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Simple Summary: Artificial intelligence is becoming an important tool in healthcare,
helping doctors detect diseases like breast cancer at early stages. However, for AI to be
truly useful, clinicians need to understand how these systems make decisions. In this study,
we use a statistical method called Analysis of Variance (ANOVA) to explore how different
parameter choices influence the performance of an AI model for breast cancer detection.
Beyond classifying images, the model highlights which image regions are most relevant for
decision-making. By identifying key factors affecting its behavior, our work contributes to
improving the transparency and trust in AI tools in clinical practice.

Abstract: Artificial intelligence (AI) has the potential to enhance clinical practice, partic-
ularly in the early and accurate diagnosis of diseases like breast cancer. However, for
AI models to be effective in medical settings, they must not only be accurate but also
interpretable and reliable. This study aims to analyze how variations in different model
parameters affect the performance of a weakly supervised deep learning model used for
breast cancer detection. Methods: In this work, we apply Analysis of Variance (ANOVA)
to investigate how changes in different parameters impact the performance of the deep
learning model. The model is built using attention mechanisms, which both perform
classification and identify the most relevant regions in medical images, improving the inter-
pretability of the model. ANOVA is used to determine the significance of each parameter
in influencing the model’s outcome, offering insights into the specific factors that drive its
decision-making. Results: Our analysis reveals that certain parameters significantly affect
the model’s performance, with some configurations showing higher sensitivity and speci-
ficity than others. By using ANOVA, we identify the key factors that influence the model’s
ability to classify images correctly. This approach allows for a deeper understanding of how
the model works and highlights areas where improvements can be made to enhance its
reliability in clinical practice. Conclusions: The study demonstrates that applying ANOVA
to deep learning models in medical applications provides valuable insights into the param-
eters that influence performance. This analysis helps make AI models more interpretable
and trustworthy, which is crucial for their adoption in real-world medical environments
like breast cancer detection. Understanding these factors enables the development of more
transparent and efficient AI tools for clinical use.

Keywords: ANOVA; deep learning; breast cancer subtyping; classification; histologic imaging

1. Introduction
Breast cancer is the most prevalent type of cancer among women and the leading

cause of cancer-related mortality worldwide. According to the World Cancer Statistics
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(GLOBOCAN) report [1], an estimated 2.3 million new cases would be diagnosed in 2022,
representing 23.8% of all new cancer cases in women. Additionally, this report predicted ap-
proximately 670,000 deaths, representing 15.4% of cancer-related deaths among female pa-
tients. It also accounts for 11.5% of all new cancer cases and 6.8% of all cancer-related deaths
across both sexes. These figures underscore the importance of early and accurate diagnosis.

Histologic image analysis is a fundamental aspect of breast lesion identification and
characterization. A histologic image is a visual representation of a tissue or biopsy spec-
imen observed under a microscope after preparation and staining with agents such as
hematoxylin and eosin (H&E) [2,3]. This process enables the differentiation between dis-
tinct cellular and tissue structures, which have been linked to the morphology and spatial
organization of these elements and their association with cancer subtypes, grades, and
prognosis [2]. Therefore, the development of accurate and efficient methods of histological
image analysis, such as those based on machine learning techniques, plays a crucial role in
the early detection and diagnosis of breast lesions. These methods enable timely medical
interventions that can save lives. This is made possible by the digitization of these images
through the use of advanced scanners in the field of digital histopathology. These capture
a complete tissue slide at very high resolution in a single digital file called a whole slide
image (WSI) [4,5]. It is common to save these images at different magnification levels
creating a pyramidal image to perform a detailed analysis of the distinct structures.

Advances in machine learning and computer vision techniques have provided a solu-
tion to the challenges of manually analyzing these large, high-resolution images. These
challenges include the diverse patterns among subtypes, variations between observers,
and the considerable time needed for analysis. These techniques enable the automated
classification of images based on lesion subtypes using computational models. These scans
can contain millions of pixels and take up several gigabytes of storage space, which makes
it challenging to store, process, and analyze them using traditional methods [6,7]. The emer-
gence of Deep Learning (DL) has transformed the field, making it easier to handle these
large amounts of data and allowing for the identification of intricate patterns and important
features necessary for precise classification [8–11]. More specifically, Convolutional Neural
Networks (CNNs) have revolutionized the way we automatically identify histopatho-
logical features associated with various diseases, making the process more efficient and
accurate [12,13]. However, building accurate CNN models often demands extensive, costly,
and time-consuming creation of large labeled datasets. This can be particularly challenging
in histopathology, where obtaining precise local annotations from pathologists is difficult.

This challenge has increasingly led to the adoption of Weakly Supervised Learning
(WSL) approaches within the DL framework [14–16]. In WSL, the image annotations
are global labels, and the goal of the model is to locate regions within the image that
are most relevant for classification. Although WSL provides a more efficient method for
training DL models, it often requires optimization of various hyperparameters, such as
layer configurations and learning rates, to achieve optimal performance. This optimization
process usually relies on a trial-and-error approach that may not fully exploit the potential
of the model. Therefore, it is critical to complement parameter tuning with rigorous
statistical analysis to determine which factors are truly responsible for influencing model
performance. Statistical analysis provides a robust framework for selecting the most
effective hyperparameters and model architectures to ensure reliable and interpretable
results in histological image analysis.

Recent advances in weakly supervised learning (WSL) have changed how we analyze
histological images with deep learning. They help solve problems with older methods
for segmentation and classification. One key approach is Multiple Instance Learning
(MIL) [14,15,17–22]. It lets us work with whole slide images (WSIs) without needing



Cancers 2025, 17, 1425 3 of 24

detailed labels for every small area. This saves a lot of manual work. MIL uses labels from
the whole WSI to make predictions about specific spots, which makes diagnostics faster
and more accurate [19,23–25]. It sits between segmentation and classification and helps
clinicians understand large histological images.

A notable example of weakly supervised learning in histopathology is the CHOWDER
model, based in WELDON framework [26] and uses one-dimensional convolutions and a
MinMax strategy to find important areas in images [27]. This approach demonstrates strong
performance even without detailed local labels. However, CHOWDER was originally
designed for binary classification, limiting its applicability to more complex multiclass
histopathology tasks.

In this study, we explore the internal mechanisms of a weakly supervised learning
(WSL) model to optimize disease detection in whole slide images (WSIs) using only slide-
level labels. Our goal goes beyond simply maximizing classification accuracy; we prioritize
ensuring that the model is interpretable, allowing physicians to easily understand and trust
its predictions. This is particularly crucial in cancer diagnosis, where clear and reliable
explanations are essential for effective integration into clinical practice.

To enhance CHOWDER’s capabilities, we introduce several key modifications: increas-
ing the number of convolutional layers, adjusting the architecture of fully connected layers,
and extending its functionality to support multiclass classification. These improvements
enable the model to distinguish between different subtypes of breast cancer. However,
these architectural changes introduce a larger number of hyperparameters, making the
optimization process significantly more complex.

To address this challenge, we employ Analysis of Variance (ANOVA) [28] as an alter-
native to conventional hyperparameter tuning methods such as Grid Search or Random
Search. Unlike traditional techniques, which often require extensive computational re-
sources and provide limited insights into individual parameter contributions, ANOVA
offers a statistically rigorous approach to identifying the parameters that significantly
impact model performance. By quantifying these effects, we transform hyperparameter
tuning from a trial-and-error process into a data-driven optimization strategy.

2. Materials and Methodology
2.1. Data Resource

The BReAst Carcinoma Subtyping (BRACS) dataset [29] is the result of a collaboration
between the IRCCS National Cancer Institute of Naples—Pascale Foundation, the Institute
for High Performance Computing and Networking (ICAR) of the National Research Council
(CNR), and IBM Research (Zurich, Switzerland). As shown in Figure 1, the dataset consists
of three types of lesions: benign, malignant, and atypical, further divided into seven
subtypes of lesions. Benign lesions include normal tissue (N), pathologically benign (PB),
and usual ductal hyperplasia (UDH), while atypical lesions comprise atypical ductal
hyperplasia (ADH) and flat epithelial atypia (FEA). Malignant lesions are further classified
into Ductal Carcinoma In Situ (DCIS) and Invasive Carcinoma (IC). The images shown
are representative regions of interest (ROIs) extracted from full tissue slides. While these
ROIs are displayed to highlight specific differences between lesion classes, our analysis is
conducted using the complete tissue slides. The dataset contains 547 whole-slide images
(WSI) from 189 female patients, which were scanned at a resolution of 0.25 µm/pixel
and a magnification factor of 40×. Additionally, the images were annotated by three
expert pathologists.

The authors suggest dividing the data as follows: for the training set, they used a total
of 395 samples, with 203 benign, 52 atypical, and 140 malignant cases; for the validation
set, they used 65 samples, including 30 benign, 14 atypical, and 21 malignant cases; and
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for the test set, they used a total of 87 samples, consisting of 32 benign, 23 atypical, and
32 malignant cases.

Figure 1. Different subtypes of lesions included in BRACS. Benign lesions include Normal tissue (N),
Pathologically Benign (PB), and Usual Ductal Hyperplasia (UDH). Atypical lesions include Atypical
Ductal Hyperplasia (ADH) and Flat Epithelial Atypia (FEA). Malignant lesions include Ductal
Carcinoma In Situ (DCIS) and Invasive Carcinoma (IC). Representative regions of interest from full
tissue slides, shown at 40× magnification, to illustrate differences between lesion classes (benign,
atypical, and malignant) based on histological diagnosis.

This dataset is particularly interesting because in the case of breast cancer, it’s crucial
to differentiate not only between malignant and benign lesions but also atypical ones.
Although initially noncancerous, atypical lesions may become malignant in the future.

2.2. Model

Our approach, shown in Figure 2, is based on the WELDON model, with adapta-
tions and improvements proposed in CHOWDER, which was designed specifically for
histopathological image analysis. Firstly, features are extracted from the input data using
a pre-trained model. Both WELDON and CHOWDER employ features extracted from
ResNet-50, a CNN pre-trained model in ImageNet [30]. In our study, we employ the pre-
trained model based on ViT (Vision Transformer), Phikon [31], developed by the same
authors as CHOWDER and pre-trained in the same domain, histological images. The model
generates a vector of 768 features for each patch or instance.

In this process, we will compute a score for each patch rather than for each pixel, which
is more appropriate for histological image classification. To achieve this, we will perform a
set of one-dimensional embeddings for these features. For each class, an embedding vector
will be constructed, with the number of patches corresponding to the embedding’s length.
Each embedding will include an attention score for each of the patches. In our case, these
embeddings are obtained by applying five consecutive one-dimensional convolutional
layers, with steps applied along the patch index axis for each layer. This one-dimensional
convolution resembles a fully connected layer with shared weights between patches. In con-
trast to the single convolution required by the CHOWDER model, which is suitable for a
single-class problem, in our multiclass problem, we require a larger number of consecutive
convolutions to obtain good results.
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Figure 2. Histological Image Classification Process: Tile extraction by mask to separate tissue from
background, ensuring quality; feature extraction with pre-trained iBOT ViT-Base model, obtaining
768-dimensional vectors; one-dimensional convolutional layers for embedding and CAM generation;
MinMax layer for selection of patches with positive and negative evidence; and MLP classifier for
final classification.

Figure 3 illustrates an example of how these attention scores can be used to detect rele-
vant regions in the image. The maps illustrate attention-based activations for two malignant
cases. Red areas indicate high similarity to the malignant class, while blue areas indicate
low similarity. The highlighted regions suggest that the model’s focus is not random but
aligned with meaningful histopathological structures.

(a) (b)

Figure 3. Class Activation Maps (CAMs) for the ‘Malignant’ Class Based on Patch-Level Atten-
tion Weights in Two BRACS Samples (a,b). Red Indicate Higher Attention, Blue Patches Indicate
Lower Attention.

Subsequently, a MinMax layer is employed in the output of a one-dimensional con-
volution layer. This acts as a procedure for selecting patches, whereby embedding values
are sorted. For classification, only n + m patches per image are utilized, corresponding
to the n highest and m lowest attention scores. It is crucial to highlight that this layer
is designed to extract both the most salient instances and negative evidence. Negative
evidence is defined as a region that best supports the absence of a given class. During the
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training phase, the backpropagation algorithm runs through only the selected patches, both
positive and negative evidence. We want to check whether this negative evidence provides
relevant information. Moreover, in our case, we have not limited ourselves to testing only
configurations where n and m are equal, we wanted to test different configurations to
perform a more exhaustive analysis.

As in CHOWDER model, we apply MLP as the final classifier following the MinMax
layer. The model in question employs two layers with 200 and 100 neurons, respectively.
Tests were conducted on the number of layers for an MLP classifier after selecting the
top instances and negative evidence, as suggested in the CHOWDER model. A statistical
analysis was then performed to determine the impact of varying the number of layers from
one to three.

2.3. Statistic Analysis

Analysis of variance (ANOVA) is a powerful statistical tool used to determine if there
are significant differences between the means of multiple samples. In the context of deep
learning models, ANOVA can be used to analyze the impact on model performance of
varying different parameters, which can be measured by accuracy or run time. The goal of
this study is to identify which factors affect the performance of our histopathological image
classification model to find the best configuration. To achieve this, we have employed the
following methodology:

2.3.1. Factor and Level Definitions

In order to proceed, it is necessary to select the parameters of the deep learning model
to be studied, called factors in the analysis, and to define different levels for each of them.
In the current context, special attention is focused on the following factors:

• Weight decay: regularization during training that penalizes large weights in the model.

Weight Decay (Wd)

Level

0.1
0.0

• Layers: the number of layers in the MLP classifier.

Hidden Layers (Ly)

Level Neurons

3 256, 128, 64
2 128, 64
1 64

• Dropout: percentage of neurons randomly deactivated in these layers to avoid overfit-
ting. Initially, the dropout rates of the first, second, and third neural network layers
were included as independent factors in the analysis. However, statistical evaluation
revealed that their effects on the outcome variables were not significantly different,
indicating analogous behavior across the three layers. To reduce model complex-
ity and avoid redundancy, only the dropout rate of the first layer was retained as a
representative factor in the final analysis.
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Dropout (Dp)

Level

0.2
0.5
0.8

• Number of top instances: is the number of top patches that are finally used for
classification. We divide the images into small fragments or patches of a certain size
and train the models with these. This particular model is able to identify the most
discriminative or distinctive patches between classes and only uses a certain number
for the classification of the whole image.

N Top (Nt)

Level

5
10
20
40

• Number of bottom instances: is the number of bottom patches that are finally used
for classification. After the MinMax layer, the patches at the bottom will have the
lowest class activation score. These patches will represent what we call “negative
evidence”. This term refers to the inclusion of information that indicates the absence
of a specific class in an instance or region, as opposed to only considering the presence
of positive classes.

N Bottom (Nb)

Level

0
5

10
20

2.3.2. Outcome Selection

Once the factors have been defined, it is necessary to choose the metrics or outcomes
that will be used to measure the performance of the model in different terms. ANOVA
analysis will be performed on each of these metrics, to observe whether there are statistically
significant differences between the mean of the results of the tests performed for each of
the levels of each factor or whether, on the contrary, it can be assumed that their population
means do not differ. In our case, the results chosen to analyze the performance of the model
are the following:

• F1-score: is the harmonic mean of precision and recall. Precision measures the propor-
tion of true positives among all instances that the model has labeled as positive. Recall
measures the proportion of true positives among all instances that are actually positive.
F1-score is a useful metric when a balance between these two aspects is desired and is
especially valuable in scenarios with unbalanced classes. Accuracy can be high even if
the model does not detect minority classes well. Therefore, the F1 score will help to
better assess how the model is performing in those less frequent classes.
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• AUC-ROC (“Area Under the Curve” of the “Receiver Operating Characteristic”):
in a multiclass classification problem, the One-vs-Rest (OvR) technique evaluates
the model’s performance for each class individually. This technique generates an
ROC curve for each class, treating it as the positive class and grouping the other
classes as negative. The AUC value, which is the area under this curve, measures
the model’s ability to distinguish between classes. An AUC value close to 1 indicates
excellent performance, while a value close to 0.5 suggests performance similar to
chance. The average of the AUC values across all classes provides an overall measure
of the model’s performance in multiclass classification.

• Execution Time: measures the total time the model takes to perform the training. It
indicates the efficiency of the model in terms of computational resources and time.

Performing an ANOVA analysis for each of these metrics will allow us to understand
how different levels of dropout affect not only the model’s accuracy and discrimination
ability but also its time efficiency.

2.3.3. Model Training and Data Collection

We trained the model for all combinations of the different parameters. For each run,
we store the results in such a way that a tabular dataset will be generated in which each row
will correspond to a test, the first columns will store each of the hyperparameters specific
to that test, and the following columns will store the results of each of the metrics.

2.3.4. Assumption Validation and Outlier Detection

In the context of ANOVA, the evaluation of the assumptions of normality and ho-
moscedasticity is essential for the validity of the results. Normality can be assessed using
graphical methods such as Q-Q plots or statistical tests such as the Shapiro-Wilk test. These
methods can be used to determine whether the residuals of the model follow a normal
distribution. In addition, the assumption of homoscedasticity, which states that the variance
between groups should be equal, can be assessed using residual plots or the Levene test.
Confirmation of these assumptions is crucial, as violations of them can lead to inaccurate
interpretations and conclusions.

To ensure the validity of ANOVA we implemented a robust outlier detection strat-
egy focused on the primary response variables: AUC and F1 score. Outliers can distort
measures of central tendency and variability, potentially biasing model estimates and
inferential conclusions.

We first computed studentized residuals for each observation, both with and without
the observation included in the calculation of the mean and standard deviation. These
residuals, expressed in units of standard deviation, are particularly useful for identifying
influential points, as they account for the observation’s leverage. Studentized values are
calculated from:

zi =
xi − x̄

s
(1)

To increase robustness against deviations from normality, we also calculated modified
Z-scores using the median absolute deviation (MAD)—a scale estimator less sensitive to
extreme values than the standard deviation. This complementary method allowed for the
detection of both conventional and masked outliers.

Mi =
0.6745(xi − x̃)

MAD
(2)

Additionally, we applied Grubbs’ test [32], which formally tests for a single outlier in
a univariate normal distribution. The null hypothesis assumes all data points are drawn
from the same normal population; a significant p-value (p < 0.05) indicates that the most
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extreme value deviates significantly from this distribution. The test statistic was calculated
based on the largest studentized residual (without deletion), using the following formula:

T =

√
n(n − 2)t2

max
(n − 1)2 + nt2

max
(3)

where tmax is the maximum absolute studentized value, and n is the sample size. An ap-
proximate two-sided p-value was derived from the Student’s t-distribution with n − 2
degrees of freedom and multiplied by 2n, following standard practice. A small p-value
leads to the conclusion that the most extreme point is indeed an outlier.

2.3.5. ANOVA Analysis

ANOVA is based on comparing between-group variability (different parameter values)
with within-group variability (replicates for the same parameter value) [28].

• Null hypothesis (H0): The means of the accuracies for the different parameter values
are equal.

• Alternative Hypothesis (H1): At least one of the means of the accuracies is different.

We calculate the F statistic that compares between-group variability with within-group
variability. If the F value is significantly large, the null hypothesis is rejected. If the null
hypothesis is rejected, it is concluded that the variation of the parameter has a significant
impact on the metric of the model. Otherwise, it cannot be concluded that the parameter
has a significant impact.

When the ANOVA confirms the existence of significant differences between groups,
it indicates that at least one group differs from the others. However, it does not indicate
which group is different. To analyze the pattern of difference between means, ANOVA
is usually followed by specific comparisons, such as multiple range tests. Multiple range
tests allow multiple comparisons between group means to determine which groups are
significantly different from each other. In this study, Fisher’s Least Significant Difference
(LSD) procedure [28] was used to distinguish between means. Using this method, there
is a 5% risk that each pair of means is significantly different when the true difference
equals zero. The main idea of the LSD is to calculate the smallest significant difference
between two means as if these means had been the only means to be compared and to
declare any difference greater than the LSD as significant.

3. Results and Discussion
3.1. Model Assumption Validation
3.1.1. Outlier Detection

To ensure the robustness of our statistical analysis and adherence to key ANOVA
assumptions (normality and homoscedasticity), we applied a rigorous outlier detection
strategy focused on the primary performance metrics: AUC and F1 score.

For AUC, values below 0.65 were identified as outliers. These values are considered
insufficient to indicate acceptable model discrimination ability, especially in classification
contexts where a random classifier achieves an AUC of 0.5. Statistically, these low values
were flagged using studentized residuals, modified Z-scores, and Grubbs’ test, all indicating
significant deviation from the expected distribution. Their inclusion distorted residual
distribution and variance homogeneity.

For F1, we adopted a similar approach. Given the multi-class nature of the task
(three classes), F1 values below 0.45 were deemed indicative of imbalanced performance
between precision and recall in at least one class. These cases were also flagged by the same
statistical methods and confirmed through residual and boxplot visualizations. Including
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such underperforming scores would compromise the representativeness of the sample and
affect the integrity of model evaluation.

To further justify these exclusions, outlier plots showed in Figures 4 and 5 and box
plots were employed to visualize the distribution of the data and identify extreme values.
The outlier plot (Figures 4a and 5a) demonstrated that values beyond 3 standard deviations
(sigma) significantly deviate from the mean, highlighting potential outliers that could skew
the analysis. This visual confirmation aligns with the statistical flags raised by the tests
(e.g., studentized residuals and Grubbs’ test), reinforcing the decision to exclude these
extreme values.

In addition, the box plot (Figures 4b and 5b) revealed outside points—values more
than 1.5 times the interquartile range (IQR) from the box’s edges—and far outside points,
which are even more extreme. The box plot visually corroborated the presence of these
outliers, further supporting their exclusion based on their deviation from the expected
distribution and the potential impact on model evaluation.

Accordingly, and based on both statistical evidence and practical considerations regard-
ing model interpretability and classification adequacy, all observations with AUC < 0.65
and F1 < 0.45 were classified as outliers and excluded from downstream analyses. Finally,
we are left with a total of 861 tests.

(a) (b)

Figure 4. Plots for AUC-ROC outlier detection. (a) Outlier plot scores with sigma limits. Each point
represents a sample. Horizontal lines indicate the mean (blue) and ±1σ (cyan), ±2σ (green), ±3σ

(orange), and ±4σ (red) standard deviation boundaries. Values beyond ±3σ are considered potential
outliers. (b) Box-and-whisker plot illustrating the interquartile range, median, and whiskers. Outliers
and far outliers (beyond 1.5× and 3× the IQR, respectively) are marked with green symbols.

(a) (b)

Figure 5. Plots for F1 score outlier detection. (a) Outlier plot scores with sigma limits. Each point
represents a sample. Horizontal lines indicate the mean (blue) and ±1σ (cyan), ±2σ (green), ±3σ

(orange), and ±4σ (red) standard deviation boundaries. Values beyond ±3σ are considered potential
outliers. (b) Box-and-whisker plot illustrating the interquartile range, median, and whiskers. Outliers
and far outliers (beyond 1.5× and 3× the IQR, respectively) are marked with green symbols.
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3.1.2. Residual Validation

After excluding outliers, we prepared the response variables—AUC, F1, and Time—for
ANOVA by addressing distributional challenges and validating assumptions.

For AUC, a performance metric bounded between 0 and 1, skewness occurs when
values cluster at extremes, risking non-normal residuals and heteroscedasticity, which
violate ANOVA assumptions. To address this, we applied the logit transformation:

LOGIT(p) = ln
(

p
1 − p

)
(4)

where p is the AUC value. This transformation maps the [0, 1] range to (−∞,+∞), reducing
skewness, enhancing symmetry, and stabilizing variance to better meet normality and
homoscedasticity requirements. In contrast, F1 and Time exhibited distributions that
satisfied these assumptions without transformation, allowing the use of their raw values.

We then graphically validated residuals for all variables using two plots, shown in
Figures 6–8.

(a) (b)

Figure 6. Residual analysis plots for AUC-ROC (transformed). (a) Residuals vs. row number. This
plot displays the residuals in the order of the data to help identify any patterns or potential influential
points. Any systematic pattern may indicate non-random error or the presence of outliers. (b) Normal
probability plot of residuals. This plot helps assess whether the residuals follow a normal distribution.
If so, the points should lie close to the diagonal line.

(a) (b)

Figure 7. Residual analysis plots for F1 score. (a) Residuals vs. row number. This plot displays the
residuals in the order of the data to help identify any patterns or potential influential points. Any
systematic pattern may indicate non-random error or the presence of outliers. (b) Normal probability
plot of residuals. This plot helps assess whether the residuals follow a normal distribution. If so, the
points should lie close to the diagonal line.

The residuals vs. predicted values plots in Figures 6a–8a evaluated homoscedasticity,
requiring constant residual variance across levels of the independent variable. Ideally,
residuals scatter randomly around zero without patterns. The point cloud was centered at
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zero, showing no fan shape, structure, or correlation with predicted values for any variable.
This confirmed consistent variance, satisfying the homoscedasticity assumption.

The Q-Q plot assessed normality by comparing residual distributions to a normal
distribution, as shown in Figures 6b–8b. Ideally, points align along a straight line, indicating
normality—a key ANOVA assumption. Most points closely followed the line for AUC
(post-transformation), F1, and Time, suggesting residuals approximated normality. Slight
curvature at the tails was observed but not pronounced, indicating minor deviations
unlikely to affect analysis validity.

This approach—transforming AUC while retaining raw F1 and Time values, followed
by rigorous graphical validation—ensured all variables met ANOVA assumptions, sup-
porting reliable and accurate results.

(a) (b)

Figure 8. Residual analysis plots for time. (a) Residuals vs. row number. This plot displays the
residuals in the order of the data to help identify any patterns or potential influential points. Any
systematic pattern may indicate non-random error or the presence of outliers. (b) Normal probability
plot of residuals. This plot helps assess whether the residuals follow a normal distribution. If so, the
points should lie close to the diagonal line.

3.2. Analysis of Variance for F1 Score

The ANOVA table (Table 1) breaks down the variability of F1 based on different factors,
with the p-values indicating the statistical significance of each factor.

Table 1. ANOVA results for F1 Score-Type III Sums of Squares.

Source Sum of
Squares Df Mean

Square F-Ratio p-Value

Main
Effects
A: Wd 0.000697502 1 0.000697502 0.20 0.6566
B: Ly 0.224158 2 0.112079 31.76 0.0000
C: Nt 0.054888 3 0.018296 5.19 0.0015
D: Nb 0.0474815 3 0.0158272 4.49 0.0039
E: Dp 0.105687 2 0.0528436 14.98 0.0000

Residual 2.99578 849 0.0035286
Total 3.47639 860

Four p-values are less than 0.05, suggesting that these factors have a significant impact
on F1 with 95% confidence. The Type III sum of squares was used to measure the contri-
bution of each factor by isolating their effects from the others in the analysis. Specifically,
factors the number of layers (Ly), the number of top and bottom instances (Nt and Nb),
and the dropout (Dp) were found to have statistically significant effects on F1. Below,
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we will use a multiple comparison procedure to analyze the data and identify significant
differences between the means for each of these factors.

On the other hand, we can also observe that the applied weight decay values do not
show considerable variations in the F1 metric, suggesting that the regularization imposed
by this parameter does not effectively influence the model’s ability to distinguish between
positive and negative classes. Similarly, the number of patches used to represent negative
evidence also does not seem to have a noticeable impact on the performance of the model,
as measured through the F1 metric. This may indicate that the model is robust to variations
in these parameters, or that these factors are not capturing features relevant to classification.

Table 2 reports the Least Squares Means for the F1-score across all tested factor levels,
along with their corresponding standard errors and 95% confidence intervals. These values
provide a clearer view of how each configuration influences classification performance,
complementing the results observed in the ANOVA.

Table 2. Means Table for F1 by Level.

Factor Level Mean Stnd. Error Lower Limit Upper Limit

Grand Mean 0.627367

Wd 0.0 0.626161 0.00472293 0.616904 0.635418
0.1 0.628573 0.0026989 0.623283 0.633863

Ly
1 0.637587 0.00451719 0.628734 0.646441
2 0.64099 0.0035045 0.634121 0.647859
3 0.603523 0.0043575 0.594983 0.612064

Nt

5 0.61195 0.00585394 0.600476 0.623423
10 0.626973 0.00470746 0.617747 0.6362
20 0.638034 0.00395267 0.630287 0.645781
40 0.63251 0.00395036 0.624768 0.640253

Nb

0 0.619712 0.00396973 0.611932 0.627493
5 0.629603 0.00393853 0.621884 0.637323
10 0.639035 0.00469609 0.629831 0.648239
20 0.621117 0.00583483 0.609681 0.632553

Dp
0.2 0.636045 0.00393442 0.628334 0.643757
0.5 0.634461 0.0039388 0.626741 0.642181
0.8 0.611594 0.00399077 0.603773 0.619416

3.2.1. Multiple Range Tests for F1 by Ly

The number of hidden layers (Ly) in the model significantly affects performance
as measured by the F1 score. As shown in Figure 9b, configurations with only one or
two hidden layers yield significantly higher F1 scores than those with three layers. Specif-
ically, the model with three layers performs substantially worse, with statistically signif-
icant differences observed in the contrasts between Ly = 3 and both Ly = 1 and Ly = 2
(p < 0.05). However, no significant difference is observed between the models with one and
two hidden layers, indicating similar effectiveness at those depths.

These results suggest that adding more layers beyond a certain point may hinder rather
than help performance in this context. While deeper architectures can potentially capture
more complex patterns, they also increase model complexity and the risk of overfitting or
optimization difficulties—especially in limited data scenarios. The performance drop at
three layers may reflect such challenges, including vanishing gradients, noise amplification,
or ineffective gradient propagation.

Conversely, shallower architectures (with one or two layers) may offer a better balance
between expressiveness and generalizability, especially when the classification task involves
subtle but well-defined patterns—as is often the case in histopathology. Figure 9a illustrates
this trend, highlighting the performance decline associated with deeper models.
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(a)

Means and 95.0 Percent LSD Intervals

Ly Count LS Mean LS Sigma Groups

3 334 0.603523 0.0043575 A
1 185 0.637587 0.00451719 B
2 342 0.64099 0.0035045 B

Contrasts of Comparison

Contrast Sig. Difference +/− Limits

1–2 −0.00340292 0.0106587
1–3 * 0.0340636 0.0115086
2–3 * 0.0374666 0.00961041

(b)

Figure 9. Multiple Range Tests for F1-score by number of hidden layers (Ly). (a) Means plot with
95% LSD intervals. Points show group means with confidence intervals; shared letters indicate
non-significant differences. (b) LSD multiple range test: least squares means and groupings (top),
and significant contrasts (bottom). Asterisks (*) denote statistically significant differences.

3.2.2. Multiple Range Tests for F1 by Nt

The number of positive instances (Nt)—corresponding to patches containing diagnos-
tic features such as tumor tissue—also significantly affects model performance in terms
of the F1 score. According to the results in Figure 10b, using only five positive patches
per slide leads to significantly lower F1 scores compared to configurations with 10, 20,
or 40 positive instances. These differences are statistically significant based on Fisher’s
LSD post hoc comparisons, particularly between Nt = 5 and all other levels (p < 0.05).
However, no significant differences were found among 10, 20, and 40 positives, suggesting
a performance plateau beyond a minimal threshold.

(a)

Means and 95.0 Percent LSD Intervals

Nt Count LS Mean LS Sigma Groups

5 131 0.61195 0.00585394 A
10 200 0.626973 0.00470746 B
40 266 0.63251 0.00395036 B
20 264 0.638034 0.00395267 B

Contrasts of Comparison
Contrast Sig. Difference +/− Limits

5–10 * −0.0150238 0.0135178
5–20 * −0.0260843 0.0131929
5–40 * −0.0205607 0.0132533
10–20 −0.0110605 0.0112757
10–40 −0.00553691 0.0113095
20–40 0.00552355 0.0101189

(b)

Figure 10. Multiple Range Tests for F1-score by number of Top Patches (Nt). (a) Means plot with
95% LSD intervals; points show group means with confidence intervals. Letters indicate non-
significant groupings. (b) LSD test results: least squares means and groupings (top), significant
contrasts (bottom). Asterisks (*) denote statistically significant differences.

This finding aligns with the hypothesis that a sufficient amount of positive diagnostic
evidence is critical for robust model learning. With only a few positive examples, the model
may lack the representational diversity needed to capture the complexity of pathological
features, resulting in underfitting and reduced discriminative ability. In contrast, increasing
the number of positive patches allows for richer exposure to relevant patterns and morpho-
logical variability, which likely contributes to more reliable classification and generalization.
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Interestingly, the absence of performance gains between 10 and 40 positive instances
suggests that, beyond a certain point, additional positive evidence yields diminishing re-
turns. This plateau may reflect the model’s saturation in learning the core diagnostic signals,
reinforcing the importance of balancing data quantity with informativeness. Figure 10a
illustrates this trend, showing a marked improvement when increasing from 5 to 10 patches,
followed by a stabilization of performance across higher values of Nt.

3.2.3. Multiple Range Tests for F1 by Nb

The number of negative instances (Nb)—referring to regions that do not contain diagnos-
tic features such as healthy tissue or non-tumoral inflammation—also has a statistically signif-
icant effect on F1 score performance. As shown in Figure 11a, there is a non-linear relationship
between the amount of negative evidence and model performance. Too few or too many neg-
ative patches appear suboptimal, suggesting that a balanced inclusion of negative instances
contributes to more robust generalization and enhances diagnostic discrimination in complex
histological settings. According to the pairwise comparisons in Figure 11b, configurations
with 10 negative instances significantly outperform those with 0 or 20 negative instances,
as shown by the contrast results. No significant differences were observed between 0 and 5
or between 5 and 20, although a performance trend is evident.

(a)

Means and 95.0 Percent LSD Intervals

Nt Count LS Mean LS Sigma Groups

0 261 0.619712 0.00396973 A
20 133 0.621117 0.00583483 A
5 266 0.629603 0.00393853 A B
10 201 0.639035 0.00469609 B

Contrasts of Comparison

Contrast Sig. Difference +/− Limits

0–5 −0.00989103 0.0101463
0–10 * −0.019323 0.011288
0–20 −0.00140477 0.0131757
5–10 −0.00943198 0.0112882
5–20 0.00848626 0.0131657
10–20 * 0.0179182 0.013443

(b)

Figure 11. Multiple Range Tests for F1-score by number of Bottom Patches (Nt). (a) Means plot
with 95% LSD intervals. Letters indicate homogeneous groups. (b) LSD test results for Nb: least
squares means and standard deviations, followed by significant contrasts. Asterisks (*) indicate
statistical significance.

This result underscores the relevance of incorporating negative evidence during
training. The presence of a moderate number of non-diagnostic patches (e.g., Nb = 10)
appears to improve the model’s ability to contrast relevant and irrelevant regions, akin
to how a pathologist reasons by exclusion. This approach is aligned with attention-based
models like WELDON, which leverage both high-activation (positive) and low-activation
(negative) patches to contextualize decisions.

3.2.4. Multiple Range Tests for F1 by Dp

The dropout rate of the first layer also significantly affects the F1 score. As shown in
Figure 12b, a dropout value of 0.8 results in significantly lower F1 performance compared
to 0.5 and 0.2, as confirmed by the pairwise contrasts. Conversely, no statistically signifi-
cant difference was found between 0.2 and 0.5, indicating similar performance between
these configurations.
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(a)

Means and 95.0 Percent LSD Intervals

Dp Count LS Mean LS Sigma Groups

0.8 278 0.611594 0.00399077 A
0.5 291 0.634461 0.0039388 B
0.2 292 0.636045 0.00393442 B

Contrasts of Comparison

Contrast Sig. Difference +/− Limits

0.2–0.5 0.00919429 0.0126893
0.2–0.8 * 0.0523769 0.0126828
0.5–0.8 * 0.0431826 0.0133243

(b)

Figure 12. Multiple Range Tests for F1-score by dropout rate (Dp). (a) Means plot with 95% LSD
intervals. Letters represent homogeneous groups. (b) LSD multiple range test for Dp showing group
means and significant pairwise differences (marked with *).

The markedly reduced F1 score at a dropout of 0.8 may be attributed to excessive reg-
ularization, which can lead to information loss, reduced model capacity, and convergence
issues. In contrast, dropout values of 0.2 and 0.5 appear to strike a better balance between
regularization and model expressiveness, preserving predictive performance.

As illustrated in Figure 12a, although dropout rates of 0.2 and 0.5 yield comparable
results, the overall trend shows a monotonic decrease in F1 score as dropout increases. The
performance gap between a dropout rate of 0.8 and the other two levels is more pronounced
than that between 0.2 and 0.5.

3.3. Analysis of Variance for AUC-ROC

A new ANOVA analysis was then performed for the AUC-ROC metric to see which
factors affected the discrimination ability of the model.

As can be seen in the Table 3, the factors affecting this metric are the number of
top patches (Nt) and the number of bottom patches (Nb). Compared to the case of the
F1-score metric, the number of layers and the dropout rate do not statistically affect the
model discriminability.

Table 3. ANOVA results for LOGIT(AUC-ROC)-Type III Sums of Squares.

Source Sum of
Squares Df Mean

Square F-Ratio p-Value

Main
Effects
A: Wd 0.0720822 1 0.0720822 0.66 0.4148
B: Ly 0.417128 2 0.208564 1.92 0.1467
C: Nt 2.40306 3 0.801019 7.39 0.0001
D: Nb 1.54485 3 0.514949 4.75 0.0027
E: Dp 0.145252 2 0.0726261 0.67 0.5120

Residual 92.0456 849 0.108417
Total 97.7375 860

Table 4 presents the Least Squares Means for the Area Under the ROC Curve (AUC) for
each experimental setting. The accompanying standard errors and confidence intervals help
to assess the stability and reliability of the model’s discriminative ability under different
parameter combinations.
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Table 4. Means Table for LOGIT(AUC-ROC) by Level.

Factor Level Mean Stnd. Error Lower Limit Upper Limit

Grand Mean 1.71032

Wd 0.0 1.69806 0.0261793 1.64675 1.74937
0.1 1.72258 0.0149601 1.69326 1.7519

Ly
1 1.67482 0.0250389 1.62575 1.7239
2 1.73297 0.0194255 1.6949 1.77105
3 1.72316 0.0241537 1.67582 1.7705

Nt

5 1.62004 0.0324485 1.55644 1.68363
10 1.69059 0.0260935 1.63944 1.74173
20 1.78612 0.0219098 1.74318 1.82907
40 1.74454 0.021897 1.70162 1.78745

Nb

0 1.6471 0.0220043 1.60397 1.69023
5 1.72697 0.0218313 1.68418 1.76975
10 1.75967 0.0260306 1.70865 1.81069
20 1.70754 0.0323426 1.64415 1.77093

Dp
0.2 1.70784 0.0218086 1.66509 1.75058
0.5 1.72737 0.0218329 1.68458 1.77016
0.8 1.69576 0.0221209 1.6524 1.73911

3.3.1. Multiple Range Tests for AUC by Nt

The number of positive instances (Nt) significantly affects model performance in
terms of the logit-transformed AUC (Area Under the ROC Curve), as shown in Figure 13.
Statistically significant differences were found between several levels of Nt, particularly
between Nt = 5 and both Nt = 20 and Nt = 40, as well as between Nt = 10 and Nt = 20. This
indicates a marked improvement in AUC performance as the number of positive instances
increases from low to moderate levels.

(a)

Means and 95.0 Percent LSD Intervals

Nt Count LS Mean LS Sigma Groups

5 131 1.62004 0.0324485 A
10 200 1.69059 0.0260935 A B
40 266 1.74454 0.021897 B C
20 264 1.78612 0.0219098 C

Contrasts of Comparison

Contrast Sig. Difference +/− Limits

5–10 −0.0705503 0.0749296
5–20 * −0.166086 0.0731284
5–40 * −0.124499 0.0734634
10–20 * −0.0955357 0.0625013
10–40 −0.0539491 0.062689
20–40 0.0415865 0.0560894

(b)

Figure 13. Multiple Range Tests for AUC-ROC by number of Top Patches (Nt). (a) LSD means plot
with confidence intervals and group letters. (b) LSD test for Nt: least squares means and pairwise
contrasts with significant differences marked by asterisks.

Models trained with only 5 positive instances per slide achieved significantly lower
AUC scores compared to those with 20 or 40, suggesting that limited exposure to diagnos-
tically relevant regions impairs the model’s capacity to generalize. With such low signal,
the model may struggle to capture the essential patterns needed to distinguish between
classes, leading to unreliable performance.

This pattern mirrors what was observed with the F1-score. There, a low number
of positive instances (Nt = 5) also led to significantly poorer F1 performance compared
to higher counts, particularly Nt = 20 and 40. However, while the F1-score differences
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between Nt = 10, 20, and 40 were not statistically significant, the AUC metric continued
to show a subtle but progressive improvement up to Nt = 20. This suggests that AUC is
more sensitive to incremental improvements in the model’s discrimination ability across
the full range of predictions, while F1—being threshold-dependent—is more influenced by
classification decisions near the decision boundary.

3.3.2. Multiple Range Tests for AUC by Nb

The number of negative instances per slide (Nb) also showed a significant effect on model
performance in terms of AUC, as presented in Figure 14. Specifically, models trained with no
negative instances (Nb = 0) exhibited significantly lower AUC values compared to those trained
with 5 or 10 negative instances. This suggests that the absence of negative evidence may limit
the model’s ability to learn meaningful contrast between relevant and irrelevant regions.

(a)

Means and 95.0 Percent LSD Intervals

Nb Count LS Mean LS Sigma Groups

0 261 1.6471 0.0220043 A
20 133 1.70754 0.0323426 A B
5 266 1.72697 0.0218313 B
10 201 1.75967 0.0260306 B

Contrasts of Comparison

Contrast Sig. Difference +/− Limits

0–5 * −0.0798635 0.056241
0–10 * −0.112567 0.0625698
0–20 −0.0604415 0.0730333
5–10 −0.0327039 0.0625706
5–20 0.019422 0.0729779
10–20 0.0521259 0.0745149

(b)

Figure 14. Multiple Range Tests for AUC-ROC by number of Bottom Patches (Nb). (a) Means plot
with 95% LSD intervals and groupings. (b) LSD multiple range test output for Nb, showing group
differences and significance levels marked by asterisks.

In the AUC analysis, the most pronounced difference was between Nb = 0 and Nb = 10,
with an estimated logit-AUC difference of −0.113, which was statistically significant. Mean-
while, differences among higher values of Nb (5, 10, 20) were not significant, suggesting a
plateau effect where once a sufficient amount of negative evidence is present, additional
instances do not yield further gains.

This trend aligns closely with the findings in the F1-score analysis, where models
trained without negative instances also underperformed significantly compared to those
with some level of negative context. However, F1 did not show statistically significant
differences among Nb = 5, 10, and 20, further highlighting that AUC may be more sensitive
to subtle gains in discriminative performance across the prediction spectrum.

3.4. Analysis of Variance for T (s)

Finally, a new ANOVA analysis was performed to examine the impact of different
factors on the run time. The results of this analysis are presented in Table 5.
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Table 5. ANOVA results for Time (s)-Type III Sums of Squares.

Source Sum of
Squares Df Mean

Square F-Ratio p-Value

Main
Effects
A: Wd 271.83 1 271.83 20.52 0.0000
B: Ly 1087.5 2 543.749 41.05 0.0000
C: Nt 3696.49 3 1232.16 93.02 0.0000
D: Nb 914.478 3 304.826 23.01 0.0000
E: Dp 10.8907 2 5.44534 0.41 0.6630

Residual 11,245.6 849 13.2457
Total
(Corrected) 19,650.1 860

Analysis of variance (ANOVA) reveals that several factors have a significant impact on
training time (T). Specifically, the weight decay (Wd), the number of hidden layers (Ly) and
the number of top and bottom patches (Nt and Nb) show p-values less than 0.05, indicating
that they have a statistically significant effect on training time at the 95% confidence level.

Table 6 displays the Least Squares Means for execution time, offering insight into
the computational efficiency of each tested configuration. The inclusion of confidence
intervals allows for a better comparison of the time-related trade-offs identified in the
ANOVA results.

Table 6. Means Table for Time by Level.

Factor Level Mean Stnd. Error Lower Limit Upper Limit

Grand Mean 489.838

Wd 0.0 489.085 0.289366 488.518 489.652
0.1 490.591 0.165357 490.267 490.915

Ly
1 488.844 0.27676 488.302 489.386
2 489.113 0.214715 488.692 489.534
3 491.557 0.266977 491.033 492.08

Nt

5 488.358 0.358661 487.655 489.061
10 487.44 0.288418 486.875 488.005
20 490.522 0.242173 490.047 490.996
40 493.031 0.242032 492.557 493.506

Nb

0 488.364 0.243219 487.887 488.841
5 489.167 0.241307 488.694 489.64
10 490.984 0.287722 490.42 491.547
20 490.837 0.35749 490.136 491.537

Dp
0.2 489.701 0.241055 489.228 490.173
0.5 489.974 0.241324 489.501 490.447
0.8 489.839 0.244507 489.359 490.318

3.4.1. Multiple Range Tests for T (s) by Wd

The regularization parameter weight decay (Wd) was found to have a statistically
significant impact on execution time. As shown in Figure 15, the model configurations with
no weight decay (Wd = 0) achieved significantly faster execution times compared to those
with a weight decay of 0.1. Specifically, the mean execution time for Wd = 0 was 489.09 s,
whereas for Wd = 0.1 it increased to 490.59 s.
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The contrast analysis confirms this difference is statistically significant, with a mean
difference of approximately 1.51 s and a 95% confidence interval that excludes zero. This
suggests that introducing weight decay, while often beneficial for generalization and model
regularization, introduces a modest computational overhead.

Although the difference in absolute terms is small, the effect may become relevant
in large-scale deployments or hyperparameter sweeps where training efficiency is critical.
The additional cost likely stems from more complex gradient updates during optimization
when regularization is applied.

(a)

Means and 95.0 Percent LSD Intervals

Wd Count LS Mean LS Sigma Groups

0 187 489.085 0.289366 A
0.1 674 490.591 0.165357 B

Contrasts of Comparison

Contrast Sig. Difference +/− Limits

0–0.1 * −1.50584 0.6515

(b)

Figure 15. Multiple Range Tests for training time by weight decay (Wd). (a) LSD plot of group means
and intervals. (b) LSD test tables for Wd showing group comparisons and significant differences (*).

3.4.2. Multiple Range Tests for T (s) by Ly

The number of layers in a neural network also affects the execution time. The greater
the number of layers, the greater the amount of computation required during forward prop-
agation and backpropagation during training. Each additional layer adds computational
complexity, thus increasing the execution time.

In Figure 16 we can see that the one- and two-layer models have similar and shorter
execution times compared to the three-layer model. They have lower complexity and
therefore require less processing time. Models with one and two layers do not show
significant differences in execution time, which may be due to the similarity in the amount
of computations required.

(a)

Means and 95.0 Percent LSD Intervals

Ly Count LS Mean LS Sigma Groups

1 185 488.844 0.27676 A
2 342 489.113 0.214715 A
3 334 491.557 0.266977 B

Contrasts of Comparison

Contrast Sig. Difference +/− Limits

1–2 −0.268896 0.653043
1–3 * −2.71258 0.705111
2–3 * −2.44368 0.588814

(b)

Figure 16. Multiple Range Tests for training time by number of hidden layers (Ly). (a) Plot of group
means and LSD intervals. (b) LSD test results showing significant differences (*) for Ly configurations.

The complexity and number of computations increase with more layers, which ex-
plains the significant increase in execution time for the model with three layers.
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3.4.3. Multiple Range Tests for T (s) by Nt

The number of patches used for training increases the number of data processed
and computational operations, which in turn increases the execution time. Each patch
represents an additional portion of the data that must be analyzed and processed by the
model, thus increasing the amount of inputs the model needs to handle. Consequently,
the additional processing required for each additional patch translates into a significant
increase in run time, due to the increased computational load and the time needed to
process and train with a larger volume of information.

The results in Figure 17 show that the number of patches used for classification signifi-
cantly affects the run time. The models with 5 and 10 patches have similar and relatively
low run times, with no significant differences between them. However, the models with
20 and 40 patches have significantly longer run times. Specifically, the run time of the
40-patch model is the longest and differs significantly from the others. This increase in
run time with more patches suggests that, while increasing the number of patches may
improve classification accuracy, it also increases computational complexity, requiring a
trade-off between the number of patches and processing time.

(a)

Means and 95.0 Percent LSD Intervals

Nt Count LS Mean LS Sigma Groups

10 200 487.44 0.288418 A
5 131 488.358 0.358661 B
20 264 490.522 0.242173 C
40 266 493.031 0.242032 D

Contrasts of Comparison

Contrast Sig. Difference +/− Limits

5–10 * 0.917949 0.828214
5–20 * −2.16384 0.808305
5–40 * −4.67327 0.812007
10–20 * −3.08179 0.690841
10–40 * −5.59122 0.692915
20–40 * −2.50944 0.619969

(b)

Figure 17. Multiple Range Tests for training time by number of top patches (Nt). (a) Means plot
with 95% LSD intervals. (b) Multiple range test for Nt showing differences between groups, with
significant contrasts marked by *.

3.4.4. Multiple Range Tests for T (s) by Nb

The number of bottom patches as well as the top increases the number of total patches
used for training which increases the number of data processed and computational opera-
tions, which in turn increases the execution time.

The results in Figure 18 reveal that the use of a higher number of patches significantly
influences the execution time, leading to a noticeable increase when 10 or more patches are
added. The lowest mean time is observed with 0 patches, and although the time increases
slightly with 5 patches, it becomes significantly longer when using 10 and 20 patches.
The differences are significant between groups without patches and those with 10 and 20,
while there are no significant differences between 5, 10 and 20 patches. This suggests that
while adding patches may improve performance, it also increases run time, especially when
exceeding 10 patches, highlighting the need to balance model complexity and processing
time efficiency.
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(a)

Means and 95.0 Percent LSD Intervals

Nt Count LS Mean LS Sigma Groups

0 261 488.364 0.243219 A
5 266 489.167 0.241307 B
20 133 490.837 0.35749 C
10 201 490.984 0.287722 C

Contrasts of Comparison

Contrast Sig. Difference +/− Limits

0–5 * −0.802637 0.621644
0–10 * −2.61947 0.691598
0–20 * −2.47265 0.807254
5–10 * −1.81684 0.691607
5–20 * −1.67002 0.806641
10–20 0.14682 0.823631

(b)

Figure 18. Multiple Range Tests for training time by number of bottom patches (Nb). (a) LSD means
plot with confidence intervals. (b) LSD pairwise test results for Nb, including group means and
statistically significant differences (*).

4. Conclusions
The development of AI models for breast cancer diagnosis requires more than achiev-

ing high classification accuracy: it requires robustness, interpretability, and alignment with
clinical reasoning. In this study, we went beyond traditional trial-and-error hyperparameter
fitting and adopted a rigorous statistical framework based on analysis of variance (ANOVA).
This allowed us not only to identify the most effective parameter settings, but also to un-
derstand the underlying causes of their performance, which parameters actually affect
the results.

Our results show that moderate dropout rates (e.g., 0.2–0.5) provide a favorable balance
between regularization and learnability versus higher regularization (0.8). The latter makes
the model unable to train satisfactorily. In addition, we find that deeper architectures
of the final classifier, beyond two or three layers, do not provide greater gains and may
even impair performance. Next, we observed that eliminating weight decay significantly
reduced training time without affecting accuracy.

As for instance selection, increasing the number of positive patches from 5 to 10
or 20 improved both F1 score and AUC markedly, while gains stagnated beyond that
point. The addition of negative evidence-nondiagnostic regions-also produced significant
improvements in performance, supporting the idea that context plays a vital role, as in a
pathologist’s reasoning. In both cases, the higher the number of instances, the longer the
execution time, which supports the use of average terms such as 10–20 positive instances
and 5–10 negative instances would be sufficient.

These results reinforce the principles of learning theory, emphasizing the simplicity of
the model, and highlight the biological plausibility of focusing on mid-level features such
as nuclear morphology and glandular structures. In addition, we ensured the statistical
rigor of our findings by verifying ANOVA assumptions, applying logit transformations
when necessary, and carefully removing outliers using statistical and technical criteria.

Going forward, this work lays the groundwork for a more principled and interpretable
approach to model optimization in computational pathology. Future work will compare
with other models, incorporate advanced explainability techniques, and evaluate general-
ization to larger and more diverse data sets. Ultimately, we believe that combining rigorous
statistical analysis with interpretable deep learning architectures can accelerate the safe and
effective integration of AI into diagnostic workflows.
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