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a fusocelular skin dataset with 
whole slide images for deep 
learning models
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Cutaneous spindle cell (CSC) lesions encompass a spectrum from benign to malignant neoplasms, 
often posing significant diagnostic challenges. Computer-aided diagnosis systems offer a promising 
solution to make pathologists’ decisions objective and faster. These systems usually require large-scale 
datasets with curated labels for effective training; however, manual annotation is time-consuming and 
expensive. To overcome this challenge, crowdsourcing has emerged as a popular and valuable strategy 
to scale up the labeling process by distributing the effort among different non-expert annotators. 
This work introduces AI4SkIN, the first public dataset Whole Slide Images (WSIs) for CSC neoplasms, 
annotated using an innovative crowdsourcing protocol. AI4SkIN dataset contains 641 Hematoxylin 
and Eosin stained WSIs with multiclass labels from both expert and trainee pathologists. The dataset 
improves CSC neoplasm diagnosis using advanced machine learning and crowdsourcing based on 
Gaussian Processes, showing that models trained on non-expert labels perform comparably to those 
using expert labels. In conclusion, we illustrate that AI4SkIN provides a good resource for developing 
and validating methods for multiclass CSC neoplasm classification.

Background & Summary
Cutaneous spindle cell (CSC) lesions represent a diagnostically challenging group of tumors composed of 
spindle-shaped cells, often arranged in fascicles. Despite this common morphology, they include a wide range 
of entities, from reactive to malignant, with overlapping features that complicate the accurate classification1. A 
reliable diagnosis is necessary to predict their behavior, the outcome and survival rates2. The most frequent CSC 
neoplasms are: leiomyomas (lm), leiomyosarcomas (lms), dermatofibromas (df), dermatofibrosarcomas (dfs), 
spindle cell melanomas (scm), atypical fibroxanthomas (afx), and squamous cell carcinoma (scc). Visual exam-
ples of those neoplasms are provided in Fig. 1.

Spindle cell tumor diagnosis depends on both morphological and immunohistochemical criteria, but subtle 
variations between entities can make interpretation difficult, especially for pathologists in training1. A struc-
tured, pattern-oriented diagnostic framework can support more accurate identification and differentiation of 
these lesions. Table 1 outlines the key features that differentiate various spindle cell neoplasms. Accurate classifi-
cation relies on the pathologist’s ability to evaluate specific histological criteria, including: (1) growth pattern, (2) 
cellular density, (3) cytological features, (4) nature and extent of extracellular matrix, (5) tumor-stroma interface, 
(6) vascular characteristics, (7) presence of necrosis, and (8) mitotic count. At low magnification, features such 
as preserved tissue architecture, zonation, symmetry, and cellularity assist in distinguishing benign from malig-
nant lesions. In contrast, high-power views highlighting nuclear atypia and atypical mitoses are more indicative 
of malignancy.
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Machine Learning (ML) techniques have excelled as a tool to perform automatic diagnosis in histopatho-
logical images3. These methods are included in Computer-Aided Diagnosis (CAD) systems, aiming to provide 
further insights and support to pathologists4. For ML techniques to work effectively, they need large and diverse 
datasets often with labeled data, which are time-consuming and difficult to create. Crowdsourcing has become 
a popular strategy for labeling histopathological data by distributing the task among many annotators with dif-
ferent levels of expertise5.

While crowdsourcing has yielded accurate results in simpler tasks, such as detecting nuclei or cancer cells6, 
it can introduce errors in more complex tasks like subtype classification7,8. To mitigate this, labels from different 
annotators are often combined to create a more accurate dataset, which is then used for training a classifier, e.g., 
by label aggregation9–11. However, recent studies show that this approach may not be the best, as models that 
account for each annotator’s errors during training tend to perform better12. New methods have been developed 
to learn from noisy labels provided by non-experts, achieving performance similar to that of expert-labeled 
datasets in histopathological tissue classification. Among them, stands out SVGPCR13,14, which is based on 
Gaussian Processes (GPs), a non-parametric probabilistic classifier that takes into account the uncertainty while 
modeling and prediction. The main advantage of GPs is that they are not prone to overfit and can perform fairly 
well with a small amount of data, which is usually the case in medical imaging tasks15–18.

This work presents AI4SkIN, the first public dataset of complete WSIs from CSC neoplasms. The dataset is 
created using a new crowdsourcing protocol, which is an extension of the one described for the binary classifica-
tion of CSC neoplasms19. AI4SkIN includes multiclass labels and 641 WSIs with Hematoxylin and Eosin (H&E) 
stains, along with labels from 2 expert pathologists and 10 pathologists in training. This resource aims to help 
researchers improve the diagnosis and prediction of challenging CSC neoplasms by developing methods to learn 
from crowd labels. Additionally, the dataset is validated with state-of-the-art crowdsourcing methods based on 
GPs and implemented in Python. To the best of our knowledge, there is no publicly available dataset that allows 
the multiclass classification of CSC neoplasms.

Fig. 1 Representative patches extracted from the most common CSC neoplasms19: (a) leiomyoma, (b) 
leiomyosarcoma, (c) dermatofibroma, (d) dermatofibrosarcoma, (e) spindle cell melanomas, (f) atypical 
fibroxanthoma and (g) squamous cell carcinoma.

Tumor type Benignity Malignancy

Origin tumor Significant patterns Name Features Name Features

Smooth muscle cells
Spindle cells with 
eosinophilic cytoplasm 
Elongated nuclei (pure form)

Leiomyoma No mitosis (exceptional) 
No frequent atypia Leiomyosarcoma Mitoses always present Nuclear atypia

Connective tissue cells Spindle cells with a swirling 
or storiform pattern Dermatofibroma

May have mitosis 
Multinucleated cells 
Epidermal ridges

Dermatofibrosarcoma
Few but present mitoses No 
multinucleated cells Epidermis more 
flattened

Melanocytic cells Spindle cell fascicles — — Spindle cell melanoma Mitoses ≥ 2/mm2 Significant atypia

Squamous cells Spindle cell fascicles with 
variable cohesiveness — — squamous cell carcinoma Mitosis Nuclear atypia

Fibroblasts Spindle-shaped, histiocytoid 
and multinucleated cells — — Atypical fibroxanthoma Solar elastosis Multinucleated cells 

Atypical mitoses

Table 1. Overview of the histopathological features of spindle cell neoplasms included in the dataset19.
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Methods
Study approval. All participants in the study provided written informed consent for the use of their data in 
this research, in accordance with approvals granted by the Ethics Committees of the University Clinic Hospital of 
Valencia (Hospital Clínico Universitario de Valencia - HCUV) and the San Cecilio University Hospital (Hospital 
Universitario San Cecilio - HUSC). Both committees issued favorable opinions regarding the study and its consent 
procedures, corresponding to approvals no. 2020/245 and no. 2/22, respectively. The study was conducted within 
the framework of the AI4SkIN project, funded by the Spanish Ministry of Science and Innovation (grants PID2019-
105142RB-C21 and PID2019-105142RB-C22), and adhered to the ethical principles outlined in the Declaration 
of Helsinki. Additionally, the Research Ethics Committee of the Universitat Politécnica de Valéncia (UPV), acting 
as the coordinating institution, issued a favorable report for the project (reference P07-08-07-2020). The authors 
ensured that all data in the study were appropriately de-identified and handled securely and confidentially to safe-
guard participants’ rights and welfare, in full compliance with informed consent and ethical research standards.

Selection and preparation of the slides. The AI4SkIN dataset is composed of two different datasets 
obtained from the Departments of Anatomical Pathology at HCUV (Valencia, Spain) and HUSC (Granada, 
Spain). Each dataset comprises, respectively, 284 and 357 H&E slides from skin tissue samples taken from 588 
patients collected from the hospitals’ archives according to the pathology reports.

Digitization and Pre-processing. The formalin-fixed paraffin-embedded (FFPE) tissue blocks and slides from 
all selected cases were collected from the institutions’ archives. For the AI4SkIN database, the HCUV and the 
HUSC selected cases from the last 10 years, ensuring recent and relevant data. However, for spindle cell carci-
noma, the search was extended to 20 years, given its infrequency in comparison to the other groups.

Slides from HCUV related to the selected cases were retrieved from the hospital archives. A qualified pathol-
ogist (LT) chose the optimal slide for each case, after which all slides were digitized to be specifically used for 
this study. In the case of the HUSC, images already digitized from the HUSC system were used, which cover a 
period of up to 5 years, corresponding to the scope of the hospital’s digital storage. To complement this, addi-
tional slides were selected and digitized from the physical archive, to expand the database with images that were 
not previously digitized. After digitization, WSIs were examined by qualified pathologists (LT at HUCV and JA 
at HUSC) for quality problems such as blurring, artifacts, or inadequate coloration. Images that did not meet 
quality standards were either rejected or re-scanned.

The digitization process at HCUV was carried out using Roche’s scanner, Ventana iScan HT, equipped with a 
40× objective lens (0.227 M/pixel) and directly saved in .tif file format. At HUSC, the slides were scanned using 
Philips Ultra Fast Scanner, which automatically provides images at 40× magnification, resulting in a resolution of 0.25 
microns per pixel. Images were generated in Philips-specific .isyntax format, ensuring high quality and fidelity. For its 
use and analysis, these WSIs were converted to .tiff format using the Philips Image Management System (IMS). The 
digitization process at both centers encompassed a maximum magnification of 40×, including all levels down to 5×.

Expert labels. Two expert pathologists (LT, JA) re-evaluated the slides to confirm the diagnosis for each case 
and to label each image. Specifically, one pathologist (LT) examined the 284 images from HCUV, while the other 
pathologist (JA) reviewed the 357 images associated with HUSC. Each whole-slide image (WSI) corresponds to 
one of the seven types of CSC neoplasms under study. Table 2 details the content of the AI4SkIN dataset.

Pathologist-in-training labels. Ten pathologists-in-training participated in the study. In this case, four resident 
pathologists belonged to the HCUV and six to the HUSC. Four pathologists-in-training were in their fourth year 
of residency, three in their third year, one in their second year and two in their first year. An annotation protocol 
was designed to ensure that the 75% of WSIs were annotated by at least one pathologist-in-training. In concrete, 
82 images were annotated by all pathologists-in-training (dense set). In contrast, the rest were only annotated by 
some pathologists (non-dense set).

Each pathologist-in-training assigned a global label (image level) to each WSI corresponding to one of the 
seven considered types of neoplasms. In Fig. 2, the agreement between annotators is shown by means of the 
Kappa score in the dense set for each pair of raters20 and the MV and expert labels. The Kappa score ranges 
between −1 (total disagreement) and 1 (total agreement). In our dataset, we observe that the agreement with the 
expert label is low. Furthermore, the agreement between annotators is neither strong nor substantial, indicating 
the wide range of non-expert opinions present in the dataset.

lm lms df dfs scm afx scc Total

HCUV 31 23 102 21 48 44 15 284

HUSC 73 23 93 36 74 58 — 357

Total 104 46 195 57 122 102 15 641

Table 2. AI4SkIN dataset distribution. CSC neoplasms contained in the dataset (lm:leiomyomas; lms: 
leiomyosarcomas; df:dermatofibromas; dfs: dermatofibrosarcomas; scm: spindle cell melanomas; afx: atypical 
fibroxanthomas; scc: squamous cell carcinoma.).
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Data Record
The complete AI4SkIN dataset is available in Figshare21. The dataset consists of two components. There is 
a zipped file named “WSI.7z” containing the digitalized slides grouped in folders according to the subtype. 
Additionally, a spreadsheet referred to as “AI4SkIN_Database.xlsx”, which includes the histopathological 
diagnosis for each case (expert and pathologist-in-training labels) is provided.

Image Data. Each TIF file is named according to the following format AI4SkIN_HOSPITAL_NUMBER_
SAMPLE.tif. 

•	 HOSPITAL: This will be either HUSC or HCUV, depending on the hospital.
•	 NUMBER: A unique random number assigned to each file.
•	 SAMPLE: Indicates the biopsy sequence. Start with A for the initial biopsy. Additional biopsies for the same 

patient will be labeled from B to F.

Technical Validation
To validate the dataset proposed in this paper, we present a GP-based approach to classify WSIs of CSC 
neoplasms, see Fig. 3. We discarded the ‘scc’ class because is underrepresented, and conducted the experiments 
with the remaining 626 WSIs. For this validation, we compare two types of approaches: those using pathologist-
in-training labels and those using expert labels. Regarding approaches using non-expert labels, we studied four 
label aggregation models (i.e., MV, DS9, MACE10 and GLAD11). These models perform the classification in two 
stages. In the first stage, they aggregate the labels into a unique ‘curated’ label. MV uses majority voting, while 
DS, GLAD, and MACE perform smarter aggregation by estimating annotator biases. In the second stage, a GP 
classifier is applied with the aggregated labels. Apart from these label aggregation approaches, we also explore the 
SVGPCR model13, which jointly estimates annotator biases, true labels, and the GP classifier during the training 
process. Regarding approaches using expert labels, we present a GP classifier with these labels. Since expert labels 
are considered the ground truth for this task, this model would be the upper bound on performance.

Fig. 2 Agreement between annotators: Kappa score.

Fig. 3 Technical validation for the AI4SkIN dataset.
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The dataset is divided into train/validation/test sets (see Table 3), ensuring a homogeneous distribution 
across the six studied classes. We also ensure that WSIs coming from the same patient belong to the same 
set. To provide a learning-from-crowds setting, in the training and validation sets, we include WSIs with 
Pathologist-in-training labels, while the test set only contains WSIs with expert labels. For a fair comparison, 
each approach utilizes the same hyperparameters and follows the same optimization procedure, namely an RBF 
kernel, 200 inducing points, a minibatch size of 64, and the Adam optimizer with a learning rate of 10−2. Five 
independent runs are conducted for each model and results were averaged for comparison.

Data pre-processing and feature extraction. The WSIs are divided into 512 × 512 patches without 
overlap at a magnification of 10×. The Otsu threshold method is applied to the magenta channel to separate tis-
sue from the background. Patches containing less than 20% tissue are discarded. Leveraging the success of recent 
foundation models trained on diverse histopathological tissue, we obtain an ambedding for each patch using the 
following features extractors: VGG16-IN22, UNI23, PLIP24, and CONCH25. While VGG16-IN is pre-trained on 
ImageNet, the rest are foundation models pretrained with histopathological images. These foundation models 
aim to achieve general-purpose models for any task in computational pathology. Once the embedding is obtained 
for each single patch within a WSI, they are averaged across all patches to obtain a global feature vector for the 
WSI. These vectors serve as input to the GP classifiers.

WSI classification results. Table 4 depicts the global results using the different feature extractors. In gen-
eral, we observe that the performance of VGG16-IN is inferior to that of the benchmark models, regardless of 
the label modeling. Overall, the best feature extractor is CONCH, which achieves an F1 score of 88.22 % with 
the GP using expert labels on the test set for the six-class classification problem. As expected, approaches using 
pathologist-in-training labels experienced a decrease in performance. In particular, models conducting label 
aggregation (i.e., MV, GLAD, MACE, and DS) perform worse than SVGPCR. Remind that SVPGCR benefits 
from learning from the annotator’s experience along with the latent classifier, achieving an F1 score of 80.45% 
with the CONCH model. 

Table 5 reports the per-class results using CONCH as feature extractor. We can observe the clear superiority 
of the model using expert labels. In contrast, the other models see their performance harmed by the noise intro-
duced by pathologist-in-training labels. Among them, SVGPCR stands out, which remains stable in the different 
classes. The models that aggregate labels obtain a very low value in the lms class, especially MV that obtained an 
F1 score of 0 in this class.

Limitations. The dataset has several limitations. Firstly, the number of images is relatively small compared 
to other tumor types, reflecting the lower prevalence of these specific lesions. A notable limitation is the class 
imbalance, with some categories underrepresented due to their less frequent occurrence. Additionally, the images 
were acquired using two different scanners, which could affect the consistency and generalizability of the find-
ings. Despite these challenges, the dataset offers valuable insights into spindle cell tumors and serves as a useful 
resource for future research and development in this area.

Class

Train Val Test

HCUV HUSC HCUV HUSC HCUV HUSC

lm 19 36 8 11 4 26

lms 16 9 3 8 4 6

df 75 50 23 10 4 33

dfs 9 17 1 8 11 11

scm 32 52 7 12 9 10

afx 36 33 6 4 2 21

Table 3. Number of WSIs in each class and hospital in the train, validation, and test subsets.

Model VGG16-IN UNI PLIP CONCH

MV 0.5424 ± 0.0251 0.5891 ± 0.0134 0.6101 ± 0.0055 0.6005 ± 0.0046

GLAD11 0.5477 ± 0.0118 0.5317 ± 0.1573 0.6142 ± 0.0094 0.6655 ± 0.0096

MACE10 0.5007 ± 0.0207 0.6156 ± 0.0245 0.6295 ± 0.0048 0.6589 ± 0.0096

DS9 0.5566 ± 0.0168 0.6541 ± 0.0216 0.6497 ± 0.0113 0.6910 ± 0.0211

SVGPCR13 0.6760 ± 0.0127 0.7540 ± 0.0180 0.7248 ± 0.0205 0.8045 ± 0.0103

Expert 0.6379 ± 0.0173 0.7825 ± 0.0225 0.7523 ± 0.0145 0.8822 ± 0.0078

Table 4. Macro-averaged F1 score through the six classes. We utilize several feature extractors and labeling 
configurations. All models were run 5 times and then the metrics were averaged. We also report the standard 
deviation.
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Code availability
The code to extract processing the dataset and the technical validation is implemented in Python and is available 
at GitHub (https://github.com/vipgugr/AI4SkIN-technical-validation). The foundational models used to 
extract the WSI embeddings are implemented in Pytorch and publicly available. The crowdsourcing models and 
classifiers are implemented using GPflow 1.2.0, a framework that utilizes Gaussian Processes, accelerated by 
TensorFlow to enable GPU computation.
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