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You can’t connect the dots looking forward;
you can only connect them looking backwards.

So you have to trust that the dots will somehow connect in your future.

— Steve Jobs
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A B S T R AC T

Situation Awareness (SA) is a fundamental concept in the field of human
factors in aviation. In the case of aircraft pilots, the most relevant models of
SA focus on studying the individual perception of the critical aspects that in-
fluence decision making in complex and dynamic environments, i.e., during
the flight. In this thesis, we have attempted to provide a comprehensive sum-
mary of the factors that surround information management in the cockpit of
the aircraft, with special attention to the management of information in air
navigation.

The research has tried to analyse existing SA models, which already take in-
formation management into account, and adapt their interpretation so that the
parameters can be measured using Bayesian networks, ultimately intending to
provide an estimation of SA.

Throughout the research, we have carried out experiments on different ma-
chine learning tasks, such as discretization, regression, clustering, and there-
fore we have improved our knowledge about how to process aeronautical data
of various types.

We have managed data from several sources with multiple computer tools,
using various types of databases, different information exchange formats, test-
ing cloud environments, and successfully sharing information between differ-
ent applications, including flight simulators. We have developed a set of tools
for collecting data in simulated flights, to analyse them, and to estimate mod-
els (dynamic Bayesian networks) able of computing and online probability of
the SA conditioned to the observations.

The thesis also contains the results of the situation awareness estimation.
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R E S U M E N A M P L I O E N E S PA Ñ O L

Motivación

La motivación de esta investigación es la convicción de que existe una rela-
ción muy sólida entre la conciencia situacional, conocida generalmente como
SA (del inglés Situational Awareness) de los pilotos durante el vuelo y la gestión
de la información de que disponen, tanto la proveniente de los instrumentos
de la aeronave, como la de los documentos, listas de chequeo o aplicaciones
informáticas a las que tienen acceso. Tradicionalmente se ha pensado que la
seguridad de vuelo aumenta conforme lo hace la experiencia y el saber hacer
de un piloto, pero lo cierto es que las estadísticas demuestran que muchos
accidentes relacionados con el factor humano tienen como protagonistas a
pilotos con alta experiencia en situaciones no especialmente peligrosas. Con
el objetivo de poder detectar un potencial peligro latente y evitar accidentes
en circunstancias de vuelo rutinarias, nos hemos planteado el reto de utilizar
redes bayesianas para monitorizar vuelos simulados y tratar de generar una
medida de la conciencia situacional basada en las actuaciones del piloto.

Objetivos

Los objetivos de la investigación se dividen en tres áreas principales. La
primera área pretende producir un modelo de la SA de un piloto basado en
el comportamiento observado, la disponibilidad de información aeronáutica
y los métodos de presentación de información en la cabina. Los objetivos se-
cundarios incluyen la adquisición de conocimientos teóricos relacionados con
la SA, el análisis de los estándares de gestión de información aeronáutica y la
construcción de un modelo que incorpore los diversos elementos estudiados
de una manera lo más rigurosa posible.

La segunda área se centra en la implementación de un entorno de simula-
ción para la realización de experimentos válidos, utilizando en la medida de
lo posible las últimas tecnologías de gestión de información aeronáuticas, las
cuales se encuentran en pleno proceso de estandarización de los diferentes
elementos en que la información ha ido pasando del papel o la voz a forma-
tos digitales durante las últimas décadas. Por último, la investigación preten-
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de aplicar técnicas de aprendizaje automático para medir la SA y validar los
modelos matemáticos propuestos, al tiempo que se identifican y estudian di-
ferentes tipos de variables relacionadas con la SA, los factores humanos y la
información aeronáutica.

Resumen por capítulos

Capítulo 1: Introducción

Además de la motivación, objetivos e hipótesis ya avanzados al inicio de
este resumen, el primer capítulo de esta memoria contiene una breve descrip-
ción de los conceptos principales de los diferentes ámbitos en los que se ha
trabajado en la tesis, con el objetivo de ofrecer definiciones básicas y el con-
texto suficiente para presentar las hipótesis, justificaciones y objetivos de la
investigación.

Se enumeran a continuación las hipótesis sobre las que se ha centrado la
investigación:

1. Los pilotos que realizan una adecuada gestión de la información en la
cabina realizarán mejor sus tareas.

2. La SA de un piloto se puede medir como un conjunto de valores numé-
ricos que proporcionan una estimación cuantitativa de la capacidad del
piloto para percibir y comprender la información disponible durante un
período de tiempo determinado.

3. La medición de la SA del piloto tiene un comportamiento probabilístico,
y las técnicas de minería de datos, especialmente las redes bayesianas
dinámicas (siglas Dynamic Bayesian networks (DBN) en inglés), pueden
ser útiles para diseñar sistemas de medición de la SA en un entorno
dinámico.

4. Se puede diseñar un sistema para evaluar la medición y el aumento de
la SA de un piloto durante el vuelo mediante el uso de técnicas de apren-
dizaje automático para coordinar criterios deterministas que controlen
la información mostrada en la cabina, asumiendo que el modelo de SA

resultante tendrá una naturaleza probabilística relevante.



Capítulo 2: Conciencia situacional

El capítulo 2 pretende aportar, de forma rigurosa y autocontenida, los prin-
cipales elementos que se han considerado vinculados entre el concepto SA y
los factores de seguridad aeronáutica, fundamentalmente el factor humano. El
capítulo trata de resumir un campo de estudio que es extenso, haciendo refe-
rencia a los principales autores que han contribuido a armar el cuerpo teórico
alrededor del concepto de conciencia situacional.

Múltiples aspectos de la investigación se articulan en torno al modelo Ends-
ley de conciencia situacional [40], que es ampliamente reconocido como el más
influyente en la investigación de factores humanos relacionada con la seguri-
dad de vuelo. Este modelo diferencia tres niveles de SA:

• La percepción de elementos en la situación actual (Nivel 1).

• La comprensión de la situación actual (Nivel 2).

• La proyección mental del estado futuro (Nivel 3).

El capítulo explica cómo estos niveles no siempre se mencionan explícita-
mente en la capacitación de pilotos y el diseño de aeronaves, a pesar del uso
generalizado del concepto de SA en la aviación, por lo que usarlos para realizar
un modelo de medida de SA no es una tarea fácil.

De entre otras áreas de conocimiento relacionadas con la temática que se
han seleccionado, cabe destacar la metodología de gestión de riesgos opera-
tivos (siglas Operational Risk Management (ORM) en inglés), cuya aplicación
se ha hecho habitual en los últimos años en los centros de operaciones aéreas,
tanto civiles como militares.

Capítulo 3: Gestión de información de misiones de vuelo

El Capítulo 3 contiene una visión general de la gestión de información de
misiones de vuelo, destacando la importancia de la iniciativa internacional pa-
ra estandarizar la información aeronáutica inter-sistemas (siglas System Wide
Information Management (SWIM) en inglés), pues hemos constatado durante
la investigación su aplicabilidad a nuestros objetivos.

Fundamentos de la información de misión

Para familiarizar al lector con la información aeronáutica necesaria en la
planificación de misiones de vuelo se ha incluido un apartado en el que se
presenta una visión general de la estructura y contenidos de los principales
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sistemas de gestión de información utilizados por pilotos y otros agentes in-
volucrados en las operaciones aéreas, quienes necesitan datos precisos sobre
rutas, planes de vuelo, parámetros de aeronaves, configuraciones, etc.

• Sistema AIRAC: Según sus siglas inglesas Aeronautical Information Re-
gulation and Control (AIRAC), antes de iniciarse el actual proceso de
digitalización, la información se distribuía en papel en el marco de este
sistema con ciclos de actualización cada 28 días, mediante publicacio-
nes estandarizadas como el AIP (siglas Aeronautical Information Publi-
cation (AIP) en inglés), al que se dedica un subapartado del capítulo.
Aunque este sistema sigue siendo relevante, ahora se está integrando en
SWIM para modernizar y digitalizar el acceso a la información.

• SWIM: Se trata de una iniciativa internacional que a nivel europeo es-
tá coordinada por la agencia Eurocontrol y cuyo objetivo es facilitar el
intercambio en tiempo real de información aeronáutica, de vuelo y me-
teorológica. Cabe señalar que una de las facetas más ambiciosas de esta
iniciativa es la gestión de trayectorias de vuelo, la cual se menciona con
frecuencia lo largo de la tesis.

Estándares de SWIM

SWIM facilita la interoperabilidad y estandarización a través de tres princi-
pales modelos de intercambio de datos:

• Aeronautical Information Exchange Model (AIXM): Modelo para datos
aeronáuticos, como aeropuertos, rutas y restricciones de vuelo.

• Flight Information Exchange Model (FIXM): Gestiona principalmente in-
formación sobre planes de vuelo y trayectorias de aeronaves, para el
seguimiento individualizado de los vuelos.

• Meteorological Exchange Model (WXXM): Es el estándar para datos me-
teorológicos. Se ha usado poco en la investigación, pero conviene que el
lector conozca su existencia.

Estos estándares mejoran la calidad y eficiencia de la provisión de datos,
habiendo sido posible realizar la tesis en gran medida gracias a ellos. Además,
se trata de una iniciativa viva en la que resulta gratificante poder participar
desde un punto de vista académico y no solamente como usuarios.



Impacto de SWIM en las operaciones de vuelo

El último apartado del capítulo trata principalmente dos aspectos de SWIM

que nos parecen especialmente relevantes, por su impacto en la SA del piloto,
no tanto por la medida efectuada en esta tesis, sino por el potencial futuro:

• Trajectory Based Operations (TBO): La iniciativa no está del todo madu-
ra, pero consideramos interesante dedicarle una cierta atención por la
potencial faceta de permitir que los pilotos puedan en el futuro partici-
par activamente en la gestión de trayectorias en colaboración con otros
actores del tráfico aéreo, lo cual nos motiva también por lo que respecta
al impacto en la SA.

• SWIM en las bolsas de vuelo electrónicas (siglas Electronic Flight Bag
(EFB) en inglés): Estos dispositivos basados en tabletas son una puerta
de entrada clave para que los pilotos accedan a los beneficios de SWIM,
facilitando herramientas avanzadas para misiones específicas. Nosotros
las vemos también como una plataforma viable en la que instalar una
aplicación que monitorice la SA.

Capítulo 4: Redes bayesianas

Este capítulo ofrece una introducción a las redes bayesianas, centrándose en
su aplicación en el contexto de experimentos realizados utilizando un simula-
dor de vuelo y tratando de adaptar las explicaciones a un lector no familiari-
zado con la ciencia de datos. Se comienza explicando los conceptos básicos de
los modelos gráficos probabilísticos y los gráficos dirigidos acíclicos, que son
importantes para comprender cómo las redes bayesianas pueden realizar infe-
rencia al mismo tiempo que ofrecen una representación gráfica comprensible.

Dentro del capítulo se proporciona la definición de red bayesiana como
un gráfico acíclico dirigido que representa relaciones de dependencia entre
variables, basadas en la propiedad local de Markov: una variable en una red
bayesiana es condicionalmente independiente de sus no descendientes dado el
estado de sus padres. Aunque se parte de la base de que no todos los lectores
de la memoria considerarán accesibles los conceptos de este capítulo, conviene
hacer hincapié en que esta propiedad es la que permite reducir la cantidad
de dependencias necesarias para modelar y calcular probabilidades, haciendo
de las redes bayesianas una herramienta muy útil para resolver problemas
inabordables usando otras herramientas computacionales.

Seguidamente, se introducen otros conceptos básicos en la minería de datos,
como son los algoritmos de inferencia y aprendizaje para redes bayesianas.
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También se presentan las redes bayesianas dinámicas, que son una variante
que permite sustanciar las metodologías de aprendizaje de datos dinámicos,
incluso en tiempo real, necesarias para llevar a cabo la investigación.

Finalmente, se hace una introducción a la problemática de medir variables
discretas y continuas en una misma aplicación y a las diferentes alternativas
existentes en el campo de los modelos gráficos probabilísticos.

Capítulo 5: Construcción de un modelo para estimar la SA

Este capítulo expone el modelo diseñado en esta tesis para estimar la SA

de un piloto. Nuestro modelo se basa en el modelo Endsley de SA, basado
en la definición de tres niveles de conciencia situacional ya mencionados. En
base a aclaraciones publicadas por Endsley, motivadas por discusiones entre
expertos de factores humanos en aviación, se exponen una serie de proposicio-
nes subyacentes al modelo, de las cuales derivan un conjunto de suposiciones
que darán lugar a la definición de variables. Se enumeran a continuación las
proposiciones con sus correspondientes suposiciones:

1. Los tres niveles de SA no son lineales:

• No existe una relación numérica apriorística entre los niveles de SA.

• Las estimaciones de los niveles de SA son independientes.

2. El modelo no puede considerarse simplemente como un modelo de pro-
cesamiento de información basado en datos:

• El conocimiento experto proporciona rigor a la estimación.

3. Existe una clara distinción entre producto y proceso:

• Interdependencia de producto y proceso.

• El producto es la SA estimada.

• El proceso se basa en una serie de valoraciones realizadas sobre
parámetros de vuelo y acciones del piloto, tanto para controlar la
aeronave como para gestionar la información.

4. El modelo de SA es cíclico y dinámico:

• La SA depende del tiempo.

• La SA se basa en actividades iterativas y continuas.

5. El modelo de SA tiene en cuenta el significado de los distintos niveles:



• El conocimiento experto contribuye a la relevancia de este significa-
do.

6. El modelo de SA tiene en cuenta la memoria de trabajo:

• Las personas con experiencia tienden a apoyarse en la memoria de
largo plazo.

• La simulación debe detectar las necesidades de la memoria de tra-
bajo, en particular la de corto plazo.

• La simulación debe permitir observar las interacciones de la memo-
ria de trabajo, independiente de los niveles de SA.

Seguidamente se explica una evaluación basada en un sondeo realizado con
pilotos instructores de vuelo, a quienes se preguntó sobre criterios operativos
para realizar misiones desde el punto de vista de la gestión del ORM, con el
objetivo de adquirir un mejor criterio para la definición de las variables.

Las variables se identifican en función de tres categorías principales: varia-
bles internas (parámetros observados referentes al piloto, como acciones de
control), variables externas (como parámetros de la aeronave o datos del en-
torno) y variables de monitorización de la situación, entre las que se incluyen
las derivadas del conocimiento experto. Finalmente se analizan los roles de la
memoria en la estimación de la SA del piloto, especialmente la memoria de
corto plazo, pues es la que tiene un valor prevalente para modelar la memoria
de trabajo según nuestro enfoque y el diseño del entorno de simulación.

Capítulo 6: Implementación de un entorno de simulación

El Capítulo 6 describe la implementación del entorno que hemos elaborado
durante la investigación, el cual permite volar con un simulador mientras se
recopilan datos sobre variables relacionadas con el vuelo, incluidos los pará-
metros de la aeronave y las interacciones del piloto. El entorno de simulación
consta de dos aplicaciones principales: FlightApp y PostFlight, ambas desarro-
lladas en JavaScript, PHP, HTML y CSS. Para almacenar los conjuntos de datos
se utilizan bases de datos MySQL. FlightApp se conecta además con el simula-
dor de vuelo mediante sockets.

Tras la realización de los vuelos, PostFlight se encarga de sincronizar los
datos, realizar diversos tipos de cálculos y agregar conocimiento experto, lo
que facilita la extracción y el análisis de datos después del vuelo, adaptados a
las necesidades del aprendizaje mediante redes Bayesianas dinámicas.
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El conjunto de datos generado por el entorno de simulación incluye más de
cien variables, cuyo listado se proporciona en el Apéndice D. Para su mejor
comprensión, las variables se han clasificado en los siguientes grupos:

• Situación del Avión: Parámetros que definen la posición del avión en
diferentes ejes, considerando también la ruta del plan de vuelo esperado
(altitud, coordenadas geográficas, distancia a waypoints, etc.).

• Parámetros del Avión: Parámetros básicos del avión como la potencia de
los motores y los ángulos de cabeceo, alabeo y guiñada.

• Variables del Entorno: Condiciones ambientales que incluyen velocidad
y dirección del viento, temperatura externa y presión atmosférica.

• Acciones del Piloto: Acciones del piloto para controlar el avión, princi-
palmente los ajustes de altitud, velocidad y rumbo.

• Chequeos de Información: Acciones del piloto para revisar documentos
en la bolsa de vuelo electrónica (siglas EFB en inglés), incluyendo una
evaluación de la relevancia de la información consultada para el tramo
actual y el siguiente tramo del plan de vuelo.

• Revisiones de Situación: Consultas del piloto para obtener información
de posición, evaluadas además con respecto a la precisión de la navega-
ción en base al conocimiento experto aportado.

• Plan de Vuelo: Información del plan de vuelo utilizada para comparar
la ruta planeada con la trayectoria real del avión.

• Precisión o calidad de la situación: Variables que evalúan si la situación
del avión es adecuada respecto al plan de vuelo, usando conocimiento
experto incorporado para mejorar la precisión del análisis.

El capítulo también expone los métodos planteados en esta tesis para re-
ducir el sesgo de la estimación de la SA, pues se ha adaptado la interfaz de
usuario para detectar cuándo los pilotos necesitan verificar elementos de infor-
mación clave durante el vuelo. La parte de la interfaz de usuario que posibilita
al piloto controlar la aeronave trata de replicar un director de vuelo de avión
comercial, mientras que la que permite acceder a la información aeronáutica y
controlar la posición durante la navegación se asemeja a una EFB, procurando
así reducir el sesgo de simulación.

Se describe la propuesta para monitorizar las interacciones del piloto y su
recopilación de datos, especialmente enfocándonos en los niveles 1 (percep-
ción) y 2 (comprensión) del modelo de Endsley de conciencia situacional. El



enfoque planteado implica que el piloto realice acciones simples perturbando
lo mínimo posible sus actividades de cabina, realizando un seguimiento de
las interacciones con la interfaz, lo que proporciona información valiosa para
la estimación de la SA sin los sesgos de cuestionario que introducen otras me-
todologías tradicionales como Situation Awareness Global Assessment Tech-
nique (SAGAT) y Situation Awareness Rating Technique (SART). Este enfoque
permite además que, en caso de ser aplicado al diseño de una EFB, la medida
pudiese ser llevada a cabo también en una aeronave real.

Capítulo 7: Análisis de trayectorias y situaciones

El Capítulo 7 se centra en el análisis de los datos de trayectoria de las ae-
ronaves, con el objetivo de presentar el trabajo realizado en la búsqueda de
bases para llevar a cabo la estimación de SA usando diversos tipos de datos
aeronáuticos. Dichas actividades, aunque se vinieron desarrollando desde el
principio de la investigación, se concretaron especialmente en una aplicación
cuyos detalles se publicaron en un trabajo del año 2017 [97]. Dentro de este
contexto, el capítulo explica de forma resumida las diferentes metodologías
que se han usado en experimentos que involucran discretización de variables,
regresión y métodos de agrupamiento (clustering), que han servido también
para tener una visión más general de las posibilidades en el manejo de los
datos disponibles, tanto del simulador desarrollado para esta tesis, como los
datos que se han obtenido de otras fuentes.

Con respecto al experimento de discretización, que se publicó en el año
2015 [100], el capítulo muestra un extracto de sus resultados para ilustrar
cómo mediante las métricas de discretización analizadas (BIC, Akaike, K2 y
BDEu) se puso de manifiesto la limitada capacidad de las redes bayesianas
dinámicas para manejar variables continuas, en base al enfoque utilizado en
este primer trabajo. Para mejorar el rendimiento de la red bayesiana dinámica
se recurrió en el siguiente trabajo [98] a combinar técnicas de regresión con la
discretización, según se muestra en el apartado 7.3.

Seguidamente se muestran los fundamentos del trabajo sobre análisis de
trayectorias mediante agrupamiento [102] y se explica que pese a no tener una
aplicación directa sobre la estimación de la SA, en su momento sirvió para me-
jorar el conocimiento sobre este tipo de metodologías y sobre la información
que se puede extraer de los diferentes formatos de datos de trayectorias en los
que se ha trabajado durante la tesis.

Finalmente, el capítulo incluye un extracto del trabajo sobre Navegación Ba-
sada en el Rendimiento (Performance Based Navigation (PBN)) y una breve
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discusión acerca del impacto que la implantación de este tipo de procedimien-
tos de vuelo está teniendo en la automatización de las labores en cabina, con
el consiguiente impacto en la SA y su estimación.

Capítulo 8: Estimación de la conciencia situacional

Para explicar cómo se ha realizado la estimación de la SA, el Capítulo 8 se
centra en el último experimento diseñado al efecto. En esta ocasión, se trata de
analizar cómo los pilotos mantienen la precisión de la navegación durante los
vuelos, en ocasiones sometidos a distracciones externas, mientras se analizan
las variables derivadas de monitorizar su actividad. La investigación emplea
el entorno de simulación explicado en el Capítulo 6 para integrar diversos
datos de factores humanos y aplica metodologías de aprendizaje automático
para interpretar estos datos, frente al resto de parámetros de vuelo y nave-
gación también recogidos. En esta ocasión se ha recopilado un conjunto de
datos de entrenamiento que consta de veintisiete vuelos simulados, para pos-
teriormente probar los resultados con un conjunto de cuatro vuelos correctos
y dos erróneos. El plan de vuelo escogido es el mismo que el empleado en el
experimento PBN explicado en el Capítulo 7.

Este capítulo también contiene una discusión sobre la selección de variables
y la adición de conocimiento experto, el cual ha servido para corroborar la
medida de la SA realizada de forma no supervisada. Los resultados obtenidos
indican estimaciones prometedoras de la SA, materializada en una medida
de la probabilidad de que esté por debajo del nivel umbral adecuado. Los
resultados han sido adecuados para todos los vuelos del conjunto de prueba,
mostrando concordancia significativa con los vuelos correctos e incorrectos.

Conclusiones

En el Capítulo 9 se recogen las conclusiones de la investigación, proporcio-
nándose una relación de contribuciones y limitaciones de la investigación, así
como las posibles líneas de trabajo futuro.

Contribuciones

En esta investigación hemos trabajado para proporcionar un resumen com-
pleto de los factores que rodean la gestión de la información en la cabina de
un avión, desde la perspectiva de su influencia en la conciencia situacional



y la posibilidad de construir un modelo para proporcionar una medida utili-
zando redes bayesianas. Hemos resumido las contribuciones para resaltar que
nuestra investigación ha puesto el foco en los siguientes temas:

• Introducción de SWIM y sus estándares: AIXM,FIXM y WXXM.

• Hemos prestado especial atención a la gestión de la información en la
navegación aérea, los experimentos se centraron en vuelos de navegación
instrumental comunes y con configuraciones estándar.

• Hemos seguido la evolución de PBN (siglas PBN en inglés), que es un
concepto fundamental en la navegación aérea futura.

• Hemos realizado un estudio en profundidad del tema de la conciencia si-
tuacional, respaldado por una revisión exhaustiva de literatura científica.
Basándonos en eso y en nuestra propia experiencia, hemos desarrollado
un modelo para la estimación de la SA, aplicando las redes bayesianas
para proporcionar un enfoque robusto y sistemático a este dominio com-
plejo.

Por otro lado, una parte fundamental del trabajo ha sido el desarrollo de
un entorno de simulación y de software adicional para explorar la interope-
rabilidad entre las fuentes de información aeronáutica y las herramientas de
aprendizaje automático. En la memoria, especialmente en el Capítulo 6, se ex-
plican las características de este desarrollo y se proporcionan algunos detalles
de la implementación, incluyendo el acceso a algunos elementos del código
fuente producido.

A partir de estas actividades, concluimos que existen posibilidades muy in-
teresantes para realizar simulaciones de vuelo con herramientas asequibles
que podrían proporcionar a estudiantes e investigadores herramientas poten-
tes y realistas para realizar trabajos en este ámbito. También cabe señalar la
importancia de las bolsas de vuelo electrónicas como posibles plataformas pa-
ra aplicar algunos resultados en el interior de la cabina de aeronaves en vuelos
reales.

En paralelo, hemos analizado los modelos de SA existentes, que ya tienen en
cuenta la gestión de la información y los hemos adaptado de tal manera que
hemos podido diseñar un modelo específico de medición de la SA con redes
bayesianas dinámicas, cuyos resultados experimentales muestran resultados
prometedores. Consideramos que el uso de redes bayesianas es relevante, ac-
tualizado y un camino adecuado para futuras investigaciones en este campo.
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Limitaciones del estudio

Nos parece conveniente señalar las limitaciones que hemos encontrado, en
parte porque también nos marcan el posible camino a seguir en futuras fases
de la investigación.

Sesgo de simulación

Debido al hecho de que utilizamos simulaciones para realizar los experimen-
tos, existe un sesgo de simulación inherente, que por otro lado se ha analizado
en cierta medida como parte de la investigación. Nuestro entorno de simula-
ción es muy básico y no se puede comparar con un simulador de vuelo con
certificación aeronáutica, pero ofrece la ventaja de que el diseño se ha podi-
do adaptar a nuestra investigación y a las medidas relacionadas con factores
humanos.

Tipos de misión estudiados

Nuestros experimentos se centran en un tipo de vuelo muy específico: Vue-
los de navegación de aviones comerciales. Hemos realizado experimentos en
dos fases de vuelo diferentes: En ruta y en la fase de salida instrumental pos-
terior al despegue. La complejidad del vuelo simulado es media, lo que nos
ha ayudado a validar el modelo de estimación de la SA porque pudimos cen-
trarnos en situaciones específicas y de complejidad limitada.

Limitaciones de las redes bayesianas

Durante las diferentes fases de la investigación hemos trabajado para iden-
tificar y superar las limitaciones de las redes bayesianas, especialmente las
relacionadas con los tipos de variables que pueden manejar. Hemos avanzado
en el procesamiento de variables continuas, si bien en la presente memoria se
puede observar que tuvimos dificultades para adaptar las redes a los tipos de
datos que manejamos, especialmente cuando se trata de discretizar variables
continuas.

Limitaciones en el modelado de factores cognitivos humanos

Nuestro enfoque para modelar los niveles de SA se basa en el análisis de
las acciones del piloto y sus resultados en términos de medidas de la trayec-
toria o actitud de la aeronave. Somos conscientes de que existe una amplia
área de estudio para investigar de manera más profunda los enfoques de los



mecanismos cognitivos del ser humano y aplicar alternativas computacionales
adoptadas por otros autores que están trabajando en este tema.

Trabajo futuro

Entre los muchos temas en los que consideramos que existe un campo de
estudio interesante para seguir investigando, proponemos lo siguiente:

• En general, es necesario explorar la aplicabilidad de la inteligencia artifi-
cial al ámbito aeronáutico, particularmente a la luz de lo establecido por
la Agencia Europea de Seguridad Aérea [2].

• Continuar realizando diferentes experimentos con diferentes alcances,
para mejorar el modelo de SA.

• Continuar estudiando la aplicación de los principios de gestión de ries-
gos, no solo ORM.

• Explorar formas adicionales de realizar un análisis sistemático de la ges-
tión de la información. Por ejemplo, aplicando principios de teoría de la
información, donde hay espacio para un estudio aplicando redes baye-
sianas.

• Actualizar el entorno de simulación para conectarse a otros medios de
simulación y mejorar la interoperabilidad con fuentes de datos adiciona-
les.

• Ampliar la investigación a aviones tripulados remotamente.

• Explorar la utilidad potencial de las EFB en vuelos reales, no solo para
alojar aplicaciones que brinden información, sino también para monitori-
zar potencialmente las actividades del piloto y poder detectar anomalías
en el rendimiento para brindar advertencias. Ésta podría ser una aplica-
ción práctica de esta tesis.

• Ampliar y mejorar el modelo para el cálculo de la SA en línea presentado
en el Capítulo 8.
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I N T R O D U C T I O N





1 I N T R O D U C T I O N

1.1 Situation awareness and the challenges of f l ight
safety

In the past, aircraft were less reliable, more complicated to handle, not very
robust when operating in adverse conditions, and procedures were less devel-
oped. And their systems included very limited capabilities to manage infor-
mation. In some models, to allow pilots to focus more on flying and making
decisions, there were additional crew members, such as the flight engineer, the
navigator, or the mission systems operator, particularly in the case of military
aircraft.

Over time, both the reliability of the aircraft and the quality of the cockpit
design have improved, training plans have been refined, the use of simula-
tions is becoming generalised, and many cockpit tasks have been automated
thanks to the application of electronics and computing. Accident rates have
been reduced, and it seems that we are on the right path to reach a zero ac-
cident condition. However, accidents still happen, and the causes of most of
them tend to remain in a grey zone between crew errors and Human Machine
Interface (HMI) design. Therefore, challenges to flight safety remain, especially
taking into account that the level of automation of tasks performed by the pilot
is increasing substantially, in parallel with the volume of information related
to the flight that is relevant to the pilot. Human factors experts, system de-
signers, flight instructors, and pilots need to remain aware of the challenges
posed by this situation, reducing automation bias, and ensuring that the pilot
level of awareness is adequate to manage the assigned tasks.

1.1.1 Definition of SA

In the context of human factors applied to aviation, situation (or situational)
awareness (SA) can be defined as the field of study concerned with quantifying
the perception of the environment critical to decision-makers in complex and
dynamic areas [49].
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4 Introduction

This term will be broadly explained and analysed in this dissertation, so it
is important to point out from the beginning that the SA of flight crews usually
depends on the knowledge and interpretation of a large number of variables
with complex relationships, such as individual human factors, aircraft param-
eters, pilot control commands, interaction with air traffic controllers and other
aircraft, or the management of information in the cockpit during flight.

1.1.2 The complexity of monitoring awareness

Even when the cockpit parameters can be measured, recorded and analysed,
it is a great challenge to find a reliable way to know how they are interpreted
by the pilot and therefore to establish how they affect SA, basically because
they do not show deterministic dependencies. This is one of the reasons why
BN and moreover DBN for time-dependant systems, are particularly applicable
to this research.

The complexity of the task is increased by a technological context that
favours an over-balanced increase in the sources of information to be man-
aged by the pilot. However, there are potentially useful tools for monitoring
cockpit activities through the use of EFB and a reliable relationship of flight
data thanks to the implementation of SWIM, which are concepts that will be
mentioned very often during this dissertation.

We already highlighted this complexity in our first published paper [100],
where we proposed to explore the relationship between SA and cockpit infor-
mation management, from our experience observing the difficulties found by
military pilots flying complex aircraft or managing aircraft navigation in in-
tricate routes or congested airspace, sometimes with short notice for mission
preparation. We also identified the concern for complex information manage-
ment in modern cockpits related to automation bias, as described Salas et. al. in
[130], originating the danger of non-coherent judgments in complex electronic
environments, which may emphasize some information when it is only part
of the solution to managing the cockpit: "the design of many high technology sys-
tems may encourage decision makers, including experts, to focus on the most salient,
available cues and to make intuitive, heuristic judgments before they have taken into
account a broader array of relevant cues and information".

1.1.3 Proposing a model for measuring SA

In the previous subsections we have highlighted challenges and complexity,
and we consider that an effective method to measure or monitor SA is not
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Figure 1.1: SA estimation and simulator parameters model.

possible with conventional offline tools, so we consider that there is a new
field of research to perform a real-time measurement.

Over the years, we have implemented and updated a simulation environ-
ment that has been designed to take advantage of the interoperability benefits
provided by SWIM and to monitor the parameters related to automation bias.
The collection of a relevant dataset was also a priority and, together with the
availability of multiple information sources, our goal has been to perform a
robust training of a DBN and to optimise the development of real-time data
mining techniques. Figure 1.1, which was already incorporated in our previ-
ous paper [101], illustrates the baseline model for constructing the simulation
environment: collecting pilot control actions and flight information queries,
because the SA estimation focusses on these sources. The datasets generated
for each experiment repetition also contain route and deviation information.
The summary and discretization of the variables was also performed when
applicable, to increase the relevance of the collected data. Expert knowledge
was added in some cases to allow the correct identification of human error
and also to contribute to training the networks.

1.2 The digital isation of f l ight information

The introduction of the first onboard computers back in the 1970s evolved
to specific aircraft systems called Flight Management System (FMS) that gradu-
ally started storing digital information in avionics systems; therefore, the first



6 Introduction

databases were implemented inside aircraft computers. At first, the priority
was to control the aircraft [26], since technology did not allow to consider a
global approach to information management. In fact, for many years and even
in the current times, the management of flight information in the cockpit has
been paper-based. In this section, we will briefly review the key aspects of
the process that leads to full digitalisation sponsored by the new technologies
introduced by SWIM.

The question might arise as to whether this transition could be faster. It
is mainly due to the predominant role of airworthiness and the conservative
approach of airworthiness authorities that prioritise flight safety in terms of
reducing the probability of system failure, versus the introduction of new tech-
nologies.

It could be discussed that flight safety is improved from different perspec-
tives: either reducing system error probability, thus reducing non-human fail-
ure, or supporting the role of the pilot to prevent human failures that could
lead to an accident. The compromise is not simple, and it is beyond the scope
of this thesis to discuss the impact of airworthiness certification on the speed
of digitalisation of flight information.

For many years, the digitised data were handled by specific equipment,
being virtually unavailable, as data itself, to pilots, who could only have access
to the results of calculations or computer operations. Very timid advances
were made during the last years of the 20

th century in the sense of making
digital information available to operators. An example is [114], where it can be
seen that the regulation contemplates the option of editing data. However, the
level of interaction of the crew with the digitised data was still very reduced,
even with the arrival of the EFB.

1.2.1 The Electronic Flight Bag

At the beginning of the 21
st century, advances in portable computers and

touch screens began to be significant, but reliability prevented the aerospace
industry from incorporating them into the cockpit. However, regulators started
to anticipate the arrival of portable computers in the cockpit and in 2003 the
United States Federal Aviation Administration (FAA) published the first advi-
sory circular [64] establishing the guidelines for a portable electronic device
whose main purpose was the management of digital information in the cock-
pit: the EFB. It should be noted that the chosen name did not invite a techno-
logical revolution, and for several years the role of most EFBs was focused on
replacing paper to make flight safer. Once again, safety was regarded in avia-
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tion more from the point of view of reducing technical failure than facilitating
crew tasks, of course this is a simplification of the problem not to be discussed
in this research.

But an event radically accelerated the adoption of EFBs in the cockpit: In
early 2010, Apple Computers marketed the first iPad device, and it quickly
became the de facto standard for EFBs globally, raising interest in the aeronau-
tical community, that quickly became aware of the positive impact to flight
safety [66] and the increase of SA, although the adaptation to the aircraft was
not immediate [4]. A very interesting view of the industry perspective of this
digitalisation process was published in 2012 as an academic paper [120] by
staff from Jeppesen, the leading company in the provision of paper informa-
tion, aeronautical databases and currently EFB software.

1.2.2 Digitalization on the ground

In parallel, technological advances at the beginning of the 21
st century started

preparing the way for an integral digitization of ground aeronautical informa-
tion. The first edition of the ICAO Global ATM Operational Concept [29] was
published in 2005, adopting SWIM as a key player to achieve air traffic integra-
tion.

SWIM was initially only for the ground, but it was very quickly noticed that
the information it handles also affects the activities of the crew. With the
arrival of Unmanned Aircraft System (UAS) the approach is changed in some
way because the digital resources are more feasible to be integrated in the
Ground Control Station (GCS), affecting both training and certification [149].
This offers a promising field of study in the future to apply the results of our
work.

1.2.3 Information for cross domains

In an ideal situation, as already envisaged by SWIM, information manage-
ment can be extended to support interoperability among aeronautical stake-
holders: pilots, air traffic controllers, airlines, maintenance organisations, etc.
But this goal is very difficult to achieve. EFBs are dominated by very power-
ful aerospace companies or very small developers for niche markets. In most
cases, interoperability is not a priority, but it is important for this research to
be able to collect data from different sources to support the performance of
machine learning tools.
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There is a lack of a market for companies that could deliver information
services without competing with very different-sized companies, and this is
slowing down the process of finding synergies in the two worlds. During this
research, we have witnessed the following:

• Stable EFB business by some large companies.

• Slow evolution of the SWIM development and lack of easily available
certified data to be exploited by EFB.

Our aim in highlighting this situation is to draw attention to the potential
benefits of higher integration and also to provide context for the related work
performed during the research. In Chapter 3 we will explain in more detail
what kind of information is digitised, and in Chapter 6 we will provide details
of how and with which sources, we have made use of this digital information.

1.3 Hypothesis and justif ication

The hypotheses of this thesis were already raised in the 2016 research plan
and have not changed substantially, so they are reproduced below. Experience
shows that problems related to human factors related to the pilot are among
the causes of most accidents in an aircraft. Examples of these problems are
poor internal crew coordination, lack of training, self-complacency, lack of
resting time, or inadequate radio communications. This research focuses on
the lack of availability of adequate and timely information required to make
decisions at certain moments during the flight.

Therefore, the first hypothesis of this thesis is to consider that pilots who
perform adequate information management in the cockpit will perform their
tasks better.

The second hypothesis is based on considering that the SA of a pilot can
be measured as a set of numerical values that provide a quantitative estimate
of the ability of a pilot to have the right perception of the environment and
to measure his or her level of comprehension of the available information
[34], during a given period of time. To support this hypothesis, some practical
methods to measure SA have been analysed, like the ones described by Endsley
in [38].

The third hypothesis of this research is based on considering that the mea-
surement of pilot SA has a probabilistic behaviour, and therefore data mining
techniques, and especially DBN [106] [116], can be useful for designing systems
that can learn how to measure the SA of a pilot in a dynamic environment, also
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combining additional deterministic factors such as aeronautical information
management.

Finally, the fourth hypothesis can be seen as a combination of the previous
ones, affirming that a system can be designed to assess the measurement and
increase of the SA of a pilot during the flight, in terms of the availability of the
right information necessary to make decisions, and the related measurements
of the observed behaviour. This system can make use of machine learning
techniques in order to coordinate the deterministic criteria that can control
the information displayed in the cockpit, assuming that the resulting model of
SA will have a relevant probabilistic nature.

1.4 Applicabil ity of Bayesian networks

The applicability of artificial intelligence in the aviation context needs to
be carefully tackled. However, there is already a roadmap established by
European Union Aviation Safety Agency (EASA) [2]. Consequently, it is clear
that there is a reasonable scope for applying the results of artificial intelligence,
despite its eminently non-deterministic nature, to a field that is traditionally
reserved for much more conservative approaches that require rigorous certifi-
cation processes and that a priori rule out the use of this type of tools.

1.4.1 Suitability to satisfy the hypotheses

We have already mentioned DBN in sections 1.1 and 1.2, and now we will
provide an explanation of the reasons that support the choice of this tool to
process the datasets obtained after each simulated flight. The main theoretical
explanation about Probabilistic Graphical Model (PGM) and, in particular, BN

and DBN, is contained in Chapter 4. Before that, we consider it interesting to
present a very brief introduction to provide more context to the hypotheses
exposed in the previous section 1.3.

Based on the second hypothesis, we suggest that an EFB can be used to
monitor the pilot’s performance during the flight. In an environment with
a large number of measured variables with dependencies among them, such
as the one generated in the experiments that we performed, BN are specially
appropriate for optimising calculations [79]. DBN are a particular case of BN,
more suitable for dynamic systems [106], which reinforces the proposal that
SA can be measured in real time. Therefore, we have selected several reasons
to support the applicability DBN to this research:
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Figure 1.2: Machine learning generic process.

• Bayesian networks are especially appropriate when we have a large num-
ber of variables with dependencies among them.

• In real-time applications, DBN can explicitly represent temporal relations
between measured variables.

• DBNs can be learnt from data and, at the same time, include expert hu-
man knowledge when available.

• Inference in DBN can be performed in a short time, even in the presence
of a large number of variables and observations. This can be applied to
assess SA in real-time.

We also have to take into account that inference is more efficient when val-
ues from variables in the past are available to predict the values of future
variables, and this happens in our case. Thus, this procedure can be applied
to assess SA in real time.

For the readers who may not be familiar with the way machine learning
algorithms work, we have included figure 1.2, with the purpose of providing
visual support to understand the different steps necessary to process the flight
parameters and pilot actions, so that they can comply with the requirements
of dynamic Bayesian networks.

1.4.2 Design of a method to measure SA

Bayesian networks are particularly suited for applications where a prob-
abilistic relationship between different variables can be sought. As will be
explained throughout this dissertation, we have created a model for the esti-
mation of SA based on such relationships, taking into account the following:

DBNs are very effective in training systems with multiple variable dependen-
cies and are usable for real-time applications. To achieve these goals, we have
to make sure that our BNs are able to combine the following factors:
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• Ability to learn from data.

• Incorporate expert knowledge when required.

• Integrate data from proven information management standards, such as
SWIM.

• Compatibility with the proposed human factors models, to provide a
systematic approach for managing cockpit information and pilot actions.

• Build a simulation environment that implements these factors.

1.5 Objectives

The objectives of this thesis, first established in the research plan presented
in 2016, have been divided into three main areas. The first is to produce a
model of the SA of a pilot, based on assessments of:

• Observed pilot behaviour.

• Pilot decisions.

• Availability and selection of aeronautical information.

• Methods and criteria used to present information in the cockpit or in an
EFB.

To achieve this, the following secondary objectives were identified:

• Acquire an appropriate theoretical basis of the concepts related to SA,
especially regarding to human factors: Pilot perception and comprehen-
sion, management of stressful situations during the flight and the rela-
tionship between the SA of a crew and observed behaviour, including
study of real situations.

• Analyse and understand aeronautical information management standards
and their influence on cockpit activities during flight, in order to focus
on the relationship between the availability of information for the flight
mission and the decisions made by the crew members.

• Build a model of the SA measurement that appropriately incorporates:

– Theoretical concepts related to human factors.

– Existing SA measurement tools.
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– The roles of aeronautical information management and EFB.

The second main area of this research is focused on the implementation of
a simulation environment that provides the possibility of performing valid
experiments. The design of this simulation environment was based on the
following prerequisites:

• The environment includes the use of a PC-based flight simulator where
flight missions can be simulated, a graphical interface to allow the pi-
lot to access and visualise aeronautical information, and connections to
software tools in charge of running machine learning techniques.

• Incorporate features into the simulator to reduce simulation bias, that
is, identify and, if possible, characterise the differences between the SA

of pilots using the simulation environment and the SA of corresponding
real flight missions.

• The simulation environment is designed to compute and integrate the
variables related to aircraft parameters, human factors and pilot behaviour,
as well as aeronautical information databases and tools for SA measure-
ment.

Finally, the third area of research has been the application of machine learn-
ing techniques to measure the SA of a pilot, and accordingly achieve the fol-
lowing proposed objectives:

• Develop and validate a theoretical model that relates the interactions
and feedback between selected SA measurement techniques and the cor-
responding influence to/from pilot’s behaviour.

• Identify and study the different types of variables related to SA, hu-
man factors, and aeronautical information, and characterise them from
a probabilistic point of view.

• Identify the functions and processes related to these variables that fall
into the field of study of this thesis, working to find the machine learning
techniques that best match the purpose of the research.

• Perform the necessary experiments to validate the proposed mathemati-
cal models.
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1.6 Methodology

In this research, we have tried to use a methodology as rigorous as possible
with respect to the standard scientific methodology. The observation phase is
based on years of experience of the researcher as a flight instructor, observ-
ing the behaviour of pilots with very different levels of proficiency, and also
analysing the causes and contributor factors of helicopter incidents and acci-
dents as a flight safety officer during several years. The hypotheses are already
listed in Section 1.3, and will not be repeated here.

Conducting experiments has been prioritised during this research. The sim-
ulation environment is probably the main deliverable because a very relevant
part of the data collected for the experiments is based on simulations. We have
been very attentive to building models and experiments that reduce simula-
tion bias as much as possible, taking into account that this is an academic work
and that we did not have access to professional simulators, which, on the other
hand, are not easy to modify in order to collect the SA related information that
we targeted as part of our methods.

We have performed several main experiments, published in the correspond-
ing papers, which will be introduced in Section 1.7 and explained in more
detail in later chapters. The collection of data, a fundamental part of the
experiments, has been complemented by an exhaustive analysis of different
relevant data sources that will be explained in detail in Chapter 3. The simula-
tion environment registers certain actions of the pilot and states of the system
and exports them to data processing software tools that apply data mining
and machine learning techniques for calculations related with SA estimation.
The data, stored in different types of databases, have been analysed using a
wide range of data analysis and machine learning tools.

Replicability of the experiments has also been taken into account in this
research. The simulation environment has been designed to operate with a
well-defined dataset, both as input and output. We have asked several vol-
unteers, all professional and experienced pilots, to perform simulations, and
there were no significant differences in the outcome of the experiment repeti-
tions due to the subject who performed each simulation.

Finally, as has already been noted, the main experiments have been pub-
lished in academic publications.
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1.7 Associated publications

During the completion of this thesis, the following academic works have
been published:

• Carlos Morales and Serafín Moral. “Discretization of simulated flight pa-
rameters for estimation of situational awareness using dynamic Bayesian
networks”. In: 2015 IEEE Twelfth International Symposium on Au-
tonomous Decentralized Systems. IEEE. 2015, pp. 196–201.

This was the paper which introduced the simulation environment, whose
first version was finished just before publishing this work. Special em-
phasis is placed on discretization methods and the metrics that evaluate
them for their use with DBN.

• Carlos Morales and Serafín Moral. “Modeling aircrew information man-
agement for estimation of situational awareness using dynamic Bayesian
networks”. In: Simulation Modelling Practice and Theory 65 (2016), pp.
93–103.

This second paper is a resubmission of the previous one requested by
the editor with the purpose of publishing it in an Impact Factor journal.
More detail about the simulation modelling principles was added in this
case.

• Carlos Morales and Serafın Moral. “Regression methods applied to
flight variables for Situational Awareness estimation using dynamic Bayesian
networks”. In: Conference on Probabilistic Graphical Models. 2016, pp.
356–367.

This paper was presented in a conference on probabilistic graphical mod-
els, and on this occasion we focused on testing regression algorithms
with the same dataset as the one used in the previous experiment.

• Carlos Morales, Serafín Moral and Jaime Sanz. “Design of a software en-
vironment to support machine learning analysis of aircraft trajectories”.
In: EIWAC 2017, 5th ENRI International Workshop on ATM/CNS. 2017.

During approximately three years, the focus of the research was shifted
from SA estimation to the study of aircraft trajectories, with the aim of
improving observation. But the activity of collecting relevant data for
machine learning algorithms was challenging. We decided to explore
different options to obtain structured datasets, and in the meantime, we
decided that this was a good opportunity to build a companion applica-
tion. The outcome was published in this article.
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• Carlos Morales and Serafín Moral. “Flight Trajectory Clustering: a frame-
work that uses Planned Route data”. In: 2019 IEEE Fourteenth Interna-
tional Symposium on Autonomous Decentralized Systems. IEEE. 2019,
pp. 213–218.

In parallel with the previous work, we collected a large dataset in co-
operation with a MsC student in the context of a tutoring activity [91].
After finishing his master, the student was offered the possibility to pub-
lish the work, but we did not receive an answer, therefore, we decided
to implement a k-means trajectory clustering algorithm with the dataset
and publish this paper.

• Carlos Morales and Serafín Moral. “Assessment of Situation Awareness
and automation in Performance-Based Navigation procedures”. In: 2023

IEEE 15th International Symposium on Autonomous Decentralized Sys-
tem (ISADS). IEEE. 2023, pp. 1–6.

After a pause in the progress for different reasons, we decided to up-
date the simulation environment to incorporate specific functionalities
to simulate a PBN flight, which is a concept of high importance in mod-
ern aviation, as will be explained in Section 2.3. With this final paper,
we have collected a more refined dataset and improved the algorithms
to calculate SA, with promising results.

1.8 Thesis outl ine

This dissertation is divided into three blocks: The first is an introduction
that consists of four chapters in which we explain the state-of-the-art of the
concepts studied and used in this research. These four chapters are the follow-
ing:

Introduction
Chapter 1 contains a brief overview of the main concepts, with the aim of

providing basic definitions and sufficient context to present the hypotheses,
justifications and objectives of the research.

Situation awareness and safety factors in aviation
Chapter 2 seeks to provide, in a rigorous and self-contained manner, the

main elements that have been considered to be linked between the SA concept
and aeronautical safety factors, mainly the human factor, seeking to provide
contributions from the most relevant researchers in the field of SA. The chapter
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is ambitious in trying to summarise a field of study that is very extensive.
However, areas of knowledge related to these topics are omitted. Among those
selected, special mention is made of the ORM methodology, whose application
has become common in air operations centres, both civil and military, in recent
years.

Flight mission information management
The processes related to important technological changes in the aeronauti-

cal field are long due to the safety implications and high adoption costs by
stakeholders. During the course of this thesis, over several years, we have as-
sisted and to some extent contributed to various phases of the implementation
of a number of information technologies that are briefly described in Chapter
3. Without these standards and a rigorous approach to cockpit information
management, this thesis would be meaningless, so the reader is encouraged
to give special importance to the contents of this section.

Bayesian networks
To conclude the introduction, in Chapter 4 we present a brief summary of

the most relevant aspects of BN and the DBN that should be taken into account
for this thesis. It includes a very brief overview of PGM, the Markov prop-
erty, and the basics to understand inference and learning. A brief glimpse
of the concepts of classification and supervised and unsupervised learning
approaches is also included. Finally, there is an outlook of the methods to
compute conditional probabilities in DBNs, which has been considered neces-
sary to understand the approach of our last experiment.

Building a model for the estimation of SA
Chapter 5 tries to bring together the lessons learnt derived from the different

approaches to SA introduced previously in Chapter 2, leading to the creation
of a model specifically designed to adapt to the architecture and user interface
of our simulation environment. Our model is closely based on Endsley’s, and
we have dedicated Section 5.2 to explain the principles of our implementation
of the 3 SA levels. We also have intended to include other aspects, especially
those related to short-term memory modelling, that we consider to be better
developed in other models.

Implementation of a simulation environment
The simulation environment developed specifically for this research is prob-

ably our most relevant contribution, and Chapter 6 contains an overview of
the criteria and methods employed for its development. To explain the process
from the overarching objectives to its architecture, we have a specific section
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intending to summarise some software development details of the application
used for performing experiments on real time. There are also specific details
of the HMI design to describe how the model explained in the previous chapter
has been put into practice, in order to reduce simulation bias.

This chapter also contains details about the datasets, including descriptions
of the variables that have been generated during the flight simulations and the
post-flight calculations.

Situation and trajectory analysis
Chapter 7 is dedicated to the explanation of an approach that is not directly

included in the traditional models of SA estimation, but that has been merged
into the main research line of the thesis: the analysis of aircraft trajectories. For
us, it is very relevant to analyse the performance of the pilot, depending on
the machine learning tools and computational capabilities applied. Therefore,
we have carried out several experiments that are described in this chapter. We
also provide more level of detail on the practical aspects of the information
management technologies explained in Chapter 3.

Situation awareness estimation
To reach the end of the thesis contributions, we have chosen to explain in

Chapter 8 details of the approach followed for the SA estimation: the selection
of variables, specifying the training and testing datasets and the principles
employed to design the estimation algorithm, with an extract of its outcome.
Finally, the chapter ends with a discussion about the results and basic princi-
ples of the achievements and modelling options of the topic, which is central
to our research.

The third block contains only Chapter 9, that briefly exposes a general dis-
cussion and conclusions of the research.

Finally, we have included several appendices to support understanding of
certain key aspects of this thesis:

• Appendix A contains a brief overview of the AIRAC cycle. This is an
aeronautical concept that we believe should be understood by the reader
of this dissertation because it encompasses many aspects of the selection
and update of information in the cockpit.

• Appendix B contains a brief description of the Notice to Airmen (NOTAM)
contents, with examples. These "notices" or messages to pilots are consid-
ered a key aspect of the pilot SA, and since their implementation in the
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simulator does not follow standard methods to reduce bias, it has been
decided to add this appendix.

• Appendix C contains a description of a survey that was carried out with
several Instrument Flight Rules (IFR) instructor pilots to obtain informa-
tion about specific aspects of ORM, focused on their experience, to evalu-
ate its applicability to this research.

• Appendix D contains an extract of the datasets produced by the applica-
tion, to support the explanations that can be found across the disserta-
tion.

• Appendix E contains a compilation of code snippets that we have found
particularly significant and that we have decided to share with the read-
ers of the dissertation.



2 S I T UAT I O N AWA R E N E S S A N D S A F E T Y
FAC TO R S I N AV I AT I O N

This chapter has the objective of presenting a summary of multiple concepts
related to human factors in aviation that have a direct impact on the concept
of SA. The topic is very broad, covered by multiple researchers in the fields
of psychology, airworthiness certification, cockpit designers, etc. Therefore, it
cannot be said that we are presenting the state-of-the-art of this topic, but at
least we conduct a literature survey with very varied sources, both in time and
scope.

2.1 Common approaches to assess SA in aviation

2.1.1 Selection of relevant SA models

SA is a very relevant, widely known and studied concept in the field of hu-
man factors, more specifically in dynamic systems, and still more specifically
in aviation, the field where it originated, probably being the paper of Martin
L. Fracker, a captain of the United States Air Force (USAF), the seminal scien-
tific publication to define SA back in 1988 [49]. In this thesis, the focus will
be mainly set on aviation, mainly due to professional background-related rea-
sons, although during the research it has been noticed that a significant body
of literature, especially MSc. and PhD. thesis, applies many common concepts
related to the most remarkable SA models, to other dynamic systems. Sig-
nificant examples are Gommosani’s thesis [61], which focusses on increasing
SA in the bridge of ships performing merchant shipping operations, and Fis-
cher’s thesis [47], also in the context of maritime operations, which extensively
applies dynamic Bayesian networks to the SA rating.

Focussing on the SA models themselves, regardless of the field of applica-
tion, there are several models in the literature. The decision to opt for a specific
model as the main reference has not been easy. However, there seems to be
a consensus among human factors researchers to consider Endsley’s model
as the most relevant one. In addition, the prolific work of this author, with
hundreds of publications and around 52,000 citations according to Google
Scholar [63], helped us to make the decision easier. However, the same author

19
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offers a comparison between specific aspects of some models, suggesting a se-
ries of misconceptions and misunderstandings that are especially relevant to
this research, and are thoroughly analysed in [42]. Especially relevant to our
research is the observation contained in the mentioned paper on the linear
character of the SA models. After thoughtful consideration, in the context of
this research, it was decided to use the Endsley approach based on 3 SA levels,
trusting that it is especially valuable to perform real-time estimations of SA

using machine learning without intending to consider that some models are
better than others.

The way in which memory is handled is a key topic where relevant dif-
ferences appear depending on the SA model. Most researchers differentiate
between working memory and long-term memory, although there seems to
be a big difference in the way they establish relationships and dependencies
among them. Endsley offers a very synthetic explanation of the common dif-
ferences in the perspective that some authors show, regarding the role of these
two types of memory in the cockpit [42] (Fallacy 6), although this is certainly
not a consensus. It is particularly relevant to note that, depending on the
author, the use of information in the cockpit with regard to memory is consid-
ered very different depending on the experience / skills of the pilot.

In the context of this thesis, it is very clear that memory is a relevant factor
that can be attempted to quantify, and therefore it is very relevant for perform-
ing a real-time estimation of SA. However, given the complexity of the concept
and provided that this falls mainly in the field of human factors, we will not
attempt to build a model of memory. Instead, our simulation environment has
been designed to monitor the frequency of information checks, which can be
directly related to pilot workload and, more indirectly, to saturation of oper-
ator memory and the need to perform more information cues than expected,
as will be explained in Chapter 6.

In the next sections, we will introduce the Endsley model, although its ap-
plicability to this research will be discussed in more depth in Chapter 5. There
is also a section dedicated to SART and SAGAT SA measurement techniques. Al-
though they are based on different modelling principles from those for which
this research has focused its main focus, SART and SAGAT have been widely
accepted in several areas of the aerospace industry for several decades; [125]
offers a very interesting update of these techniques, including questionnaire
examples that are used for human factor evaluations by institutions such as
National Aeronautics and Space Administration (NASA) or FAA. We have also
noticed that SART is specifically used by Spanish aerospace certification author-
ities to perform human factors evaluations.
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2.1.2 Endsley’s model of SA

The Endsley model of SA was first published in 1995 [40] and was slightly
refined in 1996 [36]. The representation shown in Figure 2.1 is ubiquitous in
research works in the field of human factors and is still easy to find, the same
as the original or roughly unaltered, in many papers published nowadays.
Therefore, we have decided to include it as it was originally published and
emphasise the credit it deserves as probably the most relevant achievement in
human factors research related to flight safety in the history of aviation at the
time of writing this thesis.

The Endsley model differentiates three levels of SA:

• SA Level 1: Perception of elements in the current situation.

• SA Level 2: Comprehension of current situation.

• SA Level 3: Projection of future status.

It is relevant to note that in the field of aviation, these 3 levels are hardly
referenced in handbooks or pilot training plans, despite the fact that the SA

concept is widely used and known by aircrew. The purpose of this dissertation
is not to discuss the approach to applying the research outcomes of human
factors to pilot training plans or aircraft design. However, it should be noted
that the same concept, SA, is used to refer to different realities depending on
the context of use. This is a dilemma that has conditioned the research from
the beginning, even considering that it is not feasible to provide a solution to
everything. One of the main drivers of this investigation is to adapt as many
elements of figure 2.1 as possible to the SA model built in this investigation
and presented in Chapter 5, and furthermore to the simulator implemented to
carry out this research and described in Chapter 6, Section 6.2.

This is a very brief introduction to the model, but we will dedicate Chapter
5 to expand the explanation and explain how we apply it to the SA measure-
ment, including some insights to complementary models of human memory
presented in Section 5.4, as well as a more detailed explanation of the practi-
cal aspects, in terms of SA measurement, derived from the key concepts intro-
duced in the model: perception, comprehension, and projection.

2.1.3 Alternative models

In this subsection we summarise the most relevant SA models that can be
considered alternatives or complements to Endsley’s model, also trying to pro-
vide a first insight into their relevance in the field of aviation human factors
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Figure 2.1: Endsley’s model of situation awareness in dynamic decision making [40].

and the applicability to our research, which will be further analysed in Chap-
ter 5. It should be noted that they are not intrinsically different between them,
since they all derive to some extent from the seminal SA concept presented by
Fracker[49]. They provide different methodologies or focus on different areas
of human factors, so it can be understood that the differences, advantages,
and disadvantages are not obvious for this research, given that our field of
study is also focused on machine learning. During the years of research, we
have been aware of the difficulty in tackling these differences and finding the
best applicability to our purpose; actually in this chapter we are already ac-
knowledging the fact that Endsley even describes these differences as fallacies
or misinterpretations [42]. This has even made our research more interesting
and motivating.

2.1.3.1 Perceptual Cycle Model

The Perceptual Cycle Mode has been analysed by different authors. The
first approach is the one proposed by Adams et al. in 1995 [1], which is con-
temporary with the Endsley model. In this case, the focus is on the cognitive
management of complex systems, which is a very similar approach to End-



2.1 Common approaches to assess SA in aviation 23

Figure 2.2: Adam’s cyclical model of situation awareness [1].

sley’s, but the main difference is presenting a linear relationship among the
factors of the perception-decision-action loop, instead of the SA levels, as can
be observed in Figure 2.2.

According to this model, also presented by Smith and Hancock (1995) [142],
SA is defined as adaptive, externally directed consciousness, bridging the gap
between seeing SA as either knowledge or process. This definition clarifies that
SA is tied to external goals within the task environment, guiding behaviour
towards achieving these goals. It is very important to take this into account, to
avoid seeing SA as a result of an external process, therefore externally provided
to the pilot. Articles related to this model also present the concept of risk space,
which includes critical invariant relationships in the environment that inform
decisions, ensuring safe and efficient performance [142], especially for aircraft
navigation.

2.1.3.2 Activity Theory Model

This model was introduced in the mid-20th century by the psychologist
Aleksei Leontiev. In modern times, different authors have applied it to avia-
tion and computer interface design. We have chosen the model provided by
Bedny and Meister in 1999 [12], basically because they are the first western
authors to acknowledge Leontiev’s contribution, and also because it applies



24 Situation awareness and safety factors in aviation

to aviation situation awareness, emphasising the interaction between the pi-
lot’s cognitive processes and their environment. Similarly to other models, it
views SA as part of a broader activity system where human actions are goal-
directed and shaped by the external context. The authors also acknowledge
the Endsley model and no significant additional contributions applicable to
our research have been found.

2.1.3.3 Distributed Situation Awareness Model

This model was first published in 2008 by Salmon et al. [134] in the context
of a research on energy distribution. The model is extended and its applica-
bility to aviation is more evident after the work published in 2017 [133]. The
main contribution of this model is to extend the concept of SA by consider-
ing it as a property of systems rather than individuals. Therefore, in aviation,
apart from the pilots, other members of the team with a contribution to SA are
identified: air traffic controllers, information providers and even automated
systems. This model is particularly relevant for understanding how different
components of an aviation system contribute to overall awareness and perfor-
mance. It focusses on teamwork, communication, and coordination in shared
environments, which in our research can be extrapolated in terms of informa-
tion sharing and information management.

2.1.3.4 Goal-Directed Situation Awareness Model

This model, introduced by Stanton et al. in 2001 [146] and updated more
recently [147], emphasises a systemic and interaction-focused approach, that
is, it is more focused on the design of the system, aircraft systems, information
resources, HMIs, etc. In contrast to Endsley’s Model, it does not take into
account to the same extent the individual’s mental processing in relation to
SA.

However, both models share many valuable parallelisms, with Endsley pro-
viding a clear framework for cognitive processes and Stanton offering insights
into the systemic and interactional aspects of SA.

2.1.3.5 Fracker’s Model of Situation Awareness

We will finally mention Fracker’s model [50], since it is the predecessor of
the ones described in the previous subsections, with the exception on Leon-
tiev’s, and it is undoubtedly the first author to not only define situational
awareness [49], but to estate that it arises from matching incoming informa-
tion to preexisting cognitive structures. It is our impression after a careful
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Figure 2.3: Different approaches to SA modelling, according to the Goal-Directed
Model [147].

study of multiple sources on the topic, that what this model identifies as Men-
tal Models (the fact that pilots use their mental representations of a situation
to anticipate and interpret information from the environment), schema acti-
vation (the specific situations that trigger relevant schemas) and the Dynamic
Interaction (seen as a continuous cycle of updating mental models as new
information is processed) is the basis of the 3-level approach defined by End-
sley a few years later and that we have adopted as the paradigm of the SA

modelling.

2.1.4 Misconceptions about SA

In the domain of human factors in aircraft, the concept of SA has become
very common. Many aircraft systems developers claim that their products
increase SA. It is clear that in most cases they are right, and this research ac-
knowledges that modern aircraft human interface assets and automation tools
are a general contributor to increase pilot awareness. But after having studied
the Endsley model in some detail, the question that arises then is if these de-
velopments are targeting the different levels of awareness in a balanced way.
Our premise is that high SA is always desirable, but it does not entirely de-
pend on the system working or being operated as designed, but rather on the
ability of the pilot to form a correct mental image of the present and future
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situations. Consequently, a nuance arises that calls into question the effective-
ness of modern information management systems in the event that the system
fails. What if the data are wrong? If the SA is really high, this case is already
discounted. A (good) pilot with the appropriate SA is always prepared so that
this type of failure does not pose a safety problem. If the problem actually
occurs, having had an adequate SA had already made the pilot to previously
form a mental image of what was going to happen in case the phenomenon
had occurred.

However, the concept of SA is not so simple to analyse, and as will be ex-
plained in Chapter 5, we should take into account the existence of certain
misconceptions, such as those identified by Endsley in [42]. Based on the in-
troduction of these fallacies and their refutations, in addition to the additional
considerations set forth in the following work by Endsley [37], we enumerate
a set of propositions that are useful to provide a better understanding of the
model scope:

1. The three levels of SA are not linear.

2. The model cannot be considered as merely a data-driven information
processing model.

3. There is a clear distinction between Product and Process.

4. The model of SA is cyclical and dynamic.

5. The model takes into account the meaning of different SA levels.

6. The SA model requires a dynamic integration of working memory and
long-term memory.

We found that this type of reasoning to define SA offers a wide field of
study to apply probabilistic methods to its estimation. We will return to these
propositions in Chapter 5, in order to apply them to our model, while in
Chapter 8 they will be treated indirectly when explaining how the model has
been implemented in the last experiment. Still, we would like to anticipate
the explanation for the first proposition, because it seems to be the one that
Endsley finds prioritary when clarifying the model. The fact that three levels
are defined and that Level 1 (perception) seems to be more basic than Level 2

(comprehension), etc., does not mean that a level needs to be fulfilled for the
next one to show a good SA level. That is, even if the perception of elements
of the situation is far from being good, the individual could have a good
comprehension of the situation, for example due to experience, or even if not
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everything happening in a situation is understood by the pilot, the situation
may be clear for the pilot, and the projection of the future state could be
accurate. That is what we infer from the first proposition.

2.1.5 Common SA measurement techniques

There are different recognised SA metrics. One of them is the SART, which
is often used by aeronautical certification authorities to obtain evidence of
how HMI implementations affect SA. SART normally obtains the SA rating after
analysing the reports completed by the operator (typically a test pilot). These
reports provide assessments of how systems contribute to SA and can be filled
during or after real or simulated flights. They are not intended to rate the
SA of the user, and cannot be applied for real-time SA estimations because
dedicated user actions are necessary to perform the evaluation.

SAGAT [36, 41] is another method, more specialised in flight operations than
in aircraft system design, offering a wide variety of applications, such as the
evaluation of flight training effectiveness. It is interesting to note that the
wording of the 3 SA levels identified by Endsley is slightly different in [36]
(1996), compared to [40] (1995) and listed in the previous section. It could be
noted that the context of the later paper is focused on the measurement of SA

rather than the previous year research, which was more focused on presenting
the model.

Taking into account the context acquired after so many published research
works and after these years of evolution in the aircraft cockpit design, integra-
tion of automation, etc., this is not an issue at all and provides a hint about
how the SA levels can be interpreted depending on the method designed to
measure SA.

2.1.5.1 SAGAT: SA Global Assessment technique

SAGAT usually consists of freezing a flight simulation and asking the crew
to fill out a questionnaire on the relevant aspects of the mission. The answers
are expected to reflect the degree of SA of the subject, usually based on the
operator requirements at the three different SA levels previously described.
SAGAT is a direct measurement of SA because it explores the perceptions of the
operator rather than inferring them from behaviour that may be influenced by
many other factors. SAGAT depends on the optimisation of the questions and
the appropriate choice of simulation pauses to reduce the bias of the first two
SA levels. However, this is not feasible at level 3 SA as freezing the simulation
directly impacts the projection of the near future. We did not find references of
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SAGAT being applied in environments where the simulation was not stopped.
[150] shows some results applied to automatic driving simulations, an applica-
tion with many parallelisms with aircraft SA, and confirms that the projection
of the near future (Level 3 SA) obtains unsatisfactory results with SAGAT [39,
41].

2.1.5.2 SART: SA Rating technique

SART offers a different approach based on a self-assessment performed by
the pilot, rather than an externally asked set of questions. It is clear that
SART’s approach is not applicable to our research because it is not feasible to
pose a self-assessment or a questionnaire in real time during the flight. SART is
designed to be implemented in a controlled environment with highly experi-
enced pilots, usually test pilots or operators dedicated to system development
and certification, to provide feedback on situation awareness for specific pur-
poses.

SART has been used for many years, together with SAGAT, and its pros and
cons are widely available in the literature, although the most relevant study is
possibly the one developed by Endsley [38]. In environments were simulators
or UAS remote flight consoles are used, the bias introduced by these techniques
is smaller than in a real cockpit, according to Rebensky [125]. Therefore, it is
interesting for potential future research lines to analyse how a small assess-
ment, either based on direct questions or asking the pilot about subjective
appreciations, could be beneficial to measure or even increase SA.

2.2 Operational Risk Management (ORM)

2.2.1 Introduction

ORM is a decision aid tool used in many flight operations environments,
based on the application of risk management methodologies to operational
risks, in our case flight operations. These are risks such as adverse weather,
impact of unaccounted for factors on crew performance during the operation,
inadequate rest periods, extended mission times, or demanding mission con-
ditions.

To understand how standard risk management techniques are applied in
aviation operational environments, we have a very valuable source of infor-
mation in the FAA manual published ad hoc [113]. There are other sources of
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information focussing on military operations, such as the one with free access
from the USAF [9].

Risk management has proven that analysis of uncertainty and the impact of
uncertain events has very tangible results when accurate probabilities can be
provided. In this sense, ORM is implemented in many operations centres, with
a growing tendency to integrate probabilistic software tools in the dispatch
process of missions. These probabilities could be applied to the design of SA

using the BN analysis, although this falls out of the scope of this investigation.

2.2.2 ORM relation with SA

ORM and SA are closely related in the context of flight safety, although their
applicability, if considered as success parameters, is different in mainly the
moment of application: ORM is supposed to be applied consciously before the
flight, in order to validate the decisions that surround clearance for a specific
mission. On the other hand, SA is an individual state or mental condition,
which is supposed to be kept high if operational risks have been adequately
assessed. In this sense, although difficult to quantify, it could be inferred that
an adequate ORM properly briefed to the crew will create favourable condi-
tions to maintain high SA.

Both ORM and SA related methodologies can be considered to offer solutions
to the same problems from different perspectives. In an effort to simplify, it
can be said that ORM puts more emphasis in the organisational or procedural
perspective, while SA is more closely related to human factors.

The Swiss Cheese model for risk analysis, first published by Reason in 1980

in the framework of psychology and human factors research, has developed
over the years and has been adopted by ORM [124]. Figure 2.4 shows how this
model takes into account different external and internal factors to explain the
interaction of accident causes in complex systems.

The purpose of ORM is to establish a set of defences in an operational envi-
ronment, based on the identification of vulnerabilities, mainly latent failures
at managerial levels, intrinsic defects in the design of the aircraft, the flight
procedure, etc., internal human factors of the pilot, among whose the model
stresses the importance of individual psychological precursors and unsafe acts.
Managing and mitigating these risks is clearly an effective strategy to enhance
defences and reduce the probability of accidents. From this point of view, SA

can be considered as a product of ORM.
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Figure 2.4: Reason’s Swiss Cheese model for risk analysis [124]

2.2.3 Applicability of ORM to this research

Given the high number of parallelisms between both disciplines, we decided
to carry out a survey that consisted of asking mission-related questions to sev-
eral individuals familiar with ORM practices, with the intention of obtaining
feedback related to their priorities to establish the most critical causes of error
or their priorities to maintain a high SA during a flight similar to the one per-
formed in the first experiment of this research. This approach emphasises the
vision of SA as a product of risk management. The details of this part of the
investigation are exposed in Section 5.2.

2.3 Performance-based navigation (PBN)

2.3.1 Introduction

PBN is a navigation concept in aviation that defines different types of routes
and navigation methods, depending on the aircraft performance of its onboard
navigation systems, rather than relying solely on ground-based navigation
aids [10]. This approach was conceived at the beginning of the twenty-first
century, in parallel with other processes of digitisation of navigation informa-
tion and increase of air traffic volumes. It is designed to enhance the precision,
efficiency, and flexibility of air navigation through its two main components:

• Area Navigation (RNAV): Chronologically speaking, this could be consid-
ered the precursor to PBN. RNAV procedures were at the beginning based
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on waypoints defined only in coordinates, located directly by Global Po-
sitioning System (GPS) or inertial systems, allowing the aircraft to fly
directly between arbitrary points, rather than following flight paths be-
tween points defined by a radio-navigation aid based on a ground sta-
tion. This allows for a more flexible airspace.

• Required Navigation Performance (RNP): RNP is a specific type of RNAV

that adds a requirement for onboard performance monitoring and alert-
ing. It ensures that the aircraft can navigate accurately within a defined
airspace, with the crew being alerted if the navigation accuracy drops
below the required level [31].

The implementation of PBN is one of the top priorities of the current Air Traf-
fic Management (ATM) authorities, and in Europe, PBN is being implemented
within the framework of Single European Sky ATM Research (SESAR), with
the objective of meeting the increased requirements for airspace traffic capac-
ity and flight safety. Thanks to PBN, airspace becomes more flexible, adapting
routes to operational requirements without being tied to ground-based sta-
tions [31].

For pilots, PBN has several implications. The most important is probably
the increase of automation in the cockpit, in some cases even compulsory
according to the operational procedures of the company or unit. Before dis-
cussing automation bias in Section 2.4, in the following subsections we will
explain briefly the background of the increase of automation, partly due to
the increase in route calculations necessary to achieve PBN optimisation re-
quirements.

2.3.2 Implications on route complexity of modern navigation

At the same time that automation spreads in aircraft systems, the complex-
ity in navigation increases. In fact, the optimisation of the routes introduced
by PBN brings as a consequence that some of their parameters can no longer
be calculated or even understood by the pilot.

One of the main causes is the fly-by turn procedures, which, although they
have existed for decades, were hardly used in commercial navigation until the
arrival of PBN, where fly-by turns have replaced many fly-over turns. Figure
2.5 shows a schematic representation of both types of turns, which, although
they may seem similar, have a great difference in terms of how to fly them
accurately. While in a fly-over turn the pilot focusses the attention on flying
towards the waypoint and, once over it, joining the outbound route as quickly
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as possible, in the case of fly-by the starting point of the turn is not so obvious
as it depends on multiple factors. The advantages of fly-by turns are mainly
two:

• They imply a slight savings of fuel and time, as the distance flown is
shorter than in fly-overs.

• If they are executed with the appropriate means, the precision of the
navigation is greater, as the desired route is known at all times. How-
ever, in fly-bys, just at the moment of passing through the vertical of the
waypoint, there is a cone of confusion in which the pilot is responsible
for recovering the reference and continuing with the departure within
certain margins.

This topic involves a certain complexity and it is not our purpose to go into
further details, other than the fly-by turn execution itself, which will be anal-
ysed in Section 7.6, and the approach to measure SA in PBN procedures, which
we will start presenting in the next subsection.

Fly-by Fly-over

Figure 2.5: Fly-by turns are widely used in PBN vs. fly-over.

2.3.3 Consequences for automation and situation awareness

PBN introduces an unprecedented optimisation of congested airspaces, al-
lowing the implementation of parallel routes, while fly-by turns provide shorter
trajectories at the same time that the required precision is maintained [65].
Fuel consumption and airspace density are therefore improved [87], but one
of the consequences is that the routes are no longer intuitive to pilots if they
try to fly without using an automatic pilot.

PBN procedures often involve predefined paths and waypoints, and aircraft
automation systems can follow these paths accurately. Pilots can engage au-
topilot modes to automate the lateral and vertical profiles of the flight. From
a cognitive point of view, this is a big challenge for the pilot, since the focus
tends to be on controlling the equipment that provides the automation rather
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than checking the accuracy of the flown trajectory, which is expected to be
controlled by the machine. In our experiments, we have collected variables
for both profiles (vertical and horizontal), although in the last one, which is
explained in Section 7.6, we decided to estimate only the SA associated to hor-
izontal trajectory variables and the aircraft parameters. Among the reasons
for this decision are the following considerations highlighted by Barhydt and
Adams [10]: Over-complexity in procedure design, including factors like the
number of waypoints, chart clutter, and successive altitude constraints, that
can contribute to pilot workload and confusion.

The results of these issues are some of the main challenges of this research:
to decide how human factors are modelled in relation to navigation parame-
ters [10]. Our approach will be explained in Chapter 5. But before that, we
will present a very relevant concept closely related with the level of awareness
of any individual working in an environment where automation is present:
the automation bias.

2.4 Automation bias

On a general basis, automation bias refers to a phenomenon in which opera-
tors have a tendency to rely too much on automated systems, which may lead
to reduced vigilance and potential errors when automation fails or does not
work correctly. The concept was introduced in the 1990s in the context of new
developments of HMI based on computers, digital displays and FMS [104, 135,
136]. After reviewing the literature, we have found that the problem persists
over the years [85, 111, 137], with the disappointing and worrying fact that
fatal accidents still occur. More updated models also mention the concept of
complacency [55].

For this research, it has been recognised especially relevant to focus on con-
sidering a balance between accountability and double-checks performed by
pilots, analysed in a context of high automation, and we have attempted to
model this in our simulations.

Based on the fact that, in general, automation provides better levels of safety
in air operations, on the other hand, it is important to analyse where the limits
of these benefits are and to characterise them, with the intention of integrating
into our model. We consider that it is still valid to take into account the
outcome of the experiment performed by Mosier [104], indicating that pilots
who show an internalised perception of accountability for their performance
and the way they manage automation tend to make fewer mistakes because
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they establish better strategies for managing automation, mainly performing
more double-checks.

The topic is not simple because, in modern aviation, the availability of auto-
matic systems clearly impacts the accountability of pilots. This is still clearer
in military aviation since modern aircraft sometimes prevent pilots from using
the basic aircraft controls available in the past, forcing them to focus on the
mission progress rather than on flying, and thus reducing their accountability
about basic aircraft control.

In civil aviation, this has become very relevant in recent years. With the
generalisation of PBN, as we explained in our paper [99], the level of automa-
tion goes beyond the pilot’s ability to understand the reasons why the aircraft
starts turning at a given moment. But this is not the only case where a high
degree of automation can impact the ability of the crew to understand why
the aircraft systems behave the way they do. We have selected several cases of
study related to automation, deeply analysed by multiple experts because they
caused great human losses, to offer a brief insight about the role of automation
bias in the next subsection.

2.4.1 Cases of study

During our research, we have often checked statistics of real flights and
analysed information about accidents where it was clear that the human factor
and specially SA was a contributing factor [8, 71, 118]. In general, the easiest
way to access accident reports in a simplified way is to check web repositories
of accident statistics from a trusted source. We aim to to put certain focus
on this kind of mishaps, since they have had some public significance, and
carrying out an analysis of them allows drawing more attention of the reader.

In our case, we found that the Aviation Safety Network repository provided
by the Flight Safety Foundation meets the requirements to perform this kind
of analysis [8], and we have focused on three accidents:

Air France Flight 447 crash, 2009:

These are some excerpts from the analysis of the causes of the accident,
available in entry 321502 of the database [8]:

• "The occurrence of the failure in the context of flight in cruise completely sur-
prised the pilots".



2.4 Automation bias 35

• "In the minute that followed the autopilot disconnection, the failure of the at-
tempts to understand the situation and the de-structuring of crew cooperation
fed on each other until the total loss of cognitive control of the situation".

Lion Air Flight 610 crash, 2018:

This is the first accident with victims of a Boeing 737MAX, stored as entry
319547 of the database [8]. It should be noted that the Maneuvering Char-
acteristics Augmentation System (MCAS) is a system designed to enhance the
stability characteristics of modern aircrafts, and it involves certain automa-
tion on the way the pilot commands the control surfaces of the aircraft. The
following are contributing factors to the accident, according to the published
information:

• "The absence of guidance on MCAS or more detailed use of trim in flight manuals
and in flight crew training, made it more difficult for flight crews to properly
respond to uncommanded MCAS".

• "The multiple alerts, repetitive MCAS activations, and distractions related to
numerous Air Traffic Controller (ATC) communications were not able to be ef-
fectively managed".

Ethiopian Airlines Flight 302 crash, 2019:

This is the second accident with victims of a Boeing 737MAX, stored as en-
try 319474 of the database [8]. Although the circumstances are very similar to
those in the previous paragraph, given their great impact, both publicly and in
the review of certain certification criteria, it has been considered appropriate
to mention this accident. For the first time in the history of aviation it was ac-
knowledged that an automation system (the MCAS) had been designed in such
a way that operators (pilots) could not override an abnormal behaviour of the
system in the event of a failure. It should be noted that, in the case of aircraft
systems related to human factors, the design includes not only the implemen-
tation, but also the crew training and the design of emergency checklists. This
could be identified as an additional type of automation bias [68, 128], but it is
not the purpose of this thesis to perform this kind of contribution.

2.4.2 Main consequences of automation bias

We will end this chapter with a list of some error categories or in some cases
of accidents that are more related to automation bias. These were already
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identified by Mosier in 1998 [104] and can be found to some extent in most of
the scholar references related to SA that have been cited in this chapter:

• Mode confusion: this is a direct confusion about the automation itself,
because the pilot fails to understand what control modes are really au-
tomated. Although it is more typical in the case of inexperienced pilots,
mode confusion could affect any pilot if the workload is excessive or the
SA is low for other reasons.

• Lack of manual flying proficiency: although not openly acknowledged,
the fact that flight missions are being carried out with ever-increasing lev-
els of automation means that pilots have fewer opportunities to maintain
their skills in handling manual systems on a day-to-day basis. Although
this problem can be mitigated with flight simulators, it comes at a cost
both financially and in terms of working hours.

• Over-reliance on automated alerts: similar to the previous consequence,
but on a cognitive level instead of a physical level. The fact that the pilot
is used to trust automation on a day-to-day basis leads to an inability
to detect that there is a malfunction, just because there is a belief that
malfunctions should be automatically detected.

• Failure to monitor automation: this is the most dangerous consequence
of automation, because the boundary between correct automation moni-
toring and a failure on this task is not very clear, since it depends on the
situation. Therefore, it is a clear example of the importance of consider-
ing SA in the three levels identified by Endsley.

• Disengagement of attention: a particular case of the previous category,
where the pilots not only stop monitoring essential aspects of the flight
but for any reason their attention is disengaged, typically due to having
to attend to an external factor. In the worst case, this situation could
lead to a specific type of accident: a Controlled flight into terrain (CFIT).
There are relevant studies [103] that deal with the causes of this type of
accident that is often difficult to understand. There is an interesting re-
source in [140] to see the statistics and cause analysis of many accidents
of this type.



3 F L I G H T M I S S I O N I N F O R M AT I O N
M A N AG E M E N T

As stated in Section 1.5, one of the objectives of this thesis is to provide an
assessment of the availability and selection of aeronautical information, given
the key role of the related information management assets to be exploited
by machine learning algorithms. At the beginning of the 21st century, the
ICAO published Document 9750 [32], renamed as the Global Air Navigation
Plan for Communications, Navigation, Surveillance (CNS)/ATM Systems since
its second edition in 2002. In 2013, the fourth edition of the document intro-
duced the concept of SWIM as a governance framework for standards, policies
and processes related to aeronautical-related information, for the national au-
thorities that act as Aeronautical Information Service (AIS) providers. In any
case, the document and its related activities are generally known as the Global
Air Navigation Plan (GANP). Since many years earlier, the same AIS providers
had been delivering, nation by nation, a set of publications of aeronautical
data, initially paper-based, more focused on providing critical aeronautical
information to operators (pilots, controllers, etc.) with a systematic schedule
and update system, widely known as the AIRAC system.

In this chapter we try to offer, in a very concise way, an overview of the con-
tents, formats and organization of aeronautical information, and then outline
how they are integrated into the more recent SWIM technologies, of which we
will also briefly show their internal structure.

3.1 Fundamentals of mission information

3.1.1 Aeronautical information and its stakeholders

Despite the multiple factors that affect mission planning, whether a mili-
tary tactical mission or a routine airline operation, the pilot needs to plan a
flight route, calculate the required aircraft performance, and decide its con-
figuration accordingly. There are multiple stakeholders around flight opera-
tions, and some of them require as much information as possible to optimise
the performance of their products. Apparently, some years ago, one of these
stakeholders mentioned during a meeting in the Eurocontrol headquarters

37
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that they needed to "swim in seas of data". This anecdote led to the adoption
of the SWIM acronym, which stands for the international initiative designed
to enhance the exchange of information among aviation stakeholders, allow-
ing seamless and real-time sharing of aeronautical, flight and weather data
between airlines, airports, air navigation service providers, and other aviation
entities, promoting efficient and data-driven decision-making [29]. The SWIM

standards will be explained in Section 3.2.
A list of these stakeholders is provided in [29], stressing that all can behave

as both information providers and consumers:

• Aerodrome community;

• airspace providers;

• airspace users;

• ATM service providers (ASP);

• ATM support industry;

• International Civil Aviation Organization (ICAO);

• regulatory authorities; and

• States.

Seeing the level of ambition of the aeronautical community is an indication
of the complexity of the SWIM initiative itself. It should be kept in mind that
the concept was introduced to modernise air traffic management information
and systems, and at the same time standardise them. The reality is that there
were many different systems and processes for managing different types of
ATM information, depending on the national authorities, aircraft manufactur-
ers, information and service providers, etc. From the point of view of this
research, we have studied the intents to overcome inefficiencies, redundancies,
and inconsistencies of a multi-system approach and focused on using infor-
mation from standardised sources with a modern approach for information
management.

3.1.2 The AIRAC system

The AIRAC system is a data provisioning structure established by the ICAO

to ensure that aviation information and data are distributed in a standardised
and timely manner [6]. This subsection aims to provide an introduction to
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its features and its relationship with SWIM, while some details about its struc-
ture and content, especially those applicable to this research, are presented in
Appendix A.

In a simplified way, the AIRAC system intends to distribute aeronautical in-
formation, with a similar scope as SWIM provides in digital format. Before the
age of computers, all information required to support air operations was dis-
tributed by paper-based means, as the organisation of operational structures,
airlines, air forces, etc. evolved, the AIRAC system was developed as an in-
ternational initiative with certain key aspects to ensure timely information to
support safe flight.

One of the main characteristics of the AIRAC system is that there are regu-
lar update cycles of aeronautical information every 28 days, which does not
mean that all information is updated with this frequency; the stakeholders are
expected to know what is updated and what is not. However, these cycles are
mandatory, and this introduces a high workload to many pilots who are ex-
pected to be responsible for the validity of the information they consult during
the flight. This, of course, has an impact on SA.

The basic aspects of the information products included in the AIRAC system
are standardised worldwide, which can be seen as an advantage because the
standardisation of information allows a methodical approach to information
management. However, the reality is that information is not the same every-
where in the world and the pilot is expected to be aware of certain exceptions
that could affect the way he/she manages information in the cockpit. As a
baseline, the information provided includes updates to flight procedures, air
traffic control routes, airport data, navigation aids, and other critical opera-
tional details. The main product of the AIRAC system is AIP, which will be
introduced in the next subsection.

To support the timely access to information, the changes are published be-
fore their effective date, usually at least 42 days prior to the information items
that should be replaced. This also adds certain complexity to the tasks of
the pilots, that need to have awareness of when the information they possess
will be valid. This requires a global coordination of international aviation au-
thorities, airlines, and service providers. All of these stakeholders need to
be coordinated to maintain harmonised and synchronised aeronautical infor-
mation. Since SWIM was conceived, it was designed to adapt to the AIRAC

system.
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3.1.3 The Aeronautical Information Publications

The AIP is an essential document that contains aeronautical information for
operations. It follows the AIRAC cycle and is published by or on behalf of a
country’s aviation authority. In the case of the USA it is published by the FAA,
in the case of Spain it is published by the public entity Enaire, etc. At the
time of writing this dissertation, the European Union has not yet established
a mechanism to centralise the publication of aeronautical information, so it is
the responsibility of each estate.

The structure, content and distribution of aeronautical information is es-
tablished by the ICAO in the Document 8126 [30], titled the Aeronautical In-
formation Services Manual. The AIP contains comprehensive information on
flight procedures and facilities relevant to air navigation within the country’s
airspace and is employed as a primary source of information by pilots and
other aviation personnel, such as flight planners. Below is a list of the most
relevant elements contained in the AIP:

• Airport information: Layouts, available services, and operating hours.

• Airspace structure: Controlled airspace boundaries, flight rules, and des-
ignated altitudes.

• Navigation Aids: Locations and details of radio beacons, GPS systems,
and instrument landing systems.

• Communication protocols: Frequencies and guidelines for air traffic con-
trol.

• Weather Services: Availability and types of meteorological data.

Figure 3.1 has been included to also provide an overview of how this infor-
mation is distributed in within the AIP volumes.

One of the challenges often experienced by pilots, especially when they are
not very experienced, is the difficulty of carrying the appropriate information
in the cockpit. Although the situation has radically improved with the use
of EFBs, it should be recognised that the digital format does not always mean
that the information is more available. In fact, one of the main reasons why
EFBs have become widely used in recent years is because the AIP paper folders
are very bulky. Figure 3.2 is included to highlight the fact that for a middle-
sized country like Germany, IFR pilots need 3 volumes (A4-sized) that contain
almost a thousand pages. Of course, all this information does not need to be
checked for a single flight, but the pilot has the obligation to keep access to
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Figure 3.1: Flowchart of the AIP contents [145].
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Figure 3.2: Paper folders for storing AIP or equivalent charts from Jeppesen [57, 76].

an updated set of information in every flight. This is really a burden for flight
safety when the operations centre does not provide enough support for this
task.

3.1.4 Flow of information and SA

We are now aware of the stakeholders related to aeronautical information
management, but to better understand how the data can be used by machine
learning tools, it is important to present an overview of the aircraft mission
information flow.

As explained in the previous chapter, SA is a concept related to internal as-
pects of the subject, in this case the pilot. Therefore, when considering the
impact of information management on the overall performance of the pilot, it
is mandatory to take into account the type of mission. The current research
does not intend to provide a holistic solution or answer to this challenge, and
it has already been mentioned that our experiments focus on specific mission
profiles, quite similar to the ones faced by airline pilots. However, despite the
general complexity, it is important to bear in mind that one of the priorities
of SWIM is aircraft trajectory management: The trajectory, either planned, in
real-time during the flight or in debriefing analysis, contains the information
to determine if the flight takes place in the desired airspace areas, if the decon-
fliction with other aircraft is successful, if the route meets the safety criteria
according to the aircraft limitations, or if the route is efficient in terms of fuel
and time.

The trajectory is in most cases a priority in mission development and the
pilot is trained accordingly. That is why we dedicate special attention to the
SA model related to trajectory management. Given the importance of the study
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of trajectories, we have decided to dedicate a large part of our research to their
analysis, as will be explained in the chapter 7.

3.2 SWIM standards

In the previous chapters, we have introduced the concept of SWIM, whose
role is of great importance in the standardisation of aeronautical information,
both currently and in the medium / long term future. In this section, the
standards that make up SWIM will be presented, providing some examples
of the information that they bring together and that has been used as far as
possible in the different experiments of this thesis.

The definition of SWIM provided by the ICAO states that it is a concept con-
sisting of standards, infrastructure and governance that enable the manage-
ment of ATM related information and its exchange between qualified parties
through interoperable services [29].

In this section, we will provide a brief and general overview of the SWIM im-
plementation, and then focus on the three standards that enable information
sharing, since they are the main point of interest for our research in terms of
accessing information to be used by our learning algorithms.

3.2.1 Background of SWIM implementation

The SWIM framework, as established by ICAO in the Document 10039 Manual
on System Wide Information Management (SWIM) Concept [29] is shown in Figure
3.3, where it can be observed that the main elements of the scope of SWIM are:

• Information exchange services,

• Information exchange models,

• SWIM infrastructure,

• all of them under a common governance (right side of the figure).

On top of that, the SWIM-enabled applications exploit the information man-
aged by this framework. It should be noted that although the figure does not
show a representation of a pilot or cockpit of an aircraft, the approach of SWIM

is perfectly compatible with the provision of information, even in real-time, to
aircrews [78].

During the years of our research, we have been following the development
of SWIM, both in terms of technical aspects and in terms of how SWIM-enabled
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Figure 3.3: SWIM Global Interoperability Framework established by ICAO [29].

applications exploit it. We have realised that the adoption of this implementa-
tion is very slow, basically due to two reasons:

• The high standards of safety required by the aviation industry are trans-
lated into certification processes that are long, and in the particular case
of SWIM the level of reluctance is high due to the great technological leap.

• SWIM implementation involves a multinational and multi-domain agree-
ment, and its adoption does not have the same priority for all stakehold-
ers. In any case, we have observed a general consensus on the need for
digitisation and standardisation of flight information.

3.2.2 AIXM

AIXM is a data model based on the Geography Markup Language (GML),
developed as a multinational initiative in the context of SWIM, with the pur-
pose of enabling the exchange and provision of aeronautical information in
digital format, within the scope of AIS, and therefore interconnecting systems
from multiple aeronautical stakeholders. The implementation of such AIS in-
formation / data flows has become increasingly complex during recent years,
as the number of interconnected systems also grows, involving many actors
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including multiple suppliers and consumers. There is also a growing need in
the global ATM system for high data quality and cost efficiency [3].

In order to meet the requirements of this increasingly automated environ-
ment, the AIS is moving from the provision of paper products to the collection
and provision of digital data. AIXM supports this transition by enabling the
collection, verification, dissemination, and transformation of digital aeronauti-
cal data throughout the data chain, particularly in the segment that connects
AIS with the next intended user. There are very relevant examples of efforts
made by service providers, airspace authorities, and operators to achieve an
increase in interoperability [88] and airspace optimisation thanks to the use of
AIXM, and this technology continues its evolution to become the first-choice
standard for aeronautical information. The following main information areas
are within the scope of AIXM:

• Aerodrome/Heliport including movement areas, services, facilities, etc.,

• Airspace structures,

• Organisations and units, including services,

• Points and Navaids,

• Procedures,

• Routes,

• Flying restrictions.

AIXM takes advantage of established information exchange standards and
supports the requirements of the aeronautical information system. The rest of
this subsection will be dedicated to provide examples of Extensible Markup
Language (XML) excerpts of messages, so that the reader can have a more
accurate idea of how the aeronautical information is coded.

Listing 3.1 shows a fragment of an AIXM message that contains basic infor-
mation about the Der Minot International Airport (USA) with the ICAO identifier
KMOT. In this case, in addition to the message id and the time stamp, we can ob-
serve the Airport Reference Point (ARP) coordinates, provided with maximum
precision, compared to the previous listing.

Listing 3.1: AIXM example: Runway surface information.

<aixm:AirportHeliport gml:id="uuid.1cdd625a−4502−4250−b310−f5d05597837c">
<aixm:timeSlice>

<aixm:AirportHeliportTimeSlice gml:id="gid−636137529080339182">
<gml:validTime>
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<gml:TimePeriod gml:id="gid−636137529080339183">
<gml:beginPosition>2016-10-25T00:00:00</gml:beginPosition>

<gml:endPosition indeterminatePosition="unknown" />

</gml:TimePeriod>

</gml:validTime>

<aixm:interpretation>BASELINE</aixm:interpretation>

<aixm:designator>KMOT</aixm:designator>

<aixm:name>MINOT INTL</aixm:name>

<aixm:locationIndicatorICAO>KMOT</aixm:locationIndicatorICAO>

<aixm:ARP>

<aixm:ElevatedPoint gml:id="gid−636137529080339184" srsName="
urn:ogc:def:crs:OGC:1.3:CRS84" srsDimension="2">
<gml:pos>-101.28231787946062 48.257406747191631</gml:pos>

</aixm:ElevatedPoint>

</aixm:ARP>

</aixm:AirportHeliportTimeSlice>

</aixm:timeSlice>

</aixm:AirportHeliport>

In the case of Listing 3.2, we provide an AIXM fragment that indicates the
length (6351 feet) and width (100 feet) of a runway which has headings 80º
and 260º (see these headings in the designator field).

Listing 3.2: AIXM example: Runway orientation and length information.

<aixm:Runway gml:id="uuid.f3a1c226−5b46−4f38−92f7−9e80853b28ab">
<aixm:timeSlice>

<aixm:RunwayTimeSlice gml:id="gid−636137529080339188">
<gml:validTime>

<gml:TimePeriod gml:id="gid−636137529080339189">
<gml:beginPosition indeterminatePosition="unknown" />

<gml:endPosition indeterminatePosition="unknown" />

</gml:TimePeriod>

</gml:validTime>

<aixm:interpretation>BASELINE</aixm:interpretation>

<aixm:designator>08/26</aixm:designator>

<aixm:type>RWY</aixm:type>

<aixm:nominalLength uom="FT">6351</aixm:nominalLength>
<aixm:nominalWidth uom="FT">100</aixm:nominalWidth>

</aixm:RunwayTimeSlice>

</aixm:timeSlice>

</aixm:Runway>

The third message chosen as an example is a NOTAM, which is, as defined
by the ICAO, a standardised message that aims to provide essential informa-
tion to pilots and other personnel involved in flight operations, which cannot
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be published by other means, normally due to urgency or temporary affec-
tation to flight operations [6]. NOTAM are a special type of message and are
somewhat difficult to compare with other, more structured types of messages,
basically because their scope is wider in terms of the type of information they
contain, compared with more standardised messages, like the two previous
examples. More information about the nature of NOTAM messages is included
in Appendix B, with the aim of providing more context for the following ex-
ample.

Listing 3.3 shows an XML fragment of a real AIXM NOTAM, where we can see
fields like the affected Flight Information Region (FIR), which is the airspace
region to which the publication is assigned. There is a field for coordinates
(3º 18’ North / 2º 55’ West) and a radius (5 Nautical Miles), resulting in a
circular sector, although the location is in this case also expressed with the
airport identifier (LEBB is the ICAO identifier for the Bilbao Airport in Spain)
to provide more context. Finally, the start and end timestamps indicate the
effectiveness period of the notice.

Listing 3.3: AIXM example: NOTAM event.

<event:NOTAM gml:id="LOCAL_ID_20">
<event:series>B</event:series>

<event:number>4287</event:number>

<event:year>2017</event:year>

<event:affectedFIR>LECM</event:affectedFIR>

<event:coordinates>4318N00255W</event:coordinates>

<event:radius>005</event:radius>

<event:location>LEBB</event:location>

<event:effectiveStart>2017-09-04T13:05:00.000Z</event:effectiveStart>

<event:effectiveEnd>2017-10-11T23:59:00.000Z</event:effectiveEnd>

<event:publisherNOF xlink:title="LEANYNYX"/>
</event:NOTAM>

3.2.3 FIXM

FIXM mainly supports trajectory management, in the different stages of the
mission, from planning and pre-flight coordination, to debriefing and analysis
after the landing. It is used for the exchange of planned routes, actually cov-
ering the scope of the traditional flight plans. But it also covers the trajectory
flown by aircraft, with ambitious applications like real-time trajectory nego-
tiation, to support operations and airspace optimisation. A discussion about
Air-Ground SWIM integration to achieve trajectory sharing and negotiation,
and the specific role of FIXM in these topics is available in [90].
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The importance of trajectory management will be discussed in more detail
in Section 7.4, as a primary application of SWIM from the SA perspective in
our research. In any case, during the years that this research was carried out,
we did not only focus on SA modelling, and we tried to explore other applica-
tions and methodologies where trajectory analysis can support not only the SA

estimation but also complement flight optimisation in general, and this was
almost always done based on the information present inside FIXM messages.

In the current subsection, we introduce the main types of message and also
provide some examples. The following is a list of the main FIXM messages
defined by the SWIM manual [29]:

• Flight Planning: Flight Plan (FPL) standards messages, used by all pi-
lots and air traffic controllers, are actually coded inside FIXM messages.
Changes, delays, cancellations, etc. are also in this category.

• Flight Status: once the aircraft has been dispatched, flight status updates
(e.g. departure and arrival times), as well as estimations and delays, are
also coded using FIXM.

• Surveillance and Tracking: The aircraft position during the flight, either
in real-time or after the operation, is one of the main assets of FIXM. An
example is provided below.

• ATC clearances: These messages are exchanged to provide clearance or
instructions from controllers to aircraft to support safe flight operations.

• Collaborative Decision-Making (CDM): CDM is a key concept in modern
research on airspace sharing and optimisation because its messages fo-
cus on improving operational efficiency through collaborative data shar-
ing between stakeholders, such as airlines, airports, and ATC.

• Airspace and Flow Management: This category is of special importance
for pilots, and therefore for SA, because it contains messages related to
airspace restriction, temporary flight restrictions, flow control instruc-
tions, re-routing, etc.

Listing 3.4 shows the basic information about a route in FIXM format:

• The departure airport is Barcelona (ICAO identifier LEBL) and the desti-
nation is Malaga (ICAO LEMG).

• Timestamps for estimated times of arrival and departure are included
next to the identifiers.
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• At first, we can see an XML field for the identification of the aircraft: an
Airbus A-320 with registration number EC-LQZ.

Listing 3.4: FIXM example: departure, arrival, and aircraft information

<fx:aircraftDescription registration="EC−LQZ" wakeTurbulence="M">
<fx:aircraftType>

<fx:icaoModelIdentifier>A320</fx:icaoModelIdentifier>

</fx:aircraftType>

</fx:aircraftDescription>

<fx:arrival>

<fx:arrivalAerodromeOriginal xsi:type="fb:IcaoAerodromeReferenceType"
code="LEBL"/>

<fx:arrivalFixTime xsi:type="fb:ExtendedMultiTimeType">
<fb:estimated timestamp="2018−10−10T16:44:00.000Z"/>

</fx:arrivalFixTime>

</fx:arrival>

<fx:departure>

<fx:departureAerodrome xsi:type="fb:IcaoAerodromeReferenceType" code="
LEMG"/>

<fx:departureFixTime xsi:type="fb:ExtendedMultiTimeType">
<fb:initial timestamp="2018−10−10T15:30:00.000Z"/>

</fx:departureFixTime>

</fx:departure>

Our last XML FIXM example is Listing 3.5, where we show a fragment of a
message with an example of a single aircraft position point. The most basic
information is position coordinates (location tag), altitude and speed. With
this basic information, the trajectories are sampled, and the information is
obtained to reconstruct the characteristics of the flight. These messages are
based on aircraft equipment, known as Automatic Dependent Surveillance-
Broadcast (ADS-B), that broadcast different types of data, although normally
only the fields shown in this listing are released to the public.

Listing 3.5: FIXM example: Trajectory point

<fx:position positionTime="2018−10−10T16:40:13.000Z" source="ADS−B">
<fx:actualSpeed>

<fx:surveillance uom="KNOTS">469</fx:surveillance>
</fx:actualSpeed>

<fx:altitude uom="FEET" ref="MEAN_SEA_LEVEL">24450</fx:altitude>
<fx:position xsi:type="fb:LocationPointType">
<fb:location srsName="urn:ogc:def:crs:EPSG::4326">
<ff:pos>40.5788 0.3390</ff:pos>

</fb:location>
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</fx:position>

</fx:position>

3.2.4 WXXM

WXXM is an exchange model for the standardisation of meteorological data
sharing between systems, in particular: weather reports, forecasts and obser-
vations. Meteorological Information Exchange Model (IWXXM) is a specialised
subset focused strictly on the aeronautical domain, although both are initially
defined within the SWIM scope [29]. For the purposes of this thesis, no dis-
tinction will be made between them, referring only to WXXM, since it is more
generic.

The implementation of WXXM is not as mature as the other models because
the standardisation of the information contained in the messages is more chal-
lenging [18]. Regarding this research, WXXM was not used for the purpose of
modelling SA because it was considered that adding meteorological conditions
as a factor in the pilot’s decision would imply too much complexity to the SA

model, and would complicate the implementation of the simulation environ-
ment. WXXM messages were however supported by the application developed
in 2017 [97], including the three main aeronautical weather messages:

• Meteorological Aerodrome Report (METAR): This message is a report that
explains the current or real-time conditions of the aerodrome weather.
Normally, it is used to analyse the weather conditions of the departure
aerodrome just before the flight. The message is designed to be under-
stood by well trained operators, based on abbreviations and figures on a
specific order.

• Terminal Aerodrome Forecast (TAF): This message is similar to a METAR,
but it forecasts the expected weather conditions of an aerodrome or a
terminal area. Crews normally use it to predict the meteorological con-
ditions of the destination aerodrome and its surroundings before starting
the flight.

• Significant Meteorological Information (SIGMET): Specific message is-
sued for unusual or severe aeronautical weather information, normally
in clear text, that needs to be disseminated for safety reasons.

Listing 3.6 shows an example of a METAR, where the clear text of the message
is shown in the description tag, and then its components are repeated in specific
tags for:
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• Air temperature.

• Dew point temperature.

• QNH (reference air pressure).

• Surface wind (direction and speed).

• Visibility.

Listing 3.6: Example WXXM METAR

<gml:description>LEMD 042230Z 03001KT CAVOK 23/10 Q1020 NOSIG</

gml:description>

<iwxxm:MeteorologicalAerodromeObservationRecord gml:id="LOCAL_ID_8"
cloudAndVisibilityOK="true">

<iwxxm:airTemperature uom="Cel">23</iwxxm:airTemperature>
<iwxxm:dewpointTemperature uom="Cel">10</iwxxm:dewpointTemperature>
<iwxxm:qnh uom="hPa">1020</iwxxm:qnh>
<iwxxm:surfaceWind>

<iwxxm:AerodromeSurfaceWind variableDirection="false">
<iwxxm:meanWindDirection uom="deg">30</iwxxm:meanWindDirection>
<iwxxm:meanWindSpeed uom="[kn_i]">1</iwxxm:meanWindSpeed>

</iwxxm:AerodromeSurfaceWind>

</iwxxm:surfaceWind>

<iwxxm:visibility>

<iwxxm:AerodromeHorizontalVisibility>

<iwxxm:prevailingVisibility uom="[mi_i]">6.21</
iwxxm:prevailingVisibility>

</iwxxm:AerodromeHorizontalVisibility>

</iwxxm:visibility>

</iwxxm:MeteorologicalAerodromeObservationRecord>

3.3 The impact of SWIM on fl ight operations

3.3.1 General considerations

Since its inception, SWIM has focused more on operations from the perspec-
tive of stakeholders closer to ground control centres, ATC and flow-control.

These technologies involved by SWIM are expected to have a great impact on
the optimisation of air operations, which by definition are carried out under
strict flight safety criteria, always involving correct situational awareness of
the pilot.
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For the development of our research, beyond the implementation of the
simulator and the Bayesian network learning algorithms that will be explained
in later chapters, it has been considered essential to be able to count on data
exchange standards such as those described. Without their existence, little can
be done to design robust systems that can calculate the SA associated with
the management of information in the cockpit. We consider it is important
to stress this idea so that the reader can understand the importance of AIXM,
FIXM and WXXM for our research.

There are ongoing initiatives to bring the benefits of SWIM to the cockpit,
providing information to the pilot, before the flight or in real-time, that can be
used to increase SA in a tangible way. This is part of a very slow and gradual
process in the context of the modernisation of airspace management, which
in Europe is allocated in the context of SESAR, monitored by Eurocontrol [43],
and in the USA in an initiative called NextGen, monitored by the FAA. Other
nations like Japan are also very active in the implementation of SWIM, and in
particular the connected aircraft concept [89], as will be explained in the next
subsection.

3.3.2 Trajectory Based Operations

TBO is a broad concept; therefore, for the purpose of this research, we will
focus on two initiatives that, in different ways, maintain the pilot in the loop
of the information management process: CDM and Flight and Flow Informa-
tion for a Collaborative Environment (FF-ICE). Figure 3.4 shows a proposed
implementation [90] to explore the interoperability capabilities of SWIM in dif-
ferent layers of the stakeholder community involved in the management of
the trajectory. The fact that the pilot is included in the decision loop proposed
by CDM, with the purpose of optimising collaboration for the air traffic flow
optimisation envisaged by FF-ICE should provide an indication of the extent to
which SWIM enabled operational environments have the potential to change
the way pilots operate, not only to control the aircraft, but also to participate
in dynamic negotiation of trajectories.

SA should be limited not only to safety but also to optimisation of operation.
In this sense, we explore the analysis of the trajectory to try to find a relation-
ship between the pilot actions and the factors that impact the trajectory.
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Figure 3.4: Air/Ground implementation of SWIM enabled TBO initiative to exchange
information with the pilot [90].

3.3.3 SWIM in the Electronic Flight Bag

To finish this chapter, we will introduce in this subsection the idea that the
EFB is probably the entry point to allow the pilot access to the advantages of
SWIM, with certain independence to the technological level of other elements
of the cockpit.

In modern cockpits of aircrafts, all three levels of SA are linked to how infor-
mation is managed by the pilot. SWIM and its associated standards presented
in Section 3.2, are likely to be widely implemented in EFBs in the future, at
least when these devices are not exclusively fed with proprietary applications
from specific companies.

This should imply that the initial approach of the EFB as a substitute for
paper documents is expected to be overruled by applications that provide pi-
lots with more powerful tools to extract relevant information from data. From
our point of view, SWIM technologies applied to EFBs provide an added value
in terms of SA because they offer the possibility of implementing applications
tailored to the specific need of the mission that the pilot is going to fly. This
is particularly important for military pilots, or pilots of aircraft that are de-
manded to fly different types of missions on a regular basis.

The certification requirements are also less exigent in EFBs than in the cock-
pit equipment. This is basically due to the fact that the responsibility of mak-
ing an adequate use of the device and managing its possible malfunctions
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Figure 3.5: Implementation of SWIM enabled TBO initiative with EFB in the loop [89].

essentially relies more on the pilot. Therefore, it is feasible to update the
applications installed in an EFB, making it a better option to implement the
advances proposed by SWIM. Figure 3.5 shows the implementation proposed
by the Electronic Navigation Research Institute (ENRI), where the the EFB in-
tegrates within the CDM ecosystem to enable the pilot to become an active
stakeholder of the TBO concept, thanks to SWIM [88–90].

With these considerations, for the purpose of this research, we focus on
analysing data relationships, especially exploring the interactions between
data from different origins and standards within the EFB. The aim is to pro-
vide a systematic and robust approach to the management of information and
to enable obtaining synergies on the information from combined data sources.
It is also a target of this research to translate this concept into the information
management methodology of the pilot in the cockpit, reflected in the way the
user interface to perform information queries is implemented.

We have initially designed the simulation environment to handle FIXM and
AIXM, for the moment with a limited scope, but we anticipate increasing the
way information is exploited by these standards and also to add digital NOTAM

and WXXM data to improve the simulation with weather and environmental
factors. AIXM databases have been provided by Aeropuertos Españoles y Nave-
gación Aérea (AENA), the official Spanish AIS provider.
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This chapter presents a brief, general introduction to Bayesian networks, fo-
cussing on concepts more closely related to this research. Therefore, the main
purpose is to explain the basics behind the Bayesian networks designed in the
experiments that we carried out, where the main challenge was to adapt the
data collected from the flight simulator. With this premise, we provide a gen-
eral explanation of probabilistic graphical models and a few details about di-
rected acyclic graphs, due to their importance in understanding how Bayesian
networks perform inference. Given the dynamic nature of flights, we have
used dynamic Bayesian networks as the basic modelling tool. These are briefly
explained in Section 4.5. Finally, we briefly explain the basic principles that
are behind our approach to overcome certain limitations of variables accord-
ing to their continuous vs. discrete nature or their probability distribution
when working with dynamic Bayesian networks.

4.1 Probabil istic Graphical Models

4.1.1 Definition and essential properties

PGM use graphs, i.e. non-linear data structures consisting of vertices and
edges, to facilitate the representation and resolution of complex problems
where uncertainty is modelled with the use of probabilistic dependencies [81].

The graphical structure encodes conditional independence properties. For
instance, in a Bayesian network, a node is conditionally independent of its
non-descendants given its parents.

These are the main properties of PGM [75, 116]:

• They offer an intuitive graphical representation and, unlike other data
mining techniques, PGM provide the possibility to visualise variable de-
pendencies intuitively, helping humans understand the relationships and
dependencies between variables.

• Conditional Dependence: Given the conditional independence relation-
ships encoded by a graph, the conditional probabilities associated with

55
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nodes given their parents/descendants are used to model the joint prob-
ability distributions of the variables that they represent.

• Modularity: The joint probability distribution of the variables of a PGM

can be decomposed into more manageable sets, associated with a local
structure in the graph. This offers key advantages in terms of the mem-
ory and computational power required to analyse the model.

• Inference: PGMs provide algorithms for efficient probabilistic inference,
allowing the computation of marginal probabilities and conditional prob-
abilities.

• Learning: PGMs also provide algorithms for learning the graph structure
and conditional probability distributions from data.

4.2 Fundamentals of Bayesian networks

4.2.1 Directed Acyclic Graphs

Before defining a BN, it is important to note that it is PGM with a DAG, a
directed acyclic graph, with a node for each of the variables of the problem.
The network structure that defines the BN is a directed acyclic graph G =

(V ,A), where each node vi ∈ V corresponds to a random variable Xi. Each
element of the set of arcs A that join the nodes across the network is identified
by the pair of nodes it connects: aij = (vi, vj), for every aij ∈ A.

Being a DAG means that a Bayesian network:

• contains only directed arcs;

• does not contain any cycle, i.e. a sequence of arcs that starts and ends in
the same node.

The fact of being directed clearly defines the sense of the probabilistic de-
pendencies among the variables represented by the graph, whereas the acyclic
nature enforces the hierarchical/dependency nature of the structure [75]. In
the example DAG of Figure 4.2, it can be noted the following topological order
of the nodes:

• A is defined prior to B and C;

• both B and C a prior to D;
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X1 X2

v1 v2
a12

X3

v3

a13

Figure 4.1: Basic representation of the elements of a Bayesian network.

• D is prior to E;

• this structure ensures that there are no cycles and dependencies are es-
tablished in a specific order.

A B D E

C

Figure 4.2: Basic example of a DAG.

4.2.2 Definition of Bayesian network

Suppose a finite set of variables [100] X = {X1, . . . ,Xn}, where each variable
Xi takes its values on a set Ui. A generic value of the variable Xi is denoted
as xi. A BN is a model of independence relationships among these variables
that defines a joint probability distribution for their values [79, 116].

BN for variables X is a directed acyclic graph G with a node for each variable
Xi ∈ X. A conditional probability P(Xi|Πi) is defined for each variable Xi

given its parents Πi in the network G. The graph represents (in)dependence
relationships among the variables according to the d-separation principle [116]
and, given these dependencies, the joint probability distribution for all the
variables P(X) decomposes as a product of the conditional distributions, as
shown by Equation 4.1.
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P(X) =
n∏

i=1

P(Xi|Πi) (4.1)

4.2.3 Markov property in Bayesian networks

An important property of Bayesian networks is the local Markov property,
which states that each node variable Xi is conditionally independent of its
non-descendants (i.e. the nodes Xj for which there is no path from Xi to Xj)
given its parents. Therefore, this property highlights the fact that children
directly depend on their parents in a BN. However, observations propagate in
all directions (direct and reverse arcs) changing the conditional probabilities
of the nodes in the graph. A simple example of this is the application of the
Bayes theorem to compute conditional probabilities of a node, given its child
(see Equation 4.2),

P(X1 | X2) =
P(X2 | X1)P(X1)

P(X2)
(4.2)

4.2.4 Inference in Bayesian networks

Inference in a PGM is the process by which conclusions are drawn from
available data and knowledge, whether deterministic or probabilistic. Seen
from a more practical point of view, inference techniques help to solve an
existing Bayesian network, and thus obtain the desired result as quickly as
possible. To achieve this, the probabilities of certain variables are updated,
either based on observed evidence or using methods to calculate it, with exact
or approximate computations. There are two basic types of inference. In both
of them, it is assumed that we have a set of observations O: Y = y for some of
the variables Y ∈ X:

• Conditional posterior probabilities: In this case, we want to compute
P(X | O) for any variable X [116].

• Configuration of Maximum Probability (MAP): In this case, we have a
subset of variables Z ⊆ X and we have to compute the configuration of
these variables with maximum posterior probability: arg maxz P(Z = z |

O) [54, 115].

In this dissertation, we will concentrate on the computation of conditional
posterior probabilities. For exact inference, these are the most relevant meth-
ods:



4.2 Fundamentals of Bayesian networks 59

Figure 4.3: Example of clique tree.

• Belief Propagation (or Message Passing): An algorithm used in tree-
structured networks where messages (probabilities) are passed between
nodes to update beliefs [116].

• Variable Elimination: This method involves systematically summing out
(or eliminating) variables from the joint distribution to compute marginal
probabilities [138].

• Junction Tree Algorithm: Converts the Bayesian network into a tree struc-
ture (junction tree) and performs belief propagation on this tree. It is
suitable for more complex networks [83]. Figures 4.3 and 4.4 show a
Bayesian network and a possible equivalent clique tree corresponding to
an example from [75].

In the case of approximate inference, these are examples of relevant meth-
ods:

• Monte Carlo methods: These methods use random sampling to approxi-
mate the posterior distributions. They are useful when exact inference is
computationally infeasible. The two main procedures are based on im-
portance sampling [131] and Markov chain Monte Carlo [141]. It is also
possible to compute the intervals of posterior probability distributions
[15].

• Numerical approximate methods and sparse data structures: These meth-
ods are based on the use of compact representations of conditional prob-
ability tables that need less parameters as probability trees [22], also
being able to reduce the size of a representation by using approximate
values.
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Figure 4.4: Example of Bayesian network to be analyzed with clique tree approach.

4.2.5 Learning Bayesian networks

The concept of learning a network refers to applying techniques of probabil-
ity theory and graphical representation of PGMs to induce a Bayesian network
from a dataset of observations. The idea is to construct BNs including their
probabilistic relationships from data [109]. It has two parts: learning the struc-
ture and estimating the parameters.

The parameters are usually estimated by the maximum likelihood according
to which the estimated value θ̂ijk of P(Xi = xk|Πi = πj) is given by

θ̂ijk =
Nijk

Nij
,

where πj is a configuration (combination) of values of parents variables Πi,
and Nij is the absolute frequencies of Πi = πj in the dataset, while Nijk are
the absolute frequencies of Πi = πj and Xi = xk, simultaneously.

Bayesian procedures are more robust in practice [109] and usually a global
sample size S is considered. The estimation of P(Xi = xk|Πi = πj) is given by:

θ∗ijk =
Nijk + S/(ri.ki)

Nij + S/ri
,

where ki is the number of possible values of variable Xi and ri is the number
of possible configurations of parent variables Πi.

The most challenging part when learning a BN is the qualitative part or
learning the graph structure. One of the key concepts necessary to understand
how this learning is performed is related to metrics. Metrics are score-type
functions, that is, they measure the adequacy of probabilistic models [15, 74].
As an example, we will introduce the Bayesian Information Criterion (BIC)
metric, although other like Akaike, K2 and BDEu will be referred in Chapter
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7. The metrics favour models that describe well the observed data and have
an small number of parameters.

BIC metric is defined as a simplification of the Laplace approximation to a
function of P(G|D), which is the joint probability function of the network G on
the database D. An approximation is made using θ̂, the Maximum Likelihood
Estimator (MLE) estimator of the model parameters, and is defined as follows:

BIC(G|D) = log(P(D|θ̂,G)) −
logN

2
dimG,

where P(D|θ̂,G) is the probability of the data given the graph G with his
maximum likelihood parameters, N is the number of cases in the dataset D,
and dim(G) is the number of network parameters.

Learning the structure is done by searching the DAG optimising this score.
There are also learning algorithms that are not based on optimising a metric,

but in doing a series of conditional independence statistical tests, as the Peter
and Clark (PC) algorithm [144].

There are methods for learning BNs directly from structured data such as
relational databases [58].

4.3 Fundamentals of dynamic Bayesian networks

4.3.1 Definition of dynamic Bayesian network

A DBN [106] is a particular case of BN with repeated measures of a basic
set of variables X in different time instants (or time slices) t = 1, . . . ,m. It is
assumed that the variables X on instant t are denoted as Xt and the value of
Xi as Xit [100, 101].

X 2
t-1X 2
t-1 X 3

t-1X 3
t-1

Yt-1Yt-1

X 1
t-1X 1
t-1 X 2

t-1 X 3
t-1

Yt-1

X 1
t-1 X 2

tX 2
t X 3

tX 3
t

YtYt

X 1
tX 1
t X 2

t X 3
t

Yt

X 1
t X 2

t+1X 2
t+1 X 3

t+1X 3
t+1

Yt+1Yt+1

X 1
t+1X 1
t+1 X 2

t+1 X 3
t+1

Yt+1

X 1
t+1

time slice t-1 time slice t+1time slice t

Figure 4.5: Example of dynamic Bayesian network.
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4.3.2 Markovian and stationary assumptions in dynamic Bayesian net-
works

Two common assumptions are done for DBNs in order to reduce the compu-
tational complexity of the calculations associated with the model [106]:

• Markovian process assumption: Probabilities at a given time step de-
pend only on the previous time step, i.e. the set of parents for each
variable Xit is included in Xt−1.

P(Xt | Xt−1, . . . , X1) = P(Xt | Xt−1) (4.3)

A consequence is that the set of parents of variable Xit is always included
in Xt ∪ Xt−1.

• Stationary assumption: The transition probability between time steps is
time independent, i.e. the conditional probability P(Xit|Πit) is the same
for any value of t. The process is therefore time-invariant:

P(Xt+1 | Xt) = P(Xt+k | Xt+k−1) for all t and k (4.4)

In some cases, dynamic networks also include variables Xit that depend on
the variables Xt in the same time t [51].

In a dynamic Bayesian network there can be two types of arcs:

• Arcs connecting a node from Xt−1 to a node of Xt. This set of arcs
conforms the inter-slice connectivity.

• Arcs connecting two nodes from Xt: the nodes conforming to the intra-
slice connectivity.

4.3.3 Inference and learning in dynamic Bayesian networks

Inference algorithms for hybrid Bayesian networks [132] are especially rel-
evant for this research, as will be explained in later chapters. Inference in
DBN can be done with the same algorithms as in general Bayesian networks.
However, there are special problems for which we can apply special-purpose
algorithms which take into account the special temporal characteristics of the
variables. Temporal dependencies have such a nature that benefit from apply-
ing forwards-backward algorithms [106]. This will be the case for our problem
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of the online computations of a SA estimation, for which a fast algorithm will
be developed in Chapter 8.

Concerning the approaches for learning the structure of a DBN from data, it
is important to note that the intra-slice connectivity must be a DAG, and the
inter-slice connectivity is equivalent to the variable selection problem [106].
One key aspect of DBN learning relies on assuming that intra-slice connections
are fixed, reducing structure learning for DBNs to feature selection. Other
approaches to learning in DBN emphasise the importance of model efficiency
over data fitting [13].

In some cases, there are missing values, then Expectation Maximization (EM)
method, based on iterative maximum likelihood or Maximum a Posteriori
(MAP) estimates, is the most common method for learning DBNs as it provides
an efficient way to find model parameters.

4.4 Bayesian classif ication for supervised and unsu-
pervised learning

4.4.1 Definitions and relationships

Another important topic to cover in this brief introduction to Bayesian net-
works is classification. Classification usually is associated to supervised learn-
ing, i.e. we have an special class variable C and the objective is to build
a model in which it is possible to compute the conditional probability of C

given that the rest of variables (attributes) is observed: P(C = c|Attributes).
When the variable is continuous, the problem is called regression.

In the case of unsupervised classification, there is no observed class variable
in the dataset and the objective is to find a partition of the data in homoge-
neous sets. Unsupervised learning can be thought of as finding patterns in
data above and beyond what would be considered pure unstructured noise
[59].

4.4.2 Overview of classification methods

As will be explained in later chapters, we have performed different types
of classification, so this section aims to briefly explain the findings and some
thoughts to better understand the reasons for the implementations carried out
in this research.
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For supervised learning, the availability of labels or well-indexed datasets
has made available a bigger amount of algorithms that we have been able to
test with our data: Linear regression and logistic regression.

In the case of unsupervised learning, the goal is to find hidden patterns
without the aid of labels, which in the case of large datasets can be computa-
tionally costly and time-consuming. This limitation causes this approach to be
reserved for specific applications where the computational effort is worth it.
In our research, we performed an experiment [102], explained in more detail
in Chapter 7.

In the following, we summarise the most relevant supervised and unsuper-
vised classification methods:

• Supervised: Linear regression, logistic regression, decision trees, sup-
port vector machines, and Bayesian classifiers.

• Unsupervised: Clustering.

4.5 Hybrid Dynamic Bayesian Networks

One of the main problems associated with the modelling of flight data by
means of PGMs is the fact that we measure continuous and discrete variables
in each time instant. This poses an important problem, as we are in the case
of a hybrid graphical model. In general, there are several possible approaches
to work with continuous and discrete variables at the same time:

1. Discretise all continuous variables and work with discrete variables [14,
110].

2. Work with models able to consider continuous and discrete variables at
the same time as mixtures of truncated exponentials [96, 127] or mixtures
of polynomials [139].

3. Transform all the discrete parent variables of a variable Y into a continu-
ous variable and consider that all the parents are always continuous. If a
variable X takes values in {x1, x2, . . . , xk}, this can be done by transform-
ing this variable into a variable X ′ such that X ′ = j when X = xj. Another
more suitable approach can be to define a set of dummy 0− 1 variables:
Xj (j = 1, . . . ,k − 1) with Xj = 1 if X = xj and Xj = 0, otherwise. If
the original variable is bi-valued, both approaches are equivalent, but
in other case, there can be differences, the second approach being more
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general in most of the cases. Assume, for example, that we are comput-
ing the conditional probability of P(Y|X) and that X is a variable taking 3

values: {x1, x2, x3}. In all the models we are considering for continuous
variables, the probability of Y will depend on X through a linear combi-
nation of the values of the parents. So, in the case of considering X ′ we
will have a function like f(X) = aX ′ + b with two parameters a,b. So we
have that f(x2)− f(x1) = f(x3)− f(x2) = a. However, if two dummy vari-
ables X1 and X2 are defined, a linear combination of these variables will
be g(X) = a1X1+a2X2+ c, we have 3 parameters and the restriction dis-
appears, now g(x2) − g(x1) = a2 − a1 and g(x3) − g(x2) = −a2. In fact,
g(xi) = a1 + c,g(x2) = a2 + c,g(x3) = c and we can fix an independent
effect for each of the 3 values of the variable X.

When estimating the conditional probability P(Y|Π) all the discrete vari-
ables are transformed into numerical ones by applying a transformation
Π ′ = T(Π), then the conditional probability P(Y|Π ′) is estimated being
P(Y|Π = π) = P(Y|Π ′ = T(π)). In our research, we have taken into
account the nature of variable Y: If this variable is continuous, the con-
ditional probabilities are estimated using linear regression and if it is
discrete multinomial, logistic regression is used [70].

In this dissertation, we have considered approaches 1 (Chapter 7) and 3

(Chapter 8).

4.6 Limitations of variables working with dynamic Ba-
yesian networks

The decision between using discrete and continuous variables has largely
conditioned this research from the beginning. In fact, the first article published
in 2015 is mainly dedicated to the discretization of variables [100], because at
that time we assumed that using real-time DBN to analyse multiple continu-
ous variables would be infeasible. In this section, we briefly explain how this
topic has been approached at different stages of the research until reaching the
solution used in the 2024 experiment whose results are presented in Chapter
8. The first subsection focusses on the comparison between regression ap-
proaches with continuous and discrete variables, while the second subsection
focusses on presenting some brief considerations on the probability distribu-
tions of random variables for use with DBN.
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4.6.1 Continuous vs. discrete variables

The high computational cost associated with DBNs that handle continuous
variables or a mix of continuous and discrete variables has been well known
since the beginning of DBN-related research [94]. In fact, there are relevant
efforts to design BN that handle mixed variables, like the Hybrid Bayesian
network (HBN) presented in [80].

In the context of learning Bayesian networks from mixed data containing
both continuous and discrete variables, one way to avoid discretization is to
directly model the continuous data without discretising it. However, this ap-
proach may be limited by the computational cost of using a more general
parametric representation, such as certain families of probability densities. An-
other way to avoid discretization is to make simplifying assumptions, such as
assuming all variables are discrete or all variables are continuous and nor-
mally distributed, but these assumptions might not accurately represent real-
world domains with mixed data.

In this section, we will explain the limitations of (dynamic) Bayesian net-
works that affect this research more directly:

• The growth of computational complexity occurs as the number of vari-
ables in the network grows.

• The problems of handling continuous variables versus the loss of infor-
mation when continuous variables are discretised.

The handling of these limitations has been one of the main focus of the re-
search, which poses a challenge to perform inference in real-time, as could be
intended to calculate SA during the flight. One of the models allowing exact
inference algorithms is the conditional Gaussian network [82]. But it is limited
in the sense that a continuous variable cannot be the parent of a discrete vari-
able, and this situation makes it inappropriate for our case in which we have
continuous and discrete variables measured over time, and a discrete vari-
able may depend on continuous variables measured in the previous instant.
Another possibility is to use mixtures of truncated polynomials or truncated
exponentials, which allow the application of general propagation algorithms,
though the complexity can be high. In this dissertation, we have considered
an alternative approach:

• To convert all the variables into numerical ones and to consider general
purpose tools for modelling the conditional probabilities: logistic regres-
sion for discrete variables and linear regression for continuous variables.
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• As this model does not allow the application of general purpose propa-
gation algorithms, we chose to develop special purpose ones, allowing a
fast and exact computation, but that are specific for a particular case in
which we have a given set of observed variables and an interest variable
(the SA variable).

4.7 Other Graphical Models

There are more models that can be considered as PGMs. This is the case
of undirected graphs [116], chain graphs (including directed and undirected
links) [52], influence diagrams (including decision and utility nodes) [75], or
sum-product networks [119]. Of them, influence diagrams could be useful in
helping pilots make correct decisions in concrete situations. But in this work,
we have not considered its use, leaving it for future work.

Decision trees [122] are also a common tool in decision-making environ-
ments, including some related to aviation operations. Although the way in
which they are built and employed varies greatly. They can be considered as
a variant of the general class of PGMs, but they are more useful in asymmetric
decision problems.

Decision trees are PGM strictly speaking, but since they can be used for mod-
elling probabilistic relationships based on data, it is important to note that
there is a correspondence between them and influence diagrams [75]. Influ-
ence diagrams are considered a generalisation of Bayesian networks because
they extend their basic structure to include decision making (including deci-
sion variables and utilities, apart from random variables). This relationship is
exemplified in Figure 4.6.

This figure is relevant to understand that influence diagrams are considered
a generalisation of Bayesian networks because they extend their basic struc-
ture to include decision making. Though we do not enter into the details
of both models, it can be seen that influence diagrams are a more compact
representation of a decision problem, allowing modularity and independence
relationships, especially when the problem shows symmetry. In the example,
it is considered that the utility does not depend directly on S, whereas this
cannot be expressed with the decision tree.
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Figure 4.6: Example of decision tree and its associated influence diagram [75].
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4.8 Overview of other research that apply BN to SA

estimation

Now that the concept of SA has been presented in Chapter 2 and the funda-
mentals of BN have been summarised in the previous sections of this chapter,
before proceeding with the explanation of the SA measurement model in the
next chapter, we will briefly include a reference to several research where we
have found examples of approaches that use BN or DBN to measure SA.

4.8.1 Multi plan recognition and predictive situation awareness

The Ph.D. thesis published by Robert Suzić in 2006 [148] explores the use
of BNs for situation awareness estimation in the context of tactical decision-
making. It discusses how agent-based stochastic simulations can be used to
fill conditional probability tables for BNs, which can be used for plan recog-
nition and predictive situation awareness. The approach is different from the
one used in our thesis, since it does not focus on the individual human factors
behind SA, but has a multi-agent approach; therefore, its applicability to air-
craft navigation monitoring is limited. It should be noted that when articles
about SA were first published in the 1980s, they focused on tactical situations
with high workload rather than routine phases of the flight [49]. The use of
BNs presented in Suzić’s thesis is not time dependent in the same way as our
research: DBNs are employed to guess what planning agents were doing in
previous periods of time.

4.8.2 Knowledge-based probabilistic modelling for situation analysis using
the example of maritime surveillance

The approach presented by Yvonne Fischer in her Ph.D. thesis published in
2016 [47] is similar to ours, since it proposes to use DBNs to measure situation
analysis. However, the model differs in the way it considers situations, as
they are mainly presented as external semantic interpretations of sensor data.
Therefore, although the purpose is similar, the SA modelling approach is dif-
ferent. The fact that Fischer’s thesis is focused on maritime navigation instead
of aircraft offers room for interesting comparison: the numerical tools used to
analyse position information are similar, based on calculations with geograph-
ical coordinates, and we can see that k-means clustering is also employed for
this purpose. On the other hand, vehicle speeds are very different, deeply af-
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fecting the way DBN should be designed in terms of time dependency, sample
rate of data, etc.

4.8.3 Dynamic Bayesian network-based situational awareness and course
of action decision-making support model

The article published by Kim and Lee in 2024 [77] proposes direct applica-
bility of DBN to the SA estimation. It acknowledges that DBN are suitable to
provide an estimation of uncertainty related to decision-making in dynamic
environments. It also accepts the use of expert knowledge to overcome data
availability or modelling limitations. However, the approach presented by the
authors differs from our work because the context is different, based on tacti-
cal threat analysis. The parallelism is clear if the focus of the calculation are
military pilots, but the nature of the threats proposed by Kim and Lee is very
different from the ones found by an aircrew while navigating between two
airports.

4.8.4 Situation Assessment in Aviation: Bayesian Network and Fuzzy Logic-
based Approaches

The book by Raol et al. [123] deserves a special mention for several reasons:
it is a publication from 2024, very recent at the time of finishing writing this
thesis. Its content is closely linked to that of our thesis; it actually dedicates
an entire chapter to the topic of situational awareness, explaining in detail the
Endsley model, and mentioning the importance of information management.

In several chapters of the book, risk management is mentioned, but not
from the ORM perspective. Instead, the book relates crew risk management
with Crew Resource Management (CRM), which is a related concept but that
has historically been linked to aircraft with multiple crew members. Neverthe-
less, we have found in the book contributions of CRM to single-pilot operation
which could be applicable to our SA measurement model.

The main difference of the book with respect to our research is that it fo-
cusses on assessment instead of awareness, which is an aspect of the situation
that is generally at a different level with respect to individual human factors
(the awareness of the pilot). Situation assessment would be particularly appli-
cable when modelling the overall system with multiple actors, such as other
aircraft, controllers, flight operations centres, etc.

To address this operational and human factors approach, the types of Bayesian
network resources proposed by the book are based on using fuzzy logic to
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handle the vagueness and imprecise information present in the assessed situ-
ations. The simulation environment presented in the book is not particularly
focused on flight parameters and is not using a flight simulator in the same
way that we propose. Instead, it uses different tools to simulate a combat
environment where the situation can be assessed. Therefore, the Bayesian net-
works presented in the book, to perform fuzzy logic based on classification,
are not dynamic.
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5 B U I L D I N G A M O D E L F O R T H E
E S T I M AT I O N O F S A

In Chapter 2 we introduced the Endsley model for the estimation of SA, as
well as some of the most relevant SA alternative models and rating techniques,
like SAGAT and SART. Since the appearance of the first models to estimate SA,
there has been a continuous effort in the field of aviation to develop different
tools and rating techniques, as explained in [27].

Based on the available references, the Endsley model is clearly the most
influential and offers the possibility to associate different flight factors, and
therefore variables collected from our simulations, to different SA levels. That
is the main reason why our model, presented in this chapter, follows Endsley’s
approach.

The first version of our model was published in [101] and we have attempted
to update and evolve it during years of research, with three updates of the
collected simulated flight datasets for the DBN training, and performing differ-
ent iterations of discretization, intra-variable calculations, addition of expert
knowledge, etc. to obtain a DBN that calculates the SA.

5.1 Primary assumptions of the model

The Endsley model [40] was introduced and analysed in Section 2.1, where
we also identified a set of propositions based on scientific discussions found
in the literature [42]. From these propositions, we define a set of primary
assumptions that we consider to be underlying our model, trying to simplify
the approach to measure SA and therefore build a simulation environment
that is compatible with the complexity of the measurement.

Assumptions based on Proposition 1 "The three levels of SA are not linear":

• Neither the simulation environment nor the expert knowledge assume
any numerical relationship between the three SA levels. When expert
knowledge is provided, the considerations about SA level are based on
practical insights and experienced understanding of the situations that
the simulation is replicating, even when they are not explicitly docu-
mented in empirical data.
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• When SA estimations corresponding to different levels are calculated,
they shall always be stored in different variables, without pursuing that
they follow any kind of pattern.

Assumptions based on Proposition 2 "The model cannot be considered as merely
a data-driven information processing model":

• From the beginning of this research it was clear for us that the SA of the
pilot is based on multiple factors, both environmental and individual,
and although the ability to evaluate the information analysis of the pilot
from the collected data has always been considered, expert knowledge
seems necessary to provide a robust estimation of SA.

Assumptions based on Proposition 3 "There is a clear distinction between Prod-
uct and Process":

• We aim to recreate the way in which Endsley’s model explicitly describes
the interdependence of SA as a product and the processes that create
it, emphasising a circular relationship where SA influences information-
gathering and interpretation.

• The product is the measured SA.

• The processes leading to the measured SA are a set of situation assess-
ments based on measurable variables concerning the pilot actions, the
aircraft position, the navigation environment, etc. These processes are
limited in scope for the purpose of this research, but the model is in-
tended to be scalable based on the available data and computing capa-
bilities.

Assumptions based on Proposition 4 "The model of SA is cyclical and dynamic":

• The estimated SA shall be a time-dependent variable, as well as most of
the measured variables that support the processes associated with the
former assumption.

• The cyclical nature of SA is modelled implicitly in our model as a contin-
uous and iterative set of activities to collect data samples that describe
external changes in the situation of the aircraft and internal cognitive
activities of the pilot.

Assumptions based on Proposition 5 "The model takes into account the meaning
of different SA levels":
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Propositions

1. The three levels of SA are not linear.
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a data-driven information processing model.
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Multiple factors shape pilot SA

Assumptions

Figure 5.1: Overview of modelling primary propositions and assumptions.

• Following the modelling principles expressed by Endsley [42], we pro-
pose to increase the meaning of the different levels of SA, avoiding to
regard them as simple queries of the situation. This is obtained with the
addition of expert knowledge, which in our case has been integrated in
the form of variables added to the dataset.

Assumptions based on Proposition 6 "The SA model requires a dynamic integra-
tion of working memory and long-term memory":

• Our model assumes that experienced individuals rely on schemas and
mental models included in long-term memory to process and predict
information, reducing reliance on working memory.

• The simulation environment will include specific elements to detect when
the pilot needs to load information in working memory.

• The simulation environment shall be designed to be agnostic in terms of
assigning better SA levels according to the use of working memory.

Figure 5.1 shows a schematic overview of the propositions and assumptions
on which our model is based, that have been presented in this section.

5.2 Context-specif ic assumptions of the model

The assumptions in the previous section are relatively generic and cannot
be used to identify a specific set of variables that serve as an indication for
designing the simulation environment or for designing other essential aspects
of the model, such as the processing tools for adapting simulated data to the
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algorithms or the mechanism for incorporating expert knowledge. For this
reason, we conducted a survey that helped us obtain feedback from highly
experienced professionals about the kind of variables that should be used to
model information management and, therefore, should be collected in our
simulation.

5.2.1 An ORM based survey to prioritize error avoidance

The principles of ORM were explained in Section 2.2. Since it is a standard-
ised approach to understand and mitigate risks and factors that affect safety
and situation awareness, we decided to conduct a survey to extract specific
information about IFR flights, because this is the type of operation that the
simulator developed in this thesis is aimed at reproducing.

During the preparation of the survey, we investigated examples of analo-
gous activities using surveys aimed at detecting pilot errors in these types of
flight operations. We understood that many approaches are based on a direct
assessment of the pilot’s cognitive capabilities. Examples like Zotov’s 1997

thesis and subsequent works [154], as well as the Cognitive Failures Ques-
tionnaire (CFQ) [19] and its evolved versions [62, 152] provide methodical ap-
proaches to assess how human failures contribute to accidents. Although most
of these previous investigations were based on self-report tools, we also found
that they are evolving to also employ specific cognitive measurement devices;
in fact, a related experiment had taken place within the same facility, involving
researchers from the University of Granada [28].

5.2.1.1 Design and validity of the survey

It should be noted that when presenting the survey to the subjects, any
reference to SA was deliberately omitted in order to avoid contaminating the
results with assumptions about this term that are foreign to Endsley’s model,
and which pilots are usually unaware of. The survey was therefore orientated
from the point of view of ORM risk management, a term that is tangibly related
to SA and which allowed the questions to be given a more rigorous context.

The survey was carried out with the support of four active pilots who
worked as flight instructors and were familiar with the principles of ORM. The
survey did not mention SA directly to avoid an excessive bias of the subjects to
consider that the parameter that is internal to the pilot should be a product of
the survey, while it is in reality a product of risk management methodologies
and associated tasks, either on the ground or in flight.
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It is already explained in Section 2.2 that SA can be regarded as a product of
ORM, therefore the purpose of the survey was to extract as much information
as possible from these pilots on how this is performed. The intention was
to apply the lessons learnt in the design of the simulator updates, to perform
future experiments with better tools to measure SA. Participants were asked to
complete a questionnaire that provided feedback on elements related to ORM

and SA.
The validity of this survey is limited, as it has a very limited number of

samples because the number of subjects available was very reduced and there
were no resources to extend the survey to other subjects. However, the results
are relevant for the purposes of the thesis because the questions included
very specific and directed topics to detect causes of error during the flight,
seen from the perspective of experienced instructors. We also included some
control questions to evaluate the reliability and attention of the participants,
for instance, asking about weather conditions in context where weather is not
especially relevant.

In any case, the interest of the survey is more qualitative than quantitative,
and the results showed a high degree of consensus, as will be explained in the
next subsection, which was interpreted from our side as a reinforcement of our
approach, as the answers provided an important overview of the criteria that
should be employed to prioritise the simulation parameters to be monitored
by the SA estimation, from a risk management perspective. A very brief extract
of the answers is presented below, and more detail about the questions asked
is provided in Appendix C:

• Always prioritise relative position to points in front of the route devia-
tions.

• Pilots tend to consider that making errors in the handling of instruments
is more risky than missing information.

• The practice of challenging situations and flight under adverse condi-
tions should be performed in the flight simulator.

5.2.1.2 Findings to be applied to the SA modelling

The survey has interesting outcomes in the sense that it shows that pilots
tend to prioritise the detection of their own operating errors, instead of devi-
ations that could be due to other factors. This agrees with the risks derived
from automation bias: When the pilot is focused on preventing his/her own er-
rors, automation is regarded as a guarantee for a flawless operation, masking
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the capacity to detect deviation or malfunctions that the pilot could perceive
under full responsibility. In the survey results, we have detected a prevalence
of respondents to prioritise this kind of cues to reduce risks.

We need to establish which variables need more focus to analyse the types of
error related to automation and issues with pilot prioritisation in automated
tasks. If an error related to a high priority factor occurs, we have a higher
probability of establishing that it was due to a lack of SA. The survey re-
sponses provide information on the subjects’ priorities, and this information
is valuable because it is used to build the model on automation bias. There
are multiple types of bias that affect human factors in aviation and therefore
have a direct impact on SA, but the most relevant for our study is automation
bias, which was analysed in depth for the first time by [104], although other
authors highlight aspects more related to the type of operations that we sim-
ulate and our approach to automation, Meyer’s thesis being a very valuable
source of information in this regard [92]. In particular, our efforts to build the
model have taken into account two concepts clearly identified:

• Decision bias, which refers to a tendency to make decisions based on
cognitive factors other than the merits of the decision.

• Confirmation bias, which is the tendency to search for, interpret, favour,
and recall information in a way that confirms one’s preexisting beliefs or
hypotheses.

As we explain below, variable selection intends to collect data that reflect
that the pilot is relying too much on automation and pays more attention to
past mistakes, rather than noticing deviations that are still unnoticed. This is
how we model this part of the pilot’s behaviour.

5.2.2 SA model key factors

This is a very important part of this dissertation. In the years that we have
conducted this research we have not found a clear model example of key
factors for modelling SA as a general approach. Of course, we have checked
SART and SAGAT examples because they remain widely used and we have
clear ideas about the main aspects that influence any SA model, which are
orientated by the SA levels defined by Endsley:

• Good perception of the environment, driven by a well-designed cockpit,
adequate training to instruct the pilot on how to make a correct use of the
aircraft systems, and a good preparation of the mission that allows the
pilot to be able to focus the attention on the right information sources.
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• Adequate comprehension of the situation, which is more intimately re-
lated to the pilot’s internal factors that enable the mental processes that
allow understanding what is happening in the cockpit. At this point,
memory starts taking a relevant place in the conformance of an adequate
SA:

– Short-term or working memory is related to the cognitive state of
the pilot, which allows us to take into account relevant information
that was perceived seconds or minutes before it was needed.

– Long-term memory is related to the experience or training out-
comes that provide the pilot with background elements to manage
an adverse situation.

• A correct projection of the near future is somehow less tangible because
it is a human being’s capacity to anticipate what is going to happen. This
is not magic or an intuition, and from a scientific point of view this pro-
jection needs to be related both with external factors to the pilot (train-
ing, workload, etc.) and internal factors, both positive (accountability,
discipline, adaptability, diligence, focus, etc.) and negative (inflexibility,
obstinacy, etc.), which are present in pilots, as in other human beings.

The three levels, as previously explained in this chapter as one of the pri-
mary assumptions, do not have a linear relationship. During our long inves-
tigation, we have come to the conclusion that they also do not show fixed
dependency patterns, but they rely on multiple factors that cannot be listed
exhaustively, but are well known and mentioned in the literature. Figure 5.2
provides a visual representation of the framework and the interacting factors
involved in the SA of the pilot, showing that there are grey areas in the inter-
actions between the different levels.

Situation awareness and its three levels occupy a central position within the
framework, while the contributing factors are not confined to fixed locations
on the way they interact with this central construct. Overarching this struc-
ture is information management, or more specifically, the information checks
performed by the pilot, which reflects and influences the interactions between
these elements. Therefore, according to our approach, information manage-
ment has a predominant role in the SA of a pilot and therefore needs to be
especially considered.

Consequently, the distinctive aspect of our model is based on the following
proposition:
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Figure 5.2: Predominant role of information management in the SA model.

Modelling assumption 1 The three levels of Situation Awareness (perception, com-
prehension, and projection) are interconnected with the manner in which a pilot ac-
cesses and uses the information available in the cockpit of an aircraft.

5.3 Identif ication of variables

After presenting the assumptions that have supported building a model for
the SA estimation, this section goes a step further into the identification of
variables. It should be noted that during our thesis we have learnt from ex-
perience, and in the first experiments we selected, in some cases generated,
variables without having a fully consistent model. Due to the complexity of
the topic, it was not possible to create an accurate model from the beginning,
so the task of building the model and identifying the associated variables has
been iterative along the research. After this clarification, we will now present
a set of variable categories that we consider to be required for the SA mea-
surement when following our approach based on information management
monitoring.

Figure 5.3 is included to provide an overview of the variable types that
we have identified to support our model. The main grouping has been done
based on three categories that will not necessarily be reflected in the datasets
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Figure 5.3: Basic variable groups according to our proposed model.

of the experiments that will be presented in the next chapter, but they have
been included here for clarity:

• Internal variables: They refer to the observed parameters of the subject
of the experiment, that is, the pilot, so the objective is to characterise
the control actions on the aircraft, the management of information, and,
as far as possible, the reactions of the pilot to the situations that occur
during the simulation.

• External variables: These variables are not obtained by focussing on the
pilot, but by collecting data from his/her environment, mainly the rel-
evant available aircraft parameters, as well as information on the route
the aircraft is flying and the route it is expected to fly. Environmental
parameters may also be included in this group, such as weather, interac-
tions with the ATC, etc., always depending on the characteristics of the
experiment to be carried out.

• Situation monitoring: These are the most specific variables depending
on the experiment or the SA parameters to be measured. In this group,
we also include the expert knowledge provided after the simulations,
variables included to provide an interpretation of the situation. More
information will be provided in Section 6.4.

In the next Chapter 6 we will offer more details about these categories and
the actual variables generated in the context of our specific experiments.

The research has been conducted using simulations, and one advantage of
having implemented the simulation environment is that it has allowed us to
collect variables with considerable flexibility. When designing the experiments
and modelling the datasets, we have intended that a potential applicability to
real flights could be feasible, so we assume that not all types of data can be



84 Building a model for the estimation of SA

accessed. In fact, it is unrealistic to think that flight data can be extracted from
aircraft systems in real time during the flight if these systems have not been
designed for this purpose. For this reason, the figure of the EFB becomes very
relevant for this thesis, since we see in this type of device a possibility of access
the data by our tool during a real flight and, of course, during a simulation.

5.4 Considerations about the memory model

Throughout our research, the pilot’s memory model has been one of the
most challenging aspects when designing the simulator in a way that provides
meaningful variables. The way memory is modelled is crucial for relating
the levels of perception and comprehension and it is very sensitive to the
individual characteristics. This section provides some reflections showing how
we consider that memory should be modelled to enable reflecting its impact
on SA in the dataset.

5.4.1 The roles of short-term and long-term memory in SA estimation

Numerous studies have identified concepts such as working memory, at-
tention, inhibition, and expertise as significant factors in the determination
of offline and online SA measures [21]. It needs to be clarified that working
memory is closely related to short-term memory but not identical. Short-term
memory refers to the temporary storage of information for a brief period, typ-
ically around 15-30 seconds, while working memory, for the purposes of our
research, involves not just the storage but also the manipulation of informa-
tion by the pilot, as a dynamic process that involves organising and using
information in real-time cognitive tasks. In order to simplify the modelling,
which involves the design of the user interface, definition of variables, process-
ing algorithms, interpretation of results, etc., we will treat them as equivalent,
referring primarily to short-term memory.

On the other hand, long-term memory, for the purposes of modelling within
this research, is related to the pilot’s experience and skills developed by train-
ing, professional knowledge, and individual skills. It is challenging to model
these attributes, and we have not designed any specific methodology to mea-
sure these behaviours. We believe that focussing on the measurement of short-
term memory parameters is more feasible and allows for clearer results. There-
fore, the measurement of long-term memory is carried out indirectly, basically
implicit within the contribution of expert knowledge.
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5.4.2 References for the working memory modelling

For the first experiments, the memory model for the simulator design was
extracted directly from Endsley’s model [36, 39]. Endsley identified capacity
constraints related to working memory because it can hold and manipulate
only a limited amount of information at a time. Apart from that, informa-
tion in working memory degrades unless it is already encoded into long-term
memory, which usually can be associated with experience and training, apart
from individual skills.

More recent studies with objectives similar to our study, also in the field of
human factors in aviation, have addressed the memory model. In the research
conducted by Cak [21] and by Causse [23], working memory performance
was studied with the focus set on measuring tasks that target the visuospa-
tial component of airline pilots that fly a simulated mission with a high level
of demand. In both cases, they used special equipment to record Functional
Near-Infrared Spectroscopy, as a way to monitor prefrontal brain activity of
the subjects, providing insight into the neural mechanisms involved during
piloting and neuropsychological tasks. The results indicate that offline SA

measures are better correlated with working memory and expertise, while
online SA was better predicted by expertise and divided attention [21]. This
result confirms our observations in the sense that during online SA measure-
ments, subjects that perform poorly when relying on tasks related to working
memory tend to have a higher probability of lower SA.

In contrast, after analysing the results of Volz et al. [151] we confirmed our
assumptions in the sense that calculation is a difficult skill that relies on work-
ing memory and requires the pilot to synthesise various variables and then
properly use them to receive an accurate output. From this perspective, one
way to monitor working memory is through tasks that require participants to
temporarily store and manipulate information. With this approach, we avoid
using neuroimaging techniques, which could be feasible for simulated flights,
but we find difficult to implement in a real cockpit, with current technologies,
especially for pilots flying without helmet.

5.4.3 Implementation in our simulator and possible validity for real flights

For analysing the pilot’s memory management, the application interface
needs to be designed to allow monitoring when each query is made, in order
to collect data indicating how frequently the pilot has used the information,
and thus be able to interpret whether the information necessary to carry out
the mission was in the short- or long-term memory. This simplification has
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bias, but we consider that it is not excessive in terms of making an effective
measurement of SA.

We do not envisage to use eye-tracking devices to monitor the information
checks. Therefore, the HMI implementation needs to allow monitoring the
frequency of the checks, as we will explain in the next chapter. During the
different experiments, we have considered several variables to synthesise situ-
ation awareness, which limits the possibilities.

During the various experiments of our research, we have refined the selec-
tion of variables that allow us to recognise whether the flight is being carried
out correctly, as well as to collect the pilot’s situational awareness, in view of
the frequency and time accuracy of the checks. We consider that depending
on the pilot’s experience and the workload at each moment of the flight, a se-
ries of preliminary conclusions can be drawn about the nature of the SA. Table
5.1 summarises our approach to interpret the meaning of performing frequent
queries on certain aspects of the flight that we can monitor. The qualitative
ratings shown in this table are those that have been taken into account when
providing expert knowledge after the flight.

Affordable 
workload

Excessive 
workload

Affordable 
workload

Excessive 
workload

Flight plan Routine checks Challenges due to 
overload Self assurance Struggles with 

overload

Track deviation Effective 
corrections

Delayed 
adjustments Slow reactions Risk of errors

Relative position to next waypoint Smooth 
navigation

Reduced 
accuracy

Confirm position 
location Risk of confusion

Moving map: position only Quick situation 
assessment

Recovery of 
awareness

Understanding the 
situation

Potential 
disorientation

Moving map: accumulated track Strategic use Issues with data 
integration

Struggles with 
assessment Overwhelmed

Instrumental procedure chart Proficient 
interpretation

Avoid losing 
focus

Basic 
interpretation

Risk of 
misinterpretation

Airway chart Efficient use for 
planning

Struggles with 
details

Needs basic 
assessment

High likelihood of 
errors

High-experienced pilot Limited-experienced pilot

Table 5.1: Suggested interpretations of reasons associated to frequency of checks.

5.4.4 Conclusions of the modelling approach

We will now summarise the modelling approach and offer some conclusions
for the sake of clarity. Our research has been long and has consisted of sev-
eral experiments. From the beginning, we tried to follow the Endsley model,
but as the years passed, we realised that the interpretation of the model is
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widely accepted but seems not to be understood by a significant number of
researchers. We became aware of this approximately in 2017 after reading two
significant articles by Endsley [37, 42].

In this chapter, we have presented a set of assumptions based on the clar-
ifications offered by Endsley. We found them very useful to generate the set
of propositions presented in Section 5.1 and summarised in Figure 5.1. To
contribute to the generation of the actual variables, we performed a survey
with experts not familiar with our research, that is the ORM survey presented
in Section 5.2, to transition from this abstract level to a more concrete one.

Our conclusions are as follows.

• Modelling SA is very challenging, and even prestigious authors make
mistakes when interpreting the concept, to the point that Endsley pub-
lished an article to refute some fallacies.

• It is necessary to distinguish between situation assessment and situation
awareness, which is more focused on the subject.

• Estimating SA requires a robust model for the subject’s memory. We
consider that our approach is mature, but offers significant room for
improvement.





6 I M P L E M E N TAT I O N O F A S I M U L AT I O N
E N V I R O N M E N T

This chapter focusses on the implementation of the simulation environment
that collects data from the simulated flights. Throughout the research, signif-
icant effort has been dedicated to develop this environment in a way that a
pilot can fly a simulated mission with a user interface familiar to a real air-
craft while we collect SA related data intending to affect as little as possible
the pilot’s activity, with the purpose of reducing simulation bias. We explain
the principles of the design and provide figures with screenshots of the envi-
ronment. The chapter also contains a description of the application developed
to perform post-flight processing, as well as some information about the pro-
duced dataset. Appendix D includes some lists and additional information on
some datasets used.

6.1 Overview

The first version of the simulation environment was presented at Eurocon-
trol’s SWIM Masterclass 2014. Since then, it has been used for several experi-
ments and has been updated, mainly to adapt the user interface for the collec-
tion of different variables. In addition to the main application used to perform
the simulated flights, there is an application that generates the main database,
as well as different functions that have been implemented over the years in dif-
ferent programming languages. It is worth highlighting the post-processing
tools in R, as well as the programming of Bayesian networks, which was ini-
tially done in Java in the Elvira environment [25], and later using Python.

6.1.1 Main objectives of the simulation environment

The simulation environment collects sample datasets of flight-related vari-
ables, both aircraft parameters and pilot interactions with the application. In
a later stage, the collected data are synchronised, and a first stage of expert
knowledge is added to assess the accuracy of the navigation.

The main objective is to analyse the correlation between variables, empha-
sising the influence of information management on crew performance, and

89
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Figure 6.1: Overview of the simulation environment.

train Bayesian networks to learn an estimation of SA based on the accuracy of
navigation versus the actions performed by the pilot.

Another objective is to exploit the functionalities of standardised data for-
mats, mainly SWIM, both by importing data and generating them in interoper-
able formats, although this has been done to a lesser extent.

A derived goal is to test the potential utility of EFB not only to host applica-
tions that provide information but to potentially monitor pilot activities and
be able to detect performance anomalies to provide warnings. This would be
a practical application of this thesis.

Figure 6.1 was originally included in one of our published articles [97] and
shows an overview of the functional blocks of the simulation environment,
which we summarise below.

• Imported FIXM: We implemented parsing of flight plans in FIXM format
to enable the preparation of flights with conventional flight plans and
navigation routes. The data necessary to interpret these routes was previ-
ously loaded in AIXM format in the built-in Navigation Database (NavDB).

• An external flight simulator software was connected to our application
to enable the execution and control of simulated flights.

• AIXM aeronautical information was used to interpret the flight plan and
to provide information about the route, waypoint, and Special Use Airspaces
information to the pilot during the flight. We also introduced limited ca-
pabilities to import weather data in WXXM format, although it was not
used for the SA estimation.

• We implemented several database connections to access data from exter-
nal sources, both in the local machine and on cloud servers. In these
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cloud servers, we also installed instances of R to run machine learning
algorithms.

• The moving map to show the route, aircraft position and other infor-
mation requested by the pilot used geographical information, especially
coastlines, downloaded from the US National Geophysical Data Centre
(NGDC) site [107].

• The data collected during every experiment repetition was stored in a
local database, which was later used to perform post-flight transforma-
tions to the stored variables, to provide formatting to the data according
to the needs of data mining software tools. In this stage, we also gener-
ated summary variables and combinations of variables.

• Our post-flight application also included functionalities for data filtering
and visualisation, both numerical and graphical, of the stored data.

6.1.2 Architecture of the implementation

In the previous subsection we have briefly explained the functional blocks
of the environment. We will now provide a description of its architecture.

The environment consists of two main components:

• FlightApp: A web application connected to a flight simulator for experi-
ment repetition and data collection.

• PostFlight: A post-simulation web application with functionalities to rep-
resent, select, transform, and export data, with special attention to inter-
operability with data mining tools.

They are both coded in JavaScript, PHP: Hypertext Preprocessor (PHP), Hypertext
Mark-up Language (HTML) and Cascading Style Sheets (CSS), running over
Windows, Apache, MySQL, and PHP (WAMP) server and connected with sock-
ets to a Windows-based flight simulator. The parameters of the environment
and the recorded dataset are stored in the databases provided by the server.

Fig. 6.2 shows the architecture of the simulation environment and the tech-
nologies selected for the implementation. Most data exchanges are performed
with XML files or data streams that are either SWIM compliant or can be
adapted to be interoperable with SWIM services and applications with little
source code modifications. Technologies are open-source when possible, and
the environment could be adapted to run in different operating systems, in-
cluding mobile devices, if required in the future.
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Figure 6.2: Simulation environment architecture and its applied technologies.

6.1.3 The flight simulator and the connection to the environment

The flight simulator is certainly an essential component of the simulation
environment, and to carry out the experiments, we have used Microsoft Flight
Simulator X (FSX). It should be noted that this software was released by Mi-
crosoft in 2006 and is no longer supported by this company. However, as of
2024 the tool is widely used in the amateur flight simulator community and
is available in the Steam Platform [93], although the updates are very limited
and the risk of obsolescence is high. For this reason, in 2016 we started using
Lockheed Martin’s Prepar3D [86], which is a properly maintained tool, with
a more professional approach, internally based on FSX architecture. In any
case, we decided to continue using FSX due to the shorter loading times and
because it is still fit for purpose.

The connection between the flight simulator and the application that we
developed to establish a user interface with the pilot is a commercial prod-
uct called FSUIPC [33], and is compatible with older and recent versions of
Microsoft Flight Simulator, as well as all existing versions of Prepar3D.

FSUIPC provides access to the memory positions of the flight simulator
where we can read and write multiple parameters of the simulation. Therefore,
the position of the aircraft, flight controls, engine settings, environmental and
weather parameters, etc. can be controlled externally. This is a very powerful
approach to conduct simulated flights because the flight simulators mentioned
above have a considerable degree of realism. Figure 6.3 shows an example of
these parameters.
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Figure 6.3: Example of FSUIPC memory position offsets to access flight simulator pa-
rameters [53].

FSUIPC supports Lua programming language scripting to interact with the
flight simulator. We have included in Appendix E samples of the code that we
implemented at both ends, using Transmission Control Protocol (TCP) sockets
in a client-server implementation: Lua in the simulator and PHP on our appli-
cation. We set up a communication channel between the two sides, where one
end (FSUIPC as interface to FSX) sends and receives flight simulator parame-
ters and data, and the other end (the interface to our applications written in
PHP) sends control commands and receives data from the simulator.

6.1.4 Other software development resources

To develop the simulation environment, we have used several third-party
libraries or resources. We summarise the most relevant:

• SkelJS was chosen in 2014 as a web application framework for devel-
oping the main user interfaces of the environment. We also used an
updated version of the framework in 2017 for the trajectory analysis en-
vironment that will be explained in Chapter 7, Section 7.4. SkelJS was
deprecated in 2018, so at the time of writing this dissertation it was no
longer available, but still some relevant information about its technical
characteristics is available on this website [129].

• Fontawesome was selected to provide icons for the user interface to make
it more user-friendly and because this resource includes aircraft designs
[48].

• OpenLayers was our choice as an open source JavaScript library to create
dynamic and interactive maps [112]. This was a relevant choice as a
main component of the simulation environment because a lot of the data
handled in the environment need to be represented on a map.
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• We used a third party Javascript library to calculate the distance and
bearing between latitude and longitude points [105].

• Apart from the AIXM data that we used to integrate navigation way-
points, routes, etc. in the application, we used Navigraph as a navigation
data service to obtain additional data with worldwide coverage [108].

6.2 An application for performing experiments on real
time

To perform flight simulations, we developed an application and named it
FlightApp. The intention when the HMI of FlightApp was developed to emulate
an EFB and provide the user with basic autopilot controls of the flight simulator
and a customisable interface to access a selection of aeronautical information
necessary for the flight.

6.2.1 Overview of the user interface

In order to reduce simulation bias, the number of elements in the user in-
terface of FlightApp related to SA measurement are minimised. There are no
questionnaires or simulation pauses to perform the assessments. The pilot is
expected to load a flight, the aircraft will be placed on the runway and with
easy commands the take-off and navigation can be performed. We would like
to mention that a significant effort was made to implement a parser of FIXM

FPL messages, so that any route could potentially be loaded into the simulator
using standardised flight plans. This is shown in Figure 6.4: On the left of
the interface there is a drag & drop area where the user can release the XML

flight plan and press the "Parse FIXM FPL" button. The summary of the pars-
ing outcome is shown to the user and an initial dataset is created and stored
in the local database, containing the route information. The route points are
shown on the map, as can be observed in the right area of the figure. In the
background, once the flight plan is parsed and the route is defined, we open a
socket connection between FlightApp and the FSX instance which is running on
the same computer, so both applications start exchanging data, as described
in Section 6.1.

Once the flight plan has been successfully added, the pilot can start flying
the aircraft. Using the characteristics of the FSUIPC application, we imple-
mented a flight initializer that places the aircraft in the right runway and
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Figure 6.4: FlightApp 1.0 flight plan parser and database management detail.

configured for take-off, so that the pilot does not have to perform pre-flight
checks and can concentrate on the flight tasks that we aim to monitor during
the experiment. Figure 6.5 shows the flight control section of FlightApp on top
of a reproduction of a typical flight director of a real Airbus aircraft used by
pilots on semi-automatic flights, which is the flight condition that we aim to
replicate in the simulation. It can be noted in the figure that similarly to real
aircraft, the pilot can control the speed, heading, and altitude of the aircraft by
inputting the desired values, and the aircraft will modify the power settings
and flight surfaces positions to follow the pilot’s commands. Therefore, when
we mention pilot control actions throughout this dissertation, we are basically
referring to the interactions with this part of the user interface.

To finish this subsection, we provide Figure 6.6 to show how the elements
are distributed inside the user interface:

• The left section, with the header "SA Experiment settings", is used before
starting the flight to ensure the load of the appropriate dataset and con-
firm the positioning of the aircraft. The FIXM flight plan does not need
to be loaded each time because the dataset generated after loading the
message can be reused for different flights.

• The flight controls mentioned previously are in the lower part of the
central area of the figure.

• On top of the flight controls there is a map which can be used to visualise
the flight route and / or the flown track, as well as the aircraft. This map
is empty by default.
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Figure 6.5: Flight Control Unit comparison: FlightApp 2.0 implementation (top) vs.
Airbus type [45] (bottom).

The right side of the interface is dedicated to the interaction with informa-
tion sources:

• Flight Log: This is an essential information source for most pilots, who
check it frequently to ensure that they are following the planned route.

• Buttons to visualise information on the map: These buttons show infor-
mation in the map that is automatically hidden after a few seconds. This
is a feature of our simulator that allows us to measure when the pilot
checks the information on the map.

• Information about the next leg: This box was included in the PBN exper-
iment to help the pilot calculate the turning point.

• Buttons to check situation with respect to any point of the procedure: We
added a button for each waypoint of the experiment route to measure
if the pilot needs to check the relative position of the aircraft to points,
other than the next waypoint.

• Radio Magnetic Indicator (RMI): In the second version of the application
we decided to incorporate this aircraft navigation instrument that com-
bines a magnetic compass with directional information from navigation
aids, to encourage the pilot to use different information sources.



6.2 An application for performing experiments on real time 97

Figure 6.6: General view of the user interface of FlightApp 2.0.

Figure 6.7: FlightApp 1.0 incorporates an EFB dedicated user interface for document
queries.

6.2.2 Implementation related to information management

We have explained in detail that our approach to measure SA is based on
monitoring how the pilot performs information checks. For that reason, the
user interface of the application was designed not only to offer several ways
for the pilot to perform the checks, but also to register the most relevant inter-
actions of the user to be analysed after the simulation.

In the first version of FlightApp we incorporated some functionalities of an
EFB. Figure 6.7 shows a composition of the user interface that was designed:
In the bottom of the screen, the pilot had a set of buttons with links to differ-
ent documents: the Navigation log, enroute charts, procedure charts, etc. It
should be noted that the configuration of these buttons was performed using
an XML file and that the application allows a high degree of flexibility to con-
figure the appearance and contents of this EFB. The interactions with the EFB

were recorded in the Structured Query Language (SQL) database. Apart from
the EFB, in the figure we can observe that the map allowed the representation
of route points and special use airspaces. The navigation log, consisting of
a table with the route legs and their main parameters, is also shown in the
figure.

Figure 6.8 has been included to depict the approach followed in the early
experiments concerning the modularity of information management. At that
stage of the research, we decided that the pilot would have a set of modules
with different information items that could be dragged from the right area and
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Figure 6.8: FlightApp 1.0 user interface focused more on information modularity.

dropped in the main workspace, so that the pilot would decide which infor-
mation asset, which we called IMBox, would be used to obtain data necessary
to perform the flight. Among these IMBoxes, we implemented tools to draw
the FPL in the map, a selector to search for airspaces, navigation aids, etc.

To contribute to this prioritisation of information management monitoring,
we decided to place the flight director collapsed on the right area of the in-
terface. The figure shows how the screen looked when the flight director was
expanded.

Another aspect that we would like to mention is the different approaches
followed depending on the experiment to present the navigation log. This is
shown in Figure 6.9, where it can be observed that the appearance of the nav-
igation log changed from FlightApp 1.0 to FlightApp 2.0. The change consisted
in offering a less saturated appearance to avoid interpretation errors and to
offer an automatic mechanism to highlight the leg that is being flown at each
instant. This decision was made because the purpose of the more recent in-
terface is to allow the pilot to focus on the calculations related to the turns to
perform the PBN experiment that will be explained in the next chapter, Section
7.6.
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Figure 6.9: Evolution of the navigation logs from FlightApp 1.0 (top) FlightApp 2.0
(bottom).

6.3 Elements related to SA estimation bias reduction

When we designed the application user interface, we performed a compar-
ison of SART and SAGAT, two methodologies that have been extensively used
in this context since the early days when they were introduced by Endsley
[38]. In both approaches, dedicated actions of the pilot are required in order
to rate SA, with an inherent bias on the situation in the cockpit and therefore
on the measurement. These two methodologies are designed to be used on
the ground and should be excluded from real flight applications in order to
avoid crew distractions with potential safety risks. That’s why in our imple-
mentation we opted for an approach according to which the subject does not
have to perceive that his/her SA is being measured.

6.3.1 Role of the EFB in the bias reduction

In the previous section, we briefly explained the implementation of the EFB

functionality in FlightApp. Our final goal would be to collect relevant infor-
mation for SA estimation without disturbing the cockpit activities, even in
a real flight, trying to capture the pilot’s perceptions without relying on be-
haviour inference from questionnaires or reports, as SART and SAGAT do. This
is proposed to be achieved using the EFB as a pilot activity monitor, avoiding
any simulation stops and opening the door for applying this method in real
flights. An EFB typically hosts the information that the pilot needs during the
flight: aircraft flight manuals, normal and emergency procedures, maps and
navigation charts, mission checklists or flight plans. Many EFB obtain aircraft
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position, altitude, and speed information during flight, and some of them even
receive aircraft status data.

With appropriate monitoring software, an EFB may be able to provide a lot
of valuable information to produce a SA estimation without the questionnaire
bias. The connection with the simulator provides additional parameters apart
from the EFB monitoring, and as a result the SA estimation on this investigation
is performed using aircraft and environment data from the flight simulator.

In summary, the approach of this research is that a partial SA rating can
be obtained from the analysis of the EFB usage because there should be a
reflection of the SA in the way the pilot makes use of managed information.
Therefore, by analysing how an EFB is used to provide information, it should
be possible to obtain indicators of the SA of its user at the three different SA

levels. It is not necessary to ask the pilot to take any action related to SA rating
in order to perform the evaluation if the relevant parameters are monitored.

6.3.2 Enhanced monitoring of SA levels 1 and 2

Our approach to increase the collection of data related to Endsley levels 1

(perception) and 2 (comprehension) is based on adapting the user interface
to detect when the pilot needs to check key information items during the
flight. We have opted for a simple approach based on forcing the pilot to
perform a simple action each time he/she wants to monitor certain flight or
mission parameters. In order to avoid complicated biometric detection system
setups with doubtful applicability to real flights, we have decided to make
some information disappear from the interface a few seconds after the pilot
requested it. In this way, we can have more reliable information about the
information that the pilot perceives during the flight (level 1). Furthermore, by
analysing the frequency with which the pilot requests the same information,
as well as assessing the coherence between the situation at each moment, the
information requested, and the control actions executed, we have elements
to conjecture whether the pilot has understood the information (level 2). We
are confident that this approach does not contradict any of the SA modelling
assumptions of Chapter 5.

Figure 6.10 shows how we have implemented the user interface in FlightApp
2.0 by the means if buttons to hide information in five data items:

• Show Nav Log 10 seconds: The navigation log is necessary for the pilot
to have an overview of the route and the most important information
that needs to be compared against the cockpit indicators.
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• Show FPL & A/C 10 seconds: This button shows the route and the
position of the aircraft on the map.

• Show track 10 seconds: This button shows on the map the path that the
aircraft has travelled from the start of the flight until the moment the
query is made.

• Show TP Info 5 seconds: In this particular case, TP is the abbreviation
for the turning point, and this control lets the pilot read the distance at
which the aircraft is located from the next turning point. We consider
that monitoring the interaction of the pilot with this information is par-
ticularly relevant to assess the SA.

• SID WPT Dist & Bearing (show 3 seconds): a set of buttons is located
under this banner, one for each waypoint of the flight procedure used for
this experiment. When pressed, the text box below the buttons shows
the bearing and distance to the selected waypoint, and the RMI adds a
graphical indication pointing to the waypoint. This can be seen in Figure
6.10.

For level 1 SA (perception of data), the focus is on recording which informa-
tion is requested by the pilot. Level 2 SA (comprehension of meaning) requires
more attention to the actions performed by the pilot after receiving the infor-
mation, either aircraft control actions or new information queries. Level 3 SA

(projection of the near future) needs more complex analysis, as it depends on
the subject’s experience and attitude (subjective projection), as well as it de-
mands a more comprehensive comparison between information queries, con-
trol actions, the aircraft flight path and the planned navigation route, in order
to discover a reflection of the subjective projection on the dataset. In this case,
it is highly valuable to detect pilot errors or inaccuracies, either navigation
errors or unnecessary information queries and correction actions, mainly be-
cause pilot errors are very relevant clues of low level 3 SA.
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Figure 6.10: FlightApp 2.0 user interface with hidden information sources (top) vs. all
shown (bottom).



6.4 An application for summarising data and adding expert knowledge 103

6.4 An application for summarising data and adding
expert knowledge

6.4.1 Description of PostFlight application

Once the flight simulation is performed, a dataset with the flight parame-
ters and the pilot interactions with FlightApp is stored. We decided to develop
an independent application to extract the data, as well as a set of summary
variables resulting from post-flight calculations. Since these calculations can
be improved or modified in the future, having an independent application
enables us to generate several datasets for the same flight, allowing the pos-
sibility of having multiple versions of the post-flight analysis of a flight. We
have named this application PostFlight and it was developed using the same
tools as PostFlight, explained in Section 6.2.

The user interface of PostFlight is shown in Figure 6.11: The flight dataset
is identified by the start time and a suffix indicating the experiment. Once
the flight is selected, if the summary table already exists, there is a button to
select either a reading operation of the existing table or writing a new table.
The user can then press a button to start the processing. After processing is
performed, the flight route and the flight path are shown on the map. The
user can click on the map points to preview the information that has been
stored in the database. It should be noted that we chose to store the data
in XML format. Different colours in the points indicate if the information is
related to aircraft parameters or pilot actions, either control over the aircraft
or information checks.

At earlier stages of the research, we also developed a more advanced visu-
alisation tool inside of this application to generate three-dimensional plots of
multiple variables once synchronised, but we decided to remove this feature
because the plotting capabilities of R and Python are more powerful.

Together with PostFlight we also implemented a socket-based functionality
to communicate with Matlab and a Java bridge to run applets. The latter was
used particularly to run Java-programmed Weka classifiers [16, 17], although
the use of Weka was discontinued in favour of R and Python. In Appendix
D we have included some screenshots of the databases and a table in Section
D.2, where a list with the most relevant variables generated by the application
is provided.
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Figure 6.11: PostFlight map representation and user interface.

6.4.2 Variable synchronization and summary variables in PostFlight

Synchronising variables is required to use DBN because the network requires
that clear relationships between variables at different time steps are accurately
modelled, providing temporal consistency and adequately capture temporal
dependencies of the variables. In our case, this topic is particularly important
because the initial dataset stores asynchronous pilot actions, and we need to
avoid temporal ambiguities. The tool is also in charge of generating some vari-
ables that add information, based on expert knowledge, about the temporal
validity of the pilot’s actions, especially in order to determine which actions
are priority in case of overlap.

Among all these modifications, special attention should be paid to summary
variables. They are needed because DBN typically use only one-time step to
learn the network from former times, and that has an impact on the prop-
agation of time-dependant information through the network: flight data is
sampled every 5 seconds in this experiment, which is in general a very short
time lapse in front of the duration of flight manoeuvrers and air navigation
segments. In order to maintain the influence of relevant long-term informa-
tion, it is necessary to create new variables that maintain the history of certain
parameters along appropriate time periods; these are called summary vari-
ables.

Some of the summary variables in the dataset are created by simply accu-
mulating variable values. Others are the result of a combination of variables,
acting as counters of coincidences in the values of variables, and requiring
more complex expert knowledge.
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6.4.3 Creation of post-flight variables: the dataset

The simulation environment settings were adapted to test different dis-
cretization criteria for variables. In the case of the first experiment, all the
repetitions consisted on a flight from Granada (LEGR) to Palma de Mallorca
(LEPA) airport, in a twin-engine jet. The dataset was composed of samples
taken every 5 seconds that include flight parameters (aircraft position, atti-
tude, environmental data, etc.), pilot control actions (values of heading, speed
and altitude flight director settings) and selected data of information manage-
ment actions (time reference and identification of documents opened in the
EFB, identification, range and bearing of AIXM checked waypoints with their
time reference) recorded by FlightApp. PostFlight application synchronised all
these data with their appropriate time references and aircraft position along
the planned route, according to the flight plan. It also added performance
variables that compute different aspects of the queried AIXM entities versus
the aircraft and the FIXM flight plan at each time step. The result was a dataset
that contained 80 variables, continuous and discrete.

Although it is not required by DBN to establish categories among the vari-
ables in order to learn their relationships, the dataset variables have been
tagged. The following groups have been identified for the sake of improving
the understanding of the variables and to facilitate the detection of unexpected
relationships:

• Aircraft situation (AS): These are parameters that contribute to define the
position of the aircraft in the different axes, also taking into account the
flight plan route that the aircraft is expected to fly. Parameters like air-
craft altitude, geographic coordinates, distance to flight plan waypoints,
etc. are included in this group.

• Aircraft parameters (AP): They may be directly or indirectly set by the
pilot and their value can typically be checked in an aircraft instrument.
These parameters may vary or oscillate without human intervention due
to aerodynamics and thrust force momentum. At this stage of the re-
search, only engine power settings and aircraft pitch and bank angles
are included in the dataset.

• Environment variables (EV): The current list includes wind speed and
direction, external ambient temperature, and atmospheric pressure.

• Pilot actions (PA): These include actions to control the aircraft. For this
experiment, only autopilot actions have been recorded, including those



106 Implementation of a simulation environment

to set the altitude, speed, and heading of the aircraft. This approach pro-
vides relevant data on the pilot’s intention to control the aircraft, without
the simulation bias associated with manual control.

• Information checks (IC): These are pilot actions to check the documents
included in the EFB. This category also contains some variables with a
priori incorporated expert knowledge to evaluate whether the informa-
tion checked by the pilot is relevant for the current or the next leg (or
segment) of the flight plan route. More details are provided in section
6.4.

• Situation checks (SC): These are based on pilot queries to obtain informa-
tion about the position of the aircraft, based on a simulation of naviga-
tion instruments. Additional SC variables are calculated after the flight
with enhanced context information about the anticipation taken by the
pilot to perform these queries.

• Flight plan (FP): These variables contain flight plan information and are
used to compare the flight path with the expected route.

• Situation accuracy or quality (SQ): Including expert knowledge applied
to AS and FP variables, to assess if the aircraft situation is suitable with
respect to the flight plan or other factors related to the desired aircraft
trajectory.



7 S I T UAT I O N A N D T R A J E C TO RY
A N A LYS I S

To carry out this research, we have designed several experiments within
the framework of SA estimation, in which trajectory analysis has always been
present, based on the model explained in Chapter 5. Therefore, according to
our approach, the pilot’s SA and the trajectory that the aircraft flies are closely
related. That is why we conducted several experiments combining both topics,
and the reasons are summarised in the first section of this chapter.

The following sections briefly explain the main experiments, that is, those
that have been published in conferences or journals. The chronological order
is maintained and the approaches used and the results obtained in each case
are presented, so the reader is asked to take this chronological context into
account when finding aspects that were subsequently improved. The last ex-
periment, with the final results of the thesis, has not been included in this
chapter because Chapter 8 has been dedicated exclusively to it.

The first experiment, presented in Section D.2, deals with the discretization
of the data in our first experiment. At that time, we prioritised good com-
putational efficiency, which was clearly better with discrete variables. The
variables were discretised, and linear regression was used in the learning of
Bayesian networks. Section 7.3 focusses on regression, introducing criteria for
handling continuous variables. After regression, another experiment with the
use of k-means clustering algorithms was proposed to handle and classify mul-
tiple trajectories. We decided not to limit ourselves to using external datasets,
but rather built an environment that was capable of using a SWIM service to
collect these trajectories. This environment is shown in Section 7.4. The fol-
lowing Section 7.5 presents the results of the experiment to group flights using
k-means clustering. The chapter ends with the experiment published in 2023,
the predecessor of the last experiment in the thesis. It was already mentioned
in Section 2.3 that PBN is a concept that is becoming widely established in
aeronautical navigation, and in Section 7.6 we explain how we carried out an
experiment using this type of navigation.

107
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7.1 The importance of trajectory analysis

Situation awareness is mainly a concept of human factors and can be stud-
ied in terms of how the pilot interacts with the stimuli received from the
cockpit. In order to go one step further and understand better the root causes
of the indications and the information that the pilot has to manage during the
flight, it is relevant to study the aircraft trajectory since it can be considered
a product of the pilot’s good or bad performance. The goal is to extract the
relevant information contained in the data collected from the simulations, in
accordance with the machine learning tools that we propose to use. It should
be noted that all the trajectories analysed in this research refer to IFR flights,
and their characteristics cannot be immediately extrapolated to other types of
operations.

7.1.1 Characteristics of an acceptable trajectory

Considering the implementation of classifiers and aiming to provide valu-
able expert knowledge, it is relevant to establish criteria to determine to what
extent a trajectory is acceptable or not. This task is by no means evident. The
first approximation is to consider that a good trajectory is one that does not
deviate from the planned route. This is for us the main indicator and, there-
fore, some of the variables where this research focusses are indicators that the
path flown corresponds to the planned trajectory. However, there are multiple
factors that can force or recommend that a pilot deviates from the initially
planned route, and this cannot be associated with a low SA. Some examples
are listed below:

• The ATC directs the pilot to a waypoint outside the planned trajectory.

• Due to operational reasons, the pilot decides to prioritise other tasks
and accepts a reduction in the trajectory precision, consciously assuming
responsibility for this deviation.

• The trajectory needs to be modified due to weather conditions.

• The trajectory needs to be modified due to interaction with other air-
crafts or due to last-minute information acquired just before the flight,
typically in a NOTAM, that was not properly taken into account during
the pre-flight planning stage.
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7.1.2 Characteristics of an inadequate trajectory

In the former paragraph, we have explained that there are multiple reasons
that can justify that a trajectory deviation does not imply that there has been
a SA reduction. Therefore, additional effort is required to find collectable data
that could confirm that a deviation is associated with low SA. Therefore, the
focus turns to human factors. It is important to note that during a routine
phase of the flight the pilot does not always have to pay full attention to
the trajectory, since the situation is under control and he/she is the one who
decides to reserve concentration resources for more critical phases of the flight.

From this perspective, it is important to define other parameters that reflect
the consequences of a low SA in the trajectory, considering not only the air-
craft positions but also the pilot actions, as explained in Chapter 5 when we
presented the model used to measure SA. Some examples of an inadequate
trajectory are listed below:

• Erratic or excessive changes in the attitude of the aircraft.

• Pilot corrections that do not correspond to the deviation of the aircraft.

• Pilot actions that do not correspond to the information received after an
information check.

• Information checks that are irrelevant or could provide misleading infor-
mation, according to the situation in which the cue was executed.

7.2 Discretization of variables experiment

The first experiment was the most challenging because it included the cre-
ation of the simulation environment described in Chapter 6. The results
were published at the Service Assurance System Wide Information Manage-
ment (SASWIM) workshop during the 2015 International Symposium on Au-
tonomous Decentralized Systems (ISADS)[100]. This was relevant because this
Institute of Electrical and Electronics Engineers, Inc. (IEEE) symposium is the
most relevant academic forum that combines SWIM and aviation human fac-
tors, in particular SA, to our knowledge.

7.2.1 The Available Data and Basic Model

As a result of a flight, we have a set of variables X that are measured in
different instants or time steps t ∈ T . The variables measured in time t are
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denoted by Xt. The variable Xi ∈ X measured at instant t is denoted by Xit.
It is important to note that some of the variables are continuous and some
are discrete. The model we are going to consider is a dynamic Bayesian net-
work, in which the parents of each variable Xit are selected from the variables
Xt−1 measured in the previous instant. The parents of a variable Xi will be
denoted as Πi. The first approach for a correct modelling of a flight is based
on discretising the continuous variables and using a fully discrete DBN.

7.2.2 Discretization requirements of DBN

The simulation environment developed for this experiment produces dis-
crete and continuous variables to characterise the position of the aircraft and
the actions of the pilot. From the beginning of the research we were aware
that Bayesian networks, and therefore DBN, have issues for handling contin-
uous variables. Although DBN can work with continuous variables to some
extent, there are limitations related to the distributions that can be attached
to continuous variables and the difficulties associated with computing with a
conditional probability of a discrete variable conditioned to continuous ones.
Some possible solutions are based on the use of the mixture of truncated expo-
nentials model [126] or to discretise continuous variables. In the experiment,
we performed the discretization of the data and assessed its characteristics and
performance. The first step was to setup and test the discretization thresholds
and analyse their performance in terms of BN learning from data, as explained
below.

If Xi is a continuous variable taking values on Ui we will assume that Ui

is an interval [ai,bi] (i.e. there is always a minimum possible value ai and
a maximum value bi). A discretization of this variable is a finite partition
of [ai,bi] in a finite set of subintervals rij = [ai

j,b
i
j), j = 1, . . . ,ki. Then the

possible values of the discretised variable Xd
i will be the finite set of intervals

Ri = {ri1, . . . , riki
}. A probability distribution P for this variable will be a map-

ping P : Ri → [0, 1] such that
∑k

j=1 P(r
i
k) = 1. In our approach, this probability

distribution will be considered as an approximate density of the original con-
tinuous variable Xi. This density will be constant in each interval rij and the
total density of the interval will be P(rij), that is, the associated density about
Xi will be:

f(x) =
P(rij)

bi
j − ai

j

(7.1)

where rij is the interval containing x (x ∈ [ai
j,b

i
j)).
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For this experiment, we defined five discretization templates, with a differ-
ent number of thresholds adapted to the nature of the continuous variables
handled, according to the following criteria:

• THRESHOLDS_min: Minimum set of thresholds for the trivial solution
of the DBN learning process, established with expert knowledge.

• THRESHOLDS_10: Discretization with 10 thresholds, concentrated for
each variable in the most probable intervals or in the simplest error cases
during the flight.

• THRESHOLDS_20, THRESHOLDS_50 and THRESHOLDS_100: 20, 50

and 100 thresholds, to increasingly detect human errors, cover the most
probable intervals and the full scope of the variables.

The values of the interval limits were provided by an expert trying to se-
lect meaningful thresholds for relationships with other variables: for example,
THRESHOLDS_10 includes only thresholds that generally imply a hazardous
situation according to standard flight procedures as described in [73], such
as flying outside the airway. The other threshold templates were designed to
increasingly identify flight conditions that are generally associated with differ-
ent levels of pilot skill. On the other hand, we also introduced an automatic
procedure to discover a discretization from data, without the need for expert
knowledge.

7.2.3 Learning a Model

Given a discretization of each continuous variable, the dependence model is
learnt using the techniques for Bayesian networks learning [109]. We assume
that we have a set of data with the measurement of variables in several flights
D = {Di}

m
i=1. Each Di contains the measurement of all the variables Xt in

several times during a flight (at constant time steps). Learning is based on
metrics that measure for each variable Xi the suitability of Πi as its set of par-
ents given the observed data D. For all of them, it is necessary to compute for
a variable Xi and a set of parents Πi, the values Nijk which are the frequen-
cies in the data D for which Xi takes the value xk in time t given that parents
Πi take the combination of values number j in time t− 1. It is assumed that
there are li different values for the variable Xi (this number is finite since all
variables have been discretised) and hi possible combinations of the values of
the parents. Also, Nij =

∑li
k=1Nijk and N =

∑
jNij.

Under these conditions, the selected scores for each variable and parents are
the following:
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• BIC information criterion:

BIC(Xi,Πi,D) =

hi∑
j=1

li∑
k=1

Nijk log
Nijk

Nij
− (1/2)hi(li − 1) log(N)

• Akaike information criterion:

Akaike(Xi,Πi,D) =

hi∑
j=1

li∑
k=1

Nijk log
Nijk

Nij
− hi(li − 1)

• K2 metric (usually the logarithm of this value is computed):

K2(Xi,Πi,D) =

hi∏
j=1

li∏
k=1

Γ(li)

Γ(li +Nij)
Γ(1+Nijk)

• BDEu metric (usually the logarithm of this value is computed):

BDEu(Xi,Πi,D) =

hi∏
j=1

li∏
k=1

Γ(s)

Γ(s+Nij)

Γ(s/li +Nijk)

Γ(s/li)

where s is a parameter (the global sample size) usually in the interval
s ∈ [1, 10].

BDEu was chosen because it was a common metric used to learn graphical
models; however, we found that it has some learning issues in our case. The
particularity of our datasets is that when learning the parents of a variable Xi

it often occurs that for each time step t the variable Xit is very similar to the
same variable Xi(t−1) in the previous time step. In some cases, they have the
same value almost within the whole sequence, with very few exceptions in
which there is a change. This produces that BDEu does not work well, and
increasing the number of parents always increases the score. To avoid this, we
modified the BDEu score by changing s/li by s/l ′i, where l ′i is the number of
k = 1, . . . , li where Nijk > 0.

Once a metric is selected, the set of parents of a variable is learnt trying to
find for each variable Xi the set of parents Πi that optimises the score. For
that we used a greedy search method [109] that starts with an empty set of
parents, and in each step it considers all the sets of parents obtained from the
current one, by adding a non-parent variable or removing a parent variable,
changing the set of parents to the one with the highest score, while there is an
improvement of the score of the current set of parents. After the set of parents
is learned for each variable, the parameters for each conditional probability
are estimated with the Laplace correction [109].
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7.2.4 Learning a Discretization

In the former subsection, we have considered scores when the discretiza-
tion is fixed. When we want to learn the intervals to discretise continuous
variables, these scores have to be updated. Given the hypothesis assumed
about the densities associated with a discretization (see Equation (7.1)), this
can be achieved by adding to the scores (in case of K2 and BDEu to the loga-
rithm of the expressions we have given) the following value for each variable
Xi that is discretised:

−

ki∑
j=1

Nij log(bi
j − ai

j) (7.2)

This value corresponds to the logarithm of the probability of the actual
values of the variables (without discretization) conditioned on the fact that
the variable value is in the interval [ai

j,b
i
j]: Nij cases and each, and assuming

a uniform probability in the interval, the probability is 1
bi
j−ai

j

.

With this complement, we have a score for a graph and a discretization. As
discretizations are finer, the original scores have a tendency to be lower, while
this complement increases, so the addition of the two tries to find optimal
discretizations balancing the two parts.

As the intervals limits for variable Xi can be any values in the interval
[ai,bi], there is a risk of overfitting the model by producing very small inter-
vals just around the actual values of the variables. To avoid this problem, we
computed all the values of a given variable Xi and considered that the possible
interval limits are the middle points between two actual values of the variable.

Theoretically, we should learn a couple given by a graph and a discretiza-
tion maximising the score. As this was very time consuming, we applied an
approximate and faster procedure consisting on optimising the discretization
assuming an empty graph (where variables do not have parents) and then
to learn a graph structure considering that this discretization had been fixed.
Thus, each variable is discretised with independence from the discretizations
of the other variables.

The search for a discretization of the variable Xi starts with a discretization
in which the interval [ai,bi] is divided into two parts with equal frequency.
Then the procedure is repeated while there are improvements in the score:
Each actual interval is tested to be split into two parts with equal frequency,
and when there are no improvements dividing intervals, then each interval is
tested to be merged with the consecutive interval on its right.
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7.2.5 Testing a Model

Once a temporal model is learnt, we can test how good the model is at
predicting the measures of variables X in a new flight. We assume that we
have a measurement of the variables Xt for a finite set of time steps t ∈ T .
The idea is to compute

∑
t∈T log(P(Xt|M)), where M is the learnt model, that

is the Logarithm of probability (LP) of the measurements obtained in the new
flight, given the model M that has been learnt. This computation is done
starting with a value of LP = 0 and then for each t, considering each variable
Xit and the observed values of its parents Πt−1 in the previous time interval
Πt−1 = πt−1. With these values and the conditional probability of the variable
given its parents, we can select a discrete probability Pi for the value of the
variable. We differentiate two situations:

• If Xi is discrete and Xit = xi, then we add log(Pi(xi)) to LP.

• If Xi is continuous and Xit = xi where xi belongs to interval rik, then
log(Pi(rik)) − log(bi

k − ai
k) is added to LP.

The higher the results LP, it should be assumed that the model M has better
predicted the values of variables Xt. Alternatively, if we are interested only in
a subset Y ⊂ X of variables (for example, the variables describing pilot actions)
we could compute this value, but repeating the computation of LP only for the
variables in that subset.

7.2.6 Results of the discretization experiment

During this experiment, we recorded 10 simulated flights performed by 3 ex-
perienced pilots with different backgrounds (fighter, transport, and helicopter)
and the DBN training was performed with all the different combinations: for
every discretization template and for the automatic learning of thresholds, we
trained 1 network with 9 flights, and then checked how that network can pre-
dict the measures of the remaining flight (the one that was not used to train
the network). This was repeated 10 times. Each time, a different flight was
selected for testing and the remaining nine flights for learning, as in 10-fold
cross-validation. The experiment aims to compare how the discretization tem-
plates affect the score of the DBN training and to determine the discretization
strategies that should be followed in further stages of the research.

Table 7.1 shows the performance of the different scores with the five dis-
cretization templates using a 10-fold cross-validation. Each value presented is
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Score THRES_min THRES_10 THRES_20 THRES_50 THRES_100 LEARNED
BIC −9.919 · 105 −8.663 · 105 −8.200 · 105 −7.424 · 105 −6.613 · 105 −5.312 · 105
Akaike −9.920 · 105 −8.662 · 105 −8.200 · 105 −7.424 · 105 −6.612 · 105 −4.876 · 105
K2 −8.633 · 105 −5.993 · 105 −5.055 · 105 −3.768 · 105 −2.965 · 105 −5.015 · 105
BDEu −8.820 · 105 −6.538 · 105 −6.109 · 105 −5.712 · 105 −5.090 · 105 −5.308 · 105

Table 7.1: LP values in a 10-fold cross validation

the sum of the LP values for 10 repetitions of the experiment. Higher LP val-
ues indicate better performance. The discretization templates go from a very
crude one using a minimum set of intervals to a very fine one including 100

intervals.
According to these criteria, K2 was the best score to determine the graphi-

cal structure of our model. BIC and Akaike scores produce very similar results
with expert discretization, but Akaike showed better results when discretiza-
tion is learnt. K2 score is better than the BDEu score and this improvement
increases with the number of intervals. This somewhat contradicts the gen-
eral belief that BDEu is a better justified score than K2 [109] from a theoretical
point of view (for this reason, nowadays BDEu is much more used in practical
applications than K2).

In addition, as the number of intervals increases, the predictions of the
values of the variables improve. Theoretically, if the number of intervals is
too high, then the performance should deteriorate. In this case, this optimal
number of intervals was not surpassed in our experiments. We believe that the
results of the experiments can be explained taking into account the following
facts:

• There are many continuous variables, and we always subtract the log-
arithm of the interval width, which favours small intervals. We think
that if the performance of the model is measured taking into account the
pilot actions, then the result could have been different, as many of the
actions are discrete variables.

• In our case, each variable Xit is very similar to Xi(t−1). So it can be pre-
dicted with high accuracy when Xi(t−1) is a parent of Xit. This favours
the use of small intervals. This was also due to the fact that the variables
were measured every 5 seconds. Larger time steps would reduce this
tendency. At that time of the research, we could foresee that a hetero-
geneous discretization, as in [80], would improve the results, without
using too many intervals. The idea is that each variable Xit could be dis-
cretised with small intervals in the proximity of Xi(t−1) and with large
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intervals when the value of Xit is quite different from the value of the
same variable in previous intervals.

A possible approach that was taken into consideration to improve the results
consists in adding an artificial variable Yit that is an estimation of Xit as a
linear combination of variables in previous time Xt−1 (in the simplest case,
we could have the estimation Yit = Xi(t−1)). Then we consider the error
variable Eit = Xit − Yit, which is the variable to be discretised. The parents
of this variable would be also learnt from the set of variables in the previous
timestamp.

The parents of Xit will be Eit and Yit and the value is obtained determinis-
tically as: Xit = Eit + Yit. We foresee that it will not be necessary to consider
a large number of intervals to discretise Eit and that only around 0 would be
necessary to define small intervals.

The automatic discretization was better or similar to the discretization pro-
vided by the expert in all scores except K2 for a high number of intervals (50

or 100). The number of intervals of the learnt discretization was always less
than 50. In any case, the best results are for K2 with 100 intervals with ex-
pert knowledge. This does not mean that automatic discretization is useless,
because it should also be taken into account that manually providing a high
number of intervals for all the continuous variables is a tedious task and that
expert knowledge is not always available.

Also, the score we used to validate a model favoured small intervals, which
explains why a large number of intervals can provide better results than an
automatic procedure. In any case, this only happened for the K2 score, and
the automatic procedure was better or very similar to the fixed discretizations
for all the other scores. Furthermore, automatic discretization showed room
for improvement in the following ways:

• Try to find a couple given by a graph and a discretization optimising the
score, without the simplification we applied consisting of learning the
discretization for the empty graph and then learning the graph consid-
ering the obtained discretization.

• As the best results are obtained with a large number of intervals, fix a
high number of intervals beforehand and then learn the best discretiza-
tion given this number of intervals.

• Combine different scores for the discretization and learning of the graph.
For example, using the Akaike score to learn the discretization which
provides finer discretization results, and then using K2 to learn the net-
work structure.
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AS Aircraft Situation
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PA Pilot Action

IC Information Check
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FP Flight Plan

SQ Situation Accuracy or Quality
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119 variables, sampled every 7 seconds,

10 flights with durations from 54 to 64 minutes.

Figure 7.1: The dataset variables categories and their main expected dependencies,
used for the regression experiment.

7.3 Regression experiment

This is the second experiment we conducted using the same simulation
environment explained in Chapter 6 and the results were published at the
2016 International Conference on Probabilistic Graphical Models (PGM) [98].
The simulated flights were the same as those used for the previous experiment,
but in this case we improved the post-flight expert knowledge based on the
lessons learnt from the previous work explained in Section D.2.

7.3.1 Overview of the expert knowledge

The dataset used for the experiment included several types of variables that
were generated with several tools. The variables categories mentioned below
were introduced in Section 6.4 and their acronym meanings and dependen-
cies are shown in Figure 7.1. Among these variables, there are two different
types of expert knowledge: SQ variables contain a priori expert knowledge
not particularised to any particular flight, based on general assumptions of
compliance with standard flight quality criteria. Their discrete values indi-
cate whether the aircraft is too separated from the expected flight path or the
required altitude.

On the other hand, IC variables have also been produced integrating a priori
expert knowledge, but in this category the assessment is particularised to the
planned route and should be adapted if the flight plan is modified. This expert
knowledge consists of different discrete variables that rate the information
checked by the pilot in terms of relevance, that is, the query performed by
the pilot is relevant according to the instant when it happens and it contains
information that is necessary to ensure flight safety; and exclusiveness, i.e.,
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the query provides information that can more or less be obtained from other
sources.

Different values of IC variables are expected to indicate from beneficial to
distractive queries, whereas SQ values will indicate deviations based on the
impact on flight safety. In both cases, the applied expert knowledge was causal
and did not require knowledge of the future development of the flight to
provide an SA estimation, even in real time.

7.3.2 Summary variables

The DBN considered for the regression experiment, and in general for the
rest of the research, are such that each variable depends only on the variables
in the previous time (Markov condition). In order to alleviate this restriction
and to introduce dependencies from a full time interval, we created summary
variables that contain information about what happened in the past.

At the time of this experiment, the focus was on quantifying the regression
improvements, rather than optimising the summary variables, so these were
kept relatively simple and no significant increase in model performance was
expected from them. Therefore, they basically perform a calculation of the
average error of the aircraft position (SQ variables) and the expert assessment
about relevance and exclusiveness of pilot information queries (IC variables).
These averages were calculated for the total flown time, and for the last two
and four minutes of flight, at each time step. As explained in Chapters 6 and
8, different approaches were used for subsequent experiments.

7.3.3 Dataset variable groups from the perspective of SA levels

For the regression experiment, we used the following criteria concerning
variable modelling with regard to Endsley levels for the SA estimation [36]:

• Level 1 SA - Perception of elements in the environment: The measure-
ment of perception-related variables was focused on navigation informa-
tion management, expecting a low simulation bias, as discussed in [101].
Dataset IC and SC variable types are expected to contain information
about level 1 SA because the contain information about the monitoring
real-time pilot activities related to the retrieval of navigation informa-
tion.

• Level 2 SA - Comprehension of the current situation: The most common
approach to measure level 2 SA is based on techniques like SAGAT [38]
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that rely on obtaining direct and explicit feedback from the subject. As
already discussed in our previous work [101], when the pilot behaviour
is monitored in real time, the assessment on the pilot’s comprehension
of the situation is preferably inferred from his/her actions rather than
from a conscious feedback. Therefore, variable types IC, SC, PA (contain-
ing pilot actions) and AS, AP, EV, FP, SQ (containing aircraft situation /
condition) were considered at the time to be related to level 2 SA.

• Level 3 SA - Projection of the near future: One of the most important con-
clusions that we extract from Endsley’s model is that pilots with correct
SA not only perceive and comprehend, but are also able to predict the
future flight evolution. This cannot be reduced to associating good SA to
the absence of errors or inaccuracies of the crew. Specially in high work-
load situations, pilot actions should be more focused on avoiding future
problems rather than fixing past mistakes. At the moment of carrying
out this experiment, we associated SA Level 3 to the expert knowledge
variables incorporated after the simulation, in that case SQ and IC.

7.3.4 Computation of regression

In previous experiments [101], the results showed an improvement in per-
formance when the number of intervals in the discretization was increased.
The problem we faced at that time is that most continuous variables are such
that their value in time t is a small variation of their value in previous time
t− 1. In later experiments, we modified the sample rate, as will be explained
in Chapter 8. However, in 2016 we considered it to have been more reasonable
to discretise the differences Xit − Xi(t−1). In the paper [98], we went a step
forward, first trying to make a numerical estimate of each continuous variable
Xit using linear regression and variables in previous time as predictors. In this
way, the variable Xi(t−1) was considered as a possible predictor of Xit. Data
manipulation was performed with the R package bestglm. As the number of
predictors was very high and to avoid overfitting, the number of variables in
regression was limited to a maximum and the best model was chosen with BIC

criterion. In our case, the maximum number of predictors was selected to be
4. This number of variables proved to be enough to produce good estimates
and, although bestglm has a procedure to determine the optimal number of
variables, if this maximum was not limited, the procedure turned out to be
very time consuming given the large number of measured variables of this
particular experiment. In all cases, the most important variable that acted as a
predictor of Xit was Xi(t−1) with a regression coefficient close to 1.0.
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Concerning the introduction of artificial variables Zi, assume that we have
predicted Xt by means of a linear combination a+ b1Y

1
t−1 + · · ·bkY

k
t−1, then

our model includes in time t − 1 the deterministic variable Zi(t−1) = a +

b1Y
1
t−1 + · · ·bkY

k
t−1. The values of this variable can be computed with the

values of other variables at the same time.
Then in time t we add another variable, the error variable: Eit = Xit −

Zi(t−1). Once the regression is computed, the dataset is expanded by in-
cluding the artificial variables Zit and Eit: Zit = a+ b1Y

1
t + · · ·bkY

k
t , Eit =

Xit −Zi(t−1).
With the expanded dataset, we estimate the model structure in the following

way:

• Each variable Zi is a deterministic variable depending on other variables
over the same period of time, by its linear equation.

• Each continuous variable Xit is a deterministic variable equal to the sum
of the artificial variable in the previous period Zi(t−1) and the error
variable of the same period Et.

• Each error variable Eit is discretised with the procedure of the above
subsection and its set of parents is computed by optimising the score
with a set of parents Πi(t−1) selected from variables in previous time, in
the same way that was done with continuous variables in the previous
approach.

It is important to remark that though Eit is computed from Xit and Zi(t−1),
in the model it is considered that Eit is random and that Xit is the sum of
Zi(t−1) and Eit. This is the usual assumption in regression models, where it
is assumed that a variable of interest is the sum of a deterministic function (in
our case, the value of Zi(t−1)) and a noise (in our case Eit), although in the
data the noise or error is computed by measuring the difference between the
real value and the value of the deterministic function.

In classical regression, it is assumed that the variable Ei is Gaussian and
independent of the rest of the variables in the problem. In our case, we do not
assume this hypothesis and consider that Ei is a variable that can depend on
any variable in the previous period. We do not consider either that the errors
are Gaussian, learning a generic distribution through the discretization and
conditional probability estimation.

In the regression problem, discrete variables Xi can also be an explanatory
variable, with values 0, 1, . . . , li − 1 with li the number of elements of variable
Xi. We also compute a discretization for variables Zi and continuous variables



7.3 Regression experiment 121

Y
1

t-1

Zt-1 EtXt ∏t-1

Y
k
t-1

...

Figure 7.2: Regression model for the estimation of pilot actions.

Xi. These discretised variables can be parents of any discrete or error variable.
The complete model is represented in Fig. 7.2.

7.3.5 Testing a Model

In this subsection, we present the improvements of the regression experi-
ments [98], compared to the results of the model tests only based on discretiza-
tion [100]. Once a model is learnt, its performance is measured using new ob-
servations of variables X in a new flight. Assume that we have a measurement
of the variables Xt for a finite set of time steps t ∈ T . The idea is to compute
the LP, LP = log(P((Xt)t∈T |M)) = log(P(Xt0))+

∑
t∈T\{t0}

log(P(Xt|M, Xt−1)),
where M is the learnt model and t0 ∈ T is the initial time.

If only discretization is used, then we start with LP = 0 and for each t and
for each variable Xi in this interval we add the following values to LP: first
we compute the observed values of its parents in the former time interval
Πt−1 = πt−1, with these values and the conditional probability of the variable
given its parents, we can select a discrete probability Pi for the values of this
variable in time t. Then

• If it is discrete and Xit = xi, then we add log(Pi(xi)) to LP.

• If Xi is continuous and Xit = xi and xi belong to the interval rik, then
log(Pi(rik)) − log(bi

k − ai
k) is added to LP.

In the case of using linear regression, the computation is done in a similar
way, but first we have to compute the values of instrumental variables Zi

(linear combinations) and Ei (error variables). Then, we take into account
that variables Zi and continuous variables Xi are considered deterministic
variables and then their true value is predicted with probability one (given
the other measured and error variables). So, these variables add a value of
log(1.0) = 0.0 to LP. We have to apply the above computations only to discrete



122 Situation and trajectory analysis

variables and to error variables, with the same procedure that was employed
to discretise continuous variables.

The higher LP results for model M than for model M ′, it should be assumed
that the model M has better predicted the values of variables Xt than model
M ′.

If we are interested only in a subset Y ⊂ X of the variables (for example, the
variables describing pilot actions), we could compute this value, but adding
the computation of LP only for the variables in that subset or the correspond-
ing errors in the case of continuous variables with the regression model.

7.3.6 Results of the variable regression experiment

We have carried out a series of experiments in which we have repeated the
learning of the model with 9 flights and tested it with the remaining one,
as in 10-fold cross-validation. We report the results of LP for the different
discretizations and the regression model in the following experiments:

• Experiment 1: All variables are used in the model and LP is measured
for all variables.

• Experiment 2: The summary and expert knowledge variables are not
used and LP is only measured for pilot actions.

• Experiment 3: All variables are used in the model and LP is measured
only for pilot actions, including consulting information (PA and IC vari-
ables).

When regression is not used, the discretizations we have tested are provided
by the expert. Experiments for learning discretizations without regression are
reported in [101] and are not better than the results obtained with a large num-
ber of intervals. In the LP model the error variable is not known in advance,
and therefore the intervals have to be learnt with the procedure shown in
the previous subsection. Other continuous variables are also discretised with
the automatic method, but these discrete variables can only appear as parent
variables.

The results of these experiments are given in Tables 7.2, 7.3, and 7.4, respec-
tively.

From the analysis of this part of the experiments we extracted the following
facts:

• Without regression: using a large number of discretization intervals is
better, also with the extra variables added, and when we focus on pilot
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Score min Thr 10 Thr 20 Thr 50 Thr 100 Thr regression
BIC −9.300e5 −6.690e5 −5.699e5 −6.360e5 −5.676e5 −2.475e5
Akaike −9.310e5 −6.682e5 −5.655e5 −4.271e5 −5.075e5 −2.450e5
K2 −9.305e5 −6.694e5 −5.653e5 −4.188e5 −3.602e5 −1.989e5

Table 7.2: LP values for the estimation of all variables and using summary variables.

Score min Thr 10 Thr 20 Thr 50 Thr 100 Thr regr. w/o
BIC −1.408e5 −1.034e5 −9.680e4 −1.034e5 −9.280e4 −2.162e4
Akaike −1.398e5 −1.021e5 −9.235e4 −8.082e4 −8.966e4 −2.378e4
K2 −1.409e5 −1.032e5 −9.330e4 −7.886e4 −6.548e4 −2.184e4

Table 7.3: LP values for the estimation of pilot action variables, without using sum-
mary variables.

actions. This is in accordance with the previous discretization experi-
ment. This is due to the fact that in our model we assume that the den-
sity is constant in each interval of the discretization and then − log(ri)
is added to the likelihood where ri is the length of the interval to which
the value of Xi belongs. This factor has a great impact and gives rise to
a preference for larger discretizations with smaller ai values.

• Using regression plus discretization is always better than just discretiza-
tion. The differences were several orders of magnitude better than with
models that are smaller in size than the large discretizations, although
we did not perform statistical tests. Here, the impact of using a high
number of intervals is not so important, as only error variables are in-
volved in the likelihood computation and the values of these variables
are concentrated around 0 (in contrast with initial variables that have
their values distributed in a large domain).

• Regression benefits from the use of summary variables and expert knowl-
edge; however, the differences were not very important. In the case of

Score min Thr 10 Thr 20 Thr 50 Thr 100 Thr regr. w/
BIC −1.408e5 −1.034e5 −9.680e4 −1.034e5 −9.280e4 −2.109e4
Akaike −1.398e5 −1.021e5 −9.235e4 −8.078e4 −8.974e4 −2.281e4
K2 −1.409e5 −1.032e5 −9.330e4 −7.886e4 −6.548e4 −2.148e4

Table 7.4: LP values for the estimation of pilot action variables, using summary vari-
ables.
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discretization, the use of summary variables did not change the results
of the experiments.

• There were no meaningful differences between using the different scores:
when focussing on the regression model, the model learnt with K2 was
better at estimating all variables (experiment 1) but BIC was the best
when learning only the pilot actions (experiment 2).

7.4 Trajectory analysis environment

In this section, we review some aspects of the development of a software
environment that was implemented to exploit SWIM data. This work was pre-
sented at the 2017 ENRI International Workshop on ATM/CNS (EIWAC) work-
shop [97]. In this phase of the research, our purpose was to explore a line
of work based on providing more relevant sources of aeronautical data that
could be reused in other experiments or by other researchers. Part of the data
obtained with this project was applied to the clustering experiment, which
will be explained in Section 7.5.

7.4.1 Overview of the developed environment

As explained in the abstract of the article [97], we designed and imple-
mented a software environment that was able to import real and simulated air-
craft trajectory data, in combination with aeronautical information from differ-
ent sources. User interfaces and functionalities were implemented to facilitate
interoperability with machine learning and data mining tools. The intended
applicability of the environment included research on ATM and airspace opti-
misation, test and validation of algorithms related with aviation engineering,
operational criteria, or other related fields where the analysis of aircraft tra-
jectories is relevant. The software environment was designed to support the
use of SWIM standards, exploiting their advantages in terms of information
availability, data robustness, and synergies with advanced computing soft-
ware tools. The implementation included the import of real data on aircraft
trajectories, aeronautical weather reports, airspace information and NOTAM.
Figure 7.3 shows the different blocks of the implementation.
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Figure 7.3: Environment Diagram [97]

7.4.2 SWIM data exploitation

Using the SnowFlake Laminar platform [143] we were able to access different
types of aeronautical information in SWIM standards formats, both XML and
JavaScript Object Notation (JSON). The most relevant ones are the following:

• Flight trajectory data in FIXM standard: Retrieval of real-time route trajec-
tories by aerodrome pair, by a specific area of interest, or by the Globally
Unique Flight Identifier (GUFI) present inside the Aircraft FPL identifier
XML tag.

• NOTAM data in the AIXM standard: Retrieval of Aerodrome and Enroute
NOTAM information by FIR or ICAO code.

• Weather data in WXXM standard: Retrieval of Aerodrome METAR, TAF

and enroute SIGMET information in real time.

• Aeronautical data in AIXM standard: Retrieval of airspaces, navigational
points, waypoints, aerodrome, and regulatory data.

SWIM data for test and development were also provided by ENRI. It should
be noted that there are not many SWIM data sources available, so getting the
data was an important part of the development.

The application was developed in 2017, but shortly thereafter the services
available in Laminar Data changed ownership and became unavailable for our
purposes. At the time of writing this dissertation, the Laminar Data Hub
Application Programming Interface (API)s can be accessed on a different website
[24] and the functionalities are slightly different.
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Figure 7.4: User interface after loading one flight.

7.4.3 User interface and data visualisation

In this section, we will provide examples of the functionalities implemented
and the user interface that we developed for this purpose. Figure 7.4 shows
the basic window displaying one imported flight on the right side of the screen
and the basic data on the import on the left side.

It should be noted that the website template used for this application is
an updated version of the one used to develop the simulation environment
explained in Chapter 6, based on SkelJS.

Figure 7.5 shows the user interface implemented to retrieve trajectories that
had previously been stored in a SQL database. These data items are parsed
keeping all relevant data fields to make them available to machine learning
tools (this corresponds to the hexagon in Figure 7.3, which also reflects that
interfaces with cloud-based databases were also put in place.

Figures 7.6 and 7.7 have been added to highlight that certain operations of
flight trajectories batch loading were also supported by the tool, for instance,
getting flights by ICAO aerodrome identifier pairs, i.e., loading flights between
two specific airports in the former, or the load of a batch of flights with the
same flight number executed on different dates, as can be observed in the
latter. Appendix D Section D.2 contains more information about this dataset.

Figure 7.7 Flight history for British Airways flight BA59.
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Figure 7.5: User interface to retrieve saved trajectories.

Figure 7.6: Example of flight trajectories batch selected by the designators of origin
and destination airports.
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Figure 7.7: Example of flight trajectories batch selected by flight number.

7.4.4 Other functionalities

During the development of the application described in this section, we
also implemented other functionalities related to data management. Figure
7.3 shows several components that we will briefly explain:

• Access to built-in navigation databases: We installed a navigation database
with a structure similar to the standard AIRAC system (see Section 3.1
and Appendix A) with multiple types of waypoints and georeferenced
data related to navigation and airspaces [108], which combined with the
JavaScript library to calculate distances and bearings between latitude/-
longitude points [105], facilitated the use of other data.

• Cloud Droplets: We used a cloud-based solution [69] to test implemen-
tations with improved data accessibility and availability. Reducing the
dependency on a physical computer helped us automate data collection,
so that we could download real-time information about flights at specific
moments.

• Big data: We used solutions available at that time [67] to test the applica-
bility of big data algorithms and technologies to our research, although
we did not obtain any relevant results.
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7.5 Trajectory Clustering experiment

In this section, we explain the trajectory clustering experiment that was
carried out in 2018-19, first in the context of the supervision of a MsC thesis
of the student Pedro Méndez [91] and later presented at the 2019 SASWIM

workshop [102]. The paper focused on the application of k-means clustering
to aircraft trajectory classification.

7.5.1 Mathematical background of the paper

The k-means clustering algorithm minimises the sum of squared Euclidean
distances between data points and the mean vector of their assigned cluster.
Given a dataset with n elements or observations that need to be partitioned in
k distinct, non-overlapping clusters, two conditions are established for these
clusters [102]:

C1 ∪C2 ∪ ... ∪Ck = {1, ...,n}

meaning (7.5.1), that each observed element belongs to a cluster.

Ck ∩Ck ′ = Ø

for all k ̸= k ′, meaning that the clusters are non-overlapping.
A measure W(Ck) is defined to quantify the difference between the ob-

servations assigned to the k-th cluster. Therefore, the principle behind the
clustering strategy is as follows:

minimize
C1,...,Ck

{ K∑
k=1

W(Ck)

}
This means that the sum of the differences between the observations within

each cluster is minimised. In k-means clustering it is assumed that the initial
observations are vectors xi of numerical values x1 = (xi1, . . . , xip). Then,
the function to be minimised is the mean of the squared Euclidean distances
between the observations assigned to each cluster and the mean vector inside
each cluster.

W(Ck) =
1

| Ck |

{ ∑
i∈Ck

p∑
j=1

(xij −mkj)
2

}
,

where mk = (mk1, . . . ,mkp) is the mean vector of the observations assigned
to the cluster k. Through an iterative process, the k-means algorithm min-
imises the sum of these distances until the value of the equation stabilises.
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The process starts with an arbitrary assignation of individuals to clusters, and
then repeat two steps until there are no changes: compute the mean values in
each cluster and assign each individual to the cluster minimising the distance
to its mean.

This approach supports route classification because it involves preprocess-
ing trajectory coordinates and flight plan data to obtain additional variables
that support unsupervised trajectory classification, which was achieved in a
computationally efficient way, especially because the algorithm provides a way
to substantially reduce the calculations related to geospatial data measure-
ments, especially distance calculations.

Figure 7.8 shows an example of a FPL message that indicates the SID pro-
cedure name (BLN2C), the code of the waypoint that defines the end of the
procedure (BLN) and the name of the airway where the departure procedure
ends (UN865). This is normally the amount of data that is published on a
commercial aircraft trajectory, and with these data it would be challenging to
deduce the procedure from the raw trajectory downloaded in FIXM. Further-
more, in many cases, this information was not published, so it is necessary
to design a trajectory classification system that does not take into account the
textual information of the route if the flow of trajectories is to be investigated.

N0446F360  BLN2C   BLN   UN865 VTB/

N0449F350 UL155 NVS/N0449F360 UN733 

DESAT DCT STG/N0443F360 DCT BEGAS/

M077F360 T9 LASNO/M077F370 DCT 

EMPER DCT KURUM KURUM2D

Initial speed 
and flight level

SID 1st 
Waypoint Airway

Figure 7.8: Example route text of a flight plan message.

7.5.2 Overview of the results and applicability to this research

The purpose of the experiment was to classify a dataset of approximately
2500 trajectories of commercial aircraft departing from Malaga airport accord-
ing to their instrumental departure procedure. We had two objectives: On the
one hand, we intended to classify each trajectory according to the end point
of the procedure because this is normally the most important information for
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departure flow control. In addition, we tried to deduce the intermediate cross-
ing points of the procedure from the trajectory. The analysis was performed
to reduce the dependency on textual information about the route, mainly by
clustering the sequences of coordinate points.

The results according to the first objective are summarised in Table 7.5,
which shows the outcome of applying k-means clustering with k=8. The paper
[102] also includes a discussion of the different results depending on the value
of k. It should be mentioned that no specific expert knowledge was required
to achieve promising results in trajectory classification and the results we ob-
tained with this methodology offered an efficient way to classify trajectories
according to their SID. In this case, the unsupervised algorithm is helpful to
detect the flown SID just from a few geographic point samples, with very high
computation optimisation. It is recognised that some classification errors will
occur, for instance, flights with SID PIMOS will be classified within the same
cluster as those of SID BLN, which is normal because they are both very similar.
We are aware of such limitations of the clustering approach, and in case we
may use this methodology again in the future, we should resort to additional
techniques to obtain more reliable results.

Table 7.5: k=8 clustering results compared with SID points.

1 2 3 4 5 6 7 8

BLN 395 2 0 71 1873 2 0 6

GALTO 0 0 0 0 1 0 1 0

MAR 0 0 0 0 0 0 2 0

NESDA 0 0 0 0 0 23 0 0

PEPAS 0 44 0 0 0 217 0 0

PIMOS 1 0 0 0 100 0 0 0

ROLAS 0 0 0 0 0 151 0 0

SVL 0 0 36 0 72 0 7 0

TARIK 0 0 0 0 0 3 0 0

ULPEP 0 0 0 0 0 25 0 0

VIBAS 0 1 0 0 5 0 0 0

Figure 7.9 shows a map representation of the classification with the 2500

trajectories, classified according to their route using an unsupervised method
that did not require expert knowledge and with fairly accurate results. More
details about the dataset are provided in Appendix D.
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Figure 7.9: Graphical representation of the clustering results applied to group trajec-
tories by flight procedure.

Concerning the second objective, what we tried to achieve was to deduce
the accuracy of the flown trajectory compared to the published procedure
using k-means clustering. Given the limitations of the sampling rate in the
dataset, the error in the distance calculation prevented obtaining a reliable
measurement, although we considered that the results could be improved by
applying interpolation. However, we did not continue this approach to avoid
diverting attention from the thesis objectives. Figure 7.10 shows the following:

• The diagram on the left of the figure is the published procedure.

• The red-lined path of the figure on the right is the trajectory representa-
tion from the aeronautical database.

• The green lined path of the figure on the right is the deduced trajectory
for a specific flight.

As explained, the results that we achieved were enough to determine the
procedure with good accuracy, but not to assess the precision of the flight
path, therefore we decided not to use them for the SA estimation.

We resorted to this approach because at that point in the investigation we
were looking for alternatives to analyse large amounts of data and apply the
trajectory analysis to the SA calculation. Although the results are promising
and in line with other research consulted [5, 11, 35, 56, 84], we decided not
to continue with this approach because, as will be explained in Chapter 8,
we have achieved better results with an approach based on a smaller set of
variables.

However, the applicability of k-means clustering is still relevant to provide
classification tools, and can be used to produce intermediate variables and
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Figure 7.10: Comparison of published SID procedures of Malaga airport vs. deduced
points using clustering analysis on the dataset.

potentially feed the DBN, but in our article [102] we already identified the
need to perform some kind of preprocessing to improve the accuracy of the
clustering results.

7.6 PBN experiment

Following the activities carried out in 2018 and 2019, there was a pause
in the research, as efforts were devoted to other tasks, including progress in
the programming of EFB applications that are not applicable to this thesis.
However, we continued to consider appropriate approaches to measure SA,
taking into account that the flights for which the initial simulator was designed
are becoming less common. After a conversation in 2021 with an active pilot
who had recently received specific training for PBN procedures, our attention
was caught to learn about the high degree of automation of these operations.
In 2022 we devoted the activities to get familiar with PBN flight procedures,
receiving specific training provided by Eurocontrol [153].

7.6.1 PBN relationship with BADA

The concept of PBN, already introduced in Section 2.3, is very complex with
other concepts that we have studied in previous years, such as BADA which
is an initiative of Eurocontrol to provide aviation stakeholders with large
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amounts of performance data that can be used by data scientists and that
we also analysed [44]. While BADA and PBN serve different primary purposes,
they are closely related in supporting performance-driven air navigation. One
one hand, BADA provides aircraft performance models, offering accurate data
on various aircraft characteristics, such as fuel consumption, climb and de-
scent rates, and speed profiles of many aircraft models. This data helps to
predict and manage aircraft trajectories for air traffic controllers and decision
support systems, that is the reason why at some point of the research we
studied the link with trajectory management and PBN.

In 2018 we accessed the BADA database and made some test calculations
based on aircraft performance data that could have a relationship with SA

calculation. Although not directly applicable to any specific aspect of the SA

model, the activity supported the PBN experiment.

7.6.2 PBN relationship with trajectory analysis

From a perspective focused on trajectory analysis, PBN provides a speci-
fication of the navigation performance required of aircraft to fly particular
airspace routes, highlighting the required accuracy, integrity, and continuity.
Additionally, deeper into the relationship between advanced trajectory man-
agement and human factors related to PBN, we found it relevant to design
an experiment that could help us complement the SA estimation carried out
in previous activities, while enriching the SA model with a more complex ap-
proach to automation.

The fly-over and fly-by turn procedures were introduced in Section 2.3, be-
ing the latter more generally used in PBN modern navigation. In our paper
[99] we analyse the basic characteristics of PBN procedural turns and explain
that the pilot is unable to mentally perform the calculations required to main-
tain the required lateral precision of the aircraft during navigation. Therefore,
the use of computation and automation is more necessary than in previous
navigation approaches, and thus we redesigned the simulator, as explained in
Chapter 6. We used as an example a fly-by turn, illustrated in Figure 7.11.

The outcome of the paper [99] showed room for improvement in terms of the
accuracy of the SA estimation and we decided to carry out a final experiment,
which is explained in Chapter 8.

This was explained in our paper presented during SASWIM 2023 [99], where
we provided an example with the focus on the parameters necessary to per-
form a fly-by turn, which is normally one of the most significant novelties of
PBN for the pilots who start flying these procedures because they cannot cal-
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Figure 7.11: Analysis of a fly-by turn to calculate the turn anticipation a [99].

culate the turn anticipation mentally with the precision required by RNP and
need to rely on computers and automation. In conventional flight procedures,
the turn anticipation is the parameter that defines the moment when the pilot
starts a turn, with respect to a route parameter, normally the next waypoint,
and is generally easy to calculate as a function of the aircraft speed.

As can be observed in Figure 7.11, the turn anticipation a of a fly-by requires
a more complex calculation to determine it:

• tp: aircraft turning point, where the turn begins.

• d: distance from the aircraft to the turning point. This information will
be provided to the pilot in the user interface.

• R: turn radius, calculated with the following formula and approximation

for mental estimation by the pilot, R = V2

g tanθ ≈ [VNM/min]
2

9 , where
θ=25° is the aircraft bank selected for our simulation. V is the speed
of the aircraft (dimensionless) and VNM/min is the speed in Nautical
Mile (NM) per minute.

• β: turn angle.

• α: angle between the leg courses, related to β as α = 180−β.
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• a: turn anticipation a = R
tanα

2
, deduced from the triangles shown in

Figure 7.11, where sinα
2 = c

a and cosα2 = c
R .

In the paper [99] we extracted the following considerations that were used
for the design of the third experiment user interface, which will be explained
in Section 7.6:

• The turn anticipation a is especially relevant for the experiment because
it indicates to the pilot when the fly-by turn needs to start. The calcu-
lations show that it is not feasible for the pilot to mentally calculate a.
We acknowledge this as a novelty aspect of fly-by points, because when
flying other types of procedures, the turning reference to the pilot was
normally to overfly a reference or to start the turn based on a previously
calculated turn anticipation.

• It is important to note that the calculated value of anticipation depends
proportionally on the speed of the aircraft and that the aircraft speed
depends on the wind speed, which has not been included in the calcu-
lations. The turn should be flown with a constant radius. This mainly
depends on aircraft speed, bank angle, and wind. In general, there is no
instrument in the aircraft to indicate the correctness of the turn radius,
apart from the moving map, which becomes a challenge for the pilot
who is not using automation.

• Consequently, what we provide in the user interface is the distance d

to the turning point tp, and the turn anticipation a is provided for in-
formation, but we do not expect it to be the main reference to start the
turn.

Of course, the pilot can always check the distance to any waypoint and
decide which ones of the information sources available will be consulted to
start the turn, and this is our objective with the experiment when we collect
the interactions with the user interface and distance you to the turning point
which is specially collected as a variable of the dataset, to be contrasted with
the control actions.

7.6.3 Expert knowledge applied to the experiment

For this experiment, we also included some variables that contain post-
processing of data, like integration, differentiation, and correlation of accu-
mulated differences, with the aim of adding expert knowledge to the already
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present variables that record the compliance of the actual track with the de-
sired path. Figure 7.12 shows a plot of several variables collected from a flight
of the dataset, where it is possible to identify situations where pilot errors or
deviations (highlighted in red) occur mainly due to early or late turns and
are also associated with excessive differences between the route course. Some
tags indicate expert observations that may be added in the future, in case of
adopting a supervised training approach.

1 2 3 4 5 6

• Bank angle
• Difference course / heading
• Deviation

Turn right to 25°

The turn was too early, causing 
angle deviation.

And distance deviation

Correction

Correction is appropriate

Turn slightly late

Deviation due to wind

Good correction

Good start of leg 4-5

Deviation due to wind

HDG=175° good but 
could be a bit stronger

Error, turns too early to 128°

Should have turned here

Unacceptable deviation due to 
early turn worsened by wind.

Correction to 138° should be 
stronger, but reduces deviation.

Turn right to 175°, a bit late given 
the deviations due to  wind.

Turn right to 185°

Correction is appropriate

Figure 7.12: Representation of expert knowledge added to a flight of the dataset [99].

Based on these indications from expert knowledge, we also designed flights
for the test dataset which will be presented in the next chapter in the frame-
work of the last SA estimation experiment.
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We went through a lengthy process to create the simulation environment
and its associated configurations that have enabled us to perform the differ-
ent experiments with acceptable realism, collect multiple variables related to
human factors and data of different natures, as explained in Chapter 6. The
discretization, regression and clustering experiments explained in Chapter 7

were useful to become familiar with the data and apply the basic machine
learning methodologies.

To conclude this research, we decided to carry out a final experiment based
on a PBN flight using a similar setup to the one used for the paper presented
to the SASWIM 2023 workshop [99].

This chapter is dedicated to explaining with detail the criteria used to select
variables in different experiments, focusing on the last one, where we selected
a more reduced set of variables with the expectation of getting a better idea
of the most significant ones. A model to estimate the pilot’s SA taking into
account the actions and how he/she reacts to the environment is proposed
which is an auto-regressive hidden Markov model [20, 95] with asymmetry in
the dependence of the variables [121] and combining discrete and continuous
variables.

We have reduced the experiment to the SA related to the trajectory (horizon-
tal SA), measuring only the variables related to it. But we could consider other
types of SA as the vertical SA related to aircraft altitude. Even, we could have
several types of SA measured at the same time, with some assumptions about
the probabilistic relationships among them: for example, it seems reasonable
to assume that the different types of SA are not independent.

8.1 Description of the mathematical model

The model considers a set of variables Xt measured in different instants
during a flight. Apart from them, there is a hidden variable St with is the
SA of the real pilot with two possible values: Positive and Negative. The set
of measured variables Xt is divided into two subsets: Xt = At ∪ Ot, where
At represents the variables measuring the pilot actions (for example, the time

139
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from the last check of a given parameter and Ot contains all the other variables
that are observed, for example, the horizontal deviation from the given route.
The main assumptions of the model are as follows:

• The variable St behaves as a homogeneous Markov chain: the probabil-
ities of the instant St depend on the value of the same variable in the
previous instant St−1. It is assumed that there is an inertia and if the
pilot SA is positive or negative in one instant, then it has a tendency to
be in the same state in the next instant. So two parameters are necessary:

P(St = +|St−1 = +) = α, P(St = −|St−1 = −) = β,

where α,β are two values in [0, 1] and close to 1. The probabilities of
changing the state are:

P(St = +|St−1 = −) = 1−β, P(St = −|St−1 = +) = 1−α.

In our experiments, we have used the values α = 0.99 and β = 0.98, as
we think that there is more probability of correcting a deficient SA than
of worsening a correct SA.

• The variables in Xt are conditionally independent given Xt−1 and St, i.e.
the conditional probability of the join variable Xt is the product of all the
conditional probabilities of the individual variables Y ∈ Xt.

• Each variable in Ot depends only on the variables in Xt in the previous
state, i.e. it depends on the values of the actions of the pilot and the
observed variables in the previous state. The dependence will be ho-
mogeneous, i.e. will not depend on the variable in the previous state.
They do not depend on the state of the hidden variable St. The condi-
tional probability P(Ot|Xt−1) is not estimated as it will be proved to be
irrelevant for the online computation of St given all the observations.

• Each variable Y in At will depend of the pilot SA, St, and of the variables
Xt−1 in previous step. The dependence is asymmetric depending on St:

– If the SA is positive, then each variable Y in At will potentially de-
pend on all the variables Xt−1. The dependence will be different
when Y is discrete and when Y is continuous. In both cases, the
variables in t − 1 we have defined have always numerical values, so
we can apply numerical operations to the values of these variables.
In the case of a continuous variable we have considered that the
value of Y is obtained from variables in Xt−1 by linear regression:
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Y = α0 +
∑

X∈Xt−1

αXX+ ϵ,

where ϵ is a Gaussian random variable with mean 0.

In the case of Y being a discrete variable, we consider that the de-
pendence is modelled by multinomial logistic regression. If Y takes
the values {1, . . . ,k}, then it is assumed that

P(Y = j|Xt−1) =
e
α0,j+

∑
X∈Xt−1

αX,jX

1+
∑k−1

i=1 e
α0,i+

∑
X∈Xt−1

αX,iX

for j = 1, . . . ,k− 1, while,

P(Y = k|Xt−1) =
1

1+
∑k−1

i=1 e
α0,i+

∑
X∈Xt−1

αX,iX
,

where α0,i,αX,i are real valued parameters.

In the experiments, we have estimated the parameters of this model
using scikit-learn package for Python [117] and a set of flights
considered to be correct as data (the pilot has a good SA in every
moment). We always have added an l1 penalty for the estimation
of the parameters. With this penalty, instead of computing the pa-
rameters maximizing the logarithm of the likelihood of the data,
a penalty of the sum of the absolute values of the parameters is
added to this log-likelihood: the log of the likelihood of the data
minus the sum of the absolute values of the alpha parameters is
maximized. The effect of this penalty is that the models are more
sparse and some of the parameters are 0, giving rise to a variable
selection (variables with non-zero parameters).

– If the SA is negative, the procedure is completely analogous to
the former case, but with one important difference: each variable
Y ∈ At will depend only on the same variable in the previous in-
stant Y ′, i.e. P(Y|Xt) = P(Y|Y ′). The intuition behind this is as fol-
lows: for example, the course selected by the pilot in a given instant
will always depend on the course selected in the previous instant
(it will have a tendency to be the same with some variations), but
if the SA is negative, then it will not react to the other environment
variables and therefore will be independent on them. The estima-
tion procedures will be exactly the same as when the SA is positive
but considering only {Y ′} instead of Xt−1.
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The general structure of the temporal Bayesian network representing the
relationships is depicted in Figure 8.1.

Figure 8.1: The structure of the dynamic Bayesian network.

The computation we want to carry out is P(St|X1, . . . , Xt) as an online esti-
mation of the probability of the pilot’s SA given the observed variables. For
this aim, we have to take into account the following,

P(St|X1, . . . , Xt) ∝ P(St, X1, . . . , Xt),

being the proportionality constant independent of the concrete value of St.
We also have:

P(St, X1, . . . , Xt) =
∑

x=+,−

P(St,St−1 = x, X1, . . . , Xt) =∑
x=+,−

P(St−1 = x, X1, . . . , Xt−1).P(St, Xt|X1, . . . , Xt−1,St−1) =∑
x=+,−

P(St−1 = x, X1, . . . , Xt−1).P(St, Xt|X1, . . . , Xt−1) ∝∑
x=+,−

P(St−1 = x|X1, . . . , Xt−1).P(St, Xt|X1, . . . , Xt−1).

Again, in the last proportionality, the constant is P(X1, . . . , Xt−1), which is
independent of the value of St and the value St−1 = x. We continue with last
expression:

∑
x=+,−

P(St−1 = x|X1, . . . , Xt−1).P(St, Xt|X1, . . . , Xt−1,St−1 = x) =∑
x=+,−

P(St−1 = x|X1, . . . , Xt−1).P(St|X1, . . . , Xt−1,St−1 = x).

P(Xt|X1, . . . , Xt−1,St−1 = x,St).
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Now, we have that P(St|X1, . . . , Xt−1,St−1 = x) = P(St|St−1 = x) and
P(Xt|X1, . . . , Xt−1,St−1 = x,St) = P(Xt|Xt−1,St) given the independence re-
lationships assumed in our model (see Figure 8.1). So,

∑
x=+,−

P(St−1 = x|X1, . . . , Xt−1).P(St|X1, . . . , Xt−1,St−1 = x).

P(Xt|X1, . . . , Xt−1,St−1 = x,St) =

P(Xt|Xt−1,St)
∑

x=+,−

P(St−1 = x|X1, . . . , Xt−1).P(St|St−1 = x).

Now, we have that P(Xt|Xt−1,St) = P(At|Xt−1,St).P(Ot|Xt−1,St), given the
conditional independence assumptions of variables in Xt, and P(Ot|Xt−1,St) =
P(Ot|Xt−1) as the observed variables do not depend on St given Xt−1. As this
expression does not depend on St,St−1, finally

P(St|X1, . . . , Xt) ∝ P(At|Xt−1,St)
∑

x=+,−

P(St−1 = x|X1, . . . , Xt−1).P(St|St−1 = x).

And this will be the expression used in our computations, as P(St−1 =

x|X1, . . . , Xt−1) is the same amount computed in the previous time, P(St|St−1 =

x) are the transition probabilities for the hidden variable, and P(At|Xt−1,St) =∏
Y∈At

P(Y|Xt−1,St) are the probabilities we have estimated from correct flights
data. The exact values of the conditional probabilities are computed by nor-
malizing the values of the right side of the above expression, so that the con-
ditional probabilities for the different values of St add to one.

The expression has two parts:

P(At|Xt−1,St),

the evidential part, and∑
x=+,−

P(St−1 = x|X1, . . . , Xt−1).P(St|St−1 = x),

the prior part depending of the SA in previous time step and the changes due
to the hidden Markov chain of SA states. We are updating the prior hidden
probabilities of a correct/incorrect SA by multiplying these probabilities by∏

Y∈At
P(Y|Xt−1,St = +) and

∏
Y∈At

P(Y|Xt−1,St = −), respectively. To the dif-
ference of log

(∏
Y∈At

P(Y|Xt−1,St = +)
)
− log

(∏
Y∈At

P(Y|Xt−1,St = −)
)
, will

be called the evidential value of the actions. If it is greater than 0, the proba-
bility of a good SA will increase, and if it is lower than 0, this probability will
decrease. These values are also computed online in our experiments.
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We will also compute the individual variable responsible for a decreas-
ing in the probability of a good SA: if for a variable Y ∈ At, we have that
P(Y|Xt−1,St = +) > P(Y|Xt−1,St = −), then the observation of this variable
will give rise to an increasing on the probability of a correct SA. However,
if P(Y|Xt−1,St = +) < P(Y|Xt−1,St = −), this produces a decreasing on this
probability. So, we can also monitor the variables that are responsible for a
low SA: those variables for which,

−
P(Y|Xt−1,St = +)

P(Y|Xt−1,St = −)
< α, (8.1)

where α < 1 is a given threshold. In our experiments, we have selected α = 0.5.
In that case, we have reported Y ∈ At as a pilot action that does not respond
adequately to the environment variables.

8.2 Selection of variables

Throughout our research we have used variables from various sources, both
by importing external data and by generating variables through our simulator.
In some of our experiments, we have used datasets with a high number of
variables, sometimes even more than one hundred. However, the approach
adopted for this last experiment has prioritised the reduction of the number
of variables, although this has been carried out by integrating a previous pro-
cessing that sometimes provided variables that are the result of calculations
from different sources.

These variables have been selected to focus on the horizontal deviation from
the route. In previous experiments, we came to the conclusion that attempting
to estimate SA simultaneously to vertical (or altitude) and speed errors would
be too complex to validate this algorithm. After all, as explained in previous
works [99, 102], the horizontal error is normally the most relevant in terms of
ensuring the safety of the flight, so the SA calculation is more relevant. For
altitude errors, the pilot generally has more means to check if the aircraft is in
a safe condition.

The extension of this approach to other types of SA or even to the study
of several types at the same time does not present important conceptual or
theoretical challenges, only it makes the process of variable selection and mea-
surement more complex. So, in this first evaluation, we have selected a simple
model, which at the same time is the most relevant from our point of view.

It also remains to be considered which are the variables that optimise the
algorithm performance. As explained below, the selected variables appear to
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Var name Type

dscrTimeWPTCheckCurrLeg Action
dscrTimeWPTCheckNxtLeg Action
dscrTimeNavlogCheck Action
dscrTimeMapCheck Action
dscrTimeTrackCheck Action
dscrTimeMapClick Action
dscrPBNdeviationIntegrCorr Action
angdifSCl Action
angdifHCl Observation
bank Observation
dscrPhase Observation
discrSettingNextHdg Observation
PBNlegPercent Observation
PBNLegChange Observation
PBNdeviation Observation
PBNleg Observation

Table 8.1: List of variables selected for the SA experiment DBN.

be sufficient to provide an estimation of SA with reasonable accuracy. For
example, this model only takes into account the actions of the pilot. We came
to the conclusion that the SA estimation does not really benefit from computing
multiple variables based on navigation or aircraft parameters, so only the most
relevant have been included in the dataset. The selected At variables are listed
in Table 8.1 and explained in the next subsection.

8.2.1 Variables of the experiment

In this subsection, we explain in some detail the 16 variables selected for
this last experiment. Table 8.1 shows whether the algorithm considers them
Actions At or Observations Ot, and then we will divide them according to
other criteria. The first group with those that focus on collecting the position
of the aircraft with respect to the route, especially with regard to the horizon-
tal attitude, since the altitude is not taken into account. The second group
could be considered to include variables that more closely reflect human fac-
tors, especially activities related to information management in the cockpit. It
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should be noted that these two groups are only relevant for the purposes of
presentation in this report and have no impact on the computation.

• PBNleg: This is the route leg, as defined by the flight procedure. The
pilot is expected to know in which leg the aircraft is flying at every
instant.

• PBNlegPercent: This variable has been created for the experiment and
represents the completion percentage of each leg for every sample.

• PBNLegChange: This variable acts as a flag to indicate every leg change.
It’s generated from the changes in PBNleg.

• dscrPhase: This variable has been created for the experiment, based on
the relative position of the aircraft with respect to each leg and its turning
points. It has 4 different values, as can be seen in Figure 8.4:

1. Outbound: After flying a waypoint, when the turn is finished, the
aircraft flies to the next waypoint. The attention of the pilot is usu-
ally focused on establishing the course to the next waypoint, al-
though there he/she will also check that the outbound trajectory
from the last point is correct.

2. Inbound: The aircraft is approaching to the next waypoint. The
pilot does not consider the previous one because the focus is nor-
mally shared between maintaining the right trajectory and getting
ready to the turn.

3. Prepare to turn: Now the pilot’s attention should focus on monitor-
ing the distance to the next turning point. The deviation from the
trajectory does not have to be corrected because it is more important
to start the turn in the right moment.

4. Turning: During the turn, the pilot loses several references about
the right deviation from the trajectory, so the map is the most reli-
able one. The pilot is supposed to just maintain the turn, because
the turn radius of the procedure is established by the procedure de-
signers in accordance to aircraft performances, especially the speed.
However, external factors like the wind could cause a deviation. In
summary, checking the horizontal position on the map is basically
the only way to provide awareness about the deviation.

• PBNdeviation: This is the most relevant variable regarding the accuracy
of the position. After all, the essence of a PBN flight is related to the
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pilot’s responsibility to maintain a defined maximum horizontal separa-
tion from the route. For this simulation, the acceptable threshold is 1

NM. In the user interface, there is a colour code with green for devia-
tions lower than 0.3 NM, yellow until 1 NM, and red when the deviation
is higher than 1 NM, which is considered to be unacceptable for a good
flight.

• bank: This is the angle between the aircraft’s vertical axis and the earth’s
vertical plane, containing the aircraft’s longitudinal axis. This angle is a
result of the autopilot commands and should be less than 20° in mod-
ule. Otherwise it gives information that the pilot has ordered a rough
correction.

• angdifHCl: This angle is a computation of the difference between the
closest leg bearing and the aircraft’s heading. It gives indication of the
accuracy of the aircraft’s attitude.

• angdifSCl: This angle is a computation of the difference between the
closest leg bearing and the heading selected by the pilot. It gives indica-
tion of the accuracy of the heading selected by the pilot.

• discrSettingNextHdg: This is a binary variable that indicates if the pilot
is likely to have a heading setting related to the closest leg or the next
leg of the flight. It helps to indicate on which leg the pilot is focusing
the attention.

The next group of variables corresponds to discretised values of check times,
to obtain a reference of how often the pilot performs a particular check. The
simulation environment records the milliseconds since the last check, but it
was considered that a discretised value, inversely proportional to the time
elapsed since the last check, is more significant for the DBN. Therefore, the val-
ues of some of these variables are shown in Figure 8.2 and have the following
meaning:

• 4: The last check was performed less than 3 seconds ago.

• 3: The last check was performed between 3 and 20 seconds ago.

• 2: The last check was performed between 20 and 60 seconds ago.

• 1: The last check was performed between 60 and 180 seconds ago.

• 0: The last check was performed more than 180 seconds ago.
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It should be noted that, by design of the simulation environment, the indi-
cations disappear 3 seconds after they are shown, forcing the pilot to click to
see the information again. With this strategy, our aim is to monitor as closely
as possible which and when information is more valuable to the pilot.

Blue: dscrTimeNavlogCheck

Green: dscrTimeMapCheck

Orange: dscrTimeTrackCheck

Red: dscrTimeMapClick.

Figure 8.2: Example of one flight where several discrete variables register pilot checks.

• dscrTimeNavlogCheck: Time elapsed since the last check of the textual
navigation log.

• dscrTimeMapCheck: Time elapsed since the last check of the aircraft
position on the map.

• dscrTimeTrackCheck: Time elapsed since the last check of the aircraft
track (i.e. dots showing the path that the aircraft has flown since take-off)
in the map.

• dscrTimeMapClick: Time elapsed since the last click on a waypoint in
the map, to confirm its name.

• dscrTimeWPTCheckCurrLeg: Time elapsed since the last check of infor-
mation related to the current flight leg.

• dscrTimeWPTCheckNxtLeg: Time elapsed since the last check of infor-
mation related to the next flight leg.

These last two variables have been designed to get information about the
focus of attention of the pilot, whether it is centred on the current leg or on
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the next one. It could be very significant whenever an error appears, to know
if the pilot’s information cues were focused on the right leg.

Concerning the group of variables just described, it could be argued that
checking the map provides more information to the pilot, but potentially have
a negative impact on the SA. In general, a pilot who only requires textual infor-
mation and the conventional instruments to fly shows a better knowledge of
the route than a pilot who needs to check the position in the map continuously.
This statement is in any case arguable, since modern aircraft systems offering
moving map representations offer very valuable information to the pilot for
the sake of safety. In any case, for the SA calculation of this experiment, the
variables related to these checks have not been weighted or manipulated to
imply this.

• dscrPBNdeviationIntegrCorr: This variable summarises a computation
of the integration of the time in which the aircraft has been subject to
a deviation with respect to the route. The meaning of its values is the
following:

– 0: The error is small or happened for a very short time.

– 1: It may take longer to make, but the error is small (< 0.8 NM).

– 2: The error has already reached 0.8 NM, but its accumulation is not
yet excessive.

– 3: The error has already reached 0.8 NM, and its accumulation is
excessive (it does not appear in the figure).

8.2.2 Training and test datasets

For the training dataset, we have performed 27 simulated flights. All of
them correspond to the same route, as explained previously. All flights have
errors in a certain amount, but the accuracy of horizontal route maintenance
is similar to the one found in real flights flown by professional pilots without
using autopilots.

Figure 8.4 shows the map horizontal route, where it can be seen that some-
times the pilot makes mistakes that cause a deviation from the route.

Figure 8.5 shows miniature map representations of the 27 flights used for the
training dataset. Some of them are almost perfect in terms of the precision of
lateral navigation, while others have deviations that can typically occur when
pilots have low SA and may deviate from the route. An effort has been made
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Figure 8.3: Example of the variable PBNDeviationIntegrCorr.

to generate simulated flights for this training dataset in realistic conditions
and without dangerous situations.

Concerning the test dataset, a total of 6 flights have been generated and
used to test the SA calculation. Two of them are good in terms of precision and
maintaining a correct SA, and four are erroneous, since the pilot makes mis-
takes that are translated into unacceptable errors in the precision of the route.
In terms of the context of the simulation, the methodology consisted basically
in performing the flight with external distractions. More details about the in-
terpretation of the results shown by the test dataset are provided in Section
8.3
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Figure 8.4: Map representation of one training flight with inaccuracies in horizontal
position.
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Figure 8.5: Map representation of the 27 flights used for the training dataset.
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8.3 Results of the SA estimation

8.3.1 Principles of the estimation

The algorithm is based on the model described in Section 8.1 and for the last
experiment of this research, we have used the variables explained in Section
8.2. It only computes the SA associated to pilot errors in maintaining the hor-
izontal deviation from the route, not because of the algorithm itself, but due
to the selection of variables already explained. This is a positive characteristic
because the algorithm is independent of the type of error to compute.

The algorithm has several outcomes, which are enumerated below and will
be further explained.

• SA probability.

• Estimation evidence value.

• List of critical variables associated with low SA probability.

Furthermore, we have generated expert knowledge to provide an insight of
the precision of the results in the case of the four erroneous flights, especially
assigning a SA level to the instants where the pilot makes obvious mistakes,
so that the low SA probability and especially the variable that causes it can be
checked.

8.3.2 Overview of the two good test flights

We start this explanation reviewing the outcome related to the two correct
flights of the test dataset. There are two graphs for each flight: one to show
the SA probability and another for the estimation evidence value; these are
Figures 8.6 and 8.7. Since the accuracy of the pilot flying these two flights
was good, there were no deviations with respect to the planned route and the
information checks were timely, according to the navigation needs and with
adequate timing, there are no reasons to assume that the pilot had a low SA

during any instant of the flight. In fact, the pilot was consciously making
an effort to maintain good awareness at all three levels, based on an attitude
of maintaining high concentration and making an effort to accurately fly the
simulation. This translates into a high probability of SA in all instants of both
flights, as shown in Figure 8.6, where we can observe that the probability is
clearly above the defined threshold (see Section 8.1).

Figure 8.7 shows a calculated variable that we have named as an estimate
evidence value, which does not take into account the inertia that exists on
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the SA, i.e., it tends to be in the same state from one state to the next, and
therefore are more stable, but they indicate when something is being done in
a positive or negative way, so can potentially complement the SA probability
values if required. However, for the two good flights, they do not contain
any relevant information, which is a good sign. We will provide more details
about the interpretation of this variable when we analyse the figures of the
four erroneous flights.

1st good flight 2nd good flight

Figure 8.6: SA probability of the two good flights of the test dataset.

1st good flight 2nd good flight

Figure 8.7: Estimation evidence value of the two good flights of the test dataset.

8.3.3 Interpretation of the results achieved for the erroneous test flights

This subsection presents in a graphical and summarised manner the obser-
vations and calculations carried out to contrast and validate the results of the
SA estimation, including the addition of expert knowledge. As explained pre-
viously, the test dataset contains four erroneous flights. These simulations
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were carried out in an environment where the pilot was distracted by external
factors, which although not the same as in a real flight, can be assimilated, for
instance, to interruptions of flight calculations to answer ATC requests, low SA

of navigation tasks due to high workload related to other mission constraints,
or distractions due to crew members having conversations that have little to
do with tasks that provide high SA, etc.

1st Erroneous flight 2nd Erroneous flight

3rd Erroneous flight 4th Erroneous flight

Figure 8.8: SA probability of the four erroneous flights of the test dataset.

These situations that distracted the pilot were not continuous, so they only
happened at certain moments of the flight, and we will reason in this subsec-
tion, using data from different sources, that our algorithm is accurate detecting
low SA instants and identifying the variables that caused the erroneous situa-
tion. Figures 8.8 and 8.9, respectively, contain the graphical representation of
the SA probability and the estimation evidence values of the four erroneous
flights. We can now observe that the SA is far from acceptable on all these
flights, but we need to understand when it is acceptable or not, and why.

Figure 8.10 again shows the erroneous flights: in red the PBNdeviation, in
blue the number of critical occurrences, and in cyan their criticality at each
time slice, not affected by the criticality threshold.
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1st Erroneous flight 2nd Erroneous flight

3rd Erroneous flight 4th Erroneous flight

Figure 8.9: Estimation evidence value of the four erroneous flights of the test dataset.

It is important to note that the algorithm is designed to highlight when the
actions At of the pilot do not respond normally to stimuli based on the ob-
served variables Observations Ot (introduced in Section 8.1), so after perform-
ing a correction to the criticality threshold, the appearance of critical occur-
rences (dark blue) confirms that the low value of SA is due to a low situation
awareness of the pilot.

To continue with the assessment of the SA, we generated an additional vari-
able which is not part of the dataset that registers the most probable SA level
responsible for the low awareness of the pilot. This is performed incorporat-
ing expert knowledge and the Python source code is provided in the Github
repository [60] explained in the Appendix E.

Figure 8.11 shows in green and for the four erroneous flights, the SA level
considered to be the main cause of the low SA in green. This assessment on
the SA level is still not well supported and has spurious values on all flights,
but it should be noted that during the times when there is a clear diversion
from the route, the assessment is maintained in Level 3 (projection of the near
future), which is consistent with our expectations.
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1st Erroneous flight 2nd Erroneous flight

3rd Erroneous flight 4th Erroneous flight

Red: PBN deviation.
Blue: number of occurrences of critical at each time slice (modulated by the criticality threshold).
Cyan: Criticality of these critical at each time slice (not affected by the criticality threshold).

Figure 8.10: Erroneous flights and their criticality levels.
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1st Erroneous flight 2nd Erroneous flight

3rd Erroneous flight 4th Erroneous flight

Green: SA level considered to be the main cause of the low SA.

Figure 8.11: Erroneous flights with SA level according to the model.
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Expert knowledge is based on checking which action variable is causing
the criticality. At the current stage of expert assessment, only the follow-
ing variables are considered: dscrTimeNavlogCheck, dscrPBNdeviationInte-
grCorr, dscrTimeTrackCheck, dscrTimeWPTCheckCurrLeg and dscrTimeW-
PTCheckNxtLeg. For each one of them., a weight is assigned to a SA level
to be considered a main or a contributor factor. That is, depending on the ac-
tion that the pilot is performing, we consider that it variably affects the pilot’s
perception, comprehension, or projection. This assignment is available in the
code uploaded to the mentioned Github repository.

flight time var type p goo p bad
flight 4 246 dscrPBNdeviationIntegrCorr d 0.02069 0.16049

flight 4 247 dscrPBNdeviationIntegrCorr d 0.02729 0.16049

flight 4 248 dscrPBNdeviationIntegrCorr d 0.03396 0.20180

flight 5 22 dscrPBNdeviationIntegrCorr d 0.08788 0.20180

flight 5 44 dscrTimeMapCheck d 0.19370 0.48942

flight 5 45 dscrTimeMapCheck d 0.23722 0.48942

flight 5 55 dscrTimeNavlogCheck d 0.04871 0.10346

flight 5 62 dscrPBNdeviationIntegrCorr d 0.07461 0.16049

flight 5 79 dscrTimeMapCheck d 0.22231 0.48942

flight 5 147 dscrPBNdeviationIntegrCorr d 0.05013 0.16049

Table 8.2: Excerpt rows from the critical values file.

Table 8.2 contains an excerpt with several rows of the critical values file,
which is available in the Github repository. These rows indicate the variables
that are considered responsible for the SA reductions. The variable name is
identified and two numerical values are calculated, with the quotient of the
first value between the second being what indicates the intensity (the closer
to 0 the more intense) with which the anomaly is occurring, as indicated in
Equation 8.1.

In Figure 8.12 we observe several variables. The first row of graphs indi-
cates the value of the SA estimation, which in some instants falls below the
acceptable threshold, indicating that the error in the flight was due to a low
awareness of the pilot. The following row of graphs combines a representation
of the route deviation (in red), the time slices where we find a concentration
of critical findings (in dark blue), and their corresponding criticality level (in
cyan). The most relevant aspect is that the low SA corresponds with unaccept-
able route deviations. With these parameters alone we could not really discern
if the route deviation was really caused by a low SA. That is why we needed
to resort to a parameter that we named criticality threshold.
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Figure 8.12 has been included to provide an overview of all the graphs
that we have described for the four erroneous flights altogether, now with an
additional row where the reader can also see the map view of the route and
observe the deviations that the flight suffered in these erroneous flights, which
were mainly due to a lack of concentration of the pilot, who either forgot to
start the turn at the right time or made a mistake when starting the turn too
early. These are errors that can occur with some frequency to real pilots who
fly an instrumental navigation manually.

1st Erroneous flight 2nd Erroneous flight 3rd Erroneous flight 4th Erroneous flight

Red: route deviation.
Dark blue: concentration of critical findings.
Cyan: criticality level.
Green: SA Endsley level assigned to low SA according to expert knowledge.

Figure 8.12: Overview of erroneous flights comparing SA estimation (first row) with
other parameters.

We finally include in this subsection, for comparison purposes, Figures 8.13

and 8.14 that contain the graphs of criticality and expert knowledge corre-
sponding to the two good flights, so that the reader can compare them with
those of the erroneous flights previously described. It seems clear for us that
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1st good flight 2nd good flight

Red: PBNdeviation.
Blue: number of occurrences of critical at each time slice (modulated by the criticality threshold).
Cyan: criticality of these critical at each time slice (not affected by the criticality threshold).

Figure 8.13: Good flights and their criticality levels.

1st good flight 2nd good flight

Green: SA level considered to be the main cause of the low SA.

Figure 8.14: Good flights with SA level according to the model.

in these cases the values of the criticality indicators are much less persistent,
and that the SA level assessment never remains at level 3 to indicate the causes
of SA drops, which gives us encouraging results that our algorithm is capable
of detecting the pilot’s lack of concentration.

8.4 Future Work

We have presented a procedure to compute the SA online that is effective in
a reduced setting. In the future, we plan to improve the SA model in several
directions:
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• To enlarge the experimental setting including more learning and test
flights.

• To consider more variables and more SA modalities (horizontal SA, ver-
tical SA, etc.) considering that there can be dependence among the dif-
ferent SA types.

• To improve the modelling procedures, by allowing more general models
apart from logistic and linear regression, perhaps by defining instrumen-
tal variables.

• To consider the hidden SA values as missing values and to estimate their
probabilities from flights by algorithm EM or variational procedures.

• To integrate the online SA computation in our simulation environment.
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9.1 Contributions

In this research, we have worked to provide a comprehensive summary
of the factors that surround information management in the cockpit of an
aircraft, from the perspective of their influence on situation awareness and
the possibility to build a model to provide a measure of SA uding Bayesian
networks.

We have focused on the following topics:

• Introducing SWIM and its standards: AIXM, FIXM and WXXM.

• We paid special attention to the management of information in air nav-
igation, the experiments focused on common IFR flights with standard
settings.

• We have followed the evolution of PBN, which is a fundamental concept
in future air navigation.

• We conducted an in-depth study of the topic of Situation Awareness, sup-
ported by a review of a substantial body of scientific literature. Based on
that and on our own experience, we developed a model for SA estima-
tion, leveraging Bayesian networks to provide a robust and systematic
approach to this complex domain.

From these activities, we conclude that there is a very promising field of
study, derived from the digitisation of aeronautical information management,
which is still not very mature, so there is much room for research.

We have developed a simulation environment and additional software to ex-
plore interoperability between aeronautical information sources and machine
learning tools:

• The initial version, available in 2014, already provided the possibility of
connecting to a flight simulator and collecting variables.

• Later we developed code in languages specific for machine learning, first
using R for and Elvira, and later we migrated to Python. We have per-
formed experiments on discretization, regression, and clustering, and

165
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also have implemented different reporting tools to analyse and visualise
the results.

• We have developed code to process aeronautical data of various types:
programming the data parsers for acquiring AIXM and FIXM, we con-
nected to Eurocontrol’s BADA.

• We have developed code to implement an EFB on a tablet. Although this
is not strictly inside of the thesis, it is related to the research, for a future
implementation of the SA estimation. This is a potential application of
the research.

From these activities, we conclude that there are very interesting possibil-
ities to perform flight simulations with affordable tools that could provide
students or university researchers with very valuable and realistic tools to
perform their work.

In parallel, we have analysed existing SA models, which already take infor-
mation management into account, and we have adapted them in such a way
that we have been able to design a specific SA measurement model whose ex-
perimental results show promising results. We consider the use of Bayesian
networks to be relevant, up-to-date, and a suitable path for further research in
this field.

9.2 Limitations of the study

9.2.1 Simulation bias

Due to the fact that we used simulations to perform the experiments, there
is an inherent simulation bias, which, on the other hand, has been analysed to
some extent as part of the research. Our simulation environment is very basic;
it cannot be compared to a real flight simulator, but it offers the advantage that
the design can be tailored to human factors research and to analyse specific
information cues.

9.2.2 Scope of the mission types studied

Our experiments are focused on a very specific type of flight: IFR flights of
commercial aircraft. We have performed experiments in two different flight
phases: enroute and SID. The complexity of the simulated flight is relatively
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low, but this has contributed to validate the SA estimation model because we
could focus on specific situations and information cues.

9.2.3 Limitations of Bayesian networks

During different phases of the research, we have worked to overcome the
limitations of Bayesian networks, especially those related to the types of vari-
ables that they can handle. We have made progress in processing continuous
variables. However, we can observe that we had difficulties in adapting the
networks to the very varied types of the data we collected.

9.2.4 Limitations on the modelling of human cognitive factors

Our approach to model the SA levels is based on the analysis of pilot actions
and their results in terms of aircraft trajectory or attitude measurements. We
are aware that there is a large area of study to investigate in a deeper way
the cognitive mechanisms of the human being and apply alternative computa-
tional approaches adopted by SA scholars.

9.3 Future work

Among the many topics in which we consider there is an interesting field
of study to continue researching, we propose the following:

• In general, it is necessary to explore the applicability of Artificial In-
telligence (AI) to the aeronautical field, particularly in light of what is
established by EASA [2].

• Continue to perform experiments of different with different scopes, to
improve the model of SA.

• Continue studying the application of risk management principles, not
only ORM.

• Explore additional ways to perform a more systematic analysis of infor-
mation management. For instance, applying information theory princi-
ples, where there is room for a study applying Bayesian networks.

• Update the simulation environment to connect to other simulation assets
and improve interoperability with additional data sources.
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• Explore the potential utility of EFBs in real flights, not only to host ap-
plications that provide information but also to potentially monitor pilot
activities and be able to detect performance anomalies to provide warn-
ings. This could be a practical application of this thesis.

• Expand the research to remotely piloted aircrafts, both with regard to
the SA measure and the management of information.

• Enlarge and improve the model for online SA computation presented in
Chapter 8 along the lines of Section 8.4.



Part IV

A P P E N D I X





A OV E RV I E W O F T H E CO N T E N TS O F
T H E A I R AC SYS T E M

A.1 Introduction

The structure of the AIRAC system, introduced in Section 3.1, is defined by
the ICAO Annex 15 [6] and the dissemination of information is supported by
the national authorities by means of the AIP. The AIRAC cycle is very relevant
for pilots and for all stakeholders involved on the execution of air operations.
Traditionally, the information was distributed in paper, but there is a de-facto
standard maintained by several industries to provide a data model for related
databases, initially developed by the Aeronautical Radio Incorporated (ARINC)
in 1975. That is the ARINC-424 specification [7], that defines how the data
contained in AIRAC cycles is structured for electronic navigation systems, and
is typically used to define the database structure of aircraft FMS. The stan-
dardized update cycle of the AIRAC system is 28 days, but the most relevant
exception are the NOTAM that have their own validity and update criteria to
meet urgency needs.

A.2 General structure

The AIRAC system contains a wide range of aeronautical data critical for
flight operations and air navigation. The data typically included in the AIRAC

updates are:

Aerodrome/Heliport Information:

• Airport and heliport names, locations, and codes.

• Runway details (dimensions, surface type, lighting).

• Taxiway layouts.

• Parking and docking procedures.

• Operational hours and available services.

Airspace Structure:
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• Airway routes.

• Controlled and restricted airspaces.

• Air traffic service routes.

• Flight information regions (FIRs).

• Special use airspace (SUAs).

Navigation Aids and Services:

• Locations and frequencies of VORs, NDBs, ILS, and other navigational
aids.

• Details on communication frequencies.

• Radar services and coverage areas.

• Surveillance systems and procedures.

Flight Procedures:

• Standard instrument departures (SIDs).

• Standard terminal arrival routes (STARs).

• Instrument approach procedures (IAPs).

• Holding patterns and en-route procedures.

• Noise abatement procedures.

Obstacles and Terrain:

• Information on obstacles affecting air navigation (e.g., tall buildings, tow-
ers).

• Terrain data relevant to flight operations.

Air Traffic Management:

• ATC procedures and protocols.

• Coordination procedures between different air traffic control centers.

• Minimum safe altitudes and flight level allocations.
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Regulatory Information:

• Temporary and permanent changes to regulations affecting air naviga-
tion.

• NOTAMs (Notices to Airmen).

Meteorological Information:

• Meteorological service locations and their services.

• Details on significant weather phenomena affecting flight safety.

Flight charts:

• En-route charts.

• Approach plates.

• Flight procedures charts.

• Aerodrome/Heliport diagrams.





B N OTA M M E S S AG E S : N AT U R E ,
S T R U C T U R E A N D E X A M P L E

B.1 Nature of the NOTAM information

This appendix has been included to provide more context about NOTAM

messages introduced in Section 3.2, basically because they have such a wide
scope of contents that the structure of the information is not comparable to
other AIXM messages. The nature of the information published by means of a
NOTAM is very varied:

• Restrictions affecting airspaces, e.g. obstructions, special use due to pub-
lic events, military operations or exercises.

• Limitations or incidences affecting communication or navigation aids.

• Temporary information about aerodrome services or facilities (runways,
taxiways, supplies, etc.).

• Severe weather-related information (although weather information has
other dedicated messages for normal situations).

The NOTAM are published only by the designated authorities:

• National aviation authorities: For example, the FAA in the case of the
United States and EASA in the case of the European Union, although the
latter does not have all competences, since some of them may be retained
by the member states.

• Air Navigation Service Provider (ANSP): FAA in the case of the United
States. In the European case, Eurocontrol is very linked to ANSPs, but
the competences are maintained by national agencies, like Enaire in the
case of Spain.

In any case, it is important to note that NOTAMs can be consulted in several
official repositories [72] that ensure the completeness and correctness of the
information they contain.
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B.2 Structure and example of the NOTAM messages

The structure of a NOTAM message is standardised to ensure clarity and
consistency, facilitating the task of the pilot or other user to understand the in-
formation contained. Typically, the structure of the message has the following
contents:

• Header: Contains an identificator and the type of message with respect
to the NOTAM: new, replacement or cancellation message.

• Body: Contains the details of the event or situation that needs to be
reported to the air operators.

There is a compromise in the standardisation of the body to ensure a good
balance between clarity, i.e. a well-structured and standardised message, and
the accuracy of the message to the real situation that needs to be reported, and
the fact that NOTAM are composed by thousands of human beings across the
world. Typically, the body includes the information structured in the following
order:

• A brief explanation, in clear text, of the situation or change being re-
ported.

• Duration of the event: The start and end dates and times of the event
need to be clearly stated in the body. The keywords "effective" and "ex-
piration" are normally used to ensure proper understanding.

• Location of the event: Either using coordinates or standard ICAO codes.
If the location is relative to a position, standardised wording is also used
to express the distances, bearings and altitudes.

We have included figures B.1, B.2 and B.3 published by the United States FAA

[46] in this appendix to provide an example that clearly shows the structure
and where the information can be found in the message.
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FAA 
 

ICAO NOTAM Format Example 

 

The example NOTAM depicts Runway 04L/22R Closed at Chicago O’Hare International Airport 

(ORD).  ORD is located within the Chicago ARTCC (KZAU) Flight Information Region (FIR).  

The effective time for the NOTAM is June 23, 2021 from 1700 to 2300z.  

 

Below is a sample NOTAM using the draft FAA ICAO NOTAM policy:  

           
 

Elements of the ICAO NOTAM 

 Q) A qualifier line, which contains coded information, coordinates, and radius for area for the  

      automated filtering of NOTAMs  

 A) The ICAO location indicator of the aerodrome or FIR in which the facility, airspace, or                  

condition being reported is located  

 B) Effective date/time (UTC)   

 C) Expiration date/time (UTC)   

 D) Schedule (optional)   

 E)  NOTAM text field is the condition in which the NOTAM is being issued or put into force. 

 F) Lower altitude limit (Used with Airspace NOTAMs)   

 G) Upper altitude limit (Used with Airspace NOTAMs)   

 

Below is the same sample NOTAM using the current Domestic NOTAM policy:  

 

                                                                                                                                     
 

 

 

Series  

In the ICAO format, NOTAMs are organized by Series, with each Series covering a specific NOTAM 

condition.  

• The Series is the first element of the NOTAM, followed by the NOTAM Number.    

• NOTAMs are numbered consecutively by Flight Information Region (FIR), and series beginning 

with S0001 each year.  The FAA will utilize 13 different series for NOTAMs.    

 

 

 

 

 

!ORD 06/001 ORD RWY 04L/22R CLSD 2106231700-2106232300 

Figure B.1: ICAO NOTAM Format Example pg. 1 [46]
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FAA 
 

The NOTAM series replaces the keywords previously used in the current domestic format.  

   

Series NOTAM Type Domestic NOTAM Subject 

B Aerodrome Maneuvering Areas RWY, TWY 

C Published Services COM, WX, ATC 

D Special Activity Airspace  SAA 

E Airspace Events and Activities (PJE, Gliders etc.) PJE 

G Airways and Air Traffic Services Routes  

H Regulatory (TFR, Security) NOTAMs  FDC, CARF 

I Apron/Ramp and Facilities APN 

J Obstructions (Crane, BLDG, Non-FCC Tower) OBST 

K FCC Obstructions (ASR assigned) OBST 

N Ground-Based Navigational Aids NAV 

R Field Condition (TALPA) NOTAM RWY 

V Published Instrument Procedures IFP 

Z Satellite Based Information GPS 

   Note: Series may be updated with final publication of the 7930.2, Notice to Airmen Policy order.  

 

Action 

The Action indicates the type of NOTAM.  The example is a new NOTAM and is classified as a 

NOTAMN.   

 

Action  Type of NOTAM 

NOTAMN Contains new information 

NOTAMR Replaces previous NOTAM 

NOTAMC Cancels previous non-auto cancel 

NOTAM 

 

 

The Qualifier “Q” Line Explained  

Q) A qualifier line, which contains coded information, coordinates, and radius for area for the automated 

filtering of NOTAMs  

 

 
 

FIR  

The first element of the qualifier line is the Flight Information Regions (FIR) In CONUS, FIR identifier is 

ARTCC identifier.  This example uses KZAU as the FIR.   

 

 

Figure B.2: ICAO NOTAM Format Example pg. 2 [46]
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FAA 
 

NOTAM Code  

The second element of the qualifier line is the NOTAM code.  The NOTAM Code forms the basis 

upon which NOTAM qualifiers TRAFFIC, PURPOSE, and SCOPE are determined for inclusion in Item 

Q) of the NOTAM Format, in addition to defining the abbreviated plain-language text which appears in 

Item E). All NOTAM code groups contain a total of five letters and the first letter is always the letter Q. 

The second and third letters identify the subject, and the fourth and fifth letters denote the condition of the 

subject being reported. The example uses QMRLC as the NOTAM code.  

 

Traffic 

This qualifier relates the NOTAM to a type of traffic and allows retrieval according to the user’s needs. 

Depending on the NOTAM subject and content, the qualifier field TRAFFIC may contain the combined 

qualifiers.  This example displays IV as the Traffic. 

Traffic  Type of Traffic 

I Instrument Flight Rules (IFR) 

V Visual Flight Rules (VFR) 

K NOTAM is a Checklist 

 

 

Purpose 

The qualifier relates a NOTAM to certain purposes (intentions) and thus allows retrieval according to the 

user’s requirements. Depending on the NOTAM subject and content, the qualifier field PURPOSE may 

contain combined qualifiers.  This example displays NBO as the Purpose.  

Purpose  Purpose description 

N NOTAM selected for the immediate attention of aircraft operators 

B NOTAM selected for pre-flight information briefing 

O NOTAM concerning flight operations 

M Miscellaneous NOTAM; not subject for briefing, but is available on request 

K NOTAM is a Checklist 
 

Scope 

The scope qualifiers are used to categorize NOTAMs. Depending on the NOTAM subject and content, 

the qualifier field SCOPE may contain combined qualifiers. This example uses A as the scope.  

  

Scope           Scope Description 

A Aerodrome 

E Enroute 

W Navigation warning 

K Checklist 

 

Lower Limit and Upper Limit 

The lower and upper limit field applies mainly to airspace related NOTAMs. Most aerodrome-related 

information, qualifier scope ‘A’, refers to ground installations for which the insertion of lower/upper limit 

is not relevant. Therefore, such NOTAMs must include the default values of 000/999.  

 

 

Figure B.3: ICAO NOTAM Format Example pg. 3 [46]





C O R M S U RV E Y

C.1 Overview

The survey was carried out in March 2017 after the results of the first two
experiments were analysed and it became clear that a refined set of variables
was necessary to improve the results of the SA estimation. This appendix
shows an extract of the questions included in the survey and some basic statis-
tics to illustrate which options are given priority by the subjects. The survey
was completed by only 4 people, but because all of them were experienced
helicopter IFR instructors, the outcome was considered relevant in terms of
identifying qualitative information to prioritise the collection of variables.

The tables included in the following pages show that the questionnaire pre-
sented three different situations that the subjects needed to assess.

The first situation was referred to flight preparation, and the questions iden-
tified items to be collected to fly an instrumental flight departure, which is
the type of procedure that we later selected for the PBN experiment performed
in 2022. With respect to the second situation, in general, the main concern of
the pilots was maintaining altitude, but for our research the most interesting
outcome was that the comments were orientated towards having updated in-
formation, whether in electronic or digital format, and focussing attention in
the next route leg. For both of them, the responses were rated from 1 to 10 to
measure the relevance of each answer, although all the numerical values are
merely intending to support the qualitative assessment.

Finally, the last situation was set on an Instrument Meteorological Condi-
tions (IMC) flight, which implies adverse weather conditions for helicopter
pilots, and was specifically orientated to receive feedback about which infor-
mation was most demanded for each flight phase. The most relevant outcomes
are highlighted in the text, but we do not provide numerical data. For us, the
most important finding was related to the pilots’ concern about making mis-
takes during turns, and this also influenced the design of the PBN experiment
that we designed a few years later.

181



182 ORM Survey

#1 10 10
#2 0 0 2 6 8
#3 6 7 10 9 9
#4 5 7 10 10 10
Av. 3,67 4,67 7,33 8,75 9,25 6,73
#1 10 9
#2 0 3 3 6 8
#3 8 9 10 10 10
#4 8 9 10 10 10
Av. 5,33 7,00 7,67 9,00 9,25 7,65
#1 10 10
#2 2 4 5 8 9
#3 7 10 10 10 10
#4 6 10 10 10 10
Av. 5,00 8,00 8,33 9,50 9,75 8,12
#1 9 8
#2 6 6 7 7 8
#3 9 9 9 9 9
#4 10 10 10 10 10
Av. 8,33 8,33 8,67 8,75 8,75 8,57
#1 9 8
#2 6 6 7 7 8
#3 9 9 9 10 9
#4 10 10 10 10 10
Av. 8,33 8,33 8,67 9,00 8,75 8,62
#1 9 9
#2 5 5 7 7 9
#3 9 10 10 9 9
#4 10 10 10 10 10
Av. 8,00 8,33 9,00 8,75 9,25 8,67
#1
#2 4 4 5 7 7
#3 9 9 9 9 9
#4 10 10 10 10 10
Av. 7,67 7,67 8,00 8,67 8,67 8,13

6,62 7,48 8,24 8,92 9,10

Reference speeds for takeoff and climb

Average

Cloud ceiling at departure airport

Probability of precipitation

Freezing level

NOTAM of the departure TMA/CTA

NOTAM of the departure airport

Maximum climb gradient that I will be able to maintain

SITUATION 1: When preparing for an IFR flight, what information do you need to collect for the 
instrument departure, based on the different conditions exposed?

Acronyms:
CAVOK: cloud and visibility OK
CTA: Airport Control Area 
IMC: Instrument Meteorological Conditions
TMA: Terminal Manoeuvring Area

CAVOK in 
summer

CAVOK in 
winter

Low-level fog 
and CAVOK at 
higher altitude

Medium probability 
of IMC and 

inexperienced 
copilot

High probability of 
IMC in winter, at 

night, highly 
experienced copilot

Figure C.1: Situation 1 presented in the ORM survey.
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#1 5 6 8 9 9
#2 2 4 6 8 9
#3 7 8 9 9 9
#4 7 8 9 10 10
Av. 5,25 6,50 8,00 9,00 9,25 7,60
#1 8 9 9
#2 3 5 7 9 10
#3 8 9 9 9 10
#4 8 9 10 10 10
Av. 6,33 7,67 8,50 9,25 9,75 8,30
#1
#2 1 3 5 7 9
#3 8 9 10 10 10
#4 10 10 10 10 10
Av. 6,33 7,33 8,33 9,00 9,67 8,13
#1
#2 2 4 7 9 10
#3 9 9 10 9 9
#4 8 9 9 9 9
Av. 6,33 7,33 8,67 9,00 9,33 8,13
#1 8 8 8
#2 0 1 2 3 4
#3 8 9 9 9 9
#4 10 10 10 10 10
Av. 6,00 6,67 7,25 7,50 7,75 7,03
#1 5 6 8 10 10
#2 5 7 8 10 10
#3 9 9 9 9 9
#4 10 10 10 10 10
Av. 7,25 8,00 8,75 9,75 9,75 8,70
#1 5 6 8 10 10
#2 5 7 8 10 10
#3 9 9 9 9 9
#4 10 10 10 10 10
Av. 7,25 8,00 8,75 9,75 9,75 8,70

6,39 7,36 8,32 9,04 9,32

Altitudes of airway waypoints

Altitudes of STAR waypoints

Average

Relative position to the last route waypoint

Relative position to the next route waypoint

Lateral deviation from the route

Radio frequency of next control center

Time to next route waypoint

SITUATION 2: During an IFR flight, in the final sections of the airway or at the beginning of the STAR, 
with the environmental conditions described in each column of the following table, indicate how 

relevant you consider it to be to know the data expressed in the different rows:

VMC
IMC with no 

risk of icing or 
thunderstorms

IMC with 
low risk of 

icing

IMC with 
high risk of 

icing

Presence of 
thunderstorm 
cores on the 

route

Figure C.2: Situation 2 presented in the ORM survey.
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SITUATION 3: Information relevant when making an assessment for IFR flight in IMC 

 

 

Probability of being assigned a specific SID: 8 

Knowing in advance the times when I will be transferred from the frequency from taxiing to the end of the SID: 

Knowing the runway visual range for takeoff: 7 

Knowing the height of the cloud ceiling for takeoff: 10 

Knowing the height of the cloud ceiling for touchdown: 10 

Knowing which phases of the flight will be in IMC: SID: 9   AWY: 7   STAR: 7    APP: 9 

If you could have statistical information about your errors or inaccuracies in flight, what information would be most relevant in each 
case? (Please try to give a relevance value based on a compromise between the severity of the error or inaccuracy and the 
probability/frequency with which it usually occurs to you) 

Takeoff and initial climb: 

V1/V2/VBROC calculations: / 

Maximum climb slope/variometer calculations: 8/ 

Forgetting to raise landing gear: / 

Forgetting to turn on anti-ice: 7/ 

Changing radio frequency too early: / 

Changing radio frequency too late: / 

Turning late: /  

Turning early: /  

Turning to the wrong side: 10 

Other: / 

 

SID: 

Turning late: / 

Turning early: /  

Turning to the wrong side: / 

Incorrect radio frequency input: / 

Incorrect VOR frequency input: 7/ 

Incorrect GPS coordinate input:  7/ 

Selecting an inappropriate source in the RMI: / 

Selecting too high an altitude in the FD: / 

Selecting too low an altitude on the FD: / 

Forgetting to set the altimeter: 8/ 

Forgetting to turn on the anti-ice:  / 

Other: Importance of knowing presence of icing conditions. 

Figure C.3: Situation 3 presented in the ORM survey (page 1).
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AWY: 

Lateral deviation from the route: / 

Maintaining an inappropriate altitude: 7/ 

Miscalculating the GS: / 

Entering a wrong radio frequency: / 

Entering a wrong VOR frequency: / 

Entering a wrong GPS coordinate: / 

Selecting an inappropriate source on the RMI: / 

Forgetting to make a radio call: 7/ 

Forgetting a fuel check: / 

Other: 7: having to fly lower than minimum airway altitude in VMC / 

STAR: 

Turning late: / 

Turning early: / 

Turning to the wrong side: / 

Misreading the STAR chart: / 

Misreading the Nav chart: / 

Misreading the kneeboard: / 

Miscalculating the rate of descent: / 

Starting to descend too late: / 

Misinterpreting a DME distance: / 

Misinterpreting a GPS distance: / 

Other: 7: carry outdated charts/  

FINAL COMMENTS 

Please write comments here on information relevant to the SA during the flight, especially if you feel that it has not been mentioned 
enough during the questionnaire: 

1. Check that we carry all necessary charts, including alternate airports, and that they are updated. If you carry an 
EFB, prepare a backup, as with the GPS. 

Please write comments here on information relevant to the ORM assessment before the flight, especially if you feel that it has not 
been mentioned enough during the questionnaire: 

1. Charts updated. 
2. Adequeste crew rest. 

Figure C.4: Situation 3 presented in the ORM survey (page 2).





D DATA S E TS

Several datasets have been used in this thesis, either generated from simula-
tions, provided by third parties or downloaded from the internet. It has been
attempted to use as many types of the data sources explained in chapter 3 as
possible, with the aim of integrating real and simulated data from different
sources in order to perform the experiments applying data mining techniques
to identify patterns that could lead to the quantification of SA. Table D.1 shows
an overview of some of the main datasets used during the research, followed
by a summary of the experiments, explaining how the datasets were used and
how variables were created or imported, and also how they were employed.

Dataset Origin Experiment used

AIXM Provided by ENAIRE Discretization
FIXM FPL Provided by ENRI -
BADA Provided by Eurocontrol -
Discretization data Generated by PostFlight Discretization
Regression data Generated by PostFlight Regression
Clustering data Laminar Data platform Clustering

Table D.1: Overview of the datasets used in this thesis.

D.1 Discretization experiment data

This experiment is explained in section D.2

D.1.1 AIXM dataset

An AIXM dataset was provided in 2014 by ENAIRE (the Spanish air navi-
gation manager and air navigation service provider). It contained navigation
information that we used to create the routes once the flight plans to carry
out the experiment were parsed. It also contained special use airspaces that
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Figure D.1: Overview of the tables in the AIXM dataset provided by ENAIRE.

we managed to represent in the map. Below we include some captures to
illustrate the database structure and the data types of these data.

General information about airspaces is stored in a specific table, in this case
named airspace_1409. These airspaces include zones of significant importance
for the pilot that are often translated into flight restrictions. See Figure D.2.

Figure D.2: Detail of an airspaces table example register.

Each airspace is modelled as a polygon, whose vertex coordinates are stored
in the airspace_1409vertex table. See Figure D.3.

Figure D.3: Detail of an airspace vertex table example register.
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The ATS routes, in most cases, also known as airways, are modelled by lines
made of segments, whose endpoint coordinates are stored in the atsroute_1409
table. See Figure D.4.

Figure D.4: Detail of an ATS route segments endpoints table example register.

The designatedpoint_1409 table contains some relevant points for navigation.
Many of them are special points of the ATS route that need to stand out, for
example, because they require special action from the pilot. See Figure D.5.

Figure D.5: Detail of a designated points example register.

The navaidsystem_1409 table contains the position coordinates of all the nav-
igation aids of the dataset coverage area. A navaid, short for navigation aid, is
a radio-frequency device on the ground that aircraft detect in order to obtain
flight position references. See Figure D.6.

Figure D.6: Detail of a navigation aid table example register.
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D.2 Regression experiment data

In this subsection we include, on the next page, a table in which can be
found the complete list of variables that were used for the regression experi-
ment, as well as the type of data in which they were stored in the correspond-
ing database. We have also include very summarized information about the
discretization thresholds, which were discussed in Section D.2, so that the
reader can have an idea of the numerical ranges of the variables that we han-
dled in the first two experiments (discretization and regression).

A column of the table is also including the type of variable, according to
the high-level classification that was presented in Section 6.4 and whose main
expected dependencies are shown in Figure 7.1.
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TYPE VAR NAME TYPE TYPE VAR NAME TYPE
AP pitch double(10,2) -41.74 11.94 IC efbjam int(11) 0 1

AP bank double(10,2) -31.35 31.48 IC efbcontentHorRelThisLeg int(11) -999 0

AP ThrottleAvg double(5,2) 0 100 IC efbcontentHorRelNextLeg int(11) -999 0

AP thr68y78y88y93y98 int(11) 0 5 IC efbcontentHorRelLastLeg int(11) -999 0

AS msec bigint(20) 7400 3867751 IC efbcontentHorExcThisLeg int(11) -999 0

AS FSXlat double(15,10) 37.19 39.74 IC efbcontentHorExcNextLeg int(11) -999 0

AS FSXlon double(15,11) -3.79 2.76 IC efbcontentHorExcLastLeg int(11) -999 0

AS alt double(10,1) 31.5 35012 IC efbcontentAltRelThisLeg int(11) -999 0

AS hdgT double(5,1) 0 360 IC efbcontentAltRelNextLeg int(11) -999 0

AS hdgM double(5,1) 0 360 IC efbcontentAltRelLastLeg int(11) -999 0

AS vs int(5) -5483 11350 IC efbcontentAltExcThisLeg int(11) -999 0

AS ias int(5) 61 355 IC efbcontentAltExcNextLeg int(11) -999 0

AS ts int(5) 61 525 IC efbcontentAltExcLastLeg int(11) -999 0

AS gs int(5) 61 548 IC efbcontentHorRelThisLegAvgGlobal int(11) -999 0

AS mach double(6,3) 0.091 0.894 IC efbcontentHorRelNextLegAvgGlobal int(11) -999 0

AS closestleg int(11) 1 2 IC efbcontentHorRelLastLegAvgGlobal int(11) -999 0

AS distacleg double(12,8) 0 25.77 IC efbcontentHorExcThisLegAvgGlobal int(11) -999 0

AS distaclegside varchar(8) L R IC efbcontentHorExcNextLegAvgGlobal int(11) -999 0

AS distaclegstart double(12,8) 0.036 63.41 IC efbcontentHorExcLastLegAvgGlobal int(11) -999 0

AS distaclegend double(12,8) 0.1 62.48 IC efbcontentAltRelThisLegAvgGlobal int(11) -999 0

AS distaclegendsecondstas int(11) 1 2102 IC efbcontentAltRelNextLegAvgGlobal int(11) -999 0

AS aclegaltdiffft double(10,1) 0 28970 IC efbcontentAltRelLastLegAvgGlobal int(11) -999 0

AS aclegalthighlow varchar(8) L H IC efbcontentAltExcThisLegAvgGlobal int(11) -999 0

EV windSpd int(5) 0 25 IC efbcontentAltExcNextLegAvgGlobal int(11) -999 0

EV windDir int(5) 0 359 IC efbcontentAltExcLastLegAvgGlobal int(11) -999 0

EV pressure int(5) 1012.9 1013.1 IC efbcontentHorRelThisLegAvg20 int(11) -999 0

EV OATemp int(5) -54 14.5 IC efbcontentHorRelNextLegAvg20 int(11) -999 0

FP closestlegstartlat double(12,8) 37.18 39.38 IC efbcontentHorRelLastLegAvg20 int(11) -999 0

FP closestlegstartlon double(12,8) -3.78 1.42 IC efbcontentHorExcThisLegAvg20 int(11) -999 0

FP closestlegendlat double(12,8) 38.15 39.56 IC efbcontentHorExcNextLegAvg20 int(11) -999 0

FP closestlegendlon double(12,8) -3.65 2.74 IC efbcontentHorExcLastLegAvg20 int(11) -999 0

FP closestlegairspeedknots int(11) 0 350 IC efbcontentAltRelThisLegAvg20 int(11) -999 0

FP closestlegairspeedmach double(12,8) 0 0.616 IC efbcontentAltRelNextLegAvg20 int(11) -999 0

FP closestleglength double(12,8) 16.5 62.5 IC efbcontentAltRelLastLegAvg20 int(11) -999 0

FP closestlegbearing double(12,8) 7 89 IC efbcontentAltExcThisLegAvg20 int(11) -999 0

FP legaltft double(10,1) 1860 31000 IC efbcontentAltExcNextLegAvg20 int(11) -999 0

SC psclat double(12,8) 0 39,57 IC efbcontentAltExcLastLegAvg20 int(11) -999 0

SC psclon double(12,8) -3.87 2.76 PA kollsman int(5) 1013 1018

SC pscdistance double(12,8) 0 136.1 PA actionhdgval int(11) -999 360

SC pscbearing int(11) 0 360 PA actionhdgsel int(11) -1 0

SC psccoincidentnameleg int(11) 0 1 PA actionspdval int(11) -999 350

SC psccoincidentnamelegwpt int(11) 0 1 PA actionspdsel int(11) -1 0

SC psccoincidentpositionleg int(11) 0 1 PA actionaltval int(11) -999 35000

SC psccoincidentpositionlegwpt int(11) 0 1 PA actionaltsel int(11) -1 0

SC pscdisttoclosestlegstart double(12,8) 0 154 PA actionfdsel int(11) -1 0

SC pscdisttoclosestlegend double(12,8) 0 109 PA actionaltset int(11) -999 1019

SC pscdisttonextlegend double(12,8) 0 108 PA jamhdgval int(11) 0 1

SC pscbearhdgdiff double(12,8) -180 180 PA jamhdgsel int(11) 0 1

SC pscbearlegbeardiff double(12,8) -180 180 PA jamspdval int(11) 0 1

SC pscjam int(11) 0 1 PA jamspdsel int(11) 0 1

SQ discrdistacleg int(11) 0 1 PA jamaltval int(11) 0 1

SQ discraltdiff int(11) 0 1 PA jamaltsel int(11) 0 1

SQ discrDistACLegAccum int(11) 0 113 PA jamfdsel int(11) 0 1

SQ discrDistACLegAvgGlobal int(11) 0 1 PA jamaltset int(11) 0 1

SQ discrDistACLegAvg20 int(11) 0 1 PA discaltsetting int(11) 0 3

SQ discrDistACLegAvg40 int(11) 0 1 PA accumActionHdgValChange int(11) 0 55

SQ accumConsecDiscrDistACLeg3orMoreDisc0
5

int(11) -999 0 PA percentActionHdgValChangeLast20 int(11) 0 55

SQ discrAltDiffAvgGlobal int(11) -999 0 PA percentActionHdgValChangeLast40 int(11) 0 55

SQ discrAltDiffAvg20 int(11) -999 0

SQ discrAltDiffAvg40 int(11) -999 0

SQ accumConsecDiscrAltDiff3orMoreDisc05 int(11) -999 0

Thresholds Thresholds

Figure D.7: Variables of the Regression Experiment
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D.3 Trajectory Clustering experiment data

For this experiment we collected 2520 FIXM messages, each one of them
corresponding to the trajectory of a commercial flight departing from Malaga
Costa del Sol airport (ICAO designator LEMG), although not all these flights
were completely flown, which also contributed to testing the algorithm. This
airport was selected because we were familiar with its departure procedures
and due to its high density of traffic and because the geometry of the SID,
avoiding a city very close to the east of the airport, and a range of mountains
with high elevation relatively close to the airport, in the north, seems chal-
lenging in terms of turns, making it not so simple for the pilots to fly these
procedures when there is a high load of traffics.

We parsed the FIXM flight messages using the application developed for
SASWIM 2017 and the result was loaded in a SQL database, in two tables: one
with a row for each flight and one with a row for each sampled point, which
had a total of 373.441 records, which means that on average each flight was
summarized in 148 samples.

Figure D.8 shows the fields found in the FIXM messages schematically [97].
Below is a short description of the fields parsed for each flight, and Figure
D.9 contains a table with samples of data to support the understanding of its
contents.

• flight_id: Correlative index to identify the flight (generated in the app).

• flight_ident: IATA flight designator (aka. flight number).

• flight_ident_num: Index provided by the data source.

• arr_arpt_icao: Identifier of arrival airport.

Actual 
Departure 

Time

GUFI

A/C 
model

Trajectory:
• Lat/Lon
• GS
• Calibrated 

Altitude Expanded 
RouteRoute

(FPL box 15)

Arrival 
Airport

Departure
Airport

ETD

Callsign
Status

Figure D.8: FIXM schematic of the fields found in the trajectories downloaded for the
Clustering experiment.
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• etd_timestamp_sec: Estimated time of departure (timestamp format).

• etd_timestamp_flag: Estimated Time of Departure (ETD) flag without
relevant information.

• etd_hour: Estimated time of departure (decimal format).

• take_off_found: Flag to confirm take off.

• rwyName: Departure runway identifier.

• rwyLon: Departure runway longitude coordinate.

• rwyLat: Departure runway latitude coordinate.

• dist_rwy_to_first_traj_point: Distance from the departure runway to first
trajectory point.

• dist_dept_arpt_first_point: Distance from the departure ARP to first tra-
jectory point.

• dist_dept_arpt_last_point: Distance from the departure ARP to last tra-
jectory point.

• dist_arr_arpt_first_point: Distance from the arrival ARP to first trajectory
point.

• dist_arr_arpt_last_point: Distance from the arrival ARP to last trajectory
point.

• FPLSID: Planned SID designator, when known.

• FPL_first_wpt: Designator of first route waypoint (deduced by our ap-
plication).

• ac_model: Aircraft model designator.

• 15 sets of the following fields, to summarize the route of the planned
departure procedure:

– dpx.lon: Longitude coordinate of departure procedure.

– dpx.lat: Latitude coordinate of departure procedure.

– dpx.type: Text designator of the departure procedure (SID + its des-
ignator).

– dpx.name: Name of SID point closest to this point.
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– dpx.dst_closest: of SID point closest to this point.

– dpx.dst_rwy: Distance of point to departure runway.

– dpx.brg_rwy: Bearing from point to departure runway.

It should be noted that we implemented an algorithm that detected the
departure procedure flown in each flight and inserted it in the flight descriptor,
as a sequence of 15 points. This was done to facilitate the comparison between
the planned flight route and the actual flown path, for the initial phase of the
flight,m which was the focus of the experiment (approximately the first 10

minutes of flight after the take-off).
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880 U27182 135 EGGP 1532460300 1 21,4 Y 13 -4,512594 36,684536 3,42 1,49 390,78 1005,15 612,94 N BLN A319 -4,51259 36,68454 RWY
881 FR6653 152 EGPH 1532456700 1 20,4 N 13 -4,512594 36,684536 2,31 1,64 885,98 1159,38 272,57 N BLN B738 -4,51259 36,68454 RWY
883 BA2719 131 EGKK 1532460840 1 21,6 Y 13 -4,512594 36,684536 3,13 1,24 515,76 906,51 387,59 N BLN A319 -4,51259 36,68454 RWY
884 HV6118 158 EHAM 1532456664 1 20,4 Y 13 -4,512594 36,684536 3,52 1,48 1010,48 1090,43 7,03 N BLN B738 -4,51259 36,68454 RWY
885 EI889 142 EICK 1532458380 1 20,9 Y 13 -4,512594 36,684536 2,31 1,13 714,24 941,92 226,38 BLN2C BLN A320 -4,51259 36,68454 RWY
886 U26058 135 EGGD 1532462400 1 22 N 13 -4,512594 36,684536 2,27 1,6 376,98 889,67 511,03 N BLN A320 -4,51259 36,68454 RWY
887 U22410 135 EGGW 1532461800 1 21,8 N 13 -4,512594 36,684536 1,84 1,1 477,31 945,53 462,58 N BLN A320 -4,51259 36,68454 RWY
888 SK584 158 EKCH 1532456820 1 20,5 Y 13 -4,512594 36,684536 2,33 0,92 1122,93 1533,39 338,45 N BLN A319 -4,51259 36,68454 RWY
890 W64412 141 LBSF 1532460720 1 21,5 Y 13 -4,512594 36,684536 3,28 1,75 837,14 1711,79 677,88 N PEPAS A321 -4,51259 36,68454 RWY
891 QS1153 164 LKPR 1532457540 1 20,7 Y 13 -4,512594 36,684536 3,32 1,68 1133,04 1383,59 14,9 N PEPAS B738 -4,51259 36,68454 RWY
892 EI589 142 EIDW 1532461440 1 21,7 Y 13 -4,512594 36,684536 3,03 1,44 784,99 1011,33 265,9 N BLN A321 -4,51259 36,68454 RWY
893 U28616 135 EGKK 1532462100 1 21,9 Y 13 -4,512594 36,684536 2,57 0,81 780,58 906,31 134,42 N BLN A20N -4,51259 36,68454 RWY
894 SU2529 168 UUEE 1532461260 1 21,7 N 13 -4,512594 36,684536 2,71 2,11 754,48 2767,47 1862,93 N PEPAS B738 -4,51259 36,68454 RWY
895 AY1676 154 EFHK 1532466660 1 23,2 Y 13 -4,512594 36,684536 3,64 1,62 324,6 2266,09 1990,22 N BLN A321 -4,51259 36,68454 RWY
898 SK4308 158 EFHK 1532485497 1 4,4 N 31 -4,485825 36,665408 2,25 1,59 161,38 2266,96 2125,57 N BLN A20N -4,48583 36,66541 RWY
899 SK6204 158 EKCH 1532485305 1 4,4 N 31 -4,485825 36,665408 2,52 1,89 187,12 1533,61 1360,29 N BLN A20N -4,48583 36,66541 RWY
900 VY2608 175 LEBB 1532486969 1 4,8 Y 31 -4,485825 36,665408 2,78 1,12 246,43 408,4 159,54 N BLN A320 -4,48583 36,66541 RWY
901 FR4047 152 EKCH 1532487480 1 5 Y 31 -4,485825 36,665408 2,18 1,02 190,73 1533,6 1356,28 N BLN B738 -4,48583 36,66541 RWY
902 D85070 124 EKCH 1532487508 1 5 Y 31 -4,485825 36,665408 3,38 1,65 175,94 1533,58 1369,12 N BLN B738 -4,48583 36,66541 RWY
903 YW8260 176 GEML 1532488494 1 5,2 Y 31 -4,485825 36,665408 1,58 0,24 108,96 125,04 6,83 N BLN AT72 -4,48583 36,66541 RWY
904 UX1039 173 LFPG 1532486760 1 4,8 Y 31 -4,485825 36,665408 3,03 1,34 458,27 852,17 387,83 N BLN B738 -4,48583 36,66541 RWY
912 D85140 124 EPWA 1532490600 1 5,8 Y 31 -4,485825 36,665408 3,24 1,29 260,22 1788,97 1486,44 N PEPAS B738 -4,48583 36,66541 RWY
913 FR5945 152 EGHH 1532488211 1 5,2 N 31 -4,485825 36,665408 1,96 1,25 539,5 860,64 331,31 N SVL B738 -4,48583 36,66541 RWY
914 FR2524 152 ESGG 1532491980 1 6,2 Y 31 -4,485825 36,665408 3,2 1,11 137,2 1612,57 1479,2 N BLN B738 -4,48583 36,66541 RWY
915 FR7045 152 EIDW 1532490180 1 5,7 N 31 -4,485825 36,665408 2,75 2,17 477,6 1008,96 546,33 N BLN B738 -4,48583 36,66541 RWY
916 DL270 144 KJFK 1532492580 1 6,4 Y 31 -4,485825 36,665408 3,59 1,72 170,9 4162,12 3975,85 N SVL B752 -4,48583 36,66541 RWY
918 D85000 124 EGKK 1532490000 1 5,7 Y 31 -4,485825 36,665408 3,44 0,76 512,53 905,8 390,82 N BLN B738 -4,48583 36,66541 RWY
919 QR156 163 OTHH 1532496300 1 7,4 N 31 -4,485825 36,665408 1,87 1,14 170,72 3436,28 3224,65 N ULPEP B788 -4,48583 36,66541 RWY
920 UX1011 173 LFPG 1532496600 1 7,5 Y 31 -4,485825 36,665408 2,07 1,14 150,34 852,31 699,9 N BLN B738 -4,48583 36,66541 RWY
921 SN3734 161 EBBR 1532498280 1 8 Y 30 -4,480531 36,679575 2,73 1,25 180,61 1009,01 830,92 N BLN A320 -4,48053 36,67958 RWY
922 TB3262 150 EBBR 1532497882 1 7,9 Y 30 -4,480531 36,679575 2,86 1,63 221,6 1009,06 793,59 N BLN B38M -4,48053 36,67958 RWY
923 TB3832 150 EBOS 1532498804 1 8,1 Y 31 -4,485825 36,665408 3,69 1,77 103,27 976,4 871,53 N BLN B38M -4,48583 36,66541 RWY
924 FR6139 152 LIRF 1532499390 1 8,3 N 30 -4,480531 36,679575 2,24 1,9 230,53 1051,15 772,06 N ROLAS B738 -4,48053 36,67958 RWY
925 U22734 135 LIMC 1532498160 1 7,9 Y 30 -4,480531 36,679575 2,64 1,29 298,77 958,19 611,69 N PEPAS A319 -4,48053 36,67958 RWY
926 U28602 135 EGKK 1532500200 1 8,5 N 30 -4,480531 36,679575 1,95 1,58 102,85 905,16 801 N BLN A320 -4,48053 36,67958 RWY
927 ST4115 167 EDDG 1532500140 1 8,5 N 30 -4,480531 36,679575 2,49 2,19 152,23 1180,75 1024,58 N BLN A319 -4,48053 36,67958 RWY
929 FR2591 152 EDDB 1532500740 1 8,7 N 30 -4,480531 36,679575 1,66 1,29 104,51 1432,38 1333,84 N BLN B738 -4,48053 36,67958 RWY
930 U23956 135 LFPG 1532500980 1 8,7 N 30 -4,480531 36,679575 1,63 1,24 242,5 851,79 614,33 N BLN A320 -4,48053 36,67958 RWY
931 W63190 141 LROP 1532501097 1 8,7 Y 30 -4,480531 36,679575 2,73 1,53 289 1895,85 1545,83 N ROLAS A320 -4,48053 36,67958 RWY
932 D8515 124 EFHK 1532500860 1 8,7 N 30 -4,480531 36,679575 1,85 1,47 139,39 2266,53 2141,34 N BLN B738 -4,48053 36,67958 RWY
933 TO3161 163 LFPO 1532501520 1 8,9 N 30 -4,480531 36,679575 1,91 1,54 353,4 831,84 483,3 N BLN B738 -4,48053 36,67958 RWY
934 VY3068 175 GCLP 1532502900 1 9,3 N 31 -4,485825 36,665408 3,82 3,31 197,9 837,24 620,86 N PIMOS A320 -4,48583 36,66541 RWY
935 HV6652 158 EHEH 1532503500 1 9,4 Y 13 -4,512594 36,684536 3,77 1,73 134,99 1066,33 929,4 N BLN B738 -4,51259 36,68454 RWY
936 U21924 135 EGCC 1532501940 1 9 Y 30 -4,480531 36,679575 2,97 1,67 359,74 1008,52 649,08 N BLN A320 -4,48053 36,67958 RWY
938 591 110 LOWW 1532499300 1 8,3 Y 13 -4,512594 36,684536 3,63 1,43 249,54 1437,71 1151,01 N BLN A320 -4,51259 36,68454 RWY
939 VY2986 175 LFBD 1532504220 1 9,6 Y 13 -4,512594 36,684536 3,32 1,25 286,07 539,58 252,38 N BLN A320 -4,51259 36,68454 RWY
940 DY4222 157 ESSA 1532504100 1 9,6 N 13 -4,512594 36,684536 2,01 1,29 271,88 1925,99 1686,82 N BLN B738 -4,51259 36,68454 RWY
941 U27958 135 EHAM 1532504040 1 9,6 Y 13 -4,512594 36,684536 3,17 1,45 305,1 1090,53 788,29 N BLN A319 -4,51259 36,68454 RWY
942 PF2934 150 EGBB 1532505720 1 10 N 13 -4,512594 36,684536 2,37 1,71 291,64 961,79 667,54 N BLN B737 -4,51259 36,68454 RWY
943 TB3516 150 LFPO 1532503560 1 9,4 Y 13 -4,512594 36,684536 3,27 1,5 621,12 832,58 187,21 N BLN B738 -4,51259 36,68454 RWY
944 FR4469 152 EGNX 1532506140 1 10,2 N 13 -4,512594 36,684536 3,63 3,13 230,19 989,3 755,56 N BLN B738 -4,51259 36,68454 RWY
945 BA2713 131 EGKK 1532504820 1 9,8 Y 13 -4,512594 36,684536 1,92 0,99 500,17 906,48 402,59 N BLN A319 -4,51259 36,68454 RWY
947 U23112 135 EGSS 1532501100 1 8,8 N 31 -4,485825 36,665408 3,61 3,06 895,83 954,48 52,79 N BLN A319 -4,48583 36,66541 RWY
949 HV6116 158 EHAM 1532502900 1 9,3 Y 30 -4,480531 36,679575 1,86 1,36 917,7 1089,85 123,6 N BLN B738 -4,48053 36,67958 RWY
950 HV5022 158 EHRD 1532506140 1 10,2 Y 13 -4,512594 36,684536 2,21 0,82 454,32 1062,26 600,02 N BLN B737 -4,51259 36,68454 RWY
951 351 104 EDDL 1532506140 1 10,2 Y 13 -4,512594 36,684536 2,24 1,16 675,99 1106,49 434,21 N BLN B738 -4,51259 36,68454 RWY
952 EI583 142 EIDW 1532508000 1 10,7 N 13 -4,512594 36,684536 2,84 2,23 402,65 1011,95 619,88 N BLN A333 -4,51259 36,68454 RWY
953 LS558 159 EGNT 1532506980 1 10,4 Y 13 -4,512594 36,684536 2,93 1,63 556,42 1115,33 561,22 N BLN B738 -4,51259 36,68454 RWY
956 FR2575 152 EHEH 1532510100 1 11,3 N 13 -4,512594 36,684536 4,14 3,68 240,45 1066,61 835,09 N BLN B738 -4,51259 36,68454 RWY
957 FR9902 152 EICK 1532507940 1 10,7 N 13 -4,512594 36,684536 2,33 1,66 670,06 942,3 332,86 N BLN B738 -4,51259 36,68454 RWY
959 TO3165 163 LFPO 1532511840 1 11,7 Y 13 -4,512594 36,684536 2,87 0,91 244,64 832,63 592,48 N BLN B738 -4,51259 36,68454 RWY
961 LS1204 159 EGBB 1532507940 1 10,7 Y 13 -4,512594 36,684536 4,16 2,47 757,22 962,14 203,02 N BLN B738 -4,51259 36,68454 RWY
962 BE1678 135 EGHI 1532509980 1 11,2 N 13 -4,512594 36,684536 4,32 3,86 674,07 878,94 196,3 N BLN E195 -4,51259 36,68454 RWY
964 VY8184 175 LFPG 1532513400 1 12,2 N 13 -4,512594 36,684536 1,91 1,18 111,49 852,54 736,83 N BLN A320 -4,51259 36,68454 RWY
965 LS1406 159 EGSS 1532511300 1 11,6 N 13 -4,512594 36,684536 2,26 1,58 556,66 956,33 394,82 N BLN B734 -4,51259 36,68454 RWY
967 U26756 135 EGAA 1532510400 1 11,3 Y 13 -4,512594 36,684536 3,24 1,67 861,41 1084,96 237,3 N BLN A320 -4,51259 36,68454 RWY
969 EW9537 156 EDDL 1532517420 1 13,3 Y 13 -4,512594 36,684536 2,62 1,04 171,49 1106,41 940,85 N BLN A320 -4,51259 36,68454 RWY
970 LS810 159 EGCC 1532511000 1 11,5 N 13 -4,512594 36,684536 2,34 1,67 747,82 1010,46 266,83 N BLN B752 -4,51259 36,68454 RWY
971 KL1038 151 EHAM 1532511000 1 11,5 Y 13 -4,512594 36,684536 3,7 1,6 987,11 1090,47 42,96 N BLN B738 -4,51259 36,68454 RWY
972 D85052 124 ESSA 1532518080 1 13,5 N 13 -4,512594 36,684536 2,35 1,69 104,02 1925,86 1821,24 N BLN B738 -4,51259 36,68454 RWY
974 TK1306 159 LTBA 1532510100 1 11,3 Y 13 -4,512594 36,684536 2,3 1,43 1169,77 2014,4 533,4 N TARIK A321 -4,51259 36,68454 RWY
975 BA2715 131 EGKK 1532513580 1 12,2 Y 13 -4,512594 36,684536 3,37 0,73 878,82 906,3 9,75 N TARIK A320 -4,51259 36,68454 RWY
976 FR7055 152 EIDW 1532518200 1 13,5 N 13 -4,512594 36,684536 2,18 1,49 327,61 1011,41 698,12 N BLN B738 -4,51259 36,68454 RWY
978 LX2115 164 LSZH 1532519400 1 13,8 N 13 -4,512594 36,684536 1,96 1,25 376,73 1015,31 643,12 N BLN A320 -4,51259 36,68454 RWY
979 SU2621 168 UUEE 1532519280 1 13,8 N 13 -4,512594 36,684536 2,88 2,29 448,51 2767,42 2246,12 N PEPAS B738 -4,51259 36,68454 RWY
980 FR2334 152 EHAM 1532520420 1 14,1 N 13 -4,512594 36,684536 3,25 2,69 239,61 1090,71 855,43 N BLN B738 -4,51259 36,68454 RWY
981 VY2655 175 LEST 1532522280 1 14,6 N 13 -4,512594 36,684536 3,88 3,36 139,71 444,33 307,08 N SVL A320 -4,51259 36,68454 RWY
982 SK6354 158 ENGM 1532520900 1 14,3 Y 13 -4,512594 36,684536 2,6 1,02 204,45 1693,28 1493,62 N BLN A20N -4,51259 36,68454 RWY
983 DS1434 151 LSGG 1532520540 1 14,2 N 13 -4,512594 36,684536 1,98 1,28 337,06 856,71 527,39 N BLN A320 -4,51259 36,68454 RWY
984 D85072 124 EKCH 1532518800 1 13,7 Y 13 -4,512594 36,684536 3,69 1,45 682,52 1533,24 870,62 N BLN B738 -4,51259 36,68454 RWY
985 D85100 124 EDDM 1532523060 1 14,9 N 13 -4,512594 36,684536 2,71 2,1 202,83 1201,8 966,79 N PEPAS B738 -4,51259 36,68454 RWY
986 VY8366 175 EHAM 1532521260 1 14,4 N 13 -4,512594 36,684536 2,91 2,31 446,29 1090,62 637,45 N BLN A320 -4,51259 36,68454 RWY
987 0B4026 114 LIMF 1532519220 1 13,8 Y 13 -4,512594 36,684536 4,08 2,76 667,63 889,71 109,36 N BLN B735 -4,51259 36,68454 RWY
988 D85110 124 EDDL 1532523240 1 14,9 N 13 -4,512594 36,684536 2,19 1,51 256,02 1106,38 868,41 N BLN B738 -4,51259 36,68454 RWY
990 LS606 159 EGNX 1532521500 1 14,4 N 13 -4,512594 36,684536 4,38 3,95 337,93 989,79 646,73 N BLN B733 -4,51259 36,68454 RWY
991 VY2612 175 LEBB 1532522880 1 14,8 Y 13 -4,512594 36,684536 2,63 1,06 311,29 409,25 94,24 N BLN A320 -4,51259 36,68454 RWY
992 D85022 124 ENGM 1532517480 1 13,3 Y 13 -4,512594 36,684536 3,41 1,48 961,38 1693,29 675,72 N BLN B738 -4,51259 36,68454 RWY
993 VY6210 175 LIRF 1532525040 1 15,4 N 13 -4,512594 36,684536 1,97 1,26 174,79 1049,58 840,6 N ROLAS A320 -4,51259 36,68454 RWY
995 U28608 135 EGKK 1532524860 1 15,4 Y 13 -4,512594 36,684536 3,08 1,45 124,66 906,54 778,69 N BLN A320 -4,51259 36,68454 RWY
996 VY2122 175 LEBL 1532525760 1 15,6 Y 13 -4,512594 36,684536 3,19 1,33 158,54 481,9 298,14 N PEPAS A320 -4,51259 36,68454 RWY
997 FR4613 152 EDFH 1532522280 1 14,6 N 13 -4,512594 36,684536 1,72 0,95 492,6 1063,93 601 N BLN B738 -4,51259 36,68454 RWY
998 SK6026 158 ESMS 1532524500 1 15,3 Y 13 -4,512594 36,684536 2,44 0,84 158,71 1558,67 1411,26 N BLN A20N -4,51259 36,68454 RWY
1000 FR2563 152 ENTO 1532518320 1 13,5 N 13 -4,512594 36,684536 2,16 1,48 1144,61 1615,13 384,66 N BLN B738 -4,51259 36,68454 RWY
1002 BT678 150 EVRA 1532526398 1 15,8 N 13 -4,512594 36,684536 4,48 4,05 488,41 2095,28 1516,57 N PEPAS BCS3 -4,51259 36,68454 RWY
1003 FR2157 152 EGBB 1532523660 1 15 Y 13 -4,512594 36,684536 2,81 1,39 759,17 961,62 218,37 N BLN B738 -4,51259 36,68454 RWY
1004 SN3736 161 EBBR 1532524200 1 15,2 N 13 -4,512594 36,684536 3,67 3,13 569,83 1010,07 432,05 N BLN A320 -4,51259 36,68454 RWY
1005 UX1037 173 LFPG 1532524440 1 15,2 Y 13 -4,512594 36,684536 2,25 1,37 695,8 852,62 136,75 N BLN B738 -4,51259 36,68454 RWY
1008 TB3658 150 EBAW 1532528905 1 16,5 N 13 -4,512594 36,684536 2,64 1,99 363,45 1023,78 662,59 N BLN E190 -4,51259 36,68454 RWY
1009 AZ91 155 LIRF 1532528280 1 16,3 N 13 -4,512594 36,684536 1,87 1,14 464,72 1049,64 479,7 N ROLAS A320 -4,51259 36,68454 RWY

Figure D.9: Sample of data for flight descriptors used for the Clustering Experiment





E CO D E S A M P L E S

E.1 Repository for code samples and reports

We have set up a GitHub repository [60] where we have uploaded some
source code samples and several reports generated by our applications.

E.2 Code snippets of the communication with the fl ight
simulator

Listing E.1 shows the Lua server code running in the flight simulator side,
receiving the parameters that govern the flight simulator from the external
application.

Listing E.1: Server on the flight simulator side, to receive parameters (control actions)
into the simulator from the application.

-- The SOCKET module is built into FSUIPC, but is not active until "
required"

local socket = require("socket"); -- require "loads" the library

-- Change the host name to the name of the PC running this Server

-- The "localhost" name only serves local clients

local host = "127.0.0.1";
-- The port must match the port selected in the client and not clash with

others.

local port = "8384";
local server = assert(socket.bind(host, port));

local ack = "\n";
while 1 do

print("server: waiting for client connection...");
local control = server:accept();

control:settimeout(2);

if control ~= nil then

print("server: client connected!");
while 1 do

local command = control:receive(’*a’);
print ("server: Command just received: ");

if command == nil then
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print("server: client disconnected");
break

end

print("server: "..command);
(loadstring(command))();

end

end

control:close();--close connection (don’t confuse with closing socket)
end

Listing E.2 shows the PHP client code running in the application, sending
messages with the command selected by the user each time there is an action
in the application. These messages follow the format indicated in FSUIPC
documentation [53], where it can be observed that virtually all the internal
parameters of the simulated aircraft are assigned by a memory position and
offset status definition, so that they can be read or written to provide almost
full control of the simulator to an external application like the one developed
in this research.

Listing E.2: Client on the application side, to send parameters (control actions) to the
simulator.

<?php

$SocketFSUIPCMessage = $_GET [’FSUIPCMessage’];//Sintax to retrieve the

message as PHP parameter.

$host=’localhost’;
//socket_create => Creates and returns the socket resource.

$socket=socket_create(AF_INET,SOCK_STREAM,SOL_TCP);

//Communication port to be used by the socket:

$puerto=8384; //Port needs to be the same as LuaServer.

/*socket_connect=>Starts a connection to the $host address via $socket

resource.*/

$conexion=socket_connect($socket,$host,$puerto);

if($conexion)

{socket_write($socket,$SocketFSUIPCMessage,strlen(

$SocketFSUIPCMessage));

echo "Successful connection. Sending: ".$SocketFSUIPCMessage;
}

else

{

echo "\n Unable to make TCP connection. Port: ".$puerto;
}

socket_close($socket); //closing resource $socket.
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echo " y llega al final del PHP cliente";
?>

Listing E.3 shows the Lua client code running in the flight simulator side,
periodically sending the aircraft’s parameters to the application where the
HMI is implemented. In this code it can be observed how the data is read
from the simulator using the FSUIPC message format, the numeric values are
converted or re-scaled according to the FSUIPC documentation, and then the
information is formatted as a Comma-separated Values (CSV) message that is
transmitted to the application using a TCP socket.

Listing E.3: Client on the flight simulator side, to send parameters from the simulator
to the application.

-- ****************************************************
-- clientaiviewer.lua *** FSUIPC lua Client that sends below selected FSX

flight parameters to the server.

-- High level description:

-- *Open the socket with appropriate IP and Port

-- *Send a message (could be the XML header, if necessary)

-- *Endless while

-- -Collect data from FSX

-- -Send via socket

-- -Pause (vary time to change sample rate)

-- *Close socket

-- *Updated 31-05-2013

-- ****************************************************

-- In case of problems, check the computer IP with CMD ipconfig

-- WAMP localhost settings:

local host, port = "127.0.0.1", 4545

local socket = require("socket")
local tcp = assert(socket.tcp())

tcp:connect(host, port);

--note the newline below

tcp:send("socket established, also you could write the XML header here once\n");

while true do

-- note the elapsed mSecs count now so can provide relative mSec

timing column

time0 = ipc.elapsedtime()
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-- Loop until our Flag 0 is set (by assigned FSUIPC control)

while not ipc.testflag(0) do

-- Set the timestamp for this loop

time = ipc.elapsedtime() - time0

-- Read all the data we want from FSUIPC

-- 8 bytes -> DD (double precision signed decimal, e.g.

lat /lon)

-- 4 bytes -> SD (single precision signed decimal, e.g.

pitch, bank, heading)

-- 4 bytes -> UD (unsigned decimal, e.g. gs, tas, ias)

-- 2 bytes -> readUW (unsigned int, e.g. mach)

-- 2 bytes -> readSW (signed int, e.g. VS)

-- 1 byte -> UB (unsigned byte, e.g. hour, min, sec)

hour, min, sec, hourZ, minZ = ipc.readStruct(0x238, "5UB")
gs, tas, ias = ipc.readStruct(0x02B4, "3UD")

gs = (gs * 3600) / (65536 * 1852)

tas = tas / 128

ias = ias / 128

lat, lon, alt, pitch, bank, hdgT = ipc.readStruct(0x0560,"3DD", "2
SD", "1UD")

lat = lat * 90 / (10001750 * 65536 * 65536)

lon = lon * 360 / (65536 * 65536 * 65536 * 65536)

alt = alt * 3.28084 / (65536 * 65536)

pitch = pitch * 360 / (65536 * 65536)

bank = bank * 360 / (65536 * 65536)

hdgM = hdgT - (ipc.readSW(0x02A0) * 65536)

hdgM = hdgM * 360 / (65536 * 65536)

hdgT = hdgT * 360 / (65536 * 65536)

--heding adjustments

if (hdgT > 360) then

hdgT = hdgT-360

end

if (hdgM > 360) then

hdgM = hdgM-360

end

if (hdgT < 0) then

hdgT = hdgT+360

end

if (hdgM < 0) then
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hdgM = hdgM+360

end

mach = ipc.readUW(0x11C6)

mach = mach / 20480

vs = ipc.readSW(0x842)

vs = vs * -3.28084

--added on 25-09-2014:

windSpeed = ipc.readUW(0x0E90) --no need convertion

windDirection = ipc.readUW(0x0E92)

windDirection = windDirection * 360 / 65536

pressure = ipc.readUW(0x0EC6)

pressure = pressure / 16

OATemp = ipc.readSW(0x0E8C)

OATemp = OATemp / 256

kollsman = ipc.readUW(0x0330)

kollsman = kollsman / 16

Throttle = {}

Throttle1 = ipc.readSW(0x088C)

Throttle1 = Throttle1 / 163.84

table.insert(Throttle, Throttle1)

Throttle2 = ipc.readSW(0x0924)

Throttle2 = Throttle2 / 163.84

table.insert(Throttle, Throttle2)

Throttle3 = ipc.readSW(0x09BC)

Throttle3 = Throttle3 / 163.84

table.insert(Throttle, Throttle3)

Throttle4 = ipc.readSW(0x0A54)

Throttle4 = Throttle4 / 163.84

table.insert(Throttle, Throttle4)

EnginesNumber = 2

EnginesNumberRead = ipc.readUW(0x0AEC)

-- this if prevents from obtaining a strange number of

engines from FSX, so default will be 0

-- if an aircraft #Eng != 2 but we can read it, we will

assume it has 2 engines

if (EnginesNumberRead > 0) and (EnginesNumberRead < 5) then

EnginesNumber = EnginesNumberRead

end

ThrottleAvg=0;

for eng = 1, EnginesNumber do

ThrottleAvg = ThrottleAvg + Throttle[eng]

end

ThrottleAvg = ThrottleAvg / EnginesNumber

-- but only log this time IF we aren’t in an FS menu, or loading scenery
−− (check the "ready−to−fly" flag word at 3364)
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−− and provided we are not paused (flagged at 0264)
if (ipc.readUW(0x3364) == 0) and (ipc.readUW(0x0264) == 0) then

−− write a CSV line to the open file
tcp:send(string.format("%d,

%02d:%02d:%02d,%02d:%02d,%02.6f,%03.6f,%.1f,%.2f,%.2f,%03.1f
,%03.1f,%d,%d,%d,%d,%.3f,%d,%d,%d,%d,%d,%.2f",

time,hour,min,sec,hourZ,minZ,lat,lon,alt,pitch,bank,hdgT,hdgM,vs,
ias,tas,gs,mach,windSpeed,windDirection,pressure,OATemp,
kollsman,ThrottleAvg))

end
−− every 5 seconds, due to server saturation & AIViewer performance

decrease:
ipc.sleep(500)

end
end
tcp:close()

Listing E.4 shows the PHP server code running in the application, receiving
the messages, parsing the CSV stream and converting it into an SQL query to
insert the aircraft parameters into a database.

Listing E.4: Server on the flight simulator side, to send parameters from the simulator
to the application.

<?php

//Websockets: https://code.google.com/p/phpwebsocket/

$dbName=$_GET[’dbName’];
$flightTableName=$_GET[’flightTableName’];
include("../Connections/conexGeneric.php");
$link=Conectarse($dbName);

$samples_per_second=1;

ob_implicit_flush();

function workaround() {

if (!defined(’MSG_DONTWAIT’)) {

define(’MSG_DONTWAIT’, 0x40);

return 1;

}

}

workaround();

define(’ENOTSOCK’, 88); /* Socket operation on non-socket */

define(’EDESTADDRREQ’, 89); /* Destination address required */

define(’EMSGSIZE’, 90); /* Message too long */
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define(’EPROTOTYPE’, 91); /* Protocol wrong type for socket */

define(’ENOPROTOOPT’, 92); /* Protocol not available */

define(’EPROTONOSUPPORT’, 93); /* Protocol not supported */

define(’ESOCKTNOSUPPORT’, 94); /* Socket type not supported */

define(’EOPNOTSUPP’, 95); /* Operation not supported on transport

endpoint */

define(’EPFNOSUPPORT’, 96); /* Protocol family not supported */

define(’EAFNOSUPPORT’, 97); /* Address family not supported by protocol

*/

define(’EADDRINUSE’, 98); /* Address already in use */

define(’EADDRNOTAVAIL’, 99); /* Cannot assign requested address */

define(’ENETDOWN’, 100); /* Network is down */

define(’ENETUNREACH’, 101); /* Network is unreachable */

define(’ENETRESET’, 102); /* Network dropped connection because of reset

*/

define(’ECONNABORTED’, 103); /* Software caused connection abort */

define(’ECONNRESET’, 104); /* Connection reset by peer */

define(’ENOBUFS’, 105); /* No buffer space available */

define(’EISCONN’, 106); /* Transport endpoint is already connected */

define(’ENOTCONN’, 107); /* Transport endpoint is not connected */

define(’ESHUTDOWN’, 108); /* Cannot send after transport endpoint

shutdown */

define(’ETOOMANYREFS’, 109); /* Too many references: cannot splice */

define(’ETIMEDOUT’, 110); /* Connection timed out */

define(’ECONNREFUSED’, 111); /* Connection refused */

define(’EHOSTDOWN’, 112); /* Host is down */

define(’EHOSTUNREACH’, 113); /* No route to host */

define(’EALREADY’, 114); /* Operation already in progress */

define(’EINPROGRESS’, 115); /* Operation now in progress */

define(’EREMOTEIO’, 121); /* Remote I/O error */

define(’ECANCELED’, 125); /* Operation Canceled */

// Set time limit to indefinite execution

set_time_limit (0);

/*socket_create=>Creates and returns a socket resource.*/

$socket=socket_create(AF_INET,SOCK_STREAM,0);

//127.0.0.1 -> accept only from local host

//w.x.y.z (valid local IP) -> accep only from this network

$direccion=0;

$puerto=4545;//chosen port number. Needs to be the same in Server and

Client sides.
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/*socket_bind=>Binds the name given in $direccion to the socket described

by $socket.

This has to be done before establishing a connection

using socket_connect() o socket_listen().*/

socket_bind($socket, $direccion,$puerto);

socket_listen($socket);//indication to listen to incoming connections

once the socket is created.

$tamano=2048;

$i=0;

$cliente= array();

$numclientes=1;//Wait to 2 clients (2 connections)

while($i<$numclientes)

{

$cliente[$i]=socket_accept($socket); //Blocks waiting for a client

connection

// $client is an array of "connections that identify each of the

clients"

$i++;

}

$i=0;

$clientesvivos=true;

$k=0;

while($clientesvivos){

while($i<count($cliente) && $clientesvivos)

{ if(($buffer=socket_read($cliente[$i], $tamano))) //leemos

mensaje del cliente

{$k++;

if($k==$samples_per_second)

{

$flightparam=explode(",",$buffer);

$query1="insert into ".$dbName.".".$flightTableName." ";
$query2="insert into ‘".$dbName."‘.‘latest‘ ";

$query1.="(msec,time,Ztime,FSXlat,FSXlon,alt,pitch,bank,hdgT,
hdgM,vs,ias,ts,gs,mach,windSpd,windDir,pressure,
OATemp,kollsman,ThrottleAvg) ";

$query1.="VALUES (";
$query2.="(msec,time,Ztime,FSXlat,FSXlon,alt,pitch,bank,hdgT,

hdgM,vs,ias,ts,gs,mach,windSpd,windDir,pressure,
OATemp,kollsman,ThrottleAvg) ";
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$query2.="VALUES (";

$j=0;

while($j<count($flightparam)-1)

{

$query1.="’".$flightparam[$j]."’,";
$query2.="’".$flightparam[$j]."’,";

$j++;

}

$query1.="’".$flightparam[count($flightparam)-1]."’)";
$query2.="’".$flightparam[count($flightparam)-1]."’)";

$resultado = mysqli_query($link,$query1);

if (!$resultado){echo mysqli_error($link);}

$resultado = mysqli_query($link,$query2);

if (!$resultado){echo mysqli_error($link);}

$k=0;

}//end if $k

}

$i++;

}

$i=0;

}//end while

//@socket_close=>close socket resources provided by the client

@socket_close($cliente1);

@socket_close($cliente2);

socket_close($socket);

mysqli_close($link);

?>

Finally, Listing E.5 shows and excerpt of PHP code to create a SQL query
that creates the table where the aircraft parameters will be inserted. This code
has been included to provide a better understanding of the data structures
handling and the data characteristics, complementing Appendix D

Listing E.5: The table that stores aircraft parameters is created with this SQL query.

$queryAuto1="CREATE TABLE ‘".$dbName."‘.‘flight".$flightdate."‘";
$queryAuto1.=" (‘ID_flight‘ INT( 11 ) NOT NULL AUTO_INCREMENT PRIMARY

KEY ,";
$queryAuto1.="‘msec‘ BIGINT UNSIGNED NOT NULL,";
$queryAuto1.="‘time‘ TIME NOT NULL,";
$queryAuto1.="‘Ztime‘ TIME NOT NULL,";
$queryAuto1.="‘FSXlat‘ double(15,10) NOT NULL,";
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$queryAuto1.="‘FSXlon‘ double(15,11) NOT NULL,";
$queryAuto1.="‘alt‘ double(10,1) NOT NULL,";
$queryAuto1.="‘pitch‘ double(10,2) NOT NULL,";
$queryAuto1.="‘bank‘ double(10,2) NOT NULL,";
$queryAuto1.="‘hdgT‘ double(5,1) NOT NULL,";
$queryAuto1.="‘hdgM‘ double(5,1) NOT NULL,";
$queryAuto1.="‘vs‘ int(5) NOT NULL,";
$queryAuto1.="‘ias‘ int(5) NOT NULL,";
$queryAuto1.="‘ts‘ int(5) NOT NULL,";
$queryAuto1.="‘gs‘ int(5) NOT NULL,";
$queryAuto1.="‘mach‘ double(6,3) NOT NULL,";
$queryAuto1.="‘windSpd‘ int(5) NOT NULL,";
$queryAuto1.="‘windDir‘ int(5) NOT NULL,";
$queryAuto1.="‘pressure‘ int(5) NOT NULL,";
$queryAuto1.="‘OATemp‘ int(5) NOT NULL,";
$queryAuto1.="‘kollsman‘ int(5) NOT NULL,";
$queryAuto1.="‘ThrottleAvg‘ double(5,2) NOT NULL) ENGINE = MYISAM;";

$resultado = mysqli_query($link,$queryAuto1);

if (!$resultado){echo mysqli_error($link);}
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