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of Time-Variable Information Dimensionality
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Human performance is endowed by neural representations of information that is relevant for behavior, some of which are also
activated in a preparatory fashion to optimize later execution. Most studies to date have focused on highly practiced actions, leaving
largely unaddressed the novel reconfiguration of information to generate unique whole task sets. Using electroencephalography, this
study investigated the dynamics of the content and geometry reflected on the neural patterns of control representations during
reconfiguration of information. We designed a verbal instruction paradigm where each trial involved novel combinations of
multicomponent task information. By manipulating three task-relevant factors in a sample of 40 participants (26 females, 14 males),
we observed complex coding schemes throughout the trial, during both preparation and implementation stages. The temporal
profiles were consistent with a hierarchical structure: whereas task information was active in a sustained manner, the coding of
more concrete stimulus features was more transient. Data showed both high dimensionality and abstraction, particularly during
instruction encoding and target processing. Our results suggest that whenever task content could be recovered from neural patterns
of activity, there was evidence of abstract coding, with an underlying geometry that favored generalization. During target processing,
where potential interference across stimulus and response factors increased, orthogonal configurations also appeared. Overall, our
findings uncover the dynamic manner with which control representations operate during novel recombination unique scenarios,
with changes in dimensionality and abstraction adjusting along processing stages.
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Significance Statement

The neural mechanisms that support task performance in novel contexts have been largely overlooked. Cognitive control
is thought to enable complex behavior through the active maintenance of task sets, containing essential information for
execution. However, how novel whole combinations of information are organized in neural patterns and their temporal
dependencies remain unknown. Here, using a novel complex instruction paradigm, we observed that coding of informational
content and its underlying geometry followed a dynamic temporal pattern. Our results reveal varying dimensionality and
abstraction throughout the trial, with neural codes generally structured in a geometry favoring generalization of relevant
information across task demands. These findings provide a first glimpse into the temporal computations engaged by the brain
when encountering novel recombination settings.

Introduction
Humans excel at following instructed commands, often guided
by sentences conveying details about the relevance of informa-
tion and the rules associating them with the required actions.
This ability, linked to cognitive control mechanisms, is most use-
ful in novel and changing scenarios. However, we know very little
about how the human brain encodes and recombines informa-
tion to achieve such success. Theoretical models propose that
top–down control organizes and maintains the relevant informa-
tion by creating “task sets” (Miller and Cohen, 2001; Sakai, 2008),
with empirical evidence linking these to the Multiple Demand
Network (Duncan, 2010). Recently, the study of the neural geom-
etry of activity patterns in brain regions has gained relevance,
examining whether control codes are structured to favor separ-
ability or generalization of information (Fusi et al., 2016). Still,
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the neural mechanisms supporting the flexible generation of
novel combinatorial scenarios remain an elusive topic.

Control-related information is anticipated when preparing to
implement a task and later reactivated during task implementa-
tion (Grootswagers et al., 2018; Sakai and Passingham, 2003).
Nevertheless, most of the evidence comes from repetitive and
highly practiced tasks, which limits flexibility and constrains
extrapolation to more novel contexts, cornerstone of human cog-
nitive control. The small body of research incorporating novel
tasks has demonstrated that instruction-related information is
coded during both preparation and task implementation
(Muhle-Karbe et al., 2017; González-García et al., 2017;
Hartstra et al., 2011; Palenciano et al., 2019a). However, these
functional magnetic resonance imaging (fMRI) studies are blind
to the underlying temporal dynamics. Few studies have used elec-
troencephalography (EEG) to investigate instructed behavior
(Formica et al., 2021; Formica et al., 2022), but none has
employed temporally resolvedmultivariate analyses to character-
ize the coding of novel instructions in time.

Characterizing control representations extends to the exami-
nation of their underlying configuration, or neural geometry
(Badre et al., 2021), which likely contributes to the multifaceted
nature of cognitive control. Studies indicate that pattern geome-
try adapts to task demands, with spatial arrangements of neural
activity shifting based on task requirements (Musslick and
Cohen, 2021; Kadohisa et al., 2023; Flesch et al., 2022). When
reuse of information is needed, control representations may
use abstraction, i.e., compressed low-dimensional geometries,
to generalize task-relevant components across contexts (Cole et
al., 2013; Badre et al., 2021; Verbeke and Verguts, 2022;
Bhandari et al., 2024). Conversely, the flexibility of input encod-
ing appears to be supported by a different operation, dimension-
ality expansion, which improves information separability by
maximizing the richness of attributes represented (Rigotti et
al., 2013; Fusi et al., 2016). Recent work suggests that representa-
tional spaces are initially high-dimensional during novel tasks
and decrease with learning (Bhandari et al., 2024; Wojcik et al.,
2023; Farrell et al., 2022). Dimensionality further varies at faster
timescales, expanding during task execution (Kikumoto et al.,
2024a; Bhandari et al., 2024). Moreover, studies examining
more detailed geometrical models based on lower-dimensional
manifolds have related parallel coding dimensions to better gen-
eralization and orthogonal arrangements with conflict minimiza-
tion (Stokes et al., 2020; Muhle-Karbe et al., 2023). However, how
these geometrical features dynamically adapt during the assem-
bly and execution of novel task combinations remains uncertain.

The current study employed verbal instructions that generated
trial-by-trial novelty by reusing task components (Cole et al., 2013;
Palenciano et al., 2019a), which we expected would favor abstract,
multidimensional coding. Using EEG data, we investigated how
neural pattern geometry unfolds across trial stages with different
requirements, from building whole task sets based on the instruc-
tions to applying response contingencies to specific target combina-
tions. The instructions were designed to manipulate task content
thought to engage different cognitive processes: task demands
(information selection or integration), target category (animate or
inanimate), and target relevant feature to respond (color or shape).
This enabled analyzing whether abstraction levels differentially var-
ied with task components. We studied dimensionality dynamics
across time, comparing preparation and implementation phases.
Finally, we explored the spatial arrangement of our task components
when constrained to a low-dimensional space, expecting a parallel
alignment to support information sharing across contexts.

Materials and Methods
Participants
Forty participants (mean age, 21.85 years; range, 18–27; SD, 2.28; 26
females and 14 males) received economic compensation for taking
part in the experiment, varying from 30 to 35 euros, according to their
average performance on the task. They were all native Spanish speakers,
right-handed, with normal or corrected vision and no history of neuro-
logical issues. Participants that were not able to complete the practice ses-
sion to criterion (see below) received a compensation of 5 euros.
Additionally, the data of one participant had to be excluded due to low
quality of the EEG recording, resulting in a final sample size of 39. All
participants signed a consent form approved by the local Ethics
Committee (reference 1584/CEIH/2020). The experiment was carried
out at the Mind, Brain and Behavior Research Center (CIMCYC) of
the University of Granada.

The sample size was selected based on a previous fMRI study where a
similar experimental paradigm was employed (Palenciano et al., 2025).
We compared our targeted sample size against the one obtained with a
power analysis focused on a behavioral effect size. This choice was due
to the difficulty of finding reliable effect sizes from previous studies
employing similar multivariate approaches. We used the software
PANGEA (J. Westfall, Unpublished manuscript) to detect a modest
effect size (Cohen’s d= 0.3) of the variable task demand in the behavioral
data [reaction times (RT) and accuracy]. Our sample size of 40 would
achieve a statistical power of 90.5%.

Experimental design
The experiment consisted of a main instruction-following task with a 2 ×
2 × 2 within-subject design, where the independent variables were
manipulated according to different hierarchical levels, with task demand
(integration vs selection) setting the goal of the task and target category
(animate vs inanimate) and target relevant feature (color vs shape) as
lower-level variables. The dependent variables were behavioral (RT
and accuracy) and electrophysiological (voltage values). Additionally,
we ran a localizer task with a 4 × 2 within-subject design, manipulating
the target subcategory of the stimuli (sea animal, land animal, musical
instrument or tool) and trial type (repeat or nonrepeat trials). This
task was implemented for other analyses, not included in the current arti-
cle and thus will no further be discussed.

Apparatus and stimuli
We generated 512 verbal instructions, which were novel as a whole, by
recombining the elements derived from the three independent variables
and the instructed response. Each instruction consisted of an “if… then”
statement, indicating a condition about the two upcoming targets,
together with the required response in case the condition was fulfilled.
After the instructions, participants were shown pairs of targets sur-
rounded by frames, which were generated by combining eight images,
four colors, and four shapes. Images were taken from a total pool of 16
and were either animate (land animals, horse, bear, dog, or cat, and
sea animals, whale, shark, octopus, or jellyfish) or inanimate (tools,
screwdriver, saw, hammer, or drill, and instruments, flute, saxophone,
violin, or guitar) objects. All stimulus images were retrieved from the
Google image search engine using the CCBY 4.0 filter. Half of the images
were presented during the practice session (the first two of each subcat-
egory mentioned), while the remaining were used for the experiment.
Besides, each image was framed with a colored (green, pink, orange, or
blue) shape (triangle, circle, rhomboid, or square).

The instructions gave information about the specific features of either
one or the two target stimuli that had to be selected or integrated to
respond. Task demand specified whether the condition of the statement
applied to both target stimuli (integration) or whether one of them had to
be selected while ignoring the other (selection). Regarding the variable of
target category, instructions pointed to the identity of the upcoming sti-
muli, with each regular trial containing either two animate or two inan-
imate objects. Each of the targets in a stimuli pair belonged to a different
subcategory (animate trials, land animal and sea animal; inanimate trials,
tool and musical instrument). Participants were not made aware of these
constraints about the stimuli pairs. To ensure that participants were
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encoding all the information of the instructions (e.g., processing both
target identities), we included 12.5% of “catch” trials (see, e.g.,
González-García et al., 2021; Formica et al., 2021, for a similar approach)
where a novel, noninstructed image was shown as target (four trials per
block, images could be of different target categories). Participants were
told to detect those trials by pressing both keys simultaneously
(“A” and “L”). The variable of target relevant feature indicated the
specific features of the stimulus frames to pay attention to either color
(pink, green, blue, orange) or shape (square, rhomboid, circle, triangle).
Finally, the instructions indicated the motor responses of either a left or
right index button press. Half of the instruction sets referred to integra-
tion statements, whereas the remaining referred to selection statements;
they were also equivalent in the rest of the parameters described (ani-
mate–inanimate stimuli; color–shape features); see Figure 1 for an exam-
ple of the paradigm. Following this logic, to create the instruction set, we
combined 2 task demands (integration/selection) × 2 target category
(animate/inanimate) × 8 pairings of the animate or inanimate stimuli
(each target of the pair belonging to a different subcategory) × 8 relevant
features (4 colors/4 shapes) × and 2 response mappings (left or right but-
ton press if the stimuli fulfill the instruction), resulting in a total set of 512
novel instructions.

To minimize horizontal eye movements while reading during EEG
recording, the instructions were sequentially presented (Fig. 1A). The
first and second screens indicated if the information from both stimuli
had to be integrated (“Integra” and “Combina,” respectively, which
translate to “Integrate” and “Combine”; ∼20 × 3.5°) or if the information
of only one stimulus had to be selected (“Atiende” and “Ignora,” respec-
tively, which translate to “Attend” and “Ignore”;∼20 × 3.5°). Note that to
match the presentation structure across task conditions, each task
demand condition uses two different labels. They also included the two
concrete stimuli that the instruction applied to (belonging to either ani-
mate or inanimate categories; ∼20 × 3.5°). The third screen indicated the
specific feature to focus on, either a color (“Rosa,” “Verde,” “Naranja,” or
“Azul”; “Pink,” “Green,” “Orange,” or “Blue”, respectively; ∼20 × 3.5°) or
a shape (“Cuadrado,” “Círculo,” “Triángulo,” or “Rombo”; “Square,”
“Circle, “Triangle,” or “Rhomboid”, respectively; ∼20 × 3.5°). The fourth
and last screen specified the motor response associated with the state-
ment (“Pulsa A” or “Pulsa L,” which translate to “Press A” and “Press
L”; ∼9× 3.5°). For example, an instruction for the integration–animate–
shape condition would be “Integrate dog, combine octopus, circle, press
A”; here, the participant had to pay attention to both the dog and the octo-
pus, and if they were both framed by a circle, they had to press A (other-
wise, L). An example of a selection–inanimate–color condition would be
“Attend drill, ignore guitar, orange, press L” which would indicate “attend
to the drill, ignore the guitar. If the drill is surrounded by an orange shape,
press L, otherwise press A.” To ensure that on all trials each possible
instruction had the same size on screen (first, second, and third instruc-
tions, separately), meaningless symbols were added (“&”) to match the
number of characters (Fig. 1A).

The experiment presentation and behavioral data collection were
done with Psychtoolbox running on MATLAB on a Microsoft PC screen
of 61 × 34 cm. Participants were seated at ∼65 cm from the screen.

Procedure
Once participants arrived at the lab, they received overall instructions
and performed a practice session. Only participants obtaining a mini-
mum of 80% behavioral accuracy, for a maximum of eight blocks,
were invited to the EEG session (80% of participants reached this crite-
rion). Practice sessions lasted from 10 to 40 min. Afterward, we set up the
EEG cap, and participants performed the experiment that lasted ∼1 h
and 40 min. Instruction-following and localizer blocks were interspersed
throughout the session. The main task blocks were further differentiated
according to the particular stimulus features that participants responded
to (e.g., orange and blue frames in half of the blocks and pink and green
frames in the other half). The whole experiment had a total of 24 blocks
with self-pacing rest times between them. Of these, 16 blocks were of the
main task and 8 of the localizer. To control for the effect of block order,
the transitions between block types (main task with Features 1, main task
with Features 2 and localizer task) were counterbalanced within

participants, so that all transitions were equally probable. In total, the
whole experimental session lasted ∼3 h.

Figure 1A displays a schematic representation of a trial of the main
task. Each one of the four screens was on display for 200 ms and was fol-
lowed by a fixation point for 800 ms. After the four screens (with their
respective succeeding fixation intervals), participants had an additional
1500 ms pretarget interval. Then, the targets were shown for 200 ms
(∼16 × 10.5°), with participants being instructed to respond as accurately
and fast as possible. Participants had a 2800 ms interval afterward to
respond. This way, trials were divided into three phases: instruction
encoding, pretarget, and task implementation.

Each of the 16 blocks of the task contained 32 regular trials, giving a
total of 512. For each block, there were four observations per each of the
eight experimental conditions, resulting from the full crossing of the
three independent variables. Additionally, for each block, we balanced
the experimental conditions against a series of control variables that
enabled creating a rich instructions pool, such as the target identity being
integrated or selected (e.g., cat, drill, etc.), the congruency of the target in
regard to the instruction (both fulfilled it, both did not fulfill it, or only
one fulfilled it), the specific frame features that participants responded
to (e.g., green, square, etc.), the response indicated in the instruction
(e.g., press A, press L), the response required by the targets, and the font
and format of the different instruction cues. The trial order was pseudor-
andomized against these control variables, with sequential independence
confirmed through a mutual information algorithm (González-García et
al., 2021). This approach ensured no statistical dependencies among the
experimental conditions included in the analysis and additional task
manipulations of noninterest.

Behavioral analyses
A 2× 2 × 2 within-subject repeated–measure ANOVA was performed,
with the three independent variables of the task as factors: task demand
(integration, selection), target category (animate, inanimate), and target
relevant feature (color, shape). This analysis was performed indepen-
dently for behavioral accuracy and RT using R on Rstudio (RDC
Team, 2023). To investigate significant interaction terms, we conducted
additional post hoc and applied a Holm correction to account for multi-
ple comparisons.

Electrophysiological analyses
EEG data acquisition and preprocessing. EEG activity was collected

with BrainVision’s actiCAP equipment with 64 active electrodes. Of
these, one was set as a reference channel (FCz), and two were used as
electro-ocular channels (TP9, TP10). The electrodes’ impedance was
maintained below 10 kΩ, as the amplifier’s manufacturers indicate.
The EEG signal was recorded at a 1000 Hz sampling rate, and data
files were structured following EEG-BIDS (Pernet et al., 2019).

EEG was preprocessed with the EEGLAB toolbox in MATLAB
(Delorme and Makeig, 2004) and custom MATLAB scripts (López-
García et al., 2022; available at https://github.com/Human-Neuroscience/
eeg-preprocessing). EEG recordings were downsampled at 256 Hz, filtered
with a low-pass at 126 Hz, a high-pass at 0.1 Hz, and an additional notch to
remove the effect of the electrical current and its harmonics (49–51 and
99–101 Hz). We generated epochs including the whole trial, covering a
time window of 7200 ms (from −200 to 7000 ms). Epochs were locked
at the onset of the first instruction and spanned until the end of the inter-
trial interval after target presentation. After visual inspection, noisy chan-
nels were not included for the following steps (only one channel from one
participant was removed). An independent component analysis (ICA) was
used to remove ocular (blink and saccades) and muscular artifacts iden-
tified through visual inspection and ICLabel (Pion-Tonachini et al.,
2019). A mean of 2.87 components were removed per participant, ranging
between 1 and 5. Then, an automatic rejection process was performed by
removing trials with nonstereotypical artifacts that were not excluded pre-
viously with ICA. Reasons for exclusion were as follows: (1) extreme values
of voltage, in which the amplitude exceeded a range of ±150 µV; (2) abnor-
mal spectra, in which the spectrum differed significantly from the baseline
in the 0–2 and 20–40 Hz frequency windows, linked to linear drifts in the
signal caused by artifacts; (3) improbable data, with voltage values >6
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standard deviations from the mean probability distribution. Noisy chan-
nels that contaminated the signal were removed and interpolated. The
average reference was computed by pooling all the channels and then
re-referencing to the mean. Finally, epoched data were baseline-corrected
(−199 to 0 ms). Only correct and noncatch trials were included in the anal-
yses, with an average of 44.60 ± 5.80 trials per condition (e.g., integration–
animate–shape) and participant.

Representational similarity analysis (RSA). The extent to which
activity patterns were structured according to the instructed task compo-
nents was evaluated through multivariate RSA (Kriegeskorte, 2008). By
calculating the pairwise distance across all conditions, this analysis
enables the abstraction of the neural data into a common representa-
tional space. A time-resolved RSA was performed to obtain a
fine-grained distribution of the neural patterns throughout the entire

trial. The analysis procedure was adapted from Peñalver et al. (2023)
and was performed as follows.

To construct the empirical Representational Dissimilarity Matrices
(RDMs), we crossed all the levels of the three independent variables
(task demand: integration, selection; target category: animate, inanimate;
target relevant feature: color, shape). This yielded a total of eight exper-
imental conditions. For every condition and participant, EEG data were
selected and averaged every three time points along the entire trial epoch
(−200 to 7000 ms) to reduce the processing load. To calculate the dis-
tance between each pair of conditions, we employed a cross-validated
measure of Pearson’s correlation coefficient. This cross-validated
approach diminishes the risk of bias in the results (Grootswagers et al.,
2018; Walther et al., 2016). For every participant, a threefold cross-
validation went as follows: first, data of every participant were randomly
divided into three chunks, matching condition sizes. On each of the three
cross-validation folds, one chunk was assigned as the test set, while the

Figure 1. Task paradigm and behavioral results. A, Example of a sequence of trial events. In this case, the sequential instructions indicate that if both the dog and octopus are framed by a
circle, the key “A” has to be pressed. Trial examples for different cases and their correct responses are illustrated, instruction fulfilled (above), not fulfilled (middle), and catch trial (below). The
original instructions were presented in Spanish. B, Mean accuracy (left) and RT (right) of catch and regular trials. C, Repeated-measure ANOVA results for accuracy (left) and RT (right) per
condition. Black dots refer to the mean of the condition, and the black error bars span one standard deviation above and below the mean. Colored dots depict the mean per condition of
every participant. Asterisks indicate significant main effects of the ANOVAs (p< 0.01). Abbreviations: INT, integration; SEL, selection; ANIM, animate; INAN, inanimate; C, color; S, shape.
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remaining two as the training set. On every fold, the vectorized patterns
of neural activity per condition were trial averaged and centered around 0
by subtracting the mean across conditions of each electrode. Per partic-
ipant and time point, Pearson’s correlation was calculated for every pair
of conditions between the training and test sets. The resulting matrices
were transformed into distance matrices by computing 1 − Pearson’s
coefficient (2 as more dissimilar and 0 as more similar). This was
repeated until all chunks had been part of the test set, and the distance
values were averaged across the three cross-validation folds. An empiri-
cal 8 × 8 RDM was thus obtained per subject and time point.

Theoretical RDMs were created to reflect the expected distances
between our conditions according to the variables of interest (Fig. 2A).
We built three theoretical models driven by the relationship between the
instructed components: (1) task demand, (2) target category, and (3) target
relevant feature. All matrices were fully orthogonal to each other. To esti-
mate the share of variance that was explained by each theoretical model at
every time point, we fitted them into a multiple linear regression. The the-
oretical RDMs were included as regressors and the empirical RDM from a
given time point as the dependent variable. All matrices were vectorized
before performing the regressions. To avoid illusory effects, the diagonal
was removed from both empirical and theoretical RDMs (Ritchie et al.,
2017). Since the cross-validated approach by its nature does not yield a
fully symmetric matrix, all the remaining off-diagonal elements of the
matrices were included in the regression. For each participant, we obtained
a t value of everymodel per time point, where every portion of the variance
explained was unique to one specific model.

Statistical significance was assessed nonparametrically via cluster-
based permutation (Maris and Oostenveld, 2007; López-García et al.,
2022). At the individual level, the labels of the theoretical RDMs were
randomly permuted, and the permuted matrices were included as regres-
sors on a linear regression. This process was repeated 100 times per par-
ticipant, resulting in 100 chance-level t values per theoretical model and
participant. Next, we created 105 group-level null t value curves by ran-
domly selecting individual subject permutation results and averaging
across them. These permuted maps were used to estimate the above
and below thresholds of the empirical chance distribution, which consid-
ered the 95-percentile of the distribution at each time point and the
95-percentile cluster size detected of contiguous time points. To deter-
mine the smallest cluster size deemed significant for α= 0.05, multiple
comparisons’ correction was implemented through the false discovery
rate (FDR).

Time-resolved multivariate pattern analysis (MVPA). We used time-
resolved MVPA (Grootswagers et al., 2018) to infer whether and when
the EEG activity patterns encoded the three task-relevant components
manipulated by our variables. We trained and tested the classifiers to dis-
tinguish between the two levels of each independent variable separately:
integration versus selection, animate versus inanimate, and color versus
shape trials. Classifications were done on epochs (0–7000 ms) that
included both task preparation (during instructions’ presentation and pre-
target windows) and implementation (after target onset). Preprocessed
raw voltage values for every channel and time point were used as features.
All analyses were performed with theMVPAlab Toolbox (López-García et
al., 2022; available at https://github.com/dlopezg/mvpalab). To minimize
computational costs, we performed the classifications every five time
points. Activity patterns were normalized across trials based on the stan-
dard deviation (King and Dehaene, 2014), computed in the cross-
validation loop. Both training and testing sets were standardized within
each fold in the following manner:

Xtrain = (Xtrain − mtrain)
strain

,

Xtest = (Xtest − mtrain)
strain

.

The μtrain and σtrain parameters reflect the mean and standard deviation of
each feature (channels) of the training set. Next, we smoothed the data
using a moving average filter with a sliding time window length of five

time bins, to increase the signal-to-noise ratio (although slightly reducing
the temporal resolution of the data). Afterward, the number of trials
across conditions was balanced to ensure an even distribution of the
two classes.

A fivefold cross-validation approach was followed. Briefly, the
data were divided into five chunks and the algorithm used the first
four as a training set while testing on the remaining one. This process
was iterated five times, until all chunks were used as training and test
sets. The final classifier’s performance value for each time point consisted
of the mean performance across folds. Linear Discriminant Analysis
(LDA) was used as a classification algorithm since it has shown good
performance with EEG data while reducing computational costs
(Grootswagers et al., 2018). The area under the curve (AUC) was
the performance measure, as it is a nonparametric criterion-free
estimate that has been recommended when dealing with two-class clas-
sifications (King and Dehaene, 2014). AUC’s interpretation is similar to
accuracy’s: in binary classifications, 0.5 equals the chance level (equal
probability of true and false positives), and 1 indicates perfect between-
class segregation.

Statistical inference to detect above chance classification was based on
a nonparametric cluster-based permutation protocol (Maris and
Oostenveld, 2007; López-García et al., 2022). The labels of trials were
randomly permuted 100 times for each participant, obtaining 100
AUC results that represented empirical chance-level distributions.
Afterward, we created 105 group-level null AUC values by randomly
selecting individual subject permutation results and averaging across
them. Then, we employed these permuted maps to threshold our results
considering both the 95-percentile null AUC value at each time point and
the 95-percentile cluster size of contiguous time points detected in the
permuted null distribution. The final distribution was centered around
an AUC value of 0.5 (chance level). Next, all the time points of the
group’s permuted AUC maps that exceeded the estimated threshold
were collected, yielding the normalized null distribution of cluster sizes.
An FDR was implemented at a cluster level as a correction for multiple
comparisons, allowing to achieve the smallest cluster size of contiguous
time points deemed significant (López-García et al., 2022). This process
was done independently for every variable analyzed.

Temporal generalization analysis. To examine whether the activity
patterns coding the instruction components were stable or changed
over time, and also to address if the classifiers generalized from prepara-
tion to task implementation, we performed a temporal generalization
analysis (King and Dehaene, 2014) for each of the independent variables.
Following the parameters described above, we trained a classifier on a
given time point and tested it on all the time points of the window.
We iterated this protocol across the whole epoch, obtaining three
temporal generalization matrices showing the AUC estimates for every
train–test combination. To obtain statistical significance, the procedure
indicated for time-resolved analysis was repeated [see above, Time-
resolved multivariate pattern analysis (MVPA)], with the exception
that individual-level permutations were reduced to 10 and group-level
permutations to 104, to decrease computational load.

Cross-condition generalization performance (CCGP). The CCGP
allows quantifying the extent to which the neural codes of the three
instruction components support generalization, by examining through
cross-classification all possible ways of choosing training and testing
data (Bernardi et al., 2020). A high average CCGP suggests that the
underlying neural codes support task-specific low–dimensional geome-
tries of the neural space. In this case, the classifiers are generalizing across
different traintest combinations of the conditions, and not only over
noise related to trial-to-trial variations (Bernardi et al., 2020), but they
do so at the cost of separability (Badre et al., 2021).

First, the train and test data were split according to the condition’s
label, with the training and testing sets always consisting of different con-
ditions. Considering that we had three main instruction components, the
full crossing of the variables resulted in eight conditions. For the CCGP
analysis of every instruction component (task demand, target category,
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and target relevant feature), there were four conditions of one level of the
variable and four of the other, creating a balanced dichotomy of the data
(four conditions of Class A vs four conditions of Class B). We performed
a cross-classification loop by setting two of the eight conditions as the
testing set (one condition of Class A vs one condition of Class B), while
the remaining conditions were kept as the training set (three conditions
of Class A vs three conditions of Class B), since larger training sets lead to
better generalization performance (Bernardi et al., 2020). For example, to
compute the CCGP of task demand, in each iteration of the analysis, we
trained a classifier to discriminate the neural patterns of integration and
selection from three-fourth of the conditions [e.g., (selection–animate–
color), (selection–animate–shape), (selection–inanimate–shape) vs
(integration–animate–shape), (integration–inanimate–color), (integra-
tion–inanimate–shape)] and then tested it against the remaining one-
fourth of the conditions [in this example, (selection–inanimate–color)
vs (integration–animate–color)]. Then, this process was iterated for all
unique combinations of the conditions into training and testing sets,
yielding a total of 16 repetitions (Bernardi et al., 2020; Extended Data
Table 4-1). Hence, classifiers were always tested on neural patterns of
different conditions from the ones they were trained on. Given that the
analysis was repeated along the 16 possible combinations, a 16-step
cross–validation loop was implemented along the conditions. For this
reason, CCGP analyses usually result in lower, although informative,
performance scores than regular MVPA (Bernardi et al., 2020).

For every task variable separately, and every iteration of the possible
training and testing sets, we performed time-resolved MVPA with a
cross-classification approach (López-García et al., 2022). We imple-
mented the same protocol as above [Time-resolved multivariate pattern
analysis (MVPA)]; the only change was that no additional cross-
validation of the trials was implemented. Since training and testing
sets always came from different data, there was no risk of overfitting.
The mean cross-classification performance after iterating through all
16 training and testing combinations of each task component was the
CCGP of that variable.

To assess statistical significance, a nonparametric cluster-based permu-
tation protocol was implemented (Maris and Oostenveld, 2007; López-
García et al., 2022). Per subject and task variable, the labels of the condi-
tions of each train–test combination were randomly permuted 10 times,
resulting in 10 AUC maps, which represented the empirical chance-level
distribution of each train–test combination. Then, the permuted maps
were averaged across all 16 possible train–test combinations, obtaining
10 permuted maps per subject and instruction component. To perform
group-level statistics and obtain the significance of the results, the same
steps were followed as above [Time-resolved multivariate pattern analysis
(MVPA)]. Significant above chance AUCs reflect that the decoded task
components were coded in an abstract format that favors generalization.

Correlation between time-resolvedMVPA and CCGP. To testwhether
the temporal patterns of regular time-resolvedMVPAandCCGPwere sim-
ilar, suggesting that when the task components were encoded in the neural
patterns there wasmatching evidence of abstract coding of information, we
performed Pearson’s correlations. Per participant, we calculated the
Pearson’s correlation coefficient (r) of theMVPAandCCGP results includ-
ing all time points of the trial, separately for each task component. To com-
pute the average coefficient across participants, we used Fisher’s
z-transformation (formula below; Fisher, 1992) to create a normal distribu-
tion of the correlation values before averaging and then reverted to
Pearson’s correlation coefficient (second formula below):

z = 1
2
ln

1+ r
1− r

( )
,

r = e2z − 1
e2z + 1

.

To compute the average p value of the correlations across participants, we
used Fisher’s method (formula below; Fisher, 1992). By summing the log-
transformed p values, we obtained Fisher’s statistic (x2Fisher), which follows
a χ2 distribution. To revert to p values, we calculated the complementary

cumulative distribution function of Fisher’s statistic, which provides the
upper tail probability of the χ2 distribution:

x2Fisher = −2
∑

log( pi).

To ensure that the correlation coefficients obtainedwere robust and not due
to the temporal structure of the noise, we repeated this analysis comparing
the regular MVPA and CCGP results of different variables pairwise (e.g.,
correlationbetweenMVPAresults of taskdemand andCCGPresults of tar-
get category), yielding six control comparisons.

Temporal generalization analysis with cross-classification. To extend
the information given by the CCGP, we used temporal generalization
analysis with a cross-classification approach. We thus addressed whether
the generalizable neural patterns of the instruction components were also
stable through the entire epoch. This was performed separately for every
instruction component and across the different levels of the remaining
variables. In other words, the classifier had to discriminate between the
two levels of a variable when trained and tested on different contexts,
to establish if the neural codes were generalizable with independence
of the condition of the other variables. To reduce computational load,
we did not explore all possible data splits of the variables, but pairwise.
This way, the analysis evaluated whether task demand was generalizable
across different target category and across different target relevant fea-
tures; whether target category was generalizable across different task
demands and across different target relevant features; and whether target
relevant feature was generalizable across different task demands and
across different target category. The analysis protocol was the same as
above (Temporal generalization analysis), with the only difference being
that training and testing data always came from different conditions. The
analysis was done in both directions of the data, i.e., when trained on
Condition A and tested on Condition B and vice versa. Afterward, the
mean results and permutation maps across both directions were
obtained, and statistical group analysis was performed for each direction
and the mean separately.

Dimensionality analysis. The extent to which the neural activity gen-
erated by the novel instructions is coded in a high-dimensional space was
tested through a decoding-based dimensionality analysis that measured
the decodability of all the binary dichotomies of the conditions with a
linear classifier (Bernardi et al., 2020). The number of decodable dichot-
omies after performing all possible mixtures of the instruction conditions
provides information about how many “dimensions” can be extracted
from the neural data (Rigotti et al., 2013; Fusi et al., 2016). A high number
of decoded dichotomies implies more separable or expanded codes,
reflecting higher dimensionality, while a low number implies more com-
pressed neural codes in a lower-dimensional space (Rigotti et al., 2013;
Fusi et al., 2016).

We followed an analysis protocol similar to Bernardi et al. (2020).
Given that crossing of our three instruction variables yields a total of
eight conditions, we obtained 35 possible dichotomies with a balanced
number of conditions per side of the classification (four vs four;
Extended Data Table 5-1). Out of the 35 dichotomies, three correspond
to our main instruction components, while the rest depict a mixture of
the variables. Thus, each mixed dichotomy represents a complex combi-
nation of the three task variables, which hinders interpretation of results
per dichotomy. For every dichotomy of the data, we performed a MVPA
analysis as indicated above [Time-resolved multivariate pattern analysis
(MVPA)]. Hence, the linear classifier was trained and tested to discrimi-
nate between the two sides of the dichotomy. This analysis was repeated
per time point of the trial epoch.

We calculated two complementary dimensionality measures: the
number of dichotomies decoded above chance and the Shattering
Dimensionality (SD) index (Bernardi et al., 2020). First, to calculate the
number of decoded dichotomies (Rigotti et al., 2013; Bhandari et al.,
2024), we assessed how many dichotomies were significantly decoded
above chance per time point. To obtain this, we performed a nonparamet-
ric cluster-based permutation protocol (previously explained; Maris and
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Oostenveld, 2007; López-García et al., 2022) at the level of each dichotomy.
This way, we obtained the instances of the epoch that had been signifi-
cantly decoded per dichotomy. Afterward, we calculated the total number
of significantly decoded dichotomies by adding the dichotomies of above
chance classification per time point.

We also calculated the SD index (Bernardi et al., 2020) as the mean
decoding performance across all possible dichotomies. Although this
averaged index could overrepresent dichotomies with higher classification
accuracy, we included this measure following past studies (Bernardi et al.,
2020; Bhandari et al., 2024; Posani et al., 2024) to further qualify the above-
mentioned dimensionality count estimates. To infer statistical significance,
we again implemented a nonparametric cluster-based permutationprotocol
(Maris and Oostenveld, 2007; López-García et al., 2022). The labels of the
conditions were randomly permuted 10 times per participant and dichot-
omy, to obtain the empirical chance distribution of each dichotomy.
Afterward, the permuted maps were averaged across all 35 dichotomies,
yielding the permuted maps per subject. After group-level statistics
were implemented on the averaged decoding performance [see above,
Time-resolved multivariate pattern analysis (MVPA)], significant above
chanceAUCs reflected theSD index,with separable neural codes of the data.

Neural geometry RSA. We further tested the geometrical arrange-
ment of patterns of brain activation across the two task demands
instructed, integration versus selection of information, to study whether
their coding structure favored generalization across other instruction
constituents while keeping the two task contexts disaggregated. To esti-
mate the neural geometries between trials with different task compo-
nents, we employed RSA (Kriegeskorte, 2008; following the approach
of Muhle-Karbe et al., 2023). We measured the proportion of variance
in the neural empirical matrices explained by two geometrical models:
offset and orthogonal (Fig. 6A). The theoretical models represented
two hypotheses about how task demand, our highest-level variable,
was geometrically encoded over a lower-dimensional manifold. The
empirical RDMs were calculated following the same steps as above
(Representational Similarity Analysis); thus, 8 × 8 neural matrices per
subject and time point were obtained.

The theoretical RDMs were built by estimating the pairwise distances
between the conditions according to two geometry hypotheses about the
spatial configuration of the task demand: (1) the offset model is in line
with the two levels of task demand (integration and selection) being rep-
resented in low-dimensional space as separable and parallel planes,
which favors generalization but is prone to interference; (2) the orthog-
onal model aligns with coding where integration and selection are repre-
sented in a geometry that impairs generalization but prevents cross-task
interference, with the configuration between both conditions creating a
90° angle (Fig. 6A). The values determined for the generated geometry
RDMs ranged from 0 (similar) to 2 (dissimilar), and the matrices
included the full crossing of the three task components (task demand,
target category, and target relevant feature), resulting in 8 × 8 RDMs.

To investigate the variance explained by each geometrymodel, they were
fitted into a multiple linear regression. The geometry models were included
as regressors, while the neural RDMs were the dependent variables, with all
matrices vectorized before conducting the regression. Thus, we obtained the
t values unique to each model. This was repeated separately per participant
and time point. Finally, statistical significance was obtained via nonparamet-
ric cluster-based permutation testing (see above, Representational similarity
analysis; Maris and Oostenveld, 2007; López-García et al., 2022).

Results
Behavioral results
Participants were able to perform the task with efficiency, as shown
in Figure 1B. Regular trials had a mean accuracy of 0.91 (SD, 0.05)
and mean RT of 1.13 s (SD, 0.22). Catch trials also add a good
overall performance, with a mean accuracy of 0.78 (SD, 0.16;
RT: M, 1.09 s; SD, 0.18), which confirms that participants were
attending to all the information given by the instructions.

We explored whether the three main task components modu-
lated behavior. The two behavioral measures (accuracy and RT) in

regular trials were analyzed separately with two within-subject
repeated–measureANOVAs, including as factors task demand (inte-
grate or select information), target category (animate or inanimate),
and target relevant feature (attend to the color or shape surrounding
the images). The results can be seen in Figure 1C. Task demand
had a significant main effect on both accuracy (F(38,1) = 9.87;
p<0.01; h2

p =0.21) and RT (F(38,1) = 30.51; p<0.01; h2
p =0.45), with

more accurate (integration, M, 0.92; SD, 0.06; selection, M, 0.90;
SD, 0.08) and faster responses (integration, M, 1.07; SD, 0.23; selec-
tion, M, 1.13; SD, 0.24) for integration trials. Target category
also showed a significant main effect on accuracy (F(38,1) = 25.91;
p<0.01; h2

p =0.41) and RT (F(38,1) = 86.67; p<0.01; h2
p =0.70), with

more accurate (animate, M, 0.92; SD, 0.07; inanimate, M, 0.90; SD,
0.07) and faster responses (animate, M, 1.06; SD, 0.23; inanimate,
M, 1.14; SD, 0.24) for animate trials. Lastly, we also found a signifi-
cantmain effect of target relevant feature on accuracy (F(38,1) = 27.52;
p<0.01; h2

p =0.42) and RT (F(38,1) = 70.32; p<0.01; h2
p =0.65), with

more accurate (color, M, 0.92; SD, 0.06; shape, M, 0.90; SD, 0.07)
and faster responses (color, M, 1.08; SD, 0.24; shape, M, 1.12; SD,
0.24) for color trials. Additionally, we found a significant interaction
term between task demand and target category on RT (F38,1 = 14.05;
p<0.01; h2

p = 0.27). Post hoc tests showed that the effect of task
demand was significant for both category conditions, with a larger
effect for inanimate (t(77) =−7.66; p<0.01) than animate trials
(t(77) = −4.42; p<0.01). All the remaining interactions in terms
were not significant (p>0.05). Thus, our findings reveal that the
task components mostly had independent effects on behavior.

Novel task information organizes the underlying neural space
at different temporal dynamics
Multivariate model-based RSA (Kriegeskorte, 2008) allowed to
compare the neural data with the theoretical RDMs of the three
instructed variables and examine how well each model reflects
the neural coding space along the entire trial epoch. Neural
RDMs (Fig. 2B) were created from a cross-validated Pearson’s
coefficient measure (1− r) and later fitted into a multiple linear
regression as dependent variables, with the theoretical RDMs of
each of the three task components as regressors (Fig. 2A). The
time-resolved results showed that task demand, the higher-level
task component, had a significant effect duringmost of the instruc-
tion stage while the remaining lower-level variables did so tran-
siently and only in specific time windows, as displayed in
Figure 2D.

Novel task information is encoded in the neural patterns with
fluctuating temporal stability during preparation and execution
To study the coding of content of the task components in neural
patterns, we used binary classifiers with an LDA algorithm inde-
pendently for every variable (task demand, target category, and
target relevant feature). In line with the results of the RSA, the
task demand could be decoded during most of the epoch
(Fig. 3A). First, two early peaks were significant during the pro-
cessing of the first instruction (starting at 760 and 950 ms;
Fig. 3A, colored arrows at the bottom). Next, a wide significant
cluster extended during the remaining of instruction presenta-
tion (for a 3,000 ms window), most of the pretarget interval,
and target processing. The highest AUC values for task demand
were found during the processing of the second and third sec-
tions. Second, the target category classifier performance was sign-
ificantly above chance in two shorter clusters during the
instruction phase, right after the presentation of the second
and third instruction screens (for 500 and 150 ms windows,
respectively), which were those indicating the relevant category
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and feature. There was a small ramping-up of the classifier’s pre-
cision right before the target onset (starting at 5,250 ms), and the
curve was steadily significant after target presentation (5,540 ms
onward; Fig. 3A). Last, the classifier decoding of the target rele-
vant feature was significant right after the third instruction
screen (for a 350 ms window; Fig. 3A), where the feature infor-
mation was displayed. No significant decoding was detected dur-
ing the pretarget interval or after target presentation.

The preceding findings do not address the degree to which neu-
ral coding patterns are stable over time. To further examine whether
common or independent task representations are recruited across
the preparatory and implementation stages, we used a temporal
generalization approach (King and Dehaene, 2014). The classifier
was trained at one time point and tested on all the time points of
the epoch, allowing the comparison of different patterns of brain
activity throughout the entire trial (Fig. 3B).

First, regarding task demand (Fig. 3B, top-left), we observed
off-diagonal significant classification, reflecting the sustained activ-
ity of the same patterns across time. Two connected clusters of

significant generalization during the encoding of instructions
(1,000–2,000 and 2,000–3,000 ms) suggest common representa-
tions within these two intervals, with activity patterns during the
pretarget interval also displaying generalization (4,000–5,500 ms;
middle quadrant of the matrix). During the task implementation
phase, there was a small cluster of significant generalization after
the target presentation (6,000–7,000 ms; top-right quadrant of
the matrix). The cross-classification across different task stages
shows small significant clusters with generalized activation
between the encoding of the last components of the instructions
(2,000–4,000 ms) and both pretarget (middle-left and bottom-
medium quadrants of the matrix) and task implementation
(top-left and bottom-right) intervals; similar cross-decoding was
also found across the pretarget and implementation stages (top-
medium andmiddle-right). However, the temporal profile of these
findings does not follow a sustained pattern reflecting a complete
temporal persistence of neural codes during the whole task trial.
Rather, this suggests a certain degree of stability of part of the neu-
ral patterns coding across the three task stages.

Figure 2. Task-relevant information organizes neural coding space: RSA. A, 8 × 8 RDM of the theoretical models for the RSA of task demand, target category, and target relevant feature. As
the color bar illustrates, darker colors refer to maximal dissimilarity (2), and lighter colors refer to minimal dissimilarity (0). B, Example of a neural RDM of one participant at one time point.
C, RSA results per channel of the task demand, target category, and target relevant feature models, representing the electrode’s topography of each model for visualization purposes. We
performed RSA separately for each channel, using the time points as features. The empirical matrices per channel were fitted into a linear regression with the theoretical models as regressors.
Colors refer to different t values, with red illustrating higher t values. D, RSA time-resolved results. Each darker-colored line represents the t values after fitting the three theoretical models with a
multiple linear regression, illustrating the unique share of variance explained by each model. Lighter shading refers to the standard error associated with the mean (SEM) t values. The horizontal-
colored lines above refer to the statistical significance against zero (dotted line) after implementing cluster-based permutation analysis. The results are accompanied by a simplified illustration of
the task paradigm, where colored arrows indicate in which instruction’s screen the information of each task component is provided. Abbreviations: INT, integration; SEL, selection; ANIM, animate;
INAN, inanimate; C, color; S, shape; A; INST, instruction; ITI, intertext interval.
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As for the analysis of target category (Fig. 3B, top-right), tran-
sient epochs of significant decoding were detected during the
presentation and processing of the instructions, without general-
ization across the different instructions’ screens. Several points of
significant cross-classification were evident during the pretarget
interval, but with no apparent unified cluster. This emerged after
target onset (5,500–7,000 ms), indicating stable neural patterns
during the task implementation period. Additionally, there
were small clusters of significant cross-decoding when the class-
ifier was trained during target processing (5,500–7,000 ms) and
tested throughout instructions and pretarget intervals (top-left
and middle quadrants of the matrix). Besides, several significant
points of cross-classification between the later instruction encod-
ing and the pretarget interval indicated generalization between

these two time periods. Overall, cross-classification results sug-
gest that the animacy of the target category was coded with rep-
resentations sustained to some extent. Last, the target relevant
feature matrix (Fig. 3B, bottom-left) only showed points of sign-
ificant decoding on the diagonal during the encoding of the third
instruction (2,000–3,000 ms).

Abstract neural codes of different task-relevant information
emerge with sustained and transient dynamics
After ascertaining that neural patterns code task-relevant infor-
mation conveyed by the novel instructions, we addressed
whether these patterns were represented in an abstract format,
generalizing across different contexts. For that purpose, we per-
formed CCGP (Bernardi et al., 2020) for the three task variables

Figure 3. Raw voltage MVPA results. A, Results of the time-resolved classifications of the instruction-following task. Darker thin lines illustrate AUC values, and lighter shading refers to the
SEM. The horizontal-colored lines refer to the statistical significance against chance (dotted line). The figure shows the results of training and testing as described in Methods and Materials,
Time-resolved multivariate pattern analysis (MVPA). The results are accompanied by a simplified illustration of the task paradigm. B, Results for the temporal generalization analyses: task
demand, target category, and target relevant feature temporal generalization matrices. The vertical axis indicates the training time bins, and the horizontal axis the testing time bins. The
color bar indicates the AUC value of the classifier, and black lines denote significant clusters. Red dotted lines indicate the partitions between instruction encoding, pretarget interval, and
task implementation. Abbreviations: INST, instruction; ITI, intertext interval.
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in a time-resolved manner. We split the data into train and test
sets for every possible combination of the conditions and per-
formed linear classifiers, leaving six conditions for training (three
vs three) and two for testing (one vs one) on every iteration,
so that training and testing sets always consisted of different
conditions. Figure 4B illustrates the CCGP value, the average
performance of the 16 cross-classifications (see Extended Data
Figs. 4-1–4-3 for the classifier performance per cross-classification).
Note that although the performance measure of the classifier had a
generally low value compared with previous time-resolved MVPA,
this is an expected result when considering the cross-classification
approach implemented (Bernardi et al., 2020).

CCGP findings illustrate different temporal profiles of abstrac-
tion for each of the task components. The variable task demand
engaged common neural codes along most of the trial, since the
mean AUC of the CCGP was significantly above chance for
almost all the time points of the epoch. There was a peak of cross-
generalized decoding during instruction encoding and, although
the AUC decreased on the pretarget interval, it was still signifi-
cantly decoded above chance. Thus, task demand recruited in a
stable fashion common neural codes that support generalization,
corroborating that the higher-level variable of the task was repre-
sented abstractly in a prolonged fashion. In fact, this temporal
profile of results seems to concur with those of the regular time-
resolved MVPA, suggesting that abstracted neural patterns
underpin the coding of this task component throughout the trial
window. Note that the cross-validation and cross-decoding
schemes followed in these two analyses do not allow for direct
statistical comparison due to the different number of observa-
tions used for testing and training the classifiers, which could
lead to spurious results. Instead, we aimed at characterizing their
potentially common temporal profiles through Pearson’s correla-
tions, by including the results of all time points at once. The aver-
age coefficient across participants after Fisher’s Z-transform
indicated a significant and strong relationship between the two
time courses (ravg = 0.84; combined p value using Fisher’s
method, p < 0.01).

Target category showed cross-generalization transiently dur-
ing the earlier stages of the trial and steadier after target presen-
tation, with a high CCGP peak right after the target onset. The
results suggest that target category was represented abstractly
only at specific time intervals, which match the time periods
where the content of this variable was decodable in the data. In
this case, compared with the regular MVPA results, the average
Pearson’s correlation coefficient across participants after
Fisher’s Z-transform was ravg = 0.83 (combined the p value using
Fisher’s method, p < 0.01). This suggests that whenever the target
category was explicitly coded in the neural patterns, it was, at
least partially, in a generalizable format. Lastly, the target relevant
feature showed a significant CCGP at a short interval during the
encoding of the third instruction, when feature information was
being provided, again matching the decoding results during
this time period (see previous time-resolved MVPA results;
average Pearson’s coefficient across participants was ravg = 0.77;
p < 0.01). Thus, this portrays abstract transient coding of feature
information.

To ensure that the correlation results were robust and not due
to the temporal structure of noise, we repeated the correlation of
regular decoding and abstraction results but with different vari-
ables (e.g., MVPA results of task demand and CCGP results of tar-
get category), for a total of six pairwise comparisons. The results
showed negative, close to zero correlation coefficients, with
the average Pearson’s coefficients ranging from ravg =−0.10 to

ravg =−0.17 across the six comparisons (p values range from
p = 0.11 to 0 = 0.19; see Extended Data Fig. 4-4 for the distribu-
tion of correlations across all pairwise comparisons). Thus, the
strong correlations from MVPA and CCGP of the same variable
(described in the previous paragraphs) were not merely a
by-product of the temporal noise structure in the data.

To investigate whether these abstract neural codes were
also temporally stable and transferable across the trial epoch,
we performed a temporal generalization analysis with cross-
classification. We obtained generalization matrices for each
task variable when training and testing on different conditions
of the remaining variables. The analyses were performed in
both directions of classification (train on Condition A and test
on B and vice versa) and later averaged (see Extended Data
Figs. 4-5–4-7 for the results per direction of classification).

For the task demand, we observed similar generalization pat-
terns both across different target category and relevant features
(Fig. 4C), with a unified cluster of generalization during the pro-
cessing of the second and third instructions’ screens and points of
cross-classification prior to and after the target onset. The only
difference of note was a thinner instruction encoding cluster
(fewer instances of cross-classification) across different relevant
features (Fig. 4C, right). In comparison with the regular temporal
generalization results (with the same data for training and test-
ing; see temporal generalization analysis results), a smaller cluster
of generalizable neural patterns during target processing was
detected, which suggests that the task demand after the target
appeared was coded with more independent neural patterns
depending on the Category and Feature of the trial’s target.
Together with the CCGP results, the generalization matrices of
task demand corroborate that this task component engaged
shared neural codes across different conditions and that the
abstract format of the variable was maintained along the trial.

Results of cross-classifying the target category across task
demands and relevant features showed a resembling profile
(Fig. 4D). There was a cluster of generalization during target pro-
cessing, coherent with the previous results showing that the tar-
get category was strongly coded in that time window (see RSA
and time-resolved MVPA results). Additional points of cross-
classification during instruction encoding and between target
processing and both instruction encoding and the pretarget
interval were found. In accordance with what was described
previously, the neural patterns of target category reflected an
abstract format transiently during target processing, but not so
evidently during the early stages of the trial. Last, the target
relevant feature only exhibited segregated points of significant
classification that did not depict any recognizable generalization
pattern (Fig. 4E). As we described with the CCGP results,
this task variable was only explicitly coded in the data for a
very brief time period during the encoding of the third instruc-
tion screen.

The dimensionality of the neural codes shifts along the trial
We examined the complexity of information buildup with
instruction encoding, preparation, and implementation across
the whole trial with a decoding-based dimensionality analysis.
The results in Figure 5B show the number of dichotomies
decoded significantly above chance per time point (Rigotti et
al., 2013; Bernardi et al., 2020). First, during instruction encod-
ing, matching the onset of the second instruction’s screen until
the onset of the fourth, the overall separability of the neural
codes increased. We observed similar results on a second
instance, concurring with the target onset, and lasting for
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Figure 4. Temporal dynamics of abstract neural codes. A, CCGP analysis rationale. Data were split according to the condition labels, so that training and testing sets always consisted of
different conditions. This process was iterated for all possible splits of the data. B, CCGP of the task components. The darker-colored lines represent the mean AUC after performing a linear
classifier over all possible combinations of train and test data sets for each variable: task demand (magenta), target category (blue), target relevant feature (green). Lighter shading refers to the
standard error associated with the averaged performance measure (SEM). The horizontal-colored lines refer to the statistical significance against chance (dotted line) after implementing cluster-
based permutation analysis. C–E, Results of temporal generalization analysis of the task components through different contexts with cross-classification (different conditions for train and test).
The vertical axis indicates the training time bins, and the horizontal axis indicates the testing time bins. The color bar indicates the AUC values of the classifier, and black lines denote significant
clusters. C, Mean temporal generalization matrices after classifying integration versus selection (task demand) through different target categories (left) and different relevant features (right).
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1000 ms with a slow decrease in dimensionality toward trial
completion. During the pretarget interval, in between these
two time periods of higher separability, the number of dichot-
omies decoded decreased drastically, going back to the initial
low-dimensional state. The complementary SD index shows
similar temporal dynamics. The results show an increase in
SD decoding performance during instruction encoding, which
diminished during the pretarget interval and had a later peak
around target onset (Fig. 5C).

The neural representational format suggests a parallel
geometry favoring generalization
Building on previous research reporting representational strength
of task demands and contexts in the coding of instructions
(Sobrado et al., 2022; Muhle-Karbe et al., 2017), we further evalu-
ated the spatial configuration of the activity patterns coding the two
task demands. For that purpose, we employed model-based RSA
(Kriegeskorte, 2008) and compared two alternative theoretical
geometries: onewhere the low-dimensional structure of integration

�
D, Mean temporal generalization matrices after classifying animate versus inanimate (target category) through different task demands (left) and different relevant features (right). E, Mean
temporal generalization matrix after classifying color versus shape (relevant feature) through different task demands (left) and different target categories (right). See Extended Data Table 4-1 for
full depiction of data-split in CCGP. See Extended Data Figures 4-1–4-3 for the MVPA results per dichotomy of B. See Extended Data Figure 4-4 for the correlation distributions across the pairwise
comparisons of regular MVPA and CCGP results. See Extended Data Figures 4-5–4-7 for the results per direction of the classification of C–E.

Figure 5. Temporal dynamics of neural dimensionality. A, Analysis rationale. Data from the full crossing of the variables were split into all possible balanced dichotomies. After performing
classifiers on every dichotomy, the more ways the data can be separated, the higher the dimensionality of the neural space. B, The number of dichotomies decoded significantly above chance.
A linear classifier was performed with each of the 35 balanced dichotomies obtained from mixing the task variables. For every time point, the significantly decoded dichotomies were summed.
C, SD results. The darker line represents the mean AUC after applying a linear classifier over all possible balanced dichotomies, obtained from mixing the task conditions. Lighter shading refers to
the SEM of the performance measure. The horizontal line refers to the statistical significance against chance (dotted line) after implementing cluster-based permutation analysis. The results are
accompanied by a simplified illustration of the task paradigm. See Extended Data Table 5-1 for the full depiction of data splitting. See Extended Data Figure 5-1 for the MVPA results per
dichotomy. Abbreviations: INST, instruction; ITI, intertext interval.
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and selection was organized in parallel planes (offset model;
Fig. 6A, left), favoring generalization of information, and another
conformed by planes laying at 90° (orthogonal model; Fig. 6A,
right), reducing interference of conflicting information.

The results indicated that the offset model explained the
most variance for the majority of the trial (Fig. 6D). This model
started predicting the pairwise distances of the conditions very
early on, for a brief period during the encoding of the first

instruction’s screen. Later, it had significant t values again during
the encoding of the second and third screens (for a 1,300 ms win-
dow). During late encoding of the fourth screen, there was a
slight increment of the t values, with the significantly above-zero
values maintained for the remainder of the trial. Prior to the
presentation of the target, the results of the offset geometry
exhibited a ramping-up pattern, peaking on target processing
(at ∼6,000 ms).

Figure 6. RSA of neural coding geometry. A, RDMs of the two geometry models and their multidimensional scaling plots (offset and orthogonal model, respectively). The top figures represent
the theoretical RDMs; as the color bar illustrates, darker colors refer to maximal dissimilarity (2), and lighter colors refer to minimal dissimilarity (0). The figures below depict the two alternative
geometries projected on a three-dimensional space via multidimensional scaling. The darker purple plane refers to the selection activity patterns (with each vertex indicating a condition,
e.g., a = selection–animate–color), and the beige plane refers to the integration activity patterns. B, Example of a neural RDM of one participant at a specific time point.
C, Multidimensional scaling (MDS) plot of the previous neural RDM reduced to three dimensions. MDS was used for visualization purposes only. D, RSA results per geometry model. Each
darker-colored line represents the t values after fitting the two geometry dissimilarity models to a multiple linear regression, illustrating the unique share of variance explained by each model.
Lighter shading refers to the SEM t values. The horizontal-colored lines refer to the statistical significance against zero (dotted line) after implementing cluster-based permutation analysis. The
results are accompanied by a simplified illustration of the task paradigm. Abbreviations: INT, integration; SEL, selection; ANIM, animate; INAN, inanimate; C, color; S, shape; INST, instruction; ITI,
intertext interval.
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The orthogonal model, with integration and selection laying
at a 90° angle, had significant results only after target presenta-
tion. Looking at the temporal profile of its t values, the orthogo-
nal model started with values near chance; then the model’s
explained variance diminished, with t values below zero during
the preparatory stage, instruction encoding, and pretarget inter-
val. These negative t values hint that the orthogonal model may
be negatively correlated to the neural data. Considering that
offset and orthogonal models show opposing elements, these
results could further suggest that neural similarity was organized
by a structure more in line with a parallel geometry. After the tar-
get onset, there was an increase in the model predictability, with
t values reaching significant above-zero rates. In summary, these
findings suggest a geometry in the neural space in which integra-
tion and selection are represented separately, but with a confi-
guration that allows the generalization of task information,
with a shift toward orthogonality after target presentation.

Discussion
This study investigated how multicomponent novel verbal
instructions organize neural patterns during task preparation
and execution, in a temporally resolved manner. By characteriz-
ing the temporal unfolding of the content and geometry reflected
in activity patterns, our findings demonstrate how neural codes
shift in abstraction and dimensionality, corresponding to the
varying nature in which the human brain encodes task-relevant
components.

Our study is the first to characterize in time the neural coding of
information underlyingmulticomponent novel verbal instructions,
since previous investigations primarily used fMRI (Palenciano et
al., 2019a; Muhle-Karbe et al., 2017; González-García et al.,
2017). Time-resolved MVPA results revealed that neural patterns
carried task information during both proactive preparation and
reactive control implementation (Braver et al., 2007). We observed
content-specific activity patterns during instruction encoding and
preparation, consistent with previous evidence of preparatory
activity before target presentation (Palenciano et al., 2019a;
Muhle-Karbe et al., 2017), related to the active maintenance of
goal-relevant information. Specific activity patterns also appeared
after target presentation, associated with reactive control processes
(Palenciano et al., 2019b; González-García et al., 2017). Results of
the temporal generalization analysis challenged the independence
of these two control modes, as we observed significant transfer of
neural codes across task preparation and implementation. Two
of the three variables manipulated, task demands and target ani-
macy, showed stable underlying patterns that transferred through
control epochs (Palenciano et al., 2019b), stressing the intermixed
nature of neural coding for proactive and reactive control modes.

The temporal profiles of neural codes underlying different
instruction components varied notably. MVPA revealed that
the broader, higher-level variable of task demands was encoded
earlier and maintained for longer, whereas more specific compo-
nents (target category and relevant feature) did so fleetingly. This
divergence was also evident in the representational space, as task
demand accounted formore unique variability in shared variance
analysis, over extended periods of time. Previous research has
proposed hierarchical processing of task sets (Badre and Nee,
2018; Cole et al., 2011), with stronger representations for higher-
level variables (Woolgar et al., 2011b; Cellier et al., 2022).
Manipulating broader task demands or contexts induces highly
separable representational schemes across both repetitive
(Stokes et al., 2013) and novel tasks (González-García et al.,
2017; Palenciano et al., 2019a). Our results extend these findings

concerning lower-level variables that increased the complexity of
the resulting task set: target category and relevant feature.
Although category was nonessential for accurate responses in
most trials, participants still coded this information, evidenced
by above chance decoding during preparation. This aligns with
past findings emphasizing category information in neural pat-
terns, even when not required for task fulfillment (Connolly et
al., 2012; Soto and Ashby, 2015), reflecting category-specific
anticipatory processes (Palenciano et al., 2019a; Ritz et al.,
2024). Part of these effects may also support preparatory mis-
match detection for infrequent, unpredictable catch trials. In
contrast, the temporal coding of relevant features likely engaged
more intricate cognitive control processes, often linked to lower
decoding accuracies (Bhandari et al., 2018), as feature conditions
did not differ perceptually during target processing (targets con-
tained both color and shape). The feature component, tied to sti-
mulus–response mappings, potentially reflects a later step in task
set hierarchy. Its less sustained coding before target presentation
further supports this interpretation.

We further characterized control representations by investigat-
ing their neural geometry through abstraction and dimensionality.
CCGP revealed that all instruction components were eventually
coded in an abstract format, generalizing across different training
and testing conditions. Generally, when the content of each
instruction component was decoded, there was evidence of
abstract coding. Thus, lower-level variables were portrayed
abstractly during critical time intervals. Previous fMRI studies
reported sustained abstract task representations during planning
(Vaidya et al., 2021) and execution (Bhandari et al., 2024), with
similar results from deep neural networks (Riveland and Pouget,
2024). Among our variables, task demand exhibited more stable
CCGP, corroborated by cross-classified temporal generalization
analysis and similar fMRI results (Palenciano et al., 2025). These
findings contrast with studies lacking generalization across task
contexts (Sobrado et al., 2022), consistent with conjunctive coding
of information (Kikumoto andMayr, 2020). This suggests that the
generalizability of neural codes depends on computational
demands, a hypothesis for future testing.

To address the specific geometry underlying our task con-
straints, we employed RSA, establishing clear predictions on the
shape of low-dimensional manifolds (simplified to three dimen-
sions). Given the combinatorial nature of the instructions, we
hypothesized that the neural coding of task demands could facili-
tate information sharing through a parallel geometry, rather than
minimizing overlap with an orthogonal model. Our results suggest
that neural spacewas broadly organized by an offset, parallel geom-
etry, with integration and selection operating in separate, parallel
planes. Recent evidence has reported that aligning task contexts
in the neural state space promotes the generalization of conceptual
information (Sheahan et al., 2021). Interestingly, we found evi-
dence of orthogonal configuration after target presentation, which
may reduce interference among competing responses (Flesch et al.,
2022). Thus, while verbal instructions induced a neural format
that facilitated transfer across task demands, this configuration
remained somewhat constrained during implementation. A similar
phenomenon of orthogonalization has been identified in the tran-
sition from evaluation to action selection (Kaufman et al., 2014;
Yoo and Hayden, 2020). Orthogonalization might enable the brain
to perform separate yet linked computations simultaneously (Ritz
and Shenhav, 2024), reducing the risk of premature or incorrect
responses (Kaufman et al., 2014). Moreover, our task manipula-
tions generated a substantial pool of possible target combinations,
and the shift toward orthogonality could enhance the encoding of
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distinct target attributes (Bondanelli et al., 2021). Nevertheless, our
study was not designed to address these complex effects. Further
research should investigate this context-dependent organization
and elucidate its theoretical implications.

Regarding the temporal dynamics of neural dimensionality
(Rigotti et al., 2013), we identified two key intervals characterized
by more decoded dichotomies and increased SD. Studies have
shown that the number of decoded dichotomies grows exponen-
tially with the underlying dimensions of neural patterns (Rigotti
et al., 2013), linked to nonlinear, high-dimensional mixed selec-
tivity (Rigotti et al., 2013; Badre et al., 2021). We observed vary-
ing dimensionality throughout the task. Once information was
instructed, neural patterns became less differentiated, suggesting
a compression of dimensionality that may facilitate task-relevant
generalization. Nonetheless, the concurring reduction in decod-
ing performance suggests that information was not explicitly
maintained during this interval. Upon target presentation, activ-
ity transitioned back to a high-dimensional state, potentially
reducing interference among target combinations. Studies
employing repetitive tasks show rapid dimensionality expansion
after stimuli presentation, with neural codes morphing to higher-
dimensional states (Parthasarathy et al., 2017; Aoi et al., 2020)
linked to improved behavioral efficiency (Kikumoto et al.,
2024a). Our results highlight how information complexity shifts
dynamically across instruction encoding and implementation
stages, with an expansion–compression interplay that may serve
as a control mechanism to solve the “curse of dimensionality”
(Bellman, 1957) while minimizing interference.

The overall pattern of dimensionality results contributes to the
debate on the neural geometry of novel tasks. Some authors argue
that dimensionality reduction occurs over learning (Farrell et al.,
2022; Wójcik et al., 2023), while others suggest that novel settings
start with fewer dimensions and abstract codes (Cole et al., 2013;
Verbeke and Verguts, 2022). In contrast, we observed an interesting
pattern featuring high dimensionality alongside generalization
across conditions. Discrepancies may stem from the nature of the
tasks used, as most previous dimensionality studies involve slower
trial-and-error learning (Wójcik et al., 2023; Flesch et al., 2022),
whereas verbally instructed tasks create complex task sets early on.
Additionally, task settings with constant structure or high complex-
ity tend to favor generalization (Aoi et al., 2020;Woolgar et al., 2015),
both ofwhichwere present in the current experiment.Our results do
not support an initial high- (Wójcik et al., 2023) or low-dimensional
state (Verbeke andVerguts, 2022) but instead reveal amore complex
representational landscape for novel recombination scenarios.

Despite its contributions, our study is not without limitations.
Adapting the paradigm to EEG required splitting instructions
into sequential words, while most previous studies present instruc-
tions all at once (González-García et al., 2017; Palenciano et al.,
2019a). This sequential presentation may have affected the struc-
ture underlying the neural codes observed, restricting comparisons
with previous results. Regarding the novelty in our paradigm,
although the whole instructions were different and new on each
trial, the overarching task structure remained consistent across
the session, and elements were recursively reused, as commonly
done in such studies (Cole et al., 2011; Ruge et al., 2019). Thus,
practice might have played a role. Ruge et al. (2019) found signifi-
cant changes in task representations from early to late trials and
decreases in representational strength due to familiarity have
been reported (Woolgar et al., 2011a) accompanied with a shift
toward stronger high-level task conjunctions (Kikumoto et al.,
2024b). Unfortunately, however, our study lacked enough trials
to explore practice using multivariate techniques. Nonetheless,

our approach focused not only on how novel task sets are confi-
gured in single trials but primarily on how the brain composition-
ally adds subcomponents to build complex task sets over time.
Finally, EEG limits conclusions about the spatial sources of brain
activation. Fusion analysis of EEG and fMRI data (Cichy and
Oliva, 2020) could help pinpoint the regions involved in these tem-
poral dynamics.

In conclusion, this study sheds light on how information is rep-
resented and flexibly reconfigured tomeet demands instructed ver-
bally. Results show that reused instruction content is coded in an
abstract format, enabling generalization across contexts, while
using high-dimensional patterns that vary with stages of informa-
tion processing. Further studies could extrapolate these findings to
novel scenarios with an overall different task structure and comple-
ment them with more spatially precise neuroimaging techniques.

Data Availability
Data and code are publically available at https://osf.io/7nptv/. The
full raw EEG dataset (formatted according to the BIDS principle)
is available in the following OpenNeuro repository: https://doi.
org/10.18112/openneuro.ds005960.v1.0.0. Pre-processing and
analyses scripts can be found at https://github.com/pena–p/inst.
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