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Abstract: Extreme weather events and rising temperatures pose significant risks, not only
in urban areas but also in metropolitan forests, that affect the well-being of the people who
visit them. City forests are considered one of the best bets for mitigating high temperatures
within civic areas. Such areas modulate microclimates in contemporary cities, offering
environmental, social, and economic advantages. Therefore, comprehending the intricate
relationships between municipal forests and the climatic changes of various destinations is
crucial for attaining healthier and more sustainable city environments for people. In this
research, the thermal comfort index (Modified Temperature–Humidity Index (MTHI)) has
been analysed using Landsat images of six urban forests in London during July 2022, when
the area first experienced record-breaking temperatures of over 40 ◦C. Our results show a
significant growth in the MTHI that goes from 2.5 (slightly hot) under normal conditions
to 3.4 (hot) during the heat wave period. This situation intensifies the environmental
discomfort for visitors and highlights the necessity to enhance their adaptability to future
temperature increases. In turn, it was found that the places most affected by heat waves are
those that have grass cover or that have small associated buildings. Conversely, forested
regions or those with lakes and/or ponds exhibit lower temperatures, which results in
enhanced resilience. These findings are noteworthy in their concentration on one of the
UK’s most severe heat waves and illustrate the efficacy of integrating spectral measurements
with statistical analyses to formulate customized regional initiatives. Therefore, the results
reported will allow the implementation of new planning and adaptation policies such
as incorporating thermal comfort into planning processes, improving green and blue
amenities, increasing tree densities that are resilient to rising temperatures, and increasing
environmental comfort conditions in metropolitan forests. Finally, the applicability of this
approach in similar urban contexts is highlighted.

Keywords: microclimate; urban forests; vegetation; heat waves; heat mitigation;
remote sensing

1. Introduction
In recent decades, there has been an increase in extreme weather events such as floods,

droughts, and cold and heat waves related to the global warming process that is taking
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place on the planet. It is possible to classify this issue as one of the greatest challenges for
human beings [1–4]. At the same time, the modification and transformation of the different
surface covers for the construction of new urban areas motivated by significant population
growth is one of the processes that contribute most to global warming [1,5,6]. Urban areas
reduce evapotranspiration [7] because they are built with impermeable materials, such
as asphalt and concrete. These have high thermal absorption and store the heat received
from solar radiation, which is subsequently released into the atmosphere [8,9]. In addition
to this circumstance, the United Nations (UN) predicted in a 2020 report that by 2050,
70% of the population will be in these areas [10], which will mean significant growth in
these areas [11]. Numerous studies report that urban areas suffer the greatest increases
in temperatures [12–14], mainly affected by anthropogenic heat, environmental pollution,
and the phenomenon of urban heat islands (UHIs) [15]. Currently, 30% of the world’s
population suffers from extreme heat conditions, and the forecast is that by 2050, it will
reach 74% [16].

Recent studies have shown that heat waves are more intense, longer, and more fre-
quent [17–19]. These same studies estimate that they will affect larger land areas [9,20] by
the end of the twenty-first century. These episodes of rising temperatures are identified
as one of the natural phenomena with the greatest impact on the population [19] that
will affect people’s quality of life, especially in residents of urban areas. To counteract
this increase in temperatures in urban areas, several studies consider that the homoge-
neous distribution of trees in the streets, the use of Urban Green Infrastructures (UGIs),
and the use of open and unpaved spaces are some of the most effective strategies. These
proposals make it possible to mitigate urban heat and improve human comfort [21–24].
Green areas located within cities minimize temperatures and reduce the intensity of the
UHI phenomenon. In this way, inhabitants can enjoy these more comfortable areas that
tend to be cooler during hot periods, which improves the quality of life. The shadows
generated by trees in green areas prevent impermeable surfaces from being heated by solar
radiation [6]. In turn, the evapotranspiration of plant elements increases ambient humidity
and minimizes temperatures, producing widespread ambient cooling [22–24].

The term Park Cool Island (PCI) is used to describe the temperature differences
between urban areas and green spaces [25]. This phenomenon has been routinely studied
in recent years in many cities worldwide, where decreased temperatures are recorded at
green parks compared to urban built areas. For instance, according to a 2018 study focused
on the city of Mumbai (India), green areas recorded average temperatures between 2 and
3 ◦C lower than urbanized areas [26]; another study carried out between 2005 and 2015
in the city of Singapore reported a temperature difference of between 1 and 3 ◦C in green
areas [27]; additionally, the study carried out in the city of Shenzhen (China) denoted
differences of 1.0 and 1.6 ◦C between 2011 and 2013 [28]. Moreover, research carried out
in four green areas of the city of Wroclaw (Poland) showed a reduction in temperatures
of between 1 and 2 ◦C. Conversely, the studies conducted at Osaka Prefecture Campus
University [29] and in the cities of Vancouver and Sacramento (USA) are noteworthy,
indicating that tree-covered green areas most effectively lower daytime temperatures,
whereas grass-covered areas are more effective at night [30]. Therefore, it seems proven
that green areas allow for temperatures of urban areas to be minimized and the effects
of high temperatures to be mitigated, being considered comfort zones for the population.
However, although there are some studies examining the mitigating effect of temperatures
and the consequent impact on human thermal comfort during heat waves, these are scarce
in the area under study. This is possibly due to the scarcity of heat waves that the United
Kingdom has experienced. Thus, according to data from the Meteorological Office (Met
Office), only 15 heat waves have occurred since 1808. However, 50% occurred in the 21st
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century, with a significant upward trend being observed [31]. This study aims to address
this deficiency by evaluating, for the first time in the United Kingdom, the effects of a heat
wave on thermal comfort in green spaces using the MTHI.

Several indicators or indices have been proposed to assess thermal comfort conditions
in urban areas, including the Comfort Index (CI), the Thermal Climate Comfort Index
(UTCI), and the MTHI. The latter, when obtained through satellite images, has the ad-
vantage of having a higher spatial resolution than the rest by maintaining the pixel size
of the images. On the other hand, the data are more easily accessible than those needed
to determine other indices. There are many studies in the literature that have used this
index to determine thermal comfort in urban areas. For instance, the study carried out
in Shanghai (China) in 2024 using Landsat imagery reported that this methodology is
adequate to obtain thermal comfort due to the excellent results [32], and the study carried
out in the city of Jiangsu (China) in 2020 with Landsat 5 and 8 imagery reported that the
MTHI based on remote sensing can monitor the spatial distribution of thermal comfort,
being an adequate index for these studies [33].

Despite advances in the study of the effect of green areas on urban temperature
mitigation, significant gaps remain in our understanding of how this process evolves
during extreme heat events, such as heat waves. Understanding this evolution is crucial for
the effective implementation of design strategies in the planning and construction of new
green areas. While previous research has explored this relationship, it has done so primarily
through in situ measurements, without considering a comprehensive and dynamic view
of the phenomenon, but also aspects related to human thermal comfort. This research
introduces a novel approach by analyzing the thermal resilience of green areas from a
multifactorial perspective, considering the characteristics of plant systems and construction
and design aspects. Through the use of high-precision satellite images, combined with
remote sensing techniques and thermal comfort analysis, this study offers an innovative
insight into the microclimate generated in these green areas unaccustomed to extreme
temperatures. This contribution is key not only to the planning of green spaces in the city of
London but also to the development of strategies applicable to other regions of the world.

Based on what was discussed above, this research aims to analyse thermal comfort
using the MTHI at six green areas in the city of London, to determine their resilience in
extreme heat conditions. Over the course of summer 2022, the UK was hit by a sequence
of heat waves, resulting in approximately 3000 excess deaths [31,34,35]. The date 19 July
2022 has been assigned as a historic day for the UK’s climate, signifying a milestone in
the country’s environmental temperature records. Five weather stations from London
to Lincolnshire reached 40 ◦C or more, breaking previous all-time records. A national
emergency was declared by the government in July 2022, following the first ever ‘red’
extreme heat warning and the first Level 4 heat wave alert issued by the UK Health Security
Agency and Met Office [31,34,35]. In this sense, the specific geographical location of this
research, combined with the exceptional climate situation affecting the United Kingdom
during the study period, gives this work a remarkable originality. The uniqueness of the
conditions analyzed not only offers a unique opportunity to advance knowledge in this
field but also provides empirical evidence that is difficult to replicate in other geographical
and climatic contexts. These exceptional circumstances, therefore, reinforce the innovative
contribution of this research to the international academic debate.

For the development of this work, and based on Landsat images, the different Land
Use/Land Cover (LULC) categories were determined in order to delimit the green areas of
the city. Next, and for each green area and environmental condition, the Normalized Differ-
ence Vegetation Index (NDVI), the Normalized Difference Moisture Index (NDMI), and
Land Surface Temperature (LST) were obtained. To identify correlations between variables,
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statistical techniques such as Panel Data and ANOVA were applied. The questions raised
in this study are: 1. How are LST, NDMI, and NDVI values developed in the green spaces
studied using Landsat imagery? 2. What thermal comfort conditions do the green areas
experience under normal summer conditions, and what variability do they show when the
heat intensifies due to the heat wave phenomenon? 3. Is there any relationship between the
indices considered that would improve the thermal comfort of green areas? 4. Could the
findings be useful for future green area development, given that heat waves are expected
to become more frequent and intense in the coming years?

In addition, our research addresses the need for prompt action to be taken by the
United Nations to reduce the effects of climate change and its repercussions all over the
world by providing new urban planning and adaptation strategies that are resistant to
increasing temperatures and that boost environmental comfort conditions in urban forests.

This research contributes to the understanding of the effect that heat waves will have
on the thermal comfort of people in green areas of the city of London. A foreseeable deteri-
oration in the thermal comfort of these areas during high temperatures would demonstrate
their vulnerability to the effects of climate change, emphasizing the need to develop new
mitigation and adaptation strategies for these spaces so that they can continue to offer
thermal comfort benefits to the inhabitants. Furthermore, this methodological approach
that combines satellite data allows for a robust and generalized perspective for the study of
other green areas located in other cities. Finally, the research establishes an empirical basis
that underlines the need to integrate thermal comfort into the planning and management
of urban green spaces within the context of climate change. This will encourage urban
planners and public administrations to plan more appropriately for the creation of green
areas and spaces capable of adapting to climate change, thereby promoting the well-being
of the population.

2. Materials and Methods
2.1. Study Area

The areas under study are located within the city of London (United Kingdom)
(Figure 1). The UTM geographical coordinates of the city are latitude 51◦30′26′ ′ N and
longitude 0◦07′39′ ′ W. It is located at an altitude of 24 m above sea level. The city has a
population of 8.86 million and covers an area of 1572 km2. The city’s climate is of the mid-
latitude oceanic type (Cfb), according to Koppen–Geiger, which implies warm summers
and cool winters with abundant rainfall. The average temperature and number of hours
of sunshine per year are 13.8 ◦C and 1496, respectively. This gives an average of 4.10 h of
sunshine per day.

Six urban forests in London were selected, varying in soil type and size and located
within the city boundaries. The criteria for selecting the green areas were as follows: large
surface area (>45 hectares), location in the city center so that it could not be affected by the
surrounding urban areas and that they would have a high influx of visitors. Their location
is shown in Figure 2, while their area, dimensions, cover, and morphology are detailed in
Table 1 and Figure S1 in the Supplementary Materials.

2.2. Methodology

The methodology carried out for this research is described in Figure 3. To start, it
was necessary to download the Landsat 8 and 9 images. The month of July 2022 has been
chosen as it was extremely hot, with the 19th being the first time in the history of the city
that the value of 40 ◦C was recorded. The images were obtained from the United States
Geological Survey (USGS) and underwent an atmospheric correction process. Next, a plan
of bands 2, 3, and 4 (RGB) was composed to obtain the different LULCs of the city using the
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Random Forest (RF) methodology to categorize the covers (Water, Vegetation, Urban land,
and Farmland). Precision was determined using a precision matrix [36,37]. Next, and for
each selected green area, the NDVI and NDMI related to vegetation and soil moisture were
obtained. The LST was obtained from thermal band number 10 of the Landsat. With these
variables, the MTHI could be determined under usual summer environmental conditions
and under heat wave conditions. The relationships between the variables LST, NDMI,
and MTHI can be visualized in Figure S2 of the Supplementary Materials. Both the LST
and the NDMI variables required to obtain the MTHI were validated using data from the
Met Office-approved meteorological station located in London Marylebone Road. To carry
out the statistical analysis, version 16 of the STATA data science software was used. It
combined the data panel with ANOVA tests to evaluate significant variations in MTHI
values between zones and periods.

Forests 2025, 16, x FOR PEER REVIEW 5 of 23 
 

 

 

Figure 1. Study area: London, United Kingdom. 

 

Figure 2. The 6 green areas of London selected for the study. 

Table 1. Characteristics of the green areas selected for the study, based on the selection criteria. 

Area Name Surface Area (Ha) Perimeter (m) LSI Aquatic Area (Ha) Soil Type Ground Cover 

1 Regent’s Park 138.69 4407 1.055 5.04 Vegetation 1 

2 Hyde Park 250.91 5759 1.207 10.80 Vegetation 1 

3 Green Park 72.74 4231 1.401 7.02 Vegetation 1 

4 Battersea Park 80.67 3602 1.131 5.40 Vegetation 1 

5 Clapham Park 81.91 4443 0.985 1.80 Vegetation 1 

6 Burgess Park 45.40 4346 1.382 3.50 Vegetation 1 

Note: LSI: Landscape Shape Index. (1): Trees, lawn, and lake.  

Figure 1. Study area: London, United Kingdom.

Forests 2025, 16, x FOR PEER REVIEW 5 of 23 
 

 

 

Figure 1. Study area: London, United Kingdom. 

 

Figure 2. The 6 green areas of London selected for the study. 

Table 1. Characteristics of the green areas selected for the study, based on the selection criteria. 

Area Name Surface Area (Ha) Perimeter (m) LSI Aquatic Area (Ha) Soil Type Ground Cover 

1 Regent’s Park 138.69 4407 1.055 5.04 Vegetation 1 

2 Hyde Park 250.91 5759 1.207 10.80 Vegetation 1 

3 Green Park 72.74 4231 1.401 7.02 Vegetation 1 

4 Battersea Park 80.67 3602 1.131 5.40 Vegetation 1 

5 Clapham Park 81.91 4443 0.985 1.80 Vegetation 1 

6 Burgess Park 45.40 4346 1.382 3.50 Vegetation 1 

Note: LSI: Landscape Shape Index. (1): Trees, lawn, and lake.  

Figure 2. The 6 green areas of London selected for the study.



Forests 2025, 16, 790 6 of 22

Table 1. Characteristics of the green areas selected for the study, based on the selection criteria.

Area Name Surface Area (Ha) Perimeter (m) LSI Aquatic Area (Ha) Soil Type Ground Cover

1 Regent’s Park 138.69 4407 1.055 5.04 Vegetation 1
2 Hyde Park 250.91 5759 1.207 10.80 Vegetation 1
3 Green Park 72.74 4231 1.401 7.02 Vegetation 1
4 Battersea Park 80.67 3602 1.131 5.40 Vegetation 1
5 Clapham Park 81.91 4443 0.985 1.80 Vegetation 1
6 Burgess Park 45.40 4346 1.382 3.50 Vegetation 1

Note: LSI: Landscape Shape Index. (1): Trees, lawn, and lake.
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2.3. Landsat Images

Table 2 details the Landsat 8 and 9 imageries used in this study. The satellites are
equipped with 8 multispectral bands (bands 1 to 7 and 9) with a resolution of 30 m, in
addition to two thermal infrared bands (bands 10 and 11) that have a spatial resolution
of 100 m. However, for the calculation of the LST, the thermal bands were resampled at a
resolution of 30 m, and only band 10 was used for the calculation. Atmospheric correction of
the bands was performed by applying the Dark Object Subtraction (DOS) algorithm [38,39]
using the semi-automatic classification plugin (SCP) in QGIS, a free software [40].

Table 2. Landsat images used in the research.

Products Environmental Condition Date
(yyyymmdd)

UTC Time
(hhmm)

Cloud
Cover (%)

LC08_L1TP_201024_20220710_T1 No Heat Wave 20220710 10:50 4.76
LC09_L2SP_201024_20220718_T1 Heat Wave 20220718 10:48 0.38

Since the UK experienced a series of heat waves during the summer of 2022, resulting
in the deaths of a significant number of people, and since 19 July of that year was the
day temperatures exceeded 40 ◦C for the first time in history, a Landsat dataset from July
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2022 with low cloud cover (<5%) was selected. Low cloud cover images allow for better
discrimination of different land uses and typologies. For July 2022, Landsat only has
three images: 10, 18, and 26 July. Under these conditions, two images were obtained: one
representative of normal environmental conditions (10 July, (26 July had a cloud cover
index above 5%)), and another (July 18) for the heat wave.

2.4. Spectral Indices and LST Landsat

Table 3 shows the equations used to determine the indices and LST.

Table 3. Landsat indices.

Index Equation Number Reference

NDVI NIR−Red
NIR+Red (1) [41]

NDMI NIR−SWIR
NIR+SWIR (2) [42]

Spectral Radiance Lλ = ML × QCal + AL (3) [43]
Brightness Temperature (◦C) T = K2

log
(

K1
Lλ

+1
) − 273.15 (4) [44]

Land Surface Emissivity ε = 0.004 × Pv + 0.986 (5) [44,45]
PV PV =

(
NDVI−NDVIMin

NDVIMax−NDVIMin

)2 (6) [44]

LST (◦C) LST = T(
1+

(
λ T

C2

)
×log(ε)

) (7) [44]

Note: NIR, RED, and SWIR: Bands 5, 4, and 6 Landsat 8 and 9. ML: is the specific multiplying factor located in the
metadata index Landsat. Qcal: is the digital variant value. AL: is the additive factor of specific re-scaling of TIRS
bands. K1 = 774.8553. K2 = 1321.0789. C2 = 1.4388 *10−2 m*K. λ = 10.8 µm.

2.5. LULC

Using bands 2, 3, and 4 of the Landsat satellites, a true-color (RGB) image was com-
posed. Subsequently, using the QGIS software and the RF method, the LULC classification
image was obtained. This technique has been widely used in studies on the classification
of different land covers [13,46,47] due to its high accuracy [48]. In this study and for the
city of London, four main land covers of soil have been identified: vegetation, water, urban
land, and farmland.

2.6. LSI

This variable measures the relationship between the perimeter of a green area and
its surface area. If the result reports a value close to 1, it indicates that the area’s shape
approximates a circle. If, on the other hand, the values are greater than 1, it indicates that
the area has polygonal or irregular shapes. This variable is frequently used in research
related to green areas [21,49]. It is calculated using Equation (8):

LSI =
L

2 ×
√

A × π
(8)

where L represents the total length of the perimeter of the studied area and A is the
corresponding area.

2.7. MTHI

Urban thermal comfort was used to determine the degree of perception of people of
the environmental thermal conditions of the selected green spaces. As it is obtained using
satellite images, it has the advantages of having a high resolution and the data necessary to
obtain it (NDMI and LST) are easily accessible. The MTHI is obtained by Equation (9) [32]:

MTHI = 1.8 × LST + 32 − 0.55 × (1 − NDMI)× (1.8 × LST − 26) (9)
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where the LST is obtained from Equations (3)–(7) and the NDMI from Equation (2). The
MTHI obtained presents dimensionless numerical values that are subsequently reclassified
into five categories established by the authors [32] and according to Table 4. To do this,
it has been necessary to obtain the mean values and the standard deviation of the MTHI
values that are within the limit of each green zone investigated for each satellite image and,
therefore, for each environmental condition.

Table 4. Classification of outdoor thermal comfort levels [32].

MTHI Equation Type

1 MTHI < M − 1.5 × a Cool
2 M − 1.5 × a ≤ MTHI < M − 0.5 × a Slightly hot
3 M − 0.5 × a ≤ MTHI < M + 0.5 × a Hot
4 M + 0.5 × a ≤ MTHI < M + 1.5 × a Very hot
5 M + 1.5 × a ≤ MTHI Extremely hot

Note: M: mean MTHI value; a: MTHI standard deviation.

2.8. Statistical Methodology

Due to the presence of data from various indices and variables across multiple green
spaces in the city, along with time series data spanning several days in July, it was essential
to employ two methodological approaches: Analysis of Variance (ANOVA) and data panel.
The first statistical approach allowed us to identify that there are statistically significant
differences in the variables analyzed in the different green areas by comparing variances.
Data panel is the methodology that allows combining time values with data or other values
of a transversal nature. This method is commonly cited in the literature and uses multiple
regression models [50–52], which makes it possible to incorporate a larger amount of data
compared to traditional methods.

3. Results
3.1. LULC

The spatiotemporal analysis of the different LULC categories and their occupancy
percentage in the city of London can be seen in Figure 4. As can be seen, the city of London
had predominantly urban land (74.65%) followed by vegetation (15.76%), farmland (6.19%),
and water (3.40%). The results of the precision matrix carried out using Landsat 8 images
to check the LULC plane were as follows: the overall accuracy obtained by the precision
matrix was 91% with a 95% confidence interval ranging from 0.80 to 0.91 points. However,
and for the investigation carried out, a subsequent manual correction of the non-coinciding
points was carried out.

3.2. Spatiotemporal Evaluation of NDVI and NDMI

The spatiotemporal analysis of the NDVI and NDMI in the studied areas under
normal environmental conditions and heat waves can be seen in Figures S3–S6 in the
Supplementary Materials. Figures 5 and 6 illustrate the index values for various LULC
classes for the entire city (a) and for each of the green areas investigated (b). All this under
the two different environmental conditions investigated. The NDVI enables the distinction
between vegetated areas and artificial land without vegetation. This provides information
on the health status of the vegetation located on the Earth’s surface. On the other hand, the
NDMI helps assess the moisture content present in both vegetation and soil. High NDVI
and NDMI values indicate high humidity and healthy vegetation. Conversely, low values
indicate plant stress due to moisture loss in both vegetation and soil.
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The NDVI presents higher values under normal conditions than under heat wave
conditions in the different LULC categories (Figure 5a). Thus, under normal conditions, the
highest average value (0.805) is in the vegetation cover, while the lowest value (0.466) is in
the urban land cover. Farmland coverage has a value of 0.733. Under heat wave conditions,
the variation in the NDVI between the different LULC classes follows the same pattern
but with a generalized decrease of 3.97%, 11.58%, and 0.54% in vegetation, urban land,
and farmland coverage, respectively. Concerning each of the green areas analysed and
under normal environmental conditions, the average value of the NDVI is 0.705, ranging
from the highest (0.753) for Regent’s Park and Green Park to the lowest (0.617) for Burgess
Park (Figure 5b). This is because the former have larger areas of vegetation and tree cover,
allowing for higher NDVI values. The values suffer a generalized decrease under heat
wave conditions, so that the average value is 0.669. This represents an average decrease
of 5.04%, which translates into a deterioration in plant health. The largest declines were
reported in Green Park (−8.23%), Burgess Park (−7.78%), and Regent’s Park (−6.11%).
These, and due to the greater tree mass and the rise in temperatures, suffer the effects of
heat to a greater extent through a significant decrease in the NDVI.

A similar pattern is observed with respect to the NDMI, with the highest values
detected under normal environmental conditions, while they drop under heat wave con-
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ditions (Figure 6). In this way, and under the first condition, the highest value is in the
vegetation cover (0.372) and the lowest value in the urban land cover (0.113), while the
farmland cover has an average value of 0.259. Under heat wave conditions, there is a
decrease of 16.13%, 4.42%, and 62.55% in vegetation, urban land, and farmland covers,
respectively (Figure 6a). For each of the green areas analysed and under normal environ-
mental conditions, the average value is 0.318, ranging from the highest in Battersea Park
(0.398) and Green Park (0.351) to the lowest (0.258) in Clapham Park (Figure 6b). The values
suffer a generalized decrease under heat wave conditions, so that the average value is
0.277. This represents an average decrease of 12.89%. The biggest declines are reported in
Battersea Park (−20.85%), Burgess Park (−17.07%), and Regent’s Park (−12.75%).

3.3. LST

The spatiotemporal evolution of LST under normal ambient conditions and heat wave
conditions can be analysed in Figures S7 and S8 of the Supplementary Materials. The
average LST under normal conditions is 28.58 ◦C, while under heat wave conditions, it is
29.98 ◦C. These values represent an average increase of 1.40 ◦C (4.66%).

Figure 7a shows how in the different LULC categories of the city, the LST presents
lower values under normal conditions than in heat wave conditions. Thus, under normal
conditions, the highest average value (29.85 ◦C) is in the urban land cover, while the
lowest value (25.34 ◦C) is in the vegetation cover. The farmland cover has an average
value of 26.92 ◦C. A similar pattern is observed under heat wave conditions, but with
a generalized increase of 5.27%, 2.25%, and 1.72% in the vegetation, urban land, and
farmland covers, respectively. Concerning each of the green areas analyzed and under
normal environmental conditions, the average value is 26.58 ◦C, ranging from the highest
LST (28.72 ◦C) for Clapham Park and Burgess Park (28.38 ◦C) to the lowest (24.89 ◦C)
for Green Park (Figure 7b). This circumstance is related to the fact that these forests
have fewer trees than the rest. Tree vegetation not only cools the environment through
evapotranspiration but also prevents sunlight from heating the ground surface by casting
shadows. The values experience a generalized rise under heat wave conditions, so that
the average value is 28.01 ◦C, which represents an average decrease of 5.46%. The largest
declines were reported in Green Park (7.51%) and Regent’s Park (6.70%). Therefore, the
results show that areas with greater tree cover and aquatic areas have a lower average LST
both under normal conditions and during the heat wave. Therefore, the results show that
areas with larger aquatic areas (Table 1) and larger tree vegetation (Figure S7) have a lower
average LST both under normal conditions and during the heat wave.

In Figures S9 and S10 of the Supplementary Materials, the isolines of LST can be seen
both under normal conditions and under heat wave conditions. In both environmental
conditions, it is reported that the least warm areas are lakes or aquatic areas, followed by
wooded areas. In contrast, the warmest areas are green areas without trees and with grass
cover and areas that have small constructions or buildings associated with green areas.

3.4. MTHI

The spatiotemporal analysis of the thermal comfort index (MTHI) of the areas under
study and under both environmental conditions can be found in Figures 8 and 9. The
average MTHI value of the entire city under normal conditions is 3.03 (hot), while under
heat wave conditions, it is 3.17 (hot). These values imply an average increase of 0.14 (4.42%).
It can be seen how the areas with the lowest MTHI and, therefore, with better environmental
comfort coincide with the areas with the lowest LST, that is, green areas with trees and
aquatic areas or lakes. On the other hand, the areas with the highest MTHI and, therefore,
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with the lowest environmental comfort are the areas with the highest LST and turf cover
and those that have small constructions or buildings.

Forests 2025, 16, x FOR PEER REVIEW 12 of 23 
 

 

which represents an average decrease of 5.46%. The largest declines were reported in 

Green Park (7.51%) and Regent’s Park (6.70%). Therefore, the results show that areas with 

greater tree cover and aquatic areas have a lower average LST both under normal condi-

tions and during the heat wave. Therefore, the results show that areas with larger aquatic 

areas (Table 1) and larger tree vegetation (Figure S7) have a lower average LST both under 

normal conditions and during the heat wave. 

 

Figure 7. LST under heat wave and non-heat wave (normal) conditions for different LULC classes 

of the city (a) and for different green areas (b). 

In Figures S9 and S10 of the Supplementary Materials, the isolines of LST can be seen 

both under normal conditions and under heat wave conditions. In both environmental 

conditions, it is reported that the least warm areas are lakes or aquatic areas, followed by 

wooded areas. In contrast, the warmest areas are green areas without trees and with grass 

cover and areas that have small constructions or buildings associated with green areas.  
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the city (a) and for different green areas (b).

Figure 10a shows how in the different LULC classes of the city, the MTHI presents
lower values under normal than under heat wave conditions. Thus, under normal condi-
tions, the highest average value (3.17) is in the urban land cover, while the lowest value
(2.63) is in the vegetation cover. The farmland coverage has an average value of 2.79. Under
heat wave conditions, the highest and lowest values of the MTHI correspond to the same
LULC classes, but with a generalized increase of 8.68%, 4.23%, and 6.38% in vegetation,
urban land, and farmland covers, respectively. The average value for each of the green areas
studied under normal environmental conditions is 2.50 (slightly hot), ranging from the
highest MTHI (2.87) for Clapham Park and Hyde Park (2.59) to the lowest (2.17) for Green
Park and 2.27 for Regent’s Park (Figure 10b). The values experience a generalized rise under
heat wave conditions in such a way that the average value is 3.34 (hot), which represents an
average increase of 25.15%. The largest increases were reported in Regent’s Park (41.79%)
and Burgess Park (33.15%). On the other hand, the smallest increases occurred in Hyde
Park (7.82%) and Clapham Park (15.83%). These results reflect several important factors to
consider: During extreme heat waves with temperatures above 40 ◦C, natural vegetation
mechanisms become saturated, and therefore, the vegetation mass does not cool as quickly
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as under normal conditions, as it cannot compensate for the excess heat. Green areas with
less vegetation are also more ventilated and can therefore disperse heat more easily. It
is also important to consider the urban areas adjacent to green areas, as these influence
the increase in environmental discomfort. That is, green areas located in hot urban areas
present worse comfort conditions than green areas located in less warm urban areas. Thus,
nearby urban development affects the comfort conditions of green areas when significant
temperature increases occur.
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Figure 8. Spatial pattern of MTHI in green areas in the city of London, under normal environmental
conditions.

Figure 11 shows how the surface area of each MTHI level in each green zone varies
when environmental conditions change from normal to heat wave conditions. In general
terms, it is reported that the low MTHI levels (1 and 2), and therefore more comfortable
levels, decrease their surface area when there is an increase in temperatures. Conversely, the
high MTHI levels (3, 4 and 5), and therefore less comfortable levels, increase their surface
area. Noteworthy are the significant increases in the surface areas of level 3 in Green
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Park and Regent’s Park of 42.22% and 38.28%, respectively, and of level 4 of 18.06% and
19.79%, respectively.
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3.5. Statistical Analysis
3.5.1. ANOVA of Variables

The ANOVA (Table S1 of the Supplementary Materials) applied to the investigated
variables (NDVI, NDMI, LST, and MTHI) revealed, through the Shapiro–Wilk test, that
the distributions do not follow a normal distribution in the green areas analyzed since
the p-value was less than 0.05. Due to this, to continue with the ANOVA analysis in
cases of non-normal distributions, it was necessary to apply the Kruskal–Wallis test. The
results (Table S1) show that all variables analyzed had a p-value of 0.000 in each green area
analyzed. This circumstance indicates that the variables NDVI, NDMI, LST, and MTHI
present statistically significant relationships, with a confidence level greater than 99%,
between the different green areas studied. According to the results obtained, it was found
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that the variables NDVI, NDMI, LST, and MTHI have statistically significant relationships,
with a confidence level higher than 99%, between the different green areas studied. In
this way, it is reported that each green area presents specific conditions (location, surface,
construction, vegetation, etc.) that influence the variables analyzed and, therefore, modify
said variables by presenting differences.
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3.5.2. Data Panel

First, and since these are parametric data that comply with normal distributions,
homogeneity of variances, and independence, the Pearson correlation was determined
to obtain the relationship between the variables (Table S2 of the Supplementary Materi-
als). The results show that the MTHI has a strong positive correlation with the LST and
NDMI variables and a weak negative correlation with the NDVI variable. All correlations
are statistically significant, which leads us to reject the null hypothesis and confirm the
correlations between the variables.

Subsequently, the Panel Data and the Generalized Least Squares method were used,
the results of which can be consulted in Table 5.

The results of the statistical analysis revealed a significant positive relationship
(p < 0.001) greater than 99% between the variables MTHI, NDMI, and LST, and a sig-
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nificant negative relationship (p < 0.001) greater than 99% between MTHI and NDVI. In
addition, the values of R2, F, and Prob > Chi2 reflect a strong agreement between the
variables, greater than 99%.
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Figure 11. Differences in surface area (%) MTHI between heat wave and non-heat wave conditions,
for each comfort level in the six green areas.

Table 5. Results data panel.

Variables Beta p-Value Sd

NDVI −0.3988 0.000 0.0572
NDMI 5.2391 0.000 0.1085

LST 0.3535 0.000 0.0328
R2 = 0.81 F = 4179.82 Prob > chi2 = 0.000

Note: β: coefficient; R2: linear regression coefficient; F: statistician F: Sd: standard deviation.

4. Discussion
This research has addressed how heat waves can modify the environmental comfort

conditions of the green areas of the city of London. The results obtained are of paramount
significance, given the multitude of studies that caution about a surge in heat waves in the
forthcoming decades due to climate change [2–4,9,53].

The results suggest that green areas have a cooling effect on the LST of the city, both
under normal conditions and during heat waves, and should, therefore, be considered
essential infrastructure for temperature mitigation. Our findings are consistent with those
of prior research, which show that urbanized and impermeable areas cause an increase in
the LST, while the increase in green areas produces a reduction in it [21,49].

During July 2022, the city of London suffered a heat wave that increased ambient
temperatures to 40 ◦C, breaking all temperature records in the country. While such temper-
atures are unprecedented in UK climate history, according to climate models, temperatures
above 40 ◦C could occur every 3–4 years by the end of the century in the country, under a
very high emissions scenario [54–56]. In addition to other atmospheric processes leading
to the incidence of this extreme event, dry conditions and a lack of moisture contributed
to elevated temperatures, pointing to the important role of green areas and soil moisture
feedback [31].
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The MTHI thermal index has made it possible to evaluate the thermal comfort of
the six green areas investigated and how it has intensified during the heat wave. Thus,
during a day of normal environmental conditions, the average MTHI of the green areas was
2.50 (slightly hot), while in heat wave conditions, it rose to an average value of 3.34 (hot).
These values imply an average increase of 25.15% and a significant reduction in people’s
environmental comfort conditions. This variation in the MTHI is consistent with previous
studies that highlight the importance of green infrastructure to mitigate urban heat [32].
This evolution of the MTHI demonstrates that even spaces traditionally considered thermal
refuge zones can become uncomfortable or even unhealthy under extreme conditions. By
linking the MTHI with variables such as the LST, NDMI, and NDVI, it has been possible
to identify that the presence of tree vegetation and water bodies effectively contributes
to reducing surface temperatures and improving comfort. Thus, the MTHI is positioned
as a useful tool not only for assessing the impact of heat waves in real time but also for
guiding urban design toward mitigation, adaptation, and thermal resilience strategies.
Therefore, the application of the MTHI allows for a spatial and temporal understanding
of thermal comfort gradients in the city and, thereby, informs more sustainable planning
policies focused on citizen well-being in the face of climate change.

The NDVI and NDMI related to vegetation and soil moisture showed higher values
under normal conditions than in ambient heat wave conditions. Conversely, LST presented
higher values in heat wave conditions as opposed to periods of normal environmental
conditions. These conditions are usually common during periods of heat waves. These
results provide scientific evidence of how heat affects the thermal comfort of green areas
and are in line with other studies that have used this index to assess thermal comfort in
urban areas, for example, in the city of Shanghai (China) in 2024 [32] or Jiangsu (China) [33],
that allow us to validate our results.

A key finding of the research is that within green areas, it has been detected that the
highest values of LST and MTHI are in areas that have buildings or soil with grass cover.
On the other hand, the lowest LST values and better comfort conditions are in green areas
with trees or areas with water or lakes. This circumstance has already been analyzed and
studied in other studies [22,29,30,57–60], obtaining similar results and validating those
obtained in this research. This circumstance is motivated by the shadows produced by
the trees, which reduce the solar radiation received and increase evapotranspiration. Both
issues reduce the LST of this wooded area.

Another option corroborated here and of great importance is the use of Blue Infras-
tructure (BI) such as lakes and ponds as an element to minimize LST and improve thermal
comfort. Thus, those green areas with smaller surfaces of lakes and ponds (Table 1) present
worse environmental comfort conditions and LST. Some studies have reported that these
can reduce temperatures by 11.33% for every 10% increase in coverage [60]. On the other
hand, lawn areas or areas with associated buildings receive solar radiation and heat up by
subsequently dumping that heat into the atmosphere. This situation has been investigated
by other authors [6,61], who have reached conclusions like those presented in this study.

The results of this study have significant implications for the development of envi-
ronmental policies focused on optimizing green areas as thermal mitigation tools in urban
environments. By providing empirical evidence on the thermal resilience of these areas,
our findings can contribute to the design of urban planning strategies that minimize the
effects of urban warming and improve population thermal comfort. Thus, the construction
of wooded green areas and the use of BI reduce temperatures and improve the quality of
life of visitors to these areas, as has been corroborated in numerous studies [22,59,60].

Metropolitan forests provide significant advantages for thermal comfort and climate
resilience; yet, their establishment and maintenance can pose challenges, particularly in
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populated or resource-constrained metropolitan destinations. To address this, native and
drought-resistant flora should be prioritized since they can significantly decrease irrigation
and maintenance needs. Secondly, community-based and volunteer activities can enhance
long-term care while simultaneously enhancing public engagement in the protection of
these areas.

Additionally, one of the main contributions of this study lies in the applicability and
replicability of the methodology employed [62,63]. The availability of open-access data and
the non-intrusive nature of the methodology facilitate its implementation in future studies,
favouring the development of sustainability and adaptive urban planning programs [64].

5. Conclusions
In this research, modification of the MTHI Environmental Comfort Index has been

studied in six urban forests in the city of London during July 2022. Our findings:

• Underscored the impact of elevated temperatures from heat waves on the thermal
comfort of individuals in green spaces. This situation affects individuals and has
future implications for these regions due to the anticipated rise in occurrences of
extreme temperatures in the years to come.

• Investigated the environmental discomfort measured by the MTHI, which goes from
2.5 (slightly hot) to 3.34 (hot) in heat wave conditions. This indicates a substantial
increase that considerably affects the environmental comfort of the people who visit
these areas to alleviate the effects of high temperatures in urban areas.

• Reported that the promotion of green areas with trees and the use of BIs increase
humidity and reduce temperatures, improving the thermal comfort of people who
visit the place.

• Provided a key contribution to the effectiveness of green space temperature mitigation
during heat waves in a city unfamiliar with these events.

• Offered a new methodology that allows for the analysis of comfort conditions in a way
that can be easily extrapolated to other locations.

• Highlighted the importance of conducting additional studies that explore how climate
change and heat waves will impact not only green areas but also the various activities
that people carry out in them.

• Revealed the need to implement mitigation and resilience measures in both urban
areas and green spaces.

• Suggested the urgent need to implement policies that prioritize climate resilience in
green area planning. It is crucial to promote the development of green and blue infras-
tructure, as well as to increase the density of tree cover to improve thermal comfort
and mitigate the effects of heat waves to make them more resilient to climate change.
In this way, the integration of thermal comfort in the planning and management of
spaces must be considered a fundamental element of public administration. In sum,
the following actionable insights for policymakers are suggested:

• Increase tree density in urban green spaces: trees considerably lower temperatures
and provide comfort during heat waves.

• Enhance tree coverage by choosing native and drought-resistant varieties.
• Preserve shade and evapotranspiration benefits by the regular maintenance of plants.
• Invest in green and blue infrastructure: such facilities reduce heat stress and promote

climate resilience over time.
• Incorporate thermal comfort indices such as MTHI into urban planning to en-

hance the evaluation and design of public spaces that are appropriate for future
climate conditions.
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• Prioritize climatic adaptability when constructing ecological zones: cities must plan
for increased frequency of heat waves and implement suitable measures.

• Identify sensitive areas and people: use geographical data to determine the areas
where interventions such as planting and shade are most needed.

• Advocate for transdisciplinary urban climate research: policies should be based on
robust and scalable methodologies and the results of scientific studies.

6. Limitations
This study has several limitations. First, no in situ measurements were made; in-

stead, the analysis relied solely on remotely sensed data sources. This could affect the
accuracy of specific environmental indicators. Future research recommends including
in situ measurements, such as direct measurements of temperature, relative humidity,
or thermal perception by park users, to improve upon results obtained through remote
sensing. Integrating surface environmental sensors and user surveys into future studies
would allow comparison of satellite indices with actual thermal experience, improving the
robustness and applicability of the conclusions. Another limitation is that this study did
not determine species-specific variations in trees, which could influence the effectiveness
of thermal regulation. This may provide an avenue for future studies to examine the role of
this factor in thermal comfort.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/f16050790/s1. Figure S1. 3D image of the green areas investigated.
Source: Prepared by the authors using Google Earth images. Figure S2. Relationships between LST,
NDMI and MTHI. Figure S3. Spatial pattern of NDVI in green areas in the city of London, under
normal ambient conditions. Figure S4. As in Figure S3 but for heat wave environmental conditions.
Figure S5. Spatial pattern of NDMI at green areas in the city of London, under normal ambient
conditions. Figure S6. As in Figure S5 but for heat wave environmental conditions. Figure S7. Spatial
pattern of LST in green areas in the city of London, under normal environmental conditions. Figure
S8. As in Figure S7 but for heat wave environmental conditions. Figure S9. LST isolines at green
areas in the city of London, under normal environmental conditions. Figure S10. As in Figure S9 but
for heat wave environmental conditions. Table S1. ANOVA test results for variables NDVI, NDMI,
LST Y MTHI. Table S2. Pearson correlation coefficient and p value between MTHI and other variables
investigated.

Author Contributions: Conceptualization, D.H.-G., D.F., H.R., A.E.J. and M.A.; methodology, D.H.-
G., D.F., H.R., A.E.J. and M.A.; software, D.H.-G., D.F., H.R., A.E.J. and M.A.; validation, D.H.-G.,
D.F., H.R., A.E.J. and M.A.; formal analysis, D.H.-G., D.F., H.R., A.E.J. and M.A.; investigation,
D.H.-G., D.F., H.R., A.E.J. and M.A.; resources, D.H.-G., D.F., H.R., A.E.J. and M.A.; data curation,
D.H.-G., D.F., H.R., A.E.J. and M.A.; writing—original draft preparation, D.H.-G., D.F., H.R., A.E.J.
and M.A.; writing—review and editing, D.H.-G., D.F., H.R., A.E.J. and M.A.; visualization, D.H.-G.,
D.F., H.R., A.E.J. and M.A.; supervision, D.H.-G., D.F., H.R., A.E.J. and M.A.; project administration,
D.H.-G., D.F., H.R., A.E.J. and M.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data will be available upon request to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Song, J.; Chen, W.; Zhang, J.; Huang, K.; Hou, B.; Prishchepov, A.V. Effects of building density on land surface temperature in

China: Spatial patterns and determinants. Landsc. Urban Plan. 2020, 198, 103794. [CrossRef]
2. MCGregor, G.R.; Felling, M.; Wolf, T.; Gosling, S. The Social Impacts of Heat Waves; Environment Agency: Bristol, UK, 2007; 41p.

https://www.mdpi.com/article/10.3390/f16050790/s1
https://www.mdpi.com/article/10.3390/f16050790/s1
https://doi.org/10.1016/j.landurbplan.2020.103794


Forests 2025, 16, 790 20 of 22

3. Lemonsu, A.; Viguié, V.; Daniel, M.; Masson, V. Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat
island and heat stress in Paris (France). Urban Clim. 2015, 14, 586–605. [CrossRef]

4. Li, D.; Bou-Zeid, E. Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the
sum of its parts. J. Appl. Meteorol. Climatol. 2013, 52, 2051–2064. [CrossRef]

5. Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of
Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [CrossRef]

6. Hidalgo García, D.; Arco Díaz, J. Modeling of the Urban Heat Island on local climatic zones of a city using Sentinel 3 images:
Urban determining factors. Urban Clim. 2021, 37, 100840. [CrossRef]

7. Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [CrossRef]
8. Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat

island. Int. J. Climatol. 2003, 23, 1–26. [CrossRef]
9. Hidalgo, D. Analysis of synergies between the Urban Heat Island and Heat Waves using Sentinel 3 satellite images: Study of

Andalusian cities (Spain). Earth Syst. Environ. 2021, 6, 199–219. [CrossRef]
10. ONU. Una Población en Crecimiento. 2020. Available online: https://www.un.org/es/global-issues/population (accessed on

7 May 2025).
11. Mukherjee, F.; Singh, D. Assessing Land Use–Land Cover Change and Its Impact on Land Surface Temperature Using LANDSAT

Data: A Comparison of Two Urban Areas in India. Earth Syst. Environ. 2020, 4, 385–407. [CrossRef]
12. Guo, A.; Yang, J.; Xiao, X.; Xia, J.; Jin, C.; Li, X. Influences of urban spatial form on urban heat island effects at the community

level in China. Sustain. Cities Soc. 2020, 53, 101972. [CrossRef]
13. Hidalgo García, D.; Rezapouraghdam, H. Climate change, heat stress and the analysis of its space-time variability in european

metropolises. J. Clean. Prod. 2023, 425, 138892. [CrossRef]
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