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Abstract: This paper presents a novel methodology for estimating space- and time-
dependent source terms in heat and mass diffusion problems. The approach combines
classical integral transform techniques (CITTs) with the least squares optimization method,
enabling an efficient reconstruction of source terms. The method employs a double ex-
pansion framework, using both spatial eigenfunction and temporal expansions. The new
presented idea assumes that the source term can be expressed as a spatial expansion in
eigenfunctions of the eigenvalue problem, and then each transient function associated
with each term of spatial expansion is rewritten as an additional expansion, where the
unknown coefficients approximating the transformed source enable the direct use of the
solution in the objective function. This, in turn, results in a linear optimization problem that
can be quickly minimized. Numerical experiments, including one-dimensional and two-
dimensional scenarios, demonstrate the accuracy of the proposed method in the presence
of noisy data. The results highlight the method’s robustness and computational efficiency,
even with minimal temporal expansion terms.

Keywords: inverse problems; integral transforms; source term reconstruction; least squares

1. Introduction
Playing a fundamental role in various engineering and biomedical applications, In-

verse Heat Transfer Problems (IHTPs) aim to estimate unknown parameters or functions,
such as thermal properties [1–3], boundary conditions [4,5], or heat sources [6,7], based on
an observable quantity, most commonly temperature measurements. Several approaches
for formulating and solving inverse problems have been extensively developed over the
past decades and are compiled in classical compendiums, such as [8–14]. Inverse problems
are known for their ill-posed nature, requiring specific techniques during formulation and
solution procedures to ensure regularization and physically meaningful solutions.

The primary motivation for this work is the inverse problem of estimating space-
and time-dependent source terms in the diffusion equation. This topic has significant
applications across various fields. We can cite application in medicine, where Mehrabanian
and Nejad [6] estimate the source term in a bioheat transfer equation to determine the
amount of heat needed to eliminate cancerous tissue; in environmental modeling, where
Permanoon, Mazaheri, and Amiri [15] propose the inverse problem of reconstructing source
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terms in a pollutant dispersion model for rivers; also in the context of pollution source
identification, Mahar and Datta [16] present excellent results working with groundwater
under transient flow and transport conditions; Ling et al. [17] perform inverse estimation
of water and fluid leaks from storage tanks and water reservoirs with geomembranes;
and Shrivastava and Oza [18] aimed at the identification of origin terms in accidents like
Fukushima. Other applications are discussed in [19–22], among several other works that
could be cited.

Many researchers have focused their efforts over the past decades on proposing
methodologies that ensure good accuracy in parameter and function estimation, better
adaptation to noisy measurements, and diminution of the high computational cost that
these inverse problem solutions may require. In the context of source term estimation,
we can highlight strategies such as sequential ones [23,24] that include methods like the
Kalman filter [25], continuously updating parameter estimates as new measurements are
received, ideal for handling dynamic systems and real-time updates, such as capturing
moving sources [26]; explicit methods such as presented by Negreiros et al. [27], who
developed a methodology based on integral transformation to estimate space- and time-
dependent source terms using transformed measurements. Still in the context of using
integral transforms for source estimation, Oliveira et al. [7,28] extended this approach and
presented studies on three-dimensional problems, incorporating automatic selection of
the truncation for the inverse problem solution and extending it to nonlinear diffusive-
advective problems. We may also cite the modified polynomial expansion method proposed
by Kuo, Liu, and Chang [29], which aims to identify the heat source by discretizing the
time and space fields using a characteristic length approach. This method helps stabilize
the resulting linear system and ensures a good solution to the inverse problem.

The least squares technique has also played a fundamental role in the context of inverse
problems for source term estimation, due to its effectiveness in adjusting parameters to
minimize the difference between observed and predicted data in the model [8,12]. Several
optimization methods have been integrated into the least squares approach to obtain robust
source term estimates, such as the work by Golsorkhi and Tehrani [30], which performs
inverse estimation of the source term strength in a one-dimensional conduction problem
using an application of the Levenberg–Marquardt method [31,32] with a good convergence
rate; Wen, Liu, and Wang [33] combine the conjugate gradient method with a least squares
formulation to solve the inverse problem of simultaneously identifying the source term
and initial data in time-fractional diffusion problems; and other combinations [34,35].

The inverse problem of source term estimation is typically addressed by analyzing
temperature measurements of the phenomenon or system under investigation. These
data often contain measurement errors, contributing to the ill-posed nature of the inverse
problem—small variations in the input data (measurement noise) are typically amplified in
the solution, potentially leading to significant errors in the estimated parameters. Mathe-
matical processes known as regularization methods help stabilize the solution and mitigate
these effects. Among the various techniques available in the literature, one can find the
Tikhonov regularization [36] is the most classical, which consists of minimizing a func-
tional to determine the smooth solution to the inverse problem. Besides this, we have the
Morozov’s discrepancy principle, ref. [37], which defines that the iterative method should
be stopped if the discrepancy between the approximate solution and the observed data
is approximately equal to the noise level present in the data, as well as Least Absolute
Shrinkage and Selection Operator (LASSO) [38] and the singular value decomposition
(SVD) method [39]. In the context of regularization of inverse problems, the formulations
adopted within the Bayesian inference framework should also be cited, utilizing Markov
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Random Fields (MRFs) priors for regularization. These formulations provide a robust
approach and contribute to solution stabilization [13,40,41].

This work presents a new methodology for estimating space- and time-dependent
source terms by combining the classical integral transformation technique (CITT) [42,43]
with the least squares optimization method. The key idea is based on the assumption that
the source term can be expressed as a spatial expansion in eigenfunctions of the eigenvalue
problem, as performed in [7,27]. Each transient function associated with each term of
the spatial expansion is then rewritten as an additional expansion, where the unknown
coefficients approximating the transformed source enable the direct use of the solution
in the objective function. This, in turn, results in a linear optimization problem that can
be rapidly minimized, as described in Knupp [1]. Error control in the data is performed
using the discrepancy principle to determine the final truncation of the inverse problem
solution [27,44].

This article is organized as follows: first, in Section 2, the general formulation of
the direct problem and the classical integral transformation technique for its solution are
presented; next, in Section 3, the inverse problem of source term estimation is formulated;
in Section 4, application examples for one-dimensional and two-dimensional scenarios are
provided; finally, in Sections 5 and 6, the numerical results and the conclusion of the work
are presented, respectively.

2. Classical Integral Transform Technique
Given a domain Ω in Rn with boundary ∂Ω, and considering a time interval [0, tmax],

the diffusion process is governed by the classical partial differential equation, in a general
manner, following the mathematical formulation:

w(x)
∂ϕ(x, t)

∂t
−∇ · [k(x)∇ϕ(x, t)] + d(x)ϕ(x, t) = g(x, t), (x, t) ∈ Ω × (0, tmax] (1)

α(x)ϕ(x, t) + β(x)k(x)
∂ϕ(x, t)

∂n
= ξ(x, t), (x, t) ∈ ∂Ω × (0, tmax] (2)

ϕ(x, 0) = f (x), x ∈ Ω, t = 0 (3)

where ϕ(x, t) represents the concentration or temperature at position x and time t, w is the
capacity coefficient, k is the diffusion coefficient, d is the linear dissipation coefficient, α

and β are general boundary condition coefficients, which can be employed to defined first,
second, or third kind boundary conditions, ξ is the boundary source term, and g(x, t) is the
equation source term that varies arbitrarily in space and time. Even though this differential
equation can be directly addressed using the Classical Integral Transform Technique,
the convergence of the resulting eigenfunction expansion—measured by the number of
terms required to accurately approximate the solution—can be significantly improved
by minimizing the influence of the boundary source term, as discussed in ref. [43]. In
particular, transforming the problem into a homogeneous boundary condition formulation
leads to faster convergence of the series solution, as the non-homogeneous boundary
conditions typically introduce slower-decaying modal contributions. Thus, consider the
linear filter:

ϕ(x, t) = ϕ f (x, t) + ϕ∗(x, t) (4)

in which ϕ f is the simplest possible filter function aimed at homogenizing the bound-
ary condition of the filtered problem formulation, or at least reducing the importance
of the boundary source term, where ϕ∗ is the filtered potential. Thus, applying it to
Equations (1)–(3), one obtains:
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w(x)
∂ϕ∗(x, t)

∂t
−∇ · [k(x)∇ϕ∗(x, t)] + d(x)ϕ∗(x, t) = g∗(x, t), (x, t) ∈ Ω × (0, tmax] (5)

α(x)ϕ∗(x, t) + β(x)k(x)
∂ϕ∗(x, t)

∂n
= ξ∗(x, t), (x, t) ∈ ∂Ω × (0, tmax] (6)

ϕ∗(x, 0) = f ∗(x), x ∈ Ω, t = 0 (7)

such that

g∗(x, t) = g(x, t) +∇ ·
[
k(x)∇ϕ f (x, t)

]
− d(x)ϕ f (x, t)− w(x)

∂ϕ f (x, t)
∂t

(8)

ξ∗(x, t) = ξ(x, t)− α(x)ϕ f (x, t)− β(x)k(x)
∂ϕ f (x, t)

∂n
(9)

f ∗(x) = f (x)− ϕ f (x, t) (10)

The formal solution of the filtered partial differential equation defined by Equations (5)–(7)
starts with the definition of a transform–inverse pair, which can be defined as:

Transform : ϕ̄∗
i (t) =

∫
Ω

w(x)ψ̃i(x)ϕ∗(x, t)dΩ (11)

Inverse : ϕ∗(x, t) =
∞

∑
i=1

ϕ̄∗
i (t)ψ̃i(x) (12)

The term ψ̃i(x) present in Equations (11) and (12) represents normalized eigenfunctions
obtained through the Sturm–Liouville problem via a direct application of the method of
separation of variables to the homogeneous version of Equations (1) and (2):

∇ · [k(x)∇ψi(x)] +
[
µ2

i w(x)− d(x)
]
ψi(x) = 0, x ∈ Ω (13)

α(x)ψi(x) + β(x)k(x)
∂ψi(x)

∂n
= 0, x ∈ ∂Ω (14)

with norm and the normalized eigenfunctions given, respectively, by:

Ni =
∫

Ω
w(x)[ψi(x)]

2dΩ (15)

ψ̃i(x) =
ψi(x)√

Ni
(16)

Operating on Equations (5)–(7) with
∫

Ω ψ̃i(x)(·)dΩ yields a system of ordinary differ-
ential equations, given by:

dϕ̄∗
i (t)
dt

+ µ2
i ϕ̄∗

i (t) = ḡ∗i (t) +
∫

A=∂Ω

ξ∗(x, t)
[
k(x) ∂ψ̃i(x)

∂n − ψ̃i(x)
]

α(x) + β(x)
dA (17)

f̄ ∗i =
∫

Ω
w(x)ψ̃i(x) f ∗(x)dΩ (18)

where the transformed source term, represented as ḡ∗i (t), is given by:

ḡ∗i (t) = ḡi(t)− ḡ f
i (t) (19)

ḡi(t) =
∫

Ω
ψ̃i(x)g(x, t)dΩ (20)

ḡ f
i (t) =

∫
Ω

ψ̃i(x)

[
−∇ ·

[
k(x)∇ϕ f (x, t)

]
+ d(x)ϕ f (x, t)− w(x)

∂ϕ f (x, t)
∂t

]
dΩ (21)
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Once the solution to the system of Equations (17) and (18) is found, applying the
inverse formula Equation (12) yields the solution to the filtered problem defined by
Equations (5)–(7):

ϕ∗(x, t) =
∞

∑
i=1

ψ̃i(x)e−µ2
i t
[

ϕ̄∗
i +

∫ t

0
eµ2

i t′ ḡ∗i (t
′)dt′

]
(22)

observing the filter Equation (4), the final solution is ultimately obtained by:

ϕ(x, t) = ϕ f (x, t) +
∞

∑
i=1

ψ̃i(x)e−µ2
i t
[

ϕ̄∗
i +

∫ t

0
eµ2

i t′ ḡ∗i (t
′)dt′

]
(23)

3. Source Term Reconstruction
Consider that the physical problem has an analytical solution given by Equation (23).

From a computational perspective, we denote that the calculated temperature ϕ̂ is the
solution of Equation (23) truncated with M terms. Thus:

ϕ̂(x, t) = ϕ f (x, t) +
M

∑
i=1

ψ̃i(x)e−µ2
i t
[

ϕ̄∗
i +

∫ t

0
eµ2

i t′ ḡ∗i (t
′)dt′

]
(24)

where ψi(x) are eigenfunctions of the eigenvalue problem, defined in Equations (13) and (14).
The objective is to reconstruct the source term g(x, t), treated as unknown in the

problem, and here expressed as an eigenfunction expansion on the same basis used to repre-
sent the potential, i.e., the one given by the eigenvalue problem in Equations (13) and (14),
following the same principle discussed in refs. [7,27,28]. Thus:

ĝ(x, t) =
NT

∑
i=1

ψ̃i(x) ˆ̄gi(t) (25)

Differently from refs. [7,27], in the present work, the time-dependent expansion
coefficients themselves, ˆ̄gi(t), are represented by a modified classical Fourier expansion
with a linear filter, as follows:

ˆ̄gi(t) = ˆ̄gi,0 +
ˆ̄gi,Nc − ˆ̄gi,0

tmax
t +

Nc−1

∑
n=1

(
ˆ̄ai,n cos

nπt
tmax

+ ˆ̄ci,n sin
nπt
tmax

)
(26)

with t ∈ [0, tmax]. This representation allows for straightforward analytical integration of
the integral in Equation (24), yielding an algebraic expression for the calculated potential
in terms of constant expansion coefficients of the unknown source term, here denoted as G:

G = [ ˆ̄gi,0, ˆ̄gi,Nc , ˆ̄ai,n, ˆ̄ci,n, . . .]T , for i = 1, . . . , M and n = 1, . . . , Nc − 1. (27)

Assuming experimental measurements of the potential are available, ϕe, at positions
s ∈ Ω × [0, tmax], the following residuals between calculated values and experimental
measurements can be defined for each point s, in terms of the unknown parameters G:

Rs(G) = ϕ̂s(G)− ϕe
s , s = 1, 2, . . . Nd (28)

Therefore, for a total of Nd observations, we have:

R = [R1, R2, . . . , RNd ] (29)

thus, the ultimate goal is to minimize the sum of the squared residuals, as defined by the
following objective function:
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min
G∈RNp

S(G) =
Nd

∑
s=1

R2
s (30)

where the vector of unknown parameters G is determined by minimizing the discrepancy
between the model response and the experimental data, as quantified by the objective
function S(G).

In Equation (30), Np means the number of parameters to be estimated in G, where it
depends on the truncation M and the number of coefficients that make up the temporal
expansion Nc. That is:

Np = 2MNc (31)

The optimal solution to Equation (30) is determined by the Gauss–Newton method [45],
initiated through an initial guess G0:

Gn+1 = Gn −
[
JT

n Jn

]−1
JT

n R(Gn), n = 0, 1, 2, 3, . . . (32)

in which J is the sensitivity Jacobian matrix of the coefficients:

J =
∂R
∂G

(33)

with
Jn,j =

∂Rn

∂Gj
, for n = 1, . . . , Nd and j = 1, . . . , Np. (34)

It is very important to note that, with the representation adopted in this work, the
residual vector R depends linearly on the sought parameters G. Consequently, the sensitiv-
ity matrix J is independent of G, and the iterative procedure in Equation (32) converges
with a single iteration [1,46].

To stabilize the inversion in the Gauss–Newton method, we incorporate Tikhonov
regularization by adding the term λI to the system matrix, where λ ∈ R+ is a scalar
regularization parameter and I ∈ RNp×Np is the identity matrix, following the formula
below [47]:

Gn+1 = Gn −
[
JT

n Jn + λI
]−1

JT
n R(Gn), n = 0, 1, 2, 3, . . . (35)

This approach helps mitigate issues related to ill-conditioning and improves the
robustness of the parameter estimation.

Simulated Data and Error Propagation Control

It is common for real experimental data to be contaminated with measurement errors
that naturally occur during the process of obtaining the temperature field. The synthetic
data used in the simulations of this work will consider situations where these measurements
have errors with a normal distribution of known standard deviation σe and mean µ equal
to zero, as formulated:

ϕe
s = ϕnum

s + ϵs, ϵs ∼ η(0, σe) (36)

in a manner that ϕe
s represents the simulated experimental data at position s, ϕnum

s is the
numerical solution of the direct problem, and ϵs is the measurement error, η, assumed
to follow a normal distribution of errors with a mean of 0 and a standard deviation of
σe. To prevent uncertainties from propagating through the inverse problem solution, the
truncation of the solution of Equation (25) is controlled by the discrepancy principle [8,37],
where the variance of the data, σ̂2(NT), defined by Equation (37), should be close to the
known experimental variance σ̂2(NT) ≡ σ2

e .



Fluids 2025, 10, 106 7 of 22

σ̂2(NT) =
1

Nd

Nd

∑
s→1

[
ϕe

s − ϕ̂s(ĝ)
]2 (37)

Therefore, the selection of the best truncation is performed by minimizing the absolute
value of the difference between the estimated variance and the target variance.

In this work, we consider the automatic truncation selection algorithm with the
rapid computation of potentials for inverse problems that use the assumption given by
Equation (25), as presented in Oliveira et al. [28]. Thus, the automatic selection is deter-
mined by the minimum argument of the distance between the computed variance, σ̂2, and
the target variance, expressed by σ2

e , which is previously known, as follows:

arg min
∣∣∣σ̂2(NT)− σ2

e

∣∣∣, NT = 1, 2, . . . (38)

where NT represents the truncation of the solution series for the inverse problem, presented
in Equation (25). The estimated potentials for the truncated solution at NT can be obtained
based on the previous truncated solution at NT − 1, avoiding redundant calculations by
leveraging the orthogonality of the eigenfunction. Thus, the potentials estimated using the
recovered source can be obtained by:

ϕ̂(x, t; ĝNT ) = ϕ̂(x, t; ĝNT−1) +
M

∑
i=1

ψ̃i(x)e−µ2
i t
∫ t

0
eµ2

i t
′
[

ˆ̄gNT (t
′
)
∫

V
ψ̃i(x)ψ̃NT (x)dV

]
dt

′
(39)

where ĝNT represents the estimated source truncated at NT :

ĝNT =
NT

∑
i=1

ψ̃i(x) ˆ̄gi(t) and ĝNT − ĝNT−1 = ψ̃NT (x) ˆ̄gNT (t) (40)

more details can be found in Oliveira et al. [28].

4. Benchmark Examples
4.1. One-Dimensional Case

For the one-dimensional case, considering the geometry Ω1 = [0, Lx] and the classical
one-dimensional model for a heat conduction problem, where the potential ϕ here denotes
the temperature field, measured in ◦C or K:

1
α

∂ϕ(x, t)
∂t

− ∂2ϕ(x, t)
∂x2 =

1
k

g(x, t), (x, t) ∈ Ω1 × (0, tmax] (41)

∂ϕ(x, t)
∂x

= 0, x = 0, t ∈ (0, tmax] (42)

hϕ(x, t) + k
∂ϕ(x, t)

∂x
= hϕ∞, x = L, t ∈ (0, tmax] (43)

ϕ(x, 0) = ϕ0, t = 0 (44)

For simplicity, the thermophysical properties are constant and named as follows:
the ϕ [◦C] temperature distribution; thermal diffusion coefficient, α [m2/s]; the thermal
conductivity of the material is represented by k [W/mK]; the heat generation rate (source
term) is expressed as g(x, t) [W/m3]; the convective heat transfer coefficient is indicated
by h [W/m2K]; ambient temperature is represented as ϕ∞ [◦C]; and the initial temperature
condition is ϕ0 [◦C]. The length of the material is Lx [m], and diffusion occurs over a
time interval [0, tmax] [s]. All these terms can be directly associated with the coefficients
presented in the general formulation presented in Equations (1)–(3).
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The solution of the problem defined by Equations (41)–(44) begins with the simple
filter ϕ(x, t) = ϕ∞ + ϕ∗(x, t), following the methodology presented in Section 2. Therefore,
the solution is obtained:

ϕ(x, t) = ϕ∞ +
M

∑
i=1

ψ̃i(x)e−αµ2
i t
[

ϕ̄∗
i +

α

k

∫ t

0
eαµ2

i t′ ḡi(t′)dt′
]

(45)

in such a way that the transformed source term and the transformed initial condition are
represented, respectively, by Equation (46) and Equation (47).

ḡi(t) =
∫

Ω1

ψ̃i(x)g(x, t)dΩ1 (46)

ϕ̄i =
∫

Ω1

ψ̃i(x)(ϕ0 − ϕ∞)dΩ1 (47)

The eigenvalue problem associated with the filtered version of the problem has a
solution represented by Equation (48), with the transcendental Equation (49) and the
inverse of the norm Equation (50).

ψi(x) = cos (µix) (48)

µi tan (µiLx) =
h
k

(49)

1
Ni

= 2
µ2

i +
(

h
k

)2

Lx

(
µ2

i +
(

h
k

)2
)
+ h

k

(50)

4.2. Two-Dimensional Case

For the two-dimensional case, the inverse problem in transient heat transfer in a
plate with heat generation g will be analyzed, subject to boundary conditions that include
convection on one edge and thermal insulation on the others. In this case, the domain will
be given by Ω2 = [0, Lx]× [0, Ly], as follows:

1
α

∂ϕ(x, y, t)
∂t

−∇2ϕ(x, y, t) =
1
k

g(x, y, t), (x, y, t) ∈ Ω2 × (0, tmax] (51)

hϕ(x, y,t) + k
∂ϕ(x, y,t)

∂x
= hϕ∞, at x = Lx, t ∈ (0, tmax] (52)

∂ϕ(x, y, t)
∂n

= 0, at x = 0, y = 0, and y = Ly, t ∈ (0, tmax] (53)

ϕ(x, y, 0) = ϕ0, t = 0 (54)

The solution to this problem starts with the use of the filter for the initial condition
formulated as ϕ(x, y, t) = ϕ∞ + ϕ∗(x, y, t). Then, the solution to the problem is:

ϕ(x, y,t) = ϕ∞ +
M

∑
i=1

ψ̃i(x, y)e−αµ2
i t
[

ϕ̄∗
i +

α

k

∫ t

0
eαµ2

i t′ ḡi(t′)dt′
]

(55)

where
ḡi(t) =

∫
Ω2

ψ̃i(x, y)g(x, y,t)dΩ2 (56)

ϕ̄i =
∫

Ω2

ψ̃i(x, y)(ϕ0 − ϕ∞)dΩ2 (57)
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and the solution to the bi-dimensional eigenvalue problem is given by:

ψi(x, y) = Xp(x)Yq(y) (58)

where Xp(x) and Yq(y) represent solutions of the problem using the method of separation
of variables, with solutions given by [42]:

Xp(x) = cos (ζpx), Yq(y) = cos
(
γqy

)
(59)

so that ζp are the eigenvalues of the eigenvalue problem in the variable x and γq are the
eigenvalues of the eigenvalue problem in the variable y, which can be obtained from:

ζp tan (ζpLx) =
h
k

, γq =
(q − 1)π

Ly
(60)

The eigenvalues associated with the eigenfunctions ψi, represented by µi, will be
determined by:

µ2
i = ζ2

p + γ2
q (61)

The eigenvalues are reordered so that the smallest values of µi are used first in the
final solution, achieving convergence gains [43].

5. Numerical Results
The experimental measurements were simulated using the numerical differential

equations solver routine NDSolve from the symbolic computation platform Wolfram Math-
ematica [48], version 11.3, using the finite element method.

To quantify the accuracy of the estimated source terms, the root mean square error
(RMSE) between the estimated and exact sources was calculated using:

gRMSE =

√√√√ 1
Nd

Nd

∑
s=1

[ĝs − gs]
2 (62)

where s represents each simulated experimental measurement location in space and time,
and Nd is the total number of observed measurements. The RMSE provides a robust metric
to evaluate the fidelity of the estimated compared to the exact source term, enabling a
detailed analysis of the method’s performance.

The following presents the numerical results of the estimates for some reference cases
of the one-dimensional and two-dimensional models, as described in Sections 4.1 and 4.2.
In all cases, the modified Fourier expansion, represented by Equation (26), was considered,
with Nc = 15.

5.1. One-Dimensional Analysis

In the one-dimensional case, we consider the parameters defined in the work by
Negreiros et al. [27], given by Ω1 = [0, 0.05 m], ϕ0 = 30 ◦C, ϕ∞ = 20 ◦C, h = 100 W/m2K,
α = 1.153 × 10−7 m2/s, and k = 0.2 W/mK and the sources:

Source I: g(x, t) = 106 sin
(

πt
200

)
sin

( πx
0.05

)
W/m3 (63)

Source II: g(x, t) =


106 sin

( xπ
0.05

)
, 50 ≤ t ≤ 150

0, otherwise
W/m3 (64)
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In the first analysis, we have the continuous space-time source term given by Equation (63)
and represented in Figure 1a, distributed in smooth oscillatory components in both time
and space. The maximum time interval of analysis will be [0, 200] s, where the source will
exhibit peak values of energy supply to the model Equation (41).
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Figure 1. Surface of the exact source terms for the one-dimensional cases. (a) Case with σe = 0.2 ◦C;
(b) case with σe = 0.5 ◦C.

For the second analysis, the heat source is modeled as a piecewise function, formulated
by Equation (64) and represented in Figure 1b, activated within a specific time interval
50 ≤ t ≤ 150 s, introducing an abrupt variation in heat generation. The spatial distribution
is also sinusoidal with an amplitude of 106. This type of modeling is frequently used to
represent pulsed energy sources.

For the inverse problem, a total of 26 sensors are located along the x-axis, distributed
at equally spaced points, starting at x = 0 and ending at x = L. The transient measure-
ments were obtained starting from t = 0 s up to tmax = 200 s, at intervals of 8 s, totaling
26 observations. Thus, the amount of simulated data for the input of the inverse problem
is Nd = 676. The truncation of the direct problem solution, presented in Section 4.1, was
considered to be M = 20, where, as seen in Tables 1 and 2, the values start to show stability
at the order of 10−2 at t = 100 s.

Table 1. Convergence of CITT solution for the one-dimensional case I with source Equation (63) at
t = 100 s.

t = 100 s M = 5 M = 10 M = 15 M = 20 M = 25 NDSolve

x = 0.01 50.64 51.32 51.22 51.23 51.23 51.23
x = 0.02 64.62 64.40 64.33 64.33 64.33 64.33
x = 0.03 64.13 64.40 64.33 64.40 64.33 64.33
x = 0.04 51.12 51.15 51.03 51.05 51.05 51.05
x = 0.05 25.59 25.57 25.40 25.38 25.36 25.34

Table 2. Convergence of CITT solution for the one-dimensional case I with source Equation (64) at
t = 100 s.

t = 100 s M = 5 M = 10 M = 15 M = 20 M = 25 NDSolve

x = 0.01 46.22 46.85 46.75 46.76 46.75 46.75
x = 0.02 57.38 57.17 57.10 57.11 57.10 57.10
x = 0.03 56.90 57.17 57.11 57.11 57.10 57.10
x = 0.04 46.68 46.68 46.56 46.58 46.57 46.57
x = 0.05 24.92 24.91 24.74 24.72 24.70 24.70

The simulated input data for the inverse problem are generated by the numerical
solution of the problem presented in Section 4.1 using the NDSolve solution routine, with
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added noise deviations of σe = 0.2 and 0.5 ◦C. Each set of simulated data generated for
each noise level was used as input for the inverse problem.

Figures 2 and 3 present comparative profiles between the exact source, Equa-
tions (63) and (64), and the inverse problem solutions, respectively, with fixed points
at the center of the temporal domain, illustrating the estimation along the x-axis
(Figures 2a and 3a), and a fixed point (x = 0.025 m) at the center of the spatial domain,
illustrating the estimation over time (Figures 2b and 3b). It can be observed that the
approach effectively captures the characteristics of the proposed sources, even in the
case where there is a temporal discontinuity, Equation (64), as represented in Figure 3b.
Figures 4 and 5 show the estimated surface plot for the considered noise levels, where
the influence of noise is visible between Figure 4a,b for the source in Equation (63), and
Figure 5a,b for the source in Equation (64).
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Figure 2. Comparison between the exact source term and inverse problem solutions for different
noise levels in the input data for the one-dimensional case. (a) Temperature profile at t = 100 s;
(b) temperature evolution at x = 0.025 m.
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Figure 3. Comparison between the exact source term Equation (64) and the inverse problem solu-
tions for different noise levels. (a) Temperature profile at t = 100 s; (b) temperature evolution at
x = 0.025 m.



Fluids 2025, 10, 106 12 of 22

0 1 2 3 4 5

·10−2

0
50

100
150

200

0

0.2

0.4

0.6

0.8

1

·106

x[m] t[s]

g
[W

/m
3
]

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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Figure 4. Inverse problem surface solutions for different noise levels in the input data for the
one-dimensional case, source term Equation (63). (a) Solution with σe = 0.2 ◦C; (b) solution with
σe = 0.5 ◦C.
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Figure 5. Inverse problem surface solutions for different noise levels in the input data for the
one-dimensional case, source term Equation (64). (a) Solution with σe = 0.2 ◦C; (b) solution with
σe = 0.5 ◦C.

Figure 6 illustrates the steps of the regularization process. Figure 6a presents the
automatic selection process based on the discrepancy criterion, where the estimates with
noise standard deviation σe = 0.2 ◦C allow the inclusion of a greater number of terms in
the solution series. Figure 6b displays the L-curve, which assists in selecting the parameter
λ, ensuring a balance between smoothness and sensitivity of the problem.

Table 3 presents the RMSE of the inverse problem solution compared to the exact
source. It is observed that the source defined by Equation (64) exhibits greater estimation
difficulty due to the abrupt changes in the transient part of the source.

These results demonstrate the robustness of the approach presented in this work for
source estimation problems in the one-dimensional case.

Table 3. RMSE for the estimates of Equations (63) and (64) for the one-dimensional case.

Source I, Equation (63) Source II, Equation (64)

σe gRMSE × 105 gRMSE × 105

0.2 0.2205 0.8859
0.5 0.3361 0.9825
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Figure 6. One-dimensional regularization behaviors for the inverse problem. (a) Regularization based
on the discrepancy principle; (b) Tikhonov regularization approach.

5.2. Two-Dimensional

In the two-dimensional case, we consider the spatial domain Ω2 = [0, 0.05 m] ×
[0, 0.05 m], with ϕ0 = 30 ◦C, ϕ∞ = 20 ◦C, h = 15 W/m2K, α = 1.153 × 10−7 m2/s, and
k = 0.2 W/mK, and the heat source described by Equation (65):

g(x, y, t) =

0, 0 ≤ x < 0.0125 or x > 0.0375 and 0 ≤ y < 0.0125 or y > 0.0375

106q(t), 0.0125 ≤ x ≤ 0.0375 and 0.0125 ≤ y ≤ 0.0375
W/m3 (65)

where

q(t) =
(

1 − 2
∣∣∣∣ t
100

− 0.5
∣∣∣∣) (66)

or

q(t) =

1, if 10 ≤ t ≤ 40 or 60 ≤ t ≤ 90,

0, otherwise.
(67)

This heat source is characterized by a function that defines a central region in the
domain Ω2. Outside this central spatial region, the source term is null, indicating that heat
generation is concentrated in a delimited central area, while no generation occurs in the
peripheral regions. When the source intensity is defined by Equation (66), the behavior is
transient, exhibiting an increasing and decreasing ramp, forming a symmetric triangular
profile within the interval [0, 100 s]. For the source intensity defined by Equation (67),
the behavior is pulsed, characterized by abrupt transitions between active and inactive
periods over time. This is typical for scenarios where heat generation occurs cyclically or
intermittently, such as laser heating processes [49], activation cycles in electronic devices,
or biomedical applications with periodic thermal exposure [19,50]. Figure 7 illustrates
the spatial behavior when the heat intensities reach their peak values, at t = 50 s, for
Equation (66), for t = 25 and 75 s, for Equation (67).

In the inverse problem, 11 temperature sensors were considered along each axis x and
y, totaling 121 sensors in the plate domain starting at x, y = 0 and the last ones ending
at x, y = 0.05 m, and 26 transient observations with intervals of 4 s, starting at t = 0
and ending at tmax = 100 s. Now, we considered the solution truncation M was fixed
at 120 terms and data contaminated by noise with standard deviations σe = 0.2 ◦C and
σe = 0.5 ◦C.
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Figure 7. Surface of the two-dimensional exact source term given by Equation (65) with q(t) defined
by Equation (66) at t = 50 s or q(t) defined by Equation (67) at t = 25 s and t = 75 s.

Figure 8 presents the estimation results for the heat source, where q(t) is defined by
Equation (66). Figure 8a,b shows the transient estimation profile at two spatial points, while
Figure 8c,d illustrates the spatial behavior at t = 50 s, the moment when the source reaches
its maximum intensity. The corresponding surface plot can be observed in Figure 9.

Similarly to the previously presented results, Figure 10 shows the estimation profiles
of the inverse problem for the heat source defined by Equation (67). In Figure 10a,b, it is
observed that the transient estimation with a double abrupt transition is well captured by
the proposed expansion, preserving its main characteristics. Figure 10c–f presents some
spatial estimation profiles at the time instants when the source reaches its maximum value.
Figure 11 provides a visualization of the corresponding surface plot.

The graphical results and the RMSE presented in Table 4 show that the estimation for
the noise level σe = 0.2 ◦C is naturally more accurate, although both estimates are effective
in capturing the spatial behavior. Additionally, Table 4 also includes the solution truncation
NT , automatically selected, and the Tikhonov regularization parameter.

These results demonstrate the capability of the proposed methodology to reconstruct
complex source terms in two-dimensional problems, proving to be efficient and capturing
the local and temporal characteristics of the source term effectively.

Table 4. RMSE for the estimates of Equation (65) for the two-dimensional case.

q(t) Equation (66) q(t) Equation (67) Tikhonov Parameter

σe gRMSE × 105 NT gRMSE × 105 NT λ

0.2 0.6248 117 0.6820 118 10−3

0.5 1.3322 93 1.3558 93 10−3
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Figure 8. Comparison between the exact source term and inverse problem solutions for differ-
ent noise levels in the input data for the two-dimensional case, with q(t) given by Equation (66).
(a) Profile at x = 0.025 m and y = 0.025 m; (b) x = 0.03 m and y = 0.03 m; (c) t = 50 s and y = 0.015 m;
(d) t = 50 s and x = 0.015 m.
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Figure 9. Inverse problem surface solutions for different noise levels in the input data for the
two-dimensional case, with q(t) given by Equation (66). (a) Case with σe = 0.2 ◦C; (b) case with
σe = 0.5 ◦C.
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Figure 10. Comparison between the exact source term and inverse problem solutions for differ-
ent noise levels in the input data for the two-dimensional case, with q(t) given by Equation (67).
(a) Profile at x = 0.025 m and y = 0.025 m; (b) x = 0.03 m and y = 0.03 m; (c) t = 25 s and y = 0.035 m;
(d) t = 75 s and y = 0.035 m; (e) t = 25 s and x = 0.015 m; (f) t = 75 s and x = 0.015 m.
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Figure 11. Inverse problem surface solutions for different noise levels in the input data for the
two-dimensional case, with q(t) given by Equation (67). (a) t = 25 s and σe = 0.2 ◦C; (b) t = 75 s and
σe = 0.2 ◦C; (c) t = 25 s and σe = 0.5 ◦C; (d) t = 75 s and σe = 0.5 ◦C.

6. Concluding Remarks
This work introduces a novel methodology for estimating space- and time-dependent

source terms using integral transforms combined with the least squares method. The
results demonstrate the robustness, accuracy, and computational efficiency of the proposed
approach, even in the presence of significant noise in the input data. The test cases, ranging
from one-dimensional to two-dimensional scenarios, highlight the method’s ability to
handle a wide variety of complex problems.

The main contributions of the proposed method include the ease of implementation
due to analytical integrations for the temporal expansion, simplifying its computational
implementation. Furthermore, the results indicate high resilience to noise, achieving
satisfactory reconstructions even at elevated levels of standard deviation in the data. The
modified Fourier expansion for the temporal part of the source term allows the method
to adapt to various types of dynamic behaviors, ranging from smooth oscillations to
discontinuous or localized effects.

In conclusion, the methodology presented in this work provides a powerful tool
for reconstructing source terms in heat transfer problems, with significant potential for
adaptation and expansion into new areas of application. The results obtained reinforce the
method’s relevance and encourage further exploration of its capabilities.
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Abbreviations
The following abbreviations are used in this manuscript:

IHTP Inverse Heat Transfer Problem
CITT Classical Integral Transform Technique
RMSE Root Mean Square Error
SVD Singular Value Decomposition
LASSO Least Absolute Shrinkage and Selection Operator
MRF Markov Random Field

Nomenclature

d linear dissipation coefficient
f initial function
g volumetric heat source term
G vector of temporal expansion coefficients
h convective heat transfer coefficient
I identity matrix
J sensitivity matrix
k diffusion coefficient
M truncation order of the direct problem solution
n outward-drawn normal to the surface ∂Ω
Nc number of temporal coefficients in the expansion
Nd number of experimental data points
Ni normalization integral
Np number of parameters
NT truncation order of the inverse problem solution
q source intensity
R residual vector
S objective function
t time variable
tmax final time of the observation
w capacity coefficient
x spatial coordinate
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x vector containing the spatial coordinates
X eigenfunction of the Sturm–Liouville problem in x
y spatial coordinate

Y
eigenfunction of the Sturm–Liouville problem in y

Greek letters
α potential boundary condition coefficient
β flux boundary condition coefficient
γ eigenvalue of the Sturm–Liouville problem
ϵ measurement noise
ζ eigenvalue of the Sturm–Liouville problem
η normal distribution
λ Tikhonov regularization parameter
µ general eigenvalue of the Sturm–Liouville problem
ξ general boundary function
σe standard deviation of measurement noise
ϕ temperature or concentration field
ϕ∞ external environment temperature
ϕ0 initial temperature
ϕ f filter
ϕnum numerical solution
ϕe simulated experimental data
ψ general eigenfunction of the Sturm–Liouville problem
Ω domain region
Subscripts and superscripts
∗ filtered
ˆ computed via expansion or truncated solution
¯ integral transform
˜ normalized eigenfunction
i, p, q index of eigenfunctions and eigenvalues

s
spatial and temporal location of the simulated
experimental data

n Gauss–Newton iteration
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