (Ti2+ → Ti3+),
reduce electron–hole recombination between Ti-atoms, and ease electron transfer, extending the
photocatalytic activity of TiO2 to visible light [7,32,33], as evidenced in the present investigation.
Some authors have also reported that carbon-based materials can provide a surface for the
degradation of organic contaminants, favoring TiO2-molecule contact during photocatalysis [34].
A possible mechanism for this phenomenon is shown in Figure 7.

(NO3−, SO42−) 

(NO3−, SO42−) 

Figure 7. Proposed mechanism for MO photocatalysis using Hc-TiO2-based catalysts under visible
light (465 nm).

2.1.2. Effect of the Heteroatom Donor During Hydrochar Synthesis

Figure 8 shows the photodegradation kinetics of MO for Hc-TiO2-250 ◦C, the best
photocatalyst, synthesized in presence of N/P donors. The photocatalytic activity of the
Hc-TiO2-250 ◦C increased from 15.6% to 43.7% and from 15.6% to 24% using N donors and
P donors, respectively.
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Figure 8. Photodegradation of MO using TiO2 and Hc-TiO2-250 ◦C synthetized in the presence of
N/P donors. The second-order model (continuous lines) is shown to compare the theoretical and
experimental trends. The curves were calculated in triplicate (n = 3), and in no case did the statistical
errors exceed 5%. The average measurement curve is reported along with the error bars.
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Table 3 lists the parameters obtained by fitting the degradation kinetics from Figure 7
to the second-order models. Based on the k parameter, the photodegradation capacity
of HC-TiO2-250 ◦C in the presence of N-donor was significantly improved, achieving
photodegradation rate increases of up to 2700% when Hc-TiO2-250 ◦C-1%N was used
instead of TiO2. That is, the use of N-doped composites (Hc-TiO2-250 ◦C-1%N) improved
the photocatalytic capacity of TiO2 seven times more than its un-doped analogues (Hc-
TiO2-250 ◦C).

Table 3. Second-order kinetic parameters for the photodegradation of MO using Hc-TiO2-250 ◦C
composites synthetized in the presence of N/P-donors.

Photocatalysts k × 105 (L·mg−1·min−1) %D R2

TiO2 0.54 0.24 0.99
Hc-TiO2-250 ◦C 2.74 0.51 0.99

Hc-TiO2-250 ◦C-1%P 3.21 0.84 0.99
Hc-TiO2-250 ◦C-1%N 15.57 1.40 0.98

The improvement in the photocatalytic performance of the Hc-TiO2-250 ◦C with the
addition of nitrogenous groups is related to the reduction in the photocatalyst bandgap and
better use of the light source, as shown in Figure 4. Some authors have shown that this
reduction in the energy gap allows nitrogen-doped carbonaceous materials to absorb and
emit light over a wider wavelength range, particularly in the visible-light region [35–37]. The
reduction in the bandgap is associated with the generation of active states of Ti (Ti3+) in the
presence of non-metallic heteroatoms [29]. Other authors have shown that the functional
groups introduced by nitrogen improve the dispersion of carbonaceous materials in a solution,
refining the stability and distribution of the structures during their action [38]. Finally, it has
been reported that nitrogen doping reduces the non-radiative recombination of electrons and
holes generated during optical excitation [39]. Nitrogen acts as a trap center for electrons,
which can improve the efficiency of photoluminescence by reducing the energy loss during
the emission process [40].

2.2. Photodegradation of MO Using Co-Produced CQDs

The CQDs co-produced during the synthesis of Hc-TiO2-250 ◦C and Hc-TiO2-250 ◦C-1%N
were isolated and their photodegradation capacity at 465 nm was evaluated. The maximum
photodegradation in the presence of CQD-250 ◦C and CQD-250 ◦C-1%N at 400 mg/L was
1.8 and 7.9%, respectively (Figure 9a). The incorporation of nitrogen into the CQD structure
enhanced its photocatalytic activity. This improvement can be attributed to the greater excitation
of CQD-250 ◦C-1%N compared to CQD-250 ◦C in the visible region, as evidenced by the
fluorescence spectra (Figure 9b). The maximum excitation wavelength for CQD-250 ◦C was
observed at 345 nm, while for CQD-250 ◦C-1%N, it shifted to 387 nm. This redshift allowed
for more effective utilization of blue light during photocatalysis with CQD-250 ◦C-1%N, and
resulted in an approximately 0.06 EJ reduction in excitation energy—an 11% decrease—based
on Planck’s energy equation.

However, the photocatalytic performance of CQD-250 ◦C-1%N was lower than those
obtained for the co-product Hc-TiO2-250 ◦C-1%N, which may be due to the concentration
of the photocatalysts used, 400 mg/L vs. 2427 mg/L, and the carbon–Ti synergy of the
Hc-TiO2 composite. To review the first hypothesis, photocatalytic tests were carried out at
higher concentrations of CQD-250 ◦C-1%N, between 400 and 20,000 mg/L, and the results
are shown in Figure 10.
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Figure 10. Photodegradation of MO using CQD-250 ◦C-1%N at concentrations between 400 mg/L
and 20,000 mg/L. The second-order model (continuous lines) is shown to compare the theoretical and
experimental trends. The curves were calculated in triplicate (n = 3), and in no case did the statistical
errors exceed 5%. The average measurement curve is reported along with the error bars.

The results showed a positive correlation between the concentration and the photocat-
alytic capacity of CQD-250 ◦C-1%N, but the systems based on Hc-TiO2 continued to show
better performances. These differences can be attributed to the abundance of carbon arrange-
ments of different sizes, structures, and compositions in Hc [41,42], which can enhance the
optoelectronic performance of the Hc-TiO2, as well as the presence of an intrinsic catalyst such
as TiO2. Despite these differences, both CQD-250 ◦C-1%N and Hc-TiO2-250 ◦C-1%N achieved
better photocatalytic performances than those revealed by TiO2 at the same concentration.
Table 4 shows the parameters obtained by fitting the degradation kinetics of final systems,
such as TiO2, CQD-250 ◦C-1%N, and Hc-TiO2-250 ◦C-1%N, to second-order models. Based
on the k parameter, the capacity of TiO2 is marginal; however, photocatalysts obtained during
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a single synthesis can improve the TiO2 photocatalytic rate from 476% to 2700% using CQDs
and Hc, which translates into better utilization of the visible radiation used.

Table 4. Second-order kinetic parameters for the photodegradation of MO using CQD-250 ◦C-1%N
and Hc-TiO2-250 ◦C-1%N, obtained during a unique process of synthesis.

Photocatalysts k × 105 (L·mg−1·min−1) %D

TiO2 0.54 0.24
CQD-250 ◦C-1%N 3.53 0.17

Hc-TiO2-250 ◦C-1%N 15.57 1.40

The proposed hydrothermal synthesis protocol allowed the chemisorption of TiO2

on the hydrochar structure but not on the CQDs. Figure 11 shows the HR-TEM elemental
mapping images for CQD-250 ◦C-1%N. The results revealed the occurrence of various
atoms, including carbon (violet), oxygen (cyan), and N (red) on the CQDs nanoparticles;
however, the TiO2 mapping image did not reveal the presence of Ti (yellow) chemisorbed
onto the CQD nanostructures, as was observed for the other atoms; instead, the atoms were
dispersed throughout the field of view.

   
(a) (b) (c) 

  

 

(d) (e)  

Figure 11. HR-TEM elemental mapping images for CQD-250 ◦C-1%N synthetized in the presence of
TiO2 for visualization of atoms of (a) hydrogen (white), (b) oxygen (cyan), (c) carbon (violet), (d) N
(red), and (e) Ti (yellow) atoms.

The absence of chemisorbed TiO2 could explain the weaker photocatalytic performance
of CQDs compared to Hc-TiO2 composites rich in Ti-derived species, as verified by TGA
and bandgap analysis. The combination of optoelectronics structures such as N-modified
Hc and TiO2 can significantly improve efficiency and expand the ability of photocatalytic
systems to operate under visible light, especially because carbonaceous structures with
sp2-hybridization have the capacity to enhance electronic movements and generate more
active forms of Ti and oxygen [7,43,44].

Finally, the superiority of Hc-TiO2-250 ◦C-1%N during photocatalysis can also be ex-
plained. Figure 12 shows the surface composition of this photocatalyst obtained by XPS.
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The results display the C1s region for TiO2 and Hc-TiO2-250 ◦C-N samples. The peak at
284.6 eV was assigned to the C-C bond and used as an internal reference to correct the bind-
ing energy shift. The peaks at higher binding energies were attributed to the presence of
oxygen-containing surface groups. In the TiO2 sample, the detected C peak in the spectrum
was attributed to the adventitious carbon atoms adsorbed on the TiO2 surface. However, a
better-defined region was observed in the Hc-TiO2-250 ◦C-1%N sample due to the presence
of the hydrochar. The Ti2p spectral region (Figure 12b) of the TiO2 sample presents only one
component at BE = 459.6 eV, corresponding to Ti4+, in agreement with previously published
BE values [34]. However, in the case of the Hc-TiO2-250 ◦C-N sample, two peaks are observed:
the first one, at 459.6 eV, corresponds to Ti4+, and the peak at 458.4 eV is assigned to Ti3+.
Note that 85.7% of surface titania is in a 3+ oxidation state, indicating the highly defective
nature of the titania surface in the Hc-TiO2-250 ◦C-1%N sample, as has been proposed. The
high content of Ti3+ or oxygen vacancies on the titania surface could explain the significant
decrease in the bandgap in this sample and, consequently, the better photoactivity.

Two components, at 530.1 and 531.3 eV, were used to fit the O1s spectral region of TiO2

samples (Figure 12c). The first component, which is the major component of the O1s spectral
region, corresponds to lattice oxygen (OL), whereas the high BE component corresponds
to oxygen-containing species adsorbed in oxygen vacancies (OVs) [45]. However, four
components were used to fit the O1s spectral region of Hc-TiO2-250 ◦C-1%N sample because
of the formation of different Ti-species and the oxygen linked to the carbon phase. Thus,
as previously mentioned, the component at 530.1 eV corresponds to oxygen bonded to
Ti4+, whereas oxygen bonded to Ti3+ appears at 531.3 eV. In this case, the OV peak was
the major component of the TiO2 sample, confirming the highly defective nature of the
titania surface observed in the Ti2p region. It is important to note that the OVs in metal
oxides play a crucial role in the generation of reactive oxygen species (ROS) because of
their ability to store and release electrons. When these materials encounter molecular
oxygen (O2), the electrons located in the vacancies can be transferred to oxygen, initiating
a sequence of redox reactions that give rise to various ROS. In the first step, molecular
oxygen accepts an electron to form a superoxide ion (O2−), which can then be protonated
to generate the hydroperoxide radical (HO2•). As electron and proton transfer continue,
species such as hydrogen peroxide (H2O2) and, eventually, the hydroxyl radical (•OH),
one of the most reactive ROS, are formed. This mechanism underscores how structural
defects in materials with oxygen vacancies not only alter their electronic properties but
also transform them into efficient platforms for oxidative processes in applications such as
environmental photocatalysis [45].

On the other hand, the peaks at 532.4 and 533.6 eV correspond to the oxygenated surface
groups of the carbon phase, which are assigned, respectively, to C=O and C-O bonds. Finally,
the N1s region is depicted in Figure 11d. Note that N was not detected in the TiO2 sample,
whereas up to 4 wt.% was detected in the Hc-TiO2-250 ◦C-1%N sample, denoting its high
surface N-doping content. Three components, at 598.4, 399.8 and 400.5 eV, were used to fit
the N1s spectral region attributed to Pyridinic, Pyrrolic and graphitic N-groups anchored on
the carbon surface. It has also been also reported that the XPS peaks at 396–397 eV are due to
substitutional N-atoms, and those that appear at approximately 400 eV are generally ascribed
to interstitial nitrogen in TiO2 [45,46]. In our work, peaks detected at 398.4 and 399.8 eV can
also be attributed to the substitutional and interstitial states of nitrogen. Therefore, N-doping
of TiO2 could occur in the hydrochar-based materials, which could explain the highly defective
surface and the performance of Hc-TiO2-250 ◦C-1%N.
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Figure 12. XPS spectra of TiO2 and Hc-TiO2-250 ◦C-1%N. (a) C1s, (b) Ti2p, (c) O1s, and (d) N1s regions.

Finally, others’ research has shown that by using a sensitized photocatalyst, such as
carbon- or nitrogen-doped TiO2, the photochemical properties can be further improved
due the generation of electronegative sites that can extend the material’s ability to generate
ROS under visible-light conditions for the decomposition of polluting organic compounds
and other oxidation reactions [47,48].

3. Materials and Methods
3.1. Chemicals

Citrus lemon fruits were collected in south-eastern Spain. Titania, TiO2 anatase—hereinafter
TiO2 (Sigma-Aldrich, St. Louis, MO, USA)—was used as the reference photocatalyst. Ethylene-
diamine (C2H8N2) (99%) (PanReac, Barcelona, Spain) and 85% Orthophosphoric acid (H3PO4)
(Sigma-Aldrich, St. Louis, MO, USA) were used as nitrogen donors (N-donors) and phospho-
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rous donors (P-donors), respectively. Methyl Orange (MO, C14H14N3NaO3S) was procured
from Acros Organics (Brussels, Belgium) and used as a pollutant during the photocatalysis
assays. The water used was purified using a Millipore instrument.

3.2. Co-Production of Hydrochar and CQDs Nanoparticles

The synthesis strategy was divided into different steps to determine the role of the
temperature, the addition of TiO2, and N-/P-donor inclusion on the photocatalytic proper-
ties of the hydrochar (Hc) and CQDs obtained by the hydrothermal process. A one-step
hydrothermal carbonization method was used to produce carbon structures from natural
sources [49,50]. Citrus lemon fruits produced in south-eastern Spain were washed, cut,
and then squeezed to obtain the juice extract (LJ) used as the carbon precursor owing to
its high organic acid content [51]. Lemon juice was prepared in the absence or presence
of 0.5 g of TiO2, then magnetically stirred, and finally transferred into a 200 mL Teflon-
lined stainless-steel autoclave. The hydrothermal treatment was conducted by varying the
temperature synthesis from 180 to 250 ◦C for 6 h, and the autoclave was cooled down to
room temperature. The obtained solution was filtered through a 0.22 µm filter membrane
to remove the solid phase or hydrochar from the aqueous dispersion of the CQDs. The
collected hydrochar was washed several times using deionized water at 70 ◦C to promote
the desorption of residual CQD structures on the surface. The aqueous dispersions of
CQDs were concentrated to 50 mL in a drying oven at 70 ◦C. For heteroatoms-doped
CQDs, ethylenediamine (C2H8N2) and Orthophosphoric acid (H3PO4) were used as nitro-
gen donors (N-donors) and phosphorous donors (P-donors), respectively [52,53]. To this
end, the N-/P-donor compound was added to the lemon juice at a mass concentration of
1%wt before the inclusion of TiO2 and afterwards, the described procedure was conducted.
The convention used for the composites obtained using LJ, TiO2, N/P donors at different
temperatures was CS-TiO2-T◦C-1%HETAM, where CS = Hc or CDQ, T = 180 ◦C, 220 ◦C or
250 ◦C, and HETAM = N or P. For example, Hc-TiO2-250 ◦C-1%N indicates that Hc/TiO2

composites were obtained at 250 ◦C using 1% of N-donor.

3.3. Characterization of Carbon Structures

The thermal stability and the TiO2 amount on hydrochar were studied under a specific
temperature range (34–950 ◦C) using thermogravimetric analysis (Mettler-Toledo Interna-
tional Inc., Greifensee, Switzerland). The temperature was increased by passing nitrogen at
ramping rate of 5 ◦C/min and a flow rate of 40 mL/min. Field emission scanning electron
microscopy (FE-SEM Carl Zeiss, Jena, Germany) was employed to examine the morphology
of the hydrochar-based composites. An X-ray diffractometer (Bruker D8) with Cu Kα

radiation and a wavelength (λ) of 1.541 Å was used to determinate the crystallographic
phases of the samples. The bandgap of the samples was estimated using UV-Vis diffuse
reflectance spectroscopy (CARY 5E from VARIAN) [54]. Finally, High-Resolution Transmis-
sion Electron Microscopy (HR-TEM) was performed using a Carl Zeiss SMT LIBRA 120 Plus
microscope (Carl Zeiss, Jena, Germany) to evaluate the morphology of the CQDs. Finally,
X-ray photoelectron spectroscopy (XPS) was performed using a Kratos Axis Ultra-DLD
spectrometer (Dallastown, PA, USA) equipped with a hemispherical electron analyzer
connected to a delay-line detector (DLD), a dual-anode X-ray source (Mg/Al) with a power
output of 450 W, and an Al Kα monochromator with a nominal power of 600 W, adjusting
the spectra to Lorentzian and Gaussian curves.

3.4. Photocatalytic Trials

The performance during the degradation of Methyl Orange (MO) under visible-light
irradiation at 30 ◦C was evaluated in a reaction system composed of a borosilicate glass
reactor, a sampling syringe, and two power LEDs (Blue LED light at 465 nm, electric power
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of 50 W and 4080 lumen/W) coupled with fan devices located above and on the sides of
the glass reactor [55] as shown in Figure 13. The pH of the MO solutions was adjusted to
7 using NaOH (0.01 N) and HCl (0.01 N) solutions before the assay.

Figure 13. Schematic representation of the experimental setup for the photocatalytic test.

The photodegradation of MO was performed in the reactor described using 100 mL of
a solution containing 1 mg of MO, 100 mg of TiO2 and adjusted Hc-TiO2 concentrations
that could guarantee an equal presence of TiO2 in Hc-TiO2 systems [29]. The suspensions
were stirred at 500 rpm in the dark for 12 h until equilibrium was reached. The reactor was
illuminated using Blue LED Light at 465 nm. Every 30–50 min for 500 min, samples were
withdrawn and centrifuged to separate the nanoparticles and residual MO was measured
by spectrophotometry at 464 nm (6505 JENWAY, London, UK) and a previously calibrated
curve. The % of MO photodegradation (% MO) was calculated using Equation (1) [54].

% o f MO =

[
C0 − Ct

C0

]
× 100 (1)

where C0 is the initial concentration of MO and Ct is the concentration after irradiation at
a specific time. The MO photodegradation kinetics were adjusted using a second-order
kinetic model according to Equation (2).

1
Ct

= k × t +
1

C0
(2)

where C0 is the initial MO concentration, Ct is the concentration after irradiation at a specific
time (t), and k is the photocatalysis rate.

3.5. Electrical Energy per Order (EEO)

The Electrical Energy per Order (EEO) concept was used to quantify the energy
efficiency of the photodegradation of MO under visible light using TiO2 and Hc-TiO2

composites using Equation (3) [54]:

EEO =
P × t × 1000

V × 60 × ln
(

C0
Cf

) (3)

where P is the power rate (kW) of the photoreactor system, V is the volume (L), C0 is the initial
MO concentration, Cf is the final Mo concentration, and t is the irradiation time (min).
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4. Conclusions
This study explored the effects of carbon materials, CQDs, hydrochar, and synthesis

variables on the photocatalytic properties of TiO2. After the experiments, it is possible to
conclude that a temperature of 250 ◦C, the presence of agro-carbon materials as hydrochar
(52% wt), and the addition of N-donor compounds (1% wt) can improve the photodegradation
rate of TiO2 over Methyl Orange (MO) by up to 2700%, with a parallel reduction in the TiO2

bandgap from 3.50 eV (Uv light) to 3.00 eV (visible light) associated with the development
of abundant Ti3+ forms and oxygen vacancies. The development of photocatalysts based
on agro-carbon–nitrogen-doped TiO2 is an efficient and sustainable strategy for applications
such as power generation, water purification, and pollutant decomposition under sunlight.
While this study focused on the systematic screening of modified TiO2 materials to identify
promising photocatalysts, future work will include detailed evaluations of their stability and
reusability over multiple cycles to assess their potential for practical applications.
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Abbreviations
The following abbreviations are used in this manuscript:

Hc Hydrochar
MO Methyl Orange
UV Ultraviolet
VIS Visible
ROS Reactive oxygen species
TiO2 Titanium dioxide
OH• Hydroxyl radicals
H2O2 Hydrogen peroxide
CQDs Carbon quantum dots
PL Photoluminescence
EBT Eriochrome black t
N-CQDs Nitrogen-doped carbon quantum dots
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C2H8N2 Ethylenediamine
H3PO4 Orthophosphoric acid
N-donor Nitrogen donor
P-donor Phosphorous donor
HETAM Heteroatom
FE-SEM Field emission scanning electron microscopy
HR-TEM High-resolution transmission electron microscopy
XPS X-ray photoelectron spectroscopy
LJ Juice extract
TGA Thermogravimetric analysis
%MO % of MO photodegradation
D Average crystal size
nm Nanometer
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