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Resumen

Las infraestructuras civiles son vitales para el desarrollo de las sociedades: impulsan
el crecimiento económico, reducen la pobreza y mejoran la calidad de vida de los ciudada-
nos. Es por ello que evitar el deterioro debido a la exposición a factores medioambientales,
el incremento en cargas de uso y los sucesos extremos, supone un auténtico reto poĺıtico
y social. Un mantenimiento eficaz es crucial para garantizar la seguridad, la capacidad
de servicio y la durabilidad de estas estructuras, por lo que la monitorización de la salud
estructural tá cobrando cada vez más importancia. Entre las técnicas de monitorización
de salud estructural, una de las más ampliamente utilizadas es el seguimiento de los
parámetros modales obtenidos mediante la monitorización de vibraciones con aceleróme-
tros. Sin embargo, estos sensores presentan ciertas limitaciones, como la alta sensibilidad
a las condiciones climáticas.

El presente TFM explora el análisis modal de deformaciones como alternativa a la
monitorización de vibraciones basada en acelerómetros. El estudio se centra en la opti-
mización de la colocación de las galgas extensiométricas mediante el uso del algoritmo de
Independencia Efectiva (IE). El objetivo principal de esta investigación es validar dicho
algoritmo en estructuras reales a través de dos casos de estudio: una estructura de la-
boratorio y una pasarela peatonal real. La metodoloǵıa implica el desarrollo de Modelos
de Elementos Finitos (MEFs) en SAP2000, la implementación del algoritmo de IE en
Python y la aplicación del análisis modal operacional (OMA) en ambas estructuras. El
estudio también incorpora la inferencia bayesiana mediante el método de Monte Carlo
Markov Chain para actualizar el MEF de la estructura de laboratorio basándose en los
parámetros modales identificados mediante el Análisis Modal Operacional.

Los resultados demuestran la aplicabilidad de galgas extensiométricas en la realización
de análisis modal operacional en deformaciones, y la eficacia del algoritmo de IE para
la colocación óptima de estos sensores, proporcionando valiosos conocimientos para la
aplicación práctica de sistemas monitorización de la salud estructural en infraestructuras
del mundo real.
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Abstract

Infrastructure is vital for societal development, driving economic growth, reducing
poverty, and enhancing quality of life. However, infrastructure faces challenges such
as deterioration and damage due to environmental factors, operational loads, and ex-
treme events. Effective maintenance is crucial for ensuring the safety, serviceability, and
durability of these structures, making Structural Health Monitoring (SHM) increasingly
important. Among SHM techniques, Vibration-Based Monitoring (VBM) is widely used,
traditionally employing accelerometers to assess modal properties. However, these sensors
have certain limitations, such as reduced sensitivity to local defects.

This Master Thesis explores strain modal analysis as an alternative to accelerometers-
based VBM. The study focuses on optimizing the placement of Strain Gauges (SGs) by the
use of the Effective Independence (EfI) algorithm. The primary objective of this research
is to validate the EfI method in real structures through two case studies: a laboratory
steel frame and an in-operation pedestrian footbridge. The methodology involves the
development of Finite Element Models (FEMs) in SAP2000, the implementation of the
EfI method in Python, and the application of Operational Modal Analysis (OMA) on
both structures. The study also incorporates Bayesian Inference using the Markov Chain
Monte Carlo (MCMC) method to update the steel frame FEM based on modal parameters
identified by OMA.

The results demonstrate the applicability of SGs in conducting deformation-based
OMA and the effectiveness of the EfI algorithm for the optimal placement of these sensors.
These findings offer valuable insights for the practical application of SHM systems in real-
world infrastructure.
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Chapter 1

Motivation, Objectives and
Methodology

1.1. Motivation

Infrastructure plays an essential role in society, serving as a key driver for reducing
poverty, promoting economic growth, improving social cohesion, and enhancing the qual-
ity of life and well-being [1–3]. This importance is reflected in the significant investments
that public institutions make in constructing and maintaining civil infrastructure. For
example, the average EU investment in infrastructure in recent years exceeds 1.5% of
GDP [4], representing only a portion of the total investments made in buildings and
other structures.

However, as infrastructure ages, deterioration and damage might appear due to expo-
sure to environmental and operational loads, faulty design, construction errors or extreme
events such as earthquakes [5]. In the US, 7.5% of the nation’s bridges are considered
structurally deficient, meaning they are in “poor” condition [6]. In Europe, many road
bridges over 100 m in the major European transport corridors of the Trans-European
Transport Network (TEN-T) are carrying significantly larger loads than they were orig-
inally designed for, and many of these structures are reaching the end of their expected
lifespan [7].

To prevent deterioration and ensure safety, serviceability, and durability, preventive
maintenance emerges as the most cost-effective strategy. Reference [8] provides different
examples supporting this approach. For instance, in the case of roads, it was found that
returns on maintenance were almost twice as much as those on projects involving mainly
new construction. This trend was even more pronounced in Latin America, where every $1
not spent on maintenance is estimated to result in $3 to $4 in premature reconstruction [8].
The disparity is even greater for power lines, where the expenditure of $1 million to reduce
power line losses could save $12 million in generating capacity [8].

Reflecting the growing emphasis on maintenance, the markets for Structural Health
Monitoring (SHM) and related technologies are expanding rapidly. For example, the Eu-
ropean SHM market is forecasted to grow at a Compound Annual Growth Rate (CAGR)
of 16.3% by 2030 [9]. A similar trend is observed in the US, where the SHM market is
expected to grow at a CAGR of 18.8% by 2030 [10]. Regarding digital twins for buildings,
its global market is projected to grow at a CAGR of 32.6% from 2024 to 2032 [11].

One of the most widely used techniques for guiding maintenance is Vibration-Based
Monitoring (VBM). VBM is a non-destructive method that identifies a system’s modal
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properties (natural frequencies, damping rates and mode shapes) to assess its condition
state and identify damage. Traditionally, VBM is performed using accelerometers, but
this approach has well-known limitations to identify local defects with reduced impact
on the overall stiffness of structures [12–14].

Alternatively, the strain modal analysis is a promising VBM technique due to its high
sensitivity to local damage [15–17]. It can be performed with SGs, that are cost-effective
and easy to install sensors that measure strain at the point in which they are located.

For strain modal analysis to be fully cost-effective, it is important to avoid redundant
information, ease data management, and minimize costs. Optimal Sensor Placement
(OSP) is defined as the placement of sensors that results in the least amount of monitoring
cost while meeting predefined performance requirements [18]. OSP for strain modal
analysis has not been fully covered in the literature and is of significant interest for its
potential to enhance the efficiency of strain-based VBM.

1.2. Objectives

The primary objective of this work is to demonstrate the effectiveness of the Effective
Independence (EfI) method for parameter identification in real structures. This main
objective is structured around the following sub-objectives:

O1 Validate the use of conventional SGs and low-cost electronic equipment for con-
ducting strain-based OMA.

O2 Compare the linear independence of extracted mode shapes using optimally and
sub-optimally (following purely engineering criteria) placed SGs.

O3 Employ strain modal properties for parameter inference through a Bayesian Ap-
proach.

1.3. Methodology

The methodology of the project is articulated around the following key steps:

Literature review of strain modal analysis and OSP techniques for strain sensors,
with special focus on the EfI method.

Development of a Finite Element Model (FEM) in SAP2000 for two cases of study:
a laboratory steel frame and a real-world steel footbridge.

Implementation of the EfI method in Python with the use of SAP2000 Open Ap-
plication Programming Interface (OAPI), to determine the OSP of SGs in both
structures.

Perform OMA on both case studies using optimal and sub-optimal sensor configu-
rations. For the steel footbridge, output data is simulated, as the real monitoring
campaign is scheduled for September.

Implementation of the Markov Chain Monte Carlo (MCMC) method in Python to
perform model updating through Bayesian Inference in the laboratory steel frame.
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1.4. State of the Art

1.4.1. Strain Modal Analysis

Damage is defined as any significant factor influencing the structural behaviour in such
a way that leads to degradation in the current or future performance of a structure [19].
VBM detects and localizes damage by analyzing its effects on the modal properties of
the structure, such as frequencies, mode shapes, and damping ratios. OMA enables
the identification of the modal parameters by only measuring the output response of
the monitored structure without knowing the input excitation forces. When OMA is
performed in civil engineering structures, accelerometers are commonly used [20]. On
this basis, the modal parameters, namely natural frequencies, (displacement) mode shapes
and damping ratios, are estimated from the ambient vibration response of the structure.

One of the main challenges for VBM based on accelerometers is to identify charac-
teristics that are sensitive to damage yet unaffected by environmental factors [20–22].
Natural frequencies, in particular, are not immune to such influences: they can vary by
2-3% due to daily changes in temperature [17, 23] and even more significantly in some
cases1. The impact of local damage on natural frequencies can be so minimal that it
might be completely masked by the frequency variability, as seen in [24]. Consequently,
natural frequencies are generally only effective in identifying moderate or severe damage,
as demonstrated in [13].

Displacement mode shapes have the advantage of being much less dependent on
weather conditions [25], being more effective for damage localization (e.g. through its
effect on modal curvature [15]). However, this approach requires a dense spatial dis-
cretization of the mode shapes with a large number of sensors, as well as some processing
of the obtained mode shapes, which can introduce significant errors [20]. In addition,
local damage to hyperstatic structures not only causes changes in modal shapes in that
area, but also outside it, which makes it difficult to localise the damage.

As an alternative, strain modal analysis can be performed to obtain both vibration
frequencies and strain mode shapes. One key advantage of strain mode shapes is the fact
that they are insensitive to temperature effects, as demonstrated in different experiences
in both laboratory and real civil engineering structures [16, 17, 24]. Additionally, strain
mode shapes are highly sensitive to local damage, making them effective for damage
localization, as demonstrated in [24]. Furthermore, related strain modal properties more
suited for damage localization, such as modal curvatures, can be directly obtained by
strategically locating the strain sensors (e.g. on the upper and lower parts of beams),
as shown in [26]. This method is significantly more accurate than deriving displacement
mode shapes, as discussed in [20].

The most commonly used strain sensor are: Strain Gauges (SGs), Fiber Bragg Grating
(FBG) and Distributed Optical Fiber Sensors (DOFS). SGs (see Figure 1.1a) are particu-
larly suitable in situations where size, weight, or sensor placement are key constraints [27].
Some examples of their use in VBM can be found in references [28, 29]. FBG sensors
(depicted in Figure 1.1b) are frequently employed when the aforementioned limitations
regarding size and placement are not restrictive. These sensors offer quasi-distributed
strain information, making them very attractive in civil engineering structures. Some
examples of their application can be found in [16,17,24]. Additionally, DOFS (see Figure

1For instance, variations exceeding 13% were observed for all identified frequencies in [13], due to the
effect of temperature on the deck pavement stiffness.
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1.1c) are being increasingly adopted due to their capability to provide continuous assess-
ment of strain along the length of the sensor. An example of its application on a real
bridge is described in [26].

Other strain sensor technologies, such as piezoelectric strain sensors (see e.g. [27]) and
carbon cement-based transducers [30], are also being explored for strain VBM.

(a) SG (from [31]). (b) FBG (from [32]). (c) DOFS (from [33]).

Figure 1.1: Most commonly used strain sensors in VBM.

1.4.2. Optimal Sensor Placement (OSP)

OSP is defined as the placement of sensors that results in the least amount of monitor-
ing cost while meeting predefined performance requirements [18]. OSP directly decreases
the structure life cycle costs, as it reduces the cost related to the instrumentation, the
operation, and the maintenance. OSP also reduces indirect costs by improving SHM per-
formance. This improvement leads to a decrease in the risks of false-positive detections,
which can cause unnecessary closures, as well as false-negative detections, which might
result in unanticipated maintenance costs [34].

In strain monitoring, OSP can address various objectives, such as strain reconstruction
for fatigue damage detection, displacement reconstruction, or strain modal analysis for
parameter estimation [34]. For fatigue damage detection, OSP aims to position sensors
at locations that best reconstruct strain in non-accessible areas. The reconstruction can
be achieved using different methods, such as System Equivalent Reduction Expansion
Process, Guyan reduction, Inverse Finite Element Method, etc. The accuracy of these
reconstructions is often evaluated using metrics such as Mean Square Error and Mean
Absolute Error [34].

In strain modal analysis, the OSP problem typically involves determining the mini-
mum number of sensor locations l required to accurately identify the modal parameters
for m target modes, out of n possible sensor positions [35] (usually m ≤ l ≪ n). A
wide variety of algorithms have been proposed to maximize metrics related to the Modal
Kinetic Energy [36], the Singular Value Decomposition Ratio [37], the Fisher Information
Matrix (FIM) [38], the Information Entropy [39], among others [40].

Reference [41] used the spectral radius, a lower bound to any norm of the FIM, to
maximize the information acquired from strain mode shapes for damage detection. This
approach was successfully applied to the FEM of a composite sandwich panel monitored
with FBG sensors. Similarly, Zhou et al. [42] developed a two-stage OSP method for
optimal displacement reconstruction from strain measurements, applying it to a real
antenna for aerospace telecommunications, also monitored with FBG. Cazzulani and
co-authors [43] addressed the OSP problem for strain measurements from Distributed
Optical Fiber Sensors, applying it to some laboratory structures such as a clamped plate
under laboratory conditions [44].

Bayesian approaches have also been employed for OSP. Papadimitriou [45] proposed
two algorithms to minimize the information entropy, which is related to the uncertainty
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in system parameters. In a subsequent work [46], an OSP framework was developed to
tackle both strain estimation for fatigue damage detection and strain modal analysis for
parameter inference. Their approach for parameter estimation minimized the informa-
tion entropy by maximizing the determinant of the FIM matrix, which was found to be
equivalent to maximizing the expected information gain used for strain estimation. That
framework was applied to the FEM of an offshore wind turbine. Additionally, Zhang and
co-authors [47] addressed OSP for strain reconstruction using a Bayesian approach that
considered strain energy. The method was applied to a full scale beam excited by an
hydraulic actuator.

Among the various methodologies, the EfI method [38], aiming to maximize the de-
terminant of the FIM, remains one of the most widely adopted strategies [34]. Originally
developed for acceleration, velocity or displacement outputs, the EfI method can also be
easily adapted for strain measurements [34]. For example, Kyung and Eun [48] used the
EfI method for strain mode shapes and applied it to the FEM of a truss structure. In
that work, the advantages of using SGs compared with displacement transducers were
highlighted. The EfI formulation has also been extended for using different types of sen-
sors along with strain sensors. Zhang and colleagues [49] extended the EfI method to
simultaneously consider displacement transducers and SGs, applying the method to the
FEM of a cantilever beam subjected to random forces. Additionally, Zhu et al. [50] ex-
panded the EfI method to include accelerometers, accommodating three types of sensors.
The OSP goal in that study was to minimize the overall reconstruction error variance at
the locations of interest and ensure that reconstruction errors remained within a desired
target level. The method was tested on a simply supported steel beam. In another ad-
vancement, Liu et al. [51] introduced a metric called Distance Coefficient to enhance the
EfI algorithm in a two-stage optimization framework for response reconstruction using
multi-type sensor. That framework was validated on a bridge benchmark structure in
laboratory conditions.

From the literature review above, it is evident that most OSP problems for strain
measurements have been addressed in simulated FEMs or laboratory structures, with
only a few applied to real-world structures. Moreover, the impact of OSP on parameter
estimation using real data has been rarely investigated. To the best of the author’s
knowledge, these issues have not been thoroughly explored in the literature using the EfI
method.

1.5. Open Access

In order to promote the use of the material developed in this project and to facilitate
the correction of the TFM, the main codes developed have been left open in the following
GitHub repository:

https://github.com/asanchezlc/MasterEstructurasTFM_aslc

https://github.com/asanchezlc/MasterEstructurasTFM_aslc
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Chapter 2

Theoretical Background

2.1. Dynamical systems

2.1.1. Dynamic Equations and Modal Parameters

Let us consider a Multi-Degree Of Freedom (MDOF) system, as depicted in Figure
2.1. This system is governed by the following system of Ordinary Differential Equations
(ODEs) in the time domain:

m1 m2 mN

x1(t) x2(t) xN(t)

y1(t) y2(t) yN(t)

k1

c1 c2

k2 kN

cN

Figure 2.1: MDOF system.

Mÿ(t) +Cẏ(t) +Ky(t) = x(t) (2.1)

where:

M, C, and K represent the mass, damping, and stiffness matrices, respectively,
each of dimension N ×N ; N is the number of Degrees of Freedom (DOFs).

x(t) is the system input, a vector of forces of length N applied at each DOF.

y(t) is the system output, a vector of displacements of length N corresponding to
each DOF.

In the most general case, where the system is not classically damped (i.e. the damping
matrix is not obtained as a linear combination of the mass and stiffness matrices), the
solution of (2.1) can be obtained by transforming it into a state-space model. The state
equation, directly derived from (2.1), reads:

23
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ṡ(t) = Acs(t) +Bcx(t) (2.2)

where:

s(t) =

(
ẏ(t)
y(t)

)
is the state vector.

Ac =

(
−M−1C −M−1K

I 0

)
is the state matrix, with I being the identity matrix

of dimension N ×N .

Bc =

(
M−1

0

)
is the influence matrix.

The solution to equation (2.2) can be found by applying the Laplace transform to
the state-space equation and obtaining the mode shapes ϕn from the resulting eigenvalue
problem (see [52, Chapter 5] for more details).

From the solution of the state-space equation, the solution of the system output in
(2.1) in the frequency domain is:

y(ω) = H(ω)x(ω) (2.3)

where H(ω) the Frequency Response Function (FRF), and its expression is given by:

H(ω) =
N∑

n=1

(
An

iω − λn

+
A∗

n

iω − λ∗
n

)
(2.4)

where:

An are the residues matrix, given by the following equation:

An =
ϕnϕ

T
n

an
, with an = 2λnϕ

T
nMϕn + ϕ

T
nCϕn (2.5)

λn are the poles of the system, given by the following expression:

λn = −ξnωn + iωn

√
1− ξ2n (2.6)

The solution of the system output in (2.1) in the time domain is:

y(t) =
N∑

n=1

(
ϕne

λnt
)
+

N∑
n=1

(
ϕ∗

ne
λ∗
nt
)

(2.7)

The modal properties of the system are the natural undamped frequencies of vibration
(ωn = 2πfn), the displacement mode shapes (ϕn), and the damping ratios (ξn). The
natural frequencies and damping ratios are obtained from the system’s poles as follows:

fn =

√
λnλ∗

n

2π
(2.8)

ξn = −ℜ(λn)

2πfn
(2.9)

Any dynamic identification method is aimed at determining these modal properties.
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2.1.2. Strain Mode Shapes

When monitoring with strain sensors, the system output is not the displacement y(t),
but the strain along a certain direction, which is defined as the ratio of deformation on
that direction. Let ϵ(t) be a vector containing the strain (along a specific direction) on
each DOF of the system. The strain vector can be obtained from the displacement vector
using the displacement-to-strain S matrix:

ϵ(t) = Sy(t) (2.10)

Thus, from equation (2.7), the expression of the strain can be obtained as:

ϵ(t) =
N∑

n=1

(
Sϕne

λnt
)
+

N∑
n=1

(
Sϕ∗

ne
λ∗
nt
)

(2.11)

The strain mode shapes are defined as:

ψn = Sϕn (2.12)

Consequently, the Strain Frequency Response Function (SFRF) Hϵ(ω) is defined as:

ϵ(ω) = Hϵ(ω)x(ω) (2.13)

where:

Hϵ(ω) = SH(ω)

=
N∑

n=1

(
Aϵ

n

iω − λn

+
Aϵ

n
∗

iω − λn
∗

)

=
N∑

n=1

(
ψnϕ

T
n

an(iω − λn)
+

ψn
∗ϕ∗T

n

an∗(iω − λn
∗)

) (2.14)

Although not used in this Master Thesis, it is interesting to note that the SFRF
contains both strain and displacement mode shapes. Consequently, when Experimental
Modal Analysis is performed with strain sensors, both vectors can be obtained.

Note: Throughout this document, mode shapes are generally referred to as ϕ for
simplicity. However, it is important to clarify that all formulations and discussions pertain
specifically to strain mode shapes, which are the output of the OMAs performed in this
work.

2.2. Operational Modal Analysis

Operational Modal Analysis (OMA) technique allow the identification of modal pro-
perties from monitored systems subjected to ambient vibration (i.e., unknown random
excitation). OMA techniques are commonly classified into two main groups: frequency-
domain methods and time-domain methods [53]. In this work, one method from each
family has been used to perform the dynamic identification of the case studies: Enhanced
Frequency Domain Decomposition (EFDD), which is a frequency domain technique, and
Covariance-Driven Stochastic Subspace Identification (COV-SSI), which is developed in
the time domain.



26 CHAPTER 2. THEORETICAL BACKGROUND

The equations underlying the EFDD and COV-SSI methods are usually derived us-
ing the displacement mode shapes. Its derivation for strain mode shapes is completely
analogous, as it only needs to include the S matrix described in Subsection 2.1.2.

2.2.1. EFDD

EFDD is an OMA technique aimed at extracting the modal parameters of a linear
system based on an analysis in the frequency domain [54]. The starting point is the
Frequency Domain Decomposition (FDD) method, which is explained as follows:

If the system of ODEs given in (2.1) is assumed to have real modes, the equation (2.7)
can be simplified to:

y(t) =
N∑

n=1

(ϕnqn(t)) (2.15)

where qn(t) are the modal coordinates. Note that this simplification is only assumed
for clarity in the formulation. Nevertheless, extending this formulation for accommodat-
ing complex-valued (non classicaly) damped modes is straightforward by expanding the
modal matrix ϕ described hereafter with their complex counterparts. The Correlation
Function Matrix Ry(τ) is defined as Ry(τ) = E[y(t)y(t + τ)T], with E denoting the
expectation operator. Given that the modal matrix Φ = [ϕ1ϕ2 . . . ϕN ] is constant,
and considering the modal expansion of the output response (Equation (2.15)), we have
Ry(τ) = ΦRq(τ)Φ

T. Applying the Fourier transform to both sides of the equation, the
following relation is obtained:

Gy(f) = ΦGq(f)Φ
T (2.16)

where Gy(f) is the Cross Power Spectral Density (CPSD) matrix, defined as the Fourier
transform of the Correlation Function Matrix, and f denotes the frequency variable. If the
system is excited by stochastically independent forces described by a white Gaussian noise
(a commonly accepted assumption in OMA), the modal coordinates are approximately
uncorrelated, making Gq(f) a diagonal matrix. Thus, the Singular Value Decomposition
(SVD) of the CPSD of the measured system output reads:

Gy(f) = U(f)Σ(f)V(f)H (2.17)

with U = V since the CPSD matrix is Hermitian and positive definite, and H superindex
denoting the Hermitian transform. By comparing Equations (2.16) and (2.17), the singu-
lar vectors U(f) can be interpreted as the system mode shapes, and the singular values
as the autospectral densities of the modal coordinates.

The starting point of the FDD method is the identification of the peaks in the first
singular value1 (the first diagonal element of the Σ(f) matrix). To achieve this, the
so-called Singular Value Plot (SVP) is obtained (an example of a SVP is depicted in
Figure 2.2). The mode shape associated with a resonant frequency can be obtained
as the singular vector corresponding to that frequency value. Alternatively, it can be
obtained as the average of the singular vectors weighted by the singular values belonging
to the SDOF Bell, described below.

1Second or even third singular values may be used if the system has closely-spaced mode shapes.
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1Figure 2.2: Sample SVP.

Once the peaks are identified, the damping properties can be extracted using the
EFDD method. To this aim, the SDOF Bell (the set of singular values around a peak of
the SVP, characterized by similar singular vectors) is extracted. The similarity between
two mode shapes ϕi and ϕj is assessed by the Modal Assurance Criterion (MAC), defined
as:

MAC(ϕi,ϕj) =
(ϕT

i ϕ
∗
j)

2

(ϕT
i ϕ

∗
i )(ϕ

T
j ϕ

∗
j)

∈ [0, 1] (2.18)

The SDOF Bell is typically defined as the set of singular values around the resonant
peak whose singular vectors comply with a certain MAC threshold RL, that is2:

s1(fj) such that MAC(u1(fi),u1(fj)) > RL ∀j (2.19)

where:

fi is the a frequency value at which a resonant peak s1(fi) is found.

s1 is the first singular value (first diagonal element of the Σ(f) matrix).

u1 is the first column of the singular vector matrix.

RL is the Rejection Level (usually 0.8-0.9).

The SDOF Bell is used to obtain the modal properties of the system using a SDOF
system identification method. For instance, a classical approach is the logarithmic decre-
ment decay method using a representative portion of the Inverse Fourier Transform (IFT)
of the SDOF Bell. Furthermore, the estimation of the damped frequency can be refined

2This definition can be easily adapted to use second or even third singular values.



28 CHAPTER 2. THEORETICAL BACKGROUND

by analysing the number of zero-crossing points of a representative portion of the IFT of
the SDOF Bell.

When using the EFDD, it must be taken into account that the obtained modal prop-
erties are not exact; indeed, the assumption of the system output following (2.7) is an
approximation, resulting in an FRF that does not exactly match the expression in equa-
tion (2.4). Nevertheless, this approximation is sufficiently accurate in cases where the
modes are sufficiently spaced in frequency.

Algorithm 1 shows a pseudo-code of the EFDD technique. Note that in this simplified
pseudo-code, modal properties are obtained using peaks from the first singular value, but
the method can be easily generalized for using peaks from the second and even the third
singular values.

Algorithm 1: EFDD Algorithm

1 Obtain Gy(f) from the measured system output y(t);
2 Perform SVD: Gy(f) = U(f)Σ(f)U(f)H;
3 Identify P peaks in s1(f);
4 for i = 1 to P do
5 Calculate SDOF Bell =

{s1(fj) | MAC(u1(fi),u1(fj)) > RL, j = 1, . . . ,dim(u1(f))};
6 Compute the IFT of the SDOF Bell;
7 Obtain fi,D from the number of zero-crossings of the IFT(SDOF Bell);
8 Estimate ξi by applying the logarithmic decrement to the IFT(SDOF Bell);
9 Estimate ϕi =

∑
k u1(fk) · s1(fk) ∀fk such that s1(fk) ∈ SDOF Bell;

10 Estimate fi =
fi,D√
1−ξ2i

;

11 end
12 return fi, ϕi, ξi for i = 1, . . . , P

2.2.2. COV-SSI

The COV-SSI is an OMA technique designed to extract the modal parameters of a
linear system through time-domain analysis. To achieve this, a discrete-time stochastic
state-space model is derived, and its state and output influence matrices are obtained3.
From these matrices, the modal properties are extracted. The details are provided below:

The state-space model equation given in (2.2) is complemented by the observation
equation, which provides the output measurements recorded by sensors positioned in l
locations:

yl(t) = Caÿ(t) +Cvẏ(t) +Cdy(t) (2.20)

where yl represents the measurements in l locations (which in the most general case
include displacement, velocity, and acceleration measurements); Ca, Cv, and Cd are the
output location matrices for acceleration, velocity, and displacement, respectively.

This equation can be transformed using (2.1) into [54]:

yl(t) = Ccs(t) +Dcx(t) (2.21)

where:

3Defined in equations (2.22) and (2.23).
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Cc =
[
Cv −CaM

−1C Cd −CaM
−1K

]
is the output influence matrix.

Dc = CaM
−1 is the direct transmission matrix.

The state equation and the observation equation from (2.2) and (2.21) are expressed
in continuous-time. For a given sampling period ∆t (acquisition sampling frequency
fs = 1/∆t), the continuous-time equations can be discretized and solved at all discrete
time instants tk = k∆t from the following discrete-time state-space model [54]:

sk+1 = Ask +Bxk (2.22)

yk,l = Csk +Dxk (2.23)

where A = eAc∆t, B = (A − I)A−1
c Bc, C = Cc and D = Dc for an input piecewise

constant over the sampling period (zero-order hold).
When the unknown input excitation is assumed to follow a white noise distribution,

the discrete-time state-space model can be converted into the following discrete-time
stochastic state-space model:

sk+1 = Ask +wk (2.24)

yk,l = Csk + vk (2.25)

where wk and vk combine the unknown excitation and process and measurement noise,
all assumed to be white noise.

The COV-SSI method allows the identification of the matrices A and C, from which
the modal properties are obtained, by simple eigenvalue decomposition as shown hence-
forth.

The starting point for the obtention of A and C matrices is the computation of the
covariance matrices Ri, defined as:

Ri =
1

NS − i
E
[
Y(t)1:NS−iY(t)Ti:NS

]
(2.26)

where NS is the total number of samples, Y(t)1:NS−i is a matrix containing all mea-
surements in l outputs except the last i samples, Y(t)i:NS

is a matrix containing all
measurements in l outputs except the first i samples, and i = 1, . . . , 2jb − 1 where jb is
the main parameter of the algorithm, referred to as the time lag parameter.

The covariance matrices are then arranged in Toeplitz matrix:

T =

 Rjb · · · R1
...

. . .
...

R2jb−1 · · · Rjb

 (2.27)

Given the stationarity properties of the state vector and the noise, the following
recursive relations are satisfied [55]:

Ri = CAi−1G (2.28)

R−i = GT(Ai−1)TCT (2.29)
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whereG = E[sk+1y
T
k ]. Consequently, the Toeplitz matrix can be decomposed as T = OΓ,

where O is the observability matrix and Γ is the controllability matrix:

O =


C
CA
...

CAi−1

 and Γ =
[
Ai−1G · · · AG G

]
(2.30)

The SVD of the Toeplitz matrix reads:

T = UΣVT =
[
U1 U2

] [Σ1 0
0 0

] [
V1

V2

]
(2.31)

which allows us to obtain the observability and the controllability matrices as:

O = U1Σ
1/2
1 (2.32)

Γ = Σ
1/2
1 VT

1 (2.33)

Once the matrices O and Γ are computed, C is obtained as the first block element
of the observability matrix (see Equation (2.30)), and A can be obtained through a
least-squares problem, resulting in4:

A = Σ
−1/2
1 UT

1T2V1Σ
−1/2
1 (2.34)

where

T2 =

Rjb+1 · · · R2
...

. . .
...

R2jb · · · Rjb+1

 (2.35)

From this matrix, the modal parameters are obtained as follow [54]:

The eigenvalue decomposition of A results in A = ΨMΨ−1.

Modeshapes are obtained as: ϕk = CΨk, where Ψk is the kth column of Ψ.

Poles are obtained as: λk =
ln(µk)
∆t

, where µk is the k-th diagonal element of M.

In practical applications, due to noise and modeling inaccuracies, it often happens that
the gap between non-zero and zero singular values of (2.31) is not clear, thus resulting in
serious problems for the determination of the correct model order [54]. As a consequence,
a conservative approach is adopted based on the overspecification of the order of the
model, which is set large enough to ensure the identification of all physical modes.

Overmodeling introduces spurious poles, which can be either physical noise modes
(e.g. poles of the excitation system) or mathematical modes (introduced as a result of
the overestimation of the model order). The separation of physical poles from spurious
mathematical ones can be facilitated by constructing the so-called stabilization diagram
(Figure 2.3). By tracking the evolution of the poles for increasing model orders, the
physical modes can be identified from alignments of stable poles, in terms of the associated

4Other options are also available (e.g., exploiting the shift structure of the observability matrix).
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frequencies and damping ratios (extracted using Equations (2.8) and (2.9)) and mode
shapes. Instead, spurious poles tend to be more scattered and typically do not stabilize.
The alignments of stable poles can start at lower or higher values of the model order,
depending on the level of excitation of the modes [54].
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1Figure 2.3: Sample stabilization diagram.

Algorithm 2 shows a pseudo-code of the COV-SSI technique.

2.3. OSP Problem

2.3.1. Problem Description

Let us consider a system with N DOFs and M mode shapes, from which only n ≤ N
DOFs are accessible for monitoring using l available sensors (generally l ≪ n).

An OSP problem consists in choosing the l optimal locations among the n accessi-
ble positions for placing the sensors in such a way that some variable (related to the
information extracted from the sensors) is optimized.

In the context of OMA, the variable to be optimized is usually related to the quality
of the measured modal parameters. If we consider a model with m ≤ M mode shapes
of interest (referred to as target mode shapes), one approach is to maximize the linear
independence of the extracted mode shapes. This is the approach of the EfI algorithm
explained in below in Section 2.3.2.

2.3.2. Effective Independence (EfI) Method

EfI is an OSP algorithm first introduced by Kammer [38], in which the optimized
variable is the linear independence of the measured mode shapes. The EfI algorithm
involves a recursive process with n− l iterations in which one DOF is removed at a time,
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Algorithm 2: COV-SSI Algorithm

1 Input: Measured output (Y(t)) NS × l, time lag jb, maximum model order omax;
2 Initialize empty lists: lamda list, phi list;
3 for i = 2 to omax 2 do
4 Build T matrix (Eq. (2.27)) by computing Ri matrices (Eq. (2.26));
5 Perform SVD on T (Eq. (2.31));
6 Extract O (Eq. (2.32)) and G (Eq. (2.33)) matrices;
7 Retrieve C matrix from first l columns of O;
8 Compute A from Eq. (2.34);
9 Perform EVD of A: A = ΨMΨ−1;

10 Initialize empty lists: f list i, phi list i, xi list i;
11 for k = 1 to P do

12 Compute λk = ln(µk)
∆t , where µk = Mk,k;

13 Estimate ϕk = CΨk;
14 Append λk to lambda list i; ϕk to phi list i;

15 end
16 Append lambda list i to lambda list; phi list i to phi list;

17 end
18 Obtain stable poles from lambda list i and phi list i;
19 Obtain frequencies and damping ratios from stable poles using Eq. (2.8) and Eq. (2.9);
20 Obtain modal properties by clustering stable frequencies, mode shapes, and damping

ratios;
21 return Modal properties

corresponding to the DOF with the lowest contribution to the linear independence of the
current mode shapes (i.e. sampled using the available DOFs in every iteration).

Let Φ (dimension k ×m) be the mode shape matrix for k selected DOFs (k = n for
the first iteration, and k = l ≥ m at the end of the process). The m columns of Φ are
assumed to be linearly independent, so the FIM Q = ΦTΦ is symmetric and positive
definite, and its EVD results inQ = ΨΛΨT, withΨ being orthonormal and Λ containing
real and positive eigenvalues. The columns of Ψ define a subspace of dimension m (called
absolute identification space).

Taking into consideration that the i-th row of Φ can be interpreted as the coordi-
nates of the i-th DOF in the m target mode shapes, the rows of the matrix ΦΨ can be
interpreted as the orthogonal projection of Φ rows on the absolute identification space.
Consequently, the matrix J = ΦΨ ◦ ΦΨ (◦ denotes element-wise product) is a matrix
whose rows give the square of the proyection of Φ rows in the absolute identification
space.

J is a matrix such that its columns sum to the eigenvalues (calculated in the Λ
matrix), so each element Jij gives the contribution of row i of Φ to the eigenvalue Λj.
The normalization FE = JΛ−1 results in a matrix with each element FE,ij containing
the normalized contribution (between 0 and 1) of row i from Φ to the eigenvalue j (with∑

i FE,ij = 1). Thus, defining ED as a vector in which each element contains the sum of
the rows of FE, each element ED,i of ED represents the fractional contribution of the i-th
DOF to the linear independence of Φ.

The EfI algorithm computes ED at each iteration, and removes the DOF with the
lowest associated value, resulting in a sub-optimal configuration (the iterative process
does not ensure the optimal configuration is obtained) of sensors that measure highly
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independent mode shapes. The method is described in Algorithm 3.

Algorithm 3: EfI Algorithm

1 Initialize Φk = Φ (n×m), DOFs = [1, 2, ..., n].
2 while k > l do
3 Compute FIM: Q = ΦT

kΦk.
4 Perform EVD of Q: Q = ΨΛΨT.
5 Compute J = (ΦkΨ) ◦ (ΦkΨ) (element-wise square) and FE = JΛ−1.
6 Obtain ED = [ED,1, . . . , ED,k], where ED,i =

∑m
j=1 FE,ij .

7 Get imin = argmin(ED).
8 Update Φk−1 = Φk with row imin removed. Update DOFs removing element imin.
9 k = k − 1.

10 end
11 return DOFs

The effectiveness of the EfI algorithm can be assessed with the AutoMAC matrix.
For a set of m observed mode shapes, the AutoMAC matrix is obtained as:

AutoMAC(Φ) =

MAC(ϕ1,ϕ1) · · · MAC(ϕ1,ϕm)
...

. . .
...

MAC(ϕm,ϕ1) · · · MAC(ϕm,ϕm)

 (2.36)

where MAC(ϕi,ϕj) is the function defined in Equation (2.18). The diagonal elements
of the AutoMAC are equal to 1, while the off-diagonal elements are nearer to zero when
the corresponding vectors i, j are less similar. Metrics such as the highest off-diagonal
value or the off-diagonal mean values, can be used as quantitative measurements of the
independence of the mode shapes.

2.4. Bayesian Parametric Inference

2.4.1. Inverse Problem for Stochastic Models

Let us consider a physical system from which we measure a set of experimental data
D ∈ X . In order to predict its response, a deterministic model g can be defined as follows:

g : Θ → X (2.37)

θ ∈ Θ 7→ g(θ) = x ∈ X (2.38)

where:

θ: are the model parameters.

x: is the model response.

Θ,X : are the subspaces of the model parameters and measured responses.
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To assess the goodness of a model, a metric J that measures the distance between the
model output x and the system data D is required. Mathematically:

J : X × X → R, (x,D) 7→ J(x,D) ∈ R (2.39)

such that:

J(x1,D) < J(x2,D) ⇐⇒ x1 is closer to D than x2 (2.40)

Given a metric J , a model g, and physical system dataD, an inverse problem consists
of finding the parameters θ ∈ Θ for which the model best predicts the experimental data,
i.e., solving the optimization problem:

θ = argmin
θ

J(g(θ),D) (2.41)

Although a valid approach, the deterministic model g defined in equations (2.37) and
(2.38) may not fully capture the physical system’s behavior. In fact, two key factors
should be considered:

The physical system data D may be subject to measurement errors.

The model g is only an approximation of the physical system and, as such, is subject
to uncertainty.

To account for these uncertainties, a stochastic model f(θ,Y ) can be defined based
on the deterministic model as follows:

f(θ,Y ) = g(θ) + Y (2.42)

where Y is a stochastic variable. Several aspects should be considered when defining Y :

Y is an element of X , so that x+ Y ∈ X .

E[Y] = 0, ensuring that the response is centered around x = g(θ). Note that, if re-
quired, a bias parameter can be directly introduced in g as an additional parameter
in θ.

The covariance matrix of Y , Σ, can be assumed to bound the stochastic response.

The Probability Density Function (PDF) of Y should satisfy the Principle of Max-
imum Entropy (PME) to account for all uncertainties.

Considering these factors, if x is unbounded, the PDF of the stochastic model is given
by:

f(θ,Y ) ∼ N (g(θ),Σ) (2.43)

The inverse problem for the stochastic model in equation (2.43) can be formulated
as finding the PDF of the parameters θ ∈ Θ given the measurements of the system
data D. In this approach, the stochastic model not only provides information about the
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parameters that better match the measurements, but it also quantifies the uncertainty
surrounding them, i.e., their PDF 5.

To obtain the PDF of a set of parameters given the measured data and the model,
Bayes’ Theorem can be applied:

p(θ|D, f) =
p(D|θ, f) · p(θ|f)

p(D|f) (2.44)

where:

p(θ|D, f): is the PDF of the parameters given the data and the model, also referred
to as the posterior PDF; it is the goal of the inverse problem.

p(D|θ, f): is called the likelihood function, representing the probability of the data
given the parameters of the model. It directly depends on the assumed PDF of the
stochastic model, and it quantifies the mismatch between the experimental data
and the model predictions.

p(θ|f): is the prior PDF for the parameters. If only the interval of the possible
parameters is known, the most uninformative prior distribution according to the
PME is the uniform distribution.

p(D|f): is called the evidence, representing the probability of the data given the
model.

In equation (2.44), if p(θ|f) is a uniform distribution and only one model is considered,
one can write:

p(θ|D, f) ∝ p(D|θ, f) (2.45)

The likelihood value is determined using the metric defined in (2.39), which requires
the computation of the model response x.

In many cases, calculating x can be computationally expensive, especially when the
parameter space Θ is large. As a result, obtaining the PDF of the model parameters
through an exhaustive evaluation of the likelihood becomes impractical. Therefore, more
efficient methods for sampling from the posterior distribution are needed. The MCMC
methods, described in Section 2.4.3, offers an effective solution for this purpose.

2.4.2. Likelihood Computation using Modal Data

The likelihood computation presented in this section follows a methodology similar
to that in [56].

When using modal data, the measured physical model data D usually consists of m
measured frequencies and mode shapes obtained from the OMA, i.e.:

D = {f̂1, . . . , f̂m, ϕ̂1, . . . , ϕ̂m} (2.46)

5Metrics such as the Fisher Information provide insights into how much information is conveyed by the
stochastic model. Although more information is generally desirable, the stochastic model is introduced
specifically to account for uncertainties. Thus, the best model is not necessarily the one that maximizes
information but the one that best accounts for uncertainties. This justifies using probability distributions
that maximize information entropy according to the PME.
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For a set of proposed parameters θ, the model obtains the modal data6:

g(θ) = x = {f1, . . . , fm,ϕ1, . . . ,ϕm} (2.47)

Assuming the errors in frequencies and mode shapes follow Gaussian distributions,
one may write:

Y = {yf1 , . . . , yfm ,yϕ1 , . . . ,yϕm}, Σ∗ = {σf1 , . . . , σfm ,Σϕ1 , . . . ,Σϕm}. (2.48)

Consequently, each frequency fi follows a normal distribution N (f̂i, σ
2
fi
). Assuming

that the standard deviation σfi is proportional to the measured frequency f̂i, i.e., σfi =

σ · f̂i, the likelihood of fi given the data f̂i is:

p(fi) =
1√

2π · σ · f̂i
exp

(
− (fi − f̂i)

2

2 · σ2 · f̂i
2

)
(2.49)

Assuming stochastic independence7 between the likelihoods of the frequencies, as well

as proportional variance for all of them (σ2
fi

= σ2 · f̂i
2 ∀i) the likelihood of observing

f1, . . . , fm given f̂1, . . . , f̂m is:

p(f1, . . . , fm) =
m∏
i=1

p(fi) =
1

(2π)m/2 · σm ·∏m
i=1 f̂i

exp

(
− 1

2σ2

m∑
i=1

(fi − f̂i)
2

f̂i
2

)
(2.50)

With respect to the mode shapes, for simplicity, each mode ϕi is assumed to follow
a multivariate normal distribution N (ϕ̂i,Σ

2
ϕi
). Assuming that modal displacements are

uncorrelated, the covariance matrix Σϕi
is given by Σϕi

= σ2

w
·diag(∥ϕ̂i∥2), the likelihood

of ϕi given the data ϕ̂i is:

p(ϕi) =
1(

2π σ2

w
∥ϕ̂i∥2

)n/2 exp
(
− w

2σ2

∥ϕi − ϕ̂i∥2
∥ϕ̂i∥2

)
(2.51)

where:

σ is a variable that introduces uncertainty related to frequencies.

wi is a variable that modulates the uncertainty introduced to the i-th modeshape.
For simplicity, it is assumed that all modes exhibit identical variance, thus wi =
w ∀i.

6The FEM model produces mode shapes ϕ′
i, typically mass normalized. In order to compare with the

experimental mode shapes (arbitrary scaled), the numerical mode shapes are then scaled as: ϕi = βi ·ϕ′
i,

where βi =
ϕ̂i

T
ϕi

∥ϕi∥ , minimizing ∥ϕ̂i − βi · ϕ′
i∥.

7The stochastic independence shown in Equations (2.50) and (2.52) refers to information independence
and should not be confused with causal independence. It is equivalent to asserting that if our information
about ith frequency or mode is ‘good’ (e.g., large likelihood), this does not necessarily means that the
information about the other modes must be equally good [57].
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Again, assuming stochastic independence between the likelihoods of the mode shapes,
the likelihood of observing ϕ1, . . . ,ϕm given ϕ̂1, . . . , ϕ̂m is:

p(ϕ1, . . . ,ϕm) =
1(

2π σ2

w

)nm/2∏m
i=1 ∥ϕ̂i∥n

exp

(
−

m∑
i=1

w

2σ2

∥ϕi − ϕ̂i∥2
∥ϕ̂i∥2

)
(2.52)

Assuming stochastic independence for both frequencies and mode shapes, the likeli-
hood of the model output x (Equation (2.47)) given the data D (Equation (2.46)) is:

p(f1, . . . , fm,ϕ1, . . . ,ϕm) =
1

(2π)
n
2 σnwnm/2

∏m
i=1 f̂i∥ϕ̂i∥n

exp

(
− 1

2σ2
J

)
(2.53)

where:

J = J1 + wJ2, with J1 =
∑m

i=1
(fi−f̂i)

2

f̂i
2 , and J2 =

∑m
i=1

∥ϕi−ϕ̂i∥2

∥ϕ̂i∥2

n is the dimension of the mode shapes ϕi.

n = m+ nm

Note: For the remainder of this document, variables σ and w will be considered part
of the model parameters. Consequently, the notation f(θ,Y ) will be simplied to f(θ).

2.4.3. Markov Chain Monte Carlo (MCMC) Methods

A Markov Chain is a sequence X0, X1, . . . of random elements of some set in which
the conditional distribution of Xζ+1 given X0, . . . , Xζ depends only on Xζ . The set in
which the Xζ take values is called the state space of the Markov chain [58].

The joint distribution of a Markov chain is determined by:

The marginal distribution of X0, called the initial distribution8.

The conditional distribution of Xζ+1 given Xζ , called the transition probability dis-
tribution.

If certain conditions related to the Markov Chain’s ergodicity are satisfied (see [58,
59] for more details), then it has a stationary distribution. The idea behind MCMC
algorithms is to construct a Markov Chain whose stationary distribution is the target
PDF of the posterior PDF p(θ|D, f) of the model parameters [59].

One of the most widely used MCMC methods is the Metropolis Hastings [60, 61]. In
this algorithm, a candidate model parameter θ∗ is sampled from a proposal distribution
q(θ∗ | θζ−1), given the state of the Markov Chain at step ζ − 1. At the next state of
the chain, ζ, the candidate parameter θ∗ is accepted (i.e., θζ = θ∗) with probability
1−min(1, r), where r is calculated as:

r =
p(D | θ∗, f) p(θ∗ | f) q(θζ−1 | θ∗)

p(D | θζ−1, f) p(θζ−1 | f) q(θ∗ | θζ−1)
(2.54)

8In the context of the Metropolis Hastings algorithm, it will be called the prior distribution.
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This process is repeated until S samples are generated. An algorithmic description of
the method is provided in Algorithm 4 (adapted from [59]).

Algorithm 4: M-H algorithm

1 Initialize θθθζ=0 by sampling from the prior PDF: θθθ0 ∼ p(θθθ|f);
2 for ζ = 1 to S do

3 Sample from the proposal: θθθ
′ ∼ q(θθθ

′ |θθθζ−1);
4 Compute r from Eq. (2.54);
5 Generate a uniform random number: α ∼ U [0, 1];
6 if r ⩾ α then

7 Set θθθζ = θθθ
′
;

8 else
9 Set θθθζ = θθθζ−1;

10 end

11 end

12 return θθθζ=0, . . . , θθθζ=S



Chapter 3

Case Studies

3.1. Laboratory Steel Frame

3.1.1. Description of the Structure

The first case study involves the steel frame shown in Figure 3.1, located in the
Laboratory of Sustainable Structural Engineering (SES-Lab). It is a steel structure with
five floors, each 250 mm in height, and slabs measuring 250 mm by 500 mm. Each floor
has four columns with rectangular sections of 30 mm by 2 mm and two beams, each 500
mm in length, composed of two T-profiles with a 30 mm base and height, and a thickness
of 4 mm each.

The connections between the columns and the beams are semi-rigid, consisting of a
small angle bracket fastened with four screws to the column and four screws to the beam
(see Figure 3.2a).

Given the low ambient excitation levels registered in the laboratory, a 12V DC motor
with an eccentric mass was placed on the upper floor of the structure, as depicted in
Figure 3.2b. The motor is controlled with an Arduino Nano micro-controller, which
allows to activate it at random time intervals with randomly varying rotational speeds.

The main goal of this case study is to validate the use of conventional SGs and low-
cost electronic equipment to perform Operational Modal Analysis (OMA) in a controlled
environment. Additionally, the effectiveness of the implemented Optimal Sensor Place-
ment (OSP) technique will be assessed experimentally by comparing the quality1 of the
identified modal properties when using EfI locations compared to those based on engi-
neering criteria. Achieving these objectives is a necessary step before monitoring a real
structure.

3.1.2. Monitoring System

The monitoring system of the laboratory steel frame is formed by Strain Gauges
(SGs). SGs (see Figures 1.1a and 3.4b) are sensors whose measured electrical resistance
varies with changes in strain, thus allowing to monitor strain variations in structures.
Nevertheless, direct measurement of the resistance variance is not achievable, as the
changes are so small that they cannot be easily measured. To overcome this problem, a
circuit formed by two series-parallel arrangements of equal resistances (one of them being

1In this case, the quality refers to the linear independence of the mode shpaes, assessed with the
AutoMAC matrix as discussed in Section 2.3.2.

39
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Figure 3.1: General view of the laboratory steel frame.

(a) Connections detail. (b) 12V DC motor.

Figure 3.2: Images of the experimental setup.
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the SG) connected between a voltage supply terminal and ground is built. This circuit
is called Quarter Wheatstone bridge (see Figure 3.3), and is required for each of the
SGs. The voltage difference between the two parallel branches is zero when the circuit
is balanced, and changes when the SG resistance value differs from the other three, thus
allowing to compute the strain in the sensor from that voltage [62].

V

Strain
Gauge

Figure 3.3: Quarter bridge schema.

(a) Arduino Mega. (b) Detail of a SG.

Figure 3.4: Photos of the electronic devices.

A Printed Circuit Board (PCB) has been designed2 to facilitate the integration of the
Wheatstone Bridge, as depicted in Figure 3.5a. The final PCB with its components is
depicted in Figure 3.5b.

The electronic circuit is completed with the HX711 module, a signal amplifier and
Analog to Digital Converter that allows to read the Wheatstone Bridge output and con-
vert it into a digital value readable by the digital pins of the Arduino Mega micro-
controller (Figure 3.4a).

The laboratory steel frame has been monitored with 17 SGs3, recording dynamic
measurements with a sampling rate of approximately 70 Hz. The areas where the SGs
are located have been pre-treated by applying solvent to remove the paint. Then, the
sensors have been bonded with conventional cyanoacrylate adhesive, and a protective
polyurethane lacquer has been applied once placed. A detail of one of the installed SGs
is depicted in Figure 3.4b.

The locations of the installed SGs are shown in Figure 3.6a, with their exact coordi-
nates summarized in Table 3.1.

2Using CircuitMaker software.
3FLAB-6-11 from Tokyo Measuring Instruments Lab.
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(a) Designed PCB. (b) Physical PCB.

Figure 3.5: Images of the PCB and its components for the integration of the Wheatstone
Bridge.
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(a) Steel frame dimensions.
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(b) SGs locations.

Figure 3.6: Laboratory steel frame.
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Table 3.1: SGs location - steel frame

Channel x (mm) y (mm) z (mm)

1 0 250 412.5
2 0 250 662.5
3 0 0 662.5
4 0 0 162.5
5 0 0 1162.5
6 500 0 412.5
7 500 250 1200
8 500 250 837.5
9 500 0 837.5
10 500 250 162.5
11 500 250 662.5
12 0 250 162.5
13 0 250 837.5
14 0 0 412.5
15 500 250 412.5
16 500 0 662.5
17 500 0 162.5

3.1.3. FEM and OSP Scheme

A Finite Element Model (FEM) of the laboratory steel frame has been developed using
SAP2000 software. The columns and beams were modeled as frame elements, while the
slabs were modeled as shell elements. Special attention was given to the links: the base
supports were modeled as fixed for displacements and as spring joints for bending in
both directions. The connections between columns and beams were established using
link linear elements, which were partially fixed for bending in both directions and for
torsion. Additionally, the masses of the structure were carefully incorporated into the
model.

The FEM updating is based on its modal parameters: natural frequencies and mode
shapes. However, only a few of these parameters are used. On the one hand, the use
of SGs restricts the measurements to only the x-direction, thus only bending modes in
the x-direction and torsional modes are observable. On the other hand, the sampling
frequency is around 70 Hz, limiting the highest observable modal parameters to 35 Hz
(Nyquist frequency). Specifically, the modal parameters of interest are:

Frequencies and strain mode shapes of the first five x-bending modes.

Frequencies and strain mode shapes of the first torsional mode.

These six mode shapes, depicted in Figure 3.7, constitute the target modes of the
OSP problem. For the candidate Degrees of Freedom (DOFs), only the columns of the
structure were chosen as element were locating sensors. Specifically, 12 intermediate
points along the midline of one of the larger faces of each of the columns were selected
as candidate DOFs (see Figure 3.8).
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(f) Mode 6: 21.64 Hz.

Figure 3.7: Steel frame: target mode shapes for EfI algorithm and preliminar frequencies
obtained by the FEM.
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Figure 3.8: EfI algorithm - candidate DOFs in each column.
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The strain mode shapes have been obtained from the element forces table in SAP2000
for the modal load case. The transformation of these forces into strain modes has been
carried out with the Navier’s equation:

ε(y, z) =
1

E

(
N

A
− Mz

Iz
y +

My

Iy
z

)
(3.1)

where:

A: Cross-sectional area.

Iy, Iz: Moments of inertia about the y-axis and z-axis, respectively.

N : Axial force.

My,Mz: Bending moments about the y-axis and z-axis, respectively.

E: Young’s modulus.

In this case, only ε(0, t/2) is of interest, according to the notation used in Figure
3.8 (with t denoting the thickness of the column).

The EfI algorithm has been implemented in Python, obtaining the FEM character-
istics from the SAP2000 OAPI. The number of SGs to be used satisfies l ≥ m. A good
compromise between the lower number of sensors and the higher linear independence of
the modes (assessed by the lowest value of the ED vector; see Figure 3.9) is found to be
using eight SGs. The resulting optimal locations are depicted in Figure 3.10a.
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1Figure 3.9: EfI Algorithm - ED evolution for each iteration.

3.1.4. OMA Results

An OMA was conducted to assess the effectiveness of the EfI OSP configuration. The
characteristics of the test are as follows:
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(c) SGs in Scheme C.

Figure 3.10: Steel frame: SGs configurations.

Sampling frequency: fs = 72.83 Hz.

Test duration: 15 minutes, slightly exceeding the well-known rule of 2000 times the
fundamental period T1 (approximately 12 minutes and 20 seconds).

Sensor layout: 17 SGs (locations shown in Figure 3.6b), corresponding to three
different configurations: the EfI Optimal Scheme described in Section 3.1.3 (Fig-
ure 3.10a) and two additional sub-optimal configurations, simply defined following
engineering intuition. Scheme B is a sub-optimal configuration that places one SG
in each of the columns on the first and third floors (Figure 3.10b). Scheme C is a
sub-optimal configuration that places one SG in each of the columns in the same
x-z plane on the first four floors of the frame (Figure 3.10c). The channels for each
scheme are listed in Table 3.2, and the coordinates of each channel are specified in
Table 3.1.

Table 3.2: Selected channels for each configuration - steel frame

Scheme A Scheme B Scheme C
(EfI-Optimal) (Sub-optimal) (Sub-optimal)

3 2 1
4 3 2
7 4 8
8 10 10
9 11 11
11 12 12
14 16 13
15 17 15
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The raw signals of the 17 channels have been processed as follows:

Application of a filter to remove outliers values (corresponding to electrical peak
noise).

Application of a Butterworth band-pass filter between 0.25 Hz and 35 Hz to remove
signal trends and noise.

The data recorded from the first 6 channels by the Arduino microcontroller, after
applying the initial filter, is shown in Figure 3.11. The signals have been centered to
zero. It can be observed that the signals consist of pulses corresponding to the DC motor
excitation.
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1Figure 3.11: Measured data for channels 1 to 6 after removing electrical noise and center-
ing the signals to have zero mean. The time series are shown in bits, as directly provided
by the 24-bit analog-to-digital converter of the HX711 module. The conversion to physi-
cal strain is a simple linear transform using the gauge factor of the SGs, which does not
affect the subsequent OMA.

All the target modes have been correctly identified through EFDD and COV-SSI al-
gorithms for all three schemes. EFDD results have been used for the subsequent analysis.

The Singular Value Plot (SVP) of the Scheme A is illustrated in Figure 3.12. The
frequencies of vibration (identified as peaks on it) are detailed in Table 3.3. It is worth to
note that the torsional mode has been identified in the second singular value (as torsional
and second x-bending mode are closely spaced). Additionally, the two peaks observed
at 3.77 Hz and 20.87 Hz correspond to the two first modes in y-axis (whose mode shape
cannot be identified due to the SGs direction of measurement). The strain mode shapes
coordinates for the three schemes are set out in Appendix I.

The comparison of the strain mode shapes linear independence between the three SGs
configurations (Scheme A - EfI Optimal - Scheme B and Scheme C) is made through the
AutoMAC matrix, defined in equation (2.36). A graphical representation of the three
AutoMAC matrices is depicted in Figure 3.13.
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1Figure 3.12: SVP for scheme A.

Table 3.3: Frequencies of vibration from OMA - steel frame

Mode Number Frequency (Hz) Type of Mode
1 2.611 x-bending
2 7.681 torsional
3 8.081 x-bending
4 12.843 x-bending
5 16.450 x-bending
6 18.692 x-bending
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Table 3.4 collects the off-diagonal mean and highest values for the three AutoMAC
matrices. It is observed from Figure 3.13a and from Table 3.4 that the Scheme A,
corresponding to the EfI configuration, produces the best results, thus experimentally
proving the effectiveness of this algorithm.

Table 3.4: Off-diagonal metrics for schemes A, B, and C - steel frame

Off-diagonal Off-diagonal
mean value highest value

Scheme A 0.018 0.086
Scheme B 0.216 0.958
Scheme C 0.094 0.953
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1(a) AutoMAC Scheme A.
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Figure 3.13: Comparison of the AutoMAC matrices for three configuration schemes.

3.1.5. Model Updating

Algorithm

The implemented algorithm follows a structure similar to Algorithm 4, with the fol-
lowing considerations:

1. The parameters of the structure subjected to uncertainty are:

a) Bending stiffness of the joint supports: kθy , kθz .
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b) Bending stiffness of the connecting frames on all floors: k1,My, k1,Mz.

These parameters were selected after performing a sensitivity analysis of the vari-
ables affecting the modal properties. Consequently, the vector of parameters, ex-
panded with the uncertainty variables σ,w (defined in Section 2.4.2), is:

θ = [θ1, θ2, θ3, θ4, θ5, θ6]
T = [kθy , kθz , k1,My, k1,Mz, σ, w]

T (3.2)

2. The prior distribution of the model parameters is a uniform distribution:

θi|f ∼ U(Ij) (3.3)

where Ij = [aj, bj] denotes the interval of the uniform distribution for the parameter
θj. As a consequence, p(θ) = constant∀θ. The following intervals have been
considered4:

I1 = [0, 2× 106] N/m

I2 = [0, 5× 105] N/m

I3 = [0, 2× 106] N/m

I4 = [0, 106] N/m

I5 = [0.005, 0.1]

I6 = [0.01, 1.5]

(3.4)

3. The proposal distribution q(θ∗ | θζ−1) is a multivariate normal distribution5 given
by:

q(θ∗ | θζ−1) = N (µζ−1,Σ(σq)) (3.5)

where:

ζ is the number of the iteration.

µζ−1 = θζ−1

Σ(σq) = diag((σ1)
2, . . . , (σ6)

2), with σj = σq × (bj − aj); σq is one of the main
parameters of the algorithm. Increasing its value generally leads to a lower
acceptance rate6.

Consequently, q(θζ−1 | θ∗) = q(θ∗ | θζ−1)

4. As a result of points 2 and 3, the factor r in Equation (2.54) simplifies to:

r =
p(D | θ∗, f)
p(D | θζ−1, f)

(3.6)

4The upper limits of these intervals were established such that the absolute frequency difference
between these values and the frequencies with infinite stiffness is less than 0.005 Hz for all modes.

5Strictly speaking, the proposal distribution is a truncated normal, as the proposed parameter θ∗j is
discarded if it falls outside the interval Ij . However, if the bounds of the interval are regions of very low
likelihood (which is desirable), this effect is negligible.

6The optimal acceptance rate for the Metropolis-Hastings algorithm typically falls between 20% and
50% [63].
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5. To avoid numerical issues arising from the computation of large exponential terms,
the natural logarithm of the likelihoods is used7. The log-likelihood for the frequen-
cies in Equation (2.50) is given by:

log(p(f1, . . . , fm)) = −m

2
log(2π)−m log(σ)−

m∑
i=1

log(f̂i)−
1

2σ2
J1 (3.7)

The log-likelihood of the mode shapes (Equation (2.52)) is:

log(p(ϕ1, . . . ,ϕm)) = −nm

2

(
log(2π) + log

(
σ2

w

))
− n

m∑
i=1

log(∥ϕ̂i∥)−
w

2σ2
J2

(3.8)

Finally, the full log-likelihood computation (Equation (2.53)) is:

log(p(x)) = −N

2
log(2π)−N log(σ)−

m∑
i=1

log(f̂i) (3.9)

+
nm

2
log(w)−

m∑
i=1

n log(∥ϕ̂i∥)−
1

2σ2
J

where the terms −N
2
log(2π)−∑m

i=1 log(f̂i)−
∑m

i=1 n log(∥ϕ̂i∥) can be omitted, as
they are constant.

6. Due to the presence of closely-spaced mode shapes, a mode matching strategy is
necessary to ensure accurate comparison between the measured modal properties
and the FEM modal properties. The MAC has been used for mode matching with
the following criterion: fFEM

i corresponds to fData
j if and only if MAC(ϕi,ϕj) >

MAC(ϕi,ϕk) for all k ̸= j.8

The pseudo-code of the implemented algorithm is detailed in Algorithm 5.

Results

In a first approach, Algorithm 5 was implemented to perform the parametric Bayesian
inference. After preliminary tests, a value of σq = 0.00009 was selected9, resulting in an
acceptance rate of approximately 17.5%. A total of 100,000 iterations were performed,
during which the convergence was notably slow (convergence was assessed based on the
expectation of the log-likelihood). Furthermore, the algorithm showed limited exploration
of the parameter space within their intervals, likely due to the small value of σq adopted.
These issues were attributed to the interaction between the two uncertain parameters, σ
and w, as well as the reduced value of σq, which negatively affected the convergence.

7This does not affect the results, as the logarithmic function is monotonically increasing
8This criterion has been deemed sufficient due to the high linear independence of the modes ensured

by the EfI algorithm.
9Typical values of σq range from 0.01 to 0.05; however, a very low acceptance rate was observed,

requiring a significant reduction.
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Algorithm 5: Implemented M-H Algorithm

1 Input: σq, I1 . . . I6, S ;

2 Initialize θθθζ=0 by sampling from uniform distributions;
3 for ζ = 1 to S do

4 Sample from the proposal distribution: θθθ
′ ∼ q(θθθ

′ | θθθζ−1);
5 Obtain the SAP2000 modal response;
6 Match modal properties based on the highest MAC value;

7 Compute log(p(D | θ∗, f)) and log(p(D | θζ−1, f)) using Eq. (3.9);

8 Calculate log(r) from Eq. (3.6); log(r) = log(p(D | θ∗, f))− log(p(D | θζ−1, f)) ;
9 Generate a uniform random number: α ∼ U [0, 1];

10 if exp(log(r)) ≥ α then

11 Set θθθζ = θθθ
′
;

12 else
13 Set θθθζ = θθθζ−1;
14 end

15 end

16 return θθθζ=0, . . . , θθθζ=S

To further investigate the problem, a new inference was conducted using a simplified
approach: only the frequencies were used to compute the likelihood (as per Equation
(2.50), and Equation (3.7) for the log-likelihood), thereby eliminating the uncertainty
parameter associated with the mode shapes, w. The convergence diagram for this infer-
ence is shown in Figure 3.14. Based on this diagram, the burn-in period (initial set of
samples disregarded in the final chain) was determined to be 80,000 iterations, resulting
in a mean acceptance rate of 4.92%.
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1Figure 3.14: Convergence diagram.

The sample 103,100 registered the highest value of likelihood. The parameters asso-
ciated to that sample are:
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kθy = 1.116× 106N/m

kθz = 4.617× 105N/m

k1,My = 1.793× 106N/m

k1,Mz = 6.903× 102N/m

σ = 8.766× 10-2

(3.10)

Table 3.5 presents a comparison of the frequencies from the original FEM and the
updated FEM (with parameters from Equation (3.10)) against the experimental data. It
can be seen that the updated model is significantly more accurate.

Table 3.5: Comparison between experimental frequencies and FEM predictions for both
uncalibrated and calibrated models.

Mode
Experimental
Freq. [Hz]

Uncalibrated Calibrated
Freq. [Hz] R. Error [%] Freq. [Hz] R. Error [%]

1 2.611 3.330 27.54 2.773 6.20
2 7.681 8.582 11.73 8.487 10.49
3 8.081 9.701 20.05 8.023 -0.71
4 12.843 15.072 17.36 12.363 -3.74
5 16.450 19.134 16.31 15.598 -5.18
6 18.692 21.641 15.78 17.449 -6.65

The posterior Probability Density Function (PDF) of the inferred parameters is shown
in Figure 3.15, where one out of every fifty samples after the burn-in period was retrieved
to mitigate correlation effects.
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1Figure 3.15: PDF of the inferred parameters.

To further analyse the results, the frequencies of the FEM model for each retrieved
sample is presented in Figure 3.16. It can be observed that the model’s performance is
poor, generally overestimating the frequencies and introducing significant bias.

The poor model performance has been attributed to several factors. Firstly, although
the inference considered only frequencies, the comparison was based on a pre-established
mode matching process, which introduced important errors in some cases.

For example, the second output frequency from the FEM model for sample 7,717 was
2.417 Hz, corresponding to the first torsional mode. However, the algorithm identified
the first torsional mode with the fifth output frequency, which had a value of 5.772 Hz. In
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1Figure 3.16: Model predictions. The PDF was obtained using Kernel Density Estimation;
the frequency identified by OMA is represented by a dashed vertical red line; the frequency
corresponding to the parameters with highest likelihood is represented by a dashed blue
line.

this instance, the mode matching assigned a higher likelihood value than was appropriate.
As a result, the algorithm’s convergence slowed10.

Second, inferring only two stiffness parameters for all the frame levels may have been
insufficient, preventing the model from producing frequencies with higher likelihood. For
instance, the updated FEM output produced frequencies that were compensated, with
an average error across all frequencies of 0.42%. This may indicate that any modification
on a stiffness parameter will increase or decrease all frequencies, without reducing the
average error.

Third, the posterior PDF of the uncertainty variable σ (denoted as θ5) is concentrated
near the upper bound of its interval, suggesting that a higher upper limit should be
considered. Nevertheless, the values of σ would probably be lower if the likelihood were
correctly computed and the model were more accurate.

These insights are crucial for the next Bayesian inference, which will consider both
frequencies and mode shapes. First, the mode matching process must be refined11. Sec-
ond, the model should be improved by increasing the number of uncertainty stiffness
parameters. These considerations will be accounted for in future work.

10In fact, the selected burn-in period may be too short, as the log-likelihood expectation curve had
not yet leveled off at that point.

11One possible approach is to identify two clusters: x-bending modes and the torsional mode. Once
the modes are grouped, the matching becomes straightforward, as there is only one torsional mode, and
the x-bending modes can be matched by ordering them according to their increasing frequency.
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3.2. Steel Footbridge

3.2.1. Description of the Structure

The second case study involves a real steel truss footbridge located at P.K. 121/835
on the Bobadilla-Granada Railway, in Granada. The structure was built in 2003 by the
Ayuntamiento de Granada, and connects La Rosaleda and La Chana neighbourhoods by
crossing the aforementioned High Speed Railway.

The choice of this structure as a case study is justified by its nature as a steel structure,
the opportunity to study its joints, the peculiarity of its dynamics, and its easy access.
A photo of the structure is shown in Figure 3.17.

Figure 3.17: Case study 2: steel footbridge.

The central part of the footbridge is a Warren truss of 2.45 m and 18.57 m length,
supported by 2 piles of 6.79 m height. Access to the central lattice is provided by ramps
and stairs, both of which have a free width of 1.38 m. The ramp has a total length of
67.5 meters, while the stairs consist of 33 steps. The plan view of the footbridge is shown
in Figure 3.18, and the ramp plan is depicted in Figure 3.19.

The materials used are A-42 steel12, which is used for the entire structure, and H-25
reinforced concrete13, which is used for the pile foundations and the footbridge pavement.
The steel bars used are B500S, and have diameters ranging from 8 to 32 mm.

The most critical part for the structure safety is the central Warren truss, which is the
focus of the monitoring system to be deployed. Nevertheless, its dynamics is completely
conditioned by the ramps and stairs that allow to access to it. Indeed, the two main
piles of the structure support all three elements (central truss, ramps and stairs) and
consequently connect their vibration.

3.2.2. Monitoring System

The monitoring of the structure has not yet been carried out due to the lack of
necessary equipment, particularly the power station, which could not be acquired within

12According to the convention used in NBE-EA-95, corresponding to a yield strength of 260 MPa.
13According to the convention used in EHE-98, corresponding to a C25/30 in Eurocode 2.
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Figure 3.18: Plan view of the steel footbridge.

Figure 3.19: Access ramp plan.
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the required time frame because of bureaucratic challenges.

To address this limitation, simulated time-history strain data was obtained from the
FEM, as detailed in Section 3.2.4. The strain data was collected from 13 points of the
model, corresponding to 13 simulated SGs. Their locations are shown in Figure 3.20,
where the position of the SGs is indicated by arrows perpendicular to the surface of
the element on which they are placed. The exact coordinates of the simulated SGs are
summarized in Table 3.6.
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Figure 3.20: Locations of the SGs on the footbridge. Locations are indicated by arrows
perpendicular to the surface of the element on which they are placed. Blue arrows are
perpendicular to the x-y plane (πxy), red arrows are perpendicular to the x-z plane (πxz),
and green arrows are perpendicular to the πα plane, which is defined by the directions of
the upright on which they are placed and the x-axis.

Table 3.6: SGs location - footbridge

Channel x (m) y (m) z (m) Monitored element

1 6.000 2.800 0.000 Upright
2 6.000 0.000 0.000 Upright
3 -0.280 2.800 0.000 Lower chord
4 1.500 0.000 3.000 Upright
5 2.850 0.000 0.300 Upright
6 15.000 0.000 0.000 Lower chord
7 -0.194 2.800 0.000 Lower chord
8 15.194 2.800 0.000 Lower chord
9 7.500 0.000 0.000 Lower chord
10 7.500 0.000 0.000 Lower chord
11 7.500 2.800 3.000 Upper chord
12 7.500 2.800 3.000 Upper chord
13 6.000 0.000 0.000 Upright

The real monitoring campaign is scheduled for September, for which the structure is
proposed to be monitored with 8 SGs. These correspond to the EfI optimal configuration
for six target mode shapes, as described in Section 3.2.3.
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3.2.3. FEM and OSP Scheme

A FEM of the footbridge has been developed using SAP2000 software. A general
view is depicted in Figures 3.21 and 3.22.
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Figure 3.21: Footbridge FEM. Front view.
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Figure 3.22: Footbridge FEM. General view.

As previously discussed, the central Warren truss is coupled with the rest of the
elements in the bridge through the piles. This coupling means that the dynamics of this
main part of the bridge cannot be analyzed independently, so all bridge elements have
been modelled.

Two types of elements have been used in the model: 2-D area objects and 1-D frame
objects.

2-D elements have been introduced to link individual components and remove local
modes of vibration. Specifically:

An area object has been introduced in the ceiling of the Warren truss, modeling
the profiled sheet metal that physically exists.
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An area object has been introduced to model the concrete pavement of ramps, thus
removing the local modes associated with the vibration of the ramp elements.

The 1-D frame sections used in each footbridge part are:

Central Warren truss:

• Bottom and upper chords: rectangular hollow section modeling 2-UPN-180
profiles.

• Uprights: circular hollow section 125.5.

• Elements connecting chords in the horizontal plane: rectangular hollow section
modeling 2-UPN-100 profiles, and angular profiles 60.60.6.

Piles: The following rectangular hollow sections have been used: 60.160.10, 90.90.6,
90.160.6, 90.160.10, 120.60.6, 120.120.6, 140.140.6, 160.160.10, 160.360.10, 320.140.10.

Stairs: Rectangular hollow section modeling 2-UPN-160 profiles and rectangular
section 300.45 for the steps (necessary to remove local modes).

Ramps: 2-D Warren truss constituting the ramps rail have been modeled with
equivalent Timoshenko beams (as explained below). Additionally, the following
rectangular hollow sections 90.50.6 and 120.120.6 are defined to connect the equiv-
alent beams in the horizontal plane (and so, avoid calculating local modes).

As mentioned earlier, the 2-D Warren truss constituting the stairs rails has been
modeled with an equivalent Timoshenko beam, thus avoiding the calculation of some
local modes associated to these two dimensional elements. A procedure to calculate such
an equivalent beam has been developed, its derivation being detailed in Appendix II. In
this section, only the results are provided.

Considering a Warren truss like the one shown in Figure 3.23, the properties of the
equivalent Timoshenko beam are as follows: the equivalent linear density is provided by
Equation (3.11), the equivalent inertia for in-plane bending is given by Equation (3.12),
and the equivalent shear area is defined by Equation (3.13).
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Figure 3.23: Geometric characteristics of Warren truss.

ρeqL =

(
2 (Ltot +H) + Ltot

cos(α)

Ltot

)
ρL (3.11)

Ieqy = 2

(
Iy +

(
H

2

)2

A

)
(3.12)
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Aeq
c = 2(1 + ν)A sin2(α) cos(α) (3.13)

where:

ν, A, Iy, and ρL represent the Poisson’s ratio, cross-sectional area, in-plane moment
of inertia, and linear density of the truss elements, respectively. It is assumed that
all elements (uprights, upper and lower chords) have the same section, as is the
case for the footbridge.

Ltot, H, and α denote the total length of the Warren truss, its height (or dis-
tance between the lower and upper directrices), and the positive angle between the
uprights and the upper and lower chords, respectively.

The complexity of the structure’s dynamics is reflected in the mode shapes that jointly
affect the ramps, stairs, piles, and the central Warren truss. Since the monitoring excludes
the ramps and stairs, only the mode shapes related to the central Warren truss are
considered as target modes. Consequently, mode shapes such as the one shown in Figure
3.24 are excluded from the target modes of the EfI algorithm.
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Figure 3.24: Example of mode shape non-considered as target mode for EfI (mode 5).

The identification of these mode shapes is challenging due to the aforementioned
complexity. To facilitate this process, a simplified FEM, focusing solely on the central
Warren truss and its piles, has been used to help identify the target mode shapes14. The
EfI algorithm was applied to the full FEM.

Target mode shapes considered for the EfI algorithm are summarized in Table 3.7 and
illustrated in Figure 3.25, where the ramps and the stairs have been removed from the
view for clarity.

The EfI algorithm was applied to determine the OSP of the SGs, taking into account
that only the main elements of the central Warren truss (uprights, upper and lower
chords) are accessible. Consequently, the candidate DOFs are the mesh points of those
elements in the FEM model (12 equally-distributed points per element). The number of
sensors must satisfy the condition l ≥ m. A good balance between using fewer sensors
and achieving higher linear independence of the modes (assessed by the lowest value of
the ED vector; see Figure 3.26) was found with eight SGs.

14Not surprisingly, the frequencies in the simplified model are considerably lower than those in the full
FEM, since the contribution of the rest of the structure to the overall stiffness is excluded.
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(f) Mode 38.

Figure 3.25: Footbridge: target mode shapes for EfI algorithm.

Table 3.7: Considered mode shapes for EfI algorithm - footbridge

Mode Number Frequency (Hz) Type of Mode
1 2.692 First bending mode of piles (weak axis)
4 5.449 First Warren truss horizontal bending mode
15 11.579 First bending mode of piles (strong axis)
27 15.177 First torsional mode
28 15.368 First Warren truss vertical bending mode
38 20.389 Second Warren truss horizontal bending mode
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1Figure 3.26: EfI Algorithm - ED evolution for each iteration.

The SGs optimal locations obtained with the EfI algorithm are shown in Figure 3.27a,
where the position of the SGs is indicated by arrows perpendicular to the surface of the
element on which they are placed. For clarity, only the frames containing candidate DOFs
are shown.

The exact locations of these sensors correspond to channels 1 to 8 of Table 3.6.

3.2.4. OMA Results

A simulated Operational Modal Analysis (OMA) was conducted with two main ob-
jectives: to gain insights for the upcoming real monitoring campaign and to evaluate the
effectiveness of the EfI-based OSP configuration. In the absence of real data, dynamic
strain measurements were generated through a time history analysis in SAP2000, us-
ing ground motion as the excitation source. A constant damping rate of ξk = 2% was
assumed for all modes (k = 1, . . . ,m).

The characteristics of the test are as follows:

Sampling frequency: fs = 50 Hz.

Excitation force: white noise acceleration applied in three directions at the struc-
ture’s supports

Test duration: 5 minutes. According to the well-known rule of 2000 times the funda-
mental period T1, the recommended duration would be approximately 12 minutes
and 35 seconds. However, due to the high memory consumption of time history
analysis in SAP2000, the analysis duration was shortened.

Sensor layout: 13 SGs (locations shown in Figure 3.20), corresponding to two differ-
ent configurations: the EfI Optimal Scheme described in 3.2.3 (Figure 3.27a) and an
additional sub-optimal configuration (Scheme B, shown in Figure 3.27b). Scheme B
includes three channels from Scheme A and five additional channels selected based
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(a) SGs in Scheme A.
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(b) SGs in Scheme B.

Figure 3.27: Footbridge: SGs schemes. The location of the SGs is indicated by arrows
perpendicular to the surface of the element on which they are placed. Blue arrows are
perpendicular to the x-y plane (πxy), red arrows are perpendicular to the x-z plane (πxz),
and green arrows are perpendicular to the πα plane, which is defined by the directions of
the upright on which they are placed and the x-axis.
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on engineering judgment. The channels for each scheme are listed in Table 3.8, and
the coordinates of each channel are specified in Table 3.6.

Table 3.8: Selected channels for each configuration - footbridge

Scheme A Scheme B
(EfI-Optimal) (Sub-optimal)

1 2
2 4
3 6
4 9
5 10
6 11
7 12
8 13

The EFDD algorithm was used to perform OMA on the simulated dynamic strain
data. The SVP of the thirteen channels is illustrated in Figure 3.28.
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1Figure 3.28: SVP for all channels.

It can be observed that, among the six target modes, only the first five were identified.
Additionally, other non-target modes are also identifiable in the SVP, as discussed later.

The frequencies of vibration, identified as peaks in the SVP, are detailed in Table 3.9.
It is worth noting that the fifth mode has been identified in the second singular value.
The strain mode shape coordinates for the two schemes are presented in Appendix I.

The comparison of the strain mode shapes linear independence between the two SGs
configurations is made through the AutoMAC matrix, defined in equation (2.36). A
graphical representation of the two AutoMAC matrices is depicted in Figure 3.29.

Table 3.10 collects the off-diagonal mean and highest values for the two AutoMAC
matrices. It is observed from Figure 3.29a and from Table 3.4 that the Scheme A,
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Table 3.9: Frequencies of vibration from OMA - footbridge

Mode Number Frequency (Hz) Type of Mode
1 2.654 First bending mode of piles (weak axis)
2 5.444 First Warren truss horizontal bending mode
3 11.616 First bending mode of piles (strong axis)
4 15.340 First torsional mode
5 15.354 First Warren truss vertical bending mode

corresponding to the EfI configuration, produces the best results, thus experimentally
proving the effectiveness of this algorithm.

Table 3.10: Off-diagonal metrics for schemes A and B - footbridge

Off-diagonal Off-diagonal
mean value highest value

Scheme A 0.063 0.369
Scheme B 0.138 0.617
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Figure 3.29: Comparison of the AutoMAC matrices for two configuration schemes.

The results obtained from this simulated OMA provide valuable insights for the up-
coming real monitoring campaign. First, additional modes beyond those originally con-
sidered as target modes have been identified. This includes a second mode closely spaced
to the one at 5.444 Hz (which can be observed in the second singular value), a mode at
8.370 Hz, and another at 19.172 Hz. All of these are visible in the SVP shown in Figure
3.28. Additionally, the mode at 20.389 Hz is not observable.

These observations may prompt a reconsideration of the target mode shapes and the
placement of the SGs.
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Chapter 4

Conclusions and Future Works

4.1. Conclusions

The project successfully implemented the full monitoring cycle on a laboratory-scale
steel frame structure. This cycle included the following key steps:

1. Generating a FEM of the structure.

2. Calculating optimal sensor locations.

3. Assembling electronic components for data acquisition.

4. Recording structural vibrations.

5. Performing OMA.

6. Utilizing modal data for inferring model parameters.

While the full process was completed for the laboratory structure, the same steps—except
for model updating—were also applied to a real pedestrian footbridge. In this case, the
lack of real data was addressed using simulated strain vibration data.

From a practical standpoint, the works carried out in this project have yielded valuable
outcomes. The Python codes developed, along with the hands-on experience gained, will
significantly facilitate the monitoring of real structures in future campaigns.

From a research perspective, this project addresses the EfI method to real structures
using SGs, which was a gap identified in the literature. The EfI has demonstrated its ef-
fectiveness by producing mode shapes with higher linear independence compared to those
obtained through traditional engineering sensor location. This advancement validates the
potential of strain-based monitoring for enhancing structural health monitoring systems.

The work conducted on the footbridge, despite relying on simulated data, has pro-
vided crucial insights. These findings will enhance the effectiveness of the upcoming real
monitoring campaign.

4.2. Future Works

Future work on the steel frame will focus on performing Bayesian Inference using all
modal parameters (frequencies and strain mode shapes) and adding more variables to the
model parameters1. An important step will be to implement an enhance mode matching

1For instance, using different ending stiffness of the connecting frames for each frame level.
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method, as discussed in Section 3.1.5. Furthermore, the impact of the EfI algorithm
on the inferred parameters will be assessed. To improve computational efficiency, the
development of a surrogate model will also be considered, to enable faster Bayesian
inference.

Regarding the footbridge, the next steps will involve conducting a real OMA, followed
by FEM updating using Bayesian Inference. The monitoring system configuration may
be reconsidered based on the findings from the simulated results, particularly regarding
the target modes. Moreover, additional aspects such as model sub-structuring will be
explored, given the dynamic behavior of the footbridge.

As a continuation of this work, we are currently in the process of organizing and
refining the results obtained for submission to a scientific journal.



Appendix I: OMA Results

A.I.1. Strain Mode Shapes for Steel Frame

Table A.I.1: Scheme A: strain mode shapes using EFDD - Steel Frame

SG
Mode

1 2 3 4 5 6

3 -0.790+0.000j -1.000-0.000j -0.769+0.000j -0.833-0.000j -0.581-0.000j -0.988+0.000j
4 -0.955-0.007j -0.520+0.184j 0.895+0.013j 0.704+0.033j -0.553-0.118j -0.208-0.042j
7 -0.266-0.011j 0.129-0.201j -0.747-0.051j 1.000+0.090j 1.000+0.233j -0.978+0.052j
8 0.503-0.012j -0.278+0.212j 1.000-0.112j -0.474+0.104j 0.442+0.037j -0.987+0.293j
9 0.451+0.016j 0.791+0.143j 0.992+0.122j -0.441-0.050j 0.359+0.211j -1.000-0.157j
11 -0.815-0.050j 0.619-0.113j -0.730-0.089j -0.774-0.207j -0.555-0.205j -0.923-0.296j
14 -0.921-0.044j -0.567+0.029j 0.161+0.018j -0.589-0.126j 0.796+0.370j 0.500+0.205j
15 -1.000-0.105j 0.859+0.096j 0.193+0.087j -0.565-0.282j 0.700+0.666j 0.436+0.402j

Table A.I.2: Scheme B: strain mode shapes using EFDD - Steel Frame

SG
Mode

1 2 3 4 5 6

2 -0.565-0.000j 0.853+0.000j -0.646+0.000j -0.911+0.000j -0.971-0.000j -0.977-0.000j
3 -0.611-0.031j -1.000-0.590j -0.746-0.165j -1.000-0.284j -1.000-0.358j -1.000-0.436j
4 -0.740-0.043j -0.671-0.166j 0.871+0.216j 0.832+0.282j -0.867-0.524j -0.210-0.153j
10 -0.953-0.120j 0.536+0.603j 0.986+0.485j 0.739+0.539j -0.572-0.758j -0.131-0.239j
11 -0.629-0.071j 0.763+0.279j -0.697-0.250j -0.862-0.511j -0.830-0.695j -0.802-0.732j
12 -0.568-0.081j 0.643+0.513j 0.663+0.361j 0.521+0.413j -0.401-0.673j -0.102-0.170j
16 -0.629-0.088j -0.595-0.628j -0.698-0.382j -0.751-0.671j -0.617-0.863j -0.537-0.944j
17 -1.000-0.109j -0.924-0.321j 1.000+0.421j 0.793+0.514j -0.610-0.746j -0.151-0.191j

Table A.I.3: Scheme C: strain mode shapes using EFDD - Steel Frame

SG
Mode

1 2 3 4 5 6

1 -0.714+0.000j -0.985-0.000j -0.251-0.000j -0.739+0.000j -1.000+0.000j -0.626+0.000j
2 -0.589+0.026j -0.732+0.382j 0.569-0.153j -0.957+0.172j 0.514-0.203j 0.831-0.283j
8 0.407-0.007j 0.391-0.253j -0.915+0.139j -0.652+0.075j -0.465-0.012j 1.000-0.207j
10 -1.000-0.081j -0.717-0.348j -1.000-0.198j 0.884+0.434j 0.475+0.288j 0.179+0.154j
11 -0.660-0.045j -0.777+0.062j 0.675+0.056j -1.000-0.377j 0.580+0.190j 0.898+0.392j
12 -0.596-0.058j -0.753-0.237j -0.683-0.164j 0.629+0.338j 0.364+0.281j 0.140+0.124j
13 0.384+0.036j 0.458-0.090j -0.889-0.173j -0.617-0.272j -0.343-0.281j 0.924+0.580j
15 -0.809-0.090j -1.000-0.176j -0.182-0.073j -0.717-0.453j -0.769-0.667j -0.403-0.430j
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A.I.2. Strain Mode Shapes for Footbridge

Note in the tables below that the mode shapes are reported in complex form, as
outputted by the EFDD algorithm. Nevertheless, it can be readily seen that the modal
components are aligned (real mode shapes), as it is expected since proportional damping
was defined in the SAP2000 model.

Table A.I.4: Scheme A: strain mode shapes using EFDD - footbridge

SG
Mode

1 2 3 4 5

1 0.014+0.002j -0.087-0.026j -0.957-0.075j -0.255-0.062j -1.000-0.216j
2 0.042+0.020j 0.093+0.027j 1.000+0.037j 1.000+0.449j -0.379-0.098j
3 1.000+0.348j 0.019+0.005j 0.333+0.019j -0.016-0.000j 0.210+0.103j
4 -0.165-0.062j 1.000+0.319j -0.851-0.226j 0.031+0.009j -0.086-0.017j
5 0.053+0.026j 0.025+0.003j 0.261+0.016j 0.574+0.030j -0.254-0.078j
6 -0.472-0.068j -0.023-0.000j 0.148+0.071j -0.017-0.008j 0.020+0.004j
7 -0.480-0.118j -0.021-0.004j -0.510-0.191j 0.034+0.008j -0.238-0.027j
8 0.439+0.052j -0.017-0.007j -0.534-0.233j 0.036+0.010j -0.248-0.107j

Table A.I.5: Scheme B: strain mode shapes using EFDD - footbridge

SG
Mode

1 2 3 4 5

2 0.088+0.042j 0.093+0.027j 1.000+0.037j 1.000+0.449j -1.000-0.257j
4 -0.350-0.131j 1.000+0.319j -0.851-0.226j 0.031+0.009j -0.227-0.045j
6 -1.000-0.144j -0.023-0.000j 0.148+0.071j -0.017-0.008j 0.054+0.009j
9 -0.000-0.000j 0.039+0.001j 0.397+0.022j -0.104-0.028j 0.291+0.062j
10 -0.000-0.000j 0.039+0.011j 0.397+0.009j -0.104-0.010j 0.291+0.077j
11 -0.000-0.000j -0.031-0.015j 0.184+0.070j 0.087+0.002j 0.641+0.092j
12 -0.000-0.000j -0.031-0.007j 0.184+0.027j 0.087+0.029j 0.641+0.277j
13 0.088+0.002j 0.093+0.032j 1.000+0.021j 1.000+0.403j -1.000-0.381j



Appendix II: Timoshenko beam
equivalent of the Warren truss

A.II.1. Mathematical Formulation

Let us consider a Warren truss with the following parameters (see Figure A.II.1):

Geometrical characteristics:

• Ltot: Total length of the truss.

• H: Distance between the upper and lower directrices.

• α: Positive angle between the uprights and the upper and lower chords.

• Lup: Lenght of the uprights; Lup = H
sin(α)

• d: Distance between joints; d = 2H
tan(α)

• n: Number of internal joints in the lower chord; n = Ltot

d
− 1

Section characteristics2: Bernoulli-Euler elements are considered, with the following
characteristics:

• A: Cross-sectional area of the elements.

• Iy: Inertia for in-plane bending.

Ltot

H

α

d

Lu
p

X

Z

Figure A.II.1: Geometric characteristics of Warren truss.

The problem consists of defining an equivalent 1-D Timoshenko beam with the same
length (Ltot) such that its in-plane bending dynamic properties are equivalent to those
of the 2-D Warren truss.

2Uprights, lower chord, and upper chord are assumed to have the same cross-sectional area, as is the
case in the footbridge. However, the formulation can be easily generalized for different sections.

71



72 CHAPTER 4. CONCLUSIONS AND FUTURE WORKS

The in-plane dynamic characteristics of a Timoshenko beam are dominated by the
equivalent linear density (ρeqL ), the equivalent in-plane moment of inertia (Ieqy ), and the
equivalent shear area (Aeq

c ).

Equivalent Linear Density (ρeqL ):

The equivalent linear density is calculated such that the equivalent Timoshenko beam
has the same mass as the Warren truss. The mass of the Warren truss is given by:

m = ρL (2 (Ltot +H) + 2(n+ 1)Lup) = ρL

(
2 (Ltot +H) +

Ltot

cos(α)

)
(A.II.1)

The mass of the equivalent Timoshenko beam is given by:

meq = ρeqL Ltot (A.II.2)

By equating (A.II.1) and (A.II.2), the equivalent linear density is determined as fol-
lows:

ρeqL =

(
2 (Ltot +H) + Ltot

cos(α)

Ltot

)
ρL (A.II.3)

Equivalent Moment of Inertia for In-Plane Bending (Ieqy ):

The Warren truss is assumed to behave as a beam with a section formed by the lower
and upper chords, which are spaced by a distanceH. Consequently, the moment of inertia
for in-plane bending of this equivalent beam is given by:

Ieqy = 2

(
Iy +

(
H

2

)2

A

)
(A.II.4)

Equivalent shear area (Aeq
c ):

The equivalent Timoshenko beam accounts for displacements due to axial forces in
the uprights as a shear deformation, modulated by the shear area. Let us consider a
load case consisting in vertical loads applied at the n internal joints of the lower chord,
as shown in Figure A.II.2. The equivalent shear area Aeq

c is defined such that the shear
deformation due to this load case equates the deformation of the Warren truss resulting
from the axial strain in the uprights.

The axial force supported by the uprights is given by the following expressions:

Ni,1 = −P (n− 2i)

2 sin(α)
, Ni,2 =

P (n− 2i)

2 sin(α)
, for i = 0, . . . , n (A.II.5)

where the following convention has been used: i refers to the uprights between joint i
and i + 1, with i = 0, . . . , n;1 refers to the first upright (starting from the left), and 2
refers to the second upright.

The vertical displacement (considered positive when downwards) in each upright is
given by3:

3Assuming small displacements.
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P P P P P

Figure A.II.2: ]
Load case of Warren truss.

∆wi,j = − Ni,jLup

EA sin(α)
with i = 0, . . . , n; j = {1, 2}. (A.II.6)

So the (accumulated) vertical deflection in joint k is given by

wk = w(k · d) =
k−1∑
i=0

2∑
j=1

∆Vi,j =
k−1∑
i=0

P (n− 2i)Lup

EA sin2(α)
(A.II.7)

For the equivalent Timoshenko beam, the vertical displacement is:

weq(x) =
1

GAc

∫ x

0

V (t) dt (A.II.8)

Where V (t) is the shear force. Considering that for the assumed load case, V (t) is
piece-wise constant between joints,

weq(xk) = weq(k · d) = d

GAc

k−1∑
i=0

Vi

2
=

d

GAc

k−1∑
i=0

P (n− 2i)

2
. (A.II.9)

By equating (A.II.7) and (A.II.9), the expression for Ac is:

Ac =
EA sin2(α) · d

2GLup

(A.II.10)

Finally, substituting G = E
2(1+ν)

, d = 2H
tan(α)

, and Lup = H
sin(α)

into Equation (A.II.10),
the following expression for the shear area of the equivalent Timoshenko beam is obtained:

Ac = 2(1 + ν)A sin2(α) cos(α). (A.II.11)

The equations (A.II.3), (A.II.4), and (A.II.11) are the same expressions provided in
(3.11), (3.12), and (3.13).

A.II.2. FEM Validation

To validate the developed formulation, two numerical examples are calculated: Ex-
ample 1 (short truss) and Example 2 (Long truss). The Warren truss geometrical char-
acteristics are shown in Table A.II.1:

The frequencies for the first 2 modes of vibration in Example 1 (there is not a pure
bending third mode), and 3 modes of vibration in Example 2 have been calculated with
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X

Z

Figure A.II.3: SAP2000 models for Example 1 (upper elements) and Example 2 (bottom
elements). The linear depicted are used to compute the frequencies of the equivalent
Bernoulli-Euler and Timoshenko beams.

Table A.II.1: Geometrical parameters for the two examples

H (m) Ltot (m) α (degrees)
Example 1 1.25 10 45
Example 2 1.25 40 45

SAP2000. The results include the values for the 2-D truss, for the equivalent Timoshenko
beam and for the Equivalent Bernoulli-Euler beam (which does not account for the shear
deformation).

The values are gathered in Table A.II.3 and Table A.II.2. It can be seen that the
results are acceptable, and that including the effect of the shear deformation enhances
the accuracy.

Table A.II.2: Vibration mode frequencies (Hz) for Example 1

2D Truss BE-Equiv Timoshenko-Equiv
Mode 1 37.62 33.04 34.03
Mode 2 150.42 77.88 108.47

Table A.II.3: Vibration mode frequencies (Hz) for Example 2

2D Truss BE-Equiv Timoshenko-Equiv
Mode 1 2.35 2.41 2.34
Mode 2 9.4 9.33 9.15
Mode 3 21.16 19.4 19.93
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[5] Björn Åkesson. Understanding Bridge Collapses. CRC Press, Taylor & Francis,
London, UK, 1st edition edition, 2008. eBook published 21 April 2014.

[6] American Road and Transportation Builders Association. Bridge report, 2020. Tech-
nical report, American Road & Transportation Builders Association, 2020.

[7] Konstantinos Gkoumas, Fabio Marques Dos Santos, Mitchell Van Balen, Anastasios
Tsakalidis, Alejandro Ortega Hortelano, Monica Grosso, Anwar Haq, and Ferenc
Pekar. Research and innovation in bridge maintenance, inspection and monitor-
ing. Science for policy, Energy and transport, Safety and security EUR 29650 EN,
Publications Office of the European Union, Luxembourg, 2019. JRC115319.

[8] John Besant-Jones, Antonio Estache, Gregory K. Ingram, Christine Kessides, Pe-
ter Lanjouw, Ashoka Mody, and Lant Pritchett. World Development Report 1994:
Infrastructure for Development. World Development Report, World Development
Indicators. World Bank Group, Washington, D.C., 1994.

[9] Data Bridge Market Research. Global structural health monitoring market: Industry
trends and forecast to 2030. Technical report, Data Bridge Market Research, 2022.
Industry report.

[10] Grand View Research. Structural health monitoring market size, share & trends
analysis report by solution (hardware, software & services), by technology, by appli-
cation, by region, and segment forecasts, 2023 - 2030. Technical report, Grand View
Research, 2023. Market research report.

[11] Astute Analytica. Digital twin for buildings market - industry dynamics, market
size, and opportunity forecast to 2032. Technical report, Astute Analytica, March
2024. Industry report.

75



76 BIBLIOGRAPHY

[12] James M. W. Brownjohn, Alessandro De Stefano, You-Lin Xu, Helmut Wenzel, and
A. Emin Aktan. Vibration-based monitoring of civil infrastructure: challenges and
successes. Journal of Civil Structural Health Monitoring, 1(3):79–95, 2011.

[13] Bart Peeters and Guido De Roeck. One year monitoring of the z24-bridge: Environ-
mental influences versus damage events. Proceedings of SPIE - The International
Society for Optical Engineering, 2, 05 2000.

[14] Filippo Ubertini, Gabriele Comanducci, Nicola Cavalagli, Anna Laura Pisello, Anni-
bale Luigi Materazzi, and Franco Cotana. Environmental effects on natural frequen-
cies of the san pietro bell tower in perugia, italy, and their removal for structural
performance assessment. Mechanical Systems and Signal Processing, 82:307–322,
2017.

[15] A.K. Pandey, M. Biswas, and M.M. Samman. Damage detection from changes in
curvature mode shapes. Journal of Sound and Vibration, 145(2):321 – 332, 1991.
Cited by: 2042.

[16] Dimitrios Anastasopoulos, Guido De Roeck, and Edwin P.B. Reynders. Influence of
damage versus temperature on modal strains and neutral axis positions of beam-like
structures. Mechanical Systems and Signal Processing, 134:106311, 2019.

[17] Dimitrios Anastasopoulos, Guido De Roeck, and Edwin P.B. Reynders. One-year
operational modal analysis of a steel bridge from high-resolution macrostrain mon-
itoring: Influence of temperature vs. retrofitting. Mechanical Systems and Signal
Processing, 161:107951, 2021.

[18] Sahar Hassani and Ulrike Dackermann. A systematic review of optimization al-
gorithms for structural health monitoring and optimal sensor placement. Sensors,
23(6), 2023.

[19] Vahidreza Gharehbaghi, Ehsan Farsangi, Mohammad Noori, Tony Yang, Shaofan
Li, Andy Nguyen, Christian Málaga-Chuquitaype, Paolo Gardoni, and Seyedali Mir-
jalili. A critical review on structural health monitoring: Definitions, methods, and
perspectives. Archives of Computational Methods in Engineering, 29, 10 2021.

[20] Dimitrios Anastasopoulos, Edwin Reynders, and Guido De Roeck. Structural health
monitoring based on operational modal analysis from long gauge dynamic strain
measurements, 2020. Doctoral Thesis.

[21] A. Deraemaeker, E. Reynders, G. De Roeck, and J. Kullaa. Vibration-based struc-
tural health monitoring using output-only measurements under changing environ-
ment. Mechanical Systems and Signal Processing, 22(1):34–56, 2008.

[22] Bart Peeters, J. Maeck, and Guido De Roeck. Vibration-based damage detection in
civil engineering: Excitation sources and temperature effects. Smart Materials and
Structures, 10:518, 06 2001.

[23] Charles Farrar, S. Doebling, Phillip Cornwell, and Erik Straser. Variability of modal
parameters measured on the alamosa canyon bridge. Proceedings of International
Modal Analysis Conference, 1, 01 1997.



BIBLIOGRAPHY 77

[24] Dimitrios Anastasopoulos and Edwin P.B. Reynders. Modal strain monitoring of the
old nieuwebrugstraat bridge: Local damage versus temperature effects. Engineering
Structures, 296:116854, 2023.

[25] Yong Xia, Bo Chen, Shun Weng, Yi-Qing Ni, and You-Lin Xu. Temperature effect on
vibration properties of civil structures: A literature review and case studies. Journal
of Civil Structural Health Monitoring, 2, 05 2012.

[26] Edwin Reynders, Guido De Roeck, Pelin Bakir, and Claude Sauvage. Damage iden-
tification on the tilff bridge by vibration monitoring using optical fiber strain sensors.
Journal of Engineering Mechanics, 133:185–193, 02 2007.

[27] Fabio Marques Dos Santos and Bart Peeters. On the use of strain sensor technolo-
gies for strain modal analysis: Case studies in aeronautical applications. Review of
Scientific Instruments, 87(10):102506, October 2016.

[28] Xue-Yang Pei, Ting-Hua Yi, and Hong-Nan Li. Dual-type sensor placement op-
timization by fully utilizing structural modal information. Advances in Structural
Engineering, 22:136943321879915, 09 2018.

[29] Muammer Ozbek and Daniel Rixen. Operational modal analysis of a 2.5mw wind
turbine using optical measurement techniques and strain gauges. Wind Energy, 04
2013.

[30] Annibale Luigi Materazzi, Filippo Ubertini, and Antonella D’Alessandro. Carbon
nanotube cement-based transducers for dynamic sensing of strain. Cement and Con-
crete Composites, 37:2–11, 2013.

[31] Althen Sensors. Tf-series strain gauges for surface temperature measurement, 2024.
Accessed: 2024-09-05.

[32] Jun Cong, Xianmin Zhang, Kangsheng Chen, and Jian Xu. Fiber optic bragg grating
sensor based on hydrogels for measuring salinity. Sensors and Actuators B: Chemical,
87(3):487–490, 2002.

[33] Kenichi Soga and Linqing Luo. Distributed fiber optics sensors for civil engineering
infrastructure sensing. Journal of Structural Integrity and Maintenance, 3:1–21, 01
2018.

[34] Wieslaw Ostachowicz, Rohan Soman, and Pawel Malinowski. Optimization of sensor
placement for structural health monitoring: A review. Structural health monitoring,
18(3):963–988, 2019.
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